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Abstract. Hardware faults are a known source of security vulnerabilities. Fault
injection in secure embedded systems leads to information leakage and privilege
escalation, and countless fault attacks have been demonstrated both in simulation
and in practice. However, there is a significant gap between simulated fault attacks
and physical fault attacks. Simulations use idealized fault models such as single-bit
flips with uniform distribution. These ideal fault models may not hold in practice.
On the other hand, practical experiments lack the white-box visibility necessary
to determine the true nature of the fault, leading to probabilistic vulnerability
assessments and unexplained results. In embedded software, this problem is further
exacerbated by the layered abstractions between the hardware (where the fault
originates) and the application software (where the fault effect is observed). We
present FaultDetective, a method to investigate the root-cause of fault injection
from fault detection in software. Our main insight is that fault detection in software
is only the end-point of a chain of events that starts with a fault manifestation in
hardware and propagates through the micro-architecture and architecture before
reaching the software level. To understand the fault effects at the hardware level,
we use a scan chain, a low-level hardware test structure. We then use white-box
simulation to propagate and observe hardware faults in the embedded software. We
efficiently visualize the fault propagation across abstraction levels using a hash-tree
representation of the scan chain. We implement this concept in a multi-core MSP430
micro-controller that redundantly executes an application in lock-step. With this
setup, we observe the fault effects for several different stressors, including clock
glitching and thermal laser stimulation, and explain the root-cause in each case.
Keywords: Fault Attacks, Fault Injection, ASIC, Microcontroller, Embedded Software

1 Introduction
A substantial body of literature addresses the adverse impacts of hardware faults on
the execution of secure embedded systems, spanning over a quarter-century [BDL97].
These findings, derived from simulations or empirical studies, are used to guide research
on fault countermeasures and techniques for fault detection or correction. Yet, the
absence of a generally agreed-upon method in fault modeling leaves designers to rely
heavily on assumptions regarding the statistical distribution, severity, and nature of
faults. Research in fault injection and propagation on software falls into two broad
categories: either the fault injection is simulated on a model of the design under test, or it
is based on practical measurements on an artifact. Unfortunately, these two categories
only show weak connections, raising uncertainties about how effectively the conclusions
drawn from simulation-based research can be applied to the fault models identified through
measurement-based research.

Simulation-based research in fault attacks assumes a fault attacker with arbitrary capa-
bilities who induces a bit flip or a permanent fault with chosen precision and distribution.
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The impact of the fault is captured through random or constrained bit flipping techniques
[YGS15, RSS+21, AWMN20, NOV+22]. At higher abstraction levels, simulated attacks
revert to abstract fault models such as gate modification [RSG23], instruction-skip, or
random-register corruption [TAC+23]. These efforts have enhanced our understanding
of the potential effects of chosen faults across both micro-architecture and architecture
levels, thereby facilitating the development of tools for verifying countermeasures. However,
underlying this research is an assumption on the nature and location of faults.

Empirical research in fault attacks, on the other hand, begins with the selection of a
fault injection vector, which is then applied to a specific target such as a micro-controller
or an FPGA. This approach provides insight into the real-world effects of a fault. Popular
fault injection vectors include clock glitching, voltage glitching, electromagnetic pulses,
and optical and thermal laser injection. However, due to the empirical nature of these
experiments, visibility into the low-level hardware is often limited, and the precision of fault
injection is limited. Thus, defining an effective fault model in this context poses a significant
challenge and is sometimes the primary focus of research [VMDB20, KDD21]. Given the
probabilistic nature of faults, the fault model itself also becomes probabilistic. For example,
empirical results may describe a distribution of 1-bit and multi-bit faults [DBC+18].
Additionally, it is a challenge to describe the fault model at higher abstraction levels,
leading to various forms of instruction-skip, instruction-replication, or operand-substitution
in micro-controller execution models.

Contributions. Our research investigates the gap between the fault models used in
simulation and verification tools, and the probabilistic fault models encountered in practical
microprocessor setups. To address this gap, we propose FaultDetective, a technique
that precisely identifies fault locations and traces their propagation by integrating hardware
redundancy with a scan chain. Hardware redundancy provides multiple perspectives on
the effects of a fault injection on a microprocessor, ideally providing both correct and
faulty versions of the same behavior. The scan chain facilitates access to the low-level
system state of redundant copies. We compare these states to analyze the hardware origin
of the fault, its propagation through micro-architecture, and its eventual manifestation
in software and hardware. Our method utilizes layout-level design data to implement
realistic fault modeling against a chosen fault vector. We demonstrate this approach using
a six-fold redundant MSP430 micro-controller implemented in standard cells. Subsequently,
we analyze a series of firmware applications to illustrate that our methodology can be
applied to various targets, including PIN Verification and the ASCON SBOX, and to
diagnose how both the software and hardware fail under fault injection across different
firmware configurations.

Related Work. The impact of fault injection at design time can be anticipated by simulat-
ing the fault on a model of the implementation. An important use case is in the prediction of
design reliability against random faults and single-event setup [MWE+03, PG23b, PG23a].
In the security space, design-time evaluation is used to verify countermeasures in hardware
[YGS15, RSS+21, AWMN20, NOV+22], software [HSP21], or mixed hardware/software
systems [THN+24, GS21, TAC+22, TAC+23]. Several of these efforts use formal verifica-
tion techniques, which offer the advantage of exhaustive exploration of the fault response
after fault injection [RSS+21, THN+24, GS21, TAC+22, TAC+23, NOV+22]. However,
in all of these cases, the fault model is chosen or constrained as an input of the simulation
flow, rather than as an outcome of physical stress on the target design.

Yet, fault models are challenging, and significant efforts have been invested in describing
the impact of fault injection. Indeed, fault injection causes in essence an analog/electrical
effect, and its transformation into a quantifiable digital effect in hardware or software is
complex. For example, electromagnetic pulses have been described as local timing faults as
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Figure 1: Software Execution as a Finite State Machine (Left) Intended FSM, Architecture
Level FSM and Micro-architecture Level FSM (Right) The micro-architecture state of the
processor covers all registers in a structural hierarchy of words and modules. The ISA
hides some registers to the programmer, leading to a hierarchy of words in the architecture
state.

well as sampling faults in hardware [OGM15, GYG+18], resulting in instruction-skip as well
as instruction-repetition in software [PHB+19, BBG+19]. Laser pulses cause signal integrity
effects that result in a distribution of single-bit and multi-bit flips [VMDB20, DBC+18].
The impact of laser pulses on software has been described as causing instruction-skip,
instruction-replay, while sustained laser pulses can affect hundred instructions at a time
[KDD21]. Similar complex software effects have been described for clock glitching, including
partial update of variables [ACD+24] as well as complex micro-architecture effects that
modify the instruction semantics [SMB+21]. Generally, these complex fault effects are in
sharp contrast with the simple models used in simulation-based research.

We conclude that accurate fault modeling plays a crucial role in understanding the
impact of faults on designs, and designing a comprehensive fault model for hardware
remains a topic of ongoing research [RSG23]. For software, a comprehensive fault model
is still elusive. Because of this reason, we adopt an approach to fault modeling that
involves observing a fault effect as early as possible after fault injection, achieved by
capturing the scan chain immediately following the fault injection. The fault injection
itself can be performed either on a physical chip or through simulation using low-level
(post-layout) design data. For example, simulation of laser fault injection requires the
layout and the technology node of the design, and simulation of clock glitching requires
the detailed post-layout netlist with timing distribution over the design. In this paper, we
focus on simulating the fault injection process with realistic physical constraints. After
fault injection, we simulate the impact of the physical fault on hardware across multiple
abstraction levels, including micro-architecture, architecture and application-level software.

Outline. The paper is organized as follows: the next section presents the preliminaries
that underpin the proposed FaultDetective. Section 3 details the FaultDetective
methodology for root-cause analysis of fault injection, as well as the chip used as the
analysis target. Section 4 presents a series of examples applying the fault root-cause
methodology.

2 Preliminaries
This section describes foundational concepts for root-cause analysis in fault injection,
including software and hardware modeling, attacker models, and fault propagation modeling
across hardware and software.
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Software execution as a Finite State Machine. We capture the execution of software
as a hierarchical finite state machine (FSM), shown in Figure 1. The hierarchy is the result
of the implicit layering between the application, the instruction-level architecture, and the
micro-architecture. The instruction-level architecture hides certain registers within the
micro-architecture, exposing only the programmer-visible state. In fault root-cause analysis,
these abstractions play a crucial role since a fault may reside within the micro-architecture
state and cause effects that cannot be anticipated from the programmable-visible state
alone. The hierarchical layers are defined as follows.

1. At the application level, software developers construct the application, which we
conceptualize as the Intended Finite State Machine (IFSM); this terminology is also
used by other researchers who define a software exploit as a discrepancy between
the IFSM and the actual implementation [Dul20, BGX+21]. The IFSM operates on
application-level state elements or variables. The number of states of the IFSM, and
the number of variables it uses, is much smaller than the number of possible states
that can be represented by the implementation. Therefore, the number of states and
variables within the IFSM is considerably smaller than the total number of states
that the implementation can potentially encompass.

2. The architecture level FSM is generated by compiling the application IFSM into
instructions and programmer-visible state elements within a computer architec-
ture. These programmer-visible state elements include processor registers, memory
and other programmer-visible storage components. State transitions within the
architecture-level FSM correspond to the execution of instructions.

3. The micro-architecture level FSM is characterized by the application executing
on microprocessor hardware. The micro-architecture level encompasses all state
elements utilized in the implementation, including storage that is both invisible and
inaccessible to the programmer. Examples of such invisible storage elements include
pipeline registers, storage buffers, and internal instruction controls. State transitions
at the micro-architecture level are managed with cycle-accurate precision.

Software execution implies a hierarchical execution of these FSMs: each state transition
in the IFSM corresponds to a sequence of transitions (instructions) at the architecture
level, and each state transition at architecture level maps to a sequence of transitions
(clock cycles) at micro-architecture level. Additionally, the state elements defined in the
IFSM constitute a subset of the state elements of the architecture level FSM, which in
turn comprise a subset of the state elements within the micro-architecture FSM. This
hierarchy and the connection between levels through state elements and state transitions,
is fundamental to understand the behavior of embedded software under fault injection.
For example, a hardware fault injection such as a clock glitch affects the hardware and
consequently alters the state of the micro-architecture level FSM. We refer to such a
faulted micro-architecture state as a weird state. Weird states are distinct from sane states
reached through normal software execution.

Attacker Model. In this paper, we consider an attacker who can maliciously change the
micro-architecture state through non-invasive or semi-invasive fault injection, for example
clock glitching or laser fault injection. We assume that faults are transient and disappear
after processor reset. Our efforts focus on analyzing faults in the registers (flip-flops)
of the micro-architecture that last more than one clock cycle, and we recognize that
RAM storage can be protected through error correcting codes (ECC) [SRVL+20]. We
consider memory-corruption attacks [PV16], caused by feeding malformed inputs into
buggy application software, to be out of scope. The objective of our work is not to detect
or intercept a fault attack, but rather to pinpoint the root-cause of a simulated fault
attack by simulating the fault injection on the design data, and analyzing exactly how the
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software fails the programmer’s intent. Our analysis focuses on understanding how these
faults manifest and propagate through hardware and software, providing deeper insights
into their origin and impact from injection to detection and analyzing exactly how the
software fails the programmer’s intent.

Sane and Weird States. The concept of using state machines to capture security exploits,
including fault attacks, is due to Dullien [Dul20]. Dullien defines the IFSM as the program
executing on a processor according to the programmer’s intent, and introduces the notion
of a weird FSM to describe the behavior that occurs when the intended FSM enters an
otherwise unreachable state. We found the concept of a weird FSM, coupled with the
model of software execution as a hierarchical FSM, to be highly effective in investigating
scenarios where, as Dullien describes, the IFSM ‘goes of the rails’.

We define a system state as a concrete value of the micro-architecture state. In the
broadest sense, this includes every flip-flop and memory bit in the system, including
peripherals and the micro-processor itself. In the following, we restrict the discussion of
system state to those state elements inside of the micro-processor. A sane state refers to
any system state that is achieved when the implementation of the IFSM’s implementation
operates in accordance with the programmer’s intent. Under normal conditions, in the
absence of a fault attack, the processor’s execution exclusively reaches these sane states.
The sane machine is the collection of all possible sane states. The number of sane states
within an IFSM can potentially be very large, particularly if the IFSM uses numerous
variables with large domains. However, we don’t have to visualize the entire sane machine.
Instead, the purpose of the sane machine is to characterize the dynamic behavior of
the application through a series of state transitions, and to identify instances where a
transition occurs outside the boundaries of the sane state space. Implementing the IFSM
as a program on a concrete micro-processor significantly increases the number of states
in the implementation. This is due to the inclusion of a large number of state elements
within the micro-processor, which collectively can accommodate many more states than
those required by the IFSM. The result of a successful fault injection is the alteration of
a state element against the programmer’s intent. Depending on the method of the fault
injection, any state element within the processor may be affected, causing the processor to
transition from a sane state to a weird state. Occasionally, this weird state may coincide
with another sane state, for example if specific fault-correction hardware on state elements
is present [AHS09, NFM+19]. However, in general, a weird state does not occur within
the boundaries of the sane machine.

The Meaning of the Weird Machine. Unlike the sane machine, which adheres to the
semantics defined by the instruction-set, the behavior of the weird machine is largely
unknown and unpredictable. Its execution semantics are defined by the low-level hardware
implementation, and may express a much more varied response compared to the behavior
observed in the sane machine. Following a fault injection that affects the micro-architecture,
a software instruction may loose its intended meaning; an effect described by Dullien as
the emergent instruction set. It is this uncertainty about the semantics of a processor
under fault injection, that is responsible for the difficulty in understanding or predicting
the fault response of embedded software. Dullien uses the weird machine model to create
formal proofs of non-exploitability of the IFSM, under the assumption of an attacker
who is able to corrupt the memory. He demonstrates a formal method to show that such
an attacker cannot alter the outcome of the IFSM’s execution. However, he does not
attempt to visualize or explicitly uncover the concrete behavior of the weird machine at
the micro-architecture or architecture levels. Instead, Dullien only concludes that it is
difficult (but not impossible) to make statements about the non-existence of programs in a
given machine language with only empirically accessible semantics [Dul20]. However, the
weird machine can indeed be modeled when the weird state is fully specified, i.e. under
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Figure 2: Four fault response patterns of an FSM after fault injection.

any concrete fault scenario. Also, the unknown state space of the weird machine does
not imply that the processor operates non-deterministically. The underlying hardware
remains identical whether operating under the weird machine or the sane machine. By
fully modeling the hardware at the gate-level, it becomes feasible to analyze how the
micro-architecture will respond to faults. A primary objective of FaultDetective is to
support this analysis by dynamically tracking the state of the faulty processor.

Fault Patterns in the Weird Machine. To better understand the interaction between
the sane machine and the weird machine, we have classified the fault response as a result
of fault injection into four possible fault response patterns, illustrated in Figure 2. Each
pattern is named to reflect its unique characteristics. A wormhole fault transitions from a
sane state to a weird state and seemingly never returns from the weird state space, even
though execution seems to continue. A spinner fault creates a weird state that loops back
on itself, resembling the appearance of locking up the processor. A detour fault creates
a number of weird state transitions but eventually returns to a sane state, giving the
appearance of lost processor cycles. Finally, a tunnel fault jumps from a sane state to
a different sane state, seemingly without an apparent valid execution path connecting
both states. These classifications help clarify how fault injections manifest and affect
processor behavior. The fault patterns in Figure 2 do not indicate whether a fault attack
would result in a success or a failure. Determining the success of a fault attack requires
verifying if a specific attacker-desirable state is reached, typically assessed through Boolean
predicates applied to the state elements [THN+24]. Instead, the focus of our work is on
understanding the origin and propagation of hardware faults, and this fits well within the
sane/weird machine model.

Scan Chain. To observe the state space of the processor, whether in a weird or sane state,
we utilize a scan chain, which is a test structure that is commonly used for Integrated
Circuit (IC) testing. The scan chain allows every register in a design to be configured as
one element of a long shift register, enabling serial access to each flip-flop in the design.
Scan chain synthesis is well supported in an Application Specific Integrated Circuit (ASIC)
design flow as part of a design-for-test flow [WH10, Chapter 15]. Synthesis tools can
automatically insert a scan chain by utilizing scan flip-flop cells available from standard
cell libraries. The scan insertion algorithms also deal with special cases, such as handling
multiple clock signals and disabling asynchronous reset during scan. The scan chain
proves invaluable for fault root-cause analysis, providing comprehensive visibility into the
low-level state of a design. During a scan operation, the processor halts its execution,
temporarily suspending software operation. The intrusive nature of a scan chains turns it
into a potential security liability, and additional test-access-controls may be required when
a scan-enabled chip is deployed in the field [MBCB05]. However, the design of this access
control is out-of-scope of the current work.
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From Scan Chain to System State. We utilize the scan chain to visualize the state
transitions within both sane and weird machine. Figure 3 illustrates the concept. The
scan chain is transformed into a unique digest through a series of steps. We first compute
a simple digest (djb2)1 over the state bits per word and then per module, generating a
tree structure of digests up to a processor-level digest. Subsequently, an architecture-level
digest is computed using only architecture-visible scan bits, while a micro-architecture
level digest incorporates all scan bits. The processor-level digest serves as a compact
representation of the processor state, and it is sensitive to any single bit flip in the scan
chain. Moreover, a tree data structure facilitates comparison among multiple scan chains
(for example, resulting from redundant executions) to pinpoint which module or word
or scan bit is responsible for differences in the digest, thereby pinpointing the origin or
outcome of a fault. From a single scan chain state, we can compute additional system
states through logic simulation, assuming that processor inputs are replayed. This process
leads to the creation of a Dynamic State Transition Graph, which provides a compact
representation of both sane and weird processor behaviors. The ADSTG is constructed
using architecture-level bits, and records one transition per instruction. The MDSTG is
created using micro-architecture level bits, and captures one transition per clock cycle.

3 Root-cause Analysis for Faults
In this section, we first describe FaultDetective, a technique that combines a scan chain
and redundant execution to determine the root-cause of a fault. We then demonstrate the
application of FaultDetective on an ASIC, employing a design-layout aware simulation
to perform root-cause analysis.

3.1 FaultDetective
FaultDetective relies on a redundant implementation of a micro-controller design that
executes the cores in lock-step, as shown in Figure 4 (left). Each core operates as a
completely independent unit with its own memories, processor, and peripherals. To detect
faults in software, an on-chip network connects all cores, shown as blue connections in
Figure 4 (left). The on-chip network allows the cores to exchange checksum values. The
checksum computation is implemented in the software application running on the cores,

1Give an n-byte string c = {c[1],..,c[n]}, djb2(c) = h[n] computed iteratively as h[i] =
int(h[i-1]*33 + c[i]) and h[0] = 5381
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making it fully user-defined. Fault detection is fully distributed across all cores, and
any core can trigger a redundantly implemented system-wide exception. We then scan
the entire ASIC state through a scan chain, which enables a detailed investigation of
a post-detection system state. This process allows us to compare the redundant scan
chains and precisely pinpoint the location of errors. However, FaultDetective is not
limited to post-detection fault analysis. By capturing the scan chain immediately after
fault injection, as shown in Figure 4 (right), we can capture the early onset of faults in
hardware before they are able to affect the software. Such post-injection fault analysis
helps us to understand how the fault propagates from hardware to software, addressing the
gap that currently exists between simulated fault models and empirical fault models. The
fault root-cause is the earliest observable fault in the scan chain state after fault injection.
The fault trajectory is the path from this initial fault in hardware to its eventual detection
in software. Understanding this trajectory, in conjunction with knowledge of the hardware
design (Verilog) and the software application, will ultimately help to explain how a fault
propagates from the design layout to the application software.

A challenge with fault detection by means of redundancy is that there is no guarantee of
a strict majority of correct executions among the redundant copies. If such a majority does
not exist, the faulty bits in a scan chain cannot be identified. Therefore, FaultDetective
uses one of two different fault detection principles: a priori fault detection, and a posteriori
fault detection. A priori fault detection implies that the ground truth of correct behavior is
known, while a posteriori fault detection relies solely on redundant execution and majority
voting. In practice, we found both a priori fault detection and a posteriori fault detection
useful. With highly localized fault injection vectors, such as lasers, it’s easy to guarantee
that there are sufficient redundant correct copies remaining to establish the correct scan
chain state after fault injection. However, with global fault injection vectors, such as
glitching (affecting a global clock network or power distribution network), it is harder to
guarantee majority correctness. In such a case, we rely on a golden correct simulation and
a priori fault detection, which involves comparing the scan chain state to the golden state.

3.2 Realization in ASIC
To facilitate a design-layout aware fault root-cause diagnosis, we developed an ASIC using
180nm standard cell technology to test the proposed idea of FaultDetective. The
chip includes six identical MSP430 micro-controllers based on OpenMSP430 [Gir17], each
with a 4KB of program memory, a 4KB of data memory, and peripherals including timer,
UART, and GPIO. All cores are connected in a scan chain and each core contributes
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Table 1: Scan Chain Composition of One Core in the Test Chip.
Architecture Micro-architecture Total

openmsp430_0 385 275 660
watchdog_0 6 18 24
sfr_0 4 0 4
multiplier_0 66 4 70
mem_backbone_0 0 38 38
frontend_0 16 100 116
execution_unit_0 231 35 266
dbg_0 57 64 121
clock_module_0 5 16 21

peripherals 712 330 1,042
Total 1,097 605 1,702
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Figure 5: Micro-architecture of one core MSP-430 Micro-architecture.

1,702 bits of state as detailed in Table 1. In total, the scan chain across the entire chip
consists of 10,212 bits. The ASIC is programmable through an I2C debug interface, and
each core can be individually programmed and controlled. The I2C debug interface also
supports global commands to control all cores jointly, enabling lock-step execution of
identical programs. In this ASIC, lock-step redundant execution ensures that all cores
compute the same instruction at the same clock cycle. Program- and Data-memory are
replicated across each core so that the redundant fault detection can also cover the memory
areas. Conducting experiments on a six-core ASIC chip had no specific reason beyond
layout-symmetry considerations and budget constraints for the tape-out. Any multi-core
setup that allows for a posteriori fault detection with majority voting would function
similarly. The communication network on the ASIC is implemented by interconnecting
a network of GPIO ports. Figure 4 (left) illustrates the network topology. The network
is used to exchange chosen checksums at regular intervals during the execution of a test
program. The system-wide exception, which is necessary to halt the system after fault
detection, is redundantly implemented in hardware as a non-maskable interrupt to every
core. Each MSP430 is a 16-bit micro-controller that executes instructions in one to six
clock cycles, depending on the complexity of the instruction operands. Instructions range
from one to three 16-bit words in length. Figure 5 demonstrates the micro-architecture
of each core. Instructions are fetched and decoded by a frontend unit, which drives a
datapath in the execution unit. Memory access is handled by the memory backbone unit,
which multiplexes the MSP430 address space in separate regions for peripheral, program
and data access.
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Figure 6: The design-layout aware simulation framework of FaultDetective.

3.3 A Design-layout Aware Simulation Framework
We present a design-layout aware simulation framework to demonstrate the root-cause
technique in FaultDetective on the testing ASIC. The framework supports design-layout
aware fault simulation and fault root-cause analysis, as outlined in Figure 6.

3.3.1 Step 1: Design-layout Aware Fault Simulation

Regardless of the type of fault injection, FaultDetective analyzes the root-cause of faults
by examining scan chain differences between redundant copies. Figure 6 demonstrates an
implementation of FaultDetective as a gate-level simulation. In this approach, a fault
is injected directly into the gate-level netlist by manipulating the simulation testbench
according to the desired fault-injection parameters. The application software (IFSM) is
compiled and configured into the program/data memory, and then run in a gate-level
simulation using the post-synthesis netlist with post-layout delay timing information (SDF).
After injecting a fault, we capture the scan state of each core once per clock cycle for
subsequent fault diagnosis. The testbench completes either when the application software
(IFSM) detects a fault and halts the processor, or when the simulation continues to run
until the application software finishes without detecting a fault, at which point it reaches
a timeout. To expedite exploration of the fault space, we have automated the process of
generating fault parameters in testbenches to create a large number of simulations across
various unique fault vectors. Each simulation involves a single fault injection, residing in
a single testbench, which can either be laser or clock injection as detailed below. Each
simulation runs as a separate testbench with its own distinct fault injection. We now
describe how we achieved implementation-faithful fault simulation for clock glitch injection
and laser fault injection.

Fault Parameter Generation on Clock Glitch. Clock glitching is a common technique
to inject timing faults into a circuit by temporarily shortening the clock period in a chosen
clock cycle. The margin between the clock period and the minimum required time for a
flip-flop to capture stable data is known as the slack of the signal path that ends at the
flip-flop data input. Slack depends on the logic complexity and the interconnect between
the output of one flip-flop and the input of another, the target flip-flop. When the slack
turns negative, the target flip-flop may experience a timing fault, typically causing it to
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either retain the previous clock cycle’s value or else to become metastable (resulting in
unpredictable behavior with a new value). Slack time varies across the flip-flops of a large
digital circuit. Figure 7 (top) illustrates the distribution of the slack among the flip-flops
of an ‘average’ MSP430 in the ASIC, including registers from peripherals, processor, and
sensor modules, labeling with different background color. By ‘average’, we refer to the
mean slack of corresponding flip-flops across each MSP430 core. The figure demonstrates
significant variation (over 20ns) across the entire register set. This variation implies that
with a given glitch width, only a subset of flip-flops will be affected. However, we observe
that this effect is not identical across all cores. The slack per register shows variations from
core to core due to layout-level variations of standard-cell placement and routing. Figure 7
(bottom) shows the standard deviation of slack time. Especially in the processor region, we
observe variations of 0.4ns or more, from one core to the next, across the set of registers.
This implies that different cores may experience different timing faults even under identical
glitching parameters. Clock glitch injection is simulated using timing simulation. Our
simulation scripts generates a glitch sweep, applying a single clock glitch over every clock
cycle of a software application. This sweep results in a large number of fault simulations,
each involving a single clock glitch.

Fault Parameter Generation on Laser Injection. Laser pulse injection is a highly local-
ized fault injection mechanism, which can either set or reset a flip-flop. The diameter of
the laser spot and the number of affected transistors are correlated [DBC+18]. Typically,
the laser spot diameter in a laser injection setup ranges from 1 micron to 20 micron (µm),
depending on the optical path configured. We assume a 15 µm spot size which can easily
cover several flip-flops. In Figure 8 (left), a small section of the test layout shows the scan
flip-flop cells marked using black outlines. The simulation of a laser pulse involves flipping
the content of the flip-flop struck by the laser spot.

To simulate a laser fault injection campaign, we utilize the layout distribution of the
registers in the testing ASIC, as shown in Figure 8 (right). In this figure, each register
is represented as a grey dot. Due to the large amount of flip-flops, each core appears as
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Figure 8: Fault parameter generation of laser injection. (Left) A 15 µm diameter laser
pulse covers multiple 180nm standard cell flip-flops. (Right) Chip topology with flip-flop
cell locations marked grey.

a grey blob. The laser fault simulation now proceeds as follows. Initially, we define a
circular region (colored in red on the layout), and set its diameter as a configurable input.
We then sweep this region over the entire layout, generating a new testbench for each
location. In the testing ASIC, we identified 2606 different locations that would impact
from one to three registers with a 15 µm laser spot. In total, we have 2060 testbenches
for laser fault simulation, each representing a unique laser spot selection within its own
simulation testbench. A single laser fault injection testbench proceeds as follows: we
randomly select a clock cycle during the execution of the software application, and flip the
registers at the selected location and the chosen clock cycle. By selecting a random clock
cycle to inject laser faults, we aim to explain the root-cause for any faults we observe using
FaultDetective instead of exhaustive simulation of all possible faults. In comparison
with the glitch fault injection, the laser fault injection simulation is thus highly targeted.

3.3.2 Step 2: Fault Root-cause Analysis

Using the scan chain state, we aim to explain the effects of faults as the fault propagates
from hardware through the micro-architecture states to the software architecture states. To
support this process, we have developed additional tools, as illustrated in the bottom half
of Figure 6. Initially, by choosing either a priori or a posteriori fault detection, we compute
the scan chain differential across redundant copies to pinpoint fault locations per clock cycle.
Subsequently, for each core, we generate the Architecture and Micro-architecture Dynamic
State Transition Graph (ADSTG and MDSTG). The subsequent weird machine analysis
involves using the ADSTG/MDSTG, fault root-cause identification, as well as inspection of
the C code, Assembly, RTL verilog, and signal activities (VCD). This is not an automated
process and requires manual inspection of the data by an application designer. Automated
analysis of the fault root-cause would likely require advanced pattern-matching, and is
the scope of future work. While the ADSTG and MDSTG are processor-specific, they are
created from scan chain data and therefore applicable to other processor architectures as
long as the complete processor state can be recorded.

The following example illustrates the fault diagnosis process and the notation used
throughout the paper. Figure 9 (left) shows an application running on the six cores in
lock-step. The cores are configured in a ring network using GPIO ports, such that core
(i mod 6)’s P2OUT port is connected to core ((i + 1) mod 6)’s P2IN port. Each core
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IMPLEMENTATION
while (1) {

P1OUT = 0x80;
switch (state) {
case 0:

P2OUT = 0x0;
if (P2IN == 0x1) state = 1;
break;

case 1:
P2OUT = 0x1;
if (P2IN == 0x0) state = 0;
break;

}
P1OUT = 0x00;

if (P2IN != P2OUT) { -> A5
P1OUT = 0x05;

}
}
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Figure 9: Root-cause analysis of a spinner fault. (Left) Implementation. (Middle) The
ADSTG and MDSTG. (Right) Fault Root-cause captured on the scan chain.

starts with a local state variable, initially at 0. A core switches its state only when the
input changes, and it will detect a fault (P1OUT=0x5) when the input is different from the
expected output. The middle section of Figure 9 shows the ADSTG and MDSTG. The
black nodes and edges represent the non-faulted execution path. Each node corresponds
to a unique architecture or micro-architecture digest (state). Cycle counts associated with
these transitions are labeled on the edges. In cases where edges are traversed multiple
times, the differences in cycle counts between transitions are also indicated. To simplify
the graph notation, we apply a clustering technique where a linear sequence of nodes and
edges is condensed into a start node, an end node, and an edge labeled with the transition
from the start node to the end node. The ADSTG and MDSTG in Figure 9 demonstrate
that the regular operation consists of a repetitive sequence of instructions (A1, A2, A3,
A4) with a round-trip time of 34 cycles.

When a fault is injected, one core will exhibit scan states that are different from the
other cores (or from the golden copy), and the faulty core enters a weird state marked in
red. Edges that originate from or terminate in a weird state are also colored red. In this
example, we injected a laser fault into an MSP430’s status register r2. Figure 9 (right)
shows the fault root-cause, which corresponds to the scan chain differential immediately
after fault injection. The fault altered r2 from 03 into 13, affecting the CPUOFF bit of the
status register. This bit disables further instruction-fetch, effectively halting the processor.
The ADSTG and MDSTG illustrate that the fault is injected in cycle 29 (cycles are counted
from the software instruction P1OUT=0x80), while the core was evaluating the value of
P2OUT. After completing the current instruction, the core halts in state A6 (ADSTG) and
state M7 (MDSTG). This results in the processor entering a spinner fault pattern.

4 Results and Analysis
This section illustrates the operation of FaultDetective through a collection of examples.
Each example details the fault effects across multiple abstraction levels, following a similar
approach as outlined in Section 3.3.2. Our objective is to explain the root-cause of faults
and their propagation through both hardware and software across various scenarios.

4.1 Target Firmware
Table 2 shows the six test cases. We have developed two firmware targets: Simple
Two States and Redundant Simple Two States, with an IFSM as illustrated in Figure
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Table 2: Test Cases Discussed in Section 4.
Test Case Firmware Source Fault Type Demonstration

1 verifyPIN0 [DPP+16] clock Wormhole pattern
2 Redundant Simple Two States self laser Detour pattern
3 ASCON SBOX [Sto16] laser Tunnel pattern

4 Redundant Simple Two States self clock Countermeasure faults
5 verifyPIN5 [DPP+16] clock Countermeasure faults
6 ASCON SBOX [Sto16] clock Faulty output

10. Simple Two States corresponds to the software demonstrated in Figure 9, while
Redundant Simple Two States is a redundant version of this program that transitions to
a 1-output only after two consecutive 1-inputs. We also made use of the FISSC toolbox
[DPP+16], which offers a range of PIN verification routines with different countermeasures.
Specifically, we selected verifyPIN0, an unprotected version, and verifyPIN5, a protected
version featuring hardened Booleans, a fixed time loop, a step counter, and double-testing.
Additionally, we employed a bit-sliced ASCON SBOX, optimized based on Stoffelen’s
SBOX [Sto16]. The first three cases illustrate specific fault patterns in the ADSTG and
MDSTG. The next three cases demonstrate FaultDetective’s application in the context
of cryptographic engineering problems.

4.2 Illustrating Fault Response Patterns
In this section, we demonstrate fault response patterns that illustrate the transition from
the sane state space to the weird state space, as shown in Figure 2.

A Wormhole Fault Pattern. Figure 11 demonstrates a fault injected during VerifyPIN0.
A clock glitch occurs at cycle 192, right after the program enters byteArrayCompare,
which compares the secret PIN with the trial PIN. The fault root-cause, identified by
capturing the scan chain immediately after the fault injection, demonstrates that four
different registers are affected. Among them, one is the program counter, which causes
the program counter to increment both at the glitch as well as the subsequent clock cycle.
Additionally, we can observe that the execution state (e_state) is faulted. This state
variable contains the instruction sequencer, and the fault stops execution of clr.b r15.
This prevents the loop counter in r15 from being cleared, causing r15 to retain its previous
value, which happens to be larger than the loop bound stored in r14. Therefore, the
comparison instruction at f07e concludes that the loop iteration bound has been exceeded,
causing the byteArrayCompare procedure to return 1, executing instructions from f082
to f086. In the ADSTG and MDSTG, the program thus terminates in a weird state where
the verifyPIN0 program is disrupted. The correct execution of the program ends in the
fault-detection ADSTG state A7 - A8, after detecting that one core’s byteArrayCompare
returns true instead of false. The faulty copy ends in ADSTG state A10, successfully
completing verifyPIN0 and exhibiting a wormhole pattern.
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IMPLEMENTATION
<byteArrayCompare>:
f076: push r10
f078: and #255, r14 -> A2
f07c: clr.b r15
f07e: cmp r14, r15 -> A9
f080: jl $+8
f082: mov.b #1, r12
f084: pop r10
f086: ret
f088: mov r13, r10
f08a: add r15, r10
f08c: mov r12, r11
f08e: add r15, r11
f090: cmp.b @r10, 0(r11)
f094: jnz $+6
f096: inc r15
f098: jmp $-26
f09a: clr.b r12
f09c: jmp $-24

BOOL byteArrayCompare(UBYTE* a1,
UBYTE* a2, UBYTE size) {

int i;
for(i = 0; i < size; i++) {

if(a1[i] != a2[i]) {
return 0;

}
}
return 1;

}
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Figure 11: Root-cause of a wormhole fault on VerifyPIN0 breaking the PIN. (Left)
Implementation. (Middle) The ADSTG and MDSTG. (Right) Fault Root-cause captured
on the scan chain.

A Detour Fault Pattern. The second case uses laser fault injection on the Redundant
Simple Two States program. We select a location in core 4, at XY location (2491, 1417)
(ref Figure 8). Figure 12 illustrates the fault response of the program on core 4. The
testbench injects a laser pulse 18 clock cycles after the start of the Redundant Simple
Two States loop, corresponding to the execution of jz $+54 and the decoding of cmp
#1, r12. The laser fault affects a single micro-architecture register, inst_alu, causing a
micro-architecture fault and a weird state M6. Since no architecture state was modified,
the ADSTG shows no change. The fault in inst_alu impacts the logical operation of
the ALU, and further evaluation of the Verilog code shows that this fault alters the ALU
bitwise logic from AND to a combination of XOR and AND. However, during that specific
clock cycle, the bitwise logic is not utilized. The instruction jz $+54 computes a branch
target using a separate adder that is independent of inst_alu. As a result, the branch is
correctly taken, and the fault in inst_alu is overwritten by the subsequent instruction,
resulting in a detour back to the sane state.

A Tunnel Fault Pattern. The tunnel fault pattern is more sophisticated than previous
ones because it does not create faulty (weird) state. Instead, the injected fault is able
to cause a time shift in the edges of the sane state machine. We illustrate on a laser
fault injection on the ASCON SBOX application. We select a location in core 3, at XY
location (2728,2431) (ref Figure 8). Figure 13 demonstrates the response of the ASCON
SBOX computation to the laser fault injection. The testbench injects a single fault at
142 clock cycles after the start of the ASCON SBOX evaluation, during the execution
of the instruction mov r12, &0x0028 at f0b4. Both this instruction and the preceding
and #511, r12 are double-word instructions. The fault is injected when the program
counter is at fb06, in the middle of the computation of mov r12, &0x0028. The effect of
the fault, as shown in Figure 13 (right), alters the program counter from fb06 to fb02,
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IMPLEMENTATION
f034: mov &0x0200,r12
f038: cmp #2, r12
f03a: jz $+100
f03c: mov.b #2, r13
f03e: cmp r12, r13
f040: jl $+34
f042: cmp #0, r12
f044: jz $+54
f046: cmp #1, r12
f048: jz $+68
...
f07a: mov #0, &0x0028
f07e: mov &0x0026,r12
f082: cmp #1, r12
f084: jnz $-58
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Figure 12: Root-cause of a detour fault on Redundant Simple Two States. (Left)
Implementation. (Middle) The ADSTG and MDSTG. (Right) Fault Root-cause captured
on the scan chain.

IMPLEMENTATION
f08c: mov r1, r14
f08e: add #16, r14
f092: mov r1, r15
f094: add #24, r15
f098: mov r1, r10
f09a: mov r1, r11
f09c: add #8, r11
f09e: mov r15, r9
f0a0: mov @r15+, r13
f0a2: mov r13, r12
f0a4: xor @r10+, r12
f0a6: mov @r11+, r8
f0a8: bic r12, r8
f0aa: mov r8, r12
f0ac: xor @r14+, r13
f0ae: xor r13, r12
f0b0: and #511, r12
f0b4: mov r12, &0x0028
f0b8: cmp r14, r9
f0ba: jnz $-26
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Figure 13: Root-cause of a tunnel fault on ASCON SBOX. (Left) Implementation.
(Middle) The ADSTG and MDSTG. (Right) Fault Root-cause captured on the scan chain.

resulting an anomalous execution of the f0b4 instruction. The ADSTG indicates that core
3 takes four clock cycles to recover from the fault, and then returns to a sane state A3.
Similarly, the MDSTG recovers to a regular micro-architecture state M4 with a four-cycle
lag compared to the correct execution. However, subsequent executions proceed correctly,
and the ADSTG of the faulted core 3 matched that of the unfaulted cores thereafter. This
time delay manifests as a tunnel pattern in the ADSTG and MDSTG. At application level, we
verified that core 3 continued to produce correct outputs, with the only discernible change
being a four-cycle delay.

4.3 Root-cause Analysis on Countermeasure Faults
In this section, we apply FaultDetective onto more traditional cryptographic engineering
tasks to explore how faults can impact and propagate within firmware protected by
countermeasures. We discuss two cases.

Redundant Simple Two States. We investigate the effectiveness of the Redundant Simple
Two States against clock glitch injection. Figure 14 demonstrates how a single glitch can
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IMPLEMENTATION
f034: mov &0x0200,r12
f038: cmp #2, r12 -> A2
f03a: jz $+100
f03c: mov.b #2, r13 -> A1
f03e: cmp r12, r13
f040: jl $+34
f042: cmp #0, r12
f044: jz $+54
f046: cmp #1, r12
f048: jz $+68

int main() {
while (1) {

switch (state) {
case 0:

...
break;

case 1:
...
break;

case 2:
P2OUT = 0x1; -> A3
break;

case 3:
...
break;

}
}
return 0;

}
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Figure 14: Root-cause of countermeasure faults on Redundant Simple Two States with a
single glitch. (Left) Implementation. (Middle) The ADSTG and MDSTG. (Right) Fault
Root-cause captured on the scan chain.

break the Redundant Simple Two States. The implementation on the left summarizes the
C implementation of the Redundant Simple Two States FSM using a case statement. The
clock glitch forces the FSM into case 2, causing the application to output a 1 (ADSTG
state A3), flagged as a fault. The fault root-cause analysis explains what happens. The
glitch at cycle 13 affects multiple registers in the frontend_0 instruction decoder. The
program counter (PC) is modified to f038 but after the instruction fetch of f03e. In this
case, the clock glitch causes the program to jump backward. Upon inspecting the Verilog
and the signal activities, we concluded that the execution semantics of cmp #2, r12 are
altered, and intermixed with the execution semantics of the f03e instruction, namely cmp
r12, r13. Thus, the net effect is that the instruction at f038 appears to execute as cmp
r12, r12. This sets the zero flag and eventually leads the case statement falls directly into
the case 2 entry, thereby effectively bypassing the redundancy. Of course, one could argue
that the implementation of Redundant Simple Two States in C itself is not redundant. The
instruction group f034 - f048 are all related to the evaluation of switch(state), which
is not redundant. But the fault root-cause analysis using FaultDetective highlights
how and why this application can fail.

VerifyPIN5. A second example of root-cause analysis on fault countermeasures explains
how VerifyPIN5 fails in both hardware and software. Figure 15 illustrates the setup.
The C code at the bottom right of Figure 15 provides an overview of the PIN checker
implementation. At the beginning of the PIN verification process, a trial counter is
decremented, and the PIN checking proceeds only if the counter contains a non-zero value.
We inject a glitch right at the start of the PIN verification, during the section of code
that tests the trial counter g_ptc. The glitch occurs in the middle of a byte-compare
instruction (at f0e2), abruptly terminating that instruction. The scan chain differential
shows that multiple registers in frontend_0 are affected, including the program counter
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IMPLEMENTATION
# if (g_ptc > 0)
f0da: mov.b &0x0209,r12
f0de: sxt r12
f0e0: clr.b r13
f0e2: cmp.b &0x0209,r13 -> A3
f0e6: jl $+6 -> A5

# return (BOOL_FALSE)
f0e8: clr.b r12 -> A12
f0ea: jmp $+66

verifyPIN5() {
if (g_ptc > 0) {

g_ptc--;

if(byteArrayCompare(..)) {
if(byteArrayCompare(..)) {
g_ptc = 3;
g_authenticated = BOOL_TRUE;
return BOOL_TRUE;

} else countermeasure();
}

}
return BOOL_FALSE;
}
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Figure 15: Root-cause of countermeasure faults on VerifyPIN5 with a single glitch. (Left)
Implementation. (Middle) The ADSTG and MDSTG. (Right) Fault Root-cause captured
on the scan chain.

pc and the instruction sequencer e_state. Subsequently, there is a behavior that can only
be understood at the micro-architecture level. The fault in e_state causes the sequencer
to enter two non-functional (non-executing) states before resuming execution at f0ea. As
a result, both jl $+6 and clr.b r12 are not executed. Skipping the first instruction does
not compromise the countermeasure; it only prematurely terminates the trial counter test.
However, skipping the second instruction poses a problem. It changes the interpretation
of return BOOL_FALSE to the last value held by r12, which in this case would be return
g_ptc. Since g_ptc retains a positive value, the PIN verifier evaluates it as BOOL_TRUE,
thereby compromising the countermeasure. The PIN verifier in the main program does
not test for a hardened Boolean, but only for a non-zero return value.

4.4 Root-cause Analysis on Classic Ciphertext Faults
Our final example demonstrates how FaultDetective analyzes the fault root-cause of
an application that produces a sensitive output. We used a bit-sliced ASCON SBOX as
the driving example.

ASCON Sbox Bit-slicing Implementation. Figure 16 illustrates the fault root-cause
analysis following a clock glitch injection in a bit-sliced ASCON SBOX. The glitch occurred
just after the start of the second of four loop iterations, while executing the xor @r10+,
r12 instruction at f0a4. Surprisingly, this glitch affected all subsequent outputs (P2OUT)
of the loop, despite each iteration being coded independently with j iterations. The
root-cause analysis explains the sequence of events after the fault is injected: the core 5
follows a wormhole pattern with a modified register r15, as shown in Figure 16 (right).
The fault in r15 is caused by the auto-increment operation of instruction ffa0, which
executes during the fault injection and causes an unintended double increment. Given
that the the compiler has used incremental pointer arithmetic to access the cipher state
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IMPLEMENTATION
f08c: mov r1, r14
f08e: add #16, r14
f092: mov r1, r15
f094: add #24, r15
f098: mov r1, r10
f09a: mov r1, r11
f09c: add #8, r11
f09e: mov r15, r9
f0a0: mov @r15+, r13
f0a2: mov r13, r12 -> A2
f0a4: xor @r10+, r12
f0a6: mov @r11+, r8 -> A7
f0a8: bic r12, r8
f0aa: mov r8, r12
f0ac: xor @r14+, r13
f0ae: xor r13, r12
f0b0: and #511, r12
f0b4: mov r12, &0x0028
f0b8: cmp r14, r9
f0ba: jnz $-26

for (j = 0; j < 4; ++j) {
q0[j] = !(x3[j] ^ x4[j]);
q1[j] = !x4[j];
...
y0[j] = ...
y1[j] = ...
y2[j] = ...
y3[j] = ...
y4[j] = ...
P2OUT = y4[j] & 0x01FF;

}
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Figure 16: Fault Root-cause analysis of ASCON SBOX. (Left) Implementation. (Middle)
The ADSTG and MDSTG. (Right) Fault Root-cause captured on the scan chain.

elements, a fault in the pointer r15 consequently affects all subsequent ciphertext.

4.5 Simulation Performance
Table 3 summarizes the simulation complexities of the previously discussed test cases. A
test case involves a compiled firmware subjected to a specific fault injection method. Table
3 includes six test cases, each subjected to a single fault injection method: either clock
glitching or laser injection. A fault simulation is a simulation of a single fault injection in
the context of a test case. A fault campaign is the collection of all fault simulations needed
to cover a test case. Each test case firmware is characterized by two important properties:
the number of instructions subjected to fault simulation and the number of clock cycles
subjected to fault simulation. Table 3 also documents the fault campaign size per test case.
For clock glitching, the fault campaign size is equal to the number of clock cycles subjected
to glitching in the test case firmware. For example, VerifyPIN0 runs for 177 clock cycles,
resulting in 177 testbenches and consequently 177 fault simulations, each involving a single
unique clock glitch. For laser fault injection, the fault campaign size equals the number
of selected layout locations. For example, by selecting a 15 µm diameter for the laser
spot, there are 2,606 non-overlapping regions across the entire layout (Figure 8), resulting
in a total of 2,606 testbenches resulting in 2,606 fault simulations, each affecting one to
three registers. Additionally, fault simulations for root-cause analysis use constant data
inputs hardcoded within each test case firmware. For example, verifyPIN0 has both the
secret PIN and a mismatched trial PIN hardcoded in the test firmware. Therefore, a single
fault injection per firmware execution is sufficient. Finally, Table 3 shows the number of
detected faults in the firmware, i.e. fault injections that result in the firmware detecting a
difference among the redundant cores. The root-case analysis examples in Section 4 are all
selected from injections that ended in a detected fault.
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Table 3: Fault Simulation Complexity.
Test Case Firmware Fault Firmware Firmware Campaign Size Detected

Method Instructions Cycles (# Injections) Faults

1 verifyPIN0 clock 65 177 177 21
2 Red. Two States laser 19 28 2,606 67
3 ASCON SBOX laser 43 96 2,606 192
4 Red. Two States clock 19 28 28 5
5 VerifyPIN5 clock 110 294 294 10
6 ASCON SBOX clock 43 96 96 35

Table 4: Fault Simulation Time (in seconds).
Test Case Firmware Setup Fault Sim ADSTG/MDSTG Parallel

per Injection Generation Fault Campaign

1 verifyPIN0 <1 133 3 3,600
2 Red. Two States 5 93 1 30,600
3 ASCON SBOX 5 116 4 19,800
4 Red. Two States <1 193 1 3,600
5 VerifyPIN5 <1 221 5 5,400
6 ASCON SBOX <1 159 4 3,600

Table 4 lists the simulation time per test case, measured in seconds. The simulation
setup time is the time needed to generate all testbenches for the fault campaign. The fault
simulation time is the average time needed for a fault simulation over the complete fault
campaign. The ADSTG/MDSTG generation time is the average time needed to construct
the ADSTG and MDSTG, scan state differential, and to record the fault root-cause of
a fault simulation for the fault campaign. The parallel fault campaign time is the time
needed for the entire fault campaign using parallel fault simulation. For a six-core design,
each fault simulation completes in a few minutes on a Xeon Gold 6248 CPU. The numbers
in Table 4 use 10x parallel runs for test case 2 and 20x parallel runs for all other cases.
Notably, the fault simulation time is dominating the overall duration of the experiment on
all test cases.

5 Conclusion
FaultDetective demonstrates the ability to identify the earliest onset of a fault in
hardware by capturing the state of the design using a scan chain. This capability allows us
to precisely analyze how applications fail. We extend Dullien’s sane machine/weird machine
framework into a layered structure that separates the Intended FSM, the architecture, and
the micro-architecture. By tracking the scan state over time, we can monitor the behavior
of the weird machine and its impact on software execution. Using a set of test cases, we
illustrated that fault root-cause analysis is feasible and that it is possible to bridge the
gap between fault simulation based on uniform fault models and fault testing based on
real experiments. We are presently testing a physical implementation of the test ASIC
described in this paper, and we aim to demonstrate that the scan chain sampling method
can be applied to physical fault attacks as well.
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