
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 4, pp. 633–656. DOI:10.46586/tches.v2024.i4.633-656

Improved Circuit Synthesis with Multi-Value
Bootstrapping for FHEW-like Schemes

Johannes Mono1, Kamil Kluczniak2 and Tim Güneysu1,3

1 Ruhr University Bochum, first.last@rub.de
2 secunet Security Networks, kamil.kluczniak@gmail.com

3 DFKI GmbH

Abstract. In recent years, the research community has made great progress in
improving techniques for privacy-preserving computation, such as fully homomorphic
encryption (FHE). Despite the progress, there remain open challenges, mainly in
performance and usability, to further advance the adoption of these technologies. This
work provides multiple contributions that improve the current state-of-the-art in both
areas. More specifically, we significantly simplify the multi-value bootstrapping by
Carpov, Izabachène, and Mollimard [CIM19] for Boolean-based FHE schemes such as
FHEW or TFHE, making the concept usable in practice. Based on our simplifications,
we implement an easy-to-use interface for multi-value bootstrapping in the open-source
library FHE-Deck [fhe23], derive new parameter sets for multi-bit encryptions with
state-of-the-art security, and build a toolset that translates high-level code to multi-bit
operations on encrypted data using circuit synthesis. We propose and integrate the
first non-trivial FHE-specific optimizations for privacy-preserving circuit synthesis:
look-up table (LUT) grouping and adder substitution. Using LUT grouping, we
reduce the number of bootstrapping operations by almost 40% on average, while
for adder substitution, we reduce the number of required bootstrappings by up to
85% for certain use cases. Overall, the execution time is up to 4.2× faster with all
optimizations enabled compared to previous state-of-the-art circuit synthesis.
Keywords: fully homomorphic encryption · FHEW · TFHE · circuit synthesis

1 Introduction
Encryption is a fundamental technology of today’s society, securing data and communica-
tions around the globe. One exciting application is privacy-preserving computation, where
techniques such as fully homomorphic encryption (FHE) encrypt and protect sensitive data
during computation. However, there remain open challenges in adopting these technologies,
for example, reducing computational costs or improving usability.

Gentry’s seminal work [Gen09] introduces bootstrapping, in which the error associated
with a homomorphic ciphertext is refreshed to allow for indefinite computation. Current
state-of-the-art schemes are still based on this ingenious idea, and two strains have emerged.
Word-based schemes such as BFV [Bra12,FV12], BGV [BGV14], and CKKS [CKKS17]
operate on multiple large elements at a time and excel at highly parallelizable tasks. These
schemes usually perform many operations followed by an expensive bootstrapping procedure
and are often used for specific use cases requiring mainly additions or multiplications.

In contrast, Boolean-based schemes such as FHEW [DM15] and TFHE [CGGI16a]
provide high flexibility encrypting single bits or small bit groups and are thus a good fit
for a wide variety of use cases. A target function is commonly represented as a circuit
composed of Boolean gates with encrypted input bits, and every gate evaluation requires a
comparatively fast bootstrapping. However, bootstrapping is still the most expensive part

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-04-15 Accepted: 2024-06-15 Published: 2024-09-05

https://doi.org/10.46586/tches.v2024.i4.633-656
mailto:johannes.mono@rub.de,tim.gueneysu@rub.de
mailto:kamil.kluczniak@gmail.com
http://creativecommons.org/licenses/by/4.0/

634 Improved Circuit Synthesis with Multi-Value Bootstrapping for FHEW-like Schemes

of such circuits, and thus, it is crucial to reduce the number of gates when translating a
use case to a circuit.

Translating use cases is either done manually for critical tasks (this can be compared
to hand-written assembly) or using tools to automate translation from high-level code
to Boolean circuits (similar to code compilation). Although the former can result in the
best performance for a given use case, the process is rather tedious, and there has been
some effort by the research community to provide automatic translations from high-level
code to circuits [CDS15,CMG+18,GSPH+21], improving usability and easing adoption for
non-experts interested in FHE.

Currently, two different approaches exist for automatically converting high-level code to
Boolean circuits. The first approach is based on instruction mapping, where the high-level
code is translated to an intermediate representation (IR). Afterward, the individual
instructions of the IR are mapped to Boolean primitives and composed accordingly. The
second approach is based on existing hardware tooling using so-called synthesizers. First,
high-level synthesis converts high-level code to a hardware description language (HDL).
Then, a synthesizer converts the HDL to a Boolean circuit. Finally, no matter the approach,
the resulting circuit is translated to FHE library code.

In this work, we introduce several contributions to enhance the current state-of-the-art
in FHE transpilation, with a primary focus on the synthesis-based approach:

• We significantly simplify the multi-value bootstrapping idea proposed by Carpov,
Izabachène, and Mollimard [CIM19], improving the current state-of-the-art for boot-
strapping in FHEW-like schemes. Our modifications make it feasible to use this
technique in practice and enhance the capabilities of homomorphic gates (Subsec-
tion 3.2).

• We adapt an optimization technique for single- and multi-bit circuits to the circuit
synthesis process and handle additions specifically optimized for FHE circuits. This
results in circuits requiring up to 85% less bootstrappings compared to non-optimized
circuits (Subsection 3.7).

• We perform novel post-synthesis optimizations on the netlist based on our improved
multi-value bootstrapping to evaluate multiple gates at once. With this optimization,
execution times are up to 2.4× faster compared to the previous state-of-the-art
(Subsection 3.6).

• We propose new parameter sets for FHEW-like encryptions with state-of-the-art
security for multi-value bootstrapping. We also implement an easy-to-use inter-
face for multi-value bootstrapping in the open-source library FHE-Deck [fhe23]
(Subsection 3.4).

2 Preliminaries
In the following, we introduce the background to our work. We start with notations used
throughout the paper, provide a formal definition of Boolean and homomorphic circuits,
shortly describe FHE and its hardness assumption and conclude with a short section on
transpilation in the context of FHE.

2.1 Notation
We denote as ZQ the group of integers modulo Q and, for a power-of-two N , as RQ the ring
of polynomials ZQ[X]/(XN + 1). We call z ∈ RQ with zn = 1 ∈ RQ the n-th root of unity.
Note that RQ has 2N roots of unity of the form Xa for a ∈ Z2N . Furthermore, the roots
of unity in RQ form an algebraic group of order 2N with respect to multiplication. For

Johannes Mono, Kamil Kluczniak and Tim Güneysu 635

clarity, we denote ring elements using the \frak environment e.g. a ∈ RQ. We denote
a n-dimensional column vector as [f(·, i)]ni=1, where f(·, i) defines the i-th coordinate. For
brevity, we will also denote as [n] the vector [i]ni=1, and as [n,m]mi=n the vector [n, . . . ,m]>.
We address the i-th entry of a vector ~v by ~v[i]. We denote the inner product between
vector ~a and ~b as 〈~a,~b〉.

By x ←R S, we denote sampling a random variable from the set S. By default,
we sample from the uniform distribution and explicitly state when referring to other
distributions. For a random variable a ∈ Z, we denote as Var(a) the variance of a, its
expectation as E(x), and its standard deviation as SD(a). For a ∈ RQ, we define Var(a) and
E(a) to be the variance and expectation of the coefficients of the polynomial a, respectively.
We denote any polynomial as poly(·). We denote as negl(λ) a negligible function in λ ∈ N;
that is, for any positive polynomial poly(·) there exists c ∈ N such that for all λ ≥ c we
have negl(λ) ≤ 1

poly(λ) .

2.2 Boolean and Homomorphic Circuits
We define a Boolean gate as an arbitrary Boolean function Gn : Zn2 → Z2 for a positive
integer n. Any Boolean gate can be represented as LUT which stores 2n outputs O ∈ F2,
one for each input I ∈ Zn2 ; we often use the terms Boolean gate and LUT interchangably.
An example for a Boolean gate G1 is an inverter gate

INV : Z2 → Z2, I 7→ O = I + 1.

We can generalize a Boolean gate to multiple outputs as Gn,m : Zn2 → Zm2 which can be
represented with m LUTs, one for each output bit. Here, an example is a full adder with
the inputs x, y ∈ Z2 and a carry-in ci ∈ Z2 defined as

FA : Z3
2 → Z2

2, (x, y, ci) 7→ (s, co) = (x+ y + ci, x · y + ci · (x+ y))

for the sum s and the carry-out co. The number of input wires is also called fan-in of a
gate, and the number of output wires fan-out.

A Boolean circuit C2 : Zs2 → Zt2 is a directed acyclic graph where the vertices are
Boolean gates Gn,m and the edges connect gate outputs to the inputs of other gates with
s unconnected global inputs and t unconnected global outputs. A well-known fact is
that, for every directed acyclic graph, there exists a topological ordering of the graph. A
topological ordering is an ordering such that for every edge, the start vertex of this edge
appears before the end vertex in the sorted list of vertices. For a circuit C2, sorting the
graph topologically and evaluating the sorted gates for a global input I ∈ Zs2 ensures that,
for any given gate Gn,m, all n inputs are known.

We can generate a Boolean circuit C2 from a circuit design in a HDL through a
process called synthesis. The output, a textual representation of C2, is also referred to as
netlist. Generally, a netlist can include additional elements such as registers for storage;
however, in this work, a netlist only contains Boolean gates. During synthesis, the circuit
is optimized, mostly heuristically, according to specific parameters, such as area usage or
power consumption. Extending the idea of synthesis to high-level code is called high-level
synthesis. Examples are the high-level synthesis tool XLS1, translating C++ code to the
HDL Verilog, and the low-level synthesis tool Yosys2, generating a netlist from Verilog.

Usually, synthesis tools output a netlist either based on a gate library, a list of available
gates for a given hardware platform, or output a LUT-based netlist with many LUTs for
different functions Gn and some upper bound on fan-in3. For hardware with special high-

1https://github.com/google/xls
2https://github.com/yosyshq/yosys
3We note for completeness that synthesis tools also place gates Gn,m with m > 1, such as registers.

Since we configure these tools to only output LUTs, which, by definition, only have a single output, this
work assumes a netlist only containing a Boolean circuit C2 composed of gates Gn.

https://github.com/google/xls
https://github.com/yosyshq/yosys

636 Improved Circuit Synthesis with Multi-Value Bootstrapping for FHEW-like Schemes

performance gates, state-of-the-art synthesis tools are able to replace certain subcircuit
patterns with optimized primitives; for example, multiplications are often realized in digital
signal processing units.

We define a homomorphic circuit C : Zsp → Ztp consisting of homomorphic gates of the
form f(b+

∑
xi · ai) for a function f : Zp → Zp, known scalars ai, b ∈ Zp, and encrypted

plaintexts xi. We compute the affine part b+
∑
xi · ai using the homomorphic capabilities

of the FHE scheme and the function f during bootstrapping, also known as functional
bootstrapping (see Subsection 3.2). Note that we compute the affine part over the integers,
but require the input to f in Zp; this has to be taken into account during homomorphic
circuit design.

2.3 Fully Homomorphic Encryption
An FHE scheme consists of four algorithms (Setup, Enc, Eval, Dec), each with the following
syntax [RAD78,Gen09].

• Setup(λ): This probabilistic polynomial time (PPT) algorithm takes as input a
security parameter λ and outputs an evaluation key ek and a secret key sk.

• Enc(sk,m): This PPT algorithm takes as input a secret key sk as well as a message m
and returns a ciphertext ct.

• Eval(ek, [cti]ni=1, C): Given an evaluation key ek, ciphertexts [cti]ni=1, and a circuit C,
this (non-)deterministic algorithm outputs a ciphertext ct.

• Dec(sk, ct): Given a secret key sk and a ciphertext ct, this deterministic algorithm
outputs a message m.

Informally, we say that an FHE scheme is correct, if the outcome of the evaluation
of a circuit C on ciphertxts encrypting messages m1, . . . ,mn decrypts to C(m1, . . . ,mn).
Formally, we say that FHE is correct if for all security parameters λ ∈ N, the circuits
C :Mn →M over the message spaceM of depth poly(λ), and all messages [mi ∈M]ni=1
we have

Pr
[
Dec(sk, ctout) = C([mi]ni=1)

]
= 1− negl(λ),

where (ek, sk)← Setup(λ), Dec(sk, cti) = mi for all i ∈ [n] and ctout ← Eval(ek, [cti]ni=1, C).
For efficiency, we require that Setup, Enc and Dec run in polynomial time in the security
parameter, that is poly(λ), and Eval runs in poly(λ, |C|). Finally, we say that an FHE
scheme is compact if the size of the output of Eval is independent of the size of the circuit C.
More specifically, we require that |Eval(ek, [cti]ni=1, C)| is poly(λ, |M|).

Indistinguishability Under Chosen Plaintext Attack. Let λ ∈ N be a security parameter
and A = (A0,A1) be a PPT adversary. We say that an FHE scheme is indistinguishable
under chosen plaintext attack (IND-CPA)-secure if the probability

Pr

 A1(ctb, st) = b:

sk← Setup(λ),
(st,m0,m1)← AO(sk,.)

0 (λ),
b←R {0, 1},

ctb ← Enc(λ, sk,mb)


is at most negl(λ) for all PPT adversaries A; the oracle O on input of a message m outputs
ct← Enc(sk,m).

Johannes Mono, Kamil Kluczniak and Tim Güneysu 637

2.4 Generalized Learning with Errors
Definition 1 (GLWE). Let Dsk be a (not necessarily uniform) distribution over RQ, and
DR,σ be a noise distribution over RQ with standard deviation σ > 0, n ∈ N and N ∈ N
be a power-of-two, that are chosen according to a security parameter λ. For ~a ←R RnQ,
e←R DR,σ and ~s ∈ Dnsk, we define a Generalized Learning with Errors (GLWE) sample of
a message m ∈ RQ with respect to ~s, as

GLWEσ,n,N,Q(~s,m) =
[
−~a> ·~s + e

~a>

]
+
[
m
~0

]
∈ R(n+1)

Q .

We say that the GLWEσ,n,N,Q-assumption holds if for any PPT adversary A we have∣∣∣∣Pr
[
A(GLWEσ,n,N,Q(~s, 0))

]
− Pr

[
A(Un+1

Q)
]∣∣∣∣ ≤ negl(λ)

where Un+1
Q is the uniform distribution over Rn+1

Q .
We denote a Learning with Errors (LWE) sample as LWEσ,n,Q(~s, m) = GLWEσ,n,1,Q(~s,

m), which is a special case of a GLWE sample where the ring is ZQ[X]/(X + 1). Note
that, in this case, ~s ∈ Zp is a integer vector and m ∈ Zp. Similarly, we denote a Learning
with Errors over Rings (RLWE) sample as RLWEσ(s,m = GLWEσ,1,N,Q(s,m) which is the
special case of an GLWE sample with n = 1. For simplicity, we omit to state the modulus
and ring dimension for RLWE samples because we always use RQ = ZQ[X]/(XN +1) where
N is a power-of-two. For LWE samples, we will be switching between different moduli
and different dimensions; hence we will indicate the current modulus in the notation. We
sometimes leave the inputs unspecified and substitute them with a dot (·) when it is not
necessary to refer to them within the scope of a function. We define the error of ~c ∈ R(n+1)

Q

as Error(~c,m) = 〈~c,~s〉 −m. Finally, we define the symbol ∆Q,p =
⌊
Q
p

⌉
where p ∈ N is the

plaintext modulus.

2.5 FHE Transpilation
Transpilation, also known as source-to-source compilation, is a process in which the source
code written in one programming language is converted into the source code of another
language. It converts code at similar levels of abstraction without changing the code’s
logic or functionality. In the context of FHE, transpilation mostly refers to converting
high-level code implementing functionality in the unencrypted domain to FHE library
code in the homomorphic realm. For example, the FHE transpiler [GSPH+21] converts a
subset of C++ code to C++ or Rust, depending on the chosen output library.

Although FHE transpilation operates at a similar abstraction level with respect to the
input and output programming language, the process itself closely resembles a compilation
process as FHE libraries commonly only implement low-level operations on the encrypted
data. Thus, FHE transpilation first converts high-level code to an IR where optimizations
are performed. Then, the IR is further processed with instruction mapping or synthesis.
For instruction mapping, each IR instruction is mapped to the low-level operations exposed
by the FHE library, while for synthesis, hardware synthesis tools are used to convert the
IR to a low-level circuit matching the low-level operations provided by the chosen library.

3 Contributions
We now describe our theoretical contributions across the circuit synthesis process and start
with the synthesis toolchain top to bottom. Then, we highlight our contributions in the
reverse starting with the modified FHE bootstrapping and ending with the optimizations
for the synthesis process.

638 Improved Circuit Synthesis with Multi-Value Bootstrapping for FHEW-like Schemes

High-Level
Code HDL Code Netlist

Optimized
Netlist

FHE
Library

High-Level
Synthesis

Synthesis

Post-Synthesis
Processing

Circuit
Translation

Figure 1: Our synthesis toolchain with different stages and their transitions.

3.1 Synthesis Toolchain
Our synthesis toolchain closely follows the structure and even reuses parts of the FHE
transpiler [GSPH+21], which currently provides the best publicly available solution to
circuit synthesis. More specifically, high-level C++ code is converted to Verilog via the
XLS framework4. Then, as in the transpiler, we synthesize Verilog to a Boolean circuit C2
via Yosys5. We configure synthesis in Yosys with pre-defined Yosys scripts specifing the
exact steps Yosys should execute during synthesis. Instead of using the rather simple
script of the transpiler, we create our own scripts based on the default Yosys script for
LUT-based hardware. In contrast to the transpiler, there are two important differences:

• Using our new synthesis scripts, we can substitute certain subcircuits with cus-
tom gates. We use this to replace additions and subtractions with an optimized
homomorphic gate structure using FHE-specific primitives (Subsection 3.7).

• We perform post-synthesis optimizations on the circuit C2 with HAL [Emb19], a
netlist analysis tool, using its Python interface (Subsection 3.6, Subsection 3.8). Our
Python scripts directly translates the optimized circuit to FHE-Deck code [fhe23]
mapping the circuit as described in Subsection 3.5.

In Figure 1, we depict the different stages of our toolchain including their transitions. All
of our code, including tests and examples, is publicly available on GitHub6.

3.2 Efficient Multi-Value Functional Bootstrapping
In the following, we describe our multi-value bootstrapping algorithm, our instantiation of
the FHE scheme and how we enhance homomorphic gate evaluation from the function f
to a function fm : Zp→Zmp at the cost of computing just one f . Since the multi-
value bootstrapping algorithm is based on FHEW-style bootstrapping algorithms [DM15,
CGGI16a], we first give an informal overview of these algorithms in a black-box fashion
limiting ourselves to their input-output relation, which is enough to understand the
bootstrapping algorithm.

Among the most efficient types of FHE schemes are schemes based on the FHEW-style
bootstrapping algorithms [DM15]. There are multiple variants [CGGI16a,MS18,CIM19,
BDF18,GBA21,Klu22b] and improvements [YXS+21,CLOT21,LMP22,KS22] of these
algorithms. The goal is to homomorphically compute the decryption function on an LWE
ciphertext and compute an arbitrary function on the encrypted plaintext message along
the way.

Suppose we have an LWE ciphertext ~c with 〈~c,~s〉 = M + e, where ~s is the secret
key, M the message, and e the error. The operation 〈~c,~s〉 can be realized within a cyclic
algebraic group, more specifically, the group of rotations. The idea is to realize the rounding

4https://github.com/google/xls
5https://github.com/yosyshq/yosys
6https://github.com/Chair-for-Security-Engineering/fhewsyn

https://github.com/google/xls
https://github.com/yosyshq/yosys
https://github.com/Chair-for-Security-Engineering/fhewsyn

Johannes Mono, Kamil Kluczniak and Tim Güneysu 639

function b·e by setting the elements of the vector such that messages are encoded in intervals
of appropriate size to handle the noise term e. Bootstraping algorithms for FHEW-like
schemes use the design pattern established by Alperin-Sheriff and Peikert [AP14] over
polynomial rings. In particular, the observation first made by Ducas and Micciancio [DM15]
is that in the ring Z[X]/(XN + 1), the product of any ring element with a root of unity
(negacyclicly) rotates the coefficients of that ring element. In other words, given a
polynomial w =

∑N−1
i=0 wi ·Xi, we have

w ·Xy =
N−y−1∑
i=0

wi ·Xi+y −
N−1∑
i=N−y

wi ·Xi+y−N .

As part of the blind rotation procedure, we compute w ·X〈~c,~s〉 = w ·XM+e homomor-
phically. Since computation takes place over RLWE ciphertexts, we obtain at the end
of the blind rotation procedure an RLWE ciphertext of w · XM+e. Finally, Ducas and
Micciancio [DM15] observe that given such RLWE ciphertext, one can extract an LWE
ciphertext that encrypts the constant coefficient of the message; more specifically, the
element w · XM+e[1]. The step is done via the SampleExtract procedure (see Table 1).
Then, the final step is to choose the polynomial w such that w · XM+e[1] encodes the
desired value, according to a given function f : Zp → Zp, and switch the extracted LWE
ciphertext to an LWE ciphertext that is suitable for another bootstrapping step.

It is easy to see that with a bootstrapping algorithm which computes a function
f : Zp→Zp, we can modify it to compute a function fm : Zp→Zmp by grouping m dis-
tinct f , one for every output of fm; this would require m bootstrapping invocations. The
goal of multi-value bootstrapping is to compute all m functions at the cost of only one
bootstrapping. The general idea to amortize computation of different functions on the
same input ciphertext is based on a previous work by Carpov, Izabachène, and Molli-
mard [CIM19], but in this paper, we significantly simplify execution of the idea. We
give a version of the bootstrapping algorithm Algorithm 1 and provide a bound on the
bootstrapping noise in Theorem 1.

The algorithm takes as input the blind rotation key brKey and the key switching key
ksKey, an LWE ciphertext ~c ∈ ZN+1

Q , and polynomials w and ~v. First, the algorithm
switches the LWE key; this results in an LWE ciphertext ~cksKey with a smaller dimension
n ∈ N and a secret key from a smaller distribution, for instance binary, ternary, or Gaussian.
Afterward, the algorithm switches the modulus from Q to 2N (recall that the roots of unity
in the ring RQ form an algebraic group of order 2N). Then, we run BlindRotate which
homomorphically computes macc ← w ·X〈~c,~s〉. Finally, we execute a for-loop that multiplies
the ciphertext with a polynomial from the vector ~v. Consequently, we obtain and return a
vector of ciphertexts

[
~cout,i

]k
i=1. The i-th ciphertext in the returned vector encrypts the

message macc ·~v[i]. The problem when using this construction is that the multiplications by
the elements of the vector ~v may blow up the error, ultimately destroying the ciphertext.
This can happen if the norm bounds of elements in ~v are too large.

In our work, we provide a simple solution to build the polynomials w and ~v with
time linear in N . We observe that when we are only interested in extracting bits the
polynomials in ~v are already sparse and of small infinity norm. Later, we compute a simple
binary composition before running the new bootstrapping algorithm and computing the
next LUT function. Concretely, we set w = ∆Q,p. Then, for i ∈ [k], the polynomial ~v[i]
encoding the function f (i) : Zp → Z2 is defined as

~v[i] = f (i)(0)−
N−1∑
j=1

f (i)
(⌊ p

2N · j
⌉)
·XN−j . (1)

In other words, for each i ∈ [k], we set the constant coefficient v[i][1] to f (i)(0), and
v[i][N − j] to −f (i)(bj/2Ne) for j ∈ [N − 1]. Note that the construction of v[i] involves

640 Improved Circuit Synthesis with Multi-Value Bootstrapping for FHEW-like Schemes

Algorithm 1: Bootstrap(brKey, ksKey,~c,w,~v)
Input:
The blind rotation key brKey;
The key switching key ksKey;
An LWE ciphertext ~c ∈ ZN+1

Q ;
Polynomial w ∈ RQ; and
A vector of polynomials ~v ∈ Rkp.
Output: We consider two different versions of the bootstrapping algorithm: the
classic variant and the multi-value variant. For the classic variant, the vector ~v is
empty (k = 0), and the algorithm returns a ciphertext LWE.,N,Q(~s,w ·X〈~c,~s〉).
For the multi-value variant, the algorithm returns a vector of LWE ciphertexts
[~cout,i]ki=1, where ~cout,i = LWE.,N,Q(~s,w ·X〈~c,~s〉~v[i]).
begin

Run ~cksKey ← KeySwitch(~c, ksKey) ∈ Zn+1
Q ;

Run ~cin ← ModSwitch(~cksKey, 2N) ∈ Zn+1
2N ;

~cacc ← BlindRotate(brKey,w,~cin) ;
for i = 1 . . . k do

Compute ~cacc,i ←~cacc · ~v[i] ;
Compute ~cout,i ← SampleExtract(~cacc,i) ;

Return
[
~cout,i

]k
i=1 ;

only N invocations of f (i). Therefore, the algorithm runs in time linear in N given that
f (i) is independent of N .

Recall that we use functions that map an input from Zp to Z2 and need to keep the
norm of the polynomial small. There is, however, no other reason for the output domain
to be binary, and the algorithm can be generalized to a larger output domain, given that
we compensate for a larger noise growth with the parameters. Note that the bootstrapping
output is a vector of LWE ciphertexts encoding bits, but within the Zp plaintext space.

We now analyze the noise growth and correctness for the multi-value bootstrapping in
the binary case. Hence, the infinity norm of the polynomials in ~v can be bounded by N .

Theorem 1 (Bootstrapping Correctness). Let ~cacc ∈ R2
Q be an RLWE ciphertext returned

by BlindRotate in an execution of Algorithm 1. Let eacc = Error(~cacc,macc) where macc =
w ·XM , and M = 〈~cin, ~s〉 mod 2N . Then, for all i ∈ [k], we have

SD
(
Error(~cacc,i,macc · ~v[i])

)
≤
√

2N · Var(eacc)

Furthermore, if w = ∆Q,p and ~v are chosen to encode functions f (i) as given by Equation 1,
and if

⌊ 2N
p ·M

⌉
= m < p/2, then macc · ~v[i] = ∆Q,p · f (i)(m).

Proof. Recall that we assume that at most N of all coefficients in the polynomials in the
~v vector are non-zero and that eacc ∈ RQ. When multiplying the RLWE ciphertext ~cacc by
~v[i], we multiply the resulting error polynomial which is then equal to eacc,i = eacc · ~v[i].
The d-th coefficient of eacc,i can be written as

eacc,i[d] =
d∑
j=1

eacc[j] · ~v[i][d− i+ 1] +
N∑

j=d+1
eacc[j] · ~v[i][N + d− i+ 1].

Crucially, observe that the sum takes each coefficient from the polynomials only once and
that at most N of the coefficients of ~v[i] are non-zero. All non-zero coefficients of ~v[i] are

Johannes Mono, Kamil Kluczniak and Tim Güneysu 641

either 1 or −1. Hence, we have that

SD(eacc,i) ≤

√√√√ N∑
i=1

Var(eacc) ≤
√
N · Var(eacc).

What is left to show is the correctness of the output messages. For i ∈ [k], the relevant
output is given by the constant coefficient of

macc · ~v[i] = ∆Q,p ·XM ·
(
f (i)(0)−

N−1∑
j=1

f (i)
(⌊ p

2N · j
⌉)
·XN−j

)
. (2)

For M = 0 we have m = 0 and the constant coefficient of the polynomial from Equation 2
is ∆Q,p ·f (i)(0). For 0 < M < N the constant coefficient is given by the index j that zeroes
the exponent above X (that is, j such that N − j + M mod N = 0). Given m < p/2,
we have that M < N , and the index j that points to the constant coefficient can only
be equal to M . The value of the constant coefficient is set to ∆Q,p · f (i)

(⌊
p

2N · j
⌉)

=

∆Q,p · f (i)
(⌊

p
2N ·M

⌉)
= f (i)(m).

3.3 The FHE Scheme
We now combine the algorithms from Table 1, containing subprocedures from previous
work [DM15], and our new multi-value bootstrapping from Algorithm 1 to an FHE system
fitting the formal scheme definition in Subsection 2.3 and our model of computation. We
provide high-level interfaces in FHE-Deck [fhe23] for all algorithms, making them easily
accesible for researchers and developers.

Setup(λ). The setup algorithm consists of three main parts.

1. We choose the modulus Q, a power-of-two dimension N of the ring RQ, and an LWE
dimension n ∈ N according to the security parameter λ. Then, we choose s ∈ RQ for
the RLWE key and set ~sext to be the coefficient vector of s. We choose ~s ∈ {0, 1}n
for the LWE key.

2. We run ksKey← KSSetup(~s,~sext, `ksKey, σksKey).

3. We run brKey← BRSetup(~s, s, `brKey, σbrKey).

Finally, we set the evaluation key ek = (brKey, ksKey) and the secret key sk = (s, ~sext, ~s).

Enc(sk,m). To encrypt a message m′ ∈ Zp, we compute

~c← LWEσ,N,Q(~sext,m) ∈ ZN+1
Q ,

where m = Q
p ·m

′ ∈ ZQ.

Eval(ek, [cti]n
i=1, C). For the homomorphic circuit C, we compute each individual gate

fm

(
k∑
i=1

xi · 2i−1 ∈ Zp

)
∈ Zmp ,

where p = 2k and k is the maximum fan-in of the gates in the circuit C. Thus, we compute
m values in Zp at an amortized cost of running just one bootstrapping from Algorithm 1.
While we can output arbitrary values in Zp if accounted for in the parameters, we limit
ourselves to output m bits in Z2 ⊆ Zp.

642 Improved Circuit Synthesis with Multi-Value Bootstrapping for FHEW-like Schemes

Table 1: List of subprocedures commonly used in FHEW-like schemes [DM15].

Key Switching

KSSetup Input: Takes as input two LWE secret keys ~s ∈ {0, 1}n, ~sext ∈ ZNQ ,
a performance parameter `ksKey ∈ N, and a standard deviation
σksKey ∈ R.
Output: Generates a key switching key ksKey which consists of
N · `ksKey LWEσksKey,n,Q(~s, ·) ciphertexts.

KeySwitch
Input: Takes as input a key switching key ksKey and an
LWE.,N,Q(~sext,m) sample of a message m ∈ ZQ.
Output: Returns an LWE·,n,Q(~s,m) sample under the key ~s en-
coding the same message m.
Description: The key switching process consists ofN ·`ksKey scalar
multiplications in ZQ. The parameter `ksKey largely determines
the time and space efficiency; that is, the smaller `ksKey, the faster
the computation and the smaller the space complexity of the key
material, but the bigger the noise induced by the key switching
operation.

Blind Rotation

BRSetup Input: Takes as input the LWE key ~s ∈ {0, 1}n, a RLWE key
s ∈ RQ, a performance parameter `brKey ∈ N, and a standard
deviation σbrKey.
Output: Generates a blind rotation key brKey that consists of
2n`brKey RLWEσbrKey (s, ·) ciphertexts.

BlindRotate
Input: Takes as input a blind rotation key brKey, an LWE
sample ct under modulus 2N , and an accumulator acc =
RLWE(s, ~macc).
Output: BlindRotate returns a sample accout = RLWE(s, ~mout)
with ~mout = ~macc · X〈ct,~s〉. The blind rotation process [DM15,
CGGI16a] consists of 2n · (`ksKey + 1) polynomial multiplications
of elements in RQ. In particular, at the heart of a blind rota-
tion algorithm, there is a ring version of the GSW cryptosys-
tem [GSW13]. In this paper, we consider the concrete blind
rotation from [CGGI16a], hence the number of polynomial multi-
plications. Similarly to key switching, the smaller the parameter
`brKey, the faster the blind rotation algorithms and the smaller the
blind rotation key (at the cost of larger noise).

Other

ModSwitch Input: Takes as input an LWE sample LWE·,n,Q(~s,∆Q,p ·m) and
a modulus q < Q with m ∈ Zp.
Output: Returns an LWE sample LWE·,n,q(~s,∆q,p · m) under
modulus q.

SampleExtract Input: Takes as input a RLWE encryption RLWEσbrKey (s,m) of a
message m ∈ RQ.
Output: Returns an LWE sample LWE·,N,Q(~sext,m) with m =
m[1]; that is, the LWE sample encodes the constant coefficient of
the polynomial m.

Johannes Mono, Kamil Kluczniak and Tim Güneysu 643

Table 2: New parameter choices.

BR Key KS Key
Set Multi-Value Q N `brKey SD n `ksKey SD

tfhe-11-bin × 248 211 2 3.2 912 6 226

tfhe-11-multi X 251 211 3 3.2 950 6 218

tfhe-12-multi X 250 212 6 3.2 950 6 218

Dec(sk, ct). To decrypt an LWE sample ~c ∈ ZN+1
Q , we compute 〈~c,~sext〉 = Q

p ·m
′+e ∈ ZQ,

rescale and round the result obtaining⌈
p

Q

(Q
p
·m′ + e

)⌋
= m′

if |e| ≤ Q
2p .

3.4 New Parameters for Multi-Value Bootstrapping

We choose our parameter sets to target 128-bit security for the LWE and RLWE samples.
The parameters are listed in Table 2. We estimate the security using the latest commit of
the Lattice Estimator [APS15]. We also include a Python script to estimate the statistical
security. In Table 2, we specify three parameter sets. The tfhe-11-bin parameter set is
based on previous work by Kluczniak [Klu22a] and chosen for binary ciphertexts. The
parameter sets tfhe-11-multi and tfhe-12-multi are new parameter sets to support
multi-value bootstraping for 3-bit and 4-bit LUTs, respectively.

We choose our parameters accoring to the following strategy. For the bootstrapping key,
we choose two rings, one with dimension deg = 211 and one with dimensiton deg = 212. The
idea is to choose the highest modulus such that the RLWE problem remains 128-bit secure
according to the Lattice Estimator [APS15] and the modulus is below 51-bits to allow for
faster multiplication of ring elements using the HEXL library [BKS+21]. The larger ring
gives us a larger group of the roots of unity, and we thus correctly process larger messages.
For the LWE parameters, we set n = 950 for both rings and a uniform binary secret key
since there are asymptotic reductions from binary LWE to LWE with uniform keys; we
also check this parameter setting with the Lattice Estimator to ensure 128-bit security.
We stress that we choose the secret key vector uniformly from the binary distributions.
In particular, we do not use sparse secret keys and we do not fix the hamming weight,
but there are algorithms to handle other key distributions [DM15,LMK+23]. However,
these bootstrapping algorithms are usually slightly slower or require larger bootstrapping
keys. Finally, we choose the decomposition bases to minize the number of polynomial
multiplications ` while at the same time preserving correctness with a probability of at
most 2−80 for a faulty bootstraping.

Based on Table 2, we can conclude that tfhe-11-bin will require the least amount
of polynomials multiplications. In particular, recall that the number of polynomial
multiplications is given by n · (2 · (`brKey + 1)). For tfhe-11-bin, we need 5472 polynomial
multiplications while for tfhe-11-multi and tfhe-12-multi, we need 7600 and 13300
polynomial multiplications, respectively. Furthermore, note that the ring dimension in
tfhe-12-multi is doubled compared to the other parameter sets. Hence, a polynomial
multiplication in this ring will be slower. We provide benchmarking results confirming
these observations in Section 4.

644 Improved Circuit Synthesis with Multi-Value Bootstrapping for FHEW-like Schemes

3.5 Circuit Mapping
We now move from the bottom layer of our toolchain, the FHE scheme and its capabilities,
to the post-synthesis layer above, that is to the netlist storing the synthesis output C2 and
how the Boolean circuit is translated to a homomorphic circuit. Due to our efficient and
secure multi-value bootstrapping, we upgrade homomorphic gate capabilities and are able
to compute m outputs within a single bootstrapping via fm. This enables a more generic
approach to circuit mapping, which we describe in the following.

Recall that we assume a C2 which only consists of gates Gn. To convert a Boolean
circuit C2 to a homomorphic circuit C, we compose the gate inputs via the affine part
of the FHE scheme and translate each gate Gn to a function f . Let k = max n be the
maximum fan-in for all gates Gn in C2. We set p = 2k and compose the input to f as
x =

∑n−1
i=0 2i · xi homomorphically for encrypted values xi ∈ F2. Theoretically, we could

encrypt any value xi ∈ Zp, but by only encrypting single bits, we have x ∈ Zp and thus x
serving as valid input to f by definition. Finally, we map the gate functionality of Gn to a
function f and compute the homomorphic equivalent as f(x).

For example, consider the gate AND : Z2
2 → Z2, (I0, I1) 7→ I0 ·I1. We define fAND mapping

the encrypted plaintexts {0, 1, 2, 3} to {0, 0, 0, 1}, respectively, and fAND(I0 + 2I1) computes
an AND gate homomorphically. Note that, while the output domain of f is Zp, we will
output only bits in {0, 1}. For a circuit C2 with gates Gn,m, we trivially extend our mapping
to a function fm with m distinct functions f , one for every output bit.

3.6 Optimization: LUT Grouping
In the following, we introduce our first optimization performed during post-synthesis
processing. Synthesis outputs C2 only consisting of single LUT gates Gn,1, and our first
optimization is constructing gates Gn,m to reduce the number of gates. As described in
Subsection 3.5, we then trivially map these to homomorphic gates computing fm via
multi-value bootstrapping, thus reducing the number of bootstrappings compared to before.
The straightforward case is two gates Gn with exactly the same inputs in the same order
which we can group as Gn,2. There are, however, other opportunities enabling us to group
different LUTs into a single LUT with multiple outputs. More specifically, we can group
Gn′ to Gn as long as (1) the inputs of Gn′ are a subset of the inputs of Gn (or the other
way around), and (2) grouping Gn′ to Gn does not introduce cycles to C2.

Condition (1) follows relatively straightforward from our multi-value bootstrapping
technique: We compute the blind rotation for an encrypted input x ∈ Zp to the function fm
which, for a gate Gn,m and encrypted values xi ∈ Z2, is composed as x =

∑n−1
i=0 2i · xi. We

do have to be careful when grouping the individual f to a single fm, however, as the xi
for all gates have to be in the same position i within a grouping. During post-synthesis
optimization, we thus first extend each gate in the grouping to have all xi as input, adding
new inputs as required without modifying the gate output. Second, we order the inputs
according to their unique IDs in HAL always composing the same x; hence, we compute
Gn,m correctly.

Condition (2) ensures that C2 still matches our definition from Subsection 2.2 preventing
cycles in C2 as we otherwise could not evaluate it anymore. Consider the following scenario:
Two inputs to some gates G2 and G3 are the same while the third input to G3 is the output of
G2; here, grouping would introduce a cycle. This example generalizes to more complicated
settings with additional gates in between and detecting such cases specifically is rather
difficult; it would require checking all inputs to gates which are directly or indirectly
connected to the output of a grouping candidate. We therefore choose a simpler, although
non-optimal method, and only group Gn′ to Gn if Gn appears before Gn′ in the topological
order and the inputs of Gn′ are a subset of Gn (but not the other way around).

An example for LUT grouping where both conditions are at play is depicted in Figure 2.

Johannes Mono, Kamil Kluczniak and Tim Güneysu 645

G2

G2

G3 G3 G2

ct1

ct1ct1 ct1

ct2

ct2ct2

ct3

Figure 2: Grouping gates in an example circuit by matching the inputs while preserving
topological order, each group is surrounded by a dashed line in green. The gate G2 in the
top row cannot be grouped with the bottom row as it would introduce a cycle.

Here, the two gates G3 in the bottom row have the same inputs and hence can be grouped.
Additionally, we can add G2 in the bottom row to the same group, as its inputs are a
subset (we assume it appears later in the sorted graph). G2 in the middle row has a unique
input combination and is its own group. As for the top row, the inputs of G2 are a subset
of the inputs from the bottom row. But, adding it to the group at the bottom would
introduce a cycle, and it thus remains its own group.

3.7 Optimization: Adder Substitution
Adder substitution, our second optimization, is a technique to improve arbitrary-width
integer addition in Boolean-based schemes as for example as part of Concrete [Zam22], an
FHE transpiler using instruction mapping. While the technique is known, there are—to the
best of our knowledge—no existing descriptions in the scientific literature and we are the
first to adapt this technique to the synthesis-based approach. It is based on the following
observation: Using LUTs to realize additions is generally more costly than using the native
addition capabilities of the FHE scheme (the same idea can be applied to transpilation
based on instruction mapping). For example, with p = 23, a two-bit addition with LUT
grouping requires two multi-value bootstrappings while adder substitution reduces it to
one bootstrapping as depicted in Figure 3.

At its core, adder substitution takes place during synthesis moving us up another
layer in the toolchain, but for simplicity, we split its implementation into two steps, one
performed during synthesis in Yosys and one during post-synthesis processing in HAL:
First, we hook into the synthesis process mapping additions and subtractions from the
Yosys IR to custom adder gates. In the second step, we arrange these adders depending
on the plaintext modulus p. In the following, we explore both steps in more detail.

During synthesis, we instruct Yosys to use single-bit full adder gates

FA : F3
2 → F2

2, (x, y, ci) 7→ (s, co) = (x+ y + ci, x · y + ci · (x+ y))

for addition. Since an addition x+ y in the Yosys IR has arbitrary width, we start with a
single-bit addition by adding the least significant bits x0 and y0 with ci = 0, building up

646 Improved Circuit Synthesis with Multi-Value Bootstrapping for FHEW-like Schemes

G2,2

G3,2

x0 y0 x1 y1

s0 s1 s2

G3,3

x+ y

s0 s1 s2

Figure 3: Comparing a two-bit addition s = x+ y with a three-bit output based on LUTs
for computation (left) and based on ciphertext addition with decomposition (right) with
p = 23. The former requires two multi-value bootstrappings while the latter requires one.

0

FA

x0y0

s0

FA

x1y1

s1

FA

x2y2

s2

FA

x3y3

s3

FA

x4y4

s4 s5

Figure 4: Arranging FA gates for a 5-bit addition s = x+ y with p = 23 and ci = 0, each
arrangement requiring a bootstrapping is marked by a dashed green box.

to an arbitrary-width addition by connecting the FA gates via the carry bits as required.
For a subtraction x− y, we place inversion gates

INV : F2 → F2, I 7→ O = I + 1

for y and set ci = 1 for the least significant bit, this corresponds to a negation in the two’s
complement representation. Note that, for a ciphertext ct, computing inversion as 1− ct
does not require a bootstrapping and is considered free (see also Subsection 3.8).

During post-synthesis processing, we identify adder chains and form arrangements with
log p − 1 gates each. Using log p − 1 gates ensures that addition does not wrap around
modulo p, which we require for correctness. The FA for the least significant bit serves
as root of a chain and is easy to identify with a constant ci ∈ F2. Figure 4 contains an
example for a 5-bit addition with p = 23.

As an additional optimization specific to the synthesis-based approach, we exclude
constant addition or subtraction from adder substitution. The reason is rather straightfor-
ward: Since the individual bits of one operand are known at synthesis time, they can be
folded with surrounding logic very efficiently and using our custom FA gate would result in
worse performance. We evaluate the effect of constant bits on adder substitution in more
detail in Section 4.

Johannes Mono, Kamil Kluczniak and Tim Güneysu 647

Another possible optimization is reserving more than one bit for carries. For example,
with log p = 4 bits and an addition of four values, we could add 2 bits from all four values
instead of computing three individual additions using 3 bits from each value. We do not
implement this because addition in the Yosys IR always has exactly two inputs. Note that
this optimization can be applied to each addition in a circuit individually.

3.8 Additional Optimizations
Beyond the improvements achieved by LUT grouping and adder substituions, we employ
three further minor optimizations:

• We use the well-known fact that inversion of a ciphertext ct encrypting a value in F2
corresponds to the affine function 1− ct, also known as free inversion optimization;
hence, no bootstrapping is required (this is also applicable to transpilation based on
instruction mapping).

• We employ LUT conversion, during which we convert gates G1 to affine functions
on a ciphertext without performing a bootstrapping. The mapping is trivial as a
gate G1 either computes the identity function or an inversion.

• Type sorting is applied during the topological sorting of the circuit graph. We split
the gates according to their depth and sort each layer with respect to gate types.
Most importantly, we sort the LUTs according to the number of inputs in descending
order. This ensures that we do not miss out on LUT groupings within a layer, as
these cannot introduce cycles to the graph.

4 Evaluation
In the following, we evaluate our contributions with a multitude of examples; most designs
stem from the FHE transpiler [GSPH+21], the remaining ones are our own addition.
Overall, we use the following examples: Compute the sum of 3-bit, 4-bit or 32-bit integers,
respectively (add3, add4, add32); calculate the addition, subtraction or multiplication of
two 16-bit integers (calc); compute the sum of a 4-bit integer with a constant (const4);
apply blurring to a small image (img-blur); apply a ricker wavelet transformation to a
small image (img-ricker); apply sharpening to a small image (img-sharp); compute a
rectified linear unit function (relu); compute the square root of a 16-bit integer (sqrt);
reverse an array of up to eight characters (strrev); compute the sum over a one-dimensional
array of structs (structs1d); compute the sum over a three-dimensional array of structs
(structs3d); compute the sum over a three-dimensional array of integers (sum3d).

For these examples, we target several architectures: The Yosys script from the FHE
transpiler [GSPH+21] without optimizations (prev), our Yosys script with a maximum
LUT-size of X bit without optimizations (noX), noX with adder substitution (noXfa), noX
with LUT grouping including type sorting (grpX), noX with all optimizations (optXfa),
and optXfa without adder substitution (optX).

4.1 Evaluating LUT Grouping
To evaluate LUT grouping, we compare the number of bootstrappings for architectures
noX with architectures grpX for X ∈ {2, 3, 4}, respectively, in Table 3. For the chosen use
cases, we reduce the number of bootstrappings by up to 75% and, for most use cases, by
at least 35%. On average, using LUT grouping reduces the number of bootstrappings
by almost 40%. Due to its effectiveness with only a slight overhead in the parameters,
we recommend to always enable LUT grouping to improve performance for FHE circuit
synthesis.

648 Improved Circuit Synthesis with Multi-Value Bootstrapping for FHEW-like Schemes

Table 3: Number of bootstrappings for all examples evaluating our two main optimizations
using the architectures noX, noXfa, and grpX for X ∈ {2, 3, 4}.

no2 no2fa grp2 no3 no3fa grp3 no4 no4fa grp4

add3 12 3 7 6 2 3 5 1 2
add4 17 4 10 8 2 4 7 2 3
add32 163 32 102 63 16 32 74 11 34
calc 884 857 655 491 479 350 407 378 242
const4 5 5 2 4 4 1 4 4 1
img-blur 316 74 193 146 37 93 126 28 74
img-ricker 334 91 212 145 48 94 141 39 78
img-sharp 194 76 125 94 43 58 73 31 45
relu 16 16 15 15 15 15 15 15 15
sqrt 224 334 183 107 179 90 83 132 64
strrev 806 806 744 364 364 341 286 286 266
structs1d 157 31 98 61 16 31 73 11 34
structs3d 1056 217 654 460 112 243 445 77 236
sum3d 926 203 553 396 105 199 381 74 192

[...]
assign sub_1935 = sel_1912 - ({1 ’h0 , sel_1910 , 13’ h0000 } | 16’ h1000);
[...]
assign sub_1962 = sel_1939 - ({1 ’h0 , sel_1937 , 11’ h000} | 16’ h0400);
[...]
assign sub_1989 = sel_1966 - ({1 ’h0 , sel_1964 , 9’h000} | 16’ h0100);
[...]
assign sub_2016 = sel_1993 - ({1 ’h0 , sel_1991 , 7’h00} | 16’ h0040);
[...]
assign sub_2043 = sel_2020 - ({1 ’h0 , sel_2018 , 5’h00} | 16’ h0010);
[...]
assign sub_2070 = sel_2047 - ({1 ’h0 , sel_2045 , 3’h0} | 16’ h0004);
[...]

Listing 1: Subtractions in the sqrt example containing constant bits.

4.2 Evaluating Adder Substitution
For adder substitution, we compare the results for noX with noXfa for X ∈ {2, 3, 4},
respectively, in Table 3. Here, results are more mixed than before and we can make
multiple interesting observations. As expected, for use cases without additions such as
strrev, the number of bootstrappings stays the same. For use cases with lots of additions,
however, improvements are much more drastic compared to before, and the number
of bootstrappings is reduced by up to 85% and, on average, we reduce the number of
bootstrappings by almost 45%.

Nevertheless, in the use case sqrt, we actually perform worse with our optimization.
In Listing 1, we extract the culprits for this result. The subtractions performed depend
on many constant bits for the second input. However, we cannot detect this during
synthesis in Yosys as the built-in constant folding is not aggressive enough to mark the
appropriate subset of input bits as constant. Since folding additions and subtractions with
many constant input bits into LUTs is relatively efficient, the default LUT optimizations
outperform adder substitution.

Overall, as efficient arithmetic is one of the main selling points of word-based schemes
compared to Boolean-based schemes, we believe that the above optimization can be an
important step to gain efficient arithmetic while keeping flexibility for FHE computations.

Johannes Mono, Kamil Kluczniak and Tim Güneysu 649

Table 4: Performance of the new parameter sets.

Set Boot. [s] brKey [MB] ksKey [MB]
tfhe-11-bin 0.24 44.8 78.5

tfhe-11-multi 0.29 81.7 81.8
tfhe-12-multi 0.58 217.9 163.6

Table 5: Execution time in seconds including the corresponding rounded speed-ups
compared to prev for all examples and a selection of synthesis processes with optimizations
on our benchmarking setup.

prev opt2 opt3 opt3fa opt4

t t′ t/t′ t′ t/t′ t′ t/t′ t′ t/t′

add3 1.69 1.07 1.6 0.85 2.0 0.65 2.6 1.90 0.9
add4 2.32 1.50 1.5 1.13 2.1 0.74 3.1 2.73 0.8
add32 21.90 14.60 1.5 9.06 2.4 5.87 3.7 26.20 0.8
calc 106.00 77.10 1.4 71.30 1.5 72.30 1.5 123.00 0.9
const4 0.59 0.36 1.6 0.33 1.8 0.33 1.8 0.94 0.6
img-blur 40.10 25.50 1.6 20.90 1.9 10.50 3.8 46.60 0.9
img-ricker 43.00 27.80 1.5 21.80 2.0 12.40 3.5 48.50 0.9
img-sharp 23.10 16.30 1.4 13.00 1.8 8.68 2.7 27.60 0.8
relu 4.17 2.45 1.7 3.66 1.1 3.67 1.1 9.66 0.4
sqrt 24.00 21.10 1.1 18.60 1.3 34.60 0.7 33.50 0.7
strrev 82.70 88.70 0.9 70.60 1.2 70.80 1.2 137.00 0.6
structs1d 21.20 14.20 1.5 8.79 2.4 5.81 3.6 26.00 0.8
structs3d 138.00 86.80 1.6 59.00 2.3 32.90 4.2 152.00 0.9
sum3d 120.00 73.00 1.6 47.80 2.5 29.10 4.1 121.00 1.0

For now, we suggest transpiling circuits with and without adder substitutions and choosing
the better performing option (this can happen automatically); we discuss possibilities for
future work in Subsection 5.4 to avoid such scenarios.

4.3 Comparison with the FHE Transpiler

For comparison with the FHE transpiler, we use benchmarks with the actual parameters sets
and FHE-Deck [fhe23] as library backend. We run benchmarks on a Windows Subsystem
for Linux with kernel 5.15.146.1-microsoft-standard-WSL2 and an AMD Ryzen 9 7900X3D
processor at 4.40GHz featuring 12 cores. Our system has 16GiB of available memory.
For the new parameter sets, we summarize our results in Table 4 regarding runtime and
memory consumption, confirming our observations from Subsection 3.4. For prev, we use
the parameter sets tfhe-11-bin while we use tfhe-11-multi for opt2, opt3, and opt3fa.
For opt4, we use tfhe-12-multi.

Our benchmarking results for all examples are summarized in Table 5. As expected,
the execution time highly correlates with the number of bootstrappings. In most cases,
we receive the best speed-ups for 3-bit LUTs. But, there are exceptions such as the relu
example where 2-bit LUTs perform the best. Using 4-bit LUTs is generally not worth
due to the increased polynomial degree and thus the longer bootstrapping time. For 3-bit
LUTs, we outperform the FHE transpiler by up to 4.2× with adder substitution and by
up to 2.5× without.

650 Improved Circuit Synthesis with Multi-Value Bootstrapping for FHEW-like Schemes

5 Discussion
In the following, we put our work in the context of current research, first discussing related
work on FHEW-like implementations followed by related work on FHE circuit synthesis.
Afterward, we discuss limitations of our optimizations and explore multiple opportunities
for future work to further optimize the tool-based generation of circuits for FHE.

5.1 Related Work on FHEW-like Implementations
In Table 6, we roughly compare different libraries implementing FHEW-like schemes. A
distinguishing feature of FHE-Deck is the support for correct and secure parameter sets for
multi-value bootstrapping. Both FHE-Deck and TFHE-rs support different algorithms for
functional bootstrapping (also known as programmable bootstrapping). In particular, FHE-
Deck supports the full domain bootstrapping algorithm based on work by Liu, Micciancio,
and Polyakov [LMP22] while THFE-rs supports the algorithm by Chilotti et al. [CLOT21].
Moreover, both libraries support simple padding-based functional bootstrapping. The
TFHE library [CGGI16b] supports only binary gates. Open-FHE [ABBB+22], which is
derived from PALISADE [PAL21], implements binary as well as full domain bootstrapping
based on work by Liu, Micciancio, and Polyakov [LMP22].

There are implementations for LUT evaluation [CGGI17]. However, the techniques are
vastly different, as the authors evaluate a LUT on so-called RGSW ciphertexts requiring
numerous bootstrapping invocations (the number depends on the chosen parameters) for
each output bit of the LUT. In contrast, we focus on computing LUTs using a single
bootstrapping invocation. Finally, the amortized bootstrapping technique by Micciancio
and Sorrel [MS18] and its improvement [GPvL23] compute functional bootstrapping over
many input ciphertexts at a cheaper cost than bootstrapping ciphertexts separately. In
particular, the functional difference is that we amortize computation for many output
functions on the same input ciphertexts while they compute the same functions on multiple
ciphertexts. Combining both amortization techniques in a practical way is an interesting
open problem for future work.

Multi-Value Bootstrapping

For multi-value bootstrapping, Carpov, Izabachène, and Mollimard [CIM19] factorize a
polynomial used as input to the blind rotation, returning factors w0 and w1 where w1
has a low norm. Aligned with our notation, they would set w to w0 and insert w1 into
the vector ~v. Essentially, the factorization works as follows: They set w0 =

∑N
i=1 X

i

and w1 =
∑N
i=1 t

′
iX

i. Then, to compute the t′i coefficients, they build and solve a large
system of N linear equations. Commonly, the polynomial degree is a power-of-two N ≥ 211

and Gaussian elimination runs in cubic time in the number of variables. Solving such a
system (if solvable) may take considerable time. In contrast, our method only requires
N invocations of a function f (i) that we want to encode in a polynomial in ~v.

The TFHE library implements multi-value bootstrapping in a separate branch. The
authors only test the bootstrapping for randomly chosen rotation polynomials w0 and
w1. Unfortunately, we couldn’t find the implementation of the linear system solver.
Nevertheless, for N = 214, as suggested by [CIM19], we can roughly calculate that the
number of modular multiplications in the Gaussian elimination algorithm7 as > 241.415, a
considerable time in practice. We also need to assume that the system is solvable which
requires elements of the matrix that we build for Gaussian elimination to be invertible
modulo Q, which, with high probability, will not be the case if Q is a power-of-two as in
many implementations (this includes their own implementation; note that we may choose

7Recall that Gaussian elimination requires N(N + 1)/2 divisions, (2N3 + 3N2 − 5N)/6 multiplications,
and (2N3 + 3N2 − 5N)/6 subtractions modulo Q.

Johannes Mono, Kamil Kluczniak and Tim Güneysu 651

Table 6: Functionality comparison of different FHE libraries for FHEW-like schemes. For
functional bootstrapping, we denote as # the plain FHEW/TFHE algorithm to evaluate
boolean gates. By G#, we denote a full domain functional bootstrapping algorithm [YXS+21,
CLOT21,LMP22,KS22]. By , we denote support for our improved funtional bootstrapping
algorithm. In this comparison, a high-level interface for functional bootstrapping is required.

Library Language Bootstrapping
Functional Multi-Value

FHE-Deck C++ X
Open-FHE C++ G# ×
TFHE C++ # ×

tfhe-rs/CONCRETE Rust ×

Table 7: Comparison of methods to choose w and ~v.

Method Time Modulus
[CIM19] O(N3) Prime
Ours O(N) Any

a prime modulus to fix this which is not a limitation in our approach). We compare the
time complexity and the restrictions on the modulus in Table 7.

5.2 Related Work on Circuit Synthesis
There are a couple of previous works on circuit synthesis for FHEW-like schemes, the
previously mentioned FHE transpiler [GSPH+21] as well as two earlier works named
Cingulata, originally released under the name Armadillo [CDS15], and the E3 framework
[CMG+18]. In Cingulata, the authors divide their toolchain in three parts: the front-end
translating C++ code to a Boolean circuit, the middle-end optimizing the circuit and the
back-end transpiling the circuit to an FHE library. The mapping from C++ to a Boolean
circuit in the front-end defers optimizations to the middle-end based on ABC [Mis], which
we also use as part of our toolchain via Yosys. No other optimizations are performed. The
E3 framework also uses hardware tooling for transpilation, however, no details regarding
optimizations are available in their publication.

The FHE transpiler currently improves upon all previously known work and thus serves
as a good foundation to evaluate new research ideas. Common compiler optimizations such
as constant folding or dead code elimination are performed in the XLS-based high-level
synthesis layer. However, to the best of our knowledge, the only FHE-specific optimization
currently performed is rather trivial treating inversion as free for Boolean-based circuits. For
LUT-based circuits, there is currently no post-processing implementing this optimization.

After the initial release of our work, Guan et al. [GMZ+24] published the framework
AutoHoG which also uses multi-value bootstrapping for homomorphic gate computations.
Unfortunately, we were unable to replicate their results for a fair comparison since we
could not derive certain parameters or implementation details from the description in
their paper. For example, they do not specify the key and error distributions and we did
not manage to instantiate TFHE securely8 with the remaining parameters as specified
in their work. Singh et al. [SDC+23] create homomorphic three-bit AND, XOR, and
NAND gates generalizing the well-known two-bit method from [DM15]. Here, we were also
unable to derive all required parameters and implementation details for a fair comparison.

8using the Lattice Estimator [APS15]

652 Improved Circuit Synthesis with Multi-Value Bootstrapping for FHEW-like Schemes

Importantly, our LUT-based approach with multi-value bootstrapping encapsulates their
approach because it enables generic gates Gn,m with a single bootstrapping.

5.3 Limitations
There are some limitations for our proposed optimizations. First, as highlighted in
Subsection 4.2, using adder substitution can result in worse performance when the inputs
contain many constant bits which can be non-detectable using our current approach.
Therefore, a user has to manually check for the better circuit. One solution and useful
contribution in future work would be improving constant bit detection and constant
folding in the Yosys IR. Second, although using three-bit ciphertexts tends to provide the
largest speed-ups, sometimes other bit sizes can be more beneficial such as using two-bit
ciphertexts for the relu example. Exploring the root causes and detecting such cases,
especially if also done for subcircuits, would further improve circuit synthesis for FHE.

5.4 Future Work
In our opinion, an important observation is that the current state-of-the-art in bootstrapping
for FHEW-like schemes can still be improved upon. We also believe that there is still room
for improvement regarding performance for TFHE implementations as well as regarding
usability for currently available libraries, including, but not limited to, FHE-Deck. As for
circuit synthesis, our work is a first step in FHE-specific optimizations and we believe that
there is a multitude of other possibilities making automatically generated circuits more
efficient. For example, multi-value bootstrapping greatly benefits from LUTs with the
same inputs which current hardware tooling is not optimizing for. Overall, we are looking
forward to future work in the area of circuit synthesis for Boolean-based FHE schemes.

6 Conclusion
In this work, we improve performance and usability of FHEW-like schemes by extending
the current state-of-the-art in bootstrapping as well as circuit synthesis. To improve perfor-
mance, we significantly simplify the bootstrapping idea proposed by Carpov, Izabachène,
and Mollimard [CIM19] and provide the first efficient implementation for multi-value
bootstrapping. With respect to usability, we provide new and secure parameter sets
for multi-bit encryptions, which can be used by researchers and developers alike, and
implement a high-level interface for multi-value bootstrapping in the open-source library
FHE-Deck [fhe23].

We provide a generalized model for mapping Boolean circuits to homomorphic circuits
and introduce the first non-trivial FHE-specific optimizations for generating circuits from
high-level code: LUT grouping and adder substitution. Using LUT grouping, generated
circuits require almost 40% less bootstrappings on average and adder substitution reduces
the number of required bootstrappings by up to 85%. Overall, using all optimizations
results in up to 4.2× faster execution times compared to previous synthesized circuits with
state-of-the-art methods.

Acknowledgements
Johannes Mono and Tim Güneysu are supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2092
CASA - 390781972. Kamil Kluczniak is supported by the German Ministry for Education
and Research through funding for the project CISPA-Stanford Center for Cybersecurity
(Funding number: 16KIS0927).

Johannes Mono, Kamil Kluczniak and Tim Güneysu 653

References
[ABBB+22] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins,

Saroja Erabelli, Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey Kim,
Yongwoo Lee, Zeyu Liu, Daniele Micciancio, Ian Quah, Yuriy Polyakov,
Saraswathy R.V., Kurt Rohloff, Jonathan Saylor, Dmitriy Suponitsky,
Matthew Triplett, Vinod Vaikuntanathan, and Vincent Zucca. Openfhe:
Open-source fully homomorphic encryption library. In Proceedings of the
10th Workshop on Encrypted Computing & Applied Homomorphic Cryptog-
raphy, WAHC’22, pages 53–63, New York, NY, USA, 2022. Association for
Computing Machinery.

[AP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial
error. In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology
– CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer Science,
pages 297–314, Santa Barbara, CA, USA, August 17–21, 2014. Springer,
Heidelberg, Germany.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of learning with errors. Journal of Mathematical Cryptology, 9(3):169–203,
2015.

[BDF18] Guillaume Bonnoron, Léo Ducas, and Max Fillinger. Large FHE gates from
tensored homomorphic accumulator. In Antoine Joux, Abderrahmane Nitaj,
and Tajjeeddine Rachidi, editors, AFRICACRYPT 18: 10th International
Conference on Cryptology in Africa, volume 10831 of Lecture Notes in Com-
puter Science, pages 217–251, Marrakesh, Morocco, May 7–9, 2018. Springer,
Heidelberg, Germany.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully ho-
momorphic encryption without bootstrapping. ACM Trans. Comput. Theory,
6(3):13:1–13:36, 2014.

[BKS+21] Fabian Boemer, Sejun Kim, Gelila Seifu, Fillipe DM de Souza, Vinodh
Gopal, et al. Intel HEXL (release 1.2). https://github.com/intel/hexl,
September 2021.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors,
Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in
Computer Science, pages 868–886, Santa Barbara, CA, USA, August 19–23,
2012. Springer, Heidelberg, Germany.

[CDS15] Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. Armadillo: A compilation
chain for privacy preserving applications. In Proceedings of the 3rd Interna-
tional Workshop on Security in Cloud Computing, SCC ’15, page 13–19, New
York, NY, USA, 2015. Association for Computing Machinery.

[CGGI16a] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology –
ASIACRYPT 2016, Part I, volume 10031 of Lecture Notes in Computer Sci-
ence, pages 3–33, Hanoi, Vietnam, December 4–8, 2016. Springer, Heidelberg,
Germany.

https://github.com/intel/hexl

654 Improved Circuit Synthesis with Multi-Value Bootstrapping for FHEW-like Schemes

[CGGI16b] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-
abachène. TFHE: Fast fully homomorphic encryption library, August 2016.
https://tfhe.github.io/tfhe/.

[CGGI17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Faster packed homomorphic operations and efficient circuit bootstrapping
for TFHE. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in
Cryptology – ASIACRYPT 2017, Part I, volume 10624 of Lecture Notes in
Computer Science, pages 377–408, Hong Kong, China, December 3–7, 2017.
Springer, Heidelberg, Germany.

[CIM19] Sergiu Carpov, Malika Izabachène, and Victor Mollimard. New techniques
for multi-value input homomorphic evaluation and applications. In Mitsuru
Matsui, editor, Topics in Cryptology – CT-RSA 2019, volume 11405 of Lecture
Notes in Computer Science, pages 106–126, San Francisco, CA, USA, March 4–
8, 2019. Springer, Heidelberg, Germany.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic
encryption for arithmetic of approximate numbers. In Tsuyoshi Takagi and
Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017, Part I,
volume 10624 of Lecture Notes in Computer Science, pages 409–437, Hong
Kong, China, December 3–7, 2017. Springer, Heidelberg, Germany.

[CLOT21] Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Im-
proved programmable bootstrapping with larger precision and efficient arith-
metic circuits for TFHE. In Mehdi Tibouchi and Huaxiong Wang, editors,
Advances in Cryptology – ASIACRYPT 2021, Part III, volume 13092 of Lec-
ture Notes in Computer Science, pages 670–699, Singapore, December 6–10,
2021. Springer, Heidelberg, Germany.

[CMG+18] Eduardo Chielle, Oleg Mazonka, Homer Gamil, Nektarios Georgios Tsoutsos,
and Michail Maniatakos. E3: A framework for compiling c++ programs
with encrypted operands. Cryptology ePrint Archive, Paper 2018/1013, 2018.
https://eprint.iacr.org/2018/1013.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic
encryption in less than a second. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology – EUROCRYPT 2015, Part I, volume 9056 of
Lecture Notes in Computer Science, pages 617–640, Sofia, Bulgaria, April 26–
30, 2015. Springer, Heidelberg, Germany.

[Emb19] Embedded Security Group. HAL - The Hardware Analyzer. https://github.
com/emsec/hal, 2019.

[fhe23] Fhe-deck. https://github.com/FHE-Deck, September 2023.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. Cryptology ePrint Archive, Report 2012/144, 2012. https:
//eprint.iacr.org/2012/144.

[GBA21] Antonio Guimarães, Edson Borin, and Diego F. Aranha. Revisiting the
functional bootstrap in tfhe. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2021(2):229–253, Feb. 2021.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, 41st Annual ACM Symposium on Theory of Computing,
pages 169–178, Bethesda, MD, USA, May 31 – June 2, 2009. ACM Press.

https://eprint.iacr.org/2018/1013
https://github.com/emsec/hal
https://github.com/emsec/hal
https://github.com/FHE-Deck
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144

Johannes Mono, Kamil Kluczniak and Tim Güneysu 655

[GMZ+24] Zhenyu Guan, Ran Mao, Qianyun Zhang, Zhou Zhang, Zian Zhao, and
Song Bian. Autohog: Automating homomorphic gate design for large-scale
logic circuit evaluation. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pages 1–1, 2024.

[GPvL23] Antonio Guimarães, Hilder V. L. Pereira, and Barry van Leeuwen. Amor-
tized bootstrapping revisited: Simpler, asymptotically-faster, implemented.
Cryptology ePrint Archive, Report 2023/014, 2023. https://eprint.iacr.
org/2023/014.

[GSPH+21] Shruthi Gorantala, Rob Springer, Sean Purser-Haskell, William Lam, Royce
Wilson, Asra Ali, Eric P. Astor, Itai Zukerman, Sam Ruth, Christoph Dibak,
Phillipp Schoppmann, Sasha Kulankhina, Alain Forget, David Marn, Cameron
Tew, Rafael Misoczki, Bernat Guillen, Xinyu Ye, Dennis Kraft, Damien
Desfontaines, Aishe Krishnamurthy, Miguel Guevara, Irippuge Milinda Perera,
Yurii Sushko, and Bryant Gipson. A general purpose transpiler for fully
homomorphic encryption. Cryptology ePrint Archive, Report 2021/811, 2021.
https://eprint.iacr.org/2021/811.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-
based. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology
– CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Sci-
ence, pages 75–92, Santa Barbara, CA, USA, August 18–22, 2013. Springer,
Heidelberg, Germany.

[Klu22a] Kamil Kluczniak. NTRU-ν-um: Secure fully homomorphic encryption from
NTRU with small modulus. Cryptology ePrint Archive, Report 2022/089,
2022. https://eprint.iacr.org/2022/089.

[Klu22b] Kamil Kluczniak. NTRU-v-um: Secure fully homomorphic encryption from
NTRU with small modulus. In Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi, editors, ACM CCS 2022: 29th Conference on Computer
and Communications Security, pages 1783–1797, Los Angeles, CA, USA,
November 7–11, 2022. ACM Press.

[KS22] Kamil Kluczniak and Leonard Schild. Fdfb: Full domain functional bootstrap-
ping towards practical fully homomorphic encryption. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2023(1):501–537, Nov. 2022.

[LMK+23] Yongwoo Lee, Daniele Micciancio, Andrey Kim, Rakyong Choi, Maxim
Deryabin, Jieun Eom, and Donghoon Yoo. Efficient FHEW bootstrapping
with small evaluation keys, and applications to threshold homomorphic en-
cryption. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology
– EUROCRYPT 2023, Part III, volume 14006 of Lecture Notes in Computer
Science, pages 227–256, Lyon, France, April 23–27, 2023. Springer, Heidelberg,
Germany.

[LMP22] Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov. Large-precision homomor-
phic sign evaluation using FHEW/TFHE bootstrapping. In Shweta Agrawal
and Dongdai Lin, editors, Advances in Cryptology – ASIACRYPT 2022,
Part II, volume 13792 of Lecture Notes in Computer Science, pages 130–160,
Taipei, Taiwan, December 5–9, 2022. Springer, Heidelberg, Germany.

[Mis] Alan Mishchenko. System for sequential logic synthesis and formal verification.
https://github.com/berkeley-abc/abc.

https://eprint.iacr.org/2023/014
https://eprint.iacr.org/2023/014
https://eprint.iacr.org/2021/811
https://eprint.iacr.org/2022/089
https://github.com/berkeley-abc/abc

656 Improved Circuit Synthesis with Multi-Value Bootstrapping for FHEW-like Schemes

[MS18] Daniele Micciancio and Jessica Sorrell. Ring packing and amortized FHEW
bootstrapping. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx,
and Donald Sannella, editors, ICALP 2018: 45th International Colloquium
on Automata, Languages and Programming, volume 107 of LIPIcs, pages
100:1–100:14, Prague, Czech Republic, July 9–13, 2018. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik.

[PAL21] PALISADE Lattice Cryptography Library (release 1.11.5). https://
palisade-crypto.org/, September 2021.

[RAD78] Ronald Rivest, Len Adleman, and Michael Dertouzos. On data banks and
privacy homomorphism, 1978.

[SDC+23] Animesh Singh, Smita Das, Anirban Chakraborty, Rajat Sadhukhan, Ayantika
Chatterjee, and Debdeep Mukhopadhyay. FHEDA: efficient circuit synthesis
with reduced bootstrapping for Torus FHE. IACR Cryptol. ePrint Arch.,
page 1310, 2023.

[YXS+21] Zhaomin Yang, Xiang Xie, Huajie Shen, Shiying Chen, and Jun Zhou. TOTA:
Fully homomorphic encryption with smaller parameters and stronger security.
Cryptology ePrint Archive, Report 2021/1347, 2021. https://eprint.iacr.
org/2021/1347.

[Zam22] Zama. Concrete: TFHE Compiler that converts python programs into FHE
equivalent, 2022. https://github.com/zama-ai/concrete.

https://palisade-crypto.org/
https://palisade-crypto.org/
https://eprint.iacr.org/2021/1347
https://eprint.iacr.org/2021/1347
https://github.com/zama-ai/concrete

	Introduction
	Preliminaries
	Notation
	Boolean and Homomorphic Circuits
	Fully Homomorphic Encryption
	Generalized Learning with Errors
	FHE Transpilation

	Contributions
	Synthesis Toolchain
	Efficient Multi-Value Functional Bootstrapping
	The FHE Scheme
	New Parameters for Multi-Value Bootstrapping
	Circuit Mapping
	Optimization: LUT Grouping
	Optimization: Adder Substitution
	Additional Optimizations

	Evaluation
	Evaluating LUT Grouping
	Evaluating Adder Substitution
	Comparison with the FHE Transpiler

	Discussion
	Related Work on FHEW-like Implementations
	Related Work on Circuit Synthesis
	Limitations
	Future Work

	Conclusion

