
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 4, pp. 657–689. DOI:10.46586/tches.v2024.i4.657-689

An Algebraic Approach for Evaluating Random
Probing Security With Application to AES

Vahid Jahandideh, Bart Mennink and Lejla Batina

Radboud University, Nijmegen, The Netherlands
{v.jahandideh,b.mennink,lejla}@cs.ru.nl

Abstract. We employ an algebraic approach to estimate the success rate of a side-
channel adversary attacking secrets of a masked circuit within the Random Probing
Model (RPM), where intermediate variables of the implementation leak with a prob-
ability p. Our method efficiently handles masked linear circuits, enabling security
bound estimation for practically large masking orders. For non-linear circuits, we
employ a linearization technique. To reason about the security of complex structures
like an S-box, we introduce a composition theorem, reducing the RPM security of a
circuit to that of its constituent gadgets. Moreover, we lower the complexity of the
multiplication gadget of CHES 2016 from O(n2 log(n)) to O(n2) while demonstrating
its conjectured RPM security. Collectively, these novel methods enable the devel-
opment of a practical masking scheme with O(n2) complexity for AES, maintaining
security for a considerably high leakage rate p ≤ 0.02 ≈ 2−5.6.
Keywords: Random Probing Model, Masking, Side-Channel Protection, AES.

1 Introduction
Cryptographic systems deployed on physical devices inadvertently expose information
about their internal operations through side-channel measurements, which can be exploited
by an adversary. Masking [CJRR99] is among the techniques used to mitigate such leakages,
and it can provide provable security. It works by randomizing internal operations and
splitting their intermediates into shares. The aim of masking is to make it difficult for the
adversary to reconstruct the original intermediates by observing leakage from individual
shares.

To rigorously prove the effectiveness of masking, a leakage model is necessary. This
model serves as a mathematical representation of side-channel leakage information. One
such model is the Threshold Probing Model (TPM) introduced by Ishai et al. [ISW03]. In
the TPM, the adversary is limited in the number of internal variables they can learn in each
execution. This model has been widely used in research, resulting in numerous masking
schemes, along with compositional theorems demonstrating how to securely compose
masked subcircuits within this model. However, it is important to note that since the
TPM restricts the adversary’s knowledge to a fixed number of variables, it may not capture
all possible leakage information. Consequently, despite having security proofs within this
model, a masked implementation could still be vulnerable to successful side-channel attacks
such as horizontal attacks [BCPZ16].

A decade after the introduction of the TPM, Prouff and Rivain presented the Noisy
Leakage Model in their EUROCRYPT 2013 paper [PR13]. This model aimed to provide
a more realistic representation of side-channel leakage but introduced complexities in
evaluating the efficiency of masking countermeasures. Addressing this challenge, Duc et
al. [DDF14] presented their work at EUROCRYPT 2014, demonstrating a reduction from
the noisy leakage model to a more tractable Random Probing Model (RPM).

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-04-15 Accepted: 2024-06-15 Published: 2024-09-05

https://doi.org/10.46586/tches.v2024.i4.657-689
mailto:v.jahandideh@cs.ru.nl,b.mennink@cs.ru.nl,lejla@cs.ru.nl
http://creativecommons.org/licenses/by/4.0/

658 An Algebraic Approach for Evaluating Random Probing Security

Within the RPM, the adversary learns each variable of the implementation indepen-
dently with a probability p, often referred to as the leakage rate. This model offers a
convenient bridge to TPM: a masking scheme proven secure against t probes in TPM
will remain secure in the RPM if the adversary learns fewer than t intermediates. The
probability of this event depends on the total number of circuit variables and p, and can
be quantified using methods such as the Chernoff bound [DDF14].

Direct Versus Indirect Security Evaluation. The theoretical soundness of masking
schemes is typically demonstrated by assessing the difficulty for adversaries to extract
useful information about secret operands, such as bytes of a round key, in the targeted
algorithm. Techniques for achieving this can be broadly categorized into two classes: direct
and indirect methods [PGMP19].

An indirect security proof, also known as a simulation-based proof, renders the ad-
versary’s knowledge ineffective by proving that certain leakages are reproducible (via a
simulator) from scratch, without accessing secret data, and thus carry no useful infor-
mation. Indirect security proofs have been utilized in [ISW03,DDF14,BCP+20]. While
these security claims offer more robust guarantees regarding the mitigation of side-channel
leakage, they may sometimes be overly general, potentially overestimating the adversary’s
capabilities and resulting in loose practical relevance. As a main technical tool, simulation-
based approaches typically require re-masking the circuit iteratively, and this significantly
increases the size of the final circuit.

Direct security evaluations, on the other hand, align more closely with existing side-
channel attacks and are simpler to comprehend and estimate. In this approach, the
effectiveness of masking is demonstrated by how a success metric, such as key rank in
a key guessing attack or the mutual information between a targeted secret and leakage,
decreases with increasing masking order n. This approach has been employed in [CJRR99,
PR13,MS23]. Using this approach, one can identify the amount of leakage contribution
due to each component of the masked circuit. Hence, it provides a clearer understanding
of the effectiveness of the deployed masking strategy.

1.1 Open Challenges in the RPM
Dependency of Leakage Rate on Masking Order. A primary challenge in this domain
arises from the fact that, for typical masking schemes, security claims hold only if, with an
increase in masking order n, the leakage rate p decreases. More precisely, a condition of
p < 1

n is required for security [PR13,DDF14]. This condition may seem counterintuitive
because, for high leakage rates, increasing the masking order might inadvertently benefit
the adversary.

Battistello et al. [BCPZ16] illustrated that this requirement is not an artifact of the
proof methods but is instead crucial for the security of the widely used ISW multiplication
gadget [ISW03]. In essence, when multiplying two shared secrets X and Y at order n,
n2 intermediates are computed, with each share of secrets appearing in n intermediates.
Therefore, the expected number of times a share gets revealed through leakage is pn,
limiting the allowed leakage rate to p < 1

n .

Dependency of Security Claims on Circuit Size. In the TPM, a masked circuit can
maintain its security order regardless of the number of composing gadgets [BBD+16].
However, in the RPM, security claims tend to degrade with increasing circuit size, a
phenomenon not entirely aligned with experimental results. For example, the success rate
of a state-of-the-art side-channel attack does not effectively increase with the number of
cipher rounds [KPP20]. The main reason for this discrepancy is the lack of compositional
theorems inherent to the RPM.

Vahid Jahandideh, Bart Mennink and Lejla Batina 659

In the case of simulation-based proofs, the RPM is translated to the TPM, limiting
the expected number of leaked variables p|C| (with |C| denoting the size of the masked
circuit) to some threshold t. The relationship p|C| < t demonstrates the dependency of
the claimed security on |C|. On the other hand, for direct proofs, security bounds are
obtained assuming leak-free refresh gadgets. This assumption enables the use of union
bounds (for mutual information) and allows for deriving a security claim by summing over
all components of the masked circuit. Consequently, the claim derived in this manner will
depend on |C|.

1.2 Related Work
Ajtai [Ajt11] explored the design of theoretical compilers using expander graphs to enhance
resistance to leakage in RPM. Andrychowicz et al. [ADF16] demonstrated the feasibility
of achieving a constant leakage rate for linear circuits by leveraging the expander graphs
framework.

In a practical context, Ananth et al. [AIS18] introduced the expansion method at
CRYPTO 2018, which employs iterative masking to achieve constant leakage rates. Al-
though this approach can tolerate leakage rates up to 2−25, subsequent refinements by
Belaïd et al. [BCP+20,BRT21,BRTV21] have reduced this margin to approximately 2−7.
However, the expansion approach still suffers from significant computational overhead,
limiting its practical applicability.

Dziembowski et al. [DFŻ19], in their work on the leakage diagram technique [BFO23],
demonstrated that certain existing masked gadgets are inherently secure against constant
leakage p without requiring further compilation. Their study primarily focused on a linear
refreshing gadget without any non-linear components, which inspired our work.

In CRYPTO 2021, Cassiers et al. [CFOS21] introduced the Probe Distribution Table
(PDT) technique to evaluate the security of O(n2) masking approaches based on the
ISW method [RP10], particularly for protecting the S-box of AES. However, the ISW
multiplication used in their masked circuit is not secure at constant leakage rates.

Prouff and Rivain [PR13] introduced the use of mutual information metric as a direct
approach for assessing the security of masking without additional compilation techniques.
This approach was further developed by Masure and Standaert [MS23] within the noisy
leakage model. However, a limitation of mutual information-based approaches is their
reliance on the existence of leak-free refresh gadgets [BCGR24].

1.3 Our Contribution
We contribute towards both of the RPM challenges (see Section 1.1) by proposing a new
direct approach for estimating security in the RPM framework. We additionally propose
a masking scheme that can withstand relatively high leakage rates. In more detail, our
contributions are as follows:

• We start with an important observation that for linear masked circuits, leakage either
fully discloses secret values or remains completely uninformative about them, and
the probability of a disclosure event is independent of the specific leakage realization.
We develop tools to efficiently estimate the probability of the disclosure event and
express this probability as a function of leakage rate p and masking order n. See
Section 3.

• Subsequently, in Section 4, aiming to reason about the RPM security in more complex
structures, we look closely at refreshing gadgets and model their impact with an
increased value of the leakage rate at their input/output interfaces. Notably, we do
this without a leak-free refresh assumption. The result forms a composition theorem
that is native to the RPM domain.

660 An Algebraic Approach for Evaluating Random Probing Security

• As our next contribution, we pick the multiplication gadget of Battistello et al.
[BCPZ16] that has a conjectured RPM security, and apply certain modifications
to reduce its complexity from O(n2 log(n)) to O(n2) while demonstrating its RPM
security at a specific range of (n, p) parameters. Our main technical tool is lineariza-
tion, which paves the way for using the results already developed for linear circuits.
These materials are treated in Section 5.

• The composition theorem and secure multiplication are enough to propose an O(n2)
masking scheme for the S-box of AES, which can withstand leakage rates of p ≤ 0.03.
The derived security bound depends on the number of gadgets that have a dominant
contribution to the adversary’s post-leakage information. See Section 6.

• Our final contribution is the extension of the RPM security evaluation to a full O(n2)
masked AES with guaranteed security for p ≤ 0.02 leakage rates. See Section 7.
Notably, the evaluated security bound exhibits no direct dependency on the overall
number of gadgets.

1.4 Our Methodology
Our security evaluation technique is based on the direct approach to estimate the success
probability of an adversary targeting secrets in a masked implementation. The presented
security claims are derived using a combination of analytical methods and Monte Carlo
approaches. Specifically, we use analytical methods to derive lemmas and theorems, while
numerical bounds for specific gadgets are derived using the Monte Carlo approach. Here,
we briefly highlight how we employ the Monte Carlo technique.

We assume that the probability of occurrence of an event bad depends on the leakage
rate p and the masking order n, i.e., Pr(bad) = f(n, p) for some function f . In cases
where f is unknown or impractical to determine analytically, an alternative approach
is to empirically estimate f(n, p) by running N trials at the targeted (n, p) pair and
recording the number of times bad occurs. Let Nbad denote the number of occurrences of
bad. According to the Law of Large Numbers (LLN) [PP02], we have:

Pr(bad) = lim
N→∞

Nbad
N

. (1)

The accuracy of empirical probability estimations depends on the number of trials N , and
by choosing a sufficiently large N , the credibility of the estimation increases.

Limitation and Reliability of the Monte Carlo Approach. As a limitation, we note that
it is not possible to measure the probability of event bad if it is less than 1

N . Therefore, if
in an experiment we obtain Pbad = Nbad

N = 0, we can only infer that Pr(bad) < 1
N . For the

reliability, we note that Pbad is itself a random variable with mean Pr(bad) and variance
σ2
N , where limN→∞ σN = 0. Using Chebyshev’s inequality [PP02], for any positive k ∈ R,

we have:
Pr (|Pr(bad)− Pbad| ≥ kσN) ≤ 1

k2 . (2)

The bound demonstrates that Pbad can be made arbitrarily close to Pr(bad). For actual
computation, an empirical value of σN can be used.

Interpolation of the Estimations. Having a collection of estimations f(n, p) at various
(n, p) pairs, we might be able to express the results with some function g(n, p) as Pr(bad) ≤
g(n, p). This helps to derive explicit numerical bounds for specific compositions of gadgets.
However, the interpretation of the results obtained following this approach should consider
that Pr(bad) ≤ g(n, p) might not hold for the (n, p) pairs that are outside the tested region.

Vahid Jahandideh, Bart Mennink and Lejla Batina 661

2 Preliminaries
Notation. Lowercase letters (e.g., x) represent secrets and single variables. Uppercase
letters (e.g., X) denote a set of shares corresponding to a secret. Boldface letters (e.g.,
X) represent matrices. Circuits/functions are denoted with Sans-serif font (e.g., X). To
refer to the masked counterpart of an algorithm, we append S to its name (e.g., SX). To
specify a range of elements in a matrix between a and b, we use a : b, and to denote all the
elements, we use a colon (e.g., X(1, :) represents the first row). The notation |X| returns
the number of elements in X.

Masking Countermeasure. A secret u-bit variable v ∈ F2u is typically masked to enhance
its side-channel security. This masking process, at order n, involves encoding v into a
random n-tuple of shares, denoted as V = {v1, . . . , vn} ∈ Fn2u , with the condition that the
bitwise XOR operation (⊕) applied to all shares (⊕ni=1vi) equals to v. We refer to V as an
n-sharing of native v. Any subset of V with at most n− 1 elements is independent of v.

When deploying this masking approach to protect a targeted cipher, it is possible to
encode the inputs independently. The primary challenge lies in developing routines for
performing the intermediate operations over the shares while preserving the security of the
native values. However, for a cipher described with a circuit C using basic logical gates,
such as XOR and AND, a secure computation on shares can be achieved by replacing these
gates with their masked counterparts, often called gadgets.

Gadgets. We denote the masked counterpart of a gate G as SG, where SG is a family of
circuits, each corresponding to a specific value of n. When G supports the additive property
G(x1 ⊕ x2)⊕ G(0) = G(x1)⊕ G(x2), the architecture of SG is relatively straightforward:
for a native input x and native output y = G(x) with G : F2u → F2u , we set y1 = G(x1)
and yi = G(xi)⊕ G(0) for 2 ≤ i ≤ n, to define an n-shared output Y = SG(X) based on
the input X.

However, the construction of an AND gadget, denoted as SAND, is intricate. Numerous
proposals for SAND have been put forward in the literature [ISW03, BDF+17, CS20,
WJZY23,BBP+17]. Nonetheless, none of them is proved to be secure in the RPM.
Remark 1. SAND gadgets can be compiled to achieve RPM security using the expansion
strategy developed in [BCP+20,BRT21]. It is worth noting that the compiled gadget will
exhibit significantly higher computational complexity.

In addition to these gadgets, for some constructions, a refreshing gadget is employed
at the interfaces of basic gadgets. A refreshing gadget, denoted as SR, takes as input an
n-sharing X and incorporates fresh randomness to produce a new n-sharing for the same
underlying native value x.

2.1 Random Probing Model
At order n, let ΣSC = {x1, x2, . . . , xm(n)} be the set of m(n) variables involved in the
computation of SC. By definition, ΣSC encompasses all shares of the native values of C.
Within the scope of a single execution of SC, each xi obtains a unique value. For simplicity,
we assume that all these variables belong to the same field F2u .

Definition 1 (Random Probing Leakage). At a leakage rate p ∈ [0, 1], we define random
probing leakage as the process through which the adversary learns the values assigned to
each variable in ΣSC via an independent erasure channel with parameter p.

Definition 2 (Erasure Channel). An erasure channel is a probabilistic mapping φ : F2u →
{F2u ,⊥}, for a given parameter p, defined by the following relation:

662 An Algebraic Approach for Evaluating Random Probing Security

φ(x) =
{
x with probability p,
⊥ otherwise.

(3)

Here, ⊥ is a special symbol used to indicate the erasure of the input.

We denote the leakage that an adversary obtains as L = φ(ΣSC), which is a shorthand
for L(n, p) = {φ1(x1), . . . , φm(n)(xm(n))}, where the φis are independent.

MAP Adversary and RPM Security. A MAP adversary, also called a Bayesian adversary,
uses the Maximum A Posteriori (MAP) probability to estimate a native v given leakage
L(n, p). It outputs the best estimate for the value of v based on the following rule:

ṽ = argmax
α∈F2u

Pr(v = α | L(n, p)). (4)

This choice maximizes the success rate defined as Pr(ṽ = v∗) [SMY09], where v∗ is the
correct value of v [HRG14]. In this paper, we will only consider the MAP adversary.

Our main security metric is the advantage of the adversary over random guessing,
which for a uniform v with q = |F2u | is:

Advv(n, p) , Pr(ṽ = v∗)− 1
q
. (5)

We define RPM security based on Advv(n, p) for a targeted secret v. The definition is
more aligned with experimental side-channel attacks, where the success rate in attacking a
native value measures the effectiveness of a masking countermeasure.

Definition 3 (RPM Security). A circuit family SC that processes a native variable v
is secure in the RPM framework if there exists a threshold po such that, given leakage
L = φ(ΣSC) with p ≤ po, Advv(n, p) monotonically decreases to 0 as n increases.

Remark 2. For a standalone v with an n-sharing V , since all the shares are required to
reconstruct v, we have Advv(n, p) = [pn + (1− pn) 1

q]− 1
q = q−1

q pn. However, for a native
v inside a masked cipher, the derivation of Advv(n, p) is more challenging.

For the circuits in this paper, if RPM security holds, we will express Advv(n, p) as
Advv(n, p) ≤ α(βp)γn, for some α, β, and γ < 1 constants. A lower Advv(n, p) will reduce
the required order n and, consequently, decrease the computational overhead of masking.

Limitation of the Given Security Definitions. Definition 3 assumes that the adversary
targets a single secret of the masked cipher. While this is often the case in practical attacks,
from a theoretical perspective, the adversary might attempt to derive information about
a function of multiple secrets. It is worth noting that most structures, such as S-boxes,
have one secret. However, in a complete cipher such as AES, there are multiple secrets
(such as the round keys of different rounds). Security definitions in simulation-based
approaches [BCP+20] demonstrate that certain leakages can be reproduced from scratch
and are thus independent of the secret. This approach does not make assumptions about
the number of targeted secrets. However, by overestimating the adversary’s capabilities,
the resulting bounds may have limited practical relevance.

Equivalent Erasure Channel. For a linear SC processing a single native v, we will
demonstrate that L(n, p) either reveals the value of v or provides no information about it.
This phenomenon can be encapsulated using an Equivalent Erasure Channel (EEC) with
a parameter ESC(n, p). We can consider the following setup.

Vahid Jahandideh, Bart Mennink and Lejla Batina 663

SC,L(n, p)
{
v with probability ESC(n, p),
⊥ otherwise.Adversary

When the adversary learns nothing, it still has the opportunity to guess the value of v.
Therefore, we can derive the following expression for Advv:

Advv(n, p) = ESC(n, p) + 1
q

[1− ESC(n, p)]− 1
q

= q − 1
q

ESC(n, p). (6)

For non-linear masked circuits, using linearization technique, we will also develop an
EEC. Nevertheless, these EECs will be approximations and will be valid only within certain
limited leakage rates.

3 EEC for a Linear SC
Let us consider a masked circuit SC processing a native variable v. In each execution
of SC, leakage will reveal some member of ΣSC to the adversary. Native variable v has
relationships with variables in ΣSC, and the adversary can leverage these dependencies,
referred to as parity relations, to its advantage, obtaining information about v.

Definition 4 (Linear SC). We define a masked circuit SC as linear if all its natives and
intermediaries belong to the same field F2u , and the parity relations among [v,ΣSC] are
F2u -linear.

For instance, the SR-Simple refresh gadget [RP10] described in Algorithm 1 processes
a single native and is linear.

Algorithm 1 SR-Simple
Input V 1 = (v1

1 , ..., v1
n)

Output V 2 = (v2
1 , ..., v2

n)
1: rn = 0
2: for i = 1 to n− 1 do
3: r

$← F2u

4: v2
i = v1

i ⊕ r
5: rn = rn ⊕ r

6: v2
n = v1

n ⊕ rn

7: return V 2

In this section, our primary objective is to identify linear dependencies within [v,ΣSC]
and then to evaluate the extent to which they empower the adversary.

Extracting Parity Relations. For a linear SC, the assumption that there are linear
relations over [v,ΣSC] implies the existence of a parity matrix Pn ∈ Fp(n)×m(n)+1

2u such
that, in each run, the values of [v,ΣSC] satisfy

Pn · [v,ΣSC]> = 0[p(n)×1], (7)

where p(n) is the number of relations, and > denotes matrix transpose. The rows of Pn

are linearly independent, and any other parity relation over [v,ΣSC] can be described as a
linear combination of these rows.

664 An Algebraic Approach for Evaluating Random Probing Security

Taking Leakage into Account. By receiving an instance L of leakage, some of the values
in ΣSC will be disclosed to the adversary. With substituting these leaked values, the system
of equations defined in (7) transforms into:

Pr
n · [v,ΣSC]> = b[p(n)×1]. (8)

Here, b (of size p(n)× 1) is a known vector, and Pr
n is essentially Pn with the columns

corresponding to the leaked variables replaced with all-zero. By finding the set of solutions
of (8), the adversary can estimate the value of v.
Remark 3. In a finite field, a system of equations has either one, zero, or finitely many
solutions.

For the system defined in (8), the realized values of [v,ΣSC] will always be a solution.
Hence, this system has either one or a finite number of solutions (based on the above
remark). Let S be the set of unique solutions. Each Si ∈ S is of length m(n) + 1, and its
first entry Si[1] corresponds to v. Si also agrees with the leakage at the leaked variables.
Based on S, the probability distribution of ṽ is

Pr(ṽ = α | L = L) = |Si ∈ S, Si[1] = α|
|S|

. (9)

The adversary will consider argmaxα∈F2u Pr(ṽ = α | L = L) as the realized value of v.
To gain more insight into the shape of Pr(ṽ | L = L), we process the system defined in (8)
further by computing the row-echelon form [LDPDP06] of Pr

n.
Let G be the row-echelon form of Pr

n. G defines a new set of parity relations, which
means that, for some constant vector c (that is computed from b), we have:

G · [v,ΣSC]> = c. (10)

By construction, v will be a pivot variable and thus participate in only one relation,
which is described by the first row of G. If v is the sole variable in this relation, it can be
uniquely identified. Otherwise, Pr(ṽ | L = L) is uniform.

Lemma 1. In an F2u-linear circuit, if the first row of G does not include any variables
other than v, the adversary can uniquely determine v. Otherwise, any other variable in
the first row, which will be a free variable, completely conceals v.

Proof. Let [v,ΣSC]p satisfy the non-homogeneous system defined by G · [v,ΣSC]> = c, the
set of solutions of this system can be described as:

[v,ΣSC] = [v,ΣSC]p ⊕ [v,ΣSC]f , (11)

where [v,ΣSC]f is any solution for the homogeneous system G · [v,ΣSC]> = 0. The number
of [v,ΣSC]f tuples depends on the number of free variables in G. Any value assigned to
the free variables will give a new tuple [v,ΣSC]f . Recall that columns corresponding to
the instance of leakage are replaced with all-zero, and we do not consider them as free
variables.

Computing G will start from the first column with a non-zero element. Since v is not
part of leakage and there is at least one relation between v and ΣSC, v will be a pivot
variable. Assume that G has l free variables, and label them as {z1, . . . , zl}. The solution
of v, based on (11), will be

v = vp ⊕ z1a1 ⊕ . . .⊕ zlal. (12)

Here, vp is the value of v in [v,ΣSC]p, and ai is the value of v in G · [v,ΣSC]> = 0 when
all the free variables are set to zero, except zi, which is set to 1. In (12), z1 to zl are free

Vahid Jahandideh, Bart Mennink and Lejla Batina 665

to take any value in F2u . Therefore, if at least one ai is non-zero, irrespective of vp, all
values of v will have the same frequency.

To identify v uniquely, it is necessary to have all ai = 0. In the row-echelon form, ai for
1 < i ≤ (m(n) + 1) equals to −G(1, i). Therefore, if the condition G(1, 2 : m(n) + 1) = 0
is satisfied, then v is uniquely determined. Any non-zero value in G(1, 2 : m(n) + 1) with
its accompanying free variable will hide the particular solution vp.

Lemma 1 expresses the adversary’s post-leakage information about v with an EEC, for
which the parameter is defined as:

ESC(n, p) = Pr
L←L(n,p)

[G(1, 2 : m(n) + 1) = 0[1×m(n)]], (13)

where each instance of leakage L yields a derived matrix G depending on the members
of ΣSC leaked to the adversary. Importantly, G and, consequently, ESC do not depend on
the actual leakage values. This observation facilitates the efficient estimation of ESC: for a
fixed pair (n, p), with a sufficient number of trials, we can estimate ESC(n, p) by generating
instances of leakage, obtaining the corresponding matrix G, and counting the frequency of
the event G(1, 2 : m(n) + 1) = 0. We provide the necessary algorithms and describe the
technical details in the following section.

3.1 Recovering Parity Relations and Estimating ESC

This section presents algorithms for extracting a parity matrix from a given F2u-linear
circuit, computing the row-echelon form of this parity matrix along with an instance of
leakage, and approximating the corresponding E parameter.

Packing [v, ΣSC] Values in Mn. For a circuit family SC processing a native value v at
the specified order n, we can construct a matrix Mn consisting of m(n) + 1 columns and
R rows. The process of populating Mn involves running SC a total of R times, each time
with a randomly selected v and fresh randomness. During each run, the values assigned to
v and ΣSC fill a new row of Mn, as outlined in Algorithm 2. Recall that ΣSC is the list of
variables of SC, and m(n) is the number of elements of this list.

Algorithm 2 Create-M
Input SC, n
Output Mn

1: for i = 1 to R do
2: v

$← F2u

3: Mn(i, 1) = v
4: Execute SC . With fresh shares for the native inputs
5: Mn(i, 2 : m(n) + 1) = ΣSC
6: return Mn

Example 1. In the case of SR-Simple, as outlined in Algorithm 1, when n = 3, the set of
variables ΣSR-Simple comprises {v1

1 , v
1
2 , v

1
3 , r3, ra, v

1
1 ⊕ ra, r3 ⊕ ra, rb, v1

2 ⊕ rb, r3 ⊕ rb, v1
3 ⊕ r3}.

Here, ra and rb represent the values of the randomness variable r at two different iterations
of the for loop. The value of r3 in the list updates according to the algorithm’s execution.
It’s important to note that the actual composition of ΣSR-Simple may vary based on specific
implementation details. For instance, if the output is copied elsewhere, {v2

1 , v
2
2 , v

2
3} may

also become part of ΣSR-Simple. Recall that elements of ΣSC leak independently. Therefore,
a variable appearing multiple times in the list will have a higher probability of leaking.

666 An Algebraic Approach for Evaluating Random Probing Security

The Mn matrix thus formed consists of R × (m(n) + 1) elements from F2u . In the
following, we discuss the utilization of standard Gaussian elimination to extract a set of
parity relations capable of describing F2u -linear dependencies among these variables.1

Extracting Pn From Mn. By computing the row-echelon form of Mn using Algorithm
3 (Dn = Gaussian-Elim(Mn)), we can determine the linear dependencies between columns
of Mn. Since we are using numerical realizations for random variables, the output of the
algorithm might be incomplete or incorrect. That is, we might miss some parity relations
or include wrong parity relations. However, the accuracy and completeness of the recovered
parity relations improve as the number of rows in Mn increases.

While the exact number of parity relations, denoted as p(n), is initially unknown, we
can deduce that p(n) = m(n) + 1− rank(Mn), and consequently, p(n) ≤ m(n) + 1. Hence,
we need to set R > m(n) to extract p(n) linearly independent parity relations.

On the other hand, to minimize the probability of a set of columns summing to zero
without being part of parity relations, we need to add more rows to Mn. For instance, by
setting R > m(n) +W , the probability that at least one of the 2m(n)+1 − p(n) possible
incorrect parity relations among the columns satisfies all the rows will be approximately
upper bounded by 2−uW , where W is a positive integer, and u denotes the bit-width of
the underlying field. It is important to note that the rows of Mn are valued using fresh
randomness.

Algorithm 3 Gaussian-Elim
Input Mn

Output Row-echelon form of Mn

1: pivot_row = 1 . Initialize the pivot row
2: for col = 1 to m(n) + 1 do
3: for row = pivot_row to R do
4: if Mn(row, col) 6= 0 then
5: Mn(row, :) = Mn(row, :)/Mn(row, col) . Normalize to 1
6: Mn(pivot_row, :)�Mn(row, :) . Swap the rows
7: for i = 1 to R , i 6= pivot_row do
8: Mn(i, :) = Mn(i, :)− Mn(i,col)

Mn(pivot_row,col) Mn(pivot_row, :)

9: pivot_row = pivot_row + 1 . Increase the pivot row
10: break
11: Dn = Mn

12: return Dn

Within Dn, there are two types of variables: pivot and free. Each free variable is
associated with a parity relation, which is a set of columns in Dn whose sum equals zero.
To extract these parity relations, we employ Algorithm 4 (Pn = Extract-Linear(Dn)).

Example 2. Consider the following, where M, D, and P are matrices in a binary field:

M =

1 1 0 1
1 0 0 1
0 0 1 1
1 0 1 0
0 1 0 0

 Gaussian-Elim−−−−−−−−−→ D =

1 0 0 1
0 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0

 Extract-Linear−−−−−−−−−→ P =
[
1 0 1 1

]
. (14)

The first three columns of D are pivot columns, but the fourth one is a free column. This
column, specified in blue, is the sum of columns 1 and 3, as reflected in P.

1Alternatively, one might derive a set of parity equations directly between [v, ΣSC] from the defining
relations of SC. While this approach may result in a different representation for the parity matrix, the
final value obtained for ESC remains indifferent to the particular representation chosen.

Vahid Jahandideh, Bart Mennink and Lejla Batina 667

Algorithm 4 Extract-Linear
Input Dn

Output Parity matrix Pn

1: rowD = 1, rowP = 1
2: for colD = 1 to m(n) + 1 do
3: if Dn(rowD, colD) = 0 & Dn(: , colD) 6= 0 then . A free variable
4: Pn(rowP , colD) = 1 . Add a row to Pn

5: for j = 1 to rowD − 1 do
6: Pn(rowP , Pivots(j)) = Dn(j, colD)
7: rowP = rowP + 1
8: elseif Dn(: , colD) 6= 0 then
9: Pivots(rowD) = colD . Record pivot column of each row
10: rowD = rowD + 1;
11: return Pn

Sampling Pr
n From Pn. Pn encompasses all the linear dependencies of SC, with its

number of rows equaling the number of these relations. The next step is to sample leaking
members of ΣSC and derive the corresponding system of equations as in (8). To sample an
instance of Pr

n, we proceed as follows: First, Pr
n is set to Pn. Then, each column (apart

from column 1) of Pr
n is randomly and independently set to all-zero with probability p,

indicating that the intermediate associated with this column has leaked.
Remark 4. In sampling Pr

n, the decision for each column is made separately. Consequently,
it is possible to consider non-identical values of the leakage rate p for different members of
ΣSC. In practice, side-channel noise over different intermediates may not be equal, and
hence, their corresponding p values will be dissimilar [DFS15].

Estimating ESC From Sampled Pr
ns. Algorithm 5 outlines the steps to approximate ESC

using N number of trials. The quality of the approximation improves as the value of N
increases. For the numerical results presented, we used a step size of 10−2 for sweeping p
values.

Algorithm 5 Approximate ESC
Input The family SC
Output ESC(n, p)

1: for n = 2 to nmax do
2: Mn = Create-M(SC, n)
3: Dn = Gaussian-Elim(Mn)
4: Pn = Extract-Linear(Dn)
5: for p = pmin to pmax do
6: Nrecovered = 0
7: for i = 0 to N do
8: Pr

n ← Sampl(Pn, p)
9: G = Gaussian-Elim(Pr

n)
10: if G(1, 2 : m(n) + 1) = 0 then . The secret is recovered
11: Nrecovered = Nrecovered + 1
12: ESC(n, p) = Nrecovered

N
. Approximation with empirical mean

13: return ESC

After obtaining a table of empirical mean values for ESC(n, p), efforts are made to
bound them, if possible, such that ESC(n, p) ≤ α(βp)γn, where α, β, and γ are constants
with γ < 1. This expression facilitates the deployment of the results obtained for various
gadgets in the security evaluation of more complex circuits, such as an S-box. Moreover,
deriving a single expression that fits all the tested (n, p) pairs enhances the credibility of
estimations. However, we note that the derived bound may not hold out of the tested
region.

668 An Algebraic Approach for Evaluating Random Probing Security

3.2 Case Study on Linear Gadgets
The serial composition of k (linear) SR gadgets, as depicted in Figure 1, represents an
example of a linear SC with a single native variable. As highlighted by Dziembowski et
al. [DFŻ19], this construction is not only theoretically significant but also holds practical
relevance. We will also make use of the results for the case where k = 1 later.

V 0 V 1 V 2 V k−1 V k
SR1 SR2 SRk. . .

Figure 1: Multiple refresh gadgets working in tandem.

Instances of SR include SR-Simple [RP10], SR-SNI [BBD+16], and SR-Rot [BDF+17]
that are described in Algorithms 1, 6, and 7, respectively. The input to these algorithms
is V 1 = {v1

1 , . . . , v
1
n}, and the output is V 2 = {v2

1 , . . . , v
2
n}.

Algorithm 6 SR-SNI
Input V 1 = (v1

1 , . . . , v1
n)

Output V 2 = (v2
1 , . . . , v2

n)

1: for i = 1 to n do
2: for j = i + 1 to n do
3: r

$← F2u

4: v1
i = v1

i ⊕ r

5: v1
j = v1

j ⊕ r

6: V 2 = V 1

7: return V 2

Algorithm 7 SR-Rot
Input V 1 = (v1

1 , . . . , v1
n)

Output V 2 = (v2
1 , . . . , v2

n)
1: for i = 1 to n do
2: ri

$← F2u

3: for i = 1 to 2 do
4: for j = 1 to n do
5: r = r(i+j−2)%n+1
6: v1

j = v1
j ⊕ r

7: V 2 = V 1

8: return V 2

SR-Simple requires the least amount of fresh randomness and has the least computational
complexity. In contrast, SR-SNI involves more fresh randomness and is computationally
more demanding. However, the additional randomness and increased processing complexity
do not make SR-SNI more secure (based on the ESR value) compared to SR-Simple and
SR-Rot. For any tuple (k, n > 2, p) studied, ESR→...→SR(n, p) is higher with SR-SNI than
with the other two. Refer to the results in Figure 2. Nonetheless, SR-SNI shows good
properties that help to prove the RPM security of combinations of gadgets. This point
will be treated in Section 4.
Remark 5. Within our tested range (n ≤ 30), SR-Simple and SR-Rot exhibit RPM security
across the entire range of p. However, SR-SNI was found to be secure only for p < 0.45.
For rates higher than this threshold, ESR-SNI(n, p) increases with the masking order n.

Estimating ESR-SNI(n, p). The value of ESR-SNI(n, p) is used for the security evalua-
tion of certain circuits in this paper. Using Algorithm 5, we can empirically estimate
1
n log10(ESR-SNI(n, p)) for various orders and leakage rates. These estimations for the range
p < 0.15 are plotted in Figure 3. From these results, it becomes apparent that there exists
a value γ such that 1

n log10 (ESR-SNI(n, p)) ≤ γ log10(p). By setting γ = 0.6, we satisfy
this bound for the range p < 0.15. Hence, we can derive the following expression for
ESR-SNI(n, p), which is valid for (n ≥ 2, p < 0.15):

ESR-SNI(n, p) ≤ p0.6n. (15)

Upon closer inspection of the results in Figure 3, it becomes evident that for lower
leakage rates, we can derive tighter bounds for ESR-SNI(n, p) by choosing larger values for
γ. Additionally, we observe that as p increases, γ should decrease. However, ESR-SNI(n, p)

Vahid Jahandideh, Bart Mennink and Lejla Batina 669

2 3 4 5 6 7

−1

−2

−3

−4

−5

SR-Simple
SR-Rot
SR-SNI

Masking order n

log10[ESR→...→SR] at k = 10 and p = 0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ESR-Rot n = 5
ESR-Rot n = 20
ESR-SNI n = 5
ESR-SNI n = 20

Leakage rate p

ESR-SNI and ESR-Rot at different orders

Figure 2: (Right) For higher leakage rates (at around p > 0.45), ESR-SNI increases with
the order n, implying that the adversary can, with a higher probability, recover the native
variable v.

in the range p ≤ 0.15 is a decreasing function of n. We illustrate this with depictions of
the estimated log10 (ESR-SNI(n, p)) in Figure 3-(Right).

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15

−0.5

−0.75

−1

−1.25

−1.5

−1.75

n = 2
n = 3
n = 4
n = 5
n = 6
n = 7

Upper bound

Leakage rate p

1
n log10(ESR-SNI(n, p)) vs. 0.6 log10(p)

2 3 4 5 6 7 8 9 10 11 12
−6

−5

−4

−3

−2

−1

p = 0.15
p = 0.12

Masking order n

log10 (ESR-SNI(n, p))

Figure 3: (Left) Estimation results for ESR-SNI. (Right) The slope of decay of
log10(ESR-SNI(n, p)) is independent of order n, but depends on leakage rate p.

Remark 6. By deploying more complex functions of (n, p), one can derive tighter expressions
for ESR-SNI(n, p). However, for the illustration of our proposed methodology, the given
upper bound in (15) suffices.

As the order of masking increases, empirical estimation of a probability that exponen-
tially decays with n becomes more challenging. This difficulty arises not only because the
size of gadgets such as SR-SNI grows in O(n2), limiting the number of trials that can be
performed in terms of computational power, but also because the events become rare and
their probability falls below 1

N . Employing Algorithm 5 with N = 108 trials, we conclude
that for our tested range n ≤ 30, no violation of the bound given in (15) was observed.
We also note that there is no guarantee that the derived bound holds outside the tested
region of n values. Specifically, for understanding the behavior of ESR-SNI(n, p) at n→∞,

670 An Algebraic Approach for Evaluating Random Probing Security

we need rigorous analytical approaches, which we leave for future research.

4 Reduction in RPM Framework
Suppose SG1 and SG2, that both can be non-linear, are processing the same native variable
v sequentially. Instead of directly passing the output V 0 from SG1 to SG2, there is an
intermediary (linear) SR gadget. See Figure 4. The adversary’s objective is to exploit
leakages of the three gadgets and estimate the value of v.

V 0 V 1
SG1 SR SG2

Figure 4: Composition using a refresh gadget.

We will transfer leakage of SR to its input/output interfaces and thereby reduce the
security of this chain to the security of its composing gadgets. More precisely, we propose
the following theorem.

Theorem 1. For a bounded region of p values, the gadgets, and hence the composition,
behave as an erasure channel for which

ESG1→SR→SG2(n, p) ≤ ESG1(n, p′) + ESR(n, p) + ESG2(n, p′) (16)

holds, where p′ ≥ p is a function of (n, p) and the structure of SR.

This reduction is a significant step toward estimating the RPM security of more intricate
compositions. The remainder of this section consists of technical steps to derive (16).
Before delving into details, let us briefly develop some intuition about the impact of internal
leakage of SR.

4.1 Reduction With Leak-Free SR Gadget
By assuming that the SR gadget is leak-free (i.e., an adversary cannot probe its internal
variables), we can decompose the security of the construction SG1 → SR→ SG2 in mutual
information metric to the security of SG1 and SG2. A leak-free SR gadget is required
to preserve the conditional independence of V 0 and V 1, which is critical for the proofs
in [PR13,MS23,BCGR24]. However, the SR gadget (like the other SGs) is a piece of code,
and the adversary can access its internal variables like any other variable of the entire
masked algorithm. Therefore, the requirement of leak-free SR gadgets is not practically
sound.

Effectively incorporating the leakage from SR gadgets, instead of neglecting it, is a
long-standing challenge in the RPM. As a contribution to this problem, we provide a
relatively tight bound on the additional benefit the adversary can gain from the leakage of
an SR gadget in our security metric.

Effects of Leakage From SR Gadgets. In the following, we intuitively describe the two
effects that leakage from SR gadgets causes:

1. Since the secret v depends on ΣSR, if the adversary learns a significant portion of
the variables of ΣSR, it may uncover the secret v directly with this knowledge.

2. As an indirect effect, leakage of ΣSR leads to the emergence of extra parity relations
between V 0 and V 1. These new equations interconnect the parity relations of SG1
and SG2, thereby reducing the RPM security of the entire structure.

Vahid Jahandideh, Bart Mennink and Lejla Batina 671

4.2 A Describing System of Equations
Let the following set of equations define SG1 → SR→ SG2, where the boundary variables,
V 0 and V 1, are separated from the list of internal variables, and NL (resp. L) denotes a
non-linear (resp. linear) set of equations:

An =

NLSG1(ΣSG1 , V

0, v) = 0,
LSR(ΣSR, V

0, V 1, v) = 0,
NLSG2(ΣSG2 , V

1, v) = 0.
(17)

Our primary focus will be on the structure of the linear subsystem; thus, it is highlighted
with a different color to assist following the operations. We denote the system with An
to emphasize the dependency of the relations on n. We have deviated slightly from our
notation: for the gadgets, we have excluded boundary variables, i.e., V 0, V 1 or both, from
the corresponding Σ sets. Hence, ΣSG1 , ΣSR, and ΣSG2 contain only the internal variables.
This way, we avoid accounting for the leakage of boundary variables twice.
Remark 7. Joint equation sets in An empower the adversary more than separated subsets.
As an extreme case, the three sets combined may uniquely determine the secret v, but v
appears uniformly random while considering each system alone.

For the subsequent discussions, we place two requirements on the gadgets: symmetry
over the shares for all the gadgets and maximal independence for the SR.

Definition 5 (Symmetry). A gadget is symmetric if any reordering of the shares inside it
does not change the parity description.

Definition 6 (Maximal Independence). In an SR gadget, input V 0 and output V 1 are
maximally independent if, apart from ⊕ni=1v

0
i = ⊕ni=1v

1
i , no other relation exists among

the input and output shares.

For instance, SR-SNI and SR-Rot are symmetric, but SR-Simple is not because the
equation defining the last share differs from that of the other shares. For these two SRs,
input and output shares are maximally independent.2

Example 3. To clarify these definitions, we provide a simple instance of a refresh gadget
that is symmetric but does not have maximally independent input-output shares. For
n = 4, consider a refresh gadget that operates as follows:

(v1
1 , v

1
2 , v

1
3 , v

1
4)← (v0

1 , v
0
2 , v

0
3 , v

0
4)⊕ (r1, r2, r3, r4),

(v1
1 , v

1
2 , v

1
3 , v

1
4)← (v1

1 , v
1
2 , v

1
3 , v

1
4)⊕ (r2, r1, r4, r3).

(18)

Here, r1 to r4 are randomness variables, and the ⊕ operation for two vectors is element-
wise. While it is clear that ⊕4

i=1v
0
i = ⊕4

i=1v
1
i , this is not the only relation. Indeed, we

additionally have v0
1 ⊕ v0

2 = v1
1 ⊕ v1

2 and v0
3 ⊕ v0

4 = v1
3 ⊕ v1

4 .

Definition 7 (Primary Solution). An in each run of the underlying circuit has a specific
solution, which is the realized value of its variable. We call it the primary solution and
denote it by S∗.

4.3 Modeling the Refresh Gadget
We first focus on a single instance of leakage and then extend the obtained results to the
general case of random leakage. Let the adversary learn a chunk of the primary solution

2This property can be verified by collecting many input and output shares and obtaining parity relations
among them by deploying chain of Create-M, Gaussian-Elim, and Extract-Linear algorithms, with M having
only 2n columns that are input-output shares

672 An Algebraic Approach for Evaluating Random Probing Security

S∗ via leakage. By substituting it into An, a new system of equations as (19), denoted Arn,
will emerge:

Arn =

NLrSG1

(ΣrSG1
, V 0,r, v) = b1,

LrSR(ΣrSR, V
0,r, V 1,r, v) = b2,

NLrSG2
(ΣrSG2

, V 1,r, v) = b3.

(19)

The superscript r specifies the remaining unknowns and the relations among them. b1 to
b3 are known vectors that appear after the substitution. Based on the leaked shares of V 0

and V 1, we have the following identities:{
v = (⊕V 0,r)⊕ b4,

v = (⊕V 1,r)⊕ b5,
(20)

where ⊕ before a set means XOR of all its entries, and scalar values b4 and b5 are respective
XOR of the leaked shares of V 0 and V 1. The first row of (20) is a parity relation that is
common to NLrSG1

and LrSR, and the second row is common to NLrSG2
and LrSR.

4.3.1 Extracting Non-Informative Parity Relations

Our aim is to simplify Arn by decomposing parity relations in LrSR into two groups of
non-informative and informative parity relations.

Lemma 2. Without changing the set of solutions of Arn, LrSR can be grouped into the
following two linearly independent sets of equations:{

L1(ΣrSR) = L2(V 0,r, V 1,r, v)⊕ b2,1,

L3(V 0,r, V 1,r, v) = b2,2,
(21)

where b2,1 and b2,2 are constant vectors, and equations in L1 are linearly independent of
each other.

Proof. A coefficients matrix P can describe LrSR(ΣrSR, V
0,r, V 1,r, v) = b2 as

P · [ΣrSR, V
0,r, V 1,r, v)]> = b2. (22)

Using P, we create an augmented matrix P′ by appending b2 to it as P′ = [P|b2]. Let
the row-echelon form of P′ be G = Gaussian-Elim(P′). From G, we can derive L1, L2, and
L3 as defined in the lemma.

Inside G, because it is a row-echelon matrix, if the ith row is all-zero, then all the rows
beneath i are all-zero. Let I be the first row of G that is all-zero. In any row i < I, there
exists a column J such that G(i, J) = 1, and for every j < J , G(i, j) = 0. Column J is
called a pivot variable. Let function Pivots(.), for each row i < I, give its corresponding
column J . Pivots(.) is a monotonically increasing function. We define Pivots−1(j) as the
biggest number r such that Pivots(r) ≤ j.

Inside P, define the last column containing elements of ΣrSR with k = |ΣrSR|. Note that
ΣrSR may contain an exact copy of V 0 and V 1. However, this will not alter our procedure
or results.

We split G’s columns into three parts as G = [G1|G2|G3]. Where, G1 = G(: , 1 : k),
G2 = G(: , k + 1 : end− 1), and G3 = G(: , end). We also split the rows of G into the
following two disjoint sets.

• Rows i = 1 to T = min[I − 1,Pivots−1(k)]. The parity equations corresponding to
these rows have a pivot variable from ΣrSR. That is because, at least, G(i,Pivots(i)) =
1, and since Pivots(.) is monotonically increasing, we have:

Pivots(i) ≤ Pivots(T) = min[Pivots(I − 1), k] ≤ k.

Vahid Jahandideh, Bart Mennink and Lejla Batina 673

For these parity equations, we can write:

G1(i, :) · [ΣrSR]> ⊕G2(i, :) · [V 0,r, V 1,r, v]> = G3(i). (23)

Based on (23), we label the equations defined by G1(1 : T, :) as L1, the equations
defined by G2(1 : T, :) as L2, and the constants at the column vector G3(1 : T) as
b2,1. Each row of G1(1 : T, :) has a pivot variables. Therefore, these rows (that are
also denoted by L1) are linearly independent.

• Rows i = T + 1 to I − 1. These rows exist only if Pivots−1(k) < I − 1. For these
rows, we have Pivots(i) > k. Consequently, G1(i, :) = 0. Hence, no variable from
Σr

SR will exist in the equations defined by these rows, for rows T < i < I, we can
write:

G2(i, :)× [V 0,r, V 1,r, v]> = G3(i). (24)

Based on (24), we label the equations defined by G2(T + 1 : I − 1, :) as L3, and the
constants at the column vector G3(T + 1 : I − 1) as b2,2.

Finally, the equations in G will be of the following structure, and this completes proof of
the lemma. {

L1(ΣrSR) = L2(V 0,r, V 1,r, v)⊕ b2,1,

L3(V 0,r, V 1,r, v) = b2,2.
(25)

Example 4. As a toy example, to illustrate the proof of the lemma, consider the following
instance of matrix G:

G =

1 0 0 0 α0 0 β0 0 γ0 δ0
0 1 0 0 α1 0 β1 0 γ1 δ1
0 0 0 1 α2 0 β2 0 γ2 δ2
0 0 0 0 0 1 β3 0 γ3 δ3
0 0 0 0 0 0 0 0 0 0

 . (26)

In this example, we have set k = 5, so the first 5 columns correspond to the variables
of Σr. We also consider the next four columns as [V 0,r, V 1,r, v]. The last column is the
augmentation with the b2 vector, see (22). Columns 1, 2, 4, and 6 are pivots. Column 3
and 8 are part of leakage, and column 5, 7, and 9 are free. The respective pivot columns
of the rows (1, 2, 3, 4) are (1, 2, 4, 6). The 5th row of G is the first all-zero row. Hence, we
have I = 5, and T = min[I − 1,Pivots−1(k)] = min[4, 3] = 3. Therefore, the first 3 rows
identify L1, L2, and b2,1. The 4th row is the only relation in L3.

Next, we show that the subsystem given in the first row of (21) will not change
the probability distribution of ṽ (the adversary’s output). Therefore, we label them as
non-informative parity relations. Lemma 3 gives the necessary technical conditions.

Lemma 3. Consider the following system of equations.{
L4(Σ1) = L5(v,Σ2),
NL(v,Σ2,Σ3) = 0.

(27)

If Σ1, Σ2, and Σ3 are disjoint, and the equations in L4 are linearly independent, then the
probability distribution of ṽ will only depend on NL(v,Σ2,Σ3) = 0. Consequently, as much
as the estimation of v is concerned, L4(Σ1) = L5(v,Σ2) can be ignored from (27).

674 An Algebraic Approach for Evaluating Random Probing Security

Proof. A system of equations in a finite field has a limited number of solutions. Assume
that S1 to SN are all of the solutions of the system defined by NL(v,Σ2,Σ3) = 0, where
Si is a vector of values as Si = (vi,Σi2,Σi3).

Note that it suffices to demonstrate that, corresponding to each Si, there is a fixed set
of unique values for Σ1 such that the system L4(Σ1) = L5(v,Σ2) is satisfied. See relation
(9), and note that multiplying a constant value with both numerator and denominator of
a fraction will cancel out.

For each Si, L5(v,Σ2) is a known and fixed vector, which we denote with Di. Now, we
aim to compute the number of solutions of L4(Σ1) = Di. Since the equations in L4 are
independent of each other, from linear algebra, we know that this system has at least one
solution. We label this solution as [Σ1]p. The structure of the complete set of the solutions
of L4(Σ1) = Di is given in the following:

Σ1 = [Σ1]p ⊕ [Σ1]f , (28)

where [Σ1]f is any vector satisfying the homogeneous system defined by

L4(Σ1) = 0. (29)

The cardinality of the solutions in (28) is independent of the value of Di. Hence, we
conclude that the frequency of solutions for v is solely controlled by the subsystem defined
by NL(v,Σ2,Σ3) = 0.

Example 5. To illustrate how the decomposition of parity relations of SR into two groups
of informative and non-informative works, we provide a simple example of a refresh gadget
for n = 3 as follows:

(v1
1 , v

1
2 , v

1
3)← (v0

1 , v
0
2 , v

0
3)⊕ (r1, r2, r1 ⊕ r2). (30)

Assume the leakage has only revealed the value of r1 to the adversary as r1 = b. We can
arrange the parity equations describing the given refresh instance as follows:

v0
1 ⊕ v0

2 ⊕ v0
3 ⊕ v = 0,

v0
1 ⊕ v1

1 = b,

r2 ⊕ v0
2 ⊕ v1

2 = 0,
r2 ⊕ v0

3 ⊕ v1
3 = b.

(31)

Using the approach of (the proof of) Lemma 2, this parity system can be reordered to
yield:

r2 ⊕ v0
2 ⊕ v1

2 = b,

v0
1 ⊕ v1

2 ⊕ v1
3 ⊕ v = b,

v0
2 ⊕ v0

3 ⊕ v1
2 ⊕ v1

3 = b,

v1
1 ⊕ v1

2 ⊕ v1
3 ⊕ v = 0.

(32)

The first equation, in the format of the first row of (27), is non-informative (per Lemma 3).
Intuitively, this equation increases the number of unknowns by one, and this unknown (r2)
is not related to the rest of the system. Note that if such dummy equations were helpful,
the adversary could add many of them, each introducing a new unknown, in the hope of
increasing the chance of gaining more knowledge about v. However, we know that these
artificial parities are not helpful.

Vahid Jahandideh, Bart Mennink and Lejla Batina 675

4.3.2 Processing the Informative Parity Relations

By application of Lemmas 2 and 3, we can decompose Arn as follows:

Arn =

NLrSG1

(ΣrSG1
, V 0,r, v) = b1,

LrSR,3(V 0,r, V 1,r, v) = b2,2,

NLrSG2
(ΣrSG2

, V 1,r, v) = b3.

(33)

The linear equation set LrSR,3, which only depends on the boundary shares and v, is obtained
via the process in Lemma 2, and they are the only informative parities in LrSR.

From Lemma 1, we know that a linear system as LrSR,3(V 0,r, V 1,r, v) = b2,2 either
recovers v or gives nothing about it. Let eSR be the event that LrSR,3 alone determines the
secret v. If eSR occurs, v is recovered. Otherwise, we proceed with narrowing down the
equations in LrSR,3: for each equation containing v, we add either of the identities in (20)
and, consequently, remove v from the resulting equation. At this point, the trivial relation

(⊕V 0,r)⊕ b4 = (⊕V 1,r)⊕ b5 (34)
will always exist in this system. Based on the maximally independence requirement, there
will be no other omnipresent equation3 in this system.

Relation (34) is a dependent equation: it is XOR of the first line of (20), present in
NLrSG1

, and the second line of (20), present in NLrSG2
. Therefore, we ignore (34) and denote

the final system with LrSR,4(V 0,r, V 1,r) = b2,3.4 By substituting this into (33), we get

Arn =

NLrSG1

(ΣrSG1
, V 0,r, v) = b1,

LrSR,4(V 0,r, V 1,r) = b2,3,

NLrSG2
(ΣrSG2

, V 1,r, v) = b3.

(35)

In this phase, the subsystem defined by LrSR,4 is without v. Our next goal is to separate Arn
into systems governed by NLrSG1

and NLrSG2
.

Example 6. Building on Example 5, we illustrate how the three informative equations
in (32) can be narrowed down to derive LrSR,4. The subsystem consisting of the three last
equations of (32) corresponds to LrSR,3. We aim to derive LrSR,4 in this example. Here, the
boundary parity relations are: {

v = v0
1 ⊕ v0

2 ⊕ v0
3 ,

v = v1
1 ⊕ v1

2 ⊕ v1
3 .

(36)

Based on the discussion around (34), these two boundary relations are already present
outside of SR (in SG1 and SG2, respectively). With the help of boundary parities, we
eliminate v from LrSR,3 and obtain:{

v0
1 ⊕ v1

1 = b,

v0
2 ⊕ v0

3 ⊕ v1
2 ⊕ v1

3 = b.
(37)

Now, any parity relation in LrSR,3 that is linearly dependent in the presence of these boundary
relations can be eliminated. For instance, if we select the parity relation v0

1 ⊕ v1
1 = b, the

other one will be dependent and can be ignored. Consequently, LrSR,4 will be v0
1 ⊕ v1

1 = b.
Note that we could have selected the other parity, namely v0

2 ⊕ v0
3 ⊕ v1

2 ⊕ v1
3 = b, as LrSR,4.

The first choice has only two unknowns. Hence, it is sparser than the second one, which
contains four unknowns. However, both can be considered as LrSR,4.

3Omnipresent in the sense that it exists irrespective of the realization of leakage.
4Typically at this point, with small p, there remains no equations in Lr

SR,4.

676 An Algebraic Approach for Evaluating Random Probing Security

4.3.3 Disclosing Unknowns of Residual Parity Equations

To facilitate the separation of Arn into its constituent subsystems, we allow the adversary
to learn the remaining unknowns of LrSR,4. This additional leakage increases the success
probability of the adversary and consequently loosens the tightness of the final security
bound. Nevertheless, this intervention is crucial to our proposed security reduction.

We denote the unknowns of LrSR,4 that are members of V 0 and V 1 with V 0,† and V 1,†,
respectively. The disclosure of this extra leakage enables us to split Arn into two (almost)
disjoint systems A1

n and A2
n, with the only common variable being v:

A1
n =

{
NLrSG1

(ΣrSG1
, V 0,r, v) = b1,

V 0,† = b6,
(38)

A2
n =

{
NLrSG2

(ΣrSG2
, V 1,r, v) = b3,

V 1,† = b7.
(39)

In the context of Example 6, with LrSR,4 being v0
1 ⊕ v1

1 = b, V 0,† and V 0,† are v0
1 and

v1
1 , and their values are given to the adversary in accordance with the primary solution

(See Definition 7). Choosing a sparser representation for LrSR,4 helps to derive a tighter
security bound. However, finding a sparse representation is not a trivial problem. We
leave optimizations of the results based on this direction for future work.

4.3.4 Counting the Number of Informative Parity Relations

The discussion up to here was based on a single instance of leakage. To proceed the
reduction, we zoom out and make use of the probabilistic nature of leakage. In the random
leakage setting, V 0,† and V 1,† are not fixed. We utilize the symmetry (Definition 5), and
model the extra leakage provided through V 0,† and V 1,† as an equivalent leakage rate p′
on the interface vectors V 0 and V 1.

For each interface, we define TSR(n, p) as:

TSR(n, p) = E[|V i,†|]. (40)

Here, the expectation is over instances of leakage and i is in {0, 1}. For the particular case
of SR-SNI, due to the present symmetry, we have E[|V 0,†|] = E[|V 1,†|].

For a target SR at a desired pair (n, p), we estimate TSR(n, p) using a Monte Carlo
approach with N trials, where in the kth trial, we sample a random leakage and compute
h(k) = |V i,†|. For a sufficiently large N , the sample average, 1

N

∑N
k=1 h(k), approaches

TSR(n, p). We give a detailed algorithmic approach in the following.

Algorithm for Estimating TSR(n, p). Algorithm 8 outlines the procedure described in
this section to estimate TSR(n, p) for a given SR gadget.

The function Count-Unknowns(G2) performs three tasks: first, it adds either v =
⊕V 0,r ⊕ b4 or v = ⊕V 1,r ⊕ b5 (as in (20)) to any row that has a non-zero coefficient for
v. Then, it removes ⊕V 0,r ⊕ b4 = ⊕V 1,r ⊕ b5 from the set of rows of G2 (see discussion
around (34)). Finally, it counts the number of shares of V 0 or V 1 that have at least one
non-zero coefficient in G2, as in (40).

Estimation of TSR-SNI(n, p). For later reference, we have estimated TSR-SNI using Algo-
rithm 8 at various pairs of (n, p). The results are depicted in Figure 5, and they fit in the
following bound:

TSR-SNI(n, p) ≤
1
3np, valid for (n ≥ 3, p ≤ 0.1). (41)

Vahid Jahandideh, Bart Mennink and Lejla Batina 677

Algorithm 8 Approximate TSR
Input The family SR
Output TSR(n, p)

1: for n = 2 to nmax do
2: Mn = Create-M(SR, n) . Order of columns: [ΣSR | V 0 | V 1 | v], m(n) + 1 columns.
3: Dn = Gaussian-Elim(Mn)
4: Pn = Extract-Linear(Dn) . LSR(ΣSR, V 0, V 1, v) as in (17)
5: for p = pmin to pmax do
6: Nrecovered = 0, h = 0
7: for i = 0 to N do
8: Pr

n ← Sampl(Pn, p) . Only internal variables, i.e., member of SR, leak. Lr
SR as in (19)

9: G = Gaussian-Elim(Pr
n) . Approach of Lemma 2

10: if G(end, 1 : m(n)) = 0 then . eSR event. v is in the last column of M
11: Nrecovered = Nrecovered + 1
12: Continue
13: G2 = Extract(G) . In accordance with (24)
14: h = h + Count-Unknowns(G2)
15: TSR(n, p) = h

N−Nrecovered
. Approximation with empirical mean

16: return TSR

0.02 0.04 0.06 0.08 0.10

1

2

3

4

5 ·10−2

n = 3
n = 4
n = 5
n = 7
n = 20
Upper bound

Leakage rate p

1
nTSR-SNI(n, p) vs. 1

3p

0.02 0.04 0.06 0.08 0.10

2

4

6

·10−2

n = 2
n = 3
n = 4
n = 6
n = 10

Leakage rate p

1
nTSR-Rot(n, p)

Figure 5: (Left) Estimation results for 1
nTSR-SNI(n, p). The given upper bound holds with

acceptable accuracy. Note that 1
nTSR-SNI(n, p) decreases with n. (Right) The estimated

value for 1
nTSR-Rot(n, p) increases with n. Hence, we cannot device a similar upper bound.

With n = 3, the given bound is only valid for p < 0.8. One can find a better matching
bound with n ≥ 4. However, for our illustration purpose, the given bound suffices.
Remark 8. SR-Rot satisfies Definitions 5 and 6. However, TSR-Rot(n, p)/n grows with n for
any tested region of p. See Figure 5-(Right).

4.3.5 Devising a Union Bound

In the following lemma, we use TSR(n, p) to compute an equivalent leakage rate p′.

Lemma 4. In the RPM setting, at pair (n, p), the distribution of ṽ conditioned on{
NLSG(ΣSG, V, v) = 0,
V † = b,

(42)

with T = E[|V †|] is statistically equivalent to the distribution of ṽ conditioned on

678 An Algebraic Approach for Evaluating Random Probing Security

NLSG(ΣSG, V, v) = 0, (43)

where the shares in V leak at rate:

p′ = p+ T
n
− pT

n
≈ p+ T

n
. (44)

Proof. The set of equations defined by NLSG is deterministic, with only the collection of
known variables being probabilistic. Our goal is to demonstrate that the distribution of
the known elements in the input V is identical in both systems.

In the first system, members of V are known to the adversary from two sources: the
usual p leakage from the SG side and V † resulting from the SR side. As the parities
corresponding to the SR gadget are symmetric for the members of V , each member of V is
in V † independently with a probability of T

n . Hence, the combined probability of leakage
for each member of V is:

p′ = p+ T
n
− pT

n
. (45)

In the second system, members of V are directly leaking with a probability of p′.
Therefore, the inputs to both systems are statistically equivalent, and they should produce
statistically equivalent results.

Remark 9. If SR is leak-free, due to the maximal independence requirements on the input-
output shares V 0 and V 1, there will be no other relation than trivial ⊕ni=1v

0
i = ⊕ni=1v

1
i .

Therefore, sets V 0,† and V 1,† will be empty, and consequently, T(n, p) will be zero, which
results in p′ = p.

To proceed our approach to prove (16), assume that there exists an EEC for (non-)linear
SG1 and SG2 gadgets. Developing an EEC for a multiplication gadget will be treated in
Section 5.
The following lemma establishes how to merge information from multiple EECs.

Lemma 5. Learning v through a set of independent EECs with parameters {E1, . . . ,Ek}
is equivalent to learning it via an EEC with parameter E′ ≤

∑k
i=1 Ei.

Proof. The lemma is obtained by applying the union bound on the probabilities.

We are now able to compute an EEC for the chain SG1 → SR→ SG2:

ESG1→SR→SG2(n, p) = Pr(ṽ = v∗)
= Pr(ṽ = v∗ | eSR) Pr(eSR) + Pr(ṽ = v∗ | eSR) Pr(eSR)
≤ Pr(eSR) + Pr(ṽ = v∗ | eSR)
= ESR(n, p) + Pr(ṽ = v∗ | eSR)
≤ ESR(n, p) + ESG1(n, p′) + ESG2(n, p′),

(46)

where p′ is as given in (44), and p should be bounded such that EECs for SG1 and SG2
remain in their valid region.

4.4 Discussion on the Methodology and Results
To decompose the security of combinations in the RPM framework, we introduced a
novel technique based on categorizing the parity relations of the deployed SR gadget into
non-informative and informative groups. Our main technical contribution is Theorem 1,
which is rigorously stated and proved for gadgets that satisfy the symmetry (Definition
5) and maximal independence (Definition 6) properties. However, the application of this
approach using specific SR gadgets requires computing parameters such as TSR and ESR,

Vahid Jahandideh, Bart Mennink and Lejla Batina 679

which directly depend on the details of the interconnection of the intermediates in the
gadget. Since the derivation of TSR(n, p) and ESR(n, p) with an analytical approach seems
complicated, we have employed a Monte Carlo method to estimate these parameters in a
practical range of (n, p) tuples.

Relations With Threshold Probing Model. Among the three SR gadgets considered,
only SR-SNI satisfies the requirement of our proposed security reduction. This gadget,
also useful in the Threshold Probing Model (TPM), is proven to be valuable for secure
compositions [BBD+16]. More specifically, SR-SNI satisfies the t-SNI security definition
[BBD+16], which informally implies that any n− 1 output shares are independent of input
shares (if no intermediate leaks). t-SNI security also implies that the independence of
input-output shares can be maintained if a limited number of internal intermediates are
disclosed to the adversary. These intuitive interpretations of t-SNI bear some similarity to
the maximal independence in our approach. However, we leave the development of more
technical connections between the definitions for future work.

5 A Multiplication Gadget With RPM Security

A multiplication gadget, denoted as SAND, takes two n-sharings X and Y and computes an
n-sharing Z in a way that preserves the security of the three native values while ensuring
that z = xy. This section considers the SAND candidate introduced by Battistello et
al. in [BCPZ16], labeled as SAND-Rec. With certain modifications, we demonstrate the
conjectured RPM security of this gadget. Our primary technique is inclusion or exclusion of
specific leakage information, which enables linearization of the describing parity relations.

Structure of SAND-Rec. SAND-Rec consists of two algorithms: MatMult and Comp.
MatMult takes two n-sharings X and Y as input and generates an n2-sharing for z = xy.
These n2 values are organized into an n× n matrix, denoted as B. Comp then operates on
B using fresh randomness to compress it into an n-sharing, whose secret is z.

X n-sharing

Y n-sharing
B n2-sharing for z Z n-sharing

MatMult Comp

MatMult Algorithm. MatMult, outlined in Algorithm 9, is a recursive process. At the
initial invocation, it takes an nX -sharing X and an nY -sharing Y with nX = nY = n.
In the subsequent calls, if nX and nY are both 1, the algorithm sets B to x1y1 and the
computation terminates. Otherwise, the input vectors X and Y are divided into left and
right subvectors. We denote the left subvectors as XL and YL and the right subvectors as
XR and YR as defined in lines 4 and 5 of the algorithm.

With nX = 1 and nY > 1 (resp. nY = 1 and nX > 1), XL (resp. YL) will be an
empty vector. Empty vectors are represented by a ∅ symbol. For length-one inputs, the
refreshing gadget is the identity function. When XL is empty, both BLL and BLR are
empty. Similarly, if YL is empty, then BLL and BRL will be empty as well.

680 An Algebraic Approach for Evaluating Random Probing Security

Algorithm 9 MatMult
Input X, Y
Output An n2-sharing for z = xy saved in B

1: if nX = 1 and nY = 1 then
2: B = x1y1
3: else
4: XL = (x1, . . . , xbnX /2c) XR = (xbnX /2c+1, . . . , xnX

)

5: YL = (y1, . . . , ybnY /2c) YR = (ybnY /2c+1, . . . , ynY
)

6: if XL 6= ∅ & YL 6= ∅ then
7: BLL = MatMult(SR(XL), SR(YL))
8: if XL 6= ∅ then
9: BLR = MatMult(SR(XL), SR(YR))
10: if YL 6= ∅ then
11: BRL = MatMult(SR(XR), SR(YL))
12: BRR = MatMult(SR(XR), SR(YR))

13: B =
[

BLL BLR

BRL BRR

]
14: return B

Algorithm 10 Comp
Input The n2-sharing in B[n×n]
Output An n-sharing Z for z

1: for i = 1 to n do
2: for j = i + 1 to n do
3: ri,j

$← F2u

4: rj,i = (ri,j ⊕Bi,j)⊕Bj,i

5: for i = 1 to n do
6: zi = Bi,i

7: for j = 1 to n , j 6= i do
8: zi = zi ⊕ ri,j

9: return Z = (z1, z2, . . . , zn)

Comp Algorithm. Comp, described in Algorithm 10 [BCPZ16], squeezes the n2-sharing
in B into an n-sharing in Z. Comp is linear, and its input and output are sharings for
the same secret. It is symmetric, and, except for ⊕B = ⊕Z, there is no relation between
its input and output shares. These similarities with SR gadgets enable the application
of techniques developed in Section 4 to estimate the RPM security of MatMult→ Comp
composition as:

EMatMult→Comp(n, p) ≤ EMatMult(n, p′) + EComp(n, p). (47)
Here, p′ exceeds p and depends on the structure of Comp.

5.1 RPM Security of SAND-Rec
For MatMult, we exhibit an EEC, with parameter E+, that serves as an upper bound on
the adversary’s post-leakage knowledge. To illustrate the tightness of this upper bound,
we put forward a lower bound modeled via another EEC with parameter E−. The crucial
observation is that the output of the multiplication (Line 2 in Algorithm 9) is not involved
in any further computation except storing for later processing in Comp. This observation
is visually represented in Figure 6. Moreover, according to Algorithm 9, the two linear
sets of operations before multiplications, which are processing X and Y , are independent
and identical.

X n-sharing Linear

x1

xi

xn2

Y n-sharing

Linear

y1 yj yn2

bi,j B

Figure 6: Interpretation of MatMult. The n2 xi (and yi) values represent the output of
the respective linear operations. Black-filled circles denote multiplication.

Vahid Jahandideh, Bart Mennink and Lejla Batina 681

Devising E−. Non-linear relations among the variables in ΣMatMult stem from operands
stored in B. By excluding B from ΣMatMult, we ensure that all relations are linear. Therefore,
if we assume that the adversary does not receive any leakage from B, the parity description
for the native x and y becomes linear. As a result, we can represent the adversary’s
post-leakage information about x (resp. y) via an EEC with parameter E−.

Devising E+. As depicted in Figure 6, for each entry bi,j in B, there exist corresponding
xi and yj in ΣMatMult such that bi,j − xiyj = 0. Other than this equation, bi,j does not
participate in any other relation.

If bi,j is not leaked to the adversary, this parity relation does not help the adversary,
and we can safely ignore it.5

If bi,j leaks, it creates a non-linear relation that cannot be ignored. In this scenario, we
let the adversary know both xi and yj . This intervention increases the adversary’s success
probability in learning information about the natives and eliminates the non-linear parity
equation. This trick allows us to attribute MatMult with a linear (and more informative)
alternative parity description. The resulting linear system, as per Lemma 1, either reveals
x (resp. y) or provides no information. Hence, we can model the post-leakage knowledge
with an EEC, denoted by E+.

Choosing an Appropriate Secret. As shown in Figure 6, computations on X and Y
vectors are carried out separately until the final multiplications. Consequently, in both E+

and E−, the parity equations for X and Y form two separate, identical, and independent
subsystems. This implies that the EEC for each of the native inputs will be independent
and similar. Later for deriving the upper bound in (47), we assume that recovery of each
native variable will disclose all the native variables.

Computing E+ and E−. In Figure 7, we present estimations for E+(n, p) and E−(n, p)
at various orders. These results are based on the instantiation of SR with SR-Simple.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
E+ n=5
E+ n=10
E+ n=15

E− n=3
E− n=5
E− n=15

Leakage rate p

E+
an

d
E−

Figure 7: E+ and E− for MatMult at different orders.

Based on experiments for (n ≤ 30, p ≤ 0.15) using Algorithm 5, we have the following
approximations:

E+(n, p) ≤ p0.3n, and E−(n, p) ≥ p0.8n. (48)
Remark 10. From the results in Figure 7, it is evident that for leakage rates p > 0.22, as
the masking order increases, E+ also increases. Consequently, MatMult with SR-Simple
may be insecure at these rates.

5A similar proof to that of Lemma 3 can demonstrate that this parity relation does not affect the
posterior distribution of the native values.

682 An Algebraic Approach for Evaluating Random Probing Security

Remark 11. SR-SNI is utilized as the SR component of MatMult in [BCPZ16], resulting in
an overall complexity of O(n2 log(n)). However, in our numerical experiments, we observed
that for any tested pair (n, p), using SR-Simple as the instantiation for MatMult led to a
lower success probability for the adversary compared to when MatMult was instantiated
with SR-SNI. Additionally, using SR-Simple, complexity of the gadget drops to O(n2).

Including Leakage of Comp. Both MatMult and Comp are symmetric (Definition 5).
Comp is linear, and its input and output shares are maximally independent (Definition 6),
and they represent sharings of the same secret. This allows us to apply a similar procedure
used in Section 4 to bound ESAND-Rec(n, p). The main difference is that Comp’s input vector
consists of n2 variables. Consequently, the computation of p′ is altered as follows:

p′ ≈ p+ TComp(n, p)
n2 . (49)

Here, TComp(n, p) represents the expected number of extra variables that will be revealed
to the adversary (for the derivation of the upper bound (47)). In the notation of Section 4,
we have:

TComp(n, p) = E[|B†|]. (50)

Using Algorithm 8, for n ≤ 30, we obtained the following estimations:

TComp(n, p) ≤ pn2, valid for (n ≥ 4, p ≤ 0.07),
EComp(n, p) ≤ p0.6n, valid for (n ≥ 2, p ≤ 0.15).

(51)

By substituting the estimations in (51) and (48) into the ESAND-Rec(n, p) relation given in
(47), for (n ≥ 4, p ≤ 0.07), we have:

ESAND-Rec(n, p) ≤ EMatMult(n, p′) + EComp(n, p) ≤(a)

(
p+ pn2

n2

)0.3n

+ p0.6n ≈ (2p)0.3n.

(52)
This bound demonstrates the RPM security of the proposed SAND-Rec structure in the
tested region of the (n, p) pairs. Note that the left side of (a) is analytically proved, but
the right side is based on our probability estimation approach and might not hold outside
the tested region.

6 RPM Secure Masking of S-box in AES
The SAND-Rec and SR-SNI gadgets enable a masked instantiation of the AES’s S-box based
on the work of Prouff and Rivain [RP10]. We denote this masked circuit as SS-box, and in
addition to demonstrating RPM security at p ≤ 0.03 rates, we outline an EEC for it.

For an n-sharing V corresponding to a native v in a specified F28 , SS-box needs to
compute an n-sharing of v−1. Prouff and Rivain’s approach for computing this inverse is
based on the following relation:

v−1 = v254 =
[
(v2v) (v2v)4]16 (v2v)4 v2. (53)

Since (.)2i is an additive operation in F28 , only four non-affine multiplications are
required to compute (53). These multiplications are performed using SAND gadgets. Thus,
SS-box operates as visualized in Figure 8. To prepare for RPM security reduction, we have
included more refresh gadgets compared to [RP10].

Vahid Jahandideh, Bart Mennink and Lejla Batina 683

v
(.)2

SR1

v2

SAND1
v3

SR2 SR3

(.)4

v12

SR4

SAND2

v15

(.)16

v240
SR5

SR6

SAND3
v252

SR7 SAND4
v254

SR8

Figure 8: Structure of SS-box. Powers of v represent the corresponding native values.

6.1 RPM Security of the Proposed SS-box
In the structure of SS-box, SR gadgets enable us to apply the reduction method developed
in Section 4 to translate the RPM security of the composition into the RPM security of
its constituent gadgets. Furthermore, since we have already developed an EEC for the
individual gadgets, by applying Lemma 5, we can derive an EEC for the entire SS-box.

Unifying the Secret. Secrets of the gadgets are different powers of v. To unify the secrets,
at the cost of increasing the upper bound, we assume that knowledge of vj reveals v to the
adversary. This assumption also allows us to disregard leakage from additive (.)2i gadgets,
as they do not introduce new intermediates and only modify the exponent of v for the
next gadget.

The Case of Multiple SR Gadgets. When feeding multiple, say k, SR gadgets with the
same n-sharing, we can obtain the corresponding p′ as p′ ≈ p+ kTSR

n .

p′ ≈ p+ 3TSR
n

SR1

p

SAND1

p′ ≈ p+ 3TSR
n

SR2

p

SR3

p

SR4 p

SAND2

p

p′ ≈ p+ TSR
n

SR5 p

SR6 p

SAND3

p′ ≈ p+ TSR
n

SR7

p

SAND4

p′ ≈ p+ TSR
n

SR8 p

Figure 9: Reduction of RPM security of SS-box to RPM security of its composing gadgets.

As illustrated in Figure 9 and with the application of the reduction method in Section
4 and Lemma 5, for (n ≥ 4, p ≤ 0.03), we can use (15), (41), and (52) to obtain:

ESS-box(n, p) ≤ 8ESR(n, p)

+ 3ESAND

(
n, p+ TSR(n, p)

n

)
+ ESAND

(
n, p+ 3TSR(n, p)

n

)
≤(a) 8p0.6n + 3

(
8
3p
)0.3n

+ (4p)0.3n ≈ 4(4p)0.3n.

(54)

684 An Algebraic Approach for Evaluating Random Probing Security

Note that at p ≤ 0.03, the derived p′ and EECs are valid. Also, note that the left side of
(a) is based on analytical approach. However, the right side of it is based on probability
estimation.

7 RPM Secure Masking of AES
Having established an RPM secure SS-box, we now aim to explore RPM security in a more
extensive composition: a masked AES cipher. In this cipher, operations other than S-box
are affine and, consequently, straightforward to mask (see [RP10] for details). This section
reviews the structure of a masked AES, denoted as SAES, and approximates the RPM
security for a specific target: the first sub-key of the first round.

Overview of SAES. AES [Nat01] is a block cipher supporting various key sizes. In this
paper, we focus on the 128-bit key variant, consisting of 10 rounds. Each round updates the
state, which is a 16-byte vector initially filled with the plaintext. The state is transformed
using a 16-byte round key derived from the input key. Our goal is to approximate the
adversary’s post-leakage information on K1, the first byte of the key for the first round.
The operations of a SAES in the initial two rounds are outlined in Figure 10.

M1 n-sharing ⊕

K1 n-sharing

SR1

SR2 SS-box SR3
S1

S16

... SShift-Rows
&

SMix-Columns

⊕
SR4

K2 n-sharing

... ...

T 1

T 16

Figure 10: Targeting k1 (secret of K1) in SAES. M1 is an n-sharing for the first byte of
plaintext, and K2 is an n-sharing for the first sub-key of the second round. S1 to S16 and
T 1 to T 16 are n-shared bytes of the state.

SShift-Rows and SMix-Columns are affine and operate on the n-shared counterpart of
the state. The S-box, aside from computing the inverse, also applies a linear operation
at its output, which is considered part of the large affine block in Figure 10. The refresh
gadget in our experiments is SR-SNI.
Remark 12. Since round keys only depend on the input key, they can be computed once.
In a masked domain, this translates to saving n-sharings of the sub-keys and refreshing
them before each invocation.

7.1 Estimating the RPM Security
To assess the adversary’s post-leakage information about k1, that is the secret of K1, we
employ the reduction framework detailed in Section 4, focusing on SR3. We calculate EEC
for both the left and right components of this SR and combine the results using Lemma 5.
For the derivation of results in this section, we assume that K2 and K1 are independent
of each other.

On the left side of SR3, secret of the gadgets are either m1 ⊕ k1 or k1. However, since
m1 (the secret of M1) is known to the adversary, these two native values are equivalent.

Vahid Jahandideh, Bart Mennink and Lejla Batina 685

Hence, using the reduction, we have:

Eleft(n, p) = ESS-box

(
n, p+ TSR

n

)
+ 2ESR(n, p). (55)

On the right side of SR3, we have an F28 -affine block, for which the approach developed in
Section 3 is sufficient to sketch an EEC. To account for the leakage of the rounds (3 to
10), at the cost of slightly increasing the gap of the upper bound, we assume that shares
of T 1 to T 16 are known to the adversary. We also include secrets of the other 15 SS-boxes
as auxiliary intermediates inside the affine block and assume that each of these secrets is
leaking with a probability Eleft(n, p). More specifically, we make the following tweaks to
Algorithm 5.

Estimating Eright. In the Create-M sub-algorithm, the secrets si (secrets of SS-boxes) are
placed in the first 16 columns of Mn. The remaining columns are assigned to intermediates
inside the affine block. No adjustments are necessary for the Extract-Linear sub-algorithm.
However, the Pr

n = Sampl(Pn, p) function should apply different probabilities of leakage
to its columns. Columns 2 to 16 will leak with probability Eleft(n, p). Shares in T 1 to
T 16 will leak with probability one. The remaining columns will leak independently with
probability p. The rest of Algorithm 5 is computed as usual.

Estimation Results. By running the algorithm with sufficiently many trails, for p ≤ 0.02,
we obtain the following upper bound:

Eright(n, p) ≤ 3pn−1. (56)

Adding the leakage of SR3 to the combination (55) and (56), for (n ≥ 4, p ≤ 0.02), we
derive the following estimation for the targeted k1, which uses (15) and (54):

E(n, p) ≤ Eright(n, p) + ESR(n, p) + Eleft(n, p)

≤ ESS-box

(
n, p+ TSR

n

)
+ 3ESR(n, p) + Eleft(n, p)

≤(a) ESS-box

(
n,

4
3p
)

+ 3p0.6n + 3pn−1 ≈ 4(5.3p)0.3n.

(57)

The left side of (a) is analytically obtained. However, the right side of it is based on our
probability estimation approach and, hence, is only valid in the tested region of (n, p) pairs.
The bound based on these estimations is exponentially decaying. Thus, it shows the RPM
security of the scheme. Note that the threshold p ≤ 0.02 is chosen such that the maximum
leakage values for the constituent gadgets are all in their tested region.

7.2 Comparison With Previous Results

The expansion-based compiler technique, initially introduced by Ananth et al. [AIS18] and
subsequently refined by Belaïd et al. in a series of works [BCP+20,BRT21,BRTV21], offers
RPM security through an indirect (simulation-based) proof. In contrast, our approach
involves direct security evaluation, as discussed in the Introduction. While both research
directions provide quantitative claims based on their respective security metrics within
the same leakage model, a comparison of their complexity and achieved security level can
provide valuable insights. Below, we provide an overview of the expansion technique.

686 An Algebraic Approach for Evaluating Random Probing Security

Expansion Approach. The expansion approach aims to boost the security of a circuit
C through iterative masking. Initially, C undergoes masking, resulting in SC where the
gates of C are substituted with gadgets. This process repeats recursively, with SC itself
undergoing masking, replacing its gates with gadgets. This iteration persists until the
desired security level is achieved. Although this method exponentially inflates the size of
the circuit, it can enhance security under specific conditions.

Comparison of Security Claims. In our approach, the size of the final circuit is O(|C|n2),
with the security bound being 4(5.3p)0.3n as given in (57), specifically for the case of AES.
The factor O(|C|n2) represents the standard size expansion in TPM. Our work achieves
this size expansion by utilizing only SAND-Rec and SR-SNI gadgets, which are of size
O(n2).

In contrast, the expansion approach for achieving a security bound of 2−κ increases
the size of the circuit to O(|C|κe), where e is determined by the structure of the basic
gadgets used. The value of e ranges from 7.5 in early works to 3.2 in more recent
refinements [BCP+20, BRT21]. Therefore, to achieve the same security level as our
work, the expansion approach results in a final circuit size of O(|C||2 + 0.3n log2(5.3p)|e),
exhibiting an asymptotic ne increase in circuit size, that is higher than our approach.

Furthermore, our approach withstands p < 0.02, while the expansion approach with-
stands a smaller rate p < 0.007. However, our work’s final security bound expression as a
function of (n, p) is based on probability estimations of constituent gadgets. Hence, its
validity is only guaranteed in the tested region of (n, p) values.

Acknowledgments
We would like to thank the reviewers and shepherd for their valuable feedback and
comments. Bart Mennink is supported by the Dutch Research Council (NWO) under
grant VI.Vidi.203.099. Lejla Batina is supported by the Dutch Research Council (NWO)
through the PROACT project (NWA.1215.18.014) and TTW PREDATOR project 19782.

References
[ADF16] Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. Circuit

Compilers with O(1/ logn) Leakage Rate. In Proceedings, Part II, of the 35th
Annual International Conference on Advances in Cryptology — EUROCRYPT
2016 - Volume 9666, page 586–615, Berlin, Heidelberg, 2016. Springer-Verlag.

[AIS18] Prabhanjan Ananth, Yuval Ishai, and Amit Sahai. Private Circuits: A
Modular Approach. In Hovav Shacham and Alexandra Boldyreva, editors, Ad-
vances in Cryptology – CRYPTO 2018, pages 427–455, Cham, 2018. Springer
International Publishing.

[Ajt11] Miklós Ajtai. Secure Computation with Information Leaking to an Adver-
sary. In Proceedings of the forty-third annual ACM symposium on Theory of
computing, pages 715–724, 2011.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong Non-
Interference and Type-Directed Higher-Order Masking. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 116–129, 2016.

Vahid Jahandideh, Bart Mennink and Lejla Batina 687

[BBP+17] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Private Multiplication over Finite
Fields. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryp-
tology – CRYPTO 2017, pages 397–426, Cham, 2017. Springer International
Publishing.

[BCGR24] Julien Béguinot, Wei Cheng, Sylvain Guilley, and Olivier Rioul. Formal
Security Proofs via Doeblin Coefficients: Optimal Side-channel Factorization
from Noisy Leakage to Random Probing. Cryptology ePrint Archive, Paper
2024/199, 2024. To appear at CRYPTO 2024.

[BCP+20] Sonia Belaïd, Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and
Abdul Rahman Taleb. Random Probing Security: Verification, Composition,
Expansion and New Constructions. In Daniele Micciancio and Thomas
Ristenpart, editors, Advances in Cryptology – CRYPTO 2020, pages 339–368,
Cham, 2020. Springer International Publishing.

[BCPZ16] Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina
Zeitoun. Horizontal Side-Channel Attacks and Countermeasures on the
ISW Masking Scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors,
Cryptographic Hardware and Embedded Systems - CHES 2016 - 18th Interna-
tional Conference, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings,
volume 9813 of Lecture Notes in Computer Science, pages 23–39. Springer,
2016.

[BDF+17] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire,
François-Xavier Standaert, and Pierre-Yves Strub. Parallel Implementations
of Masking Schemes and the Bounded Moment Leakage Model. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology
– EUROCRYPT 2017, pages 535–566, Cham, 2017. Springer International
Publishing.

[BFO23] Francesco Berti, Sebastian Faust, and Maximilian Orlt. Provable Secure
Parallel Gadgets. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(4):420–
459, 2023.

[BRT21] Sonia Belaïd, Matthieu Rivain, and Abdul Rahman Taleb. On the Power of
Expansion: More Efficient Constructions in the Random Probing Model. In
Anne Canteaut and François-Xavier Standaert, editors, Advances in Cryptol-
ogy – EUROCRYPT 2021, pages 313–343, Cham, 2021. Springer International
Publishing.

[BRTV21] Sonia Belaïd, Matthieu Rivain, Abdul Rahman Taleb, and Damien Vergnaud.
Dynamic Random Probing Expansion with Quasi Linear Asymptotic Complex-
ity. In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptology
– ASIACRYPT 2021, pages 157–188, Cham, 2021. Springer International
Publishing.

[CFOS21] Gaëtan Cassiers, Sebastian Faust, Maximilian Orlt, and François-Xavier
Standaert. Towards Tight Random Probing Security. In Tal Malkin and Chris
Peikert, editors, Advances in Cryptology – CRYPTO 2021, pages 185–214,
Cham, 2021. Springer International Publishing.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards Sound Approaches to Counteract Power-Analysis Attacks. In Michael
Wiener, editor, Advances in Cryptology — CRYPTO’ 99, pages 398–412,
Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

688 An Algebraic Approach for Evaluating Random Probing Security

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and Efficiently
Composing Masked Gadgets With Probe Isolating Non-Interference. IEEE
Transactions on Information Forensics and Security, pages 2542–2555, 2020.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying Leakage
Models: From Probing Attacks to Noisy Leakage. In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology – EUROCRYPT 2014,
pages 423–440, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[DFS15] Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making
Masking Security Proofs Concrete. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology – EUROCRYPT 2015, pages 401–429, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

[DFŻ19] Stefan Dziembowski, Sebastian Faust, and Karol Żebrowski. Simple Refreshing
in the Noisy Leakage Model. In Steven D. Galbraith and Shiho Moriai, editors,
Advances in Cryptology – ASIACRYPT 2019, pages 315–344, Cham, 2019.
Springer International Publishing.

[HRG14] Annelie Heuser, Olivier Rioul, and Sylvain Guilley. Good Is Not Good Enough.
In Lejla Batina and Matthew Robshaw, editors, Cryptographic Hardware and
Embedded Systems – CHES 2014, pages 55–74, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing
Hardware against Probing Attacks. In Dan Boneh, editor, Advances in
Cryptology - CRYPTO 2003, pages 463–481, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

[KPP20] Matthias J. Kannwischer, Peter Pessl, and Robert Primas. Single-Trace
Attacks on Keccak. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):243–
268, 2020.

[LDPDP06] Steven J Leon, Lisette G De Pillis, and Lisette G De Pillis. Linear Algebra
with Applications. Pearson Prentice Hall Upper Saddle River, NJ, 2006.

[MS23] Loïc Masure and François-Xavier Standaert. Prouff and Rivain’s Formal
Security Proof of Masking, Revisited. In Helena Handschuh and Anna Lysyan-
skaya, editors, Advances in Cryptology – CRYPTO 2023, pages 343–376,
Cham, 2023. Springer Nature Switzerland.

[Nat01] National Institute of Standards and Technology. FIPS PUB 197: Advanced
Encryption Standard (AES). Technical report, National Institute of Standards
and Technology, 2001.

[PGMP19] Thomas Prest, Dahmun Goudarzi, Ange Martinelli, and Alain Passelègue.
Unifying Leakage Models on a Rényi Day. In Alexandra Boldyreva and
Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, pages
683–712, Cham, 2019. Springer International Publishing.

[PP02] A. Papoulis and S.U. Pillai. Probability, Random Variables, and Stochastic
Processes. McGraw-Hill series in electrical and computer engineering. McGraw-
Hill, 2002.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against Side-Channel At-
tacks: A Formal Security Proof. In Thomas Johansson and Phong Q. Nguyen,
editors, Advances in Cryptology – EUROCRYPT 2013, pages 142–159, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

Vahid Jahandideh, Bart Mennink and Lejla Batina 689

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably Secure Higher-Order Mask-
ing of AES. In Stefan Mangard and François-Xavier Standaert, editors,
Cryptographic Hardware and Embedded Systems, CHES 2010, pages 413–427,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[SMY09] François-Xavier Standaert, Tal G. Malkin, and Moti Yung. A Unified Frame-
work for the Analysis of Side-Channel Key Recovery Attacks. In Antoine
Joux, editor, Advances in Cryptology - EUROCRYPT 2009, pages 443–461,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[WJZY23] Weijia Wang, Fanjie Ji, Juelin Zhang, and Yu Yu. Efficient Private Cir-
cuits with Precomputation. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2023(2):286–309, 2023.

	Introduction
	Open Challenges in the RPM
	Related Work
	Our Contribution
	Our Methodology

	Preliminaries
	Random Probing Model

	 EEC for a Linear SC
	Recovering Parity Relations and Estimating ESC
	Case Study on Linear Gadgets

	Reduction in RPM Framework
	Reduction With Leak-Free SR Gadget
	A Describing System of Equations
	Modeling the Refresh Gadget
	Discussion on the Methodology and Results

	A Multiplication Gadget With RPM Security
	RPM Security of SAND-Rec

	RPM Secure Masking of S-box in AES
	RPM Security of the Proposed SS-box

	RPM Secure Masking of AES
	Estimating the RPM Security
	Comparison With Previous Results

