
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 4, pp. 483–508. DOI:10.46586/tches.v2024.i4.483-508

Masking FALCON’s Floating-Point
Multiplication in Hardware

Emre Karabulut1 and Aydin Aysu1

North Carolina State University, Raleigh, USA, ekarabu@ncsu.edu,aaysu@ncsu.edu

Abstract. Floating-point arithmetic is a cornerstone in a wide array of computational
domains, and it recently became a building block for the FALCON post-quantum
digital signature algorithm. As a consequence, the side-channel security of these
operations became under scrutiny. Recent works unveiled the first side-channel attack
specifically targeting floating-point multiplication to steal secret cryptographic keys.
Despite these new attacks on floating point arithmetic, there is no secure hardware
design for side-channel leakage to date. A concurrent work has applied masking
of floating-point multiplication in software [CC24], but their empirical validation
still demonstrated significant first-order leakages. This paper presents the first
hardware masking scheme for floating-point multiplication to mitigate side-channel
attacks. Our technique extends the cryptographic masking principles that split all
intermediate computations into multiple, random shares while preserving the output
functionality. Our innovation also provides a design-time configurable first-order
masked multiplier gadget that carries out integer multiplication, which can support
future designs. To that end, we propose new hardware gadgets including Integer
Multiplier, Carry Calculator, Secure MUX, Zero Check, and Mantissa Selection, and
we prove their security in the PINI model. Moreover, we validate the desired first-
order side-channel security of our implementation on a Sakura-X FPGA board using
10 million measurements. We explore the design space with different architectural
choices to trade-off performance for the area. Our implementation results show
that masking overhead ranges between 5.42×-43.31× in the area and 2×-440× in
throughput.
Keywords: Masking · Floating-point · Side-channel Analysis · FALCON

1 Introduction
Floating-point multiplication, despite its computational expense, remains a crucial op-
eration in numerous computing applications. Floating-point multiplication is not just a
convenience; it is necessary for achieving accuracy and fidelity in AI/ML applications.
On the cryptographic front, the new NIST-approved quantum-secure digital signature
standard (FALCON) performs its polynomial multiplication in the FFT domain, requiring
floating-point multiplications [PFH+20].

Floating-point multiplication, however, might be vulnerable to side-channel attacks.
Such attacks pose a significant risk as they can inadvertently leak sensitive information
processed during floating-point arithmetic operations, including secret keys in cryptographic
algorithms [KA21]. For example, differential power analysis (DPA) on floating-point
multiplication can extract the operands with just 1,000 trials and leak the secret key
in the FALCON algorithm [KA21]. Subsequent improvements to this attack technique
have further reduced the complexity of key recovery, emphasizing the need for robust
side-channel protection mechanisms for FALCON [GMRR22]. Such attacks highlight

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-04-15 Accepted: 2024-06-15 Published: 2024-09-05

https://doi.org/10.46586/tches.v2024.i4.483-508
mailto:ekarabu@ncsu.edu, aaysu@ncsu.edu
http://creativecommons.org/licenses/by/4.0/

484 Masking Floating-Point Multiplication

the need for side-channel protection for FALCON, one of the four finalists of NIST’s
standardization.

Masking is one such technique that can address side-channel leakage and is a popular
choice for protecting cryptography hardware [CGF21]. Therefore, previous research efforts
introduced various masking schemes designed to protect NIST’s post-quantum cryptogra-
phy standard implementations. This includes proposed masking schemes specifically for
CRYSTALS-Kyber [BGR+21, FVBR+21a, HKL+22] and countermeasures developed for
CRYSTALS-Dilithium [MGTF19, ABC+22, CGTZ23].

Despite these emerging attacks and aforementioned efforts of masking against side-
channel leakage, floating-point multiplication has no implemented defense to date. FAL-
CON, therefore, stands out as a candidate within NIST’s finalist that lacks a side-channel
protection mechanism. A concurrent work has recently attempted to provide a first-order
software masking for FALCON, yet the practical demonstration has shown first-order
leakage after 100,000 measurements [CC24], which was attributed but not explicitly
substantiated, to potential micro-architectural leakages. A secure extension of mask-
ing schemes to floating-point multiplication is non-trivial. This complexity arises from
arithmetic operations with large operands interfacing with Boolean operations.

In this work, we aim to bridge this existing gap of side-channel secure hardware for
floating-point multiplication. We set two principle goals to develop a hardware-centric
solution to mitigate the vulnerabilities associated with floating-point multiplication against
side-channel attacks. First, our goal is to introduce a secure first-order hardware masking
scheme for FALCON’s floating-point multiplication, aiming to protect both operands and
their associated computations from potential threats. Our foremost goal is to design and
implement a solution that does not have first-order leakages either in practice or in theory.
Our second goal is to expose the design challenges, given this is the first hardware masking
of floating point multiplication, and to explore the design space with novel architectural
decisions that can lead to different area-performance trade-offs.

We claim the following contributions that stand out in terms of our approach and its
application:

• We introduce the first-ever hardware masking technique tailored for floating-point
multiplication. This hardware is the first hardware-based defense against the DPA
attack on FALCON.

• We introduce new hardware gadgets including Integer Multiplication, Carry Calcula-
tor, Secure MUX, Zero Check, and Mantissa Selection, and we prove their security
in the PINI model.

• We explore the design space of hardware architectures and propose three different
solutions depending on the parallelization level.

• We conduct the Test Vector Leakage Assessment (TVLA) experiments using 10
million traces to demonstrate the effectiveness of our countermeasure and quantify
the overhead of masking. The results show that we have achieved the first solution
that does not leak first-order leakages in practice.

• We introduce a new fixed-vs-fixed TVLA test setting specifically configured to
evaluate corner cases in floating-point mantissa multiplication.

The rest of the paper is organized as follows. Section 2 provides the basic background
information on masking, reviews previously masked gadget multiplications, explains the
used leakage detection method, and breaks down FALCON’s floating-point multiplication
algorithm. In Section 3, we explore the challenges associated with masking mantissa
multiplication and detail our hardware design, covering the proposed masked gadgets,
operational sub-modules, and our overarching implementation approach. Section 5 presents
our implementation results, including the hardware resource utilization, performance
analysis, and our solution’s side-channel evaluation. In Section 6, we provide a discussion

Emre Karabulut, Aydin Aysu 485

on the limitations of our work and the evaluation method. Finally, we conclude our paper
and define possible future research directions in Section 7.

2 Preliminaries
Before we describe our novel ideas and applied techniques, we first introduce the relevant
background in this section.

2.1 Masking
Masking is an effective countermeasure against side-channel attacks. The principle of
masking is based on secure multi-party computation and secret sharing [ISW03]. A masked
scheme splits sensitive variables into multiple randomized shares and then operates on
these shares to prevent correlating physical side-channel information with the original
secret variables. The security order of the masked scheme is determined with ‘d’. The
d-order masking splits the secret x into d+ 1 randomized shares x0, x1, ..., xd. These shares
satisfy the equation x = ⊕ixi mod p, ensuring that the secret x is reconstructed through
⊕ operation under modulo p condition. This randomized splitting ensures that each share
(xi) is statistically independent of the secret x; hence, this splitting is performed with
random r, varying from 0 to p− 1. When p is larger than 2, the scheme is referred to as
arithmetic masking, where ⊕ corresponds to arithmetic addition over modulo p. Otherwise,
it is called Boolean masking and ⊕ becomes exclusive-OR. It is more efficient to mask
arithmetic operations using arithmetic masking and Boolean operations with Boolean
masking [DMRB18]. Several masking schemes have been proposed in the literature as well
as mathematical models to prove their effectiveness [BBD+16, CS20].

2.2 Composability and Probing Models
Security proofs for large designs is often unfeasible, leading to a common approach where
security is proven theoretically for smaller circuits, which then serve as building blocks
for more complex designs. These smaller subcircuits are known as “gadgets”. A gadget is
represented as a Directed Acyclic Graph (DAG) G = {V,E} where V and E denote the set
of vertices and edges, respectively. In the circuit concept, vertices represent combinatorial
gates, while the edges metaphorically stand for wires, forging connections between logic
elements. The inputs of a gadget are denoted by I, and its outputs are represented by O.

Combining individually secure gadgets does not necessarily result in a secure circuit.
The term "composability" describes a gadget’s ability to retain its side-channel security when
incorporated into larger circuits and interacting with other gadgets or circuits. In order
to analyze the composability of gadgets, several theoretical models have been proposed
including Non-Interference (NI) [BBD+16], Strong Non-Interference (SNI) [BBD+16],
Multiple-Output Strong Non-Interference (MO-SNI) [CS20], and PINI [CS20].

Simulatability [BBP+16]. Simulation is a fundamental technique in probing models
used for the theoretical security proof of a gadget. In this process, a gadget is subjected to
a simulation under an adversary model where an attacker is assumed to have knowledge of
‘t’ wires (probes). Upon knowing these shares, the attacker attempts to simulate a subset
I of the input shares of G. The gadget is considered secure if the attacker can correctly
execute the simulation without necessitating additional probes given by the rules of the
simulation. This assessment is based on the premise that the simulated shares should
exhibit statistical independence from the probed shares. Therefore, probing specified
shares does not offer any advantage to the attacker, as their ability to simulate shares
remains equivalent to an individual who does not have probing knowledge. Since shares

486 Masking Floating-Point Multiplication

are randomized, both attackers with probing knowledge and those without have an equal
probability of accurately guessing the simulated shares.

There are different types of adversary models and therefore the rule of simulation varies
based on the definition of adversary models. Nonetheless, we can formulate a generalized
term for security proof applicable across these models: a gadget is deemed probing-secure if,
and only if, the selected probe—defined within the constraints of the adversary model—can
be accurately simulated without access to any shares other than the ones model specifies.

Probe-Isolating Non-Interference [CS20]. "Given a gadget G, let I be a set of at
most t1 probes on its internal wires and O a set of probes on its output shares. Let A be
the set of the share indexes of the shares in O, and t2 = |A|. Let I and O be chosen such
that t1 + t2 ≤ t. The gadget G is t-PINI iff for all I and O there exists a set of at most t1
share indexes B such that observations corresponding to I and O can be simulated using
only the shares with indexes A ∪B of each input sharing."

2.3 Hardware Private Circuit (HPC) gadget
HPC1 and HPC2 are utilized to implement 2-input composable AND gadgets in line
with the PINI concept within the glitch-extended probing model [CGLS20]. Here, we
summarize them and refer interested readers to the original paper [CGLS20]. Notably,
HPC1 combines a Domain-oriented masked AND gate (DOM-AND) with a refresh gadget,
wherein one input sharing of the DOM-AND is refreshed with randomness. Conversely,
HPC2 offers an alternative architecture for a 2-input AND gate with less randomness
requirement. Although HPC2 needs less fresh randomness compared to HPC1, it consumes
more area due to its additional logical operations. Our design strategy is to provide an
area-optimized masked design and thereby we use HPC1 architecture over HPC2 in our
gadget designs. Since HPC1 AND gate is PINI secure [CGLS20], the composition of
HPC1 AND gate and other PINI gadgets are PINI. Thus, we do not provide additional
proof for those gadgets. Moreover, HPC architecture can also be applied in arithmetic
masking. In this context, the 2-input AND gates are replaced with p-bit multipliers, while
the 2-input XOR gates are substituted with p-bit adders/subtractors. These operations
are performed over modulo p rather than modulo 2, extending the applicability of HPC
gadgets to arithmetic operations.

2.4 Test Vector Leakage Assessment
TVLA [SM16] is an effective and commonly used technique for leakage detection. It
identifies statistically significant differences between the means of two groups of side-
channel measurements corresponding to different inputs, using the t-score defined as:

t = µ1 − µ2√
σ2

1
N1

+ σ2
2

N2

(1)

where µi, σi and Ni are the mean, standard deviation, and number of traces respectively,
of group i ∈ {0, 1}. |t| > 4.5 signifies that the two groups are statistically different with
high confidence, indicating the presence of leakage. There are different ways to apply the
TVLA test. The first-order TVLA involves applying an ordinary t-test to each sample
point of the traces, which is known as a first-order univariate test. Second-order univariate
TVLA requires preprocessing the traces by making each trace mean-free and then squaring
each sample point. Following this preprocessing step, the same procedure as the first-order
univariate test is applied on the preprocessed traces to detect leakage at the second-order.

Emre Karabulut, Aydin Aysu 487

Algorithm 1 FALCON Floating-point Multiplication Algorithm [PFH+20]
Input: two 64-bit floating-point numbers x ({sx, ex,mx}) and y ({sy, ey,my})
Output: a raw floating-point multiplication product xy
1: z ← mx ×my

2: zu← z >> 50
3: zl← z ∧ (250 − 1)
4: zu← zu ∨ (zl != 0)
5: zv ← (zu >> 1) ∨ (zu ∧ 1)
6: w ← z >> 55
7: if (w == 0) then
8: zu← zv
9: end if

10: if (ex == 0 ∨ ey == 0) then
11: zu← 0
12: end if
13: e← ex + ey − 2100 + w
14: s← sx ⊕ sy
15: return xy = (s, e, zu)

2.5 Floating-point Multiplication in FALCON
FALCON executes its polynomial multiplication in the FFT domain. Given that the
FFT domain mandates the coefficients of FALCON polynomials to be represented as
complex numbers, floating-point operations become necessary. Therefore, FALCON’s
reference implementation works with emulated floating-point operations, and floating-point
multiplication is one of the most crucial parts of FALCON implementation. This emulation
follows the IEEE-754 standard for double precision. It first multiplies two operands with
the IEEE-754 standard and then performs a rounding operation.

Algorithm 1 presents FALCON’s floating-point multiplication pseudo-code. The al-
gorithm begins with receiving the two 64-bit floating-point numbers, x and y. Each of
these numbers has a sign bit (sx and sy), an 11-bit exponent (ex and ey), and a 53-bit
mantissa (mx and my). The first operation is to multiply these two mantissa values and
produce a raw 106-bit product. This product undergoes rounding to compress it to 56 bits.
This rounding is an OR operation between the least significant bit (LSB) 50 bit of this
product (zl) and its LSB 51st-bit (see Step 5 in Algorithm 1). Then, there is a conditional
right-shift operation. This condition depends on the most significant bit (MSB) of this raw
product (w). If this MSB is set to 1, the resulting 56-bit product is right-shifted, and its
least significant bit undergoes an OR operation with the second bit. The last operation on
the mantissa is corrective actions for zeros. if either of the exponents is zero, the mantissa
is set to 0. Otherwise, the obtained mantissa is preserved.

The sign-bit and the exponent additions are straightforward. The exponents of the
two operands are added together with an offset of −2100 and then increased by 0 or 1
depending on the MSB of mantissa raw multiplication (w). For the sign-bit, the MSB bits
of x and y are simply XORed to determine the sign of the result. Finally, the sign bit,
exponent, and the 55-bit mantissa are returned. Since the generated mantissa is 55-bit,
FALCON implementation provides an additional step to round it to 53-bit: if the last
three bits of the mantissa are either 011, 110, or 111, the algorithm discards the last two
bits and adds 1 to the result. In all other scenarios, it simply discards the last two bits.

In this paper, our primary focus is on securing the mantissa multiplication, as it
represents the most challenging aspect of floating-point multiplication. Masking the XOR
operations for the sign-bit and the additions for the exponent is relatively straightforward,
as these consist of basic linear operations such as XOR and addition. Although we have

488 Masking Floating-Point Multiplication

Figure 1: Baseline hardware diagram of the mantissa multiplication. The inputs are 53-bit
mantissa operands (mx and my) and 11-bit exponent operands (ex and ey), while the
outputs are an exponent carry-bit (a) and the 55-bit unrounded mantissa (m).

implemented a one-bit masked XOR and an 11-bit masked adder for the sign-bit XORing
and exponent addition operations, respectively, these components are not discussed in
detail within this document. Additionally, the specifics of the rounding procedure are
omitted from this discussion, as this aspect of the implementation is tailored specifically
to FALCON emulation and does not readily extend to AI/ML models.

3 Hardware Design

Floating-point mantissa multiplication involves several core operations: integer multiplica-
tion, addition, logical shifts, and bitwise operations (AND, OR, XOR). Figure 1 displays
the hardware design tailored for the mantissa multiplication in FALCON’s floating-point
operation. Note that some intermediate variable labels (a, b, c, e, h, i) are not explicitly
denoted in Algorithm 1 because the hardware diagram shows further operational details.

Two 53-bit mantissa inputs, mx and my, are processed using an integer multiplier,
represented by the ‘×’ symbol. This results in a 106-bit product denoted as ‘z’, which is
subsequently segmented into different bit-lengths (a, b, c, d, e). The "Zero Check" phase
evaluates two 11-bit exponent inputs (ex, ey) and the LSB 50 bits of z. The outputs from
this phase are the direct input to the "Booleans" stage. Here, a NAND operation checks if
either ex or ey is zero. If either exponent is zero, the corresponding mantissa is set to zero.
Two additional OR operations produce intermediate values: h and i, which inform the
creation of two potential mantissas (a, b, i and b, c, h).

These generated mantissa candidates are selected in "Mantissa Selection" step based
on the following criteria. If the MSB of ‘z’ is 1, the MSB 56 bits of the product are
right-shifted (a, b, c), with the least significant bit (c) undergoing an OR operation with h.
If the MSB is 0, then b, c, h becomes the mantissa. If any of the exponents is zero, the
mantissa defaults to zero. The finalized design emits two principal outputs: the 55-bit
unrounded mantissa ‘m’ and a carry-bit ‘a’, which will be used in exponent addition. Our
implementation target is a Kintex-7 FPGA. To make our solution efficient on this target,
we propose several circuit-level optimizations such as efficient use of multiplier blocks in
Xilinx FPGAs. But our optimizations are not fundamentally limited to Xilinx FPGAs as
the same concepts can be extended (or resized) for other FPGAs or for ASIC designs.

Emre Karabulut, Aydin Aysu 489

3.1 Masking Challenges of Mantissa Multiplication
The mantissa multiplication is a challenging operation because it mixes arithmetic and
Boolean operations. An efficient implementation of mantissa multiplication would need to
mask multiplication with arithmetically masked gadgets and use Boolean-masked gadgets
for logical and bitwise operations. Due to the inherent interplay between arithmetic and
Boolean operations, conversion gadgets—specifically arithmetic to Boolean (A2B) and
Boolean to arithmetic (B2A)—become essential [Gou01, BC22, LZP+24].

A further notable challenge arises from the operand sizes in integer multiplication and
addition, which surpass the capacity of DSP48E1—the standard Xilinx Digital Signal
Processing hardmacro circuit. A DSP48E1 block is equipped to handle multiplications of
up to signed 18-bit with 25-bit variables or unsigned 17-bit with 24-bit variables [Xil18].
As a consequence, executing large integer multiplications necessitates the cascaded use of
multiple DSP48E1 blocks. For instance, a baseline mantissa multiplication, denoted as
mx ∗my in HDL, demands the use of 12 cascaded DSP48E1 blocks.

There are two challenges in this multiplication. The first challenge is the extension of
integer arithmetic to the masking scheme and its effect on the DSP48E1 block utilization.
The integer multiplication in the mantissa is not performed over a modulo field. Masking
does not support direct extension to integer arithmetic and requires modulo arithmetic, the
operand inputs and the output must be in the same field. Since the multiplication output is
106-bit, input operands needs to be correspondingly within the field F(2106)−1. Consequently,
the multiplication operation now requires the 35 DSP48E1 blocks as the input operands are
106 bits rather than 53 bits. Moreover, a masked arithmetic multiplier demands roughly
quadruple the multiplier components compared to a baseline design [GMK16], which results
in the utilization of 140 DSP48E1 blocks. Such expansive multiplier circuits inevitably
require tailored optimization strategies to address the long critical paths. Furthermore,
the multiplication operation adds significant overhead on randomness since the processed
operands are large and the latency is short.

The second challenge is due to glitches [NRR06], which are the physical flaws that
occur when the secret shares fail to propagate uniformly during execution. Since the direct
masked mantissa multiplication cascades several DSP48E1 blocks, this implementation is
inherently susceptible to glitches, and resolving would lead to excessive register utilization.

3.2 Masked Integer Multiplication
We propose an integer multiplier circuit that tackles the described issues in the integer
multiplication of floating-point multiplication. Our circuit breaks down large multiplica-
tions, ensuring efficient utilization of DSP resources. One of the standout features of our
design is its versatility. This integer multiplication unit stands out as the first parametric
and masked integer multiplier. As for the randomness throughput, the design demands a
consistent 32-bit randomness per cycle, making the randomness need consistent irrespective
of operand size. Although the proposed design’s ability is beyond the mantissa integer
multiplication, we configure the design to perform the mantissa multiplication, which is
53-bit by 53-bit. Figure 2 outlines our masked hardware solution, illustrating its four core
components: the Multiplier, the Carry Calculator, the Secure MUX, and the Stage Adder.

The Multiplier operates as the initial computation unit, processing the mantissa in
8-bit byte chunks and storing results in two BRAMs. Each mantissa has 7 chunks thereby
there are 49 partial products. Notably, we do not convert these arithmetic partial products
to the Boolean domain to avoid resource-intensive A2B conversions. However, summing
these partial products necessitates transferring the multiplication products from a smaller
modulo field to a larger modulo field, leading to a carry-bit issue. We address this carry-bit
issue using the Carry Calculator, Stage Adder, and Secure MUX circuits. The Carry
Calculator detects carry-bit errors induced during this modulo field transfer. The Secure

490 Masking Floating-Point Multiplication

Figure 2: Block diagram of the integer multiplication in floating-point multiplication.
Green elements represent the masked gadgets, whereas blue elements denote other logic
components. The architecture comprises four pivotal blocks: (i) Multiplier, which processes
the mantissa in 8-bit byte chunks and stores results in two BRAMs; (ii) a carry calculator,
analyzing each chunk’s result bit-by-bit; (iii) a secure MUX, detecting a carry-bit, (iv) and
a stage adder for the masked cumulative addition of the product. The outputs are integer
multiplication products z0 and z1.

MUX checks and handles the carry-bit effects by rebalancing the shares for each partial
product. Finally, the Stage Adder aggregates the outputs of the multiplication, applying
the necessary left-shift operations. It then consolidates these results and adjusts for any
carry-bits by integrating outputs from the Secure MUX. Collectively, these modules are
instrumental in the precise realization of integer multiplication, effectively navigating its
complexities. We next describe how to mask each component in the following subsections
and provide an example to illustrate how the carry-bit issue arises and is addressed.
Proof. This gadget is the composition of PINI gadgets that are proven with Proofs given
in Section 3.2.1, Section 3.2.2, Section 3.2.3, and Section 3.2.4; therefore, this gadget is
PINI secure.

3.2.1 Masked Multiplier

Our masked Multiplier unit aims a balance between security and DSP resource optimization.
Instead of performing mantissa multiplications at once, our design divides the mantissa
operand into seven distinct chunks, where each chunk comprises 8-bit values in the integer
arithmetic domain, with the exception of the last chunk, which is 5-bit. By adopting this
approach, the multiplication process is broken down into 49 steps, as each of the seven
mantissa chunks is multiplied by every chunk of the opposing mantissa. This approach
paves the way for our design to operate within a smaller modulo field.

This choice relies on the intrinsic abilities of the DSP48E1, which handles multiplications
up to 17-by-24 bits. Given that modulo arithmetic dictates both the input and output
of an operation to remain in the same field, a solitary DSP48E1 can effectively execute
multiplication operations within F(217)−1. Although a 17-bit configuration might appear
optimal at first glance, its nature poses challenges for crafting customizable hardware,
motivating us to choose the nearest even number, 16.

Although our multiplier can work with 16-bit operands in modulo arithmetic, the
operands can be a maximum of 8-bit in the integer arithmetic domain. Multiplications
exceeding 8 bits could induce results overflowing the 16-bit field. Therefore, our multiplier
unit is precisely designed to perform 8-bit integer multiplications, albeit with operands

Emre Karabulut, Aydin Aysu 491

Figure 3: The first-order masked arithmetic multiplier based on HPC1 architecture. This
gadget multiplies 8-bit secrets (A,B) in F(216)−1. Therefore, the gadget operands are
16-bit including the random numbers (r0, r1).

randomized within a 16-bit. As a result, a masked multiplier works with 16-bit operands
that are indeed the secret shares of 8-bit chunks of mantissa.

Figure 3 shows our multiplication gadget designed based on HPC1 architecture [CGLS20].
Therefore, it satisfies the PINI probing security requirement. The design’s functionality
unfolds in two distinct phases: the refreshing phase followed by the domain-oriented
multiplier phase. To sustain the security, this gadget needs 32-bit randomness.

In the initial refreshing phase, shares of the second operand (B0 and B1) undergo a
refreshment process provided by a 16-bit randomness (r0). Post this step, all shares are
synchronized within the first register blocks. During the domain-oriented multiplier phase,
the randomized shares go through arithmetic multiplication, and then the independent
domains use the second 16-bit randomness (r1) to refresh the multiplication output. This
usage of second randomness is called resharing and that allows the compressing of the 4
shares into 2 shares (M0, M1) by using the same randomness. Overall, the operation has
2-cycle latency and has throughput of multiplication per cycle.

Proof. Due to the similarities between the HPC1 AND gate and the proposed multiplier,
we can rely on the proof from [CGLS20]. We build a PINI simulator where the set of
probes is P , input and output shares are I and O and their coordinates are denoted with B.
Any outputs So ⊂ O that can simulate the set of probes Sp ⊂ P with two conditions: (i)
Sp has connections coordinates i ⊂ B that reaches Si ⊂ I, (ii) number of used probes and
output in the simulation cannot be larger than d+ 1, which is 2 in our case as the gadget is
first order masked. Since all possible Sp are statically independent of their primary input
shares within i ⊂ B coordinates, they are simulatable and the gadget is PINI secure.

To prevent potential transition-based masking flaws, our Multiplier design strategically
partitions the multiplication outputs, storing them in two separate BRAMs. Following
this segregation, the next procedural step entails the summation of these outputs to
derive the final product of the 53-bit multiplication. However, our Multiplier design works
with a smaller modulo field F(216)−1, adding up these chunked multiplication results in
F(2106)−1 might give the incorrect output. Assume that a secret s has two shares s0 and s1,
randomized in F(216)−1 and this shares thereby sastify the equation s = s0 + s1 mod 216.
To obtain the same result within F(2106)−1, the equation is updated to s = s0 + s1− c× 216

mod 2106 where ‘c’ symbolizes the carry bit extracted from the MSB of raw s0 + s1
summation. This underlines the necessity for an auxiliary step in the multiplication output
summation process: the calculation of the carry bit associated with paired shares. A
significant challenge arises here: directly combining two shares to find out the carry bit
stands against the main principle of masking schemes.

A plausible solution is to convert multiplication output to the Boolean domain and
mask it in Boolean to avoid the carry-bit issue. However, the subsequent step requires

492 Masking Floating-Point Multiplication

Figure 4: Hardware block diagram of the Carry Calculator. This gadget utilizes a single
masked AND gate to compute the carry-bit.

adding all multiplication results to obtain the final multiplication output. Implementing
this arithmetic addition in the Boolean domain is more costly given that it is more efficient
to mask arithmetic operations using arithmetic masking and Boolean operations with
Boolean masking [DMRB18]. Therefore, we do not convert multiplication output to the
Boolean domain but just calculate the carry-bits in the Boolean domain.

3.2.2 Masked Carry Calculator

We propose a solution with a carry-bit calculator gadget, and this efficient design elim-
inates the need for resource-intensive A2B conversions. Figure 4 presents our carry-bit
calculator gadget design. The proposed masked carry-bit calculator gadget works only
with one PINI secure HPC1 AND gate gadget [CGLS20], thereby minimizing the proposed
countermeasure’s area overhead. The initial idea for this design came from methods used
to convert arithmetic shares to Boolean shares [BC22]. However, our main goal is different:
we want to keep the shares in the arithmetic domain and still calculate the carry-bit.

This design performs the functionality of a full adder with one HPC1 AND gate and
3 three masked XOR gates. A traditional full adder receives three one-bit operands and
produces two outputs: the sum and carry − out. However, our gadget’s main purpose is
to calculate only the carry-bit and therefore it does not calculate sum bit but its carry-bit.
The process starts with the LSBs of the share pairs s0 and s1 and they are in the form:
{s00, s01}, {s10, s11}. For the first addition, the third operand of the full adder, carry− in,
is set to 0. After this step, the resulting carry − out, represented as shares c0 and c1, are
sent back to the gadget with the next bit from shares s0 and s1. This process continues
until the final bit of shares s0 and s1 is used to determine the final values of c0 and c1.

Proof. The proposed carry calculator is a composition of HPC1 AND gadget and refreshed
XORs. Since the refreshed XORs allow the propagation of a probe simulation while
maintaining statistical independence, the carry-bit calculator is PINI secure.

3.2.3 Masked Secure MUX

Our third main block is Secure MUX. This module serves a critical purpose – to ensure
the carry-bit effect does not distort the expected results of our multiplication process,
especially given the varying effects of carry-bits due to the chunk-based multiplication
approach. We illustrate the varying effect with the following integer multiplication example.
Given two 16-bit operands, V and C, if we break them into 8-bit chunks represented as
{V 1, V 0}, and {C1, C0}. The multiplication of V and C can be executed with 4 chunk
multiplications with the following calculation.

V 0× C0 + (V 1× C0) << 8 + (V 0× C1) << 8 + (V 1× C1) << 16 (2)

Each carry-bit belonging to a chunk multiplication has a different influence on the
result. For instance, the product (V 0× C1) << 8 contributes to the 24-bit position with

Emre Karabulut, Aydin Aysu 493

Algorithm 2 Masked Secure MUX Algorithm
Input: a carry-bit c ({c0, c1}), a scalar k, and r0, r1 in F(2106)−1
Output: a carry-bit adjustment value adj ({adj0, adj1}) in F(2106)−1
1: cext0 ← Reg(c0 << k)
2: cext1 ← Reg(c1 << k)
3: cBool0 ← Reg(cext0 ⊕ r0)
4: cBool1 ← Reg(cext1 ⊕ r0)
5: {cArith0, cArith1} ← B2A(cBool0, cBool1)
6: adj0 ← cArith0 − r1
7: adj1 ← cArith1 + r1
8: return adj(adj0, adj1)

its carry-bit due to its shift factor, whereas V 0× C0 directly affects the 16-bit position.
These distinctions are vital because the carry-bit associated with each multiplication
stage has a specific impact based on its positional value in the overall calculation. To
address this potential discrepancy, we introduced the Secure MUX module. Its primary
function is to check the carry-bit within the rules of masking and rebalance the shares
if the multiplication results have a carry-bit effect. This adjustment ensures that the
carry-bit effect is avoided, preserving the correctness of our calculations.

Algorithm 2 presents implementation details of the proposed Secure MUX. The Secure
MUX operation starts by left-shifting the constant value carry-bit ({c0, c1}) by k times,
where k is determined by the multiplication stage. As explained in the given example,
for the (V 0× C1) scenario, k is 24 because the resultant product has 24 significant bits.
However, k is 16 for V 0×C0 since there’s no shift for this multiplication stage. The shifted
value is refreshed with randomness r0. Finally, the obtained value is then converted into
the Arithmetic domain in F(2106)−1 with a B2A converter. This conversion ensures the
outcome remains the same field where we keep the final multiplication output. Since our
innovation does not include designing a novel B2A or A2B domain, we do not discuss any
implementation details of these converters. Interested readers can refer to related papers
on such converters [BC22, LZP+24].

Proof. Algorithm 2 is PINI secure if and only if B2A is PINI secure. The inputs of the
Secure MUX gadget get refreshed and become statistically independent and the outputs
of the B2A converter are also refreshed before being returned. Therefore, B2A PINI
simulation can be propagated in both the input and the output directions of the gadget if
and only if B2A is PINI secure.

3.2.4 Masked Stage Adder

The final component of our integer multiplication system is the masked Stage Adder. This
module undertakes the task of collating all the outputs from the multiplication process and
adjusting the results in light of the carry-bit modifications. This module mainly has three
sub-operations: left shift, addition, and subtraction. Similar to the Secure MUX module,
the Stage Adder applies a left-shift operation to the multiplication output as exemplified
in Equation 2. Subsequent to the left-shift operation, the outputs are aggregated. This
entails adding together the shifted multiplication results to form a consolidated output.

In cases where a particular chunk multiplication results in a carry-bit, the final op-
eration involves adjusting the aggregated output. This is achieved by subtracting the
output derived from the Secure MUX module from the addition result. This ensures the
overall computation reflects any changes or anomalies introduced due to carry-bits. By
encapsulating these three operations, the Stage Adder ensures that the final result of the
integer multiplication is both accurate and takes into consideration the intricate nuances

494 Masking Floating-Point Multiplication

Figure 5: Baseline hardware design diagram of masked Boolean League. Green elements
represent the masked gadgets, whereas blue elements denote other logic components. The
inputs are 106-bit integer multiplication product operand (z0 and z1) and 11-bit exponent
operands ex and ey, while the outputs are a carry-bit (a) and the 55-bit unrounded mantissa
(m). Although the figure shows the masked AND gates have feedback, it does not represent
combinatorial loops. Instead, these are HPC1-masked gadgets, which inherently prevent
combinatorial loops through their architecture.

of the chunk-based multiplication and carry-bit adjustments.
Since the arithmetic masked addition or masked subtraction are well-known implemen-

tations and do not contribute to the novelty of the paper, we do not discuss the details of
these operations. Note that Figure 2 has the same sign (+) in both Carry Calculator and
Stage Adder modules. However, the addition performed in Carry Calculator is different
and it represents the full adder gadget that we discussed in Section 3.2.2.

Proof. This gadget is composed of two paths each having refreshed linear operations that
are randomized for each probe. Therefore, this gadget is PINI secure.

3.3 Boolean League: Zero Check, Booleans, Mantissa Selection
After integer multiplication, the Mantissa multiplication incorporates additional post-
processing steps to calculate the final result. Figure 1 illustrates the processes succeeding
integer multiplication: zero checks, Booleans, and mantissa selection. These operations
start with a 106-bit Integer multiplication product along with 2 exponents each having
11-bit and then generate the 55-bit result.

The zero check operation is the initial checkpoint where three operands independently
are checked whether they are zero or not. The simplest method to perform this comparison
is by performing a bitwise OR operation, which can easily be obtained from an AND
gate. The next stage encompasses a series of logic operations, specifically two OR and one
NAND. These operations are used to generate two mantissa candidates. After obtaining
zero check and Boolean operations, the final step is the selection of generated mantissa
candidates. This requires a multiplexer functionality. A multiplexer functionality can be
implemented with an AND and an OR gate.

The series of operations described above underscores a pivotal decision: performing
the remaining operations in the Boolean masking domain. The inherent Boolean nature of

Emre Karabulut, Aydin Aysu 495

Algorithm 3 Zero Check Algorithm
Input: n-bit Boolean sharings m

({m0,m1}), randomness r
Output: Boolean sharings x ({x0, x1})

such that x = (m == 0)
1: x0 ← m0[0]⊕ r[0]
2: x1 ← m1[0]⊕ r[0]
3: for i from 1 to n do
4: y0 ← Reg(m0[i]⊕ r[2i+ 1])
5: y1 ← Reg(m1[i]⊕ r[2i+ 1])
6: x0 ← Reg(x0 ⊕ r[2i])
7: x1 ← Reg(x1 ⊕ r[2i])
8: x0, x1 ← SecOR(x0, x1, y0, y1)
9: end for
10: return x0, x1

Algorithm 4 SecOR Algorithm
Input: Boolean sharings m ({m0,m1}),

n ({n0, n1})
Output: Boolean sharings p ({p0, p1})

such that p = m ∨ n
1: x0 ← ¬m0
2: x1 ← m1
3: y0 ← ¬n0
4: y1 ← n1
5: z0, z1 ← SecAND(x0, x1, y0, y1)
6: return z0,¬z1

these operations makes Boolean masking a logical choice, ensuring a synergy between the
data and the domain. Hence, we convert the arithmetic multiplication product generated
by the integer multiplication module to the Boolean masking domain. Then, the Boolean
shares are processed within zero checks, Booleans, and mantissa selection modules.

Figure 5 depcits the masked operations of post-integer multiplication. First, arithmetic
shares z0 and z1, which represent the 106-bit integer multiplication results, are converted
to the Boolean domain with an A2B circuit. Second, they are segmented into different
bit ranges, showing the granularity of the data being processed. Third, The exponents
(ex and ey) and lower bits of integer multiplication product are fed into the zero-check
module. The fourth step is the transition from the zero check module to the Booleans
module. The Boolean operations help process and shape the multiplication results into a
truncated form and create two mantissa candidates. A series of HPC1 operations assist in
determining these mantissa candidates. Fifth, the flow ends with the Mantissa Selection
module. Here, the mantissa candidates from the Booleans module are selected based on
the MSB of the multiplication product and the zero check result of the exponents. This
final step leads to the final mantissa result m and an auxiliary output a.
Proof. This gadget is the composition of PINI gadgets, therefore it is PINI secure.

3.3.1 Masked Zero Check

During mantissa multiplication, the initial operation involves an integer multiplication
that results in a 106-bit product. Rounding is then applied to its LSB 50 bits in order to
truncate 106 bits to 56 bits. A preliminary assessment determines if these 50 bits are equal
to zero. If they are not, the product’s 51st bit undergoes an OR operation with 1, implying
that the entire 50-bit section contributes a single bit to the final result. Furthermore, a
parallel check is executed on the exponents (ex, ey). Here, the task is to determine if either
exponent equals zero. Unlike the previous mechanism, the outcome here doesn’t influence
rounding. Instead, it functions as a corrective action. The identification of a zero among
the operands flags an error in mantissa computation, making the mantissa’s reset to zero.

To functionally carry out these zero-check processes, we introduce our masked zero-
check gadget. Bitwise OR operation is a foundational mechanism in the zero-check process.
We obtained this operational capability from the previously described masked HPC1
AND gate. Algorithm 4 illustrates our proposed method where the OR gate functionality
is obtained from the masked AND gate (secAND) and three logical NOT operations

496 Masking Floating-Point Multiplication

Algorithm 5 Mantissa 1-to-2 Multiplixer Algorithm
Input: n-bit Boolean sharings x ({x0, x1}), y ({x0, x1})
Input: Boolean sharings of a select bit s ({s0, s1})
Output: n-bit Boolean sharings z ({z0, z1}) such that z = s ? x : y
1: for i from 0 to n do
2: t0[i], t1[i]← SecAND(x0, x1, s0, s1)
3: w0[i], w1[i]← SecAND(y0, y1,¬s0, s1)
4: z0[i], z1[i]← SecOR(t0, t1, w0, w1)
5: end for
6: return z

(see Steps 1, 3, and 5). We show the implementation strategy of our zero-check gadget
in Algorithm 3 by utilizing masked OR gate (SecOR). The algorithm starts with the
initialization of x (x0 and x1) with the LSB of the operand m, which is subject to the
zero check. Subsequently, a loop executes a series of logical OR operations with SecOR.
In each iteration, one input to the OR operation is x, while the other draws from the
subsequent bit of m. This iterative process continues until every bit of m is participated
in an OR operation. In addition to the OR operation, there are also share refreshing steps
between Steps 4 and 7 in order to simplify the probing model.

Proof. This gadget is the composition of PINI gadgets, therefore it is PINI secure.

3.3.2 Masked Booleans

Following the zero check, the next computational phase encompasses Boolean operations.
The integer multiplication product truncated to 56 bits after the zero check, combined
with the exponent’s zero-check outcomes, serves as inputs to this stage. As illustrated in
Figure 5, the Booleans segment houses three masked logic gates.

The two HPC1 OR gates primarily facilitate the generation of two distinct mantissa
candidates. The 51st bit undergoes a dual-stage OR operation: initially with the zero-check
result of the integer multiplication product and subsequently with the 52nd bit (c0 and c1).
The initial OR operation outputs shares of h (h0 and h1), while the second OR generates
the shares of i (i0 and i1). These shares feed into two separate mantissa candidates.
The first combines the shares of a0, b0, i0 and a1, b1, i1; the second combines the shares
of b0, c0, h0 and b1, c1, h1. Within this framework, a stands for the MSB of the integer
multiplication product, while b denotes the following 53-bit of a. In parallel, another
Boolean operation is performed on the zero check results of the exponent with HPC1 AND
gate. This operation indicates if either exponent is equal to zero.

Proof. This gadget is the composition of PINI gadgets, therefore it is PINI secure.

3.3.3 Masked Mantissa Selection

Upon the successful completion of the zero check and Boolean operations, the subsequent
task is to select the correct mantissa candidates. Within this context, three candidates
emerge. The initial two originate from the integer multiplication product, while the last one
is zero and selected only if one of the exponents matches zero. We introduce our masked
Mantissa Selection design capable of executing the selection with one 1-to-2 multiplexer
and an HPC1 AND gate.

Algorithm 5 provides the implementation methodology for 1-to-2 multiplexer. This
algorithm is a masked multiplexer, ensuring that the selection between x and y based
on the select bit s is done without revealing any other intermediate information. The
algorithm first computes the AND operation of x and s to obtain t. Similarly, the same

Emre Karabulut, Aydin Aysu 497

step is applied on y but with the negation of s. As a consequence of this negation, the
outcome of one of these AND operations inevitably stands at 0. The last operation is the
computation of the OR operation between the results of the previous two steps (t and
w), determining the values of z0 and z1. Figure 5 depicts the masked Mantissa Selection
implementation details. In our implementation, the select-bit is the MSB of the integer
multiplication, which is a. The initial two mantissa candidates are a, b, i and b, c, h. After
this selection, the next selection is among the first selection output and the zero. Since an
AND operation with any select bit and zero consistently yields zero, a 1-to-2 multiplexer
becomes unnecessary as it makes the use of two AND gates and an OR gate redundant.
Therefore, a single AND gate, connecting the exponent’s zero check to the initial mantissa
selection output, suffices for the subsequent selection.

Proof. This gadget is the composition of PINI gadgets, therefore it is PINI secure.

4 Design Space Exploration with Novel Design Elements
This section delves into the comprehensive exploration of the design space to enhance the
performance of masked floating-point mantissa multiplication. Specifically, we discuss our
optimization strategies to overcome the bottlenecks identified in integer multiplication and
the time-intensive processes within the zero check module. Subsequently, we introduce
and detail two primary innovations that significantly improve efficiency: the parallelization
of the masked carry calculator unit and the masked zero check module.

The initial design aims to minimize the DSP and LUT consumption at the expense of
performance—referred to herein as the "low-area design". This configuration employed
a single masked carry calculator unit calculating the carry bit for 49 partial products,
each comprising two shares. The calculation of the carry-bit is the most time-consuming
routine of the integer multiplication phase in the floating-point mantissa multiplication
process. Another time-consuming operation is the zero check operation in masked Boolean
League operation. This module checks if exponents (ex and ey) and 50 lower bits of
integer multiplication product are zero. Both bottlenecks (zero check and carry calculator)
emphasize the iterative execution flow’s inefficiency in the low-area design.

Parallelization of the carry calculator. This optimization employs multiple instances of
the carry calculator module, enabling parallelization and pipelining in integer multiplica-
tion. Our masked multiplier circuit breaks down the integer multiplication into 49 steps,
generating 49 partial products, each with two shares. One carry calculator module needs
80 cycles to calculate the carry bit of one partial product pair (two 16-bit shares). As a
result, the low-area design, having one carry calculator module, spends 3, 920 cycles for 49
partial products. Since these 49 products are independent, an alternative design, referred
balanced design, can calculate the carry-bit of these products in parallel execution of 49
carry calculator module. This balanced design requires 80 cycles to calculate carry-bits of
all 49 partial products. This significant enhancement not only accelerates the calculation
process but also supports pipelining, further optimizing throughput.

Checking zeros in a tree structure. Our initial design choice utilizes one masked OR
gadget to check if 50 lower bits of integer multiplication product is zero. This process
inherently introduces latency due to the sequential passing of bits through four registers,
including two within the masked OR gate. Given that the exponent shares (ex and ey)
are only 11 bits each, the majority of latency (200 cycles) is spent to check the 50 lower
bits of integer multiplication. To address this, we introduce the novel architecture that
employs a tree structure to streamline the zero-check process for the 50 lower bits of integer
multiplication. This tree comprises two layers: the first layer employs five masked OR

498 Masking Floating-Point Multiplication

gadgets, each responsible for processing 10 bits of the 50-bit randomized shares, thereby
generating five outputs with two shares each. The second layer employs a single masked
OR gadget that iterates five times to execute a logical OR operation on the outputs from
the first layer. This innovative approach significantly enhances performance, reducing the
latency of the zero-check operation by a factor of 4.5 compared to the low-area design.

Input width adjustment and multiplier gadget parallelization. An additional optimiza-
tion method involves modifying the input widths for our multiplier gadget, directly
impacting the latency of the carry-bit calculation in the partial products. We call this
design "high-performance design". By default, the carry-bit calculator processes each
partial product, composed of two shares, within 80 clock cycles. This latency is inherently
tied to the size of the partial product; reducing the bit length of each partial product can
decrease the latency per partial product carry-bit calculation.

To maintain the multiplier gadget’s overall latency while reducing the carry-bit cal-
culation time, we propose the introduction of multiple instances of the multiplier gadget
module. This approach, albeit at the expense of additional randomness requirements,
enables the processing of smaller chunks in parallel, effectively reducing the carry-bit calcu-
lation latency. Concurrently, the Boolean League circuit, tasked with handling the masked
operations, must be adapted to accommodate the increased speed of the input generation
from the integer multiplication circuit. This design strategy ensures a more efficient, albeit
more complex, pipeline for integer multiplication. Notably, this optimization does not
merely affect the integer multiplication unit but extends its impact to the Boolean League
circuit as well. The necessity to handle a higher volume of partial products with smaller
sizes demands adjustments in both the multiplier gadget and the Boolean League circuit.

Area overhead and performance gain. Although providing an exact formula is challeng-
ing, we can describe a general relationship between parallelism, performance, and area
overhead. The carry calculator circuit utilizes 211 LUTs, which accounts for approximately
3% of the entire design. A single carry calculator requires 3, 920 cycles to compute the
carry bits for 49 partial products, which constitutes about 52% of the total execution
latency. Thus, n carry calculators take roughly 3920/n cycles and cost about n×211 LUTs.
A similar case applies to the zero-check process. However, the parallelism in the zero-check
process comes with a binary-tree architecture, which requires blog2(u)c stages, and each
stage requires (log2(k))2 masked OR gates, where u is the input bit length and k is the
stage number. In addition to the masked OR gates, this technique needs a binary-tree
architecture and its pipeline registers. Therefore, this technique reduces the zero-checking
process from 200 to 44 cycle latency but increases LUT utilization from 293 to 1, 405 LUTs.

5 Implementation Results
This section provides details about the implementation details of our solution. This
includes the main environmental setup, hardware resource allocation, and side-channel
security evaluation. We implemented the proposed designs on the Sakura-X FPGA board
that hosts a Xilinx Kintex-7 XC7K160T-1FBG676C for testing hardware designs. The
FPGA EDA tool is Xilinx Vivado 2020.2 which provides an FPGA implementation flow
infrastructure that covers the synthesis, placing, routing, bitstream generation, and FPGA
programming. We used SystemVerilog to implement our solution at the HDL level. We
did not use FPGA-dependent hardware primitive but we used KEEP_HIERARCHY
implementation directive attribute in order to preserve the gadget architectures that we
discussed in Section 3. We also did not set a specific synthesis and implementation strategy
flag on the EDA tool. We used the default flag, which is ‘Vivado Implementation Defaults’.

Emre Karabulut, Aydin Aysu 499

Table 1: Comparative analysis of hardware area utilization, performance, and counter-
measure overhead among various design strategies and the prior work [CC24].

Design LUT/FF Cycle Area Perf. Max 1st Order
DSP/BRAM Counta Overheadb Overheadc Freq. Security

Unprotected 1,140/1,550 16 - - 180 MHz 74/0
Low-area 6,183/8,916 7,049 5.42× 440× 208 MHz XProtected 4/0.5
Balanced 18,807/22,632 204 16.94× 12.75× 212 MHz XProtected 4/0.5

High Perf. 49,383/61,290 32 43.31× 2× 212 MHz XProtected 16/0.5
SW-Protected - 3,772 - 12.24×d - 7[CC24]

a: This is throughput cycle count per floating-point multiplication without including rounding.
b: Area Overhead refers to the increase in the number of LUTs used compared to the unprotected design.
c: Performance Overhead is the relative decrease in throughput compared to the unprotected design.
d: Performance Overhead for the software (SW) Protected design refers specifically to the decrease in
throughput when compared to the corresponding unprotected software implementation.

5.1 Area, Performance and Overhead Results
Table 1 presents five distinct designs for floating-point multiplication: the unprotected,
low-area protected, balanced protected, high-performance protected hardware designs,
and the recent software-based masking design [CC24]. Each hardware design is evaluated
based on the LUT and FF counts, DSP and BRAM utilization, throughput, area overhead,
performance overhead, maximum frequency, and whether mitigates first-order side-channel
leakage. The prior work, being software-based, does not report area metrics like mem-
ory footprint, hence we only listed their cycle count and performance overhead results.
Since hardware and software designs run on different platforms, performance overhead is
calculated on cycle count and excludes the frequency from this calculation.

The baseline, an unprotected design, utilizes minimal resources with a LUT/FF count
of 1,140/1,550 and a DSP/BRAM count of 4/0. It achieves a throughput of one operation
per 16 cycles, serving as the reference model for evaluating the overheads of protected
configurations. The low-area protected configuration markedly increases the area overhead
to 5.42× that of the unprotected design, consuming 6,183 LUTs and 8,916 FFs, with
minimal DSP and BRAM use. This design incurs the highest performance overhead,
reflecting its resource-constrained strategy. Also, our low-area protected design works with
1.15× higher frequency than the baseline design since we register the combinatorial logics
in order to prevent glitches.

The balanced protected design offers a compromise between performance and area
overhead. This configuration requires 18,807 LUTs and 22,632 FFs, however, the DSP and
BRAM utilization is the same with low-area configuration, resulting in an area overhead
of 16.94× the baseline. The throughput is optimized to one operation per 204 cycles,
with a more manageable performance overhead of 12.75×. Prioritizing performance, the
high-performance design is anticipated to exhibit the highest area overhead at 43.31×,
with a LUT/FF utilization of 49,383/61,290 and an increased DSP count. It is expected to
improve throughput to one operation per 32 cycles, potentially reducing the performance
overhead to just 2× the baseline, thus offering a high-performance option. Notably, both the
balanced and high-performance protected designs achieve the highest maximum frequency
of 212 MHz. We provide these area and performance metrics for the high-performance
design in an estimative capacity, as the design itself has not been implemented. FALCON
has one hardware implementation designed with High-Level Synthesis (HLS) [SAW+23].
However, this implementation does not provide hardware utilization or performance metrics
at the sub-module level. Therefore, we cannot project the area and performance overhead
of our countermeasure on the full implementation of FALCON.

500 Masking Floating-Point Multiplication

Lastly, the software-based design [CC24] does not utilize hardware resources like LUTs
or DSPs, as indicated by the absence of these metrics. This prior work also does not provide
a memory footprint and therefore does not have an area-overhead metric. It achieves a
throughput of one operation per 3,772 cycles, with a performance overhead of 23 times
compared to the unprotected software implementation. Although this design includes
rounding operations, its computational contribution to throughput has been excluded from
our reported performance results. Additionally, empirical validation has shown significant
first-order leakages, indicating that this approach does not provide first-order security.

Breakdown of randomness overhead. Our low-area protected design is optimized to
reduce the randomness overhead by requiring only 32 bits of fresh randomness per cycle.
The design breaks down the large integer multiplication into 49 chunks and performs each
chunk’s multiplication with a 16-bit masked arithmetic multiplier based on the HPC1
architecture, which necessitates 32-bit of fresh randomness for each multiplication. The
masked carry calculator, however, requires only 10-bit of fresh randomness. Consequently,
the remaining 22 bits of fresh randomness are stored in a BRAM to be used later in the
stage adder and masked secure MUX, which require 106 bits of randomness per cycle. A
similar approach is employed for the Boolean League. Although the Zero Check modules
require 12 bits of randomness, the remaining 20 bits of fresh randomness are stored in a
BRAM for later use in the Mantissa Selection, which needs 330 bits of randomness.

5.2 Side-channel evaluation
We use the Sakura-X FPGA board for executing the hardware design for the side-channel
evaluation. The FPGA board has a designated SMA port that provides the power drop
across a shunt resistor of 1Ω on the main supply line. To minimize potential information
loss stemming from aliasing across clock cycles, we operated the design at a deliberately
low frequency (12 MHz). The Picoscope 3206D oscilloscope is used to monitor voltage
fluctuations during the execution of implemented mantissa multiplication. The oscilloscope
was configured to sample at a rate of 125 MHz, translating to an acquisition of 10 data
points for each clock cycle. Such a setup aligns with standard configurations previously
employed in masking leakage evaluations [DCA20a, ABC+23, FVBR+21b]. We set the
oscilloscope memory buffer to 170K sample in order to capture a full execution of a
mantissa multiplication, the exponent addition and sign XORing.

We adopt the widely-used TVLA methodology to perform the masked design’s leakage
evaluation (see Section 2.4). We ran the first-order and second-order univariate fixed-vs-
random and fixed-vs-fixed t-tests. In the fixed-vs-random test, the setup captures two sets
of power traces: one where the input remains constant throughout all set collection, and
another where the input varies with each execution. However, the sequence in which these
sets are captured is randomized. The reason for setting these sets is that the t-score gives a
result of whether the fixed dataset power activity is distinguishable from the ones belonging
to the random dataset. Additionally, we perform first-order TVLA for the fixed-vs-fixed
setting to cover zero correction cases stemming from the exponent and the lower bits of the
mantissa. In this setting, one group has operands that cause zero correction actions, while
the other group does not. This comprehensive evaluation ensures that our masked design
is thoroughly assessed for side-channel leakage across the exponent and the lower-bits of
mantissa zero correction actions.

Figure 6 illustrates the TVLA test results for both the low-area and balanced protected
design configurations across six plots. The first four plots, Figures 6(a)-(d), correspond to
the low-area protected design. In Figure 6(a), the first-order TVLA results with active
randomness over 10 million traces are depicted. The t-scores consistently remain within the
threshold (±4.5), demonstrating the empirical security of our masked design. Figure 6(b)
presents the second-order TVLA results with 10 million traces, which exhibit the expected

Emre Karabulut, Aydin Aysu 501

Figure 6: TVLA results for the low-area and balanced protected design configurations
across six scenarios. The first four plots correspond to the low-area protected design: (a)
first-order fixed-vs-random TVLA with 10 million traces, (b) second-order fixed-vs-random
TVLA with 10 million traces, (c) first-order fixed-vs-random TVLA with 5,000 traces with
randomness deactivated, and (d) first-order fixed-vs-fixed TVLA with 5 million traces.
The final two plots illustrate the TVLA results for the balanced protected design: (e)
first-order fixed-vs-random TVLA with 1 million traces, and (f) first-order fixed-vs-random
TVLA with 5,000 traces with randomness deactivated.

information leakage. In Figure 6(c), the first-order TVLA results with randomness
deactivated show significant peaks well above the t-score threshold (±4.5), indicating clear
leakage even after 5,000 traces. This result demonstrates that the unprotected design’s
power activity is statistically distinguishable from the random dataset’s activity, revealing
the presence of side-channel leakage. Additionally, Figure 6(d) presents the first-order
TVLA results for the fixed-vs-fixed setting with 5 million traces. The results show no
leakage, indicating that the design effectively mitigates leakage, even though the mantissa
and exponent operations undergo zero correction actions.

The last two plots, Figures 6(e)-(f), present the TVLA results for the balanced protected
design. Figure 6(e) depicts the first-order TVLA results with active randomness over
1 million traces, where the t-scores consistently remain within the threshold (±4.5),
demonstrating the empirical security of our masked design. In contrast, Figure 6(f) shows
the first-order TVLA results with randomness deactivated, indicating significant peaks well
above the t-score threshold (±4.5) and clear leakage even after 5,000 traces. Notably, the
plots in Figures 6(e)-(f) show fewer samples due to the balanced design’s shorter latency
relative to the low-area configuration. Since our balanced design uses the same masked
gadgets as the low-area protected design, we performed first-order TVLA only with 1
million traces and did not perform second-order TVLA or the fixed-vs-fixed setting.

6 Discussions

Mitigating the attacks on floating-point multiplications in [KA21] and [GMRR22].
We propose a robust masking circuit designed to mitigate the leakages in FALCON’s
floating-point multiplication, priorly exploited by [KA21] and [GMRR22]. These attacks
specifically target the sign-bit XORing, exponent addition, and integer multiplication
of the mantissa. Our countermeasure effectively mitigates the leakages identified in the

502 Masking Floating-Point Multiplication

initial attack by [KA21] as well as its improved version [GMRR22]. Karabulut et al.
target integer multiplication and then its following intermediate addition operations in the
mantissa multiplication to find the firstly possible guesses and then resolve false positives.
However, this attack is avoided with our approach, as both multiplication and stage
addition processes are masked.

Similarly, Guerreau et al. describe attack sequences that target the same operations
but within reduced search space, which our countermeasure mitigates by masking the op-
erations involved. Additionally, our design masks sign-bit XORing and exponent addition,
further securing the sign and exponent values of the floating-point multiplication against
side-channel attacks. Thus, our countermeasure addresses side-channel vulnerabilities,
particularly identified by [KA21] and [GMRR22]. While our protection scheme addresses
these vulnerabilities, it is important to note that we do not claim first-order CPA security
for the rounding operation that concludes floating-point multiplication in FALCON imple-
mentation. Although no current attacks have successfully exploited rounding operations,
we acknowledge the potential risk that secret information might be exposed if the rounding
is targeted by a more sophisticated side-channel attack.

Masking Enhancements and Limitations. Our proposal is the first one to mask floating-
point multiplication in hardware; hence, it aims to serve as a benchmark for future
optimizations. Other masking schemes such as GLM or UMA, can possibly be adapted in
the future to reduce the latency and randomness of the masked gadgets [GIB18, GM18,
RSM20]. Moreover, there are other available share conversion circuits, which can also
be incorporated to potentially reduce the area costs [MTMM07, Deb12, BC22, SPOG19,
BCZ18]. Recent research has shown how coupling effects can cause first-order secure FPGA
implementations to become susceptible to high temperatures, high voltages, and high clock
frequencies [DEM18, MHK+23]. Furthermore, there is another work that showed how the
couplings might be enhanced externally to violate the security assumptions [LBS19]. Our
threat model considers such attacks out of scope, i.e., our masked designs are not proven
either theoretically or practically against such attacks. Note that these are not our unique
assumptions and are commonplace in general masking schemes as evidenced in recent
TCHES publications [DAP+22].

We only consider first-order masking schemes in this work. Proposed schemes may
suffer from local or global compositional flaws [MMSS19] if it is desired to extend them
for higher-order masking. Higher-order masking with related challenges and attacks that
manipulate the setup is out of scope, i.e., we exclusively focus on first-order masking as in
prior recent TCHES publications [ABC+23, DAP+22, CC24]. More maturity is needed
on these aspects in the context of AES and other classical schemes before investigating
and transitioning them to post-quantum cryptography or ML frameworks.

TVLA vs Other Methods. We do not claim TVLA to be neither perfect nor the best
technique to test side-channel leakage for all scenarios and all types of circuits. There are
several alternatives to TVLA that can also evaluate side-channel leakage in a proposed
hardware/software implementation [KJJ99, BCO04, CRR03, GBTP08, HGD+11]. Typi-
cally, there is a need to understand the underlying algorithm to form a hypothesis and
establish a power model, or there is a necessity to modify confidential data to create a
power profile for the targeted device if such approaches are pursued. We opted for TVLA
since it does not come with these constraints. Nonetheless, we recognize the potential
pitfalls of TVLA due to its simplistic moment-based analysis, which can result in both
false negatives and positives [Sta18].

Extending the Design to Other FPGAs. As in prior TCHES papers [ABC+23, DCV+23,
MGTF19, DCA20a, CGF21], we demonstrate the application of our proposed solution on

Emre Karabulut, Aydin Aysu 503

Xilinx FPGAs. However, our technique is not fundamentally limited to Xilinx FPGAs.
For example, if the design were to be extended to Altera Stratix FPGAs, the developer
can use our mantissa operand splitting technique but re-size the operads for the 18-by-18
multipliers of Altera DSP blocks. ASIC developers who incorporate third-party multiplier
hard macros into their designs can follow the same strategy.

Masking AI/ML hardware. An attack on floating-point multiplication for AI/ML applica-
tions can leak the internal model values [BBJP19, NK23], which are trademark secrets, e.g.,
in Machine-Learning-as-a-Service applications, due to the costs of model training. Therefore,
masking of floating point multiplications can find other use cases. Although there are efforts
in masking neural networks [DCA20b, DCA20a, DCSA22, DAP+22, DCV+23, AWDF21],
they focus on quantized networks without floating-point arithmetic. Our proposed tech-
niques can be used in non-quantized neural networks that preserve full precision.

Addressing Masking Flaws in Practical Hardware Implementations. In practical ap-
plications, most hardware implementations are not glitch-free, and transient values can
leak additional information [MPG05, NRR06]. The robust probing model addresses this
by assuming adversaries can observe all inputs a wire depends on in combinatorial cir-
cuits [MPO05]. Although our masking gadgets are proven secure under the PINI probing
model within the glitch-extended probing framework, this abstract-level security does not
guarantee flaw-free implementations. Therefore, we complement our theoretical proofs
with empirical validation methods, such as TVLA, to support our security claims.

7 Conclusions and Future Works

In this research, we ventured into the largely uncharted domain of side-channel protec-
tions for floating-point multiplication, an operation integral to numerous computational
tasks yet vulnerable to potential attacks. Our findings underscore the significance of
protecting this specific arithmetic process. Through the methodologies presented, we have
successfully established the novel side-channel defense mechanism tailored for floating-point
multiplication. While our results show promising resilience against known side-channel
attack techniques, future endeavors should be directed towards enhancing the protection’s
efficiency, ensuring compatibility with a broader range of devices, and assessing the defense
against evolving side-channel attack methodologies. The foundations laid in this study pave
the way for a more secure computational landscape in applications where floating-point
multiplication is pivotal.

References

[ABC+22] Melissa Azouaoui, Olivier Bronchain, Gaëtan Cassiers, Clément Hoff-
mann, Yulia Kuzovkova, Joost Renes, Markus Schönauer, Tobias Schnei-
der, François-Xavier Standaert, and Christine van Vredendaal. Protecting
dilithium against leakage: Revisited sensitivity analysis and improved imple-
mentations. Cryptology ePrint Archive, 2022.

[ABC+23] Aikata Aikata, Andrea Basso, Gaetan Cassiers, Ahmet Can Mert, and
Sujoy Sinha Roy. Kavach: Lightweight masking techniques for polynomial
arithmetic in lattice-based cryptography. Cryptology ePrint Archive, Paper
2023/517, 2023. https://eprint.iacr.org/2023/517.

https://eprint.iacr.org/2023/517

504 Masking Floating-Point Multiplication

[AWDF21] Konstantinos Athanasiou, Thomas Wahl, A Adam Ding, and Yunsi Fei.
Masking feedforward neural networks against power analysis attacks. Pro-
ceedings on Privacy Enhancing Technologies, 2022(1), 2021.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 116–129, 2016.

[BBJP19] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. CSI NN:
Reverse engineering of neural network architectures through electromagnetic
side channel. In USENIX Security, pages 515–532, Santa Clara, CA, 2019.

[BBP+16] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Randomness complexity of private
circuits for multiplication. In Advances in Cryptology–EUROCRYPT 2016:
35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,
Part II 35, pages 616–648. Springer, 2016.

[BC22] Olivier Bronchain and Gaëtan Cassiers. Bitslicing arithmetic/boolean mask-
ing conversions for fun and profit: with application to lattice-based kems.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
pages 553–588, 2022.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analy-
sis with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors,
CHES 2004, volume 3156 of LNCS, pages 16–29. Springer, Heidelberg, August
2004.

[BCZ18] Luk Bettale, Jean-Sébastien Coron, and Rina Zeitoun. Improved high-order
conversion from boolean to arithmetic masking. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 22–45, 2018.

[BGR+21] Joppe Willem Bos, Marc Olivier Gourjon, Joost Renes, Tobias Schneider,
and Christine van Vredendaal. Masking kyber: First-and higher-order imple-
mentations. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2021(4):173–214, 2021.

[CC24] Keng-Yu Chen and Jiun-Peng Chen. Masking floating-point number multipli-
cation and addition of falcon: First- and higher-order implementations and
evaluations. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2024(2):276–303, Mar. 2024.

[CGF21] Ana Covic, Fatemeh Ganji, and Domenic Forte. Circuit masking: from
theory to standardization, a comprehensive survey for hardware security
researchers and practitioners. arXiv preprint arXiv:2106.12714, 2021.

[CGLS20] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier
Standaert. Hardware private circuits: From trivial composition to full
verification. IEEE Transactions on Computers, 70(10):1677–1690, 2020.

[CGTZ23] Jean-Sébastien Coron, François Gérard, Matthias Trannoy, and Rina Zeitoun.
Improved gadgets for the high-order masking of dilithium. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2023(4):110–145,
2023.

Emre Karabulut, Aydin Aysu 505

[CRR03] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Bur-
ton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES 2002,
volume 2523 of LNCS, pages 13–28. Springer, Heidelberg, August 2003.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently
composing masked gadgets with probe isolating non-interference. IEEE
Transactions on Information Forensics and Security, 15:2542–2555, 2020.

[DAP+22] Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota,
and Aydin Aysu. Modulonet: Neural networks meet modular arithmetic for
efficient hardware masking. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 506–556, 2022.

[DCA20a] Anuj Dubey, Rosario Cammarota, and Aydin Aysu. Bomanet: Boolean
masking of an entire neural network. In IEEE/ACM International Conference
On Computer Aided Design, ICCAD 2020, San Diego, CA, USA, November
2-5, 2020, pages 51:1–51:9. IEEE, 2020.

[DCA20b] Anuj Dubey, Rosario Cammarota, and Aydin Aysu. Maskednet: The first
hardware inference engine aiming power side-channel protection. In 2020
IEEE International Symposium on Hardware Oriented Security and Trust
(HOST), pages 197–208. IEEE, 2020.

[DCSA22] Anuj Dubey, Rosario Cammarota, Vikram Suresh, and Aydin Aysu. Guarding
machine learning hardware against physical side-channel attacks. J. Emerg.
Technol. Comput. Syst., 18(3), apr 2022.

[DCV+23] Anuj Dubey, Rosario Cammarota, Avinash Varna, Raghavan Kumar, and
Aydin Aysu. Hardware-software co-design for side-channel protected neural
network inference. In 2023 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pages 155–166. IEEE, 2023.

[Deb12] Blandine Debraize. Efficient and provably secure methods for switching
from arithmetic to Boolean masking. In Emmanuel Prouff and Patrick
Schaumont, editors, CHES 2012, volume 7428 of LNCS, pages 107–121.
Springer, Heidelberg, September 2012.

[DEM18] Thomas De Cnudde, Maik Ender, and Amir Moradi. Hardware masking,
revisited. IACR TCHES, 2018(2):123–148, 2018. https://tches.iacr.
org/index.php/TCHES/article/view/877.

[DMRB18] Lauren De Meyer, Oscar Reparaz, and Begül Bilgin. Multiplicative masking
for aes in hardware. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 431–468, 2018.

[FVBR+21a] Tim Fritzmann, Michiel Van Beirendonck, Debapriya Basu Roy, Patrick
Karl, Thomas Schamberger, Ingrid Verbauwhede, and Georg Sigl. Masked
accelerators and instruction set extensions for post-quantum cryptography.
Cryptology ePrint Archive, 2021.

[FVBR+21b] Tim Fritzmann, Michiel Van Beirendonck, Debapriya Basu Roy, Patrick
Karl, Thomas Schamberger, Ingrid Verbauwhede, and Georg Sigl. Masked
accelerators and instruction set extensions for post-quantum cryptography.
Cryptology ePrint Archive, 2021.

https://tches.iacr.org/index.php/TCHES/article/view/877
https://tches.iacr.org/index.php/TCHES/article/view/877

506 Masking Floating-Point Multiplication

[GBTP08] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual
information analysis. In Elisabeth Oswald and Pankaj Rohatgi, editors,
CHES 2008, volume 5154 of LNCS, pages 426–442. Springer, Heidelberg,
August 2008.

[GIB18] Hannes Gross, Rinat Iusupov, and Roderick Bloem. Generic low-latency
masking in hardware. IACR TCHES, 2018(2):1–21, 2018. https://tches.
iacr.org/index.php/TCHES/article/view/871.

[GM18] Hannes Groß and Stefan Mangard. A unified masking approach. Journal of
Cryptographic Engineering, 8(2):109–124, June 2018.

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-oriented mask-
ing: Compact masked hardware implementations with arbitrary protection
order. Cryptology ePrint Archive, 2016.

[GMRR22] Morgane Guerreau, Ange Martinelli, Thomas Ricosset, and Mélissa Rossi.
The hidden parallelepiped is back again: power analysis attacks on falcon.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
pages 141–164, 2022.

[Gou01] Louis Goubin. A sound method for switching between Boolean and arithmetic
masking. In Çetin Kaya Koç, David Naccache, and Christof Paar, editors,
CHES 2001, volume 2162 of LNCS, pages 3–15. Springer, Heidelberg, May
2001.

[HGD+11] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede,
and Joos Vandewalle. Machine learning in side-channel analysis: a first
study. Journal of Cryptographic Engineering, 1(4):293–302, December 2011.

[HKL+22] Daniel Heinz, Matthias J Kannwischer, Georg Land, Thomas Pöppelmann,
Peter Schwabe, and Daan Sprenkels. First-order masked kyber on arm
cortex-m4. Cryptology ePrint Archive, 2022.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Advances in Cryptology-CRYPTO 2003:
23rd Annual International Cryptology Conference, Santa Barbara, California,
USA, August 17-21, 2003. Proceedings 23, pages 463–481. Springer, 2003.

[KA21] Emre Karabulut and Aydin Aysu. Falcon down: Breaking falcon post-
quantum signature scheme through side-channel attacks. In 2021 58th
ACM/IEEE Design Automation Conference (DAC), pages 691–696. IEEE,
2021.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages
388–397. Springer, Heidelberg, August 1999.

[LBS19] Itamar Levi, Davide Bellizia, and François-Xavier Standaert. Reducing a
masked implementation’s effective security order with setup manipulations.
IACR TCHES, 2019(2):293–317, 2019. https://tches.iacr.org/index.
php/TCHES/article/view/7393.

[LZP+24] Jiangxue Liu, Cankun Zhao, Shuohang Peng, Bohan Yang, Hang Zhao,
Xiangdong Han, Min Zhu, Shaojun Wei, and Leibo Liu. A low-latency
high-order arithmetic to boolean masking conversion. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2024(2):630–653, 2024.

https://tches.iacr.org/index.php/TCHES/article/view/871
https://tches.iacr.org/index.php/TCHES/article/view/871
https://tches.iacr.org/index.php/TCHES/article/view/7393
https://tches.iacr.org/index.php/TCHES/article/view/7393

Emre Karabulut, Aydin Aysu 507

[MGTF19] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque.
Masking dilithium: Efficient implementation and side-channel evaluation. In
Applied Cryptography and Network Security: 17th International Conference,
ACNS 2019, Bogota, Colombia, June 5–7, 2019, Proceedings 17, pages
344–362. Springer, 2019.

[MHK+23] Dev M Mehta, Mohammad Hashemi, David S Koblah, Domenic Forte, and
Fatemeh Ganji. Bake It Till You Make It: Heat-induced Power Leakage
from Masked Neural Networks. Cryptology ePrint Archive, 2023.

[MMSS19] Thorben Moos, Amir Moradi, Tobias Schneider, and François-Xavier Stan-
daert. Glitch-resistant masking revisited. IACR TCHES, 2019(2):256–292,
2019. https://tches.iacr.org/index.php/TCHES/article/view/7392.

[MPG05] Stefan Mangard, Thomas Popp, and Berndt M Gammel. Side-channel leakage
of masked cmos gates. In Cryptographers’ Track at the RSA Conference,
pages 351–365. Springer, 2005.

[MPO05] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully
attacking masked aes hardware implementations. In International workshop
on cryptographic hardware and embedded systems, pages 157–171. Springer,
2005.

[MTMM07] Robert P. McEvoy, Michael Tunstall, Colin C. Murphy, and William P.
Marnane. Differential power analysis of HMAC based on sha-2, and coun-
termeasures. In Sehun Kim, Moti Yung, and Hyung-Woo Lee, editors,
Information Security Applications, 8th International Workshop, WISA 2007,
Jeju Island, Korea, August 27-29, 2007, Revised Selected Papers, volume
4867 of Lecture Notes in Computer Science, pages 317–332. Springer, 2007.

[NK23] Hanae NOZAKI and Kazukuni KOBARA. Power analysis of floating-point
operations for leakage resistance evaluation of neural network model parame-
ters. IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences, 2023.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold im-
plementations against side-channel attacks and glitches. In International
conference on information and communications security, pages 529–545.
Springer, 2006.

[PFH+20] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. Falcon: Fast-fourier lattice-based compact
signatures over NTRU. Technical report, National Institute of Standards
and Technology, 2020.

[RSM20] Aein Rezaei Shahmirzadi and Amir Moradi. Re-consolidating first-order
masking schemes: Nullifying fresh randomness. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2021(1):305–342, Dec. 2020.

[SAW+23] Michael Schmid, Dorian Amiet, Jan Wendler, Paul Zbinden, and Tao Wei.
Falcon takes off-a hardware implementation of the falcon signature scheme.
Cryptology ePrint Archive, 2023.

[SM16] Tobias Schneider and Amir Moradi. Leakage assessment methodology —
extended version. J. Cryptogr. Eng., 6(2):85–99, 2016.

https://tches.iacr.org/index.php/TCHES/article/view/7392

508 Masking Floating-Point Multiplication

[SPOG19] Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Güneysu. Ef-
ficiently masking binomial sampling at arbitrary orders for lattice-based
crypto. In Public-Key Cryptography–PKC 2019: 22nd IACR International
Conference on Practice and Theory of Public-Key Cryptography, Beijing,
China, April 14-17, 2019, Proceedings, Part II 22, pages 534–564. Springer,
2019.

[Sta18] François-Xavier Standaert. How (not) to use welch’s t-test in side-channel se-
curity evaluations. In Begül Bilgin and Jean-Bernard Fischer, editors, Smart
Card Research and Advanced Applications, 17th International Conference,
CARDIS 2018, Montpellier, France, November 12-14, 2018, Revised Selected
Papers, volume 11389 of Lecture Notes in Computer Science, pages 65–79.
Springer, 2018.

[Xil18] Xilinx Inc. 7 Series DSP48E1 Slice, 3 2018. v1.10.

	Introduction
	Preliminaries
	Masking
	Composability and Probing Models
	Hardware Private Circuit (HPC) gadget
	Test Vector Leakage Assessment
	Floating-point Multiplication in FALCON

	Hardware Design
	Masking Challenges of Mantissa Multiplication
	Masked Integer Multiplication
	Boolean League: Zero Check, Booleans, Mantissa Selection

	Design Space Exploration with Novel Design Elements
	Implementation Results
	Area, Performance and Overhead Results
	Side-channel evaluation

	Discussions
	Conclusions and Future Works

