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Abstract. A recent trend has shown constructions of 6-bit S-boxes that are mostly
focused on their cryptographic elegance, while their lightweight aspects have not really
been addressed well. This paper attempts to plug-in this existing research gap where
we show how the composite structure of the extension field F26 could be leveraged.
An earlier well-known example is an efficient implementation of AES S-box using the
tower field extension of F28 . The case of F2ab is completely different from any tower
field as the implementation varies as per the choice of extension – for instance, F(2a)b

or F(2b)a , where a and b are prime. Thus, it makes the implementation of S-boxes over
F26 = F2(2×3) very interesting. In this work, we systematically study the composite
field structure of F26 from a hardware standpoint for a class of S-boxes that are power
mapping or their affine equivalents. We analyze the hardware efficiency with respect
to different representations of the field extension, i.e., F(22)3 or F(23)2 . Furthermore,
for each extension, we investigate the impact of various choices of bases – for instance,
we present the evidence of the effect that normal or polynomial bases have on the
implementation. This gives us further insight on the choice of basis with respect to
the field extension. In the process, we present a special normal basis, when used in
conjunction with F(23)2 results in the least (or very close to least) area in terms of
GE for the 18 (6 quadratic and 12 cubic) S-boxes studied in this work. The special
normal basis reported here has some algebraic properties which make it inherently
hardware friendly and allow us to predict the area reduction, without running a
tool. Overall, this work constitutes an extensive hardware characterization of a class
of cryptographically significant 6-bit S-boxes giving us interesting insights into the
systematic lightweight implementation of S-boxes without relying on an automated
tool.
Keywords: Lightweight · S-box · Composite Field · Hardware Implementation

1 Introduction
There are two sides of cryptography, the first one is the theory that we use to come
up with a secure design, and the second is the implementation aspect. Once a secure
design is available, it becomes important to find an optimal implementation of it in
hardware and software. For symmetric primitives such as block ciphers and cryptographic
permutations, S-boxes play an important role as they introduce the nonlinearity/confusion
into these designs. Apart from a high nonlinearity, S-boxes should have good cryptographic
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properties such as low differential uniformity, and high degree to resist powerful well-
known attacks. At one end, we have AES [DBN+01] standard Rijndael [DR02] block
cipher that uses an 8-bit S-box, and on the other end, we have designs like PRESENT
[BKL+07] and GIFT [BPP+17] which use 4-bit S-boxes with the goal of minimizing the
hardware cost. A further push to lightweight designs was given when the NIST initiated the
standardization of lightweight cryptography algorithms [NIS19]. Finally, in 2022, ASCON
[DEMS21] authenticated encryption with associated data (AEAD) was selected as the
new lightweight cryptography standard. One interesting design choice of ASCON is that
it used 5-bit S-boxes. Although the application of a 5-bit S-box was not new (as KECCAK
[PA11] had already used it), ASCON was the first to apply a 5-bit S-box with non-trivial
branch numbers (both differential and linear branch numbers are equal to 3) that helped in
reducing the number of rounds. Later, SYCON [MSST22] AEAD was proposed that aimed
to further reduced the hardware cost of ASCON, and it used a different 5-bit S-box with
similar properties, but having a lighter cost in hardware than ASCON’s S-box. There have
been applications of 6-bit S-boxes too; for example, block ciphers like SC2000 [SYY+02],
FIDES [BBK+13], BipBip [BDD+23], SPEEDY [LMMR21] have used 6-bit S-boxes. Most
notably, the only known APN permutations on even dimensions were discovered in the
class of 6-bit S-boxes, that we call APN6 [BDMW10]. From the advancement of symmetric-
key cryptography, it is now visible that the study of 6-bit S-boxes has started getting a
momentum.

Broadly, there are two approaches to construct an S-box with desirable properties. One
approach to construct an n-bit S-box is by selecting n component Boolean functions in n
variables so that the S-box is a permutation and has a lighter implementation. Another
approach is the finite field based constructions of S-boxes over F2n .

In practice, the representation of S-boxes has a great impact on its implementation. For
example, if we consider implementing an S-box defined over an extension field, one needs
to define the finite field at the first place, as an extension can be defined in several ways.
There are different types of bases and irreducible polynomials to choose from. Therefore,
before implementing an S-box defined over a finite field, one needs a careful consideration
regarding the implementation of the field. The case of composite fields is interesting as
there are different subfields that can have the bases of extension. For instance, an efficient
implementation of the AES S-box was presented by studying the composite structure of
the field F28 [Rij00]. The class of 4-bit S-boxes is well-analyzed, and there are several tools
(e.g., LIGHTER [JPST17], PEIGEN [BGLS19]) that can find efficient implementations.
However, for 5-bit S-boxes, there is no scope of exploiting the composite field structure, so
one has to depend on synthesis tools to find an efficient implementation.

The case of 6-bit S-boxes is interesting as F26 is a composite field. However, to the best
of our knowledge, the implementation aspect of 6-bit S-boxes exploiting the composite
field structure of F26 has not been studied yet. In this paper, we aim to fill this gap, and
show field decompositions to find efficient S-box implementations in hardware.

1.1 Our Contribution
In this paper, we address a topic which has not received any attention from the hardware
community of cryptography: efficient implementation of 6-bit S-boxes exploiting the
decomposition of F26 . Below we summarize our contributions.

A detailed analysis of the decomposition of F26 . Earlier decomposition of F28 was done
by [Rij00] for an efficient implementation of AES S-box. Our study is more comprehensive
as we look at the decomposition of F26 covering the different extensions of different subfields
and also considering several bases. We focus on the S-boxes of the form S(x) = λxd + `(x),
where `(x) is a linearized polynomial over F26 and our decomposition method is shifted
a little from the general approach to better support this form of S-boxes. The optimal
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decomposition of F26 is achieved through the first three degree followed by two degree
(‘three-two’) extension, particularly when dealing with higher-degree (d ≥ 3) S-boxes. The
exponentiation operation is based on the binomial expansion. As a result, the first two
degree followed by three degree (‘two-three’) extension involves a large number of constant
multiplications and additions on F22 .

Composite field analysis with respect to a special basis. In the binomial expansion
pertaining to the exponentiation, the constant multiplication operation on the lower field
depends on the type of basis and polynomial chosen. In the case of the second extension
for the ‘three-two’ extension, we identified a specific normal basis that eliminates the need
for any constant multiplication operation in the lower field. Our optimized implementation
results are given in Table 1.

Table 1: Summary of the best results in terms of area with respect to the best decomposition
of F26 reported in this work. Here, LBN , DBN , LIN , DU and deg denote the linear
branch number, differential branch number, linearity, differential uniformity and degree of
the S-box, respectively.

S-box
Cryptographic Properties LUT ANF Field Decomposition

LBN DBN LIN DU deg Area (GE) Latency (ns) Power (µW) Area (GE) Latency (ns) Power (µW) Area (GE) Latency (ns) Power (µW)
SMS5 3 3 16 4 2 121.50 0.71 6.58 79.50 0.82 4.96 74.50 1.16 6.18
SMS10 3 3 16 4 2 118.75 0.74 6.31 79.50 0.82 4.96 74.50 1.16 5.90
SMS17 3 3 16 4 2 115.50 0.70 6.44 79.75 0.78 4.93 74.75 1.16 5.93
SMS20 3 3 16 4 2 116.25 0.77 6.62 79.50 0.82 4.96 74.75 1.16 5.93
SMS34 3 3 16 4 2 121.00 0.77 6.61 80.25 0.78 5.05 74.50 1.16 5.90
SMS40 3 3 16 4 2 115.50 0.70 6.44 79.75 0.78 4.93 74.75 1.16 5.93
SMS13 3 3 16 4 3 150.25 0.92 7.84 140.75 0.94 7.91 128.00 1.98 13.76
SMS19 3 3 16 4 3 150.25 0.92 7.84 145.00 0.90 8.20 124.75 2.19 14.00
SMS26 3 3 16 4 3 150.25 0.92 7.84 142.75 0.88 8.06 124.75 2.19 14.00
SMS38 3 3 16 4 3 156.25 1.01 7.77 143.50 0.88 8.14 133.50 2.36 17.02
SMS41 3 3 16 4 3 150.25 0.92 7.84 150.00 0.84 8.08 132.00 1.83 11.96
SMS52 3 3 16 4 3 158.00 0.98 8.16 147.75 1.00 7.74 131.25 2.32 16.05
SMSL13 3 3 64 8 3 126.00 0.79 7.20 136.50 0.78 7.12 120.75 2.25 12.98
SMSL19 3 3 64 8 3 124.75 0.84 7.18 134.25 0.72 7.32 118.75 2.02 11.93
SMSL26 3 3 64 8 3 126.00 0.79 7.20 141.25 0.90 7.52 119.75 2.40 13.46
SMSL38 3 3 64 8 3 126.00 0.79 7.20 137.75 0.86 7.30 116.50 2.24 13.36
SMSL41 3 3 64 8 3 126.00 0.79 7.20 136.00 0.88 7.68 116.50 2.22 13.44
SMSL52 3 3 64 8 3 126.00 0.79 7.20 137.50 0.88 7.28 117.75 2.28 13.59
x23 2 2 24 10 4 133.50 1.16 7.82 129.00 0.78 7.32 127.75 0.98 7.14
x62 2 2 16 4 5 139.50 0.86 7.68 128.50 0.76 6.66 137.75 2.90 22.92

Application in lightweight implementation of S-boxes. Once we have the best possible
decomposition of F26 , we apply this to implement 6-bit S-boxes. Although our method is
general enough to consider S-boxes of the form S(x) = λxd + `(x), however, for the sake
of lightweightness, we stick to degree 2 and 3. Further we choose `(x) = 0 or `(x) = µx.
We do not restrict to the S-boxes of the form xd only, we intentionally include the form
λxd + `(x) as this class contains S-boxes with good cryptographic properties and notably
S-boxes with linear and differential branch number 3. Seeing that 6-bit S-boxes are getting
attention, we provide lightweight implementations of these S-boxes which serves as the
stepping stone for efficient and cryptographically significant 6-bit S-boxes that could be
used in cipher designs.

2 Preliminaries

2.1 Notations
Let F2n be a finite field with 2n elements and Fn2 be an n-dimensional vector space over F2.
Let wt(x) be the Hamming weight of x ∈ Fn2 . The symbol ⊕ is the bitwise XOR operation
and x · y is x0y0 ⊕ · · · ⊕ xn−1yn−1, where x = (x0, . . . , xn−1)Fn2 and y = (y0, . . . , yn−1)Fn2 .
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An n-bit S-box is a permutation S : Fn2 → Fn2 . The S-box S can also be viewed as
an n-tuple of Boolean functions in n-variable, i.e., S = (f1, . . . , fn), where fi : Fn2 → F2,
where fi is called a coordinate function of S and any linear combination of coordinate
functions is called a component function of S.

Equivalently, an S-box can also be defined over the finite field F2n as an univariate
permutation polynomial F (x).

We denote by GL(n,F2), the set of all linear permutations of Fn2 . Clearly GL(n,F2) is
a proper subset of the set of all permutations over Fn2 .

2.2 Composite Field and Isomorphisms
In this subsection, we recall the notion of composite fields which is central to the under-
standing of the current work. Moreover we add some basic concepts pertaining to the field
isomorphisms which will aid the reader to grasp the rest of the work. We start by stating
the following well-known definition.

Definition 1 (Composite Field). Let a and b be two positive integers such that q = a× b.
Then the field F(2a)b is called a composite field, which is isomorphic to F2q , if there exist
irreducible polynomials, f(x) of degree a and g(y) of degree b, which are used to extend
F2 to F2a , and F2a to F(2a)b respectively.

F2 F2a

F2q F(2a)b

f(x)

h(z) g(y)

ψ

Figure 1: Composite field structure for F(2a)b with q = a× b.

Finite fields of the same order are isomorphic. Hence, the fields F2q and F(2a)b are
isomorphic since q = a× b. Let ω, α and β be the primitive elements in the fields F2q , F2a ,
and F(2a)b , respectively, with multiplication modulo polynomials h(z), f(x) and g(y). The
map ψ : F2q → F(2a)b is defined as: ψ(0) = 0, ψ(ωi) = (βξ)i, 0 ≤ i ≤ 2q − 2, for ξ ∈ Z+

such that βξ is a primitive element in F(2a)b . This mapping is an isomorphism between
F2q and F(2a)b if h(βξ) ≡ 0 mod g(β). The number of field isomorphisms between these
two fields is q, that is there are q different values of ξ to form an isomorphism map. The
composite field structure of F(2a)b induced by its isomorphism with F2q is illustrated in
Figure 1.

2.3 Cryptographic Properties of S-boxes
We first briefly describe the cryptographic properties of an S-box such as nonlinearity,
differential uniformity, and algebraic degree [Car10]. The nonlinearity of an n-variable
Boolean function f is the measure of the distance of f from the set of all n-variable affine
Boolean functions. The nonlinearity of the S-box S is the minimum nonlinearity among
all the component function of S. The algebraic degree of S is the maximum degree of its
coordinate functions.

Let S(δ,∆) = #{x ∈ Fn2 : S(x)⊕S(x⊕δ) = ∆}, where δ is the input difference and ∆ is
the output difference. Differential uniformity of S is defined as DUS = maxδ 6=0,∆{S(δ,∆)}.
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Lower DUS has higher resistance against the differential attack [BS91]. S-boxes having
the least possible DU which is 2, are called Almost Perfect Nonlinear (APN) functions.
The differential distribution table (DDT) of an S-box is the matrix representation of all
possible input-output differences for the S-box where the (δ,∆)-th element of DDT is
S(δ,∆).

The correlation coefficient of S with respect to an input mask α ∈ Fn2 and an output
mask β ∈ Fn2 is given by

CS(α, β) =
∑
x∈Fn

2

(−1)β·S(x)+α·x. (1)

If S(x) = (f1(x), . . . , fn(x)), then β ·S(x) is a Boolean function that is a linear combination
of {f1(x), . . . , fn(x)}, and α · x is a linear Boolean function of the form `1x1 ⊕ . . .⊕ `nxn.
Nonlinearity of S is 2n−1 − 1

2 max |CS(α, β)|. The correlation matrix CS of S is a 2n × 2n
matrix indexed by α, β ∈ Fn2 in which the entry in the cell (α, β) is given by CS(α, β).

Differential and linear properties are related to differential and linear branch numbers,
as described below.
Definition 2. The differential branch number of S, denoted by DBN (S), and the linear
branch number of S, denoted by LBN (S), are defined as

DBN (S) = min
x,x′∈Fn

2 , x 6=x′
{wt(x⊕ x′) + wt(S(x)⊕ S(x′))},

LBN (S) = min
α,β∈Fn

2 , CS(α,β)6=0
{wt(α) + wt(β)},

where CS(α, β) is the correlation coefficient as in Eq. (1).
Partitioning the class of S-boxes according to an affine equivalence relation is important

to study cryptographic properties of S-boxes.
Definition 3 (Affine Equivalence). Let S,S ′ be two permutations of Fn2 . We say that S
is affine equivalent to S ′ if there exist matrices A, B ∈ GL(n,F2), and c, d ∈ Fn2 such that

S ′(x) = B · S[Ax⊕ c]⊕ d, for all x ∈ Fn2 . (2)

Affine equivalence preserves some cryptographic properties of S-boxes, such as differen-
tial uniformity, nonlinearity, degree (greater than 1). However, it does not preserve branch
numbers in general. In some special cases such as when A and B are permutation matrices
(matrix obtained by permuting rows (or columns) of an identity matrix), then we have
DBN (S) = DBN (S1) and LBN (S) = LBN (S1).

3 Revisiting the SMS Construction of S-boxes

3.1 The SMS Construction [SMS19]
In this section, we discuss how cryptographically significant 6-bit S-boxes are generated.
We consider lightweight 6-bit S-boxes that have non-trivial branch numbers, meaning
S-boxes with differential branch number 3 and linear branch number 3. We focus on
the S-boxes having the form S(x) = λxd + `(x) for x ∈ F26 , where `(x) is a linearized
polynomial. This form of S-boxes is chosen as our implementation of F26 is arranged
keeping this type of form in mind.

The study of 6-bit S-boxes with differential and linear branch number 3 was initiated in
[SMS19]. They used the link between the resilient Boolean functions and the linear branch
number, and proposed algorithms to obtain 5-bit and 6-bit S-boxes with differential and
linear branch number 3. In the following, we propose an improvement of their algorithms
for finding such functions efficiently.

We first give the definition of a resilient Boolean function.
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Definition 4. A Boolean function f : Fn2 → F2 is called r-resilient if∑
x∈Fn

2

(−1)f(x)⊕α·x = 0,

for all α ∈ Fn2 such that 0 ≤ wt(α) ≤ r.

The relation between resilient Boolean functions and a linear branch number was first
mentioned in [SS18] which is as follows.

Lemma 1. All the coordinate Boolean functions of the S-box S are (LBN (S)−2)-resilient
and the algebraic degree deg(S) ≤ n− LBN (S) + 1.

Therefore, for an n-bit S-box with linear branch number 3, all its coordinate Boolean
functions must be 1-resilient and the degree is bounded by n− 2.

A brief description of the method for finding S-boxes with differential and linear branch
number 3 that was followed in [SMS19] is as follows. First, a collection of 1-resilient
n-variable Boolean functions is chosen. Among them, n-subsets are checked if they form
an S-box (permutation). If so, then the S-box has linear branch number 3. Next, an affine
equivalence class of the S-box is searched. As mentioned earlier, an affine equivalence
class does not preserve branch number, so the search ends when an S-box with linear and
differential branch number 3 is found.

One drawback of this algorithm is that when an S-box, say S with linear branch number
3 is obtained, then it has to search for all possible A, B ∈ GL(n,F2) such that the new
S-box obtained as S ′(x) = B · S[Ax] has both linear and differential branch numbers equal
to 3. For quadratic S-boxes, [SMS19] chose A and B to be binary Toeplitz matrices.

In our search, for quadratic and cubic S-boxes with linear and differential branch
number 3, we take the basic algorithm from [SMS19], however we make a significantly
different choices for A and B ∈ GL(n,F2).

We take a ‘minimal’ approach for upgrading an S-box with linear branch number 3
to the one with linear and differential branch number 3. For instance, we take B = I,
where I is the identity matrix. This will add no cost for B. So we expect S ′ such that
S ′(x) = S(Ax) to have linear and differential branch number 3. The first choice for A
would have been permutation matrices as they would incur no cost over S. However,
applying a transformation by a permutation matrix does not alter the branch numbers,
thus this option is ruled out. So we move to the next choice which are matrices of the form
Ti,j = I + Ei,j , where Ei,j is the binary matrix having only 1 as the (i, j)-th entry. This
type of matrices are well known in matrix theory and they are called Type III elementary
matrices. These matrices are quite hardware friendly as there is only one row that has two
1’s incurring only one XOR for that. Based on the above discussions, we now describe the
steps that we take for generating lightweight S-boxes with linear and differential branch
number 3.

Construction 1. 1. We apply Algorithm 1 of [SMS19] to obtain an 6-bit S-box with
linear branch number 3 of degree 2 of the form

S(x) = λxd + µx,

for x ∈ F26 , where λ(6= 0), µ ∈ F26 .

2. We check S-boxes S ′ given by S ′(x) = S(Ax), where A comes from the class of Type
III matrices of dimension 6× 6.

3. After running for all such Type III matrices, we check if any S-box with linear and
differential branch number equal to 3 is found.
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Note that we are not interested in much general form of linearized polynomial `(x) and
consider µx instead as we strictly maintaining the lightweight approach.

In Appendix C, we provide 6 quadratic S-boxes and 12 cubic S-boxes which we derive
from Construction 1. The notation for the S-boxes which are generated from the function
xd is denoted by SMSd and for the S-boxes having nonzero linear term denoted by SMSLd.

3.2 Implementation of S-box in F26

An S-box over F26 can be viewed as a mapping from F26 to F26 . The S-boxes in [SMS19]
are constructed using a special class of functions of the form F (x) = λxd + µx, where λ, µ
is a constant in F26 and 0 < d < 64. For example, if wt(d) = 2, it is called the quadratic
class and if wt(d) = 3, it is called the cubic class. Given a power mapping F (x) = xd,
in the SMS construction, an S-box that has a linear branch number 3 is constructed as
follows:

S(x) =(Tr(λ0F (x)), T r(λ1F (x)), · · · , T r(λ5F (x))) (3)

where Tr(λiF (x)), 0 ≤ i ≤ 5 are component functions and λ0, λ1, λ2, λ3, λ4, λ5 ∈ F26

are chosen so that Tr(λiF (x)) is a 1-resilient function. Equation (3) can be written as
S(x) = M · F (x), where M is an invertible matrix defined by λ0, λ1, λ2, λ3, λ4, and λ5.
Applying affine transformations A and B on the input and output of S(x), we may get an
S-box, S ′(x) = BS(Ax), with DBN = 3 and LBN = 3. The details of computing S′(x) is
shown in Figure 2. Implementing S′ requires computing three matrix multiplications and

A F M B

S ′(x)x

Figure 2: A high-level overview of computing S′ on an input x

F (x) = λxd + µx. To reduce the matrix multiplication cost, the authors used a low-cost
Toeplitz matrix A and the identity matrix B. Our hardware optimization in this work
mainly focused on an optimized implementation of F (x) = xd in an isomorphic composite
field as λ and µ constant values which may need some extra hardware cost.

4 Characterizing Composite Field Structure of F26

In this section, we furnish a comprehensive characterization of the finite field F26 with
respect to its composite field structure. This is vital to our overall aim of coming up with
lightweight implementations of 6-bit S-boxes which are cryptographically significant. We
start by outlining the representations of F26 as extensions of F22 and F23 . We then explore
the problem of choosing a basis (polynomial or normal) while exploring its implication on
the lightweightness of the resulting implementation. We conclude the section by formulating
the expression for a general power function in the composite field of F26 , as we are focusing
on the implementation of the S-boxes of the form S(x) = λxd + µx.

4.1 Decomposition of F26

The field F26 can be generated by employing any primitive polynomial h(z) of degree
6 over F2. The structural characteristics of field elements vary based on the chosen
primitive polynomial, leading to distinct representations in isomorphic fields. Without
loss of generality, we choose the primitive polynomial h(z) = z6 + z4 + z3 + z + 1 as a
defining polynomial for the field F26 . Assuming ω as a primitive element in F26 over F2
multiplication modulo primitive polynomial h(z), then any element in F26 can be expressed



770 Know-Thy-Basis: Decomposing F26 for Lightweight S-box Implementation

as θ = ϑ0 + ϑ1ω + ϑ2ω
2 + ϑ3ω

3 + ϑ4ω
4 + ϑ5ω

5, where ϑi’s belong to F2. Equivalently we
can say the elements in F26 are nothing but just binary strings (ϑ5, ϑ4, ϑ3, ϑ2, ϑ1, ϑ0) ∈ F6

2.
Furthermore, the representation of elements in F26 takes two distinct forms, depending

upon the chosen composite field structure. The composite field for F26 can be constructed
in two ways, illustrated in Figure 3. One approach involves a 3-degree extension followed by
a 2-degree extension, while the alternative method consists of a 2-degree extension followed
by a 3-degree extension. Both composite constructions and element representations will
be elaborated below.

F2

F23

F26

F22 F(22)3

F(23)2

Figure 3: Composite Field Structure for F26 .

Structure of F26 as an extension of F22 . The only primitive polynomial of degree 2 in
F2[x] is f2(x) = x2 + x+ 1. Consequently, for the first extension, by default, we have to
choose f2(x). To form an isomorphic composite field of F26 it is necessary to fix the degree
of extension to 3 in the next extension. The polynomial choices for constructing F26 are
given by,

F2
x2+x+1−−−−−→ F22

y3+∆0y
2+∆1y+∆2−−−−−−−−−−−−−→ F26 .

There are 12 primitive polynomials of degree 3 in F22 [y], which are of the form g3(y) =
y3 + ∆0y

2 + ∆1y + ∆2 for the second extension with ∆i ∈ F22 . Combining these two
polynomials yields the composite field F(22)3 .

The field F(22)3 is also a vector space over F22 with a dimension of three. Therefore,
any element in F(22)3 can be expressed as a linear combination of its basis vectors. Let
us assume β is a primitive element in F(22)3 = F22 [y]/〈g3(y)〉. Therefore, every basis is of
the form B = {βL0 , βL1 , βL2}, for some values of 0 ≤ L0,L1,L2 ≤ 62. Consequently, any
element in F(22)3 is expressed as θ = θ0β

L0 + θ1β
L1 + θ2β

L2 , where θi ∈ F22 .
Moreover, the field F22 is a vector space of dimension 2 over F2. Therefore, θi’s can

similarly be expressed in terms of the basis vectors of F22 . Suppose α is a primitive element
in F22 = F2[x]/〈f2(x)〉. Then every element in F22 is represented by θi = θi0α

l0 + θi1α
l1 ,

with respect to the basis C = {αl0 , αl1}, for some 0 ≤ l0, l1 ≤ 2. Different choices of
primitive polynomials in each step of the extension will result in distinct representations
of elements in F(22)3 .

Structure of F26 as an extension of F23 . There exist two primitive polynomials of
degree 3 in F2[x]: f3(x) = x3 + x2 + 1 and f3(x) = x3 + x+ 1. This gives us two potential
choices to construct the isomorphic composite field of F26 during the initial extension. We
have considered the polynomial f3(x) = x3 + x2 + 1 for the rest of our work.

For the second extension, there are 18 primitive polynomials of the form g2(y) =
y2 + Γ0y + Γ1, where Γ0 and Γ1 belong to F23 . Consequently, the selection of primitive
polynomials for each extension step is outlined as follows.
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F2
x3+x2+1−−−−−−→ F23

y2+Γ0y+Γ1−−−−−−−→ F26 .

Likewise, the composite field F(23)2 is also a vector space over F23 with a dimension of
two. Let γ be a primitive element in F(23)2 = F23 [x]/〈g2(y)〉. Consequently, any basis of
F(23)2 would be the form B∗ = {γM0 , γM1} for some 0 ≤M0,M1 ≤ 62. Thus, an element
in F(23)2 can be expressed as θ = θ0γ

M0 + θ1γ
M1 , where θ0, θ1 ∈ F23 .

Furthermore, F23 acts as a vector space of dimension three over F2. Let δ be a
primitive element in F23 = F2[x]/〈f3(x)〉, then every element in F23 can be represented
by θi = θi0δ

m0 + θi1δ
m1 + θi2δ

m2 with respect to the basis C∗ = {δm0 , δm1 , δm2} for some
0 ≤ m0,m1,m2 ≤ 6.

Based on the choice of the primitive polynomials, a total of 12 for F(22)3 and 18 for
F(23)2 different composite field structures are possible. Now we can choose any particular
isomorphism map to represent any element in the composite field. The representation is
also dependent on various combinations of bases in each step of extension. This implies
that one could have different implementations of the same function based on their choice of
field extension as well as the associated bases. However, which ones of these choices would
lead to a lightweight implementation of the function under consideration is not known a
priori. This is a fundamental problem that we aim to address in this work for a particular
class of functions over F26 giving S-boxes.

In the following subsection we will discuss how to get the transformation matrix of F26

and its composite field according to the choice of different bases.

4.2 Transformation Matrix for Different Choices of Bases
The transformation matrix is important for representing elements under any chosen basis.
The elements in the field F26 are represented with respect to a polynomial basis; therefore,
it is necessary to transform these elements to a composite field basis.

Transformation matrix between F26 and F(22)3 . Let ω is a primitive element in F26 =
F2[z]/〈h(z)〉 and ψ be an isomorphism between F26 and F(22)3 . Thus there exits κ and τ
such that α = ψ(ωκ) and β = ψ(ωτ ), since ω generates the multiplicative group of F26 .
Therefore one can easily obtain the values of κ and τ from the composite field isomorphisms,
which depend on the values of ξ. How to find the value of ξ is discussed in Subsection 2.2.

Let us consider the following bases.

• P = {1, ω, ω2, ω3, ω4, ω5} be a polynomial basis of F26/F2.

• B = {βL0 , βL1 , βL2} be a basis of F(22)3/F22

• C = {αl0 , αl1} be a basis of F22/F2.

This implies that the following.

• BC = {βL0αl0 , βL0αl1 , βL1αl0 , βL1αl1 , βL2αl0 , βL2αl1} is a basis of F(22)3/F2,

• Each βLjαli has a pre-image in F26 which is ωliκ+Ljτ = ψ−1(αliβLj )

Thus the transition matrix between the basis

{ωl0κ+L0τ , ωl1κ+L0 , ωl0κ+τL1 , ωl1κ+L1τ , ωl0κ+L2τ , ωl1κ+L2τ}

and the polynomial basis P is the inverse isomorphism between F26 and F(22)3 . Therefore,
the inverse transition matrix gives us the required transformation matrix.
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Transformation matrix between F26 and F(23)2 . Similarly for the isomorphism map
φ between F26 and F(23)2 there are κ and τ such that γ = φ(ωκ) and δ = φ(ωτ ). Sup-
pose B∗ = {γM0 , γM1} is a basis for F(23)2/F23 and C∗ = {δm0 , δm1 , δm2} is a basis for
F23/F2 then again the inverse transition matrix between the bases {ωκm0+τM0 , ωκm1+τM0 ,
ωκm2+τM0 , ωκm0+τM1 , ωκm1+τM1 , ωκm2+τM1} and the polynomial basis P provides the
transformation matrix according to chosen bases.

Enumerating different possible representations. The transformation matrix varies de-
pending upon different values for κ, τ , and the diverse choice of the primitive polynomial
in each extension. The number of field isomorphisms between the fields F26 and F(22)3

or F(23)2 is precisely 6. That is for a fixed choice of basis in each level of extension we
encounter 6 different transition matrices. Thus, for 12 different primitive polynomials
of g3(y) and 18 different primitive polynomials of g2(y) (as discussed in the previous
sub-section) total number of different possible representations is given below. Each of the
representations leads to different implementation of the SMS S-boxes under consideration.

F26 ↔ F(23)2 : #Representations =

# Field
Isomorphisms︷︸︸︷

6 ×

# Primitive
Polynomials︷︸︸︷

12 = 72
F26 ↔ F(22)3 : #Representations = 6 × 18 = 180

4.3 Choice of Bases
Choosing a different basis for the extension field results in a distinct representation of a
field element influencing the implementation of functions defined over the field. Hence, the
selection of the underlying basis is crucial for the hardware implementation. As mentioned
earlier, we consider extensions F(22)3 and F(23)2 , where we opted for combinations of
polynomial and normal bases at every level of these extension to reduce the circuit
complexity. While other basis types are viable and there are too many such options to
exhaust. Therefore, we only concentrate on the polynomial normal basis types. One
particular reason for choosing a normal basis is that the squaring of a linear combination
of these basis elements is free.

Let us recall the general form of bases from Subsection 4.1.

F(22)3/F22︷ ︸︸ ︷
B = {βL0 , βL1 , βL2}

F22/F2︷ ︸︸ ︷
C = {αl0 , αl1}

F(23)2/F23︷ ︸︸ ︷
B∗ = {γM0 , γM1}

F23/F2︷ ︸︸ ︷
C∗ = {δm0 , δm1 , δm2}

So, for some 1 ≤ J ≤ 2, the polynomial basis and normal basis of F22 are respectively
given below.

• {1, α} (l0 = 0, l1 = 1)

• {αJ , (αJ )2} (l0 = J , l1 = 2J )

Similarly, for some 1 ≤ K ≤ 62, the polynomial basis and normal basis of F(22)3 are
respectively given below.

• {1, β, β2} (L0 = 0,L1 = 1,L2 = 2)

• {βK, (βK)4, (βK)16} (L0 = K,L1 = 4K,L2 = 16K)

For the first extension, we consider the normal basis {α, α2}. For the second extension
we find that {βK, (βK)4, (βK)16} forms a basis for K = 1 only with respect to 6 primitive
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polynomials g3(y) out of 12. For the remaining 6 primitive polynomials, we find that
{βK, (βK)4, (βK)16} forms a basis for K = 3.

We denote the combination of the polynomial and normal basis of the field F(22)3 as
follows.

• P-P3
2 = {1, α, β, αβ, β2, αβ2}.

• P-N3
2 = {α, α2, αβ, α2β, αβ2, α2β2}.

• N-P3
2 = {{β, αβ, β4, αβ4, β16, αβ16} , {β3, αβ3, β12, αβ12, β48, αβ48}}.

• N-N3
2 = {{αβ, α2β, αβ4, α2β4, αβ16, α2β16} , {αβ3, α2β3, αβ12, α2β12, αβ48, α2β48}}.

Next, we describe the choice of bases for F(23)2 . For some 1 ≤ J ≤ 6, the polynomial basis
and normal basis for F23 are given by

• {1, δ, δ2} (m0 = 0,m1 = 1,m2 = 2)

• {δJ , (δJ )2, (δJ )4} (m0 = J ,m1 = 2J ,m2 = 4J ).

For some 1 ≤ K ≤ 62, the polynomial basis and normal basis of F(23)2 are respectively,

• {1, γ} (M0 = 0,M1 = 1)

• {γK, (γK)8} (M0 = K,M1 = 8K).

For the first extension, we utilize the conventional normal basis {δ, δ2, δ4}, and for the
second extension, we employ {γ, γ8}.

The combination of the polynomial and normal basis for the field F(23)2 is denoted as
follows.

• P-P2
3 = {1, δ, δ2, γ, γδ, γδ2}.

• P-N2
3 = {δ, δ2, δ4, γδ, γδ2, γδ4}.

• N-P2
3 = {γ, δγ, δ2γ, γ8, δγ8, δ2γ8}.

• N-N2
3 = {δγ, δ2γ, δ4γ, δγ8, δ2γ8, δ4γ8}.

Therefore, we have considered in total 72× 4 = 288 representations of the field F(22)3 , and
108 × 4 = 432 representations of the field F(23)2 according to the above choice of bases.
We have considered in total 720 representations of the field F26 . Moreover, we introduce a
special kind of normal basis in the second extension for each composite field, which we
will discuss in Section 5. In the following subsection, our primary focus shifts to discussing
the implementation of the exponentiation function for a fixed-choice of basis.

4.4 Exponentiation Operation in the Composite Field
We are concentrating on the lightweight implementation of the cryptographically significant
S-box of the form S(x) = λxd+µx; therefore, efficient implementation of the exponentiation
function leads to efficient implementation for these functions. We can choose either the
field F(22)3 or F(23)2 for the implementation. We will discuss the exponentiation concerning
different composite fields one by one and show how the implementation results differ.
Suppose d is any positive integer, then d can be represented using its binary representation,
and the number of ones in its binary representation is the hamming weight of d. Let the
hamming weight of d be t then d = 2d1 + 2d2 + · · · + 2dt , where 0 ≤ di ≤ blog2 dc + 1,
1 ≤ i ≤ t.
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Exponentiation in the field F(22)3 . Recall B = {βL0 , βL1 , βL2} is a basis of F(22)3 , so
the representation of an element θ ∈ F(22)3 can be expressed as θ = θ0β

L0 + θ1β
L1 + θ2β

L2 ,
where θ0, θ1, θ2 ∈ F22 . Therefore, the exponentiation of θ is given by,

θd =
(
θ0β
L0 + θ1β

L1 + θ2β
L2
)d

=
(
θ0β
L0 + θ1β

L1 + θ2β
L2
)∑t

i=1
2di

=
t∏
i=1

(θ0β
L0 + θ1β

L1 + θ2β
L2)2di

=
t∏
i=1

(θ2di

0 βL02di + θ2di

1 βL12di + θ2di

2 βL22di )

=
∑

i1,··· ,it∈{0,1,2}

θ2d1
i1 · · · θ

2dt

it β(Li1 2d1 +Li2 2d2 +···+Lit 2dt )

=
∑

i1,··· ,it∈{0,1,2}

α0
i1···itθ

2d1
i1 · · · θ

2dt

it βL0 +
∑

i1,··· ,it∈{0,1,2}

α1
i1···itθ

2d1
i1 · · · θ

2dt

it βL1 +

∑
i1,··· ,it∈{0,1,2}

α2
i1···itθ

2d1
i1 · · · θ

2dt

it βL2 (4)

The coefficients α0
i1···it , α

1
i1···it , α

2
i1···it are elements of the field F22 , as each exponent

of β can be represented by the basis B over F22 . These coefficients indicate which
scalar multiplication is required in the lower field. However, the scalar multiplication
varies depending on the chosen primitive polynomial. Thus, the exponentiation in F26 is
reduced to the field operations such as exponentiation, addition, multiplication, and scalar
multiplication in F22 , which is the main advantage using the composite field. Appendix A
provides all the subfield operations in F22 , corresponding to the polynomial and normal
bases.

Exponentiation in the field F(23)2 . Any element in F(23)2 also be expressed as a linear
combination of its basis B∗ = {γM0 , γM1}. So, the element in F(23)2 is expressed as
θ = θ0γ

M0 + θ1γ
M1 . Therefore, the exponentiation is given by,

θd = (θ0γ
M0 + θ1γ

M1)d

= (θ0γ
M0 + θ1γ

M1)
∑t

i=1
2di

=
t∏
i=1

(θ0γ
M0 + θ1γ

M1)2di

=
t∏
i=1

(θ2di

0 γM02di + θ2di

1 γM12di )

=
∑

i1,··· ,it∈{0,1}

θ2d1
i1 · · · θ

2dt

it γ(Mi1 2d1 +···+Mit 2dt )

=
∑

i1,··· ,it∈{0,1}

α0
i1···itθ

2d1
i1 · · · θ

2dt

it γM0 +
∑

i1···it∈{0,1}

α1
i1···itθ

2d1
i1 · · · θ

2dt

it γM1 (5)

The coefficients α0
i1···it , α

1
i1···it are the scalars in F23 . In this case, the exponentiation

operation in F26 is reduced to some exponentiation, addition, multiplication, and scalar
multiplication in the lower field F23 . The subfield operations in F23 with respect to
polynomial and normal bases are provided in Appendix B.

The subfield operations in the field F23 are more costly compared to F22 . However,
utilizing F23 provides the advantage, especially when implementing higher-algebraic-degree
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exponential functions like S(x) = xd, where the Hamming weight of d is greater than
or equal to 3. The combination of polynomial and normal bases facilitates an efficient
implementation of the SMS S-boxes. The implementation cost of these S-boxes is provided
in Table 4, Table 5 and Table 6. The next question arises: can we reduce the subfield
operation? Yes, we can reduce the scalar multiplication operation by choosing a special
kind of basis. We will discuss the basis in the following section.

5 Introducing a Special Normal Basis

Suppose we opt for either a polynomial basis or a normal basis in the second extension.
Then, the implementation of the exponentiation requires scalar multiplications in the
intermediate field (F22 or F23), adding an additional cost to the implementation. In this
section, we introduce a special normal basis that possesses inherent algebraic properties,
eliminating the need for scalar multiplication operations. Furthermore, this basis provides
a more closed form for each coordinate while calculating the exponent. In Theorem 1 and
Theorem 2, we discuss how to find such special normal basis.

Theorem 1. Let SN ∗ = {γ1, γ2} be a basis of F(23)2/F23 such that γ1, γ2 are the roots
of f(x) = x2 + x+ 1 over F2. Then, SN ∗ is a normal basis over F23 , and any power of
γ1 is a linear span of SN ∗ over F2.

Proof. Since γ1, γ2 are the roots of f(x) = x2 + x+ 1, then γ1 + γ2 = 1 and γ1 · γ2 = 1.
Again, we have γ2

1 + γ1 + 1 = 0, which implies γ2
1 = 1 + γ1 = γ2 and γ3

1 = 1. Combining
these two, we get γ2 = γ8

1 , that is, SN ∗ = {γ1, γ
8
1} is a normal basis. Let k be a positive

integer. Then k ≡ 0, 1, 2 mod 3, which implies, γk1 is equivalent to γ1 + γ2, γ1, γ2.

Corollary 1. If θ = (θ0, θ1) is an element with respect to this basis SN ∗, then for any
positive integer k, θ2k = (θ2k

0 , θ2k

1 ) if k is even, otherwise (θ2k

1 , θ2k

0 ).

Since γ1 is an element of F(23)2 , there is a value K such that γ1 = γK. If SN ∗ =
{γK, γ8K} is a basis, then it serves as a normal basis for F(23)2 . We found that the only
possible values for which SN ∗ forms a basis are K = 21 and 42 for all choices of the
polynomials on the second extension.

If χ = γ21, then SN ∗ = {χ, χ8} is the normal basis over F23 . Hence, from Equation 5,
the exponentiation in F(23)2 can be expressed as:

θd = (θ0χ+ θ1χ
8)d

=
t∏
i=1
{θ2di

0 χ2di + θ2di

1 (χ8)2di}

=
∑

i1,··· ,it∈{0,1}

α0
i1···itθ

2d1
i1 · · · θ

2dt

it χ+
∑

i1,··· ,it∈{0,1}

α1
i1···itθ

2d1
i1 · · · θ

2dt

it χ8 (6)

where α0
i1···it and α

1
i1···it are in F2, as χk can be represented as a linear combination of χ and

χ8 over F2 for a positive integer k. This basis eliminates the need for scalar multiplications
in F23 , which makes it advantageous for an efficient hardware implementation.

For example, consider the function F (x) = xd, with d = 5 = 2d1 +2d2 and d1 = 0, d2 = 2
and t = 2. For the basis SN ∗ = {χ, χ8}, we have M0 = 21,M1 = 42. Then the
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Table 2: Some useful function implementation respect to special normal basis SN ∗.
Values of d Coordinates

5 [(θ0 + θ1)5 + θ5
0, (θ0 + θ1)5 + θ5

1]
10 [(θ0 + θ1)3 + θ3

1, (θ0 + θ1)3 + θ3
0]

20 [(θ0 + θ1)6 + θ6
0, (θ0 + θ1)6 + θ6

1]

13 {(θ0 + θ1)2 + θ0θ1)}[θ4
0, θ

4
1]

19 {(θ0 + θ1)4 + (θ0θ1)2)}[θ0, θ1]
38 {(θ0 + θ1) + (θ0θ1)4)}[θ2

1, θ
2
0]

23 {θ2
0θ

2
1(θ2

0 + θ2
1)(θ0θ1 + θ2

0 + θ2
1)}[θ1, θ0] + [θ2

1, θ
2
0]

62 (θ2
0 + θ2

1 + θ0θ1)6[θ1, θ0]

exponentiation computation can be written as

θ5 = (θ0γ
M0 + θ1γ

M1)5

=
∑

i1,i2∈{0,1}

θ2d1
i1 θ2d2

i2 γ(Mi1 2d1 +Mi2 2d2 )

=
∑

i1,i2∈{0,1}

θi1θ
4
i2γ

(Mi1 +4Mi2 )

= θ0θ
4
0γ

42 + θ0θ
4
1γ

0 + θ1θ
4
0γ

0 + θ1θ
4
1γ

21

= θ5
0χ

8 + θ0θ
4
1(χ+ χ8) + θ1θ

4
0(χ+ χ8) + θ5

1χ

= (θ5
1 + θ0θ

4
1 + θ0θ

4
1)χ+ (θ5

0 + θ0θ
4
1 + θ0θ

4
1)χ8

= {(θ0 + θ1)5 + θ5
0}χ+ {(θ0 + θ1)5 + θ5

1}χ8 (7)

Therefore, to efficiently compute F (x) = x5 in F26 , we need only three additions and
three fifth power operations in F23 . Similarly, one can write an expression like above for
K = 42. We summarize the S-boxes of the form S(x) = xd in Table 2, which are useful
for designing S-boxes discussed in Section 3 with respect to the basis {χ, χ8}. Note that
the implementations of xd with d = 40, 17, 34, 41, 26, 52 directly follow the implementation
of xd for d = 5, 10, 20, 13, 19, 38 respectively, with a rotation on inputs as the exponents
are in the same coset.

For the combination of the polynomial and normal basis in the first extension, the
special normal basis of F(23)2 is denoted as follows.

• SN-P2
3 = {γ21, δγ21, δ2γ21, γ42, δγ42, δ2γ42}.

• SN-N2
3 = {δγ21, δ2γ21, δ4γ21, δγ42, δ2γ42, δ4γ42}.

Theorem 2. Let SN = {β1, β2, β3} be a basis of F(22)3/F22 such that β0, β1, β3 are the
roots of the equation f(x) = x3 + x2 + 1 in F2[x]. Then, SN is a normal basis over F22 ,
and any power of β1 is a linear span of SN in F2.

Proof. Since β1 is a root of x3 + x2 + 1 = 0, β3
1 + β2

1 + 1 = 0 and β7
1 = 1. This implies

β16
1 = β2

1 . Now, (β4
1)3 +(β4

1)2 +1 = β5
1 +β1 +1 = 0 and (β16

1 )3 +(β16
1 )2 +1 = β6

1 +β4
1 +1 = 0.

Therefore, β2 = β4
1 and β3 = β16

1 , that means if SN = {β1, β2, β3} forms a basis, it must be
a normal basis. For any positive integer k with k ≡ 0, 1, 2, 3, 4, 5, 6 mod 7, βk1 is equivalent
to β1 +β2 +β3, β1, β3, β1 +β2, β2, β2 +β3, β1 +β3, that is, any power of β1 is a linear span
of B over F2.
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Corollary 2. If θ = (θ0, θ1, θ2) be any element with respect to this basis SN , then for
any positive integer k, θ2k = (θ2k

0 , θ2k

1 , θ2k

2 ) if k = 3n or (θ2k

2 , θ2k

0 , θ2k

1 ) if k = 3n + 1
or (θ2k

1 , θ2k

2 , θ2k

0 ) if k = 3n+ 2 for a positive integer n.

Since β1 is an element of F(22)3 there is a K such that β1 = βK. If SN = {βK, β4K, β16K}
is a basis, then it is a normal basis for F(22)3 . We found that the only possible values for
which SN forms a basis are K = 9, 18, 27, 36, 45, and 54 for the choice of the polynomials
for the second extension.

If χ = β9, then SN = {χ, χ4, χ16} is a normal basis over F23 , and from Equation 4,
the exponentiation computation in F(22)3 can be written as:

θd = (θ0χ+ θ1χ
4 + θ1χ

16)d

=
∑

i1,,··· ,it∈{0,1,2}

α0
i1···itθ

2d1
i1 · · · θ

2dt

it χ+
∑

i1,··· ,it∈{0,1,2}

α1
i1···itθ

2d1
i1 · · · θ

2dt

it χ4 +

∑
i1,··· ,it∈{0,1,2}

α2
i1···itθ

2d1
i1 · · · θ

2dt

it χ16 (8)

where α0
i1···it , α

1
i1···it , α

2
i1···it belong to F2. Therefore, we do not need any scalar mul-

tiplication in F23 , which gives an efficient hardware implementation. The addition,
multiplication, and square operations are sufficient to perform an exponentiation op-
eration. We summarize a compact form of the functions S(x) = xd, for d = 5, 10, 13, 38,
with respect to the special normal basis on Table 3. The implementations for d =
{{20, 17}, {34, 41}, {52, 19}, {26, 41}} directly follow the implementation of d = 5, 10, 13, 38
with a rotation on inputs, respectively, as these power functions are in the same coset.

For the choice of the polynomial and normal basis in the first extension, our special
normal basis of F(22)3 is denoted as follows.

• SN-P3
2 =

{
{β9, αβ9, β36, αβ36, β18, αβ18},
{β27, αβ27, β45, αβ45, β54, αβ54}

}

• SN-N3
2 =

{
{αβ9, α2β9, αβ36, α2β36, αβ18, α2β18},
{αβ27, α2β27, αβ45, α2β45, αβ54, α2β54}

}

Table 3: Some 2-degree and 3-degree function implementation respect to special nor-
mal basis SN .

Values of d Coefficients

5 [(θ2
1 + θ2

2 + θ0θ2), (θ2
0 + θ2

2 + θ0θ1), (θ2
0 + θ2

1 + θ1θ2)]
10 [(θ0 + θ2 + θ2

0θ
2
1), (θ0 + θ1 + θ2

1θ
2
2), (θ1 + θ2 + θ2

0θ
2
2)]

13
[θ0 + θ1 + θ3

2θ0 + θ2
1(θ0θ1 + θ0θ2 + θ1θ2) + θ2

0(θ2
1 + θ2

2 + θ1θ2),
θ1 + θ2 + θ3

0θ1 + θ2
2(θ0θ1 + θ0θ2 + θ1θ2) + θ2

1(θ2
0 + θ2

2 + θ0θ2),
θ0 + θ2 + θ3

1θ2 + θ2
0(θ0θ1 + θ0θ2 + θ1θ2) + θ2

2(θ2
0 + θ2

1 + θ0θ1)]

38
[θ2

0 + θ0(θ2
1θ

2
2 + θ2

0θ
2
1) + (θ0 + θ1)3θ2

2 + θ2(θ0 + θ1 + θ2 + θ2
0θ

2
1),

θ2
1 + θ1(θ2

2θ
2
0 + θ2

1θ
2
2) + (θ1 + θ2)3θ2

0 + θ0(θ0 + θ1 + θ2 + θ2
1θ

2
2),

θ2
2 + θ2(θ2

0θ
2
1 + θ2

2θ
2
0) + (θ2 + θ0)3θ2

1 + θ1(θ0 + θ1 + θ2 + θ2
2θ

2
0)]

Like other exponents in Table 3, one can derive the coefficients for the exponents d = 23
and 63, but we omit it here as the expression for these two functions is quite large. That
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implies the hardware implementation cost of them is significantly high in the composite
field F(22)3 .

We observed that the implementation on F(22)3 of S(x) = xd with an algebraic degree
greater than two incurs a low cost of finite field operations in the intermediate field but
leads to an increase in the number of base field additions. Conversely, in the case of
the field F(23)2 , the base field operation is more expensive, yet the number of base field
additions is reduced, resulting in significant hardware savings.

6 Hardware Implementation Results and Comparisons
With all the theory in place, we now share the results of the hardware implementation
of the all different S-boxes that have been studied in this work. It is worth recalling
that one single SMS S-box can be implemented in multiple ways based on the different
representations discussed earlier as well the choice of the conventional basis and the special
normal basis introduced in this work. Our results validate the claims of the special normal
basis to be the natural choice for a better lightweight implementation almost across all
implementation attempts. Before we proceed to delve deeper into the research insights
derived and validated from the hardware implementation, we outline the comprehensiveness
of the current work by enumerating the full spectrum of the implementations carried out.

# F(22)3 implementations/S-box =
#Representations for a fixed basis︷︸︸︷

72 ×
# Bases︷︸︸︷

6 = 432
# F(23)2 implementations/S-box = 108 × 6 = 648

# S-boxes studied = 18
# S-box implementations = (432 + 648)× 18 = 19, 440

In addition to these, we also implement two more functions S(x) = xd with d = 23 and
d = 62 using our special normal basis for the decompositions of F(23)2 . The function for
d = 23 is a degree 4 function and the function for d = 62 is the inverse function, which
has degree 5. That means we have considered all possible classes of power function in this
implementation. We choose only the special normal bases (SN-N2

3,SN-P2
3) in this case as for

the other cases the implementation contains a huge number of subfield operations. Finally,
for the (18 + 2) functions we have also synthesized their ANF and LUT logics to have a
global comparison. So in total, we have implemented 19440+(108×2)×2+20×2 = 19, 912
representations. All the implementation source codes and related scripts are available at
https://github.com/de-ci-phe-red-LABS/KnowThyBasis.

Hardware implementation flow. All implementations were done using Verilog HDL. As
regards register-transfer-level (RTL) synthesis for ASICs, the Cadence Genus Synthesis
Solution tool was used with the 65 nm UMC Mixed-Mode Low Leakage Low-K cell library.
The Genus tool configuration was set to -effort high for maximum area optimization.
In order to compare area across implementations, gate-equivalent (GE) was used which is
a standard parameter used for this purpose. The server configuration was 64 bit - Intel
Xeon Processor (Skylake, IBRS) @ 2 GHz.

Implementation knockout and comparison strategy. As enumerated above, there were
a close 20K implementations that had to be analyzed across 18 S-boxes. In order to come
up with a fair comparison we sorted the results for each S-box across each basis for each of
two decompositions of F26 . The implementation with the least area for a particular choice
of basis for a specific S-box made it to the comparison tables furnished in the subsections
below. The comparisons were done locally among the SMS S-boxes with degrees 2 and 3
and degree 3 with linear terms. Within the local comparisons, segregation has been made

https://github.com/de-ci-phe-red-LABS/KnowThyBasis
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based on the conventional bases and the special normal bases on top of the decompositions.
For more holistic data interpretation, best results from each segregated group are also
compare. Here, by abuse of notation, we use the following to highlight most area efficient
bases among conventional and specials bases as concluded from the implementation results.

• Special Normal Bases
{

SB3
2 = MinArea(SN-N3

2,SN-P3
2)

SB2
3 = MinArea(SN-N2

3,SN-P2
3)

• Conventional Bases
{

CB3
2 = MinArea(N-N3

2,N-P3
2,P-N3

2,P-P3
2)

CB2
3 = MinArea(N-N2

3,N-P2
3,P-N2

3,P-P2
3)

Finally, for a global comparison, the best basis-decomposition combination was pitted
against the traditional LUT and ANF based implementations across all the 20 functions
studied here. In the next subsections, the detailed results are furnished.

6.1 Results for 2-Degree SMS S-box
Here, we look at the area footprint of 2-degree SMS S-boxes which is captured by Table 4.
The basis which registers the lowest area across the 6 choices is N-P3

2. However, what
is interesting is that the clear second choice is our special normal basis SN-N2

3 and the
difference between areas registered by SN-N2

3 and N-P3
2 is only ≤ 0.75 GE. This validates

our claim on the special normal basis with regard to its inherent hardware friendliness.
Figure 4 shows a comparative view of the conventional and special bases with respect to
two decompositions of F26 .

Table 4: Comparing all 2-degree SMS S-boxes across different bases. The best result
is from basis N-P3

2 (highlighted in blue bold) while the second best is from basis SN-N2
3

(highlighted in black bold). The difference is upper bounded by 0.75 GE signifying how
close they are.

S-box N-N3
2 N-P3

2 P-N3
2 P-P3

2 SN-N3
2 SN-P3

2 N-N2
3 N-P2

3 P-N2
3 P-P2

3 SN-N2
3 SN-P2

3

SMS5 78.00 74.25 81.75 77.25 75.00 77.50 79.50 76.00 84.00 120.25 74.50 75.25
SMS10 79.50 74.25 80.50 77.75 75.25 77.50 94.00 123.00 81.75 125.25 74.50 76.50
SMS17 78.50 74.25 80.75 78.25 75.25 77.00 94.50 125.50 87.00 125.50 74.75 76.50
SMS20 78.50 74.25 78.25 78.25 75.00 78.25 80.00 77.50 76.75 77.50 74.75 75.50
SMS34 78.75 73.75 78.50 76.00 75.00 76.50 75.50 75.75 77.00 77.75 74.50 75.25
SMS40 79.50 74.25 78.00 77.75 75.25 77.00 78.00 79.25 83.50 118.50 74.75 75.50

6.2 Results for 3-Degree SMS S-box
The degree 3 functions are obviously more complex than degree 2 and would have higher
area foot-print. The decomposition of F26 with respect to our special normal basis fares
well here is able to lead to the minimum area. There is only one out-lier which, to our
surprise seemed anomalous since its area was strikingly less than all of the bases considered
for SMS41 S-box. The details of area are reported in Table 5. The basis SN-N2

3 gives
the best result for two cases: SN-P2

3 provides the best area for three cases, and for the
remaining one S-box, P-P2

3 gives the best result. However, what is interesting is that the
special normal basis registers the best results on the maximum cases. This again validates
our claim on this class of functions. Figure 5 shows a comparative view of the conventional
and special bases with respect to the two decompositions of F26 .

6.3 Results for 3-Degree SMS S-box with Linear Terms
Here again, the presence of additional linear terms increases the circuit complexity which
the proposed special normal basis handles better. The results are furnished in captured by



780 Know-Thy-Basis: Decomposing F26 for Lightweight S-box Implementation
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Figure 4: The area of all 2-degree S-boxes with respect to different basis choices. Here,
SB2

3 is the special basis and the extension order is “three-two”, and CB2
3 is the conventional

basis and extension order is “two-three”. The plotted points are minimum area with respect
to each basis that we have achieved, as described above. From the proximity of the points
∈ SB2

3 and CB3
2, one can appreciate that the area achieved by using the special normal

basis introduced here is very close to the minimum.

Table 5: Comparing all 3-degree SMS S-boxes having no linear term across different bases.
The best result is from basis SN-P2

3 and SN-N2
3 (highlighted in blue bold) except for the

S-box SMS41. In this case we got almost all the best results from SB2
3.

S-box N-N3
2 N-P3

2 P-N3
2 P-P3

2 SN-N3
2 SN-P3

2 N-N2
3 N-P2

3 P-N2
3 P-P2

3 SN-N2
3 SN-P2

3

SMS13 137.25 137.25 136.50 136.00 153.25 182.50 136.25 137.00 136.50 135.25 132.25 128.00
SMS19 137.75 140.25 136.50 136.50 152.75 181.00 135.75 137.00 137.00 137.50 132.75 124.75
SMS26 135.75 135.75 136.75 137.25 150.75 185.75 135.00 137.00 138.00 136.75 132.75 124.75
SMS38 137.50 140.25 137.00 139.75 152.25 145.25 137.00 137.25 138.25 137.00 133.50 133.75
SMS41 135.75 137.75 138.00 136.50 151.50 185.50 138.25 138.50 138.50 117.00 132.00 132.00
SMS52 137.50 137.50 136.25 137.50 153.25 182.50 137.50 137.75 137.50 139.00 131.25 133.75
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120

128

136

144

152

S-box

A
re
a(
G
E)

LUT/ANF
SB2

3

CB2
3

SB3
2

CB3
2

Figure 5: The area of all 3-degree S-boxes with respect to different basis choices. Like
above, the plotted points represent the are minimum area with respect to each basis that
we have achieved. With the exception of SMS41 implemented using conventional basis CB2

3,
in all other cases the special normal basis registers the minimum area with considerable
margin.
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Table 6. The basis SN-N2
3 provides the best result for four S-boxes and the basis SN-P2

3
registers the lowest area for the remaining two S-boxes. This validates our claim on the
special normal basis with regard to its inherent hardware friendliness. Like above, a more
holistic view is depicted in Figure 6 plotting the best results across conventional and special
basis groups.

Table 6: Comparing all 3-degree SMS S-boxes having non zero linear term across different
bases. The best result is from basis SN-P2

3 and SN-N2
3 (highlighted in blue bold). In this

case we got all the best results from SB2
3.

S-box N-N3
2 N-P3

2 P-N3
2 P-P3

2 SN-N3
2 SN-P3

2 N-N2
3 N-P2

3 P-N2
3 P-P2

3 SN-N2
3 SN-P2

3

SMSL13 127.00 127.25 126.00 125.50 133.00 134.00 120.75 126.75 123.50 122.25 120.75 125.50
SMSL19 125.25 129.75 127.25 125.00 139.50 134.50 128.00 124.50 128.00 122.75 119.25 118.75
SMSL26 128.75 128.75 124.25 124.25 138.75 133.75 123.00 121.50 124.00 123.75 120.75 119.75
SMSL38 127.75 127.75 126.75 126.75 136.25 135.50 125.00 127.50 125.25 123.00 116.50 130.25
SMSL41 130.00 130.25 124.50 126.25 136.00 132.75 125.50 126.00 123.00 119.75 116.50 126.75
SMSL52 130.75 130.75 122.75 124.50 133.00 136.50 124.00 125.00 123.00 123.50 117.75 130.25
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Figure 6: The area of all 3-degree S-boxes having non-zero linearize term with respect to
different basis choices. In this case, the special normal basis emerges as a clear winner
leading to minimum area for all 6 S-boxes.

7 Discussion
The primary motivation of this work was the design space exploration pertaining to
the decompositions of F26 that would particularly suit a lightweight implementation of
S-boxes. In doing so, we not only covered the conventional polynomial and normal bases,
but also introduced a special normal basis that, by theory, seemed to better exploit the
decomposition. One could, by looking at the way the decomposition affects the subfield
operations, predict that the hardware area would be better thereby fulfilling the primary
goal. The discovery of this basis stands out as an important contribution of this work
since it paves the way for a better understanding of basis choice while dealing with the
composite field decomposition, without actually implementing the S-box.

The extensiveness of this work is evident from the fact that close to 20,000 implemen-
tations were analyzed in this work before coming to the conclusion that for all practical
purposes, the new basis delivers a better lightweight design and in most cases, with a
considerable margin. The results are particularly better for higher degree foundations
where the number of operations grow and hence, there is more scope of optimization.
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Figure 7: Area comparison between ANF/LUT vs the minimum area with respect to
composite field.

Figure 7 gives a final overview of the best results for the new basis in comparison with
traditional implementations such as LUT and ANF. With the exception of the x62 function,
the special normal basis beats the LUT and ANF implementations emerging as a better
choice highlighting the importance of composite field decomposition as a viable path for
lightweight design.

In Table 7, we compare the implementation costs of the power mappings or their affine
equivalent S-boxes, namely SMS34, SMS26, SMSL41, x23 and x62, with other known 6-bit
S-boxes such as SC2000, APN6, FIDES, SPEEDY and BipBip. We measure the area based on
their LUT and ANF (as available in the literature) as opposed to univariate polynomial
representation over a finite field as done in case of SMS34, SMS26, SMSL41, x23 and
x62 S-boxes. From this comparison, we see that, except for SPEEDY and BipBip, S-boxes
based on the power mappings or their affine equivalents have lower area requirements. We
emphasize that SMS34, SMS26 and SMSL41 have stronger cryptographic properties among
all these listed S-boxes, most notably, they have linear and differential branch numbers
equal to 3. This indicates that these S-boxes are interesting candidates for lightweight
cipher designs. It is intriguing to find out whether SC2000, APN6, FIDES, SPEEDY, and
BipBip S-boxes will have lower implementation costs based on our method. In that case, we
need univariate representations of these S-boxes from their truth tables through Lagrange
interpolation, which generally results in a large number of terms. For instance, SPEEDY
and BipBip S-boxes have 62 and 41 terms, respectively, in their univariate representations.
Our method, in particular, works well when the S-box has a low number of terms. Thus,
we believe that evaluating the area of these S-boxes using our method will not be effective.

Our primary motivation, while studying the decomposition of F26 for lightweight S-
boxes was centered around area which is a standard practice in literature. However, as
lightweightness is a multidimensional property, it is interesting to see how the S-boxes fared
in terms of other important metrics like latency and power. To find this out, we employed
the Cadence Genus tool to report these metrics for the area optimized implementations
that we have considered in this work. It must be noted that the tool was not instructed to
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Table 7: A detailed comparison of the best SMS S-boxes, namely SMS34, SMS26, SMSL41
along with x23 and x62 with respect to SB2

3 and the existing 6-bit S-boxes.
S-box

Cryptographic Properties LUT ANF SB2
3

LBN DBN LIN DU deg Area (GE) Latency (ns) Power (µW) Area (GE) Latency (ns) Power (µW) Area (GE) Latency (ns) Power (µW)
SC2000 [SYY+02] 2 2 16 4 5 202.68 0.78 7.70 201.24 0.82 7.70 - - -
APN6 [BDMW10] 2 2 16 2 4 194.40 0.73 7.22 207.00 1.00 7.99 - - -
FIDES [BBK+13] 2 2 16 2 4 191.88 0.94 7.42 190.00 0.74 7.21 - - -

SPEEDY [LMMR21] 2 2 24 8 5 55.80 0.28 2.20 54.27 0.31 2.18 - - -
BipBip [BDD+23] 2 2 16 4 3 54.72 0.30 2.30 54.36 0.31 2.22 - - -

SMS34 3 3 16 4 2 121.00 0.77 6.61 80.25 0.78 5.05 74.50 1.16 5.90
SMS26 3 3 16 4 3 150.25 0.92 7.84 142.75 0.88 8.06 124.75 2.19 14.00
SMSL41 3 3 64 8 3 126.00 0.79 7.20 136.00 0.88 7.68 116.50 2.22 13.44
x23 2 2 24 10 4 133.50 1.16 7.82 129.00 0.78 7.32 127.75 0.98 7.14
x62 2 2 16 4 5 139.50 0.86 7.68 128.50 0.76 6.66 137.75 2.90 22.92

optimize these metrics and as stated before, the main objective was to lower the area. So,
along with area, in Table 1, we also report the results for latency and power for the S-boxes
belonging to SMSd, SMSLd groups and x23, x62 with respect to field decomposition the
special normal basis SB2

3 (a more comprehensive analysis is furnished in Appendix D). It
is intuitive to note that low area, in most of the cases, leads to low power as evident from
Table 1. The interplay with latency is, however, more subtle as it relies on the depth of
the critical path. Table 7, which gives an overview of the best results for 6-bits S-boxes,
allows us to study this interplay more closely. SMS34 and x23 vary largely in their area
(74.5 GE and 127.75 GE respectively) while their corresponding power consumptions (5.9
µW and 7.14 µW respectively) are comparatively closer. Now, if we turn to latency, we see
that their latencies are also close which is due to the lower depth of the critical path. In
this case, the lower depth leads to less switching, thereby reducing the power consumption.
The critical path schematics obtained from the synthesized net-lists of the S-boxes SMS34,
SMS26, SMSL41, x23 and x62 are given in Appendix E. Figure 11 clearly shows that the
SMS34 S-box, which has the lowest area, also has the shortest critical path.

In this work, all reported costs are based on the 65 nm UMC Mixed-Mode Low
Leakage Low-K cell library. It is important to emphasize that our special normal basis has
advantageous algebraic properties, as presented through Theorem 1 and Theorem 2, and
subsequently in Corollary 1 and Corollary 2. These properties result in a highly compact
final expression of xd with respect to the field decomposition (see Table 2, Table 3),
suggesting that the implementation cost of xd could be lower. This hypothesis has been
validated by experiments for most S-boxes using the aforementioned library. Therefore,
it appears that the algebraic properties of the special normal basis are responsible for
reducing implementation costs. We believe this will lead to lower costs across different
libraries as well. Exploring this further with other libraries would be intriguing, and we
leave this for future study.

8 Conclusions and Future Works
We have addressed the efficient implementation of S-boxes over F26 by exploiting the
composite field structure. We present this paper as a foundation stone for studying the
efficient implementation of S-boxes over F26 or other composite fields. We have analyzed
how the choice of extension as well as the choice of bases impact in the implementation.
There are so many combinations of bases and field extensions that we could not exhaust.
Interestingly, we have found a method that gives us a normal basis which we call a special
normal basis that has been effective in reducing the hardware cost. All our study is based
on the S-boxes which are power mapping or their affine equivalents. Therefore, it will
be interesting to analyze other classes of S-boxes with respect to field decomposition of
F26 . In particular, we are curious to know the effect of the special normal basis on the
S-boxes that have not been considered in this paper. Furthermore, we leave it to the future
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research to consider other bases if more efficient implementation could be found. Our
implementation results have considered 2-degree and 3-degree S-boxes with the best known
linear and differential branch number (both being 3) along with other good cryptographic
properties that have been generated through Construction 1. It will be a nice research
direction to consider the improvement of Construction 1 that will be able to generate
degree 4 S-boxes over F26 with linear and differential branch number 3.
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A Field Arithmetic Over F22

The field F22 is formed using the primitive polynomial f2(x) = x2 + x+ 1. Consequently,
operations within F22 are conducted modulo f2(α), where α denotes a primitive root of
f2(x). Since our exponentiation depends on addition, scalar multiplication, multiplication,
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and some other operations over F22 , we examine the representation of each operation in
both polynomial and normal bases in Table 8.

Table 8: Operation over F22 with respect to polynomial and normal basis.
Operation Notation Polynomial Basis (1, α) Normal Basis (α, α2)
Addition x⊕ y [x0 ⊕ y0, x1 ⊕ y1] [x0 ⊕ y0, x1 ⊕ y1]
Square x2 [x0 ⊕ x1, x1] [x1, x0]

Cube Multiplication x3y (x0 ⊕ x1 ⊕ x0x1)[y0, y1] (x0 ⊕ x1 ⊕ x0x1)[y0, y1]
Multiplication xy [x0y0 ⊕ x1y1, x0y1 ⊕ x1y0 ⊕ x1y1] (x0y1 ⊕ x1y0)[1, 1]⊕ [x1y1, x0y0]

Scalar Multiplication αx [x1, x0 ⊕ x1] [x1, x0 ⊕ x1]
α2x [x0 ⊕ x1, x0] [x0 ⊕ x1, x0]

B Field Arithmetic Over F23

As we have chosen the primitive polynomial f3(x) = x3 + x2 + 1 over F2 to form the
field F23 , the field operations in F23 are performed modulo f3(α), where α denotes a
primitive root of f3(x). As discussed in Section 4, the exponentiation depends on addition,
scalar multiplication, multiplication, cube, fourth power, fifth power, sixth power over
F23 . Table 9 and Table 10 provide the representation of each operation in polynomial and
normal bases, respectively.

Table 9: Operation over F23 with respect to polynomial basis.
Operation Notation Polynomial Basis (1, α, α2)

Addition x⊕ y [x0 ⊕ y0, x1 ⊕ y1, x2 ⊕ y2]
Square x2 [x0 ⊕ x2, x2, x1 ⊕ x2]
Cube x3 [x0 ⊕ x1 ⊕ x0x2, x2 ⊕ x0x1 ⊕ x0x2, x1 ⊕ x2 ⊕ x0x1 ⊕ x1x2]

Fourth Power x4 [x0 ⊕ x1, x1 ⊕ x2, x1]
Fifth Power x5 [x0x1 ⊕ x0 ⊕ x1 ⊕ x2, x0x2 ⊕ x1x2 ⊕ x1, x0x1 ⊕ x0x2 ⊕ x2]
Sixth Power x6 [x0x1 ⊕ x0x2 ⊕ x1x2 ⊕ x0 ⊕ x2, x0x1 ⊕ x1x2 ⊕ x1 ⊕ x2, x0x2 ⊕ x1x2 ⊕ x1]
Multiplication xy [x0y0 ⊕ x2y1 ⊕ x1y2 ⊕ x2y2, x1y0 ⊕ x0y1 ⊕ x2y2, x2y0 ⊕ x1y1 ⊕ x2y1 ⊕ x0y2 ⊕ x1y2 ⊕ x2y2]

Scalar Multiplication

αx [x2, x0, x1 ⊕ x2]
α2x [x1 ⊕ x2, x2, x0 ⊕ x1 ⊕ x2]
α3x [x0 ⊕ x1 ⊕ x2, x1 ⊕ x2, x0 ⊕ x1]
α4x [x0 ⊕ x1, x0 ⊕ x1 ⊕ x2, x0 ⊕ x2]
α5x [x0 ⊕ x2, x0 ⊕ x1, x1]
α6x [x1, x0 ⊕ x2, x0]

C Look Up Table of All SMS S-boxes
We have generated 6 2-degree S-boxes and 12 3-degree S-boxes using Construction 1. The
look up table for each S-box with additional parameters are given in Table 11, Table 12
and Table 13.



Dilip Sau, Sumanta Sarkar, Dhiman Saha and Kalikinkar Mandal 787

Table 10: Operation over F23 with respect to normal basis.
Operation Notation Normal Basis (α, α2, α4)

Addition x⊕ y [x0 ⊕ y0, x1 ⊕ y1, x2 ⊕ y2]
Square x2 [x2, x0, x1]
Cube x3 [x0 ⊕ x1 ⊕ x0x2, x1 ⊕ x2 ⊕ x1x0, x2 ⊕ x0 ⊕ x2x1]

Fourth Power x4 [x1, x2, x0]
Fifth Power x5 [x1 ⊕ x2 ⊕ x1x0, x2 ⊕ x0 ⊕ x2x1, x0 ⊕ x1 ⊕ x0x2]
Sixth Power x6 [x2 ⊕ x0 ⊕ x2x1, x0 ⊕ x1 ⊕ x0x2, x1 ⊕ x2 ⊕ x1x0]
Multiplication xy [x1y0 ⊕ x0y1 ⊕ x2y1 ⊕ x1y2 ⊕ x2y2, x0y0 ⊕ x2y0 ⊕ x2y1 ⊕ x0y2 ⊕ x1y2, x1y0 ⊕ x2y0 ⊕ x0y1 ⊕ x1y1 ⊕ x0y2]

Scalar Multiplication

αx [x1, x0 ⊕ x2, x1 ⊕ x2]
α2x [x0 ⊕ x2, x2, x0 ⊕ x1]
α3x [x2, x1 ⊕ x2, x0 ⊕ x1 ⊕ x2]
α4x [x1 ⊕ x2, x0 ⊕ x1, x0]
α5x [x0 ⊕ x1, x0 ⊕ x1 ⊕ x2, x1]
α6x [x0 ⊕ x1 ⊕ x2, x0, x0 ⊕ x2]

Table 11: Listing all 2-degree SMS S-boxes with (µ0, · · · , µ5) = (0, · · · , 0) and A = I+E6,1.
S-Box F (x) λ0, · · · , λ5 LUT
SMS5 x5 27,38,28,43,50,31 (0, 46, 59, 7, 48, 23, 6, 51, 53, 29, 8, 50, 43, 10, 27, 40, 31, 56, 47,

26, 4, 42, 57, 5, 16, 49, 38, 21, 37, 13, 30, 36, 39, 45, 20, 12, 18, 17,
44, 61, 2, 14, 55, 41, 25, 28, 33, 54, 32, 35, 24, 9, 62, 52, 11, 19, 63,
58, 1, 22, 15, 3, 60, 34).

SMS10 x10 2,57,41,37,60,47 (0, 58, 47, 28, 3, 29, 24, 15, 23, 53, 32, 11, 46, 40, 45, 34, 61, 35,
62, 41, 16, 42, 39, 20, 1, 7, 26, 21, 22, 52, 57, 18, 30, 54, 17, 48, 9,
5, 50, 55, 8, 56, 31, 38, 37, 49, 6, 27, 2, 14, 33, 36, 59, 19, 44, 13,
63, 43, 4, 25, 60, 12, 51, 10).

SMS17 x17 27,55,7,13,63,31 (0, 45, 31, 52, 10, 54, 36, 30, 58, 51, 1, 14, 29, 5, 23, 9, 55, 11, 61,
7, 32, 13, 27, 48, 2, 26, 44, 50, 56, 49, 39, 40, 60, 57, 34, 33, 6, 18,
41, 59, 4, 37, 62, 25, 19, 35, 24, 46, 8, 28, 3, 17, 47, 42, 21, 22, 63,
15, 16, 38, 53, 20, 43, 12)

SMS20 x20 4,32,28,43,13,63 (0, 54, 47, 26, 5, 27, 18, 15, 29, 57, 32, 7, 46, 34, 43, 36, 59, 37, 62,
35, 16, 38, 45, 24, 1, 13, 22, 25, 28, 56, 51, 20, 30, 60, 17, 48, 3, 9,
52, 61, 2, 50, 31, 44, 41, 49, 12, 23, 4, 14, 33, 40, 55, 21, 42, 11, 63,
39, 8, 19, 58, 10, 53, 6)

SMS34 x34 8,57,41,19,21,10 (0, 54, 61, 19, 40, 27, 18, 57, 43, 15, 4, 56, 53, 20, 29, 36, 31, 44,
55, 28, 2, 52, 45, 3, 8, 41, 50, 11, 35, 7, 30, 34, 51, 39, 10, 6, 24, 9,
38, 47, 16, 22, 59, 37, 13, 14, 33, 58, 32, 49, 12, 5, 62, 42, 21, 25,
63, 60, 1, 26, 23, 17, 46, 48)

SMS40 x40 8,16,49,60,47,10 (0, 45, 31, 52, 10, 54, 36, 30, 58, 51, 1, 14, 29, 5, 23, 9, 55, 11, 61,
7, 32, 13, 27, 48, 2, 26, 44, 50, 56, 49, 39, 40, 60, 57, 34, 33, 6, 18,
41, 59, 4, 37, 62, 25, 19, 35, 24, 46, 8, 28, 3, 17, 47, 42, 21, 22, 63,
15, 16, 38, 53, 20, 43, 12)
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Table 12: Listing all 3-degree SMS S-boxes with (µ0, · · · , µ5) = (0, · · · , 0) and A = I+E1,3.
S-Box F (x) λ0, · · · , λ5 LUT
SMS13 x13 36,31,39,5,10,44 (0, 50, 14, 29, 39, 25, 21, 6, 58, 13, 44, 19, 11, 61, 16, 34, 42, 37,

56, 52, 23, 41, 46, 31, 55, 26, 5, 2, 33, 48, 9, 62, 20, 24, 45, 3, 10,
43, 60, 51, 53, 36, 35, 57, 54, 7, 30, 40, 18, 47, 27, 38, 49, 28, 32, 1,
15, 8, 17, 63, 12, 22, 59, 4).

SMS19 x19 13,51,60,20,6,59 (0, 37, 19, 30, 57, 14, 28, 17, 39, 26, 50, 13, 11, 62, 4, 33, 35, 56,
38, 52, 29, 42, 51, 31, 61, 7, 24, 1, 40, 36, 10, 55, 20, 6, 58, 9, 3,
43, 54, 45, 60, 48, 41, 46, 53, 25, 23, 34, 5, 59, 15, 49, 44, 22, 32, 8,
27, 2, 12, 63, 18, 21, 47, 16).

SMS26 x26 57,36,33,17,31,58 (0, 49, 11, 30, 39, 28, 22, 3, 57, 14, 42, 21, 13, 62, 16, 33, 41, 38,
56, 50, 23, 44, 43, 31, 55, 25, 6, 1, 36, 48, 12, 59, 18, 24, 46, 5, 9,
45, 58, 53, 54, 34, 37, 60, 51, 7, 27, 40, 17, 47, 29, 35, 52, 26, 32, 4,
15, 8, 20, 63, 10, 19, 61, 2)

SMS38 x38 13,39,10,20,3,24 (0, 37, 28, 27, 46, 19, 11, 12, 53, 26, 56, 7, 22, 59, 1, 36, 52, 42, 49,
41, 15, 50, 60, 31, 47, 21, 10, 4, 34, 33, 18, 61, 9, 17, 58, 6, 20, 54,
57, 39, 43, 40, 38, 51, 45, 14, 29, 48, 5, 62, 23, 44, 35, 25, 32, 2, 30,
16, 3, 63, 24, 13, 55, 8)

SMS41 x41 18,28,60,6,48,45 (0, 38, 21, 27, 60, 11, 26, 20, 39, 25, 49, 14, 13, 59, 2, 36, 37, 56,
35, 50, 30, 41, 53, 31, 62, 7, 24, 4, 40, 34, 9, 55, 18, 3, 57, 12, 5,
45, 51, 46, 58, 48, 44, 43, 54, 28, 23, 33, 6, 61, 15, 52, 42, 19, 32, 8,
29, 1, 10, 63, 17, 22, 47, 16)

SMS52 x52 54,57,28,33,25,48 (0, 22, 13, 43, 60, 35, 42, 12, 23, 41, 25, 38, 37, 59, 2, 20, 21, 56,
19, 26, 46, 49, 29, 47, 62, 7, 40, 4, 48, 18, 33, 31, 10, 3, 57, 36, 5,
53, 27, 54, 58, 24, 52, 51, 30, 44, 15, 17, 6, 61, 39, 28, 50, 11, 16,
32, 45, 1, 34, 63, 9, 14, 55, 8)

Table 13: Listing all 3-degree SMS S-boxes with (µ0, · · · , µ5) = (36, · · · , 36) and A =
I + E5,3.

S-Box F (x) λ0, · · · , λ5 LUT
SMSL13 x13 36,7,43,13,39,5 (0, 12, 62, 55, 20, 38, 8, 11, 34, 49, 52, 9, 51, 58, 13, 30, 27, 42, 29,

35, 39, 21, 16, 25, 44, 23, 32, 63, 61, 33, 10, 6, 22, 40, 59, 15, 7, 60,
48, 53, 19, 26, 5, 45, 41, 1, 47, 18, 57, 4, 24, 37, 43, 46, 3, 50, 14,
17, 54, 2, 31, 28, 36, 56).

SMSL19 x19 32,27,28,51,20,6 (0, 6, 47, 59, 34, 11, 4, 21, 9, 56, 42, 20, 57, 45, 22, 39, 53, 13, 54,
25, 27, 50, 32, 52, 14, 51, 8, 63, 62, 24, 5, 3, 35, 12, 61, 23, 19, 46,
40, 58, 49, 37, 18, 30, 28, 16, 31, 33, 60, 2, 36, 26, 29, 15, 17, 41, 7,
48, 43, 1, 55, 38, 10, 44).

SMSL26 x26 36,33,17,21,47,10 (0, 48, 61, 31, 17, 28, 32, 42, 12, 7, 21, 34, 15, 45, 50, 57, 43, 44,
51, 14, 30, 19, 1, 35, 52, 27, 4, 63, 55, 6, 40, 24, 25, 36, 47, 58, 26,
53, 5, 23, 11, 41, 18, 54, 38, 2, 62, 9, 39, 16, 33, 22, 46, 60, 10, 13,
56, 3, 29, 8, 59, 49, 20, 37).

SMSL38 x38 49,41,39,60,20,3 (0, 10, 59, 55, 18, 35, 8, 13, 33, 52, 50, 12, 53, 57, 14, 27, 29, 41,
30, 37, 39, 22, 16, 28, 42, 23, 32, 63, 62, 36, 9, 3, 19, 40, 61, 15, 7,
58, 48, 54, 21, 25, 6, 46, 44, 4, 47, 17, 60, 2, 24, 38, 45, 43, 5, 49,
11, 20, 51, 1, 31, 26, 34, 56).

SMSL41 x41 8,57,18,37,6,48 (0, 3, 47, 61, 33, 13, 2, 26, 12, 52, 37, 18, 60, 46, 19, 43, 58, 14, 51,
28, 29, 49, 32, 50, 7, 57, 4, 63, 55, 20, 10, 9, 41, 6, 62, 27, 25, 39,
36, 53, 56, 42, 17, 23, 22, 16, 31, 40, 54, 1, 34, 21, 30, 15, 24, 44,
11, 48, 45, 8, 59, 35, 5, 38).

SMSL52 x52 54,38,33,63,31,48 (0, 24, 31, 47, 12, 11, 16, 50, 3, 37, 13, 48, 39, 23, 56, 30, 54, 19,
60, 35, 43, 44, 4, 52, 25, 46, 1, 63, 61, 33, 18, 10, 14, 17, 55, 58, 42,
29, 5, 45, 38, 22, 40, 57, 49, 32, 59, 6, 53, 8, 20, 41, 51, 27, 34, 7,
26, 36, 15, 2, 62, 28, 9, 21).
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D Implementation details of S-boxes belonging to SMSd,
SMSLd groups and x23, x62

We provide the area, latency and power consumptions of all the S-boxes belonging to
SMSd, SMSLd groups and x23, x62 with respect to different choices of bases and field
decompositions in Table 14, Table 15 and Table 16. In these tables, the symbol S:E denotes
the starting and ending point of the critical path, considering x0, x1, · · · , x5 as the inputs
and y0, y1, · · · , y5 as the outputs.

Table 14: Implementation details of SMS5, SMS10, SMS17, SMS20, SMS34, SMS40 with
respect to different bases and field decompositons.

S-box Basis Composite Field S-box Basis Composite Field
Area (GE) Latency (ns) S:E Power(µW) Area (GE) Latency (ns) S:E Power(µW)

SMS5

N-N3
2 78.00 1.18 x1 : y1 6.47

SMS20

N-N3
2 78.50 1.16 x1 : y1 6.48

N-P3
2 74.25 0.96 x4 : y1 5.82 N-P3

2 74.25 1.09 x4 : y2 5.92
P-N3

2 81.75 1.36 x0 : y3 6.69 P-N3
2 78.25 1.04 x0 : y3 6.14

P-P3
2 77.25 1.20 x2 : y3 6.26 P-P3

2 78.25 1.42 x0 : y3 6.70
SN-N3

2 75.00 1.01 x4 : y1 5.65 SN-N3
2 75.00 1.01 x4 : y1 5.65

SN-P3
2 77.50 1.20 x1 : y1 6.56 SN-P3

2 78.25 1.20 x1 : y1 6.62
N-N2

3 79.50 0.58 x1 : y3 4.73 N-N2
3 80.00 0.64 x2 : y5 4.88

N-P2
3 76.00 0.76 x1 : y2 4.72 N-P2

3 77.50 0.66 x4 : y3 4.79
P-N2

3 84.00 1.26 x1 : y2 6.82 P-N2
3 76.75 0.70 x2 : y1 4.57

P-P2
3 120.25 1.51 x0 : y2 10.24 P-P2

3 77.50 0.71 x1 : y1 4.64
SN-N2

3 74.50 1.16 x1 : y5 6.18 SN-N2
3 74.75 1.16 x1 : y2 5.93

SN-P2
3 75.25 1.38 x5 : y2 6.76 SN-P2

3 75.50 1.28 x4 : y4 6.54

SMS10

N-N3
2 79.50 1.16 x1 : y3 6.58

SMS34

N-N3
2 78.75 1.22 x1 : y4 6.54

N-P3
2 74.25 0.96 x4 : y3 5.82 N-P3

2 73.75 1.13 x4 : y5 5.76
P-N3

2 80.50 1.03 x0 : y2 6.18 P-N3
2 78.50 1.03 x0 : y0 5.88

P-P3
2 77.75 1.20 x3 : y5 6.32 P-P3

2 76.00 1.04 x3 : y0 5.40
SN-N3

2 75.25 1.06 x4 : y3 5.83 SN-N3
2 75.00 0.98 x4 : y5 5.92

SN-P3
2 77.50 1.30 x1 : y3 6.57 SN-P3

2 76.50 1.21 x1 : y4 6.61
N-N2

3 94.00 1.14 x0 : y2 6.74 N-N2
3 75.50 0.66 x2 : y0 4.71

N-P2
3 123.00 1.46 x1 : y1 10.46 N-P2

3 75.75 0.76 x3 : y1 4.66
P-N2

3 81.75 1.26 x1 : y4 7.04 P-N2
3 77.00 0.68 x2 : y0 7.76

P-P2
3 125.25 1.72 x5 : y2 11.70 P-P2

3 77.75 0.66 x1 : y1 4.70
SN-N2

3 74.50 1.16 x1 : y1 5.90 SN-N2
3 74.50 1.16 x1 : y5 5.90

SN-P2
3 76.50 1.23 x4 : y4 6.56 SN-P2

3 75.25 1.24 x5 : y1 6.52

SMS17

N-N3
2 78.50 1.16 x1 : y2 6.48

SMS40

N-N3
2 79.50 1.16 x1 : y2 6.58

N-P3
2 74.25 0.96 x4 : y2 5.82 N-P3

2 74.75 1.17 x5 : y3 6.23
P-N3

2 80.75 1.04 x0 : y4 6.06 P-N3
2 78.00 1.04 x0 : y4 5.90

P-P3
2 78.25 1.29 x3 : y0 6.16 P-P3

2 77.75 1.20 x3 : y0 6.32
SN-N3

2 75.25 1.06 x4 : y2 5.83 SN-N3
2 75.25 1.06 x4 : y2 5.83

SN-P3
2 77.00 1.21 x1 : y2 6.68 SN-P3

2 77.00 1.21 x1 : y2 6.68
N-N2

3 94.50 1.16 x2 : y4 6.48 N-N2
3 78.00 0.78 x2 : y2 4.68

N-P2
3 125.50 1.44 x0 : y5 10.78 N-P2

3 79.25 0.74 x2 : y2 4.67
P-N2

3 87.00 1.35 x0 : y5 8.08 P-N2
3 83.50 1.28 x1 : y5 6.77

P-P2
3 125.50 1.56 x5 : y4 11.79 P-P2

3 118.50 1.72 x5 : y1 12.03
SN-N2

3 74.75 1.16 x1 : y3 5.93 SN-N2
3 74.75 1.16 x1 : y3 5.93

SN-P2
3 76.50 1.25 x4 : y5 6.48 SN-P2

3 75.50 1.33 x4 : y5 6.57
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Table 15: Implementation details of SMS13, SMS19, SMS26, SMS38, SMS41, SMS52 with
respect to different bases and field decompositons.

S-box Basis Composite Field S-box Basis Composite Field
Area (GE) Latency (ns) S:E Power(µW) Area (GE) Latency (ns) S:E Power(µW)

SMS13

N-N3
2 137.25 0.80 x3 : y3 7.52

SMS38

N-N3
2 137.50 0.92 x5 : y1 7.52

N-P3
2 137.25 0.80 x3 : y3 7.52 N-P3

2 140.25 0.86 x2 : y4 7.67
P-N3

2 136.50 0.78 x1 : y2 7.66 P-N3
2 137.00 0.83 x2 : y0 7.84

P-P3
2 136.00 0.78 x3 : y1 7.58 P-P3

2 139.75 0.87 x5 : y1 8.15
SN-N3

2 153.25 2.16 x5 : y3 17.60 SN-N3
2 152.25 2.07 x5 : y0 16.32

SN-P3
2 182.50 1.82 x0 : y3 18.68 SN-P3

2 145.25 0.87 x1 : y5 7.64
N-N2

3 136.25 0.97 x3 : y4 7.55 N-N2
3 137.00 0.88 x5 : y4 7.58

N-P2
3 137.00 0.74 x3 : y4 7.32 N-P2

3 137.25 0.85 x3 : y2 7.52
P-N2

3 136.50 0.80 x1 : y5 7.56 P-N2
3 138.25 0.84 x3 : y0 7.58

P-P2
3 135.25 1.72 x5 : y3 13.75 P-P2

3 137.00 0.95 x0 : y0 7.72
SN-N2

3 132.25 2.13 x2 : y3 16.75 SN-N2
3 133.50 2.36 x2 : y0 17.02

SN-P2
3 128.00 1.98 x4 : y4 13.76 SN-P2

3 133.75 1.98 x5 : y5 12.66

SMS19

N-N3
2 137.75 0.84 x3 : y1 7.42

SMS41

N-N3
2 135.75 0.81 x3 : y0 7.29

N-P3
2 140.25 0.94 x4 : y2 7.83 N-P3

2 137.75 0.91 x4 : y4 7.46
P-N3

2 136.50 0.85 x3 : y1 7.82 P-N3
2 138.00 0.96 x2 : y0 7.56

P-P3
2 136.50 0.88 x1 : y0 7.53 P-P3

2 136.50 0.85 x3 : y0 7.82
SN-N3

2 152.75 2.23 x5 : y1 17.11 SN-N3
2 151.50 2.19 x5 : y0 17.20

SN-P3
2 181.00 1.88 x4 : y1 18.39 SN-P3

2 185.50 1.78 x2 : y0 18.21
N-N2

3 135.75 0.81 x3 : y1 7.29 N-N2
3 138.25 0.90 x3 : y1 7.28

N-P2
3 137.00 0.72 x3 : y2 7.60 N-P2

3 138.50 0.79 x5 : y4 7.62
P-N2

3 137.00 0.85 x0 : y2 7.44 P-N2
3 138.50 0.79 x5 : y4 7.62

P-P2
3 137.50 0.73 x3 : y0 7.37 P-P2

3 117.00 1.76 x1 : y5 11.43
SN-N2

3 132.75 2.13 x2 : y5 17.44 SN-N2
3 132.00 2.34 x5 : y1 16.26

SN-P2
3 124.75 2.19 x1 : y5 14.00 SN-P2

3 132.00 1.83 x2 : y5 11.96

SMS26

N-N3
2 135.75 0.81 x3 : y4 7.19

SMS52

N-N3
2 137.50 0.90 x3 : y1 7.62

N-P3
2 135.75 0.81 x3 : y4 7.19 N-P3

2 137.50 0.90 x3 : y1 7.62
P-N3

2 136.75 0.76 x5 : y5 7.61 P-N3
2 136.25 0.90 x2 : y1 7.76

P-P3
2 137.25 0.74 x4 : y0 7.56 P-P3

2 137.50 0.81 x2 : y5 7.69
SN-N3

2 150.75 2.14 x5 : y3 16.70 SN-N3
2 153.25 2.21 x5 : y0 17.09

SN-P3
2 185.75 1.88 x2 : y3 19.00 SN-P3

2 182.50 1.72 x1 : y0 18.69
N-N2

3 135.00 0.95 x3 : y3 7.56 N-N2
3 137.50 0.88 x3 : y1 7.29

N-P2
3 137.00 0.72 x3 : y4 7.60 N-P2

3 137.75 0.78 x2 : y4 7.78
P-N2

3 138.00 0.76 x4 : y3 7.97 P-N2
3 137.50 0.87 x3 : y0 7.48

P-P2
3 136.75 0.79 x0 : y4 7.72 P-P2

3 139.00 0.85 x3 : y0 7.54
SN-N2

3 132.75 1.94 x5 : y3 14.90 SN-N2
3 131.25 2.32 x5 : y1 16.05

SN-P2
3 124.75 2.19 x1 : y5 14.00 SN-P2

3 133.75 2.03 x1 : y4 12.44
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Table 16: Implementation details of SMS13, SMS19, SMS26, SMS38, SMS41, SMS52 and
x23, x62 with respect to different bases and field decompositons.

S-box Basis Composite Field S-box Basis Composite Field
Area (GE) Latency (ns) S:E Power(µW) Area (GE) Latency (ns) S:E Power(µW)

SMSL13

N-N3
2 127.00 0.84 x4 : y5 7.11

SMSL38

N-N3
2 127.75 0.74 x1 : y5 6.90

N-P3
2 127.25 0.70 x2 : y5 7.22 N-P3

2 127.75 0.74 x1 : y5 6.90
P-N3

2 126.00 0.85 x1 : y2 7.44 P-N3
2 126.75 0.89 x4 : y1 7.20

P-P3
2 125.50 0.80 x5 : y3 6.97 P-P3

2 126.75 0.78 x5 : y3 7.09
SN-N3

2 133.00 2.10 x0 : y3 14.24 SN-N3
2 136.25 2.03 x5 : y5 15.67

SN-P3
2 134.00 0.78 x4 : y4 7.23 SN-P3

2 135.50 0.91 x1 : y3 7.82
N-N2

3 120.75 0.69 x4 : y2 6.82 N-N2
3 125.00 0.82 x2 : y3 7.10

N-P2
3 126.75 0.89 x1 : y1 7.44 N-P2

3 127.50 0.78 x4 : y1 7.06
P-N2

3 123.50 0.80 x2 : y5 6.98 P-N2
3 125.25 0.79 x2 : y3 7.30

P-P2
3 122.25 0.74 x4 : y1 6.92 P-P2

3 123.00 0.74 x2 : y5 6.90
SN-N2

3 120.75 2.25 x0 : y5 12.98 SN-N2
3 116.50 2.24 x0 : y5 13.36

SN-P2
3 125.50 1.71 x4 : y3 10.83 SN-P2

3 130.25 1.85 x4 : y3 10.72

SMSL19

N-N3
2 125.25 0.77 x1 : y1 6.86

SMSL41

N-N3
2 130.00 0.80 x4 : y3 7.52

N-P3
2 129.75 0.81 x3 : y0 7.55 N-P3

2 130.25 0.85 x2 : y2 7.61
P-N3

2 127.25 0.85 x2 : y3 7.38 P-N3
2 124.50 0.79 x4 : y5 7.00

P-P3
2 125.00 0.78 x2 : y2 7.11 P-P3

2 126.25 0.77 x5 : y1 7.02
SN-N3

2 139.50 2.04 x0 : y5 16.85 SN-N3
2 136.00 2.07 x0 : y1 14.03

SN-P3
2 134.50 0.92 x1 : y3 7.47 SN-P3

2 132.75 0.89 x4 : y1 7.48
N-N2

3 128.00 0.68 x4 : y2 7.28 N-N2
3 125.50 0.66 x2 : y2 6.78

N-P2
3 124.50 0.94 x4 : y5 7.22 N-P2

3 126.00 0.64 x1 : y5 6.90
P-N2

3 128.00 0.82 x1 : y1 7.01 P-N2
3 123.00 0.82 x2 : y2 6.99

P-P2
3 122.75 0.70 x4 : y5 6.70 P-P2

3 119.75 1.71 x1 : y1 11.50
SN-N2

3 119.25 2.39 x0 : y3 13.72 SN-N2
3 116.50 2.22 x0 : y2 13.44

SN-P2
3 118.75 2.02 x5 : y2 11.39 SN-P2

3 126.75 1.76 x4 : y3 11.58

SMSL26

N-N3
2 128.75 0.76 x2 : y5 6.93

SMSL52

N-N3
2 130.75 0.83 x4 : y4 7.07

N-P3
2 128.75 0.76 x2 : y5 6.94 N-P3

2 130.75 0.83 x4 : y4 7.07
P-N3

2 124.25 0.73 x1 : y3 7.06 P-N3
2 122.75 0.81 x4 : y1 7.27

P-P3
2 124.25 0.73 x1 : y3 7.06 P-P3

2 124.50 0.79 x4 : y2 7.00
SN-N3

2 138.75 2.17 x0 : y5 14.44 SN-N3
2 133.00 2.10 x0 : y4 14.24

SN-P3
2 133.75 0.74 x1 : y2 7.36 SN-P3

2 136.50 0.86 x0 : y2 7.68
N-N2

3 123.00 0.86 x4 : y2 6.93 N-N2
3 124.00 0.89 x4 : y3 7.15

N-P2
3 121.50 1.60 x0 : y5 13.17 N-P2

3 125.00 0.86 x5 : y3 6.98
P-N2

3 124.00 0.86 x2 : y2 7.06 P-N2
3 123.00 0.86 x1 : y0 7.12

P-P2
3 123.75 0.82 x1 : y2 7.33 P-P2

3 123.50 0.76 x0 : y2 7.05
SN-N2

3 120.75 2.30 x0 : y2 12.99 SN-N2
3 117.75 2.28 x0 : y0 13.59

SN-P2
3 119.75 2.39 x4 : y3 13.46 SN-P2

3 130.25 1.86 x4 : y1 10.87

x23 SN-N2
3 127.75 0.98 x2 : y3 7.14

x62 SN-N2
3 137.75 2.89 x0 : y3 22.92

SN-P2
3 130.75 0.97 x4 : y3 7.18 SN-P2

3 153.75 3.06 x1 : y3 39.63
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E Critical Paths of SMSL41, SMS26, SMS34, x23, x62

Figure 8: Schematic view of SMSL41 as per synthesized net-list using Cadence Genus
highlighting the cell instances in the critical path.

Figure 9: Schematic view of SMS26 as per synthesized net-list using Cadence Genus
highlighting the cell instances in the critical path.
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Figure 10: Schematic view of x62 as per synthesized net-list using Cadence Genus high-
lighting the cell instances in the critical path.

Figure 11: Schematic view of SMS34 as per synthesized net-list using Cadence Genus
highlighting the cell instances in the critical path.
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Figure 12: Schematic view of x23 as per synthesized net-list using Cadence Genus high-
lighting the cell instances in the critical path.
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