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Abstract. Fully Homomorphic Encryption (FHE) allows computations to be per-
formed directly on encrypted data without decryption. Despite its great theoretical
potential, the computational overhead remains a major obstacle for practical applica-
tions. To address this challenge, hardware acceleration has emerged as a promising
approach, aiming to achieve real-time computation across a wider range of scenarios.
In line with this, our research focuses on designing and implementing a Graphic
Processing Unit (GPU)-based accelerator for the third generation FHEW /TFHE
bootstrapping scheme, which features smaller parameters and bootstrapping keys
particularly suitable for GPU architectures compared to the other generations.

In summary, our accelerator offers improved efficiency, scalability, and flexibility for
extensions, e.g., functional bootstrapping (Liu et al., Asiacrypt 2022), compared to
current state-of-the-art solutions. We evaluate our implementation and demonstrate
substantial speedup in the single-GPU setting, our bootstrapping achieves an 18x
- 20x speedup compared to a 64-thread server-class CPU; by using 8 GPUs, the
throughput can be further improved by 7x compared to the single-GPU implementa-
tion, confirming the scalability of our design. Furthermore, compared to the SoTA
GPU solution TFHE-rs, we achieve a maximum speedup of 1.69x in AND gate evalu-
ation. Finally, we benchmark several private machine learning applications, showing
real-time solutions for (1) encrypted neural network inference for MNIST in 0.04
seconds per image, which is the fastest implementation to our knowledge.(2) private
decision trees in 0.38 seconds for Iris dataset, where as prior 16 cores CPU implemen-
tation (Lu et al., IEEE S&P 2021) required 1.87 seconds; These results highlight the
effectiveness and efficiency of our GPU-acceleration in real-world applications.

As a technical highlight, we design a novel parallelization strategy tailored for
FHEW /TFHE bootstrapping, allowing an automated optimization that partitions
bootstrapping into multiple GPU thread blocks. This is necessary for FHEW /TFHE
bootstrapping with scalable parameters, where the whole bootstrapping process may
not fit into a single thread block. With this, our accelerator can support a broader
range of parameters, making it ideal for upcoming privacy-preserving applications.

Keywords: Fully Homomorphic Encryption - Bootstrapping - GPU Acceleration

1 Introduction

Fully Homomorphic Encryption (FHE) is a transformative technology that enables com-
putations on encrypted data without decryption. Since Gentry’s initial and seminal

Licensed under Creative Commons License CC-BY 4.0. (@) |
Received: 2024-07-15 Accepted: 2024-09-15 Published: 2024-12-09


https://doi.org/10.46586/tches.v2025.i1.314-339
mailto:hsu.chih-fan@inventec.com,chen.wei-chao@inventec.com
mailto:r11922138@csie.ntu.edu.tw,d08946006@csie.ntu.edu.tw,r11944009@csie.ntu.edu.tw,hungsh@csie.ntu.edu.tw
mailto:feng-hao.liu@wsu.edu
mailto:mchang2@albany.edu
http://creativecommons.org/licenses/by/4.0/

Yu Xiao et al. 315

work [Gen09], there has been extensive subsequent work, e.g., [Bral2, BGV12, FV12
DM15, CGGI16, CKKS17], improving the design and efficiency in both theory and prac-
tice. Despite the efforts, there are still substantial obstacles in many applications due
to the computational overhead. For example, the work [KS23] performed an encrypted
neural-network image inference over the simple MNIST dataset, yet the computation time
can take around an hour (per image) even using Intel HEXL [BKS*21] library. Thus,
accelerating FHE solutions remains a crucial and compelling research direction.

Hardware acceleration, including options like GPU, FPGA, and ASIC, has emerged
as a promising avenue for practical FHE-based solutions [ZCY*22]. Given that current
FHE computations primarily involve polynomial operations of high degrees, effective
hardware parallelization can significantly reduce computation time. Furthermore, in
many machine learning applications that are inherently parallelizable—such as image
classification, where computations involve simple operations but over extensive datasets—
the impact of hardware acceleration would become even more pronounced. Following this
line of research, this work aims to develop a CUDA implementation for FHE computation
on GPUs, significantly extending its practical applicability to broader domains.

Focus of this work. Among various approaches, we particularly focus on GPU-based
acceleration with FHEW/TFHE [DM15, CGGI16], known as the third generation of
FHE designs. This approach leverages the architectural advantages of GPUs and the
fast-bootstrapping feature of FHEW /TFHE, as outlined below:

o GPUs consist of a lot of small computing units, e.g., streaming multiprocessors (SM),
which naturally accelerate parallelizable computations. While each unit may not be
as powerful (in terms of speed and memory size) as high-end CPUs, the large number
of parallel units can significantly reduce overall computation time with appropriate
designs for major applications.

o FHEW/TFHE possess the feature of small FHE parameters, resulting in substantially
smaller bootstrapping keys (10 to 100 MB) compared to other generations of schemes
like CKKS [CHK™18] (1 to 10 GB). This simplifies the design by enabling the
allocation of smaller FHE objects into the GPU computing units.

Combining the advantages, our goal is to design and implement an FHE accelerator with
improved efficiency, scalability, and flexibility for extensions over prior works and the state
of the art [Zam22].

Bottleneck of FHE computation. Bootstrapping [Gen09, Genl10], used to refresh the
accumulated error in ciphertext, stands as the bottleneck operation in all current designs
of FHE. The fundamental concept of bootstrapping is to homomorphically decrypt the
ciphertext, allowing the removal of accumulated errors during decryption, which involves
large amount of computations. In our approach, we leverage the immense computational
power of GPUs to concurrently execute multiple bootstrappings, thereby enhancing the
overall throughput of bootstrapping operations. Broadly, FHEW /TFHE bootstrapping
falls into two categories: regular and functional. Regular bootstrapping serves the primary
function of error refreshing in ciphertext. Gate evaluation using regular bootstrapping
to evaluate logical gateways such as AND and OR gates is an example. Functional
bootstrapping retains the core functionality of bootstrapping while simultaneously enabling
arbitrary look-up table evaluations, enriching the FHEW /TFHE to evalaute non-polynomial
functions over the plaintext encoding simultaneously. However, standard functional
bootstrapping incurs a high computational cost to enhance numerical precision (requiring
larger FHE parameters, e.g., plaintext, modulus, and ring dimension). Large-precision
functional bootstrapping [LMP22] addresses this challenge by performing multiple smaller
bootstrappings instead of a single large bootstrapping, effectively enhancing precision
without drastically increasing execution time.



316 GPU Acceleration for FHEW /TFHE Bootstrapping

In this work, we focus on accelerating the bootstrapping operations in FHEW /TFHE
by harnessing the power of graphic processing units (GPUs). Mainly, we introduce a
parallelization strategy that expands our GPU-based bootstrapping solution’s range of
supported parameters, realizing bootstrapping from regular to large-precision variants.
By several rigorous optimizations, our proposed solution exhibits superior performance,
paving the way for more efficient and practical FHE in broader application domains.

1.1 Prior Works

There are two major earlier works of GPU-accelerated FHEW/TFHE bootstrapping
implementations, cuFHE [ver18] and NuFHE [nucl8]. Both implementations adhere to the
original TFHE bootstrapping specification of Chillotti et al. [CGGI16], and are designed to
execute the gate bootstrapping exclusively. However, both cubFHE and NuFHE encounter
three primary challenges in their implementations.

Firstly, both GPU implementations adopt fixed cryptographic parameters (somewhat
hardcoded in the implementation and optimization), adhering to an 80-bit security level
for gate bootstrapping. As noted in [ZCY 22, these cryptographic parameters are fixed
and cannot be reconfigured for greater generality. Specifically, parameters such as ring
dimension or ring modulus cannot be altered by simply changing values in parameter tables;
one needs to trace the entire GPU source code and modify the desired parameters wherever
they appear. Their designs do not consider flexible parameters, making it challenging to
adopt 128-bit level parameters.

Challenge 1. The fixed/hardcoded parameters make it difficult to adjust the
HE parameters, while different privacy-preserving applications may require
different parameter configurations.

Additionally, even if one modifies the desired parameters throughout the source code,
the supported parameter range is limited due to the parallelization strategy employed in
both GPU implementations. These works utilize aggressive optimization methods aimed
at fitting a bootstrapping operation into a single Streaming Multiprocessor (SM) of the
GPU. However, as parameters increase, this approach can easily exceed the limitations of
an SM, such as number of threads or amount of shared memory.

Challenge 2. The parallelization strategy used in these works has a low
upper bound in supported parameters, thus not supporting scalable parameters
required for higher security levels or (functional) bootstrapping.

Lastly, extending these implementations to support large-precision (functional) boot-
strapping introduces complexities. These extensions necessitate a more scalable parameter
set compared to gate bootstrapping and require frequent parameter adjustments for various
functions.

Challenge 3. Extending to functional bootstrapping or its large-precision
variants [LMP22] incurs challenging due to the constraints posed by both fixed
parameters and the parallelization strategy.

Other related works. For other FHE schemes like BGV/BFV [Bral2, BGV12, FV12]
and CKKS [CKKS17], there are two notable GPU-accelerated works: [JKAT21] and
TensorFHE [FWX123]. [JKAT21] achieved a 40.0x speedup compared to previous 8-
thread CPU implementations by running a logistic regression model training. As a
successor, TensorFHE further improved the multiplication and rotation operations in
CKKS, achieving 1.35x and 1.41x speedup over [JKAT21], respectively. Both works
demonstrate the significant potential of using GPUs to accelerate operations in Fully
Homomorphic Encryption. Since the parameters in BGV/BFV and CKKS are typically
much larger than those in the FHEW /TFHE scheme, the challenges these works face in
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accelerating using GPUs are very different from those encountered in FHEW /TFHE. In this
work, we specifically focus on identifying the bottlenecks in expediting the FHEW /TFHE
scheme using GPUs.

1.2 Major Contributions

We present a GPU-accelerated FHEW /TFHE bootstrapping implementation that ad-
dresses the three challenges mentioned above. More concretely, our contributions can be
summarized as follows:

o We propose a novel parallelization strategy for GPU-accelerated FHEW /TFHE
bootstrapping. This strategy adaptively partitions the bootstrapping workload based
on the FHE parameters and balances these workloads across multiple GPU thread
blocks. Using this strategy, we can configure a wide range of FHE parameters to
meet a wide range of application requirements without exceeding GPU thread block
constraints, such as the number of threads per thread block.

e We conduct a comprehensive numerical and empirical error analysis to assess the addi-
tional error introduced by the precision loss in FFT-based polynomial multiplication
implementation, which is an important basic operation in FHEW /TFHE bootstrap-
ping. This includes revising the previous error analysis metrics for bootstrapping by
analyzing the precision loss stemming from floating-point operations and evaluating
the errors of parameters at various security levels as in OpenFHE [BBBT22] and all
functional bootstrapping parameters introduced in large-precision functions [LMP22].
While FFT provides excellent flexibility, it is important to note that this paper does
not fully explore the potential of NTTs with sparse primes.

o We integrate the above technical contributions into the OpenFHE lattice cryptography
library [BBBT22], introducing several implementation-specific optimizations such as
the fused multiply-add operation during polynomial multiplications. Our designs
naturally support the large-precision functional bootstrapping functions [LMP22] in
the OpenFHE library and are the first GPU implementation realizing these functions,
including EvalFunc, EvalFloor, EvalSign, and EvalDecomp.

e We evaluate our GPU implementation across various applications to validate its
effectiveness and efficiency. Our approach improves the previous state-of-the-art
in speed for non-linear functions, encrypted neural network inference, and private
decision tree evaluations, as detailed in Table 1. Our experiments demonstrate the
immense potential of real-time FHE applications using GPU acceleration.

For details, we compared our GPU implementations with a 64-thread CPU implementa-
tion on gate bootstrapping and large-precision functional bootstrapping. Our single-GPU
implementation demonstrated a substantial performance boost compared to the 64-thread
CPU implementation, e.g., 18 x - 20x speedup. Our 8-GPU implementation boosts nearly
7x compared to the single-GPU version, showing the scalability of our design. We compare
our method with the most recent GPU implementation on the FHEW/TFHE scheme,
TFHE-rs [Zam22], with the proposed benchmarks of TFHE-rs on the AND gate. The
results demonstrated our superiority in most scenarios, with a maximum speedup of 1.69x.

We have applied methods to three applications: (1) general non-linear functions, (2)
neural network inference, and (3) decision trees. We briefly compare our method with the
SoTAs on three different applications in Table 1. Specifically, for the general non-linear
functions, such as ReLLU and max-pooling, which are commonly used in neural networks,
our implementation boosts 30x in end-to-end runtime compared with [JLHH"21]. For en-
crypted neural network inference on the MNIST dataset, the average processing time is 0.04
second per image with 128 bits security level, while prior best known solution [BMMP1§]
required 0.14 seconds but with lower security level (80 bits). For a private decision tree,



318 GPU Acceleration for FHEW /TFHE Bootstrapping

Table 1: Comparison of the three applications between our work and the previous SoTAs.
[[LHH"21] used a 20-thread CPU in non-polynomial functions, and a 16-thread CPU in
Decision tree. [LLZ'24] used a 16-core CPU.

Application Ours Previous SoTA Speedup
Non-polynomial Functions 1.59 ms 48.14 ms [jLHH"21] 30.3x
Neural Network Inference 0.04 s 0.14 s [LLZ124] 3.5%
Decision Tree 0.38 s 1.87 s [jLHHT21] 4.9%

our 1-GPU implementation achieves real-time evaluation in 0.38 seconds, outperforming
the previous approach [JLHHT21] that took 1.87 seconds. These applications demonstrate
the practicality of our GPU implementation and underscore the immense potential of
FHE-based privacy-preserving solutions.

2 Preliminaries

In this section, we delve into the fundamental operations employed in the bootstrap-
ping process of FHEW/TFHE [DM15, CGGI16], as utilized within the OpenFHE frame-
work [BBB122], detailed in Section 2.1. In Section 2.2, we comprehensively compare the
NTT-based bootstrapping implementation with the FFT-based one, aiming to elucidate
their distinctions and functionalities. In Section 2.3, we explore the limitation of shared
memory and the number of threads in GPU, which has previously constrained the flexibility
of bootstrapping running on GPU.

2.1 Bootstrapping in FHEW /TFHE Cryptographic System

LWE encryption scheme. Learning with Errors (LWE) is the fundamental cryptography
in FHEW/TFHE, offering a robust framework for constructing secure cryptographic
systems. The core of LWE involves solving a computational problem where one must
distinguish between random noise and structured data in noisy linear equations. An LWE
ciphertext takes the form of (a,b) € Z;‘H. There are two prominent LWE variants: Ring
LWE (RLWE) and Ring Gentry-Sahai-Waters (RGSW). RLWE operates within polynomial
rings, leveraging the properties of polynomial rings to create more efficient cryptographic
constructions. RGSW builds upon RLWE, exceling in noise control during operations and
serves as a crucial cornerstone for subsequent FHEW /TFHE developments.
We first introduce the notations relevant to the construction of RLWE and RGSW.

e n : the polynomial dimension of LWE scheme.

e ¢ : the modulus of LWE scheme.

e N : the polynomial dimension of RLWE scheme.

e @ : the modulus of RLWE scheme.

o B, : the base of RGSW scheme for gadget decomposition.
o dg4 : the gadget decomposition length of RGSW scheme.

RLWE and RGSW encryption scheme. Let R = Z[X]/(X" + 1), for N is a power of 2.
Ro = R/QR = Zq[X]/(XY +1). RLWE encrypts a polynomial m € Rg under secret key
s € Ras

RLWE(m) = (a,as + e + m),

where a € Rg is sampled from random, and e € R where its coefficients are sampled
from discrete zero-mean Gaussian distribution ¢,. To mitigate noise growth during scalar
multiplication with RLWE, RLWE' is introduced. The encryption of a polynomial m € Rg
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under the secret key s € R using RLWE' is defined as
RLWE' () = (RLWE, (), RIWE,(Bym), RIWE,(B2m), ..., RLWE (B ~'m)),

where the base By balances the running time and the noise growth rate when performing
the encrypted operations, and d, = log B, Q. The fundamental concept behind RLWE' is to
control the upper bound of error growth during scalar multiplication with RLWE, ensuring
that the scalar will not directly amplify the error. To facilitate multiplication between
ciphertexts, the ring variant of the third-generation FHE scheme GSW [GSW13], known
as RGSW, is used. Built upon RLWE’ using the same secret key, RGSW is defined as

RGSW, () = (RLWE',(—s - i), RLWE' ; (2)).

Next, we introduce an operation called gadget decomposition (GDecomp) designed to
decompose an RLWE ciphertext based on the chosen basis B,. This operation is crucial
for supporting multiplication between RLWE and RGSW. Its definition is as follows:

GDecomp(RLWE(ﬁ"L) = (ao, bo, ceeyGdg -1, bdgfl),

dg—1 dg—1
where RLWE (i) = (a,b),a = Y a;B},b= Y b;Bj.
=0 =0

Finally, the multiplication between RLWE and RGSW is referred to as the external product
in [CGGI16]. This operation achieves good noise control during multiplication between
ciphertexts, which is defined as

GDecomp(RLWE(myg)) ©« RGSW(m1) = RLWE(mq - my).

For detailed information on these encryption schemes, refer to [MP21]. In the following,
we delve into the bootstrapping operation in the FHEW /TFHE cryptographic system.

FHEW/TFHE bootstrapping. The general paradigm of FHE bootstrapping is to perform
its decryption function homomorphically so that the accumulated error the ciphertext
can be refreshed. This method was invented by Gentry [Gen09] and then became the
foundation of all currently in-use FHE schemes.

For the focus of this work — the third generation FHEW /TFHE, the bootstrapping
procedure takes inputs an LWE ciphertext (a,b) € ZZ“, an encrypted secret key vector
s € Zy, and outputs a refreshed LWE ciphertext encrypting the same message. The
particular decryption function of an LWE ciphertext can be expressed as |[b — (a,s)
mod ¢, where |-] is some rounding function. This decryption procedure can be computed
by an NC1 circuit (with some dimension and modulus reduction techniques [BV11]), and
the work [BV14] further showed that a polynomial modulus suffices for the homomorphic
computation by using the asymmetric noise growth of the GSW [GSW13] and converting
the NC1 decryption circuit to a polynomial-length branching program. However, this
design principle is for theoretical feasibility, and it was not clear how to realize a concretely
efficient bootstrapping method.

Shortly, the work [AP14] proposed the first explicit bootstrapping method within a
polynomial modulus under LWE, eliminating the need for conversion between NC1 and
branching programs. Following this, FHEW [DM15] and TFHE [CGGI16] significantly
enhanced the concrete efficiency by leveraging the ring structure and external products.
These advancements in practical bootstrapping brought the operation time down to within
100 ms. In a nutshell, the FHEW /TFHE method aligns the input LWE modulus ¢ with
2N where N is the ring dimension via the modulus switch technique. Then once can
homomorphically compute z = b — (d, ) over the exponent, resulting in a ciphertext
of RLWE(X#). This step is known as the Blind Rotate (according to [CGGI16]) or the
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Update procedure as Algorithm 1. From here, the FHEW /TFHE uses a clever extraction
technique that outputs a ciphertext of LWE(|z]), resulting in the desired outcome.
We summarize the FHEW /TFHE precedure below:

e Initialization: This phase involves encrypting the LWE™/4 ciphertext into an
RLWEN/@ (cryptographic accumulator) without introducing additional noise.

e Update: This is the bottleneck phase where the accumulator is updated using a
bootstrapping key, performing the homomorphic decryption of the ciphertext.

« Extract: In this phase, the output RLWE™ /Q from the update phase is extracted
back into a LWE™€ ciphertext.

e Keyswitch: The LWEN/@ ciphertext undergo a dimension reduction process using
a keyswitching key to reduce the dimension N back to n, i.e. LWEN@ — LWE™ €.

e Modswitch: Finally, we do a modulus reduction on the ciphertext LWE™© to bring
the modulus Q down to q. The output is a refreshed ciphertext LWE™?,

For the Blind Rotate/Update, we adopt the enhanced GINX method proposed by [BIP22],
also called TFHE/GINX by [BBB*22]. We aim to accelerate the update procedure (ref. Al-
gorithm 1) as this phase is the most time-consuming process in the whole procedure.
Notably, the operation in Line 4 involves a large number of polynomial multiplications,
ie., n x (8 x d4+4) polynomial multiplications, where 8 x d, is for the ACC o RGSW oper-
ation, and 4 is for the (2% — 1)(ACCgecomp © RGSWy;) and (=% — 1)(ACCqgecomp © RGSW1;)
operations, and d, is the gadget decomposition length of RGSW.

Algorithm 1: Update
input :A RLWE ciphertext ctg;
a vector a = (a, ..., a,) € Zy;
the bootstrapping key {RGSWo;, RGSW1;}ic1,n;
output : A refreshed RLWE ciphertext
ACCy «+ ctg
for i < 1 ton do
ACCgecomp < GDecomp(ACC;_q)
TEMP <+ (2% — 1)(ACCdecomp © RGSWy;) + (2~ % — 1)(ACCgecomp © RGSW1;)
ACG; + ACCi_; + TEMP

return ACC,

[S BN

(=)

2.2 NTT- and FFT-based Bootstrapping Implementations

Leveraging number theoretic transform (NTT) or fast Fourier transform (FFT) to accelerate
the polynomial multiplication is widely used to reduce the execution time of Bootstrapping.
Asymptotically, FFT/NTT can reduce the time complexity of polynomial multiplication
from O(N?) to O(NlogN). In Figure 1, we illustrate the flow chart for using FFT
to accelerate polynomial multiplications during the update phase of bootstrapping of
Algorithm 1. Before the polynomial multiplications with the bootstrapping key and
monomials, the polynomials in the decomposed accumulator is transformed in to the FFT
form. After the polynomial multiplications, the polynomials in the output accumulator
apply IFFT to return to the coefficient representation.

NTT and FFT have their pros and cons. Generally, NTT generates the exact output
at a slower speed, while FFT produces an approximate output faster. Notably, some
implementations of NTT, such as those using the Goldilocks prime @ = 264 — 232 4+ 1, can
leverage a shift-add method for modular reduction, making it potentially faster than FFT.
However, the parameter settings for FHE can be broad, and it may not always be possible
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Figure 1: Flow chart of the update phase in FHEW /TFHE bootstrapping with polynomial
multiplication accelerated by FFT.

to select sparse primes in the targeted scenario. Thus in our work, we opted for FFT
because it imposes no constraints on the modulus, offering greater flexibility and efficiency
in general. For other works, the decision to use FFT or NTT depends on the specific
use case and requirements. For instance, in between OpenFHE [BBB*22] and TFHE-
rs [Zam22], OpenFHE adopts NTT for polynomial multiplication, while TFHE-rs opts for
FFT in its implementation, respectively. NuFHE [nuc18] has both FFT-based and NTT-
based bootstrapping on GPUs, and Zhang et al. [ZCY " 22] compared the relative speed
between the two bootstrapping implementations. They have shown that the FFT-based
bootstrapping in NuFHE [nucl8] is 2.3x faster than their NTT-based one.

For the parameter setting of third-generation FHE, i.e., N = 219 ~ 212 and Q < 2%,
we observe an efficiency advantage for FFT-based over NTT-based implementation in
our experiments, even though these two methods have the same asymptotic efficiency.
We identify two critical factors: (1) NTT often suffers from higher constant factors due
to the additional steps required for modulus reduction when multiplying integers in a
finite field. For instance, FFT’s pointwise multiplication of Gaussian numbers follows
the formula (a + bi) x (¢ + di) = (ac — bd) + (ad + be)i, which involves four floating-
point multiplications and two additions. In contrast, integer multiplication in NTT may
necessitate fast modulus reduction techniques, such as Barrett reduction, which introduces
extra integer multiplications, shifts, and conditional operations, increasing computational
overhead. (2) Additionally, FFT benefits from an extensive ecosystem of highly optimized
tools and libraries, such as NVIDIA’s cuFFT [NVI23] for GPU and FFTW [FJ98] for
CPU, which are both fast and easy to integrate. In contrast, we are not aware of similarly
optimized libraries for NTT.

We observe that simply replacing the NTT operation with FFT in the bootstrapping
process of the OpenFHE library results in significant speedup. According to benchmarking
results on the TFHE-rs website [Zam22], they compare the bootstrapping performance
of the OpenFHE library, which uses NTT, and their library, which uses FFT, under the
same 128-bit security level with modulus size under INT64 and the same machine. The
OpenFHE implementation achieves a bootstrapping runtime of 24 ms, whereas TFHE-rs
achieves 13.5 ms. While slightly different FHE parameters are used, the primary reason
for the speedup is the highly optimized FFT library (SPQLIOS-FFT) used in TFHE-rs.
Furthermore, GPUs are inherently designed for floating-point arithmetic, which is central
to FFT operations, making FFT the preferred choice for our case.



322 GPU Acceleration for FHEW /TFHE Bootstrapping

2.3 GPU Shared Memory and the Number of Threads

Optimizing parallel processing tasks within the constraints of GPU resources is pivotal. In
the context of NVIDIA Compute Unified Device Architecture (CUDA) programming, a
thread block serves as the fundamental unit of execution. Each thread block is bound by a
maximum limit on the number of threads, determined by factors such as the GPU model
and its computing capability. Additionally, shared memory, a rapid yet restricted-access
memory space shared among threads within a block, introduces another constraint. The
amount of shared memory available per thread block varies across GPUs and significantly
impacts the efficiency of data sharing and communication among threads. Striking a
balance among these constraints is essential for achieving optimal performance in parallel
applications. FHEW /TFHE Bootstrapping demands relatively low computational effort
compared to other FHE schemes, such as CKKS [CKKS17]. In light of this, prior GPU
works [ver18, nucl8] executed bootstrapping in a single thread block of the GPU.

In CUDA, the maximum thread count per thread block is either 512 for Compute
Capability 1.x (pre-Fermi) or 1024 for newer compute capabilities. In previous GPU works,
cuFHE [ver18] allocating 512 threads per block and NuFHE [nuc18] allocating 256 threads
per block. However, the number of threads needed per block is influenced by the adjusted
parameter set, particularly the increased value of d, for the same security level. This
adjustment poses a challenge as it brings these GPU works closer to the limitations of
GPU resource constraints.

The maximum shared memory per thread block varies significantly across different
compute capabilities. Recent GPUs’ shared memory amounts varies from 96KB (V100)
to 227KB (H100). Both cuFHE [verl8] and NuFHE [nucl8] aim to leverage shared
memory to store decomposed ciphertext, i.e., GDecomp(RLWE), to minimize global memory
fetching and storing. For instance, cuFHE [ver18] allocates 48KB of shared memory per
bootstrapping. However, this shared memory usage pattern restricts the scalability of
parameter sets in both related works, making them difficult to support bootstrapping with
large parameters through simple modifications.

3 Methodology

We first point out the difficulties of supporting a wider range of parameters on GPU using
previous parallelizing techniques [ver18, nucl8]. Both previous works run FHEW /TFHE
bootstrapping within a single GPU thread block, highlighting temporal and spatial locality
advantages. However, as parameter sets expand, the number of threads and shared
memory usage can easily exceed GPU limitations. In Section 3.1, we introduce our novel
parallelizing strategy called multi-blocks bootstrapping, offering a scalable approach that
adjusts the number of thread blocks based on the decomposition length (d,). This adaptive
methodology aims to circumvent excessive resource utilization within a single thread block,
accommodating a broader range of parameter sets.

Additionally, previous work NuFHE [nucl8] primarily focuses on using FFT in gate
bootstrapping with small @) value (32 bits), where the precision loss incurred by FFT can
be ignored. However, precision loss in floating-point arithmetic in FFT is inescapable
when addressing functional bootstrapping, where the @ typically surpasses 32 bits. In
Section 3.2, we revise the error analysis metric proposed by Micciancio et al. [MP21] with
the additional FFT error. We conduct comprehensive experiments to verify the refined
metric and re-estimate the decryption failure probabilities of existing parameter sets using
FFT-based bootstrapping.

3.1 Multi-Blocks Bootstrapping

Previous GPU-accelerated FHEW /TFHE bootstrapping works [ver18, nucl8] run boot-
strapping in a single GPU thread block, and we call it single-block bootstrapping in
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Figure 2: Bootstrapping parallelizing strategies comparison between single-block and
multi-blocks. We pick d, = 2 as an example, while this strategy generalizes to arbitrary d,
values. ACC consists of two polynomial, __syncthreads() is used to synchronize threads
in thread block in CUDA, and grid.sync() is used to synchronize threads in multiple
thread blocks.

the following paragraphs. Single-block bootstrapping is feasible in scenarios involving
smaller parameters, such as gate evaluation with a lower security level. However, when
transitioning to functional bootstrapping, this strategy can easily surpass the limitations of
GPU shared memory and number of threads per thread block. To address these limitations,
we propose a novel parallelizing strategy called multi-blocks bootstrapping. Our approach
dynamically adjust the GPU configuration based on the FHE parameters, enabling it to
accommodate larger parameter sets and facilitate functional bootstrapping. It is important
to note that we did not modify the bootstrapping algorithm but focused on the data
arrangement on GPU during bootstrapping.

In Figure 2, we illustrate the parallelizing design of single-block bootstrapping and
multi-blocks bootstrapping. Figures 3a and 3b both follow the update phase in the
bootstrapping process outlined in Algorithm 1 and the flow chart in Figure 1. We employ
FFT to accelerate the polynomial multiplications involved in bootstrapping. During
bootstrapping, we observed that within the GDecomp operation in bootstrapping, an ACC,
comprising two polynomials, is decomposed into d, pairs of polynomials. Subsequently,
these polynomials undergo FFT computation and polynomial multiplications. Single-block
bootstrapping employs a single thread block to manage these polynomial computations,
quickly encountering limitations discussed in Section 2.3 as parameters expand. Conversely,
we launch d4 thread blocks with smaller sizes in multi-blocks bootstrapping, each responsible
for handling the computations of one decomposed ACC. In this way, the workload is evenly
distributed through all thread blocks. Each thread block is the same size as others and
executes identical instructions but with different pairs of polynomials, aligning well with
the GPU’s execution model.

We illustrate our novelty by showing the kernel function configuration of multi-blocks
bootstrapping in Listing 1. We set the number of thread blocks in the grid to be dg,
following the concept in Figures 3b. For the number of threads and the amount of shared
memory in a thread block, since the FFT operation in bootstrapping requires the most
GPU resources to be fully parallelized, these configurations follow the requirements in the
cuFFTDx library [NVI23]. This library takes the FFT dimension and the specific GPU
as inputs, determining the number threads and the amount of shared memory required.
Lastly, the kernel function for bootstrapping is relatively small, so we use CUDA streams
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to asynchronously send/receive data between the CPU and GPU and execute multiple
bootstrappings on the GPU. This configuration allows us to achieve high throughput of
bootstrapping, as we simultaneously execute tens to hundreds of bootstrappings on a GPU.

Furthermore, coordinating synchronization among these thread blocks introduces com-
plexities. In Figures 3a, where only one thread block is utilized, using __syncthreads() in
CUDA C++ achieves synchronization for all threads within the same thread block. How-
ever, for synchronizing multiple thread blocks, we invoke the bootstrapping kernel through
cudaLaunchCooperativeKernel in the Cooperative Groups library (available since CUDA
9). Utilizing this API enables synchronization via grid.sync() to synchronize thread
blocks within the grid, as long as the provided number of thread blocks does not exceed the
maximum occupancy of the target GPU. Although the overhead of synchronization between
thread blocks is usually high, in our case, since the number of thread blocks launched in
the bootstrapping kernel function is dg, and the value of d4 is usually small (2 to 10), the
overhead of synchronizing these thread blocks is low. After extensive experiments, we
measure only a 10% to 20% performance overhead due to synchronization. Thus, we take
this approach in our design.

cudaLaunchCooperativeKernel (
(voidx) (bootstrappingMultiBlock<FFT, IFFT>), // kernel function
dg, // number of thread blocks in a grid
FFT::block_dim, // number of threads in a thread block
kernelArgs, // arguments for kernel funcion
FFT::shared_memory_size, // shared memory size in a thread block
stream // CUDA streams

);

Listing 1: Launch multi-blocks bootstrapping kernel using CUDA cooperative groups API

Implementation-specific optimizations for bootstrapping We introduce two primary
performance optimization techniques for our GPU bootstrapping implementation. Firstly,
we apply the efficient negacyclic FFT algorithm proposed by Klemsa et al. [Kle21]. This
FFT algorithm performs a folding step before the FFT to fold a polynomial of dimension
N to N/2, and unfolds the polynomial back to N after IFFT. We observe that unfolding
the polynomial back after IFFT is unnecessary; instead, we directly operate on the folded
polynomials throughout the entire bootstrapping algorithm. In this way, the memory
usage of these polynomials is halved, and the operations in the bootstrapping process
are also reduced. Secondly, we use the CUDA extended instruction called the fused
multiply-add (FMA) operation during the Multiply BootKey and Monomial phase in
Figure 2. The operations involved in this phase are primarily multiplication and addition
between polynomials. The FMA operation can execute the multiplication and addition
of two floating-point numbers in one GPU instruction, which accelerates polynomial
operations with the bootstrapping key and monomials. NVIDIA’s whitepaper [WFF11]
discusses the speed and precision enhancements achieved by using the FMA operation
during floating-point computations. Compared to the unfused version, applying the FMA
operation results in a 1.5x speedup during the Multiply BootKey and Monomial phase.
Overall, this optimization provides a 1.1x to 1.2x speedup of the entire bootstrapping
operation, depending on the parameter sets.

Executing bootstrapping using multi-blocks approach offers two significant advantages.
Firstly, it supports a broader range of parameter sets, as illustrated in Table 2, since the in-
creased workload associated with larger parameters is distributed to multiple thread blocks.
Therefore, larger parameter sets from large-precision functional bootstrapping [LMP22] are
naturally supported by using our approach. Moreover, we support the arbitrary value of
dg—a parameter balancing the error growth rate and running time during bootstrapping.
Adjusting d4 becomes crucial if the application requires lower error, as it helps mitigate
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error accumulation in bootstrapping. Secondly, the multi-block bootstrapping approach
yields faster execution times when the number of bootstraps is smaller than the total
number of Streaming Processors (SMs) across all GPUs. By distributing the workload
across multiple thread blocks, each block may execute on different SMs simultaneously.
Consequently, the GPU utilization rate increases as more SMs are engaged in processing,
leading to improved overall performance.

Table 2: Comparison of supported parameter range for single-block bootstrapping and
multi-blocks bootstrapping when elemggr = 8

Parameter ‘ Single-block Multi-blocks

N 512, 1024, 2048 512, 1024, 2048, 4096, 8192
N =512: 1to 16

dg N =1024: 1 to 8 | arbitrary value

N =2048: 1 to 4

Detailed GPU resources usage calculation The determination of supported parameter
sets shown in Table 2 is contingent upon calculating the number of threads and the amount
of shared memory utilized. These GPU resource usages are intricately linked to FHE
parameters and GPU settings. The number of threads in a bootstrapping kernel typically
aligns with the requirements of the FFT. Let elemger denote the number of elements a
thread manages in FFT. For single-block bootstrapping, a minimum of N x dg / elemgpr
threads is necessary to parallelize each bootstrapping step fully. On the other hand, for
multi-blocks bootstrapping, a minimum of N /elemgpr threads is required. Shared memory
usage varies based on the implementation. In our multi-blocks bootstrapping approach,
shared memory usage aligns with the minimum requirements stipulated by the cuFFTDx
library [NVI23|, which is N X elemger bytes per thread block. This shared memory
requirement is significantly lower than the total amount available on contemporary GPUs.
Thus, the current limitation on parameter sets is primarily governed by the CUDA-imposed
constraint on the number of threads within a thread block.

3.2 GPU-accelerated FHEW /TFHE Bootstrapping Implementation with
FFT Foundation

When employing FFT to accelerate polynomial multiplication in larger parameter sets,
particularly in scenarios such as functional bootstrapping, it is essential to consider the
additional error introduced by the precision loss of floating-point operations. The utilization
of IEEE double-precision floating-point numbers inevitably results in the loss of some
fractional bits during the multiplication of two double numbers. This issue is exacerbated
when dealing with a larger @, such as the 54-bit modulus used in large-precision functional
bootstrapping [LMP22].

To address this concern, we refine the previous empirical error analysis metric proposed
by Micciancio et al. [MP21] by incorporating the supplementary FFT bias (Appr) intro-
duced during FFT-based bootstrapping. This updated error analysis metric provides a
more accurate assessment, particularly in large modulus bootstrapping scenarios with FFT.
Furthermore, to quantify the impact of this additional error, we compute the corresponding
decryption failure probabilities for existing parameter sets [MP21, LMP22]. Subsequently,
we propose concrete parameter sets tailored for both gate bootstrapping and large-precision
functional bootstrapping using FFT.

Error analysis. We begin by revising the error analysis metric proposed in [MP21] to
account for the additional error introduced by FFT. The standard deviation of the refreshed
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ciphertext () is calculated as follows:

g Q% 2 2 2 2

— S

B = 7@% (Qg Thacc t s, T 0ks) T s,
S

Since the error caused by FFT occurs only in the update phase of bootstrapping, we add
the FFT bias to 0%, to derive the biased standard deviation. The estimated error for
0% oo is given by:

chco = (Cacc-cinx + Arpr)?,

where g acc—_grnx needs to be adjusted since our GPU implementation incorporates the
approximate gadget decompose method outlined in [LMK™23]. This method involves
dropping the last digit during gadget decomposition, leading to slight differences in the
error analysis metric. Here we modify d, to d; — 1 since the last digit is discarded during
bootstrapping, and add an additional term Var(to - m) from [LMK™"23], representing the
information loss introduced by discarding the last digit. The modified formula is:

B2
OACC—GINX = \/QU(dg — 1)71]\7?90'2 + 2un - Var(to . m),

where tg € Rg, and tg < Bj.

Appr is the FFT bias after the LWE decryption (b — (a, s)), for a LWE ciphertext (a,b)
after the extract phase in bootstrapping. egppr is the FFT bias of the element in the
extracted LWE ciphertext. The Appr is derived as the following formulas:

Arpr = |(1 = |[snl)errrl;

where ||s,|| < v/n/2 as noted in [MP21]. eppr is derived by calculating the accumulated
error during the bootstrapping process. The term S x € is from [DM15] represents the
relative error from floating point precision loss in multiplying two polynomials during
bootstrapping. To derive the overall FFT bias, we calculate the number of polynomial
multiplications during the bootstrapping process, which is 2und,. The error generated in
each polynomial can be modeled as independent Gaussian noise, so the overall noise from
these operations has a square root dependence as in the following formula:

epFT = \/7;[\/211,(19 x S % EJ,

where [-| denotes the rounding operation from floating point to integer after IFFT,
S = B,QV'N /4 as noted in [DM15], and e represents the relative error for each floating
point operation, dependent on the FFT library. Appr represents the upper bound of
the FFT bias acquired from experiment, so the choice of FFT library influences its value.
Specifically, our experiments utilize the cuFFTDx library [NVI23] for FFT operations.
We verify the additional Appr term between NTT-based bootstrapping and FFT-based
bootstrapping through comprehensive experiments. After undergoing the update phase in
bootstrapping, we compare two ciphertexts, one using FFT and the other using NTT. We
directly decrypt both ciphertexts and measure the difference between them. This process
is repeated for a sample size of 1024 runs. The results of our experiments show that the
differences between the two ciphertexts align with the additional bias term Agp7 in our
revised metric. This empirical validation confirms the validity of our metric and its ability
to quantify the differences between NTT-based and FFT-based bootstrapping approaches.

Concrete parameters. To evaluate the impact of FFT-based bootstrapping on decryption
failure probability (FP), we recalculated the FP for each parameter set used in gate boot-
strapping in [MP21] and the functions in large-precision functional bootstrapping [LMP22].
The Beoxp values in Table 3 and Table 4 were derived from a substantial sample size of
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16,384 bootstrapping runs. Consistent with prior methodologies [DM15, CGGI16, MP21],
we set the upper bound for the FP to 2732 for a parameter set to be considered suitable
for practical computations.

In Table 3, we present the parameter sets proposed by Micciancio et al. [MP21]. The
FP is calculated using the formula proposed in [DM15, MP21], which is estimated as

1—erf( 2%1 ). FHEW/TFHE gate bootstrapping supports gates such as AND, OR, NAND,
NOR, and others. We chose the NAND gate to calculate the decryption failure probability
for all parameter sets. Notably, most of the decryption failure probabilities are lower
than the values listed in [MP21]. This difference arises because the plaintext space used
in gate bootstrapping is relatively small, only four, which easily satisfies the condition
Var(m) < ¢ mentioned in the approximate gadget decompose method, resulting in even

lower decryption failure probabilities.

Table 3: Parameter set and the corresponding decryption failure probability (FP) for our
FFT-based gate bootstrapping implementation.

Parameter Set n q N logaQ | log2Qrs | Bis | By FP Beap
STD128 512 | 1024 | 1024 27 oM 27 1 27 | 275 [ 10.72
STD192 1024 | 1024 | 2048 37 219 28 | 283 | 27107 [ 755
STD256 1024 | 2048 | 2048 | 29 214 27 [ 28 | 2733 [ 27.96

STD128Q 1024 | 1024 | 2048 | 50 225 20 [ 2% | 27107 [ 756
STD192Q 1024 | 1024 | 2048 | 35 217 26 [ 2121 2797 [ 7.93
STD256Q 2048 | 2048 | 2048 | 27 216 28 [ 27 | 27958 [ 20.81

For large-precision functional bootstrapping [LMP22], the corresponding FP are pre-
sented in Table 4. These values are calculated using the formula introduced in [LMP22].
The term og,m in the original formula calculates the sum of two independent ciphertexts;

therefore, ogum is essentially \/Qﬁcxp. The formula can then be expressed as 1 — erf( 4%/ Py,
oxp

Table 4: Parameter set and the corresponding decryption failure probability (FP) for
our FFT-based Large-precision functional bootstrapping [LMP22] implementation, with
fixed parameters log2Q = 54, N = 2048, n = 1305, l0g2Qrs = 35, Brs = 32. Q' stands for
ciphertext modulus in [LMP22]

Function q Q' | log P [bits] | By | FP | Beap
HomSign/DigitDecomp 212 4 227 1 2768 1 9,52
HomSign/DigitDecomp 216 8 277 [ 27571 9.59
HomSign /DigitDecomp 220 12 2B [ 2= 1'8.85
HomSign /DigitDecomp 4096 2% 16 218 12788 1834
HomSign /DigitDecomp 2% 17 218 [ 2785 1 851
HomSign /DigitDecomp 226 18 21 [ 2782 18,65
HomSign/DigitDecomp 228 20 21 [ 2786 18 45
HomSign/DigitDecomp 229 21 21 278 1°8.63

EvalFunc 2048 | 22 3 277 [ 2799 ] 95

4 Performance Evaluation

We evaluated the performance of our GPU-accelerated FHE library by benchmarking
various parameter sets, bootstrapping methods, and comparing it with the state-of-the-
art library. In Section 4.1, we implement the original gate bootstrapping described
in [DM15, CGGI16] and the functional bootstrapping as proposed by Liu et al. [LMP22].
To show the scalability of our library, we benchmark these functions using multiple
GPUs, comparing them with a powerful 64-thread CPU. In Section 4.2, we compare the
performance of single-block bootstrapping and multi-blocks bootstrapping across three
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similar parameter sets with different By, where the value balances the running time and the
noise growth rate when performing the encrypted operations. Each of these bootstrapping
realizations exhibits preferred performance domains in specific parameter ranges. Finally,
in Section 4.3, we compare our GPU implementation with TFHE-rs [Zam22], the state-of-
the-art FHEW /TFHE GPU-accelerated library. All the runtime performances reported
in this section are end-to-end runtime, including CPU runtime, GPU runtime, and data
transfer time between GPU and CPU. Our results demonstrate performance advantages in
most scenarios and offer a more flexible configuration to meet different user scenarios.

Testbed. We implement our library upon the OpenFHE library version 1.0.4 with its
default compiler settings and 64-bit integer. The benchmarking is conducted on a CPU
server equipped with the AMD Ryzen Threadripper 3970X CPU (32 cores, 64 threads)
and 128GB RAM. We employ multiple NVIDIA RTX4090 GPUs (24GB VRAM) for the
GPU-accelerating experiments. The operating system is Ubuntu 22.04.2 LTS. In CPU
benchmarking, OpenMP is utilized for parallel computation, where each thread accounts
for one bootstrapping operation.

4.1 The Running Time of FHEW /TFHE Bootstrapping

The performance evaluation of bootstrapping functions encompasses all functions available
in the TFHE/GINX scheme in the OpenFHE library, including EvalBinGate, EvalFunc,
EvalFloor, EvalSign, and EvalDecomp. We measure the execution time in milliseconds
required for evaluating a ciphertext. We compare all functions on a CPU with 1 thread, a
CPU with 64 threads, 1 GPU supported, and 8 GPU-supported. This comparison aims to
demonstrate the substantial speedup achieved by our GPU implementation in a scenario
where both CPU and GPU are fully utilized.

Table 5 shows the evaluation results with a batch size 16384. All parameter settings
for functional bootstrapping in FHE are aligned with those in [LMP22]. For EvalFunc, we
choose the function to be non-negacyclic for fair comparison. In this case, the EvalFunc
evaluation will execute two bootstrappings in its core. For EvalBinGate, we evaluate
the runtime of the NAND gate using the security level of STD128. When using a single
GPU, we observe that the speedup for various types of bootstrapping is approximately
18x compared to the CPU utilizing 64 threads. The slight variances between different
bootstrappings arise from differences in CPU workload distribution.

When increasing the number of GPUs, we observe a ~7x speedup when using 8 GPUs
compared to 1-GPU bootstrapping functions experiments. The result indicates that the
overhead from the CPU portion is minor. Figure 4 provides detailed speedup for each
bootstrapping function with different numbers of GPUs. We observe that the speedup
when using multiple GPUs in EvalBinGate is smaller than other bootstrapping functions.
This is because of the parameter set of EvalBinGate, which is relatively small, resulting in

Table 5: Execution time of FHEW/TFHE bootstrapping using 1 CPU thread (CPU1T),
64 CPU threads (CPU64T), and our GPU implementation including 1 GPU and 8 GPU

Execution Time (ms/ctx)
EvalBinGate EvalFunc EvalFloor EvalSign EvalDecomp
n 512 1305 1305 1305 1305
q 1024 2048 2048 4096 4096
log2@ 27 54 27 54 54
N 1024 2048 1024 2048 2048
Bg 27 227 25 218 218
CPU1T 153 (1x) 1037 (1x) 1158 (1x) 3424 (1x) 4092 (1x)
CPU64T 4.3 (36x) 28.5 (36x%) 34.6 (34x) 93.6 (37x) 112.6 (36x)
1 GPU 0.23 (665x) 1.59 (652x) 1.68 (689x) | 4.99 (686x%) 6.03 (679x)
8 GPU 0.04 (3825x) | 0.23 (4509%) | 0.23 (5035x) | 0.69 (4962x) | 0.88 (4650x)
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Figure 4: The speed up of different bootstrapping functions with different number of
GPUs compared to the corresponding single-GPU experiment.

a larger CPU workload rate compared to the other functions. Therefore, the benefit of
involving more GPUs is relatively small (from ~7x to ~6x). Overall, our method only
shows a small decline. Furthermore, our design allows users to freely determine the number
of GPUs, which shows strong scalability for real-world applications.

4.2 Single-Block Bootstrapping vs. Multi-Blocks Bootstrapping

We compare single-block and multi-blocks bootstrappings on three different B, values
to show the effectiveness of our implementation. Figure 5 presents the performance
evaluations on EvalFunc with varying By values. Notably, a larger B, corresponds to
a smaller GPU configuration—specifically, fewer threads and reduced shared memory.
Single-block bootstrapping exhibits a ladder-shaped runtime as the number of EvalFunc
increases. This occurs because each bootstrapping operation is executed in one Streaming
Processor (SM) of the GPU. When the number of bootstrapping operations is less than
or equal to the total SMs in the GPU, the runtime remains constant. Exceeding this
number doubles the runtime. Conversely, in multi-block bootstrapping, one bootstrapping
operation may be split into multiple thread blocks, distributed across multiple SMs by the
GPU runtime scheduler.

The required number of threads per thread block for different B, values is calculated
using the formula introduced in Section 3.1. In all three figures presented in Figure 5, the
value of elemgrt is constant at 8. In the case of a large B value, single-block bootstrapping
necessitates 512 threads in 1 thread block, while multi-blocks bootstrapping requires 256
threads distributed across two thread blocks. For a medium B, value, single-block
bootstrapping demands 768 threads in 1 thread block, while multi-blocks bootstrapping
requires 256 threads distributed across three thread blocks. In the case of a small B, value,
single-block bootstrapping becomes infeasible, and multi-blocks bootstrapping requires
256 threads distributed across 5 thread blocks.

It is evident that if the number of threads per block is significantly less than the CUDA
limitation of threads per block (as seen in Figure 6a), multi-blocks bootstrapping exhibits
superior performance, as a single Streaming Multiprocessor (SM) efficiently handles all
the thread blocks assigned to it. However, as the number of threads per block approaches
the CUDA limitation (as seen in Figure 6b), single-block bootstrapping performs better
than multi-blocks bootstrapping. This phenomenon is because the CUDA scheduler may
distribute some blocks from multi-blocks bootstrapping to other SMs. Finally, only multi-
blocks bootstrapping effectively handle such small By value when the number of threads
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multi-blocks bootstrapping with n = 1305, ¢ = 2048, N = 2048, and log2@Q = 54. A high
By value has a short FHEW /TFHE bootstrapping running time.

per block surpasses the CUDA limitation (as observed in Figure 6¢).

4.3 Comparison with TFHE-rs GPU Backend

We evaluate the performance of our implementation and TFHE-rs on the same application,
specifically the evaluation of an AND gate for two integers homomorphically. We follow
the benchmarking methodology outlined on the TFHE-rs website. For instance, uint16
indicates the evaluation of the AND gate between two sixteen-bit unsigned integers. The
FHEW/TFHE scheme has many variants, which may differ in bootstrapping algorithms,
encryption/decryption methods, or FHE parameter selection. As outlined in Section 2.1,
we adopt the enhanced GINX method proposed by Bonte et al. [BIPT22], also known
as TFHE/GINX in [BBB"22]. TFHE-rs has its own TFHE variants [CJP21]. The
TFHE variants used in TFHE-rs differ in encryption/decryption methods, bootstrapping
algorithms, and FHE parameters from our implementation. For instance, TFHE-rs encrypts
two bits in one ciphertext with larger values of @ and N during AND gate evaluation, while
we encrypt one bit in one ciphertext with smaller values of Q and N. These differences
result in different numbers of bootstrappings and operations in each implementation.

For a fair comparison, we ensure that both implementations have the same security
level and comparable decryption failure probability. In the TFHE-rs benchmark, we use the
default parameter set provided in the example of running the AND gate on the GPU on its
website, which offers a security level of 128 bits estimated by the lattice estimator [APS15],
with a decryption failure probability of 2749, For our implementation, we also utilize a
standard 128-bit security level for the parameter set detailed in Table 3. We slightly adjust
n to 502 to achieve faster bootstrapping times while maintaining the same security level.
The decryption failure probability for this parameter set is 27°6.

In Table 6, we compare the runtime of our implementation with TFHE-rs library
version 0.5.3. Across most scenarios (from Uint8 to Uint128), our implementation exhibits
superior latency compared to TFHE-rs. Notably, we utilize our multi-blocks bootstrapping
approach for scenarios ranging from uint8 to uint64, highlighting the efficiency of this
strategy when the number of bootstrapping is not large. Even after transitioning to
single-block bootstrapping beyond uint64, our implementation continues to demonstrate
improved performance. In the evaluation of uint256, our implementation offers comparable
performance with TFHE-rs.

Our advantages over TFHE-rs. In addition to the performance advantages, our im-
plementation offers greater flexibility for various scenarios, from general use to research
purposes, in two key aspects. Firstly, TFHE-rs provides predefined choices for the number
of bootstrappings to concurrently run on GPU (e.g., 8, 16, 32, etc.). Our implementation
allows users to configure an arbitrary number of bootstrappings according to their specific
workload requirements. This enables applications such as secure neural network inference
to dynamically adjust the number of parallel bootstrappings based on the number of
activation function nodes, which may vary in different network structures. Secondly,
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Table 6: Latency (ms) comparison of TFHE-rs with our implementation evaluating AND
gate using different integer types, e.g. uint8 means the 8-bit unsigned integer.
uint8 uintl6é uint32 uint64 uintl128 uint256
TFHE-rs 31.53 31.54 31.55 32.03 33.74 58.32
Ours 18.63 18.61 18.87 24.23 29.97 58.3
Speedup 1.69x  1.69x 1.67x 1.32x 1.13x 1x

our method allows ciphertexts with different lookup tables concurrently running on the
GPU. This functionality is particularly valuable for applications such as private decision
tree evaluation, where ciphertexts with different conditional statements can be executed
simultaneously. These two aspects of flexibility make our GPU implementation a more
suitable tool for researchers to test and develop their FHE applications, offering greater
adaptability to diverse research scenarios and requirements.

Compared to other works. Our GPU solution, when compared with the current frontier
GPU solution, TFHE-rs, which significantly outperforms previous GPU-based implemen-
tations [ver18, nucl8] in speed, highlights our advancements in GPU-based solutions.

Additionally, we compare our implementations with two other hardware-based so-
lutions: an ASIC-based approach, MATCHA [JLJ22], and an FPGA-based approach,
FPT [vDTV23]. Notably, the programmable bootstrapping (PBS) methods used in these
two works implicitly constrain the input function to be negacyclic. Their PBS algorithm
is essentially equivalent to single gate bootstrapping, making it directly comparable to our
EvalBinGate method, as shown in Table 5, which also involves single bootstrapping. In
contrast, large-precision functional bootstrapping operations, such as EvalFunc in Table 5,
impose no such constraints on input functions, often requiring multiple bootstrapping
operations, and are therefore slower.

In summary, while MATCHA and FPT are faster than our GPU solutions when
comparing their PBS to our EvalBinGate, their implementations rely on somewhat outdated
FHE parameters from older versions of TFHE. These parameters either provide only 110-bit
security or 128-bit security with a 2725 decryption failure probability. Specifically, our
EvalBinGate achieves 4.35 executions per millisecond, with 128-bit security and a failure
probability of 27%4; FPT reports a throughput of 28.4 PBS operations per millisecond on
a high-end U280 FPGA with 128-bit security, but a failure probability of 272°; MATCHA
achieves 10 PBS operations per millisecond in simulation, but with 110-bit security.

Currently, 128-bit security is considered the standard baseline, and failure probabilities
above 2732 are typically deemed unacceptable in practice [DM15, CGGI16, MP21].

We believe that conducting a fair comparison between our GPU solution and scaled-up
versions of MATCHA and FPT would be valuable, though it would require substantial
effort beyond the scope of this work. MATCHA is ASIC-based, and optimizing for
different parameters could involve significant additional work. FPT, which uses fixed-
point calculations for FFT-based implementations, would require a detailed noise analysis
for each parameter set, meaning parameter changes could necessitate redoing much of
their optimization process. We leave as an important and interesting open question the
evaluation of ASIC/FPGA-based solutions using more up-to-date parameters.

5 Applications

In this section, we demonstrate the versatility of our GPU implementation for three
distinct applications. Firstly, in Section 5.1, we benchmark commonly used non-polynomial
functions in neural networks, such as ReLU and maxpooling. These functions are essential
for applying FHE to neural network applications. Next, we demonstrate these non-
polynomial functions by running a secure neural network inference using the MNIST
dataset in Section 5.2, which is a critical application in the machine learning field. Lastly,
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in Section 5.3, we explore a classical machine learning application, a decision tree, with
input data encrypted using FHE. By leveraging our GPU implementation, we achieve
real-time evaluation with minimal latency.

5.1 Secure Non-polynomial Functions for Neural Networks

In the domain of neural networks, functions like Rectified Linear Unit (ReLU), max-pooling,
and sigmoid activation serve as fundamental building blocks within the network architecture,
contributing significantly to its overall performance. Consider a typical Convolutional
Neural Network (CNN), where numerous activation nodes need simultaneous evaluation.
Here, the throughput of evaluating these non-polynomial functions becomes critical. Poor
throughput can significantly impact inference time.

We conduct benchmark on these commonly used non-polynomial functions, measuring
the runtime of these functions. For functions like ReLLU, sigmoid, square root, and reciprocal,
it is essentially equivalent to running a single EvalFunc function with customized LUT.
Since these functions are all non-negacyclic, the runtime of these functions will follow the
benchmark in Table 5. For the max-pooling function, our FHE implementation follows the
max-tree implementation outlined in Pegasus [jJLHH"21], which needs 4 LUT evaluations
for a 2X2 max-pooling. For our experiments, we follow the default parameters of the
EvalFunc as detailed in Table 4,

We used a single NVIDIA RTX4090 GPU to benchmark the runtime of our implemen-
tation. The benchmark results are compared with the CPU runtime using 20 threads from
Pegasus [JLHH'21] in Table 7. Remarkably, our implementation showcases a significant
30x throughput enhancement across all non-polynomial functions compared to CPU
runtime. This substantial acceleration signifies the potential of our implementation to
expedite applications requiring evaluating a large number of these functions, thus offering
substantial performance gains.

Table 7: Throughput comparison of secure non-polynomial functions. [jLHH'21] utilized
a 20-thread CPU.

Approach Throughput

sigmoid /ReLU /sqrt/reciprocal Max-Pooling (2x2)
[[LHH*21] 20.77/s (1x) 4.83/s (1x)
Ours 628.93/s (30.3%) 147.7/s (30.6x)

5.2 Secure Neural Network Inference

FHE-based encrypted neural network inference presents a promising solution for secure and
privacy-preserving machine learning, facilitating collaborative research and data sharing
while addressing concerns about data privacy and security in an interconnected world.
The MNIST dataset [LCB10] has been a popular choice for evaluating FHE-based secure
inference. Several research efforts have focused on applying FHE to achieve secure inference
on this dataset [LLZ"24, BMMP18, FGT21, KS23].

In evaluating the FHE-based encrypted neural network inference on the MNIST dataset,
we categorize the model architectures of existing works into two categories: small and
large. For all the model architectures, one will have the same input layer with 784 (28x28)
neurons and the same output layer with 10 neurons. The differences lie in the hidden
layer configurations as shown in Table 8. To ensure a fair comparison, we train our
small model with one hidden layer containing 30 neurons. For the large model, we train
it with three hidden layers, each containing 1024 neurons. This approach allows us to
evaluate our FHE-based encrypted neural network inference solution against existing



Yu Xiao et al. 333

works using comparable model architectures. For the model training and inference, we
apply another concurrent work on FHE-based encrypted neural network training and
fine-tuning [KLX*24]. Improving the accuracy of the FHE-based encrypted neural network
inference is challenging and is the contribution of the work [KLX"24].

The dataset consists of 60000 instances, of which we randomly selected 50000 for
training and the remaining 10000 for testing. In all our experiments, we employed the
EvalFunc to realize the ReLU function. We made slight adjustments to the default
parameters as outlined in Table 4, setting p = 2'6 to accommodate the input size of the
MNIST dataset and B, = 218 to accommodate additional noise. For the fully connected
layer, we employ the cuBLAS library [NVI24] to perform matrix operations on the GPU.
The experiment was conducted using 2 NVIDIA RTX4090 GPUs to ensure a comparable
computing power with the GPU work RED [FGT21], which utilized 8 NVIDIA T4 GPUs
in their experiment.

In Table 8, we compared both small and large model architectures with the exist-
ing works. Regarding runtime performance, our implementation outperformed FHE-
DiNN [BMMP18] with a 12x speedup and [LLZ*24] with a 3.5x speedup. Additionally,
compared to both works, we achieved a higher security level of 128 bits, whereas both
implementations only attained 80 bits. An 80-bit security level parameters run at least 2x
faster than the parameters with a 128-bit security level in the same testing environment
due to a smaller polynomial dimension. Compared to the large model architecture, our
implementation demonstrates a 456x speedup compared to FDFB [KS23] while achieving
a higher security level and a bigger network structure, and a 1.37x speedup compared to
RED [FGT?21] with the same network structure and comparable computing power.

Table 8: Comparison of existing Secure Neural Network Inference on MNIST. The hidden
layer CXD means C layers with D neurons per layer

Security Activation Hidden Accuracy (%)

Approach Runtime (s)

Level Function Layer HE Plaintext
[BMMP18] 80 bits Sign 1X30 0.49 93.71 94.76
[LLZ*24] 80 bits ReLU 1X30 0.14 94.04 94.80
Ours 128 bits ReLU 1X30 0.04 96.47 97
[FGT21] 128 bits ReLU 3X1024 8.2f 99 -
[KS23] 100 bits ReLU 1X510 2736 95 -
Ours 128 bits ReLU 3X1024 6 97.2 97.8

T [FGT21] utilized 8 NVIDIA T4 GPUs.

5.3 Private Decision Tree Evaluation

Decision trees are widely utilized in machine learning and data analysis for classification
and regression tasks. These tree-like structures feature internal nodes representing decisions
based on specific features and leaf nodes denoting the corresponding outcomes or class
labels. Leveraging FHE to safeguard user data privacy has been extensively explored in
the literatures [LZS18, TBK20, jLHH'21].

We follow the FHE decision tree algorithm described in [jJLHH™21]. This algorithm
evaluates O(2N) LUT functions, where N is the number of nodes in the decision tree.
Notably, these LUT functions require the ability to concurrently compute ciphertexts with
different lookup tables, demonstrating the flexibility of our GPU implementation. For
our experiments, we slightly modified the default parameters of the EvalFunc as detailed
in Table 4, with p = 2! to accommodate the input of the decision tree and B, = 2 to
accommodate more noise.

We utilized one NVIDIA RTX4090 GPU during the experiment and adopted the
multi-blocks bootstrapping approach. We evaluated our private decision tree on the



334 GPU Acceleration for FHEW /TFHE Bootstrapping

Iris dataset [Fis88] from the UCI repository. The dataset consists of 150 instances, of
which we randomly selected 100 instances for training and the remaining 50 instances
for testing. In Table 9, we compare the runtime latency (cloud side), communication
overhead, and accuracy of both the HE and plaintext between our method and three
existing works [LZS18, TBK20, jLHH"21]. All these works utilize a 16-thread CPU to
execute multiple LUT evaluations concurrently. Among them, our approach achieves the
fastest latency, enabling real-time evaluation. For communication, we need to send 4
LWE ciphertexts (4 features) to the cloud and 1 LWE ciphertext (result) back to the user.
It is noteworthy that while [TBK20] managed to maintain accuracy levels comparable
to plaintext classification, it incurred a substantial 24x communication overhead and
operated 2.47 times slower than our method.

Table 9: Comparison of Private Decision Tree Evaluation on Iris dataset, which has ~ 10
internal nodes, 4 features, and 3 classification labels

Accuracy (%)
HE Plaintext

Approach Communication Latency (s)

[[LHH*21] 16.89 KB 1.87 94.74 97.37
[TBK20] 1.19 MB 0.94 97.37 97.37
[LZS18] 1.65 MB 0.59 95.33 97.37
Ours 51.01 KB 0.38 98 100

6 Conclusion

In this paper, we introduced an innovative GPU parallelization strategy used to tackle
the bottleneck operation, bootstrapping, in FHEW/TFHE schemes. Previous works
encountered challenges due to the limited flexibility of parameters, making it difficult
to extend them to functional bootstrapping requiring larger parameter configurations.
Through our novel strategy, we successfully broadened the scope of the supported pa-
rameters, supporting bootstrapping from gate bootstrapping to large-precision functional
bootstrapping and providing flexibility across security levels (STD128 to STD256). We
demonstrate the versatility of our approach through its applicability to numerous real-world
scenarios, including private decision tree evaluation and secure neural network inference.
The flexibility and efficiency of our method enables new potentials for practical FHE-based
privacy-preserving solutions.

Future work. Future endeavors include exploring the utilization of NVIDIA’s GPU
tensor core [MCL'18] to further accelerate bootstrapping. Tensor cores exhibit higher
throughput in matrix multiplication, showcasing immense potential. Additionally, it is
possible to extend our work to support SIMD-type solutions for the third-generation
FHE (e.g., [MS18, LW23a, LW23b, GPV23, MKMS24]), exploring how to accelerate these
theoretical methods.
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