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Abstract. Masking has become a widely applied and heavily researched method to
protect cryptographic implementations against Side-Channel Analysis (SCA) attacks.
The success of masking is primarily attributed to its strong theoretical foundation
enabling it to formally prove security by modeling physical properties through so-
called probing models. Specifically, the robust d-probing model enables us to prove
the security for arbitrarily masked hardware circuits, manually or with the assistance
of automated tools, even when considering the imperfect nature of physical hardware,
including the occurrence of physical defaults such as glitches. However, the generic
strategy employed by the robust d-probing model comes with a downside: It tends
to over-conservatively model the information leakage caused by glitches meaning
that the robust d-probing model considers glitches that can never occur in practice.
This implies that in theory, an adversary could gain more information than she
would obtain in practice. From a designer’s perspective, this entails that (1) securely
designed hardware circuits may need to be withdrawn due to potential insecurity under
the robust d-probing model and (2) designs that satisfy the security requirements
of the robust d-probing model may incur unnecessary overhead, such as increased
circuit size or latency.
In this work, we refine the formal treatment of glitches within the robust d-probing
model to address glitches more accurately within a formal adversary model. Unlike the
robust d-probing model, our approach considers glitches based on the operations per-
formed and the data processed, ensuring that only manifesting glitches are accounted
for. As a result, we introduce the Robust but Relaxed (RR) d-probing model, a
formal adversary model maintaining the same level of security as the robust d-probing
model but without the overly conservative treatment of glitches. Leveraging our
new model, we prove the security of LUT-based Masked Dual-Rail with Pre-charge
Logic (LMDPL) gadgets, a class of physically secure gadgets reported as insecure
based on the robust d-probing model. We provide manual proofs and automated
security evaluations employing an updated version of PROLEAD capable of verifying
the security of masked circuits under our new model.
Keywords: Side-Channel Analysis · Masking · Hardware · Robust Probing Model

1 Introduction
More than two decades after Kocher’s seminal discovery [Koc96], the task of securing
cryptographic hardware implementations against the pervasive threat of SCA attacks
remains a formidable challenge. In this context, the masking countermeasure [CJRR99],
based on encoding secret variables through multiple shares [Sha79], emerges as the most
widely adopted and thoroughly comprehended technique, especially concerning its formal
security assurances [ISW03, PR13, DDF14, DFS15]. In concrete terms, if the leakages
of the shares achieve a sufficiently high noise level and are independent of each other,
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the number of required measurements (i.e. the complexity) of SCA attacks increases
exponentially with the number of shares [CJRR99]. Masking aims to randomize every
sensitive variable X by splitting it into d + 1 shares, denoted as X0, . . . , Xd, in a manner
such that their sum1 equals X. For instance, in the prevalent Boolean masking, where
X ∈ F2, it holds that X = X0 ⊕ . . .⊕Xd, with all shares Xi ∈ F2 (0 ≤ i ≤ d) following a
uniform distribution. To assess the practical fulfillment of the aforementioned requirements
concerning independence and noise, formal security models abstract the physical security of
masking. The basic d-probing model introduced by Ishai et al. [ISW03] enables to validate
if an adversary needs to observe at least d intermediates, i.e. stable signals carried by
physical wires, in a masked hardware circuit to make any inference about a secret variable.
This is modeled by placing up to d so-called probes, each recording one stable signal. In
essence, evaluation under the d-probing model ensures the preservation of the independence
property, while achieving a sufficient noise level is imperative for security even in the
most realistic noisy leakage model [PR13]. However, despite the adequacy of the noise
level, multiple case-studies have demonstrated that a scheme deemed d-probing secure may
still fall short of providing the expected level of security against SCA attacks in practical
scenarios [MPO05, MPO05]. This unexpected leakage arises from the asynchronous arrival
of input signals at a combinational gate. In such scenarios, the gate may produce a
transient and unintended change in its output signal before stabilizing, commonly known
as a glitch [Rab96]. Therefore, if the inputs of a combinational gate toggle, it does not
merely result in a single toggle from one stable output value to another, as presumed
by the d-probing model. Instead, it may trigger a sequence of toggles caused by glitches
before the output stabilizes. This pattern, which can be observed at the gate’s output,
subsequently propagates as an input signal to the following combinational logic while
leaking not only the stable output of the gate but also additional information about the
input signals, an aspect not accounted for by the d-probing model. Therefore, the robust
d-probing model, as introduced in [FGP+18], extends the foundational d-probing model to
encompass the additional information leaked due to glitches. In this model, glitch-extended
probes are introduced to capture not only stable signals but also potential signals revealed
by glitches. However, due to the computational hardness of checking for specific glitches,
the model assumes a generic worst-case scenario. Thus, a glitch-extended probe on a wire
can record all stable signals from the combinational logic contributing to the probed wire.
This assumption enables the assessment of security under the robust d-probing model
without requiring knowledge of the specific placement and routing of the final design.
Consequently, security proofs under this model hold for arbitrary circuits, independent
of their particular placement and routing. The simplicity and broad applicability of
the robust d-probing model have led to its widespread adoption for evaluating masked
hardware. It is integrated into various tools such as [BGI+18, KSM20, MM22, BMRT22],
facilitating automatic assessment of security for masked implementations. However, the
model adopts a worst-case scenario approach, accounting for all potential glitches, despite
only a subset of these glitches manifesting in practical scenarios. This tendency towards
over-conservatism implies that a masked circuit, potentially optimized for efficiency, may
remain secure in real-world applications even if deemed insecure under the robust d-probing
model. This disparity between robust probing security and real-world security becomes
particularly evident when considering glitch-free circuits. For instance, in [MLM23], it was
demonstrated that such circuits leak more information than assumed by the d-probing
model. However, considering glitches in such circuits is irrelevant as no glitches can occur.
Specifically, the study revealed that LMDPL is not secure under the robust probing model,
while also confirming its security and noting the absence of an accurate model to evaluate
such circuit types.

1By "sum" we refer to the result of the addition of all shares in the underlying finite field.
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1.1 Our Contributions
In this work, we propose a refinement of the robust d-probing model, aiming to reduce
its over-conservatism while maintaining an equivalent level of security assurance. Our
contributions are as follows:

• We introduce the RR d-probing model, a formal adversary model that provides a
more precise treatment of glitches compared to the robust d-probing model, while
ensuring an equivalent level of security2. Therefore, we propose a probe-extension
procedure that specifically accounts for glitches based on the performed operations
and processed data. Consequently, our model exclusively address glitches that
manifest within a hardware circuit in a formal manner.

• We close the lack of accurate and formal proofs when assessing the security of
glitch-free circuits as pointed out in [MLM23]. In particular, within our model, we
can formally prove the security of LMDPL [LMW14] as well as the insecurity of
Self-Synchronized Masking (SESYM) [NGPM22].

• To automate the security evaluation within our refined model, we extended the
functionality of the existing PROLEAD tool [MM22] with the evaluation of a provided
gate-level netlist under our model. Our extension is available as an open-source
contribution via GitHub3.

2 Background
2.1 Notations
We denote all random variables, like X ∈ F2, by capital letters and sets, like X, by bold
capital letters. We use subscripts to denote specific elements within a set, e.g., we denote
the elements of a set X with |X| = n as X0, . . . Xn−1. When denoting functions, e.g.
F : Fn

2 → Fm
2 , we use sans-serif fonts. Further, we use superscripts to denote individual

shares of a shared variable. For example, a sensitive variable X is shared as X0⊕. . .⊕Xd−1.
Furthermore, the set of shares associated with a set of n secret variables X is denoted as
Sh(X) = [X0

0 , . . . Xd−1
0 , . . . , X0

n−1, . . . Xd−1
n−1].

2.2 Circuit Model
We model any stateful and deterministic circuit as a Directed Acyclic Graph (DAG)
G = (V, E) whose vertices in set V are atomic components (gates), embodying the
underlying logic, and edges in set E are interconnections (wires), transmitting elements
from F2 [ISW03]. In this work, we specify different types of gates as follows:

• Combinational gates of fan-in at most 2 and fan-out 1 compute a logic function
on its inputs without any dependence on the prior states of inputs. Without loss
of generality, we restrict the logic functions processed by combinational gates to
{NOT, AND, NAND, OR, NOR, XOR, XNOR}.

• Sequential gates of fan-in 1 and fan-out 1 compute a logic function on its current
inputs but also on previous inputs. All sequential gates are clock-synchronized.

• Input gates of fan-in 0 and fan-in 1 write elements in F2 on a wire.
2With "equivalent level of security" we mean that both models capture all leakages caused by glitches

that can physically manifest.
3https://github.com/ChairImpSec/PROLEAD

https://github.com/ChairImpSec/PROLEAD
https://github.com/ChairImpSec/PROLEAD
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• Output gates of fan-in 1 and fan-in 0 read elements in F2 from a wire.

However, this circuit model does not apply for iterative circuits, i.e. circuits with the
ability to evaluate the same gate within multiple clock cycles, and was, therefore, extended
by the structural circuit model given in [CS21]. This model defines a structural circuit
as a directed graph, without any combinational loop, whose vertices are structural gates
and edges are structural wires, carrying different elements across various time instances
(clock cycles). Hence, a structural wire W is represented as a pair (E, t), comprising a
wire E and a specific time instance t. According to Definition 4 in [CS21], the execution
of a structural circuit for a set of clock cycles models the state of the circuit for the given
set of clock cycles as well as the latency introduced by sequential gates.

2.3 Circuit Compiler
A circuit compiler encompasses three different algorithms (CC, ENC, DEC), defined as
follows [AIS18]:

• The deterministic circuit compilation algorithm CC expects a (structural) circuit C
as input and returns a randomized (masked) (structural) circuit C̃.

• The probabilistic encode algorithm ENC expects the set of unshared inputs X of C
and returns the d-shared input X̃ = Sh(X) of C̃.

• The deterministic decode algorithm DEC expects the shared output Ỹ = Sh(Y) of
C̃ and returns the set of unshared outputs Y of C.

We note that the resulting C̃ may include additional randomness gates with a fan-in 0
and fan-out 1, which produce a uniformly distributed random value in F2. When viewed
as a structural circuit, all randomness gates in C̃ generate a fresh uniformly distributed
random value per clock cycle.

2.4 Adversary Model
In this work, we focus on passive adversaries possessing the capability to observe a masked
circuit C̃. This implies that the adversary lacks direct access to secret data X or Y, even if
the underlying circuit compiler is public. Initially, we assume that C̃ is modeled as a DAG
as introduced in Subsection 2.2 while we introduce all relevant definitions for structural
circuits when necessary.

2.4.1 d-probing Model

The basic d-probing model [ISW03] defines the d-probing adversary with the ability to
observe up to d intermediate elements processed by C̃. In the following, we denote the set
of observations made by an adversary as Q. The observation is abstracted by permitting
an adversary to place up to d standard probes, as formalized in Definition 1, on arbitrary
wires of C̃.

Definition 1 (Standard Probe). Let C̃ be a masked circuit with G = (V, E). A standard
probe PE ∈ F2 on wire E ∈ E symbolically represents the element in F2 carried by wire E.

Intuitively, C̃ achieves d-probing security if no d-probing adversary can extract secret
(unshared) data by observing the joint distribution of at most d intermediate elements.
Formally, we define d-probing security based on the concept of statistical independence.
Let A and B be two sets of discrete random variables. Then, A is statistically independent
of B iff it holds that Pr[A|B] = Pr[A].
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Definition 2 (d-Probing Security). A masked circuit C̃ with secret input X is d-probing
secure iff for any set of standard probes P with |P| ≤ d, the joint distribution over all
observations Q made by the standard probes in P is statistically independent of X.

2.4.2 Robust d-Probing Model

The robust d-probing model [FGP+18] extends the d-probing model by incorporating the
impact of a limited set of physical defaults, namely combinational recombinations (glitches)
[MPG05], memory recombinations (transitions) [CGP+12], and routing recombinations
(couplings) [CBG+17], on the formal security of C̃. The robust d-probing model introduces
a novel class of probes, referred to as extended probes, for each of the three discussed
physical defaults. These extended probes not only observe the elements carried by the
wires they are placed on but also observe elements carried by other wires. Hence, every
extended probe symbolically represents a set of standard probes.

Glitch-Extended Probe. A Glitch-extended probe models the fact that when measuring
the signal driven by a physical wire we do not just see the stable signal immediately.
Instead, we observe a sequence of transient toggles before the signal stabilizes. Since
glitches are data-dependent, observing such a sequence can yield information about multiple
signals connected to the observed wire through combinational logic. In the robust-probing
model, it is assumed conservatively that glitches might enable an adversary to access all
signals that contribute to the computation of the observed wire via combinational logic.
Consequently, a glitch-extended probe on wire E, denoted as P ext

E , is converted into a set
of standard probes placed on all primary inputs and register outputs that contribute to
E. As shown in [KM22], we formalize the glitch-extension procedure with function name
glitch_extend in Algorithm 1.

Algorithm 1 Glitch Extension (glitch_extend)
Input: P ext

E . Glitch-extended probe on wire E
Output: P . The set of standard probes

1: if P ext
E is placed on an output of a combinational gate then

2: P←
⋃n

i=0 glitch_extend(P ext
i ) . P ext

i with 0 ≤ i < n denotes glitch-extended
probes on all inputs of the combinational gate

3: else
4: if P ext

E is placed on an output of a sequential gate or a primary input then
5: P← {PE}
6: end if
7: end if

Transition-Extended Probe. A transition-extended probe models the dependence of the
consumed energy on both the preceding and subsequent elements when overwriting a wire.
Consequently, a transition-extended probe placed on a structural wire W = (E, t) observes
a pair of elements carried by wire E during clock cycles t− 1 (the preceding element) and
t (the subsequent element)[CS21]. Similarly, the transition-extension procedure transforms
a transition-extended probe on wire W = (E, t) into two standard probes. These standard
probes separately represent the elements carried by e during clock cycles t and t− 1. For
simplicity, we omit the specific value of t if it is not relevant and refer to the result of a
transition-extension procedure as (PE′ , PE). Here, PE′ denotes a standard probe on wire
E observing the preceding element, while PE observes the subsequent element. While
glitches and transitions are formally treated as distinct phenomena, it’s noteworthy that
glitch-extended probing, in isolation from transitions, oversimplifies the situation, given
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that glitches are a direct consequence of transitions. Consequently, we advocate for a
holistic approach that incorporates both glitches and transitions when employing formal
adversary models. To consider glitches and transition simultaneously, both extended
probes can be merged resulting in the extension procedure robust_extend outlined in
Algorithm 2. Now, a so-called robust probe on wire E, denoted as P robust

E , is converted
into a set of standard probes recording two consecutive states of all primary inputs and
register outputs that contribute to E. First, the glitch-extension procedure is performed
as shown in Algorithm 1 until the probe cannot be further extended based on glitches.
Afterwards, in the result of the glitch extension becomes transition-extended (cf. Line 5)
by storing standard probes on the respective wire’s preceding and subsequent element.

Algorithm 2 Robust (Glitch and Transition) Extension (robust_extend)
Input: P robust

E . Robust probe on wire E
Output: P . The set of standard probes

1: if P robust
E is placed on an output of a combinational gate then

2: P←
⋃n

i=0 robust_extend(P robust
i ) . P robust

i with 0 ≤ i < n denotes robust
probes on all inputs of the combinational gate

3: else
4: if P robust

E is placed on an output of a sequential gate or a primary input then
5: P← {PE′} ∪ {PE} . Do the transition extension
6: end if
7: end if

We remark that we do not consider couplings in this work as the circuit models discussed
in Subsection 2.2 do not incorporate any information regarding placement and routing.
Consequently, in the variant of the robust d-probing model that considers glitches and
transitions but excludes couplings, which we refer to as the robust probing model for
the rest of this work, an adversary, denoted as a robust d-probing adversary, can place a
maximum of d robust probes on arbitrary wires within C̃.
Definition 3 (Robust d-Probing Security). A masked circuit C̃ with secret input X
is robust d-probing secure iff for any set of robust probes P, with |P| ≤ d, the joint
distribution over all observations Q made by the robust probes is statistically independent
of X.

2.4.3 Composability

However, finding a compiler that transforms a circuit C into an efficient and robust d-
probing secure masked circuit C̃ as well as verifying the d-probing security of C̃ poses a
challenge, especially if C is complex and d is high. Therefore, composable gadgets were
introduced in [CGLS21] to establish a standard compiler. This compiler replaces every
gate of C with its corresponding gadget. Each gadget itself is a robust d-probing secure
circuit, implementing the functionality of a basic logic gate. Furthermore, these gadgets
achieve composability under a certain composability notion implying robust d-probing
security, even when multiple gadgets are arbitrarily composed to form a larger circuit.
Before introducing the composability notion employed in this work, we first introduce the
concept of probe simulatability [CS20]. This concept enables us to formally reason about
the dependencies between (robust) probes and input shares to C̃.
Definition 4 (Perfect Probe Simulation). Let P ∈ Ft

2 be a set of robust probes on a
masked circuit C̃ and S ⊂ X̃ be a set of input shares. Further, let SIM(S) : F|S|

2 → Ft
2 be

a probabilistic polynomial time simulator. P is perfectly simulatable by a set S iff there
exist a simulator SIM, such that for any values of the inputs to C̃, the joint probability
distribution over P and SIM(S) are equal.
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Now, let P ∈ F2 be a probe on a masked circuit (gadget) C̃. We say that P propagates
into an input of C̃ if the input is required to perfectly simulate P . Consequently, the concept
of probe propagation defines the information leaked by a probe and how this leakage is
propagated throughout the circuit [CS20]. To ensure the composability of a gadget, the
Probe-Isolating Non-Interference (PINI) composability notion [CS20] constrains the probe
propagation of all probes on outputs to its own share domain. Similarly, it limits the
probe propagation of probes on internal wires of the gadget to a single but arbitrary share
domain. The concept of share domains is defined in [GMK16], while Definition 5 formally
introduces the PINI notion.
Definition 5 (Robust d-Probe-Isolating Non-Interference (PINI)). Let C̃ be a masked
circuit with secret input X. Further, let PI be a set of robust probes on internal wires of C̃
with |PI| = t1 and IO be the set of indices assigned to the robust probes on output wires
in the set PO with |IO| = t2. C̃ is robust d-PINI iff for every P = PI∪PO with t1 + t2 ≤ d,
there exists a set of indices II with |II| ≤ t1 such that P is perfectly simulatable from
S = X̃II∪IO .

3 Dynamic Power Consumption of CMOS Circuits
Following the formal introduction to how glitches are modeled within the robust d-probing
model, it becomes crucial to elaborate on why this model accurately reflects the physical
reality regarding glitches. To illustrate this, we examine the dynamic power consumption of
a Complementary Metal-Oxide-Semiconductor (CMOS) circuit, as schematically depicted
in Figure 1a. In CMOS circuits, synchronization is achieved through a clock signal, with
all sequential gates evaluating with every (rising or/and falling) edge of the clock signal.
Consequently, the dashed signal in Figure 1a exhibits distinct power peaks corresponding
to each rising edge of the clock, with each peak dependent on the power consumption
of the combinational logic. Notably, every change at a CMOS gate contributes to the
amount of dynamic power consumption. Hence, glitches have a significant impact on this
amount. To further elaborate this, we consider two exemplary patterns of glitches as
visualized in Figure 1b which can be the result of two distinct transitions at the input of a
combinational circuit, i.e., at the registers which provide such inputs.

Clearly, distinguishing between these patterns is straightforward when the entire
patterns are observable. Additionally, it can be assumed that each transition at the
input of the combinational logic yields a unique glitch “fingerprint”, manifested as a
pattern of glitches in the outputs of the combinational logic. Consequently, observing a
pattern of glitches may reveal all inputs of the combinational logic. One might argue that
exploiting such a pattern necessitates an SCA attack that combines a sequence of leakage
samples, namely a multivariate attack [GBPV10], which can be challenging to mount in
practice. However, it is important to note that, in the context of power consumption,
the measured power is filtered by a low-pass filter [MOP07]. The limited bandwidth of
this filter implies that obtaining distinct power signals for logic cells that switch within
a few nanoseconds, such as those related to glitches, is not feasible. We sketched the
power consumption peaks associated with the shown glitch patterns in Figure 1c. Notably,
these peaks encompass the sum of all consumed power within a single clock cycle, i.e. all
glitches occurring within one clock cycle, their shape, and their duration contribute to
the peak. Consequently, a single leakage sample in a measured power trace is influenced
by the switching activities of cells within a certain time interval shorter than a full
clock cycle [MOP07]. Therefore, it is possible to find at least a single leakage sample to
differentiate these power consumption peaks. Hence, the whole information leaked by
a pattern of glitches becomes observable in a single leakage sample effectively making
univariate first-order attacks applicable [MPO05]. The robust d-probing model operates
under the premise that each input state of the combinational logic results in a distinctive
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(a) The clock signal of a CMOS circuit (solid line) together with
its corresponding dynamic power consumption trace (dashed line).
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(b) Two exemplary glitch patterns occurring
within one clock cycle.
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(c) The power consumption peaks associated
with these glitch patterns.

Figure 1: The dynamic power consumption of a CMOS circuit.

power consumption peak and that these peaks can be distinguished by a single leakage
sample. In particular, it acknowledges that observing a single leakage sample may provide
information on all inputs of the combinational logic. It achieves this by defining robust
probes that grant access to additional standard probes across all these inputs.

4 Technique
Let C̃ be a masked circuit with secret input X and P robust

E be a robust probe on an
arbitrary wire E of C̃. According to Algorithm 2, if E is the output of a combinational
gate P robust

E gets substituted by robust probes on all input wires of the combinational gate.
However, if E is a primary input or the output of a sequential gate, P robust

E is not further
extended but substituted by two standard probes PE′ and PE on two consecutive clock
cycles.

Line 1 of Algorithm 2 highlights a significant disparity between the treatment of
glitches in the robust probing model and their manifestation in physical reality. The
robust d-probing model relies on the conservative assumption that a probe on the output
of a combinational gate extends to all inputs of such a gate independent of the operation
performed by the combinational gate and independent of the processed data. However,
the physical manifestation of glitches is significantly influenced by both the operation
executed by the gate and the data processed by it. We illustrate this in Example 1. In
particular, we show one scenario where the operation performed by the gate together with
the processed data leads to a stop of the glitch-propagation.

Example 1. Consider an AND-gate with two inputs X and Y and output Z. If X (resp.
Y ) is constantly set to zero, a glitch on Y (resp. X) cannot lead to a glitch on Z. This
means that the glitch-propagation stops at this gate without the need for a sequential gate.
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Moreover, if X (resp. Y ) is constantly set to zero, an adversary who observes Z being
constantly zero cannot learn Y (resp. X) while a robust d-probing adversary gets access
to two robust probes P robust

X and P robust
Y by placing one robust probe P robust

Z .

To investigate the data- and operation-dependent propagation of glitches in more detail,
we examine all possible transitions at the inputs of AND- and OR-gates with inputs X and
Y and output Z. We assume that both gates are in a stable state, i.e. no glitches on X and
Y , before switching to another state. In Table 1, we show all possible transitions, denoted
as a set S, visualized by its corresponding signal waveforms. While our discussion focuses
solely on specific AND- and OR-gates, we provide similar tables for other combinational
gates with fan-in two in the Appendix.

Table 1: Signal waveforms of AND- and OR-gates.
S X Y Z
S0
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13
S14
S15

(a) Signal waveforms of an AND-gate.

S X Y Z
S0
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13
S14
S15

(b) Signal waveforms of an OR-gate.

4.1 Data-Dependent Probe-Extension of an AND-gate
Initially, we investigate Table 1a and discuss the information gained by observing the
waveform associated with Z

Case 1. For S0-S4, S8, and S12 X or Y remains at a constant value of 0. These cases
are similar to Example 1 and lead to a signal waveform for Z that is constantly 0. In
particular, if X (resp. Y ) is constantly 0 then Z is constantly 0 independent of any toggle
on Y (resp. X). Hence, these observations hold true independent of any placement and
routing considerations.
Case 2. For S15 X and Y remain at a constant value of 1. Hence, due to the underlying
logic of the AND-gate, S15 is the only case where Z is constantly 1. Again, this holds true
independent of any placement and routing considerations.
Case 3. For S5, S7, S10 − S11, and S13 − S14 either X and Y both toggle from the same
stable state to another state state (see S5 and S10) or only X (resp. Y ) toggles while
Y (resp. X) remains at a constant value of 1. Consequently, the waveform of Z shows
the same toggle as the waveform of at least one of the inputs. As already indicated in
[MLM23] the exact time of toggle on X (resp. Y ) and Z depends on the delays of the
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wires and the AND-gate itself. This means that the observation of a single toggle on Z is
not influenced by placement and routing while the exact time of toggle depends on the
particular routing of the wires.
Case 4. For S6 and S9 X and Y both toggle inversely, potentially resulting in a glitch on
Z. Specifically, in S6, a glitch arises only if X toggles prior to Y , whereas in S9, a glitch
arises only if Y toggles before X. However, if these conditions are not satisfied, no toggles
occur on Z. Consequently, the presence and timing of glitches are profoundly affected by
placement and routing considerations.

We reiterate that, concerning a single AND-gate, the robust d-probing model assumes
that a robust probe P robust

Z is replaced by four standard probes PX′ , PX , PY ′ , and PY ,
indicating that an adversary can learn two consecutive and stable states of all inputs just
by observing Z. This conservative assumption is justified by the scenarios pointed out
in Case 4. If an adversary observes a glitch at Z, it becomes evident that we are either
in scenario S6 or S9. Furthermore, the adversary can distinctly differentiate between
S6 and S9 based on the specific characteristics of the glitch, such as its timing and
duration. We note that Table 1 simplifies the visualization by disregarding any potential
propagation delays. In reality, however, glitches observed in scenarios like S6 and S9
may exhibit variations. Likewise, an adversary may be able to distinguish between the
scenarios highlighted in Case 3 by analyzing the precise timing of the toggles observed at
Z, whereas the scenario outlined in Case 1 remains inherently unique. This alignment of
our observations underscores the validity of the robust d-probing model.

However, the assumption made by the robust d-probing model is too conservative
regarding the scenarios associated with Case 1. In these scenarios, an adversary cannot
observe any toggle on Z. Specifically, no timing-related information is transmitted from
X or Y to Z, rendering it impossible to differentiate between the scenarios outlined in
Case 1. Therefore, an adversary observing Z can only learn two consecutive states of Z,
without being able to extract any additional information, about X and Y .

Based on the aforementioned observations, we propose modifying the probe-extension
methodology based on the processed data and the functionality of the AND-gate. Specifi-
cally, we suggest stopping the probe-extension for all scenarios outlined in Case 1, while
retaining the same probe-extension approach as the robust d-probing model for all other
cases. Therefore, we define a so-called probe-extension function FAND

Z : F4
2 → F2 for the

output Z of an AND-gate over its consecutive input states X ′, X, Y ′, Y ∈ F2 as given in
Equation 1.

FAND
Z (X ′, X, Y ′, Y ) = (X ′ ∨X) ∧ (Y ′ ∨ Y ) (1)

Further, we denote a variable indicating whether a robust probe on Z should be
extended or not as FZ ∈ F2 with FZ = FAND

Z (X ′, X, Y ′, Y ). Equation 1 does only return
0 if one of the inputs stays at constant 0, i.e. X ′ = 0 and X = 0 or Y ′ = 0 and Y = 0,
otherwise Equation 1 returns 1. Hence, if a robust probe P robust

Z is placed on Z we propose
to place robust probes P robust

X and P robust
Y on both inputs X and Y if FZ = 1. Otherwise,

if FZ = 0, we propose to stop the probe-extension and place two standard probes PZ′ and
PZ recording two consecutive states of Z.

4.2 Data-Dependent Glitch-Propagation of an AND-Gate
So far, we disregarded the possibility of glitches on X and Y in Table 1a meaning that we
assume that the inputs of AND-gates are always free of glitches. While this assumption
holds true for stable inputs, such as primary inputs or register outputs which are directly
forwarded to an AND-gate, we acknowledge that glitches can occur within a combinational
circuit and propagate to other combinational gates. For example, an AND-gate can
receive the glitchy output of another AND-gate as input. Thus, we must adjust FAND

Z

to account for glitches on X and Y . Therefore, we define a so-called glitch-propagation
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function GAND
Z : F6

2 → F2 for the output Z of an AND-gate over its consecutive input states
X ′, X, Y ′, Y ∈ F2 and the information whether X or Y are already glitchy. We denote the
variable indicating whether a wire X is glitchy or not as GX ∈ F2 and assume GX = 0 if X
is a primary input or the output of a sequential gate. Otherwise, it holds that GX = GAND

X ,
i.e. the presence of glitches on X must be computed based on the inputs of the gate
that calculates X. Below, we give GAND

Z as well as a revised version of FAND
Z : F6

2 → F2
accounting for glitches on X and Y .

FAND
Z (X ′, X, GX , Y ′, Y, GY ) = (X ′ ∨X ∨GX) ∧ (Y ′ ∨ Y ∨GY )

GAND
Z (X ′, X, GX , Y ′, Y, GY ) = (X ′ ∧ X̄ ∧ Ȳ ′ ∧ Y ) ∨ (X̄ ′ ∧X ∧ Y ′ ∧ Ȳ )

∨ (GX ∧ (Y ′ ∨ Y ∨GY )) ∨ (GY ∧ (X ′ ∨X ∨GX))

In contrast to the initial version of FAND
Z , the revised version integrates the additional

constraint that a signal remains constantly zero only if it is free of glitches. Adhering to
a conservative approach, we acknowledge that every glitch occurring on X or Y could
potentially provide information to an adversary probing Z. Consequently, the revised
version of FAND

Z indicates a probe extension for every glitch detected on X or Y . We
adopted the same conservative approach in defining GAND

Z . The first two monomials of
GAND

Z address scenarios where a glitch on Z can occur even if X and Y are free of glitches
(see S6 and S9 in Table 1a). However, if X (or Y ) is glitchy, we assume that the glitch
propagates to Z unless Y (or X) is constantly zero and free of glitches.

4.3 Data-Dependent Probe-Extension of an OR-gate
We continue by examining Table 1b to derive FOR

Z and GOR
Z , which represent a probe-

extension function and a glitch-extension function respectively. These functions aim to
model the probe extension through an OR-gate in a less conservative manner compared to
the robust d-probing model.
Case 1. For S7, and S11-S15, X or Y remains at a constant value of 1. These scenarios
lead to a signal waveform for Z that is constantly 1. In particular, if X (resp. Y ) is
constantly 1 then Z is constantly 1 independent of any toggle on Y (resp. X). Hence,
these observations hold true independent of any placement and routing considerations.
Case 2. For S0 X and Y remain at a constant value of 0. Hence, due to the underlying
logic of the OR-gate, S0 is the only case where Z is constantly 0. Again, this holds true
independent of any placement and routing considerations.
Case 3. For S1 − S2, S4 − S5, S8, and S10 either X and Y both toggle from the same
stable state to another state state (see S5 and S10) or only X (resp. Y ) toggles while Y
(resp. X) remains at a constant value of 0. Consequently, the waveform of Z shows the
same toggle as the waveform of at least one of the inputs. The observation of a single
toggle on Z is not influenced by placement and routing while the exact time of toggle
depends on the particular routing of the wires.
Case 4. As for the AND-gate, for S6 and S9 X and Y both toggle inversely, potentially
resulting in a glitch on Z.

The observations regarding the OR-gate closely resemble the findings discussed earlier
concerning the AND-gate. Specifically, for the scenarios outlined in Case 1, the assumptions
made by the robust d-probing model are too conservative while they are valid for Cases 2-4.
Therefore, the probe-extension function FOR

Z : F4
2 → F2 for the output Z of an OR-gate

over its consecutive input states X ′, X, Y ′, Y ∈ F2 must be defined in a way that the
probe-extension stops all all scenarios outlined in Case 1 and otherwise continues. We
show a possible equation for FOR

Z in Equation 2 under the assumption that there are no
glitches on X or Y .
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FOR
Z (X ′, X, Y ′, Y ) = (X̄ ′ ∨ X̄) ∧ (Ȳ ′ ∨ Ȳ ) (2)

Contrary to Equation 1, Equation 2 does only return 0 if at least one of the inputs
stays at constant 1, i.e. X ′ = 1 and X = 1 or Y ′ = 1 and Y = 1. For all other input
vectors, Equation 2 returns 1 indicating that a robust probe P robust

Z must be extended to
two robust probes P robust

X and P robust
Y .

4.4 Data-Dependent Glitch-Propagation of an OR-Gate
To account for glitches on X and Y , the inputs of an OR-gate, we introduce another glitch-
propagation function GOR

Z : F26 → F2 for the output Z of an OR-gate across its consecutive
inputs X ′, X, Y ′, Y , along with two variables GX and GY indicating the presence of a
glitch on X or Y respectively. Additionally, we revise FOR

Z : F26 → F2 to accommodate
glitches on X and Y .

FOR
Z (X ′, X, GX , Y ′, Y, GY ) = (X̄ ′ ∨ X̄ ∨GX) ∧ (Ȳ ′ ∨ Ȳ ∨GY )

GOR
Z (X ′, X, GX , Y ′, Y, GY ) = (X ′ ∧ X̄ ∧ Ȳ ′ ∧ Y ) ∨ (X̄ ′ ∧X ∧ Y ′ ∧ Ȳ )

∨ (GX ∧ (Ȳ ′ ∨ Ȳ ∨GY )) ∨ (GY ∧ (X̄ ′ ∨ X̄ ∨GX))

Now, FOR
Z stops the probe-extension only if at least one of the inputs remains constant

at 1 and is free from glitches simultaneously. Put differently, any glitch occurring on
X or Y triggers probe-extension. GOR

Z is build in the same way as GAND
Z . The first two

monomials of GOR
Z address scenarios where a glitch on Z can occur even if X and Y are

free of glitches (see S6 and S9 in Table 1b). However, if X (or Y ) is glitchy, we assume
that the glitch propagates to Z unless Y (or X) is constantly one and free of glitches.

4.5 Other Gates
While we have introduced the concept of data-dependent probe and glitch propagation
using the AND- and OR-gates as examples, we remark that the same principle can be
applied to derive equivalent functions for other gates with a fan-in of two, such as NAND,
NOR, XOR, and XNOR, in a straightforward manner. The corresponding results for these
gates are provided in the appendix. However, the NOT-gate, which takes one input X
and produces one output Z, is treated differently. This is because every consecutive input
is directly observable through the output Z. Consequently, for a NOT-gate, two key
observations hold: (1) there exists no scenario where probe propagation should stop at
Z, and (2) every glitch occurring on X propagates to Z. Formally, this implies that the
probe- and glitch-propagation functions return 1 for every possible input. To maintain
simplicity, we opt not to define such functions explicitly and instead assume that a robust
probe P robust

Z is replaced directly by a robust probe P robust
X , aligning with the principles

of the robust d-probing model.

5 The Robust but Relaxed (RR) d-Probing Model
Building upon our observations, we introduce the RR d-probing model, designed to relax
the overly conservative glitch treatment of the robust d-probing model. Therefore, we
define a new class of probes, referred to as relaxed probes, which are, when placed on
the output signal of a combinational gate, conditionally propagated depending on the
operation performed by the gate and its processed data. Before extending a relaxed probe
P relaxed

E placed on an arbitrary wire E, it is imperative to ensure that all probe-extension
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and glitch-propagation functions have been evaluated. When evaluating a masked circuit
C̃, i.e. initializing input gates and sequentially processing gates from input gates to output
gates, we initially set GZ = 0 if Z is the output of an input gate. Subsequently, after
evaluating the output of a combinational gate Z, we compute GZ and then FZ based on
the functionality of the gate. Once this step is completed, and the information regarding
probe and glitch propagation, i.e. all FE and GE for every E which is an output of a
combinational gate, is available, we proceed with the actual probe-extension procedure. We
formalize the relaxed probe-extension procedure, denoted relaxed_extend, in Algorithm 3.

Algorithm 3 Relaxed Extension (relaxed_extend)
Input: P relaxed

E . Relaxed probe on wire E
Output: P . The set of standard probes

1: if P relaxed
E is placed on the output of combinational gate with fan in 2 then

2: if FE = 1 then
3: P← {relaxed_extend(P relaxed

X )} ∪ {relaxed_extend(P relaxed
Y )} . FX and

FY denote the relaxed probes on both inputs of the combinational gate
4: else
5: P← {PE′} ∪ {PE} . Do the transition extension
6: end if
7: else if P relaxed

E is placed on the output of an NOT-gate then
8: P← relaxed_extend(P relaxed

X ) . P relaxed
X denotes the relaxed probe on the input

of the NOT-gate
9: else

10: if P relaxed
E is placed on an output of a sequential gate or a primary input then

11: P← {PE′} ∪ {PE} . Do the transition extension
12: end if
13: end if

Algorithm 3 conditionally extends P relaxed
E based on FE , i.e the decision whether a

probe should be extended based on the operations and data. If such extension is deemed
necessary, P relaxed

E gets substituted by relaxed probes on all inputs of the gate computing E.
Otherwise, P relaxed

E gets directly replaced by two standard probes recording two consecutive
states of E without further extension.

5.1 An Illustrative Example
To provide an illustrative example of applying Algorithm 3 to a straightforward yet concrete
design, and to support the argumentation for more complex designs, we briefly introduce
the basic Wave Dynamic Differential Logic (WDDL)-AND and WDDL-XOR gadgets in
Figure 2. We use the style and symbols introduced in [MLM23]. WDDL utilizes Dual-Rail
Pre-charge (DRP) logic, where every variable X is represented as a tuple (Xt, Xf), with
Xt = X and Xf = X̄, in a way that it is guaranteed that no glitch can occur within a
WDDL-protected circuit.

Example 2 (WDDL-AND). Consider a WDDL-AND (cf. Figure 2a) with two primary
inputs each given in dual-rail representation as (Xt, Xf) and (Yt, Yf), and one primary
output, also in dual-rail representation, (Yt, Yf). According to the DRP logic, we assume
that the inputs are pre-charged, i.e. (X ′

t, X ′
f , Y ′

t , Y ′
f , Z ′

t, Z ′
f) = (0, 0, 0, 0, 0, 0) before being

set to their final state and that (GXt , GXf , GYt , GYf) = (0, 0, 0, 0). Initially, let P relaxed
Zt

be
a relaxed probe placed on Zt. Before extending P relaxed

Zt
by Algorithm 3 we compute GZt

and FZt as follows:

GZt = GAND
Zt

(X ′
t, Xt, GXt , Y ′

t , Yt, GYt) FZt = FAND
Zt

(X ′
t, Xt, GXt , Y ′

t , Yt, GYt)
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Zt

Zf

Xt

Yt

Xf

Yf

(a) WDDL-AND

Zf

Zt

Xt

Xf

Yf

Yt

S0

S1
S2

S3

(b) WDDL-XOR
(Xt, Xf)
(Yt, Yf)

(Zt, Zf)

(c) WDDL-AND symbol

(Xt, Xf)
(Yt, Yf)

(Zt, Zf)

(d) WDDL-XOR symbol

Figure 2: WDDL gadgets.

When executing Algorithm 3, the decision to extend P relaxed
Zt

depends on FZt . We show
the concrete extensions for all valid states of (Xt, Yt, Zt) in the following:

(Xt, Yt, Zt) = (0, 0, 0) FZt = 0 P relaxed
Zt

→ {PZ′
t
, PZt}

(Xt, Yt, Zt) = (0, 1, 0) FZt = 0 P relaxed
Zt

→ {PZ′
t
, PZt}

(Xt, Yt, Zt) = (1, 0, 0) FZt = 0 P relaxed
Zt

→ {PZ′
t
, PZt}

(Xt, Yt, Zt) = (1, 1, 1) FZt = 1 P relaxed
Zt

→ {PX′
t
, PXt , PY ′

t
, PYt}

As GZt is zero for all valid input sequences, we can conclude that the DRP logic indeed
leads to a glitch-free WDDL-AND. However, this does not hold if the gate is not properly
pre-charged. For example, it holds that:

(X ′
t, Xt, Y ′

t , Yt, Z ′
t, Zt) = (1, 0, 0, 1, 0, 0) (GZt , FZt) = (1, 1)

P relaxed
Zt

→ {PX′
t
, PXt , PY ′

t
, PYt}

Now, let P relaxed
Zf

be a relaxed probe placed on Zf. We compute GZf and FZf as follows:

GZf = GOR
Zf

(X ′
f , Xf, GXf , Y ′

f , Yf, GYf) FZf = FOR
Zf

(X ′
f , Xf, GXf , Y ′

f , Yf, GYf)

The decision to extend P relaxed
Zf

depends on FZf . We show the concrete extensions for
all valid input states in the following:

(Xf, Yf, Zf) = (0, 0, 0) FZf = 1 P relaxed
Zf

→ {PX′
f
, PXf , PY ′

f
, PYf}

(Xf, Yf, Zf) = (0, 1, 1) FZf = 1 P relaxed
Zf

→ {PX′
f
, PXf , PY ′

f
, PYf}

(Xf, Yf, Zf) = (1, 0, 1) FZf = 1 P relaxed
Zf

→ {PX′
f
, PXf , PY ′

f
, PYf}

(Xf, Yf, Zf) = (1, 1, 1) FZf = 1 P relaxed
Zf

→ {PX′
f
, PXf , PY ′

f
, PYf}

Example 3 (WDDL-XOR). Consider a WDDL-XOR (cf. Figure 2b) with two primary in-
puts each given in dual-rail representation as (Xt, Xf) and (Yt, Yf), and one primary output,
also in dual-rail representation, (Yt, Yf). According to the DRP logic, we assume that the
inputs are pre-charged, i.e. (Xt′ , Xf′ , Y ′

t , Y ′
f , S0, S1, S2, S3, Z ′

t, Z ′
f) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

before being set to their final state and that (GXt , GXf , GS0 , GS1 , GS2 , GS3 , GYt , GYf) =
(0, 0, 0, 0, 0, 0, 0, 0). Let P relaxed

Zt
(resp. P relaxed

Zf
) be a relaxed probe placed on Zt (resp.
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Zf). Here, we start by computing (GS0 , GS1 , GS2 , GS3) followed by (FS0 , FS1 , FS2 , FS3) as:

GS0 = GAND
S0

(X ′
t, Xt, GXt , Y ′

f , Yf, GYf) FS0 = FAND
S0

(X ′
t, Xt, GXt , Y ′

f , Yf, GYf)
GS1 = GAND

S1
(X ′

f , Xf, GXf , Y ′
t , Yt, GYt) FS1 = FAND

S1
(X ′

f , Xf, GXf , Y ′
t , Yt, GYt)

GS2 = GOR
S2

(X ′
t, Xt, GXt , Y ′

f , Yf, GYf) FS2 = FOR
S2

(X ′
t, Xt, GXt , Y ′

f , Yf, GYf)
GS3 = GOR

S3
(X ′

f , Xf, GXf , Y ′
t , Yt, GYt) FS3 = FOR

S3
(X ′

f , Xf, GXf , Y ′
t , Yt, GYt)

Next, (GS0 , GS1 , GS2 , GS3) is used to compute (GZt , GZf) and (FZt , FZf) as:

GZt = GOR
Zt

(S′
0, S0, GS0 , S′

1, S1, GS1) FZt = FOR
Zt

(S′
0, S0, GS0 , S′

1, S1, GS1)
GZf = GAND

Zf
(S′

2, S2, GS2 , S′
3, S3, GS3) FZf = FAND

Zf
(S′

2, S2, GS2 , S′
3, S3, GS3)

When executing Algorithm 3, the decision to extend P relaxed
Zt

now depends on (FS0 , FS1 , FZt)
while the extension of P relaxed

Zf
depends on (FS2 , FS3 , FZf). We show the concrete extensions

for all valid input states in Table 2 and Table 3.

Table 2: Results from Algorithm 3 with P relaxed
Zt

depending on the input state.
(Xt, Xf, Yt, Yf, S0, S1, Zt) (FS0 , FS1 , FZt) P relaxed

Zt

(0, 1, 0, 1, 0, 0, 0) (0, 0, 0) {PZ′
t
, PZt}

(0, 1, 1, 0, 0, 1, 1) (0, 1, 1) {PS′
0
, PS0 , PX′

f
, PXf , PY ′

t
, PYt}

(1, 0, 0, 1, 1, 0, 1) (1, 0, 1) {PS′
1
, PS1 , PX′

t
, PXt , PY ′

f
, PYf}

(1, 0, 1, 0, 0, 0, 0) (0, 0, 0) {PZ′
t
, PZt}

Table 3: Results from Algorithm 3 with P relaxed
Zf

depending on the input state.
(Xt, Xf, Yt, Yf, S2, S3, Zf) (FS2 , FS3 , FZf) P relaxed

Zf

(0, 1, 0, 1, 1, 1, 1) (1, 1, 1) {PX′
t
, PXt , PX′

f
, PXf , PY ′

t
, PYt , PY ′

f
, PYf}

(0, 1, 1, 0, 0, 1, 0) (0, 1, 0) {PZ′
f
, PZf}

(1, 0, 0, 1, 1, 0, 0) (1, 0, 0) {PZ′
f
, PZf}

(1, 0, 1, 0, 1, 1, 1) (1, 1, 1) {PX′
t
, PXt , PX′

f
, PXf , PY ′

t
, PYt , PY ′

f
, PYf}

5.2 Security Notions
Building upon the probe-extension described in Algorithm 3 we introduce definitions for
probing security (see Definition 6) and PINI (see Definition 7) within the RR d-probing
model. Consequently, we denote an adversary capable of placing a maximum of d relaxed
probes on arbitrary wires of C̃ as RR d-probing adversary.

Definition 6 (RR d-Probing Security). A masked circuit C̃ with secret input X is RR
d-probing secure iff for any set of relaxed probes P, with |P| ≤ d, the joint distribution
over all observations Q made by the relaxed probes is statistically independent of X

Definition 7 (RR d-Probe-Isolating Non-Interference (PINI)). Let C̃ be a masked circuit
with secret input X. Further, let PI be a set of relaxed probes on internal wires of C̃ with
|PI| = t1 and IO be the set of indices assigned to the relaxed probes on output wires in
the set PO with |IO| = t2. C̃ is relaxed d-PINI iff for every P = PI ∪PO with t1 + t2 ≤ d,
there exists a set of indices II with |II| ≤ t1 such that P is perfectly simulatable from
S = X̃II∪IO .
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5.3 Relation to Other Probing Models
Having introduced a new model, it is essential to establish its relationship with previously
discussed models, specifically the d-probing model and the robust d-probing model. To
achieve this, we define two new probe-extension functions: F0 and F1. It holds that F0

constantly returns 0 independent of the underlying gate and data while F1 constantly
returns 1 in the same manner. Based on F0 and F1 we formalize the relation between the
RR d-probing model and the d-probing model (resp. robust d-probing model) in Lemma 1
(resp. Lemma 2).

Lemma 1. The RR d-probing model with probe-extension function F0 is equivalent to the
d-probing model.

We remark that F0 implies no probe-extension, i.e. a relaxed probe P relaxed
E on E is

directly replaced by a standard probe4 PE on E if the probe-extension is performed based
on F0 what is equivalent to placing d standard probes on arbitrary wires as suggested by
the d-probing model.

Lemma 2. The RR d-probing model with probe-extension function F1 is equivalent to the
robust d-probing model.

Analogously, F1 implies a full probe-extension, i.e. a relaxed probe P relaxed
E on E

is extended backwards until a primary input or output of a sequential gate is reached.
This corresponds to the probe-extension described in Algorithm 2 which is related to
the robust d-probing model. As the probe-extension functions applied in Algorithm 3
conditionally return 0 or 1, we positioned our model between the d-probing model and the
robust d-probing model. Hence, it holds that (1) every RR d-probing secure circuit is also
d-probing secure (but not vice versa) and (2) every robust d-probing secure circuit is also
RR d-probing secure (but not vice versa).

6 Tool-Assisted Evaluation
To automate the evaluation of arbitrary masked circuits, given as a gate-level netlist, we
developed an extension of the PROLEAD tool which allows to verify d-probing security
based on our new model. PROLEAD synergistically merges the advantages of formal
verification, offering verification under well-defined adversary models, with leakage simula-
tion, renowned for its efficiency. This integrated framework currently assesses d-probing
security within the robust probing model by simulating intermediate signals within the
target hardware circuit. Thanks to this approach, PROLEAD can analyze circuits that
fall beyond the scope of existing formal verification tools, such as a fully masked AES core,
with sufficient accuracy. Below, we focus on the adjustments we made to PROLEAD to
encompass leakage evaluation under the RR d-probing model.

6.1 Extraction of Relevant Wires
When evaluating a masked circuit under the robust d-probing model, it suffices to focus
exclusively on robust probes on primary outputs and inputs of sequential gates, denoted
by a set of, so-called, relevant wires H:

H = {E ∈ E|E is the input of a sequential gate or output gate}

Robust probes placed on other wires consistently provide less information than a robust
probe in H. This property is for example checked in Algorithm 1 of [MM22] to extract H.
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Figure 3: Exemplary circuit with constant inputs

To discuss the selection of relevant wires for the evaluation under the RR d-probing model
we analyze the exemplary (masked) circuit depicted in Figure 3.

We assume that a secret input X ∈ F2 is represented as two shares X0, X1 satisfying
X = X0 ⊕X1. Both shares serve as primary inputs while all other primary inputs are
constantly kept at 1. Now, let P relaxed

Z be a relaxed probe on the primary output Z. As
one input of the OR-gate is constantly set to 1, P relaxed

Z gets not extended further but
is instead replaced by two standard probes PZ′ = 1 and PZ = 1. The joint distribution
made by PZ′ and PZ is statistically independent of X. Consequently, if we only consider
P relaxed

Z this circuit will be reported as RR 1-probing secure. However, let P relaxed
Y be a

relaxed probe on Y which remains unaffected by the primary inputs constantly set to 1.
Hence, P relaxed

Y gets extended, in some cases, to the primary inputs X0 and X1 ultimately
resulting in a set of standard probes P = {PX0′ , PX0 , PX1′ , PX1} effectively violating the
RR 1-probing security. Therefore, relaxed probes must be placed on all wires of the circuit
increasing the number of sets of relaxed probes to

(|E|
d

)
, compared to the number of sets

of robust probes
(|R|

d

)
. This overhead becomes particularly significant for higher security

orders d. Technically, we adjusted Algorithm 1 of [MM22] to include every wire in the set
of relevant wires.

6.2 Probe-Extension
Unlike the probe extension of the original PROLEAD version, which involves executing
Algorithm 5 of [MM22], the probe extension for the RR d-probing model relies on the
processed data, namely the simulations generated by PROLEAD. Thus, a direct replace-
ment of Algorithm 5 with our probe-extension procedure, as formalized in Algorithm 3,
is not possible. The rationale behind this is that, for the robust d-probing model, PRO-
LEAD precomputes the probe extensions for all E ∈ H because the probe extension is
independent of the processed data. However, this independence does not hold for the
relaxed-robust probing model. As a result, we must compute the probe extension for every
execution simulated by PROLEAD, which significantly increases the runtime dedicated to
the evaluation process. To accomplish this efficiently, we extended PROLEAD’s simulation
routine to compute a triple (E, GE , FE) ∈ F3

2 for every wire E serving as an output of a
combinational gate, employing a bit-sliced approach. Technically, this incurs an overhead
equivalent to evaluating the circuit three times, effectively tripling both the simulation
runtime and the memory required to store the circuit’s state. Further, when dealing with
the RR d-probing model we precompute a simplified version of Algorithm 5 of [MM22] just
to get the maximum of standard probes nmax after the probe extension while integrating
the actual data-dependent probe extension into the distribution-update routine.

6.3 Update Distributions
The original version of PROLEAD generates a distribution table for every set of standard
probes P with |P| = nmax derived from extending up to d robust probes. Subsequently,

4For the sake of simplicity, we ignore the transition-extension in our argumentation.
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PROLEAD evaluates the distribution table by using a statistical hypothesis test. Specifi-
cally, for each simulation PROLEAD generates the observation set Q with |Q| = nmax by
replacing every standard probe in P with its corresponding simulated state. Afterwards,
the distribution table, counting how often a particular observation occurs, gets updated by
Q. As already explained, we generate P, derived from extending relaxed probes, for every
simulation individually, with n ≤ nmax varying accordingly which is shown in Line 4 of
Algorithm 5. However, PROLEAD’s contingency tables are structured such that they can
only accommodate updates with observation sets of equal size. To achieve this, we pad
every Q with trailing zeros such that |Q| = n becomes nmax. Unfortunately, this leads to
another problem which we demonstrate by a practical example shown in Example 4.

Example 4. Consider the exemplary circuit shown in Figure 4 and a relaxed probe
P relaxed

Z .

X0

Y 0

X1

Y 1

W

C

Z

Figure 4: Exemplary circuit

Applying, the probe-extension on P relaxed
Z may result in a set of standard probes P

such that P = {PX0′ , PX0 , PX1′ , PX1 , PY 0′ , PY 0 , PY 1′ , PY 1} which also leads to nmax = 8.
However, as we sort P in order to remove duplicates, it can be the case that two equal
observation sets are derived although the underlying standard probes differ. To illustrate
this, we consider two sorted sets, here and in the following denoted by square brackets, of
standard probes, both ultimately resulting in Q = [0, 0, 0, 1, 0, 1, 0, 0].

P0 = [PX0′ , PX0 , PY 0′ , PY 0 , PC′ , PC ], FZ = 1, FW = 1, FC = 0
P1 = [PX1′ , PX1 , PY 1′ , PY 1 , PW ′ , PW ], FZ = 1, FW = 0, FC = 1

Hence, the contingency table will falsely consider both observations as equal even if
the observation relate to different variables.

To distinguish between equal observations in the contingency table, we track the probe-
extension variables similar to the probes themselves. The ensuing procedure is delineated in
Algorithm 4. Basically, Algorithm 4 returns a set of probe-extension variables F arranged
in the order they are assessed during the probe-extension. Afterwards, the observation
set is appended to F. Applied to Example 4 this implies that Q = [0, 0, 0, 1, 0, 1, 0, 0] will
be extended to two distinct observation sets, namely Q0 = [1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0] and
Q1 = [1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0]. Consequently, both sets become distinguishable.

The final procedure for generating the observation set is outlined in Algorithm 5.
Essentially, Algorithm 5 iterates through all relaxed probes placed by an adversary and
appends all standard probes derived through the probe extension to a global set of standard
probes P in Line 4. Similarly, the sequence of all accessed probe-extension variables in
generated in Line 5. Subsequently, we remove all duplicates in P in Line 7 and concatenate
both sets to form the final observation set.

7 Case Studies
In the following, we demonstrate the versatility of the RR d-probing model, both in formal
proofs and its seamless integration into PROLEAD for tool-assisted evaluation. However,



N. Müller, A. Moradi 469

Algorithm 4 Get Probe-Extension Variables (get_probe_prop)
Input: FE . probe-extension variable of wire E
Output: F . The set probe-extension variables

1: if E is the output of a combinational gate with fan in 2 then
2: F← [F, FE ]
3: if FE = 1 then
4: F← [F, get_probe_prop(FX), get_probe_prop(FY )] . FX and FY denote

the probe-extension variables of both inputs of the combinational gate
5: end if
6: else if E the output of an NOT-gate then
7: F← [F, get_probe_prop(FX)] . FX denotes the probe-extension variable of the

the NOT-gate input
8: end if

Algorithm 5 Observation Generation
Input: Prelaxed . The set of relaxed probes
Output: Q . The observed variables

1: P← ∅
2: F← ∅
3: for ∀P relaxed

E ∈ Prelaxed do
4: P← [P, relaxed_extend(P relaxed

E )]
5: F← [F, get_probe_prop(FE)]
6: end for
7: P← sort_and_remove_duplicates(P)
8: Q← [F, P]

due to the shortage of sound masking schemes claiming security but without being robust
d-probing secure, we focus on the schemes analyzed in [MLM23], specifically LMDPL
[LMW14] and SESYM [NGPM22], both introduced at CHES. Both schemes utilize DRP
logic, where every variable X is represented as a tuple (Xt, Xf), with Xt = X and Xf = X̄,
in a way that it is guaranteed that no glitch can occur within a LMDPL or SESYM-masked
circuit. However, proving the security of either LMDPL or SESYM under the robust
d-probing model would disregard this glitch-free characteristic, rendering both schemes
insecure. Nevertheless, the introduced RR d-probing model acknowledges that LMDPL and
SESYM-masked circuits cannot produce any glitch, making it ideally suited for analyzing
such masked circuits. Therefore, our focus lies in providing the missing details outlined
in [MLM23], specifically regarding the formal security (or insecurity) and composability
proofs of LMDPL and SESYM within the RR d-probing model.

7.1 Setup
The following tool-assisted evaluations were conducted on an Ubuntu 22.04 server equipped
with an Intel(R) Xeon(R) Gold 5320 CPU operating at 2.2 GHz and 2 TB of physical RAM.
Additionally, we allowed PROLEAD to parallelize its execution using 52 hyper-threading
cores. Given the substantial amount of available RAM, we adjusted PROLEAD to evaluate
all sets of probes within a single run, allowing their resulting contingency tables to be
kept in RAM simultaneously. This strategy improves evaluation time while increasing
RAM consumption. We only limit PROLEAD’s memory consumption by restricting the
number of evaluated sets per batch if 2 TB proves insufficient. PROLEAD continuously
monitors its process’s virtual memory size to manage this. Specifically, PROLEAD can be
configured to split the evaluation of all probing sets into multiple batches, each containing
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fewer probing sets, which are then evaluated sequentially. For example, if evaluating a
particular design requires the assessment of one million probing sets, which is too large
to fit in RAM, PROLEAD can evaluate it as 1000 batches of 1000 probing sets each.
After the evaluation of the 1000 probing sets within a batch is completed, the results are
reported, and the probing sets are subsequently deleted to free up space for the next batch
meaning that PROLEAD only needs to keep the evaluation results of 1000 probing sets in
memory at a time. This strategy enables PROLEAD to operate on machines with limited
RAM, provided that a longer runtime is acceptable. In this case, PROLEAD performs
multiple runs but with fewer sets of probes. We conducted all executions of PROLEAD
in a fixed-vs-random setting based on its default false-negative probability β = 10−5 and
effect size ϕ = 0.1 as proposed in [MM22].

7.2 Non-Linear LMDPL Gadget
LMDPL, as introduced in [LMW14] and further explored in [SBHM20] and [MLM23],
enables the construction of first-order secure composable gadgets designed to implement
arbitrary Boolean functions, particularly tailored for low-latency requirements. Specifically,
circuits composed solely of LMDPL gadgets achieve a constant latency, i.e. a constant
amount of clock cycles, regardless of the underlying Boolean function. We sketch the
construction of a generic LMDPL gadget in accordance with our circuit model in Figure 5.
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Y 0

Z0

R

T0, . . . , T7

Z1
t

Z1
f

X0
t

X0
f

Y 0
t
Y 0

f

Mask
table

generation
layer

Operation
layer

(a) The two layers of a LMDPL gadget.
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X1
t
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Y 1
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Y 1
f U4U5U6U7

S4S5S6S7

V0V1

Z1
t

(b) One output rail of the operation layer
based on gates with fan-in 2.

Figure 5: The generic structure on a LMDPL gadget based on gates with fan-in 2.

We denote the shared primary inputs of an LMDPL gadget as (X0, X1) and (Y 0, Y 1)
satisfying X = X0 ⊕ X1 and Y = Y 0 ⊕ Y 1. Analogously, (Z0, Z1) denotes the shares
primary output with Z = Z0 ⊕ Z1. We denote the dual-rail representation of all second
shares as (X1

t , X1
f , Y 1

t , Y 1
f , Z1

t , Z1
f ) satisfying the following equations:

X1 = X1
t Y 1 = Y 1

t Z1 = Z1
t X̄1 = X1

f Ȳ 1 = Y 1
f Z̄1 = Z1

f

The operations conducted by LMDPL gadgets are divided into two layers. The first
layer, known as the mask table generation layer, processes the initial input shares (X0, Y 0)
along with a fresh mask R to compute the first output share as Z0 = R. Additionally,
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it computes a set of intermediate values T0, . . . , T7, that all non-linear gadgets have to
synchronize, according to the underlying Boolean function T : F2

2 → F2 as follows:

T4+2i+j = T(X0 ⊕ j, Y 0 ⊕ i)⊕R T2i+j = T4+2i+j ⊕ 1

In the subsequent operation layer, the second shares (X1, Y 1) serve as select signals
for two 4-to-1 multiplexers, efficiently directing two of the synchronized intermediates to
serve as the second output shares (Z1

t , Z1
f ).

7.2.1 Probing Security

Prior to validating the security of LMDPL within the RR d-probing model, we underscore
the disparity between the robust d-probing model and the physical security considerations
pertinent to glitch-free circuits. Specifically, we ignore the glitch-free nature of LMDPL
and prove its insecurity under the robust 1-probing model. Given the alternation of
pre-charge and evaluation phases in the operation layer, we assume that all subsequent
values processed by the operation layer are zero. Consequently, this renders transitions
devoid of any informational gain. For the following proofs, we thus omit explicit delineation
of additional probes aimed at capturing informational gains arising from transitions in the
operation layer.

Lemma 3. Any generic non-linear LMDPL is not robust 1-probing secure.

Proof. Consider a robust 1-probing adversary placing one robust probe P robust
z1

t
on z1

t .
According to Algorithm 1, it holds that:

P robust
Z1

t
→ {PX1

t
, PX1

f
, PY 1

t
, PZ1

f
, PT4 , PT5 , PT6 , PT7}

As all T4, . . . , T7 are blinded by the same fresh mask R, adversary can remove the
blinding from, e.g., T4 and T5, thereby acquiring information on both shares of X and Y .
Consequently, the resulting observation set is not statistically independent of, say, X.

Lemma 3 directly underscores the rationale behind our new model. We proved that
LMDPL is not robust 1-probing secure, while, conversely, analyses presented in [SBHM20]
and [MLM23] affirm the security of LMDPL. The inconsistency arises because the robust
d-probing model presupposes a full probe extension in the operation layer due to glitches.
However, the operation layer is free of glitches, resulting in a constrained probe-extension
scenario. To address this, we prove the security of LMDPL under the RR d-probing model.

Lemma 4. Any generic non-linear LMDPL is RR 1-probing secure.

Proof. We categorize the potential RR 1-probing adversaries according to the layer in
which the relaxed probe is placed.

• Consider a RR 1-probing adversary placing one relaxed probe P relaxed
E on an arbi-

trary wire E in the mask table generation layer. For every E in the mask table
generation layer, it holds that P relaxed

E → {PX0 , PY 0 , PR} is the most informative
probe-extension according to Algorithm 3 (all probe-extension variables are 1). How-
ever, as only variables within the first share domain are observed, the resulting
observation set is statistically independent of X and Y .

• Consider a RR 1-probing adversary placing one relaxed probe in the operation layer.
We focus on one output rail of the operation layer as shown in Figure 5b while
the second rail behaves analogously. First, consider relaxed probes from the set
{P relaxed

U4
, . . . , P relaxed

U7
, P relaxed

S4
, . . . , P relaxed

S7
}. While the observation sets made by

P relaxed
U4

, . . . , P relaxed
U7

exclusively encompass variables within the second share domain
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and are, therefore, statistically independent of X and Y , it holds that the observation
sets made by P relaxed

S4
, . . . , P relaxed

S7
encompass only variables within the second share

domain along with one on of the synchronized values from T4, . . . , T7. It holds that
all T4, . . . , T7 are blinded by R and therefore uniformly distributed. Hence, the
observation sets made by P relaxed

S4
, . . . , P relaxed

S7
are statistically independent of X

and Y . For analyzing the probe-extension of P relaxed
V0

, P relaxed
V1

, and P relaxed
Z1

t
it is

important that, during the pre-charge phase, all inputs of the operation layer are set
to 0 while, during the evaluation phase exactly one variable from U4, . . . , U7 switches
to one. Hence, it holds that (FU7 , FU6 , FU5 , FU4) can only reach one of the states from
the set {(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)}. As U4, . . . , U7 serves as inputs
when computing S4, . . . , S7, it further holds that (FS7 , FS6 , FS5 , FS4) can only reach
one of the states from the set {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)}.
As (FS7 , FS6 , FS5 , FS4) restricts the probe-extension, it holds that P relaxed

V0
(resp.

P relaxed
V1

) extends to either one of the following sets:

P relaxed
V0

→ {P relaxed
S4

, P relaxed
S5

} → {PS5 , PX1
f
, PY 1

f
, PT4}

P relaxed
V0

→ {P relaxed
S4

, P relaxed
S5

} → {PS4 , PX1
t
, PY 1

f
, PT5}

P relaxed
V0

→ {P relaxed
S4

, P relaxed
S5

} → {PS4 , PS5}
P relaxed

V1
→ {P relaxed

S6
, P relaxed

S7
} → {PS7 , PX1

t
, PY 1

f
, PT6}

P relaxed
V1

→ {P relaxed
S6

, P relaxed
S7

} → {PS6 , PX1
t
, PY 1

t
, PT7}

P relaxed
V1

→ {P relaxed
S6

, P relaxed
S7

} → {PS6 , PS7}

Further, all PS4 , . . . PS7 within the sets constantly record 0 and are, therefore, not
informative. Hence, depending on the actual probe-extension, P relaxed

V0
(resp. P relaxed

V1

is as informative as a probe from the set {P relaxed
S4

, . . . , P relaxed
S7

} and its resulting
observation set is statistically independent of X and Y . The same arguments hold
for P relaxed

Z1
t

with the following possible probe-extensions:

P relaxed
Z1

t
→ {P relaxed

S4
, P relaxed

S5
, P relaxed

S6
, P relaxed

S7
} → {PX1

f
, PY 1

f
, PT4 , PS5 , PS6 , PS7}

P relaxed
Z1

t
→ {P relaxed

S4
, P relaxed

S5
, P relaxed

S6
, P relaxed

S7
} → {PS4 , PX1

t
, PY 1

f
, PT5 , PS6 , PS7}

P relaxed
Z1

t
→ {P relaxed

S4
, P relaxed

S5
, P relaxed

S6
, P relaxed

S7
} → {PS4 , PS5 , PX1

f
, PY 1

t
, PT6 , PS7}

P relaxed
Z1

t
→ {P relaxed

S4
, P relaxed

S5
, P relaxed

S6
, P relaxed

S7
} → {PS4 , PS5 , PS6 , PX1

t
, PY 1

t
, PT7}

P relaxed
Z1

t
→ {P relaxed

S4
, P relaxed

S5
, P relaxed

S6
, P relaxed

S7
} → {PS4 , PS5 , PS6 , PS7}

(3)

Again, all PS4 , . . . PS7 are not informative. Hence, depending on the actual probe-
extension, P relaxed

Z1
t

is as informative as a probe from the set {P relaxed
S4

, . . . , P relaxed
S7

}
and its resulting observation set is statistically independent of X and Y .

7.2.2 Composability

Based on the probe-extensions discussed above, we show that LMDPL is also composable.

Lemma 5. Any generic non-linear LMDPL is RR 1-PINI.
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Proof. According to Definition 7, for d = 1, it holds that either t1 = 1, t2 = 0 or t1 = 0,
t2 = 1. We prove the perfect probe simulation for every relaxed probe in both layers
separately.

• Let E be an intermediate wire in the mask table generation layer. It holds that every
P relaxed

E with at most P relaxed
E → {PX0 , PY 0 , PR} is perfectly simulatable with a set

of share index {0} and by tossing a fair coin. Further, P relaxed
Z0 with IO is perfectly

simulatable just by tossing a fair coin.

• For the operation layer, all probes in {P relaxed
U4

, . . . , P relaxed
U7

, P relaxed
S4

, . . . , P relaxed
S7

}
are perfectly simulatable with II = {1} and by tossing a fair coin. Further, we
already showed that P relaxed

V0
, P relaxed

V1
, and P relaxed

Z1
t

are as informative as a probe
from {P relaxed

S4
, . . . , P relaxed

S7
}. Hence, P relaxed

V0
, P relaxed

V1
, and P relaxed

Z1
t

are perfectly
simulatable with a set of share index {1} and by tossing a fair coin.

7.2.3 Tool-Assisted Evaluation

To confirm the provided proofs using PROLEAD, we conducted multiple case studies
utilizing automatically generated masked circuits produced by AGEMA [KMMS22] publicly
available on GitHub5. AGEMA takes an unprotected gate-level netlist and converts it into
a gadget-based masked design. In our approach, AGEMA replaces all circuit gates with
their corresponding LMDPL equivalents, ensuring full protection by LMDPL. The designs
provided by AGEMA are then synthesized by using Synopsys Design Compiler (DC)
and the NanGate 45 nm standard cell library and evaluated by PROLEAD. Initially, we
analyzed the robust 1-probing security of a single LMDPL-AND. The results of PROLEAD
confirm our claim made in Lemma 3 as it immediately detects significant first-order leakage
after around 500 simulations. Furthermore, PROLEAD reports P robust

Z1
t

as a leaking probe.
Contrary, if we switch to an evaluation under the RR 1-probing model, PROLEAD reports
the security of the design. Since PROLEAD lacks the capability to verify the composability
of a gadget, we proceed to analyze the probing security of a composed circuit, namely
an Advanced Encryption Standard (AES) sbox, and an iterative design, namely a full
byte-serial LMDPL-AES design. For the sbox, we utilized the unprotected netlist of the
Boyar-Peralta sbox [BP12], sourced from the public AGEMA repository, and employed
AGEMA to protect it with LMDPL gadgets. As expected, PROLEAD identifies significant
first-order leakage after approximately 200000 simulations. We remark that the number
of required simulation to detect the leakage is increased compared to the analysis of a
single LMDPL-AND. The main reason for this is that the set of standard probes derived
via the probe-extension procedure is increased. However, PROLEAD conveniently reports
the necessary trace count, providing clarity on the simulation requirements. Further,
PROLEAD reports the LMDPL-protected version of the Boyar-Peralta sbox as secure
under the RR 1-probing model. Finally, we explore an iterative byte-serial LMDPL-AES
design where its output state feeds back to its inputs. As before, we took the unprotected
byte-serial AES-128 netlist from the public AGEMA repository and used AGEMA to
protect it with LMDPL gadgets. The complete architecture comprises the LMDPL-based
round-function logic which receives the outputs from a LMDPL-based multiplexer stage.
These multiplexers forward either the shared primary inputs or the outputs of the state
registers, determined by a select signal. The resulting output of the round function is then
stored in the state register, and the primary output is also obtained from this register. We
remark that the additional control logic must not be protected by LMDPL and that one
encryption procedure takes 454 clock cycles. Once more, PROLEAD identifies leakage

5https://github.com/Chair-for-Security-Engineering/AGEMA

https://github.com/Chair-for-Security-Engineering/AGEMA
https://github.com/Chair-for-Security-Engineering/AGEMA
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in the byte-serial LMDPL-AES design under the robust 1-probing model and confirms it
security under the RR 1-probing model.

7.3 Non-linear SESYM Gadget
SESYM presents a deterministic algorithm capable of transforming any robust d-probing
secure circuit into a masked circuit assumed to be secure, achieving this with a latency of
only one clock cycle [NGPM22]. This algorithm first converts all signals from single-rail into
their dual-rail representation and replaces all combinational gates by their corresponding
WDDL gadgets. Due to the usage of WDDL gadgets in conjunction with alternating
pre-charge and evaluation phases, the resulting circuit becomes glitch-free. Therefore,
all sequential gates required to achieve robust d-probing security are removed from the
final SESYM-masked circuit while Muller C-elements are employed to maintain stable
output values. We visualize this transformation based on a robust 1-probing secure
Domain-Oriented Masking (DOM)-AND gadget in Figure 6.
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Figure 6: Conversion of a DOM-AND-gadget into a SESYM-AND-gadget.

7.3.1 Probing Security

Similar to LMDPL, we start by proving the insecurity of a d-th order masked SESYM-AND
gadget. To provide the following proofs, it is sufficient to consider the last share domain
as depicted in Figure 7.

Lemma 6. Any d-th order masked SESYM-AND gadget is not robust 1-probing secure.

Proof. Consider a robust 1-probing adversary placing one robust probe P robust
zd

t
on zd

t .
According to Algorithm 1, it holds that:

P robust
Zd

t
→ {PXd

t
, PXd

f
, PY 0

t
, PY 0

f
, . . . , PY d

t
, PY d

f
}

As the set encompasses standard probes on all shares of Y , i.e. PY 0
t

, PY 0
f

, . . . , PY d
t

, PY d
f

,
it holds that the resulting observation set made by P robust

zd
t

on zd
t is not statistically

independent of Y .

Lemma 7. Any d-th order masked SESYM-AND gadget is not RR 1-probing secure.
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Figure 7: Last share domain of a d-th order SESYM-AND.

Proof. Consider a robust 1-probing adversary placing one relaxed probe P relaxed
zd

t
on zd

t .
Further, consider a particular state of inputs during the evaluation phase with (Xd

t , Xd
f ) =

(1, 0), (Ri,t, Ri,f) = (1, 0), and (Y i
t , Y i

f ) = (1, 0) for all 0 ≤ i ≤ d. According to Figure 2a
it holds that all W i

t toggles from 0 to 1 while all W i
f stay constantly at 0. Hence, it holds

that FW i
t

= 1 (cf. S5 of Table 1a) and FW i
f

= 1 (cf. S0 of Table 1b). Now, consider
the WDDL-XOR gadgets computing (Qi

t, Qi
f). As all (W i

t , Ri,t) toggle from 0 to 1 while
all (W i

f , Ri,f) stay constantly at 0, it holds that FQi
f

= 1. Specifically, both OR gates
on the negative output rail exhibit S1 or S4 of Table 1b while the following AND gate,
computing Qi

f , exhibits S5 of Table 1a. However, Qi
t stays constantly at zero and it holds

that FQi
t

= 0. Finally, we consider the leftmost WDDL-XOR gadget in the compression
layer receiving (W d

t , W d
f ) and (Qd−1

t , Qd−1
f ) as inputs. As already shown, W d

t and Qd−1
f

toggle from 0 to 1 while both other signals stay constantly at 0. In this case, it holds that
the output provided by the positive rail of the WDDL-XOR gadget toggles from 0 to 1
and that its corresponding probe-extension variable is equal to 1. In particular, one of the
AND gates on the positive output rail exhibits S5 of Table 1a while the following OR gate,
computing the positive output rail, exhibits S5 of Table 1a. However, as the output of this
gadget again leads to a toggle on the positive output rail, the same extension procedure
applies to all following WDDL-XOR gadgets in the compression layer, ultimately leading
to the same set of standard probes as before which is not statistically independent of Y :

P relaxed
Zd

t
→ {PXd

t
, PXd

f
, PY 0

t
, PY 0

f
, . . . , PY d

t
, PY d

f
}

7.3.2 Tool-Assisted Evaluation

We also confirmed the insecurity of SESYM using PROLEAD. Therefore, we implemented,
synthesized, and evaluated a first- and second-order masked SESYM-AND based on the
same setup as previously described. Both versions were found susceptible to leakage,
swiftly detected by PROLEAD through evaluation of the robust 1-probing security and
the RR 1-probing security.



476 Robust but Relaxed Probing Model

7.4 Benchmark
From Section 6, it becomes clear that the main drawback of evaluating under the RR
d-probing model, compared to the robust d-probing model, is the additional evaluation
overhead due to the more complex handling of glitches. To quantify the overhead in
terms of runtime and memory requirements, we conducted several benchmarks using our
presented designs. For comparison, we, additionally, benchmarked several masked designs
based on DOM: One first-order and one second-order secure DOM-AND implemented
by us, one first- and one second-order secure DOM-based AES S-box, and a first-order
secure DOM-based design byte-serial AES presented in [GMK16]. Since these designs
were previously tested [MM22] and are publicly available on GitHub6, we used the same
behavior-level designs and corresponding configuration files. The results, including absolute
runtimes, memory consumption, and the relative overhead between the robust d-probing
model and the RR d-probing model, are summarized in Table 4.

Table 4: Performance metrics of evaluations under the robust d-probing model and the
RR d-probing model using enough simulations to detect effects of size ϕ ≥ 0.1.

Design Security Robust Relaxed Overhead
[expected] [time] [ram] [time] [ram] [time] [ram]

A
N

D

DOM [GMK16] 1 0.037 sec 3.80 GB 0.009 sec 3.80 GB ×0.25 ×1.00
DOM [GMK16] 2 0.072 sec 3.80 GB 0.079 sec 3.80 GB ×1.10 ×1.00

SESYM [NGPM22] 1 0.033 sec 3.80 GB 0.026 sec 3.80 GB ×0.79 ×1.00
SESYM [NGPM22] 2 0.046 sec 3.72 GB 0.091 sec 3.81 GB ×1.98 ×1.03
LMDPL [KMMS22] 1 0.038 sec 3.80 GB 0.027 sec 3.80 GB ×0.72 ×1.00

sb
ox

TI [MPL+11] 1 1.169 min 39.07 GB 11.65 min 93.91 GB ×7.20 ×2.41
DOM [GMK16] 1 17.01 sec 9.40 GB 1.691 min 10.52 GB ×5.97 ×1.12
DOM [GMK16] 2 1.998 hr 1.25 TB 1.133 day 1.51 TB ×13.61 ×1.21

LMDPL [KMMS22] 1 16.12 sec 4.62 GB 13.76 min 52.46 GB ×51.21 ×11.36

A
E

S TI [MPL+11] 1 19.23 min 387.07 GB 1.13 day 1.95 TB ×84.42 ×5.04
DOM [GMK16] 1 7.24 min 154.31 GB 46.53 min 471.29 GB ×6.43 ×3.06

LMDPL [KMMS22] 1 12.65 hr 1.57 TB 10.31 day 1.96 TB ×16.62 ×1.41

While the concrete evaluation overhead of the RR d-probing model compared to the
robust d-probing model strongly depends on the design itself, particularly on the total
number of wires and the extent to which a robust or relaxed probe on a single wire can be
extended, it is not feasible to provide a general evaluation performance overhead. However,
based on the benchmarks in Table 4, we can make the following observations:

• Surprisingly, we observe a runtime improvement for the RR d-probing model, with
only negligible memory overhead, when analyzing the first-order security of gadgets.
This improvement occurs because the variance of different observations made by a
set of probes decreases when switching from robust to relaxed probes, resulting in
a distribution with fewer values. At the same time, the number of relevant wires
grows only marginally, and each relaxed probe can only be extended through a small
number of gates, effectively minimizing the overhead of the RR d-probing model.

• When analyzing more complex circuits, such as masked sboxes or full cipher cores,
the robust d-probing model proves to be several orders of magnitude faster than the
RR d-probing model. This disparity arises because the RR d-probing model needs to
consider significantly more relevant wires, and relaxed probes must be conditionally
extended through long cascaded chains of gates.

• Unfortunately, the relative runtime and memory overhead is significantly higher for
LMDPL- and SESYM-based designs compared to DOM- and TI-based designs. This
is due to the fact that probes placed on LMDPL- and SESYM-based designs can be

6https://github.com/ChairImpSec/PROLEAD

https://github.com/ChairImpSec/PROLEAD
https://github.com/ChairImpSec/PROLEAD
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partially extended back to primary inputs without being interrupted by registers.
Consequently, several intermediate relaxed probes must also be evaluated, whereas
this is not required in the robust d-probing model.

• The relative runtime and memory overhead also increase with the security order d,
primarily due to the increased number of relevant wires. As the number of relevant
wires increases, the number of sets of probes grows exponentially with d.

Due to the significant runtime and memory overhead of the RR d-probing model, we do
not recommend using it as a direct replacement for the robust d-probing model. Therefore,
instead of evaluating every design under the RR d-probing model, we recommend evaluating
the design under the robust d-probing model first. Only if the initial evaluation fails should
one consider using our model. Furthermore, although even full masked cipher cores can
be evaluated using our model, requiring a powerful server and potentially hours or days
of computation time, we recommend following the established approach of designing and
evaluating provably secure and composable gadgets under our new model. This approach
avoids the complexities and potential pitfalls of hand-crafted masked designs that do not
ensure composability.

8 Conclusions
In this work, we introduced the RR d-probing model, a formal adversary model capable
of modeling the same level of security as the robust d-probing model, but with a less
conservative treatment of glitches. Specifically, the probe-extension procedure, outlined
in this work, addresses glitches based on the performed operations and processed data,
effectively disregarding glitches that cannot occur within the analyzed masked circuit.
Furthermore, we developed an updated version of PROLEAD to automatically evaluate
the security of masked circuits within our new model. Demonstrating the capabilities
of our approach, we conducted formal security assessments of LMDPL and SESYM,
confirming the findings previously reported in [SBHM20] and [MLM23]. Despite the
increased evaluation overhead in terms of runtime and memory requirements due to the
utilization of a more complex probe-extension procedure, it is worth noting that the
current runtime and memory demands of PROLEAD remain within acceptable limits.
This ensures that PROLEAD can effectively evaluate both individual gadgets and fully
masked cipher cores. We firmly believe that our model represents a crucial step towards
the development of new masked circuits (gadgets) that are secure under our proposed
model but may not be under the robust d-probing model. We must once again reference
LMDPL because its existence serves as proof that such gadgets exist, i.e. RR d-probing
secure and composable gadgets that are not robust d-probing secure. Additionally, the
favorable properties of LMDPL concerning its constant amount of latency seem to be
incompatible with security under the robust d-probing model. Therefore, exploring the
development of new (low-latency) gadgets alongside LMDPL, such as a higher-order RR
d-probing secure version of LMDPL, would be an intriguing avenue for future research.
Furthermore, since PROLEAD is designed solely for security checking, there is a critical
need to extend or develop a formal verification tool capable of verifying the composability
of new gadget constructions under our new model.
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A Probe-Extension of Other Gates

Table 5: Signal waveforms of NAND- and NOR-gates.
S X Y Z
S0
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13
S14
S15

(a) Signal waveforms of an NAND-gate.

S X Y Z
S0
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13
S14
S15

(b) Signal waveforms of an NOR-gate.

When comparing the scenarios outlined in Table 1 with those in Table 5, it becomes
evident that they are symmetrically inverted. For instance, while S6 and S9 of Table 1a
exhibit a positive glitch, the corresponding scenarios in Table 5a show a negative glitch.
Consequently, it follows that FAND

Z = FNAND
Z and FOR

Z = FNOR
Z for all Z.

FNAND
Z (X ′, X, GX , Y ′, Y, GY ) = (X ′ ∨X ∨GX) ∧ (Y ′ ∨ Y ∨GY )

GNAND
Z (X ′, X, GX , Y ′, Y, GY ) = (X ′ ∧ X̄ ∧ Ȳ ′ ∧ Y ) ∨ (X̄ ′ ∧X ∧ Y ′ ∧ Ȳ )

∨ (GX ∧ (Y ′ ∨ Y ∨GY )) ∨ (GY ∧ (X ′ ∨X ∨GX))

FNOR
Z (X ′, X, GX , Y ′, Y, GY ) = (X̄ ′ ∨ X̄ ∨GX) ∧ (Ȳ ′ ∨ Ȳ ∨GY )

GNOR
Z (X ′, X, GX , Y ′, Y, GY ) = (X ′ ∧ X̄ ∧ Ȳ ′ ∧ Y ) ∨ (X̄ ′ ∧X ∧ Y ′ ∧ Ȳ )

∨ (GX ∧ (Ȳ ′ ∨ Ȳ ∨GY )) ∨ (GY ∧ (X̄ ′ ∨ X̄ ∨GX))

Again, Table 6a and Table 6b are symmetrically inverted yielding identical probe-
extension and glitch-propagation functions for both XOR and XNOR gates. However, only
S3 and S12, as well as S0 and S15, lack effective differentiation, effectively stopping the
probe extension. Regarding glitch propagation, we assume that any input glitch invariably
propagates to the output, akin to the robust d-probing model. Notably, we consider a
doubled number of scenarios {S5, S6, S9, S10} leading to glitches compared to the other
gates.

FXOR
Z (X ′, X, GX , Y ′, Y, GY ) = ((X ′ ⊕X) ∨GX) ∨ ((Y ′ ⊕ Y )) ∨GY )

GXOR
Z (X ′, X, GX , Y ′, Y, GY ) = (X ′ ⊕X) ∧ (Y ′ ⊕ Y ) ∨GX ∨GY
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Table 6: Signal waveforms of XOR- and XNOR-gates.
S X Y Z
S0
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13
S14
S15

(a) Signal waveforms of an XOR-gate.

S X Y Z
S0
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13
S14
S15

(b) Signal waveforms of an XNOR-gate.

FXNOR
Z (X ′, X, GX , Y ′, Y, GY ) = ((X ′ ⊕X) ∨GX) ∨ ((Y ′ ⊕ Y )) ∨GY )

GXNOR
Z (X ′, X, GX , Y ′, Y, GY ) = (X ′ ⊕X) ∧ (Y ′ ⊕ Y ) ∨GX ∨GY
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