TACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 4, pp. 355-381. DOI:10.46586 /tches.v2024.i4.355-381

pyecsca: Reverse engineering black-box elliptic
curve cryptography via side-channel analysis

Jan Jancar!, Vojtech Suchanek!, Petr Svenda!, Vladimir Sedlacek? and
Fukasz Chmielewskit

! Masaryk University, Brno, Czechia
2 Rutgers University, Piscataway, New Jersey

Abstract. Side-channel attacks on elliptic curve cryptography (ECC) often assume a
white-box attacker who has detailed knowledge of the implementation choices taken
by the target implementation. Due to the complex and layered nature of ECC, there
are many choices that a developer makes to obtain a functional and interoperable
implementation. These include the curve model, coordinate system, addition formulas,
and the scalar multiplier, or lower-level details such as the finite-field multiplication
algorithm. This creates a gap between the attack requirements and a real-world
attacker that often only has black-box access to the target — i.e., has no access to
the source code nor knowledge of specific implementation choices made. Yet, when
the gap is closed, even real-world implementations of ECC succumb to side-channel
attacks, as evidenced by attacks such as TPM-Fail, Minerva, the Side Journey to
Titan, or TPMScan [MSE"20; JSST20; RLM*21; SDB™24].

We study this gap by first analyzing open-source ECC libraries for insight into real-
world implementation choices. We then examine the space of all ECC implementations
combinatorially. Finally, we present a set of novel methods for automated reverse
engineering of black-box ECC implementations and release a documented and usable
open-source toolkit for side-channel analysis of ECC called pyecsca.

Our methods turn attacks around: instead of attempting to recover the private key,
they attempt to recover the implementation configuration given control over the
private and public inputs. We evaluate them on two simulation levels and study the
effect of noise on their performance. Our methods are able to 1) reverse-engineer
the scalar multiplication algorithm completely and 2) infer significant information
about the coordinate system and addition formulas used in a target implementation.
Furthermore, they can bypass coordinate and curve randomization countermeasures.

Keywords: elliptic curve cryptography - black-box implementations - reverse engi-
neering - ECDH - ECDSA

1 Introduction

While elliptic curve cryptography (ECC) [Mil86; Kob87] is a popular choice for modern
cryptosystems due to its performance and short keys, its implementations are usually quite
complex. A developer needs to build the implementation from many blocks: big-integer
arithmetic, finite-field arithmetic, addition formulas, coordinate system, curve model, scalar
multiplier, and then finally, the cryptosystem itself. Each of these layers introduces choices
to be made. For example, one implementation might pick Montgomery modular arithmetic
[Mon85] with homogenous projective coordinates [Sil86], some addition formulas and a
simple double-and-add-always scalar multiplier, while another implementation might pick
the Barrett reduction with Jacobian coordinates [CC86] and a different combination of
addition formulas and scalar multiplier. These two implementations, while significantly

Licensed under Creative Commons License CC-BY 4.0. (@) |
Received: 2024-04-15 Accepted: 2024-06-15 Published: 2024-09-05


https://doi.org/10.46586/tches.v2024.i4.355-381
http://creativecommons.org/licenses/by/4.0/

356 pyecsca: Reverse engineering black-box ECC via side-channel analysis

different on an internal level, can be fully interoperable with each other. Some imple-
mentation choices imply others, such as a coordinate system limiting the set of formulas
available for that coordinate system, while others are essentially unconstrained, like the
lower-level details of the arithmetic. Thus, given an implementation target like ECDH for
prime-field curves like P-256, the space of possible implementation choices is large.

ECC has been the target of many side-channel attacks over the years, ranging from
timing attacks and simple power analysis to complicated horizontal and vertical attacks
[FGM110; FV12; DGH™13]. Most of these require an attacker to have detailed information
about the target implementation. For example, [BJPT15] state that ‘The algorithm used
for the hardware modular multiplication is assumed to be known to the attacker. A survey
of side-channel attacks on ECC by [DGH"13] lists the requirement for attackers to have
‘full knowledge of all algorithms’ for 4 out of 15 passive side-channel attacks, knowledge of
the ‘ECSM (Elliptic Curve Scalar Multiplier) and the elliptic curve formulas’ is required
by further 7 attacks, with 3 requiring just knowledge of the ‘ECSM’.

In contrast to the attack assumptions presented in academic literature, real-world
implementations of ECC are usually a black box from the perspective of an attacker. This
holds especially when focusing on implementations in cryptographic hardware, such as
smartcards, Hardware Security Modules, Trusted Platform Modules, or cryptocurrency
wallets. A significant majority of these implementations are closed-source. The popular
JavaCard platform [Ora23] is a clear example of this — it offers rich cryptographic APIs,
including ECC [SKN*22]. The API implementation is left to vendors, who are motivated
to reveal the least amount of information on their implementations to protect their
intellectual property and satisfy certification requirements that encourage information
hiding. In particular, Common Criteria [CC], a widely recognized international standard for
evaluating and certifying the security of IT products, uses the Joint Interpretation Library
attack rating [JIL] that encourages keeping knowledge about the implementation as secret
as possible to increase required attack time. Open-sourcing a certified implementation
would result in potential attacks being considered easier to execute and thus receiving a
lower security rating.

As a result of these incentives, the secure hardware cryptography space is very different
from the cryptographic theory space, as it violates Kerckhoffs’s principle [Ker83] and partly
bases its security on obscurity, inviting catastrophic issues. When obscurity dissipates —
for example, by expert analysis or an information leak — security might be gone as well, as
in the cases of the Infineon RSA library (ROCA [NSST17]), Athena IDProtect smartcard
(Minerva [JSST20]) or NXP P5x secure elements (Side Journey to Titan [RLMT21]).
This argument is especially clear in the case of the RSA library [NSST17]: a flawed key
generation algorithm allowed efficient factorization of public keys. While the researchers
had to reverse-engineer this algorithm based solely on generated keypairs, it is reasonable
to expect the vulnerability to be found promptly if the implementation was public.

In summary, side-channel attacks on ECC require knowledge of the implementation
choices made by the target. Real-world implementations do not readily provide these
choices but are often found vulnerable if reverse-engineered. We thus ask the following
research questions:

RQ1: What implementation choices are used in real-world open-source ECC' libraries?
RQ2: How large is the space of all possible ECC implementations?

RQ3: Is it possible to automatically reverse-engineer black-box ECC implementations?



Jancar et al. 357

Contributions. To answer our research questions, we contribute the following:

o Extensive analysis of 18 open-source ECC libraries, documenting a surprisingly wide
variety of real-world ECC implementation choices (that we also expect from black-box
implementations).

e Set of novel techniques for reverse engineering the coordinate system, addition formu-
las, and the scalar multiplier used in black-box ECC implementations — knowledge
frequently necessary for a successful side-channel attack.

« Open-source toolkit pyecsca! for ECC side-channel analysis (including the above
techniques), ECC implementation code generation and optimized trace processing.

Outline. In Section 2, we present a background on elliptic curve cryptography, side-
channel attacks on ECC, and side-channel-based reverse engineering. A variety of imple-
mentation choices in open-source ECC libraries is documented in Section 3. We present
automated techniques for reverse engineering of black-box ECC implementations in Sec-
tion 4. Then, we showcase the functionality of our toolkit in Section 5. In Section 6 we
evaluate the reverse-engineering techniques, and finally conclude in Section 7.

2 Background

In this section, we first give a background on elliptic curve cryptography, focusing on
the broadness of implementations, and then describe selected side-channel attacks on
ECC that we use for reverse engineering. Finally, we conclude with related work on
reverse-engineering cryptographic implementations via side-channels.

2.1 Elliptic curve cryptography

For any prime p > 5, we consider an elliptic curve over I, in three different models:
o Short-Weierstrass: Egw : y2 = 2° 4+ axz + b, 4a> + 276> # 0,
o Montgomery: &y : by? = 23 + ax? + z, b(a? — 4) # 0,
o Twisted Edwards: &g : ax? + y? = 1+ dx?y?, ad(a — d) # 0,

where the set of solutions (z,y) € F2 together with a neutral point O form an additive
group E(F,). Most applications use curves with a large prime subgroup, i.e., |E(F,)| = nh,
where n is prime and h is a small cofactor. Depending on the curve model and coordinate
system used, the group operation can be defined in various ways using rational functions
with coefficients from IF,; many of these formulas are aggregated in the Explicit Formulas
Database (EFD), curated by Bernstein and Lange [BL17].

The main ECC operation is scalar multiplication, denoted as [k]P for a scalar k and a
point P. It is the bottleneck for many ECC protocols, namely ECDH, X25519, ECDSA,
and EADSA, which are the main focus of this work. The Diffie-Hellman key exchange
protocols, ECDH and X25519, consist of two subroutines. In the first subroutine, KeyGen,
each party generates a random private key 0 < k < n and computes their public key
P = [k]G, where G is a fixed generator of the prime subgroup. Algorithms for scalar
multiplication can leverage precomputation on G (the so-called fized-base approach). In
the second subroutine, called Derive, each party computes S = [k] P, where P is the other
party’s public key, to obtain the shared key. Since the point P is unknown in advance, no
precomputation is used (the so-called variable-base approach).

IPronounced [pietska]. Code at https://github.com/J08nY /pyecsca, and
documentation at https://pyecsca.org/.


https://github.com/J08nY/pyecsca
https://pyecsca.org/

358 pyecsca: Reverse engineering black-box ECC via side-channel analysis

The digital signature algorithms ECDSA and EADSA use KeyGen, as described above,
and two further subroutines. The Sign subroutine computes [k]G, where G is a generator
and k is a random nonce in ECDSA and a hash output in EADSA. Similarly to KeyGen,
fixed-base techniques can be used. The Verify subroutine of both ECDSA and EdDSA
requires multi-scalar multiplication: the computation of [k]G + [I]P, which is usually done
either using two separate scalar multiplications or simultaneously (e.g., using the so-called
Shamir’s trick [Str64]). Precomputation on G can still be used.

The following paragraphs provide a summary of the most common types of techniques
for scalar multiplication. Note that this categorization is intentionally vague, as algorithms
might combine ideas from several types; for more, see [ACDT05; MVV18; HVMO04].

» Basic scalar multipliers scan the scalar bit by bit in either left-to-right (LTR) or
right-to-left (RTL) fashion, and are often called double-and-add scalar multipliers,
akin to their square-and-multiply counterpart in multiplicative notation [HVMO04].

o Windowed scalar multipliers split the scalar into windows (tuples of digits). These
windows can be either fixed, meaning that they regularly divide the scalar, or sliding,
in which case they skip over zero bits (there is really only one window sliding across
the scalar). Windowed algorithms are parameterized by their window size w € N.
The algorithms also perform precomputation, usually to compute all odd multiples
of the point smaller than 2 — 1. However, this precomputation is cheap, so it can
also be applied in a variable-base scalar multiplier [HVMO04].

e Comb scalar multipliers perform precomputations and thus are intended for fixed-
base scenarios. They are parameterized by a width w € N, as they iterate over the
scalar in a comb-like fashion; each iteration processes all bits that are w bits apart.
Combs are generally the fastest fixed-base scalar multipliers [Pip76; BHLT01].

e Ladder multipliers are very similar to basic scalar multipliers in that they scan the
scalar bit by bit and do not perform any precomputation. However, in each iteration,
they use a ladder formula exactly once, regardless of the inputs [Mon87].

Additionally, a few other modifications to the mentioned techniques are often considered
to improve the speed or security of the algorithms, for example [Jan20]:

e Scalar multipliers that iteratively process a secret scalar might leak its bit length.
To avoid this, the scalar multiplier can have a fixed number of iterations.

e Some formulas for group operations have exceptional inputs, such as the neutral
point. The scalar multiplier can protect these formulas by short-circuiting (i.e., using
the identities P+ O = P, [2]0 = O, P+ P = [2]P).

o Dummy group operations can be used to ensure that the sequence of operations is
independent of the private scalar.

o Addition formulas are not necessarily symmetric in their input, i.e., the computations
of P+ @ and @ + P might differ. This is reflected in the sequence of the underlying
arithmetic operations.

2.2 Side-channel attacks

This subsection presents a brief overview of selected side-channel attacks on ECC that we
use in our work, namely special-point-based attacks, as coined by Sedlacek et al. [SCJT21].
This term unifies three attacks: the Refined Power Analysis (RPA) [Gou03], the Zero- Value
Point (ZVP) [AT03], and the Exceptional Procedure Attack (EPA) [IT03]. These attacks
are similar. They target static ECDH and recover secret bits by adaptively sending



Jancar et al. 359

public points to the target, thus producing an intermediate zero value conditionally on
some secret key bits. The use of zeros in special points ensures that these attacks can
bypass some (though not all) countermeasures based on randomization, such as coordinate
randomizations [Cor99], because zero is invariant under a change of point representation.

For a complete overview of side-channel attacks on ECC, along with details about
attacked implementations, see one of the surveys [FGM™10; FV12; DGH'13; ACL21] or a
recent SoK on SCA-protected ECC implementation [BCH™23].

Refined Power Analysis (RPA) [Gou03] is the first special-point-based attack that we
consider, with the special points being ones with a zero coordinate (i.e., Py = (z,0) or
(0,9)). The attack assumes that point addition or doubling of one of the zero-coordinate
points during scalar multiplication is detectable via SCA. This is fair since both point
addition and doubling consist of many finite field operations using the point coordinates,
each of which is implemented using many word-size instructions, which might leak if
the zero operand is used. Given the detectability assumption and a zero coordinate
point Py, the attack is simple: construct a point P = [d~!] Py, where d is a hypothesis
on some part of the secret key. If the special point is detected during execution, the
d-th multiple of the input point was computed during the execution, confirming the
hypothesis, as [d]P = [d][d"!]Py = Py. Iterating this leads to full secret key recovery.
Several randomization countermeasures are ineffective against RPA as they preserve
zero coordinates, namely projective coordinate randomization, randomization via curve
isomorphism, or randomization via field isomorphism.

Zero-Value Point (ZVP) [ATO03] attack can be seen as an extension of the RPA attack.
The zero value can now appear in the intermediate computation steps during point doubling
or addition rather than just in the coordinates. Zhang et al. [ZLL12] extended the attack
to genus 2 curves, while Crépeau and Kazmi [CK12] did so for binary field extension curves.
Edwards curves were targeted by Martinez et al. [MST " 13], who analyzed the ZVP attack
and showed that some addition formulas on Edwards curves are resistant to ZVP.

Compared to RPA, the construction of the input point P is more complex for ZVP.
The idea is to express the targeted intermediate value, which we want to zero out, as
a polynomial in the coordinates of the input points. For instance, if we denote the
input points to add as P and (), then an example polynomial might be zpyg + 2¢
where Q = [k]P for some scalar k. As explained in [SCJ*21], this is an instance of the
dependent coordinates problem (DCP) that can be reduced to the problem of root-finding
for univariate polynomials. The multiplication map [k]P is expressed symbolically and
substituted into z¢ in the intermediate polynomial xpyg + xg, resulting in a polynomial
only in zp. The problem is qualitatively different for formulas with more than one input
point (e.g., add) compared to formulas with one input point (e.g., dbl). In the former case,
the degree of the multiplication-by-k£ map grows quadratically with k, putting a limit on
the scalars that can be used. In the latter case, the intermediate values depend only on
P, thus giving polynomials that are already univariate (since the coordinate yp can be
removed using the curve equation).

Exceptional Procedure Attack (EPA) [IT03] is the final special-point-based attack.
Here, the attacker exploits an issue in the point addition formulas in which adding a
specific pair of exceptional points degenerates and produces an invalid output. This
invalid output point then propagates through scalar multiplication and results in a wrongly
computed ECDH shared secret or an error raised by the target, both of which can be
detected by the attacker. Similarly to previous special-point-based attacks, the attacker
adaptively constructs the public point such that a pair of exceptional points is encountered
conditionally on a part of the secret key.



360 pyecsca: Reverse engineering black-box ECC via side-channel analysis

2.3 Reverse engineering

In this subsection, we discuss two categories of side-channel-based reverse engineering (RE):
works that build a side-channel-based instruction-level disassembler and works that focus
on reverse engineering properties of cryptographic implementations through side-channel
analysis (SCA) without necessarily recovering separate instructions.

Side-channel-based disassembly

Quisquater and Samyde [QS02] were the first to apply SCA to reverse engineering by
recovering the sequence of instructions executed on a smartcard using electromagnetic
(EM) radiation, a correlation-based classifier, and a neural network. Targeting JavaCard,
a popular programmable smartcard platform supporting a subset of Java, Vermoen et al.
[VWGO7] reported a successful reverse engineering of bytecode using power analysis based
on simple template classification. Moreover, they used certain properties of bytecode, like
the impossibility of some bytecode sequences, to improve their RE technique further.

Several side-channel-based disassemblers were developed for various simple micro-
processors: a disassembler utilizing a Bayesian classifier targeting the PIC microcon-
troller [EPW10], a disassembler based on k-Nearest Neighbor (kNN) classifier targeting
the ATMegal63 microcontroller [MMM14], and a disassembler based on hierarchical
classification setup and principal component analysis targeting ARM Cortex-M3 [VMA20].

A more complex architecture, system-on-chip based on ARM Cortex-A9, was targeted
by Maillard et al. [MHLT22]. Due to its significant complexity compared to previous
work, they were faced with considerable challenges. They demonstrated perfect accuracy
in functional unit recognition (e.g., recognizing ALU activity from memory loads) and
displayed signs of leakage on the bit-level of instructions.

Strobel et al. [SBO'15] and Iyer et al. [[TO"24] took a different approach. Both works
combine leakage coming from numerous probe locations to achieve high accuracy. The
recovery of the instructions is done using dimensionality reduction and the kNN classifier
in the former and using hierarchical classification in the latter case.

In contrast to the above disassemblers, which focused on classifying instruction opcodes,
other works concentrated on also recovering operands: a disassembler that classifies the
bit encoding of instructions of the PIC16F microcontroller [CLH19] and a disassembler
targeting ATMega328P via hierarchical classification [PXJ"18]. A disassembler by Gao
et al. [GOP22] recovered not opcodes but a micro-architectural leakage model of the target.

Machine learning (ML) was also used for side-channel-based RE of simple AVR mi-
crocontrollers: ATMega8A [NAH21] and ATMega328P [ASR'22], though the achieved
instruction recognition rates were comparable with previous works. A slightly more complex
target, ARM Cortex-MO0, was also a target of ML RE [vGB22; BH22].

Side-channel-based reverse-engineering

SCA has also been used to reverse-engineer cryptographic primitive implementations. This
method is sometimes called SCARE, standing for ‘Side-Channel Analysis for Reverse-
Engineering’. Performed for the first time by Clavier [Cla04], who recovered the substitution
tables of the proprietary GSM A3/A8 ciphers, which were secret at the time. Daudigny
et al. [DLM™05] analyzed an implementation of the Data Encryption Standard on a
smartcard and were able to reverse-engineer constants used in the algorithm as well as
some implementation details, such as which registers were used to store key material.
Several more works focused on RE of various implementations of symmetric-key
schemes: hardware Feistel implementation [RDGT 08|, LFSRs and generic non-linear
functions [GSMT10], and S-boxes in typical structures such as Substitution-Permutation
Network (SPN), Feistel, and eXtended Feistel [TQP*14]. In contrast to previous techniques,
[RR13] only assumed that an SPN is used, and demonstrated recovery of the full design.



Jancar et al. 361

Active side-channel attacks, such as fault injection, have also been used for RE. San
Pedro et al. [SSG11] presented a technique called FIRE (Fault Injection for Reverse
Engineering) targeting an unknown S-box in a known cipher. Fault injection, along with
passive SCA, was used by Clavier et al. [CIM ™ 15] to recover information about an AES-like
cipher, with some SCA countermeasures implemented and without knowledge of the key.

Amiel et al. [AFV07] showed how to apply Correlation Power Analysis to recover the
word size and modular multiplication algorithm used in an RSA implementation. They also
hinted at possibly applying their RE against ECC as future work. Roche et al. [RLM*21]
performed SCA against a black-box smartcard ECDSA implementation. To do that, they
first manually reverse-engineered the scalar multiplier used before developing an attack.

3 Analysis of open-source libraries

To better understand the implementation choices made by real-world implementations
of ECC and to answer RQ1 we analyzed the sources of 18 open-source cryptographic
libraries in their most recent released version (as of January 2024): BearSSL, BoringSSL,
Botan, BouncyCastle, fastecdsa, Go crypto, Intel IPP cryptography, libgcrypt, LibreSSL,
libsecp256k1, libtomcrypt, mbedTLS, micro-ecc, Nettle, NSS, OpenSSL, SunEC and
Microsoft SymCrypt. Our analysis was restricted to code implementing ECDH, ECDSA on
prime-field curves and X25519, Ed25519. By understanding the diversity observed in open-
source libraries, we gained insights into the expected diversity in black-box implementations
such as cryptographic smartcards or closed-source embedded systems.

For each library and cryptosystem operation (e.g., ECDH key generation or ECDSA
signing), we documented the curve model, scalar multiplier, coordinate system, and
addition formulas used. In case a library contained multiple implementations, for example,
architecture or curve-specific ones, we documented them all. Due to the large amount of
data collected, we only present a summary of it here?. We also contacted maintainers of
the mentioned libraries and 8 of them confirmed or corrected our analysis of their library.

3.1 Specific implementations

Out of 18 libraries, more than half (10) have curve-specific or architecture-specific im-
plementations in addition to a generic one that is used as a fallback, resulting in 64
total configurations. These implementations usually include optimized formulas (e.g., for
Short-Weierstrass curves with @ = —3) and scalar multipliers (e.g., precomputed multiples
of the generator). As a result, it is not enough to consider only a specific library but also
a specific hardware platform and curve on which the library is executed.

3.2 Curve models

It may seem that the curve model used in an implementation is determined by the
cryptosystem implemented, which is either Short-Weierstrass, Montgomery, or Twisted
Edwards. However, some curves can be transformed into birationally equivalent curves
in a different curve model. This is supported by our analysis, which shows that 4 out
of 13 implementations of X25519 use a Twisted Edwards model internally instead of the
Montgomery model. All of the ECDH, ECDSA, and Ed25519 implementations were in
the curve model that the cryptosystem specifies. Another practical example of a curve
model transforming implementation is ECCKiila [BBC™20], a tool for generating ECC
implementations that picks a Twisted Edwards model whenever able, even for Short-
Weierstrass curves.

2Full report is available on https://pyecsca.org/libraries.html.


https://pyecsca.org/libraries.html

362 pyecsca: Reverse engineering black-box ECC via side-channel analysis

3.3 Scalar multipliers

The implementations often contained three types of scalar multipliers: a fized base (for
the generator), a variable-base (for any single point), and a multi-scalar one (for a pair
of points). We do not present the results for the multi-scalar multiplier here due to their
complexity and size, but they can be found in the full report?.

In the Short-Weierstrass model, the fixed-base multipliers included: comb methods
[HVMO04, Alg. 3.44], fixed-window method [HVMO04, Alg. 3.41], simple ladder method [Mon87]
and double-and-add-always [Cor99]. In some cases, the fixed-window method was done
with full pre-computation, meaning that all options of all windows were statically stored,
and the scalar multiplier contained only addition. Similarly, scalar recoding techniques
such as Booth [Boo51; Mac61] recoding were used. The width parameter of both comb
and fixed-window methods varied from 4 to 7 bits. For variable-base multiplication, there
were no combs, while the fixed-window methods remained, with the addition of some GLV
[GLV01] and (regular) wNAF [HVMO04] methods.

In the Montgomery model, the fixed base multiplier was either the Montgomery ladder
[Mon87] or was done using the Twisted Edwards model and a different multiplier. The
variable base multiplier was always (a variant of) the Montgomery ladder.

In the Twisted Edwards model, both the fixed- and variable-base multipliers varied
between Pippenger’s method [Pip76], comb methods, fixed-window methods, and double-
and-add-always.

3.4 Coordinate systems

In the Short-Weierstrass model, Jacobian coordinates dominated as they were present
in all but 5 of the 18 libraries. The remaining implementations chose predominantly
homogeneous projective coordinates but also xz or Jacobian-modified coordinates.

The Montgomery model implementations all used xz coordinates, which is an obvious
choice. Note, however, that some X25519 implementations used the Twisted Edwards
model internally and thus are described in the next paragraph.

The case of the Twisted Edwards model was the most complex, with several imple-
mentations using and mixing several coordinate systems: projective, extended, completed,
and ‘Duif’ or ‘Niels’®. This complexity is likely due to the large influence of a few initial
implementations of Ed25519, namely the SUPERCOP ref10 implementation of Ed25519,
which uses these coordinate systems. Other, simpler implementations in the Twisted
Edwards model used projective coordinates. For an overview of Ed25519 implementations,
see [GS21]. For the rest of this work, we will focus on single-coordinate systems, leaving
aside these complicated implementations.

3.5 Formulas

We counted a total of 113 formula implementations in the analyzed libraries. Out of
those, we could directly map 50 to formulas from the EFD database, meaning that the
implementation either pointed at the EFD entry or that manual analysis of the formula led
us to conclude that it is equal to an EFD formula. There were 21 distinct EFD formulas
used. For 40 implementation formulas, we were not able to perform this mapping manually,
and we analyze them below. The remaining 113 — 50 — 40 = 23 formulas are out-of-scope
of our analysis as they mix coordinate systems.

3Named after Niels Duif, one of the authors of the EADSA signature scheme.



Jancar et al. 363

The unmatched 40 formulas showed similarities to EFD formulas to a certain extent,
which we measured in the following way: As in Sedlacek et al. [SCJ*21], we unrolled each
formula, expressing its intermediate values as polynomials in its inputs. The set of these
polynomials then served as a representation for each formula.

Formula 1 Formula 2 Set S1 Set S

ur =3-2 va=X+1| unrolling 32, X +1, similarity |Sl ﬂS2|
ug =Y -uy vs =X -4 3YZ, X2+ X, |51US2’
ug = X — ug vg = 2-v4 X —-3YZ, 2X + 2,

Figure 1: Measuring similarity of formulas by expressing intermediate values as polynomials
and computing the ratio of the size of the intersection and the union.

We defined the similarity of formulas using their corresponding sets of polynomials. More
precisely, the similarity between two sets S1, So was given as 0 < |S; N .Sa|/[(S1US2)| <1
(see Figure 1). For each of the 40 formulas, we found an EFD formula with the highest
similarity. For 9 formulas, an EFD match with similarity 1 was found, and for the rest,
the largest similarity varied between 0.25 and 0.96.

jacobian BearSSL, OpenSSL e—
BoringSSL, OpenSSL  e— add-1998-cmo-2
BouncyCastle e
BearSSL e
BouncyCastle e— dbl-1998-cmo-2
LibreSSL, OpenSSL(3) e—
BoringSSL, OpenSSL. e———  db1-2001-b
libgerypt, LibreSSL, OpenSSL(3) e—— add-1998-hnm
libsecp256kl o dbl-1986-cc
Xz SunEC, NSS, BouncyCastle, BearSSL e—
mladd-1987-m
Botan &———
NSS &— dbl-1987-m-3
extended SunEC e&—— add-2008-hwcd-3
SunEC &—— db1-2008-hwcd
projective SunEC e&—— madd-2015-rcb-3
SunEC &——— dbl-2015-rcb-3
modified BouncyCastle e add-1998-cmo-2
BouncyCastle o mdbl-2009-bl
T T T T T
0.0 0.25 similarity 0.75 1.0 EFD formula

Figure 2: Formula similarity between unknown non-EFD formulas found in libraries (dots)
and their closest EFD formulas (y-axis). The arrows represent the increase of similarity
after our expansion of the EFD.

To bridge the gap between the unmatched library implementations of formulas and the
EFD database, we investigated the differences between the formulas and implemented the
following transformations:

o ‘Fliperoo™ of operands: There are several ways to compute z -y - z due to the associ-
ativity and commutativity of multiplication and similarly for addition/subtraction.

4We named this after the climbing move from [WR20].



364 pyecsca: Reverse engineering black-box ECC via side-channel analysis

o Sign switch: The sign of intermediate values containing subtraction can be switched
by changing the order of operands. To preserve correctness, multiple signs need to
be switched.

o Expansion and reduction of multiplications: Since 3-a =2-a+a =a+ a+ a,
we can expand multiplications by small values to additions and vice versa. Some
implementations act differently depending on whether the value is a power of 2 (and
can be computed efficiently).

Applying these transformations, we were able to expand the EFD database to contain
almost 20000 formulas®. This significantly improved the similarity matching as shown by
Figure 2, in which the dots represent the unknown library formulas with their similarity
match to the EFD on the x-axis. The arrows represent the change of similarity after our
expansion of the EFD. For instance, although the BouncyCastle formulas were not that
similar to any of the EFD formulas, after our expansion of EFD, we found a match for
every one of them. In total, out of the 90 = 113 — 23 library formulas in our scope, 80 were
successfully matched to a transformed variant of an EFD formula, with only 3 formulas
having the closest match below 0.75.

We investigated transforming the formulas to a canonical form instead of expanding
them. However, we found no canonical form covering the transformations seen in the
library formulas yet distinguishing the EFD formulas.

While the EFD database is quite extensive (nearly 200 formulas in the specified
models), one should clearly not expect to find all real-world ECC implementations there.
Our extended EFD database (almost 20000 formulas) shows that the space of possible
implementations is much larger.

RQ1
The analyzed open-source libraries clearly leverage a wide range of possible scalar
multipliers, coordinate systems, curve models, and formulas. What’s more, they
modify them, mix them, and transform them for more optimizations. This shows the
diversity and the vast amount of real-world ECC implementations.

4 Reverse-engineering techniques

This section presents three reverse-engineering methods that utilize existing side-channel
attacks — RPA, ZVP, and EPA. We use these side-channel attacks to build oracles, which we
query about what is happening inside the target implementation during some computation.
This allows us to distinguish different implementations based on their behavior under these
oracles. Our methods focus on reverse engineering the coordinate system, formulas, and
the scalar multiplier.

RPA, ZVP, and EPA attacks construct input points that invoke ‘special’ behavior
during the computation on the device, detectable using a side-channel. This can be
modeled as a boolean oracle that returns True if this special behavior is detected and
False otherwise, possibly with some noise. The attacks use this oracle and the knowledge
of the implementation configuration to verify hypotheses about the private scalar. We
turn this around and make hypotheses about the configurations, and verify them using the
oracle. Table 1 shows an overview of the methods and their capabilities. For example, the
RPA method queries a side-channel oracle about an unknown multiplier while choosing
the used curve, the scalar, and the input point.

In more detail, for each configuration from a set C of possible configurations, we
simulate the oracle on a set of inputs Z and record the oracle outputs in a decision table

5This dataset is available at https://doi.org/10.5281/zenodo.10908698.


https://doi.org/10.5281/zenodo.10908698

Jancar et al.

365

Method ‘ Curve Coordinates Formulas Multiplier Scalar Input point
RPA-RE | chosen any any target known chosen
ZVP-RE | chosen target target known known chosen
EPA-RE | chosen target target known known chosen

Table 1: Overview of our methods with parts of configurations they target for reverse-
engineering. Some parts need to be either chosen or known.

as in Figure 3. The rows of the table correspond to configurations from C and columns
correspond to the inputs from Z with the oracle outputs in the table entries. Based on the
table, we construct a decision tree for each attack. This tree is then used for an efficient
search through the space of configurations C to minimize the number of oracle calls (and
thus side-channel measurements).

The decision tree is constructed from the table in the following way. From the set Z of
inputs in the columns, we select the input for which the oracle result divides the set C
into the smallest possible subsets. In the example in Figure 3 with the binary oracle, we
select the input point which divides the four multipliers into two groups of two (which is
[371Py). We repeat this process recursively for each subset of multipliers until we reach
leaves containing either single configurations or configurations that cannot be distinguished
using the method. This process is analogous to translating a decision table into a decision
tree. We use heuristics-based methods [Pol65] instead of optimal ones [Lew78] as the
general problem is NP-complete [HR76]. In subsections 4.1, 4.2, and 4.3, we describe the
details of the individual attack methods, including the construction of the set of inputs Z.

IRPA5 [271}])0 [371]P0 [471]P0 [571}1)0 3
LTR True True False False True False
RTL True False True True 4 / \ 5
Comb True False True False True/  \False Trug/ NJalse
Ladder True True True False Ladder LTR RTL Comb

Figure 3: Small illustrative example simulation of the RPA oracle on different multipliers
(table rows) and input points (table columns), where Py = (0,y). The decision tree is
constructed based on the decision table. The example scalar is 213.

Noise. Due to the possible noise in the side-channel measurements, the constructed
binary oracles sometimes do not answer correctly. We address this by querying the oracle
multiple times and doing a majority vote. For instance, each oracle answer (True/False)
in the decision tree in Figure 3 is the winning majority result of several RPA oracle calls.

Target implementation. The described methods require control over the input point
(Table 1) and can thus target ECDH Derive and ECDSA Sign, where the curve base point
serves the role of the input point. The success of the method depends on the used curve
and the scalar (e.g., a point with zero coordinate must lie on the curve for RPA), and so we
assume control over the curve and the scalar. For ZVP, we assume that any requirements
of the implementation on the domain parameters a,b (e.g., a = —3) are checked and
can be therefore inferred from the (error) output of the implementation, based on our
analysis of libraries. As was shown in [SJS20], computationally demanding checks (such as
deterministic primality tests) are often ignored, so we exclude these for the EPA method.

Countermeasures. Scalar randomization thwarts the three considered side-channel at-
tacks and, consequently, our RE methods [FGM*10]. However, the methods also inherit
resistance against several other countermeasures from the corresponding attacks (see



366 pyecsca: Reverse engineering black-box ECC via side-channel analysis

Section 2.2), namely coordinate and curve randomization. Moreover, countermeasures
are generally designed to stop attacks on the private key, and they are not necessarily
effective against reverse engineering using our or other (future) methods. After all, the
countermeasures were not intended for our strong model, in which we have full control
over the domain parameters, the inputs, and the private key.

4.1 RPA

In RPA, the side-channel oracle is the detection of points with zero coordinates during the
scalar multiplication [k]P, where k is a fixed private scalar and P is a general point. The
space of configurations C is the set of all scalar multipliers, and the goal is determining
the one being used. We assume the elliptic curve is fixed and has a point Py with a zero
coordinate. For each scalar multiplier C' € C, we compute the set {[kc1]P, ..., [kc|P} of
multiples of a general input point P that appear during the computation of [k]P. The set
of inputs is then
Trea = |J {[kch]Po, - [k o)
ceC

Each of these input points [kali]Po causes the appearance of the zero coordinate point
[kc,,»][kali]Po = Py, if the scalar multiplier C is used.

4.2 ZVP

In ZVP, the side-channel oracle detects zero intermediate values in the computation of the
formulas during the scalar multiplication. We will assume that the scalar multiplier is known
(recovered using, e.g., the RPA technique), so the goal is to reverse-engineer the formulas
and coordinate system used. The set of configurations C will be the combinations of formulas
for all operations used in the scalar multiplier (e.g., (add-2007-b1,db1-2015-rcb) € C for
a multiplier using add and dbl).

The general idea of the construction of inputs Zzyp is illustrated in Figure 4. Each layer
corresponds to a choice of curve E; and the used private scalar k;. Columns describe the
sequence of curve operations as defined by the scalar multiplier and the scalar &; (e.g., dbl,
add, dbl, dbl,... for the first layer). Rows correspond to all of the possibilities for the add
and dbl formulas. For each row, we unroll the formula F' for the given operation to create
a set of intermediate polynomials, as described in Section 3.5. We solve the dependent
coordinates problem for all the intermediate polynomials (see Section 2.2), which results
in sets P;(Ej,j) of pairs of points and curves. Since the complexity of the dependent
coordinates problem grows with the size of the scalar used, we compute P;(E;, j) only for
small j (but some instances of DCP can be easily solved without such restriction). By
definition, each point from P;(FEj, j) causes a zero value during the computation of the
corresponding column operation (i.e., add(P, [j]P) or dbl([j]P)) as long as the i-th row is
the correct choice of formulas. The set Zzyp of inputs is then the union of all triples of
points, curves, and private scalars k;.

As opposed to RPA, we consider more than one oracle for ZVP. The simplest is a binary
oracle that indicates whether a zero intermediate value appeared anywhere during the scalar
multiplication. The power consumption can also leak the number of zero intermediate
values that appeared (count oracle) as well as their position in the power traces (position
oracle). Furthermore, we consider a noisy count oracle, which we query multiple times,
compute the average number of zeroes, and take the closest possible output.

4.3 EPA

The EPA attack leverages exceptional cases of addition formulas to induce an error during
scalar multiplication. An oracle indicating whether an error happened is then used to find



Jancar et al. 367

Ezo ks Izvp
Evk | | | | | | )
Eo.ko_| | | | | | i
P2)] |
SR, | o) | PolEn2) | PoBn3) | PoBas) | | Po(Ea)| |
R2) ||
dd-2001-b
oy 1698-cno P1(Eo, 1) | P1(Eo,2) | P1(Eo,3) | Pi(Eo,6) P1(Eo,22) b
p2)[ |,
Zﬁ_-lfggsse_-hff Po(Eo, 1) | Pa(Eo,2) | Pa(Eo,3) | Pa(Eo,6) Py(Eo,22)| |+~ Limit given by the
L’ complexity of DCP
%y, edo’( o db/( . db/( . .7
7 .
) N //") /%D

Figure 4: The space of possible ZVP points for combinations of formulas for add/dbl and
for different curves. Each set P;(E;, j) of ZVP points is computed from the intermediate
values of the given formula (row) for the corresponding operation (column).

the secret scalar. We can use this oracle to reverse-engineer the addition formulas.

The limitation of this method is the number of formulas with non-trivial exceptional
cases, with only two such formulas in the Short-Weierstrass model [SCJT21]. This means
that the method will not be able to distinguish most formulas. There might be a potential
to increase the number of special cases by combining the EPA attack with the results of
Sedlacek et al. [SJS20]. They found that several commercial JavaCards are able to work
with curves in which the parameter p, specifying the finite field F,, over which the curve is
defined, is not prime. In this case, the implementations compute over Z,, where elements
not co-prime to n do not have multiplicative inverses. It is likely that if an implementation
attempts to compute an inverse of a non-invertible element, it will raise an error. We leave
the application of EPA for reverse engineering as future work.

5 Toolkit

In this section, we present the features of the [§] pyecsca toolkit for side-channel analysis
and reverse engineering of ECC implementations. The toolkit consists of three parts: a
core repository providing the main functionality, a codegen package providing the ability
to generate C implementations of ECC, and a notebook repository with Jupyter notebooks
that provide an interface to the toolkit®. Our reverse-engineering methods are included in
the toolkit, along with documentation and tutorials.

5.1 Configuration

An ECC implementation configuration is a central concept in the toolkit as it represents
the implementation details that the toolkit aims to reverse-engineer. We use data from
the Explicit-Formulas Database, to build parts of an ECC implementation configuration.
Although the EFD is a website, it also contains data in raw text files in an undocumented
but stable format, which we parse. We use data from the EFD to build the first three
components of an implementation configuration: the curve model, the coordinate system,
and the formulas. The remaining seven components are implemented manually.

The implementation configuration, as defined by the toolkit, has ten components, six
of which are described below:

6We link to these notebooks where relevant using the & icon.



368

pyecsca: Reverse engineering black-box ECC via side-channel analysis

Curve model. One of Short-Weierstrass, Montgomery, Edwards, Twisted Ed-
wards. Note that some of these models have restrictions on classes of curves they
represent.

Coordinate system. The implementation choice of coordinates on the curve model.
Different curve models have different coordinate systems.

Scalar multiplier and Formulas. The scalar multiplication algorithm, along with
the formulas used in it. Currently, there are fourteen multipliers implemented: LTR,
RTL, Coron, Ladder, SimpleLadder, DiffLadder, BinaryNAF, WindowNAF, Window,
WindowBooth, SlidingWindow, FullPrecomp, BGMW, and Comb. The different scalar
multipliers require different types of formulas. Some multipliers are parameterized,
with parameters like direction (left-to-right or right-to-left) or width.

Hash algorithm. Used to compute the shared secret in ECDH and to hash the
messages in ECDSA. One of None (identity function on the data), SHA1, SHA224,
SHA256, SHA384, or SHA512.

Random sampling. The technique used to generate uniformly random numbers
modulo n. Can be Sample or Reduce. In the Sample case, numbers up to [logy(n)]
bits are sampled uniformly until one of them is less than n. In the Reduce case, a
number up to [logy(n)] + 40 bits is sampled uniformly and reduced modulo n.

These configurations, namely the scalar multipliers, contain all of the scalar multipliers

found in our analysis of libraries from Section 3. There is, thus, a high chance that other
real-world implementations fall into our exhaustive set of configurations. The toolkit
uses four components for finite-field operations, which are not the object of our reverse

engineering.
Table 2: Number of configurations by their components.

Curve Coords # Total Scalar multiplier #
jacobian 17136 LTR 9328
jacobian-0 22848 RTL 9328
jacobian-3 28 560 Coron 1166
modified 2856 Ladder 407
projective 9520 SimpleLadder 2332

Esw projective-1 10710 113502 DiffLadder 328
projective-3 16 660 BinaryNAF 4664
w12-0 476 WindowNAF 18 656
Xyzz 1428 WindowBooth 18 656
xyzz-3 2856 Window 9328
X7 452 SlidingWindow 18656
FullPrecomp 18656
Em X7 132 132 Comb 9398
inverted 2856 BGMW 18656
s projective 11424 14431
yz 99 (b) Configurations per scalar multiplier.
yzsquared 52
extended 2856
extended-1 5712
Ere inverted 1428 11424
projective 1428

(a) Configurations per coordinate system.



Jancar et al. 369

While our analysis of library formulas (Section 3.5) already hinted at the vast space

of possible implementations, we can now look at the number of different configurations
that we can enumerate, to answer our RQ2: How large is the space of all possible ECC
implementations? We will restrict scalar multiplier parameters to those seen in our library
analysis, as they have theoretically unbounded domains.
RQ2
As Table 2 shows, an enumeration of the space of ECC implementations yields
139489 configurations. This considerable number comes from combinations of different
coordinate systems, formulas, scalar multipliers, and their parameters. We believe that
this shows that the space of implementation configurations of ECC is large enough to
warrant reverse engineering. Furthermore, including low-level details like the finite-field
arithmetic, this number increases to an astonishing 304 411 392 configurations.

5.2 Simulation

Many attacks, as well as our reverse-engineering methods, require the ability to compute
intermediate values that appear in the target implementation given some inputs. To allow
for this, the toolkit is able to simulate KeyGen, ECDH, or ECDSA down to finite-field
intermediate values in the form of an execution tree. This tree can then be analyzed or a
suitable leakage model can be applied to obtain simulated power traces.

5.3 Code generation

The pyecsca toolkit is capable of fully automatic generation of C implementations of
ECC given any implementation configuration, for a set of supported micro-controllers
and CPU architectures. The target implementation supports ECDH, ECDSA, and key
generation, which are accessible through a simple serial interface. We currently target the
STM32F0 and STM32F3 chips, which are based on ARM Cortex-M0 and ARM Cortex-M4F,
respectively. We also target the host device (assumed x86_64) such that implementations
can be generated, built, and run on the host device for testing and development purposes.

We use the Jinja2 templating language [Jinja2], to automatically generate implementa-
tion C sources from template files and the implementation configuration. Out of the whole
implementation, only the high-level primitives like ECDH, ECDSA, key generation, and
scalar multipliers had to be implemented (once) by hand, with the formulas auto-generated
from the configuration. The libtommath library [LTM] is used to implement finite-field
arithmetic due to its rich API and variety of algorithms.

This functionality allows users to validate and test attacks and reverse-engineering
methods on hardware with known (generated) implementations.

5.4 Emulation

Executing generated implementations on real hardware and performing side-channel
measurements on them may introduce unwanted technical difficulties. Thus, the toolkit
also offers a middle step: emulation of generated implementations via a CPU emulator.
It uses the Rainbow [Don19] CPU emulator by the Ledger-Donjon team, which is itself
based on QEMU. The emulator functionality targets the ARM Cortex-M4 and is able
to produce instruction-level traces with various leakage models as well as trace memory
accesses or add custom hooks and breakpoints. This provides users with yet another way
of validating their attacks, reverse-engineering techniques, or countermeasures.



https://pyecsca.org/notebook/configuration_space.html
https://pyecsca.org/notebook/simulation.html
https://pyecsca.org/notebook/codegen.html
https://pyecsca.org/notebook/emulator.html

370 pyecsca: Reverse engineering black-box ECC via side-channel analysis

5.5 Miscellaneous

The toolkit aims to provide a comprehensive suite of functions for trace alignment, filtering,
pattern matching, signal-processing, and statistical tests.

Several methods for trace alignment are provided, based on cross-correlation, sum-of-
absolute-differences, but also elastic alignment based on FastDTW [vWB11]. The toolkit
is compatible with ChipWhisperer [OC14], a popular toolkit for side-channel analysis. Its
UFO target boards constitute the targets of the code generation.

Trace acquisition is possible using both ChipWhisperer and PicoScope branded oscillo-
scopes, with a unified API offered. As the collected traces can be large, visualizing them
in a responsive and efficient manner is done using HoloViews [HV] and Datashader [DS].
The toolkit supports the Hierarchical Data Format (HDF5) to allow for the storage of
trace sets and for working with larger-than-memory trace sets. Some trace operations, like
correlation coefficient computation, are GPU accelerated via CUDA.

6 Results

We evaluate our attack-based reverse-engineering methods on two evaluation levels.

Oracle simulation. On this level, we directly simulate an oracle answering our queries,
potentially with some noise, by simulating the true target implementation and extracting
the oracle answers from its execution. For example, in the RPA-RE case, we simulate
the execution and output a (noisy) boolean on whether a zero-coordinate point occurred
during the execution.

Method simulation. On this level, we still simulate the true target implementation.
However, we then apply a leakage model (and noise) to the intermediate values to obtain
simulated leakage traces, on which we then mount the reverse-engineering method. For
example, in the RPA-RE case, we essentially mount the RPA attack on the simulated
leakage traces to construct the oracle.

The two levels are complementary. By evaluating on the oracle simulation level, we
see how the reverse-engineering method behaves in the presence of various levels of noise.
By evaluating on the method simulation level, we see how noise in the traces and choices
in the attack methodology influence the noise in the resulting oracle. On both levels, we
iterate the true configuration that is simulated over the set of all possible configurations.

Noise. We model the noise in binary oracles in two ways: symmetric and asymmetric. In
the symmetric case, there is a single error probability e of a flip in the oracle’s output. In
the asymmetric case, there are two error probabilities (eg, e1), corresponding to a flip in the
oracle’s output 0 — 1 and 1 — 0. The two models are equal when ey = e; = e. We chose
e €{0,0.1,0.2,0.3,0.4,0.5}, note that e = 0.5 makes the oracle output completely random.
We add noise to the count oracle by adding a zero-mean-shifted Binomial distribution
B(0.5,n) to the count, with n € {0, 4, 10, 20,40,60} which we picked heuristically based
on the observed distribution of counts. In method simulation, we add zero-mean Gaussian
noise with variable standard deviation to normalized simulated leakage traces.

Metrics. We consider four metrics in the evaluation: success rate, precision, result size,
and query rate. As the RE methods output a set of configurations (possibly a singleton),
we consider the result to be successful if the true configuration is in the output set and
precise if the set is a singleton. We also measure the average result set size as it represents
precision from a different perspective. We evaluate the oracle query rate because each
oracle query amounts to performing a side-channel attack, which increases attacker effort.

The decision trees built by the methods offer insights into their behavior. Leaves
represent indistinguishable sets of configurations. Random walks in the tree correspond
to the reverse-engineering process in the random scenario with a noisy oracle (i.e., error



Jancar et al. 371

probability = 0.5). Walks in the tree weighted by the leaf size model the reverse-engineering
process with a uniform probability of each configuration and no errors. The expected leaf
depth (@1) then corresponds to the expected oracle query rate, and the expected leaf size
(|@|) corresponds to the expected result size.

Table 3: Decision tree metrics of our reverse-engineering methods. The Expected case
considers a uniform probability of each configuration and the Random case considers a
random walk.

Expected Random
Method | Oracle |[C| #@ @ @] |@ @]

RPA-RE | binary 34 34 1.0 5.0 1.0 5.0
ZVP-RE | binary 214 74 8.7 5.1 5.0 4.0
ZVP-RE count 214 134 24 40 13 25
ZVP-RE | position 214 196 1.2 21 11 1.8

6.1 RPA-RE

We evaluated the RPA-RE method considering a set of 34 scalar multipliers to reverse-
engineer. We chose the NIST P-256 curve as it is a commonly used curve that also has a
zero-coordinate point. In this setting, the method achieves 100% precision as it constructs
a decision tree that has single-element leaves (result sets). We used 10 000 runs per a
combination of true configuration, error probability and majority vote parameters. In the
figures, this amounts to 340 000 runs per heatmap cell.

The success rate and oracle query rate for the oracle simulation level are visible in
Figure 5. As it shows, it is possible to significantly improve the success rate of the reverse
engineering by increasing the majority vote quorum at the cost of a higher query rate.
Note that the baseline success rate of random guesses is 2.94%. The query rate changes
with the noise as the majority voting aborts early if the majority is reached, thus lowering
the query rate for less noisy scenarios. Our experiment with asymmetric error probabilities
behaved symmetrically in all metrics, and we thus omit its visualization.

100

119100.0% 99.9% 94.1% | CEILY/ Pkl A/ SwR-r/

94100.0% 99.5% 90.2%

7 4100.0% 98.6% 49.8% 17.2% 9% 60

majority vote
majority vote

54100.0% 95.7% | =iV BENAZ N TN 40

(%) @384 SS20N5
N}
w

a3es Ausnb apeio

4100.0% 28.5% 10.9%

14 58.0% 31.5% 15.9%

0.2 0.3

0.2 0.3
error probability error probability

(a) Success rate (- - random guess). (b) Oracle query rate.
Figure 5: Results for the RPA-RE method with symmetric noise.
Method simulation. We evaluated the oracle building step of the RPA-RE method while

varying the number of simulated traces per group in {10, 20, 30,...,100} and standard
deviation of noise o € {0,1,2,...,10} averaging over 200 runs for each parameter choice.


https://pyecsca.org/notebook/re/rpa.html

372 pyecsca: Reverse engineering black-box ECC via side-channel analysis

The trace simulation included the coordinate randomization countermeasure. We imple-
mented the RPA oracle by running simple peak-finding on a difference-of-means trace
constructed from normalized traces. As Figure 6 shows, increasing the number of traces
allows us to build an oracle with minimal error probabilities even under considerable noise.

€o e 10

noise o
noise o
Ayngeqoud Joue

0.0
20 40 60 80 100 20 40 60 80 100
traces per group traces per group

Figure 6: Error probabilities ep and e; in the RPA-RE method during method simulation.
Traces per group refer to the two groups of traces collected in an RPA attack.

6.2 ZVP-RE

For evaluating the ZVP-RE method we chose a basic left-to-right scalar multiplier on
the Short-Weierstrass curve model. Thus, all (add, dbl) formula pairs from compatible
coordinate systems formed the target configurations, which amounted to 214 pairs. We used
a total of 40 randomly generated curves, 10 for each of the coordinate system assumptions
(a = =3, a = -1, a = 0, and generic), together with 10 small scalars. We bounded the
ZVP point computation P;(E;, j) at j < 100. This amounted to 2212 distinct ZVP points.
To build the decision trees in ZVP-RE, we first split the configurations based on the
coordinate system assumption as explained in Section 4. Thus, the trees are one level
deeper than suggested by the average oracle query rate (we do not count this configuration
split as an oracle query).

We used 100 runs per a combination of true configuration, error probability, and
majority vote parameters. In the figures, this amounts to 21 400 runs per heatmap cell.

Binary oracle. In this setting, the ZVP-RE method builds a tree with 74 leaves. Its
metrics are visible in Table 3. It is no longer always precise like RPA-RE as Figure 7
shows. However, its average result size of 8.7 configurations (formula pairs) demonstrates
utility in narrowing the space of possible configurations. This directly corresponds to the
expected leaf size, as reported in Table 3.

The leaves contain configurations that are indistinguishable from the perspective of
the method. They contain formulas with the same set of ZVP points or, very often, the
same intermediate polynomials (these configurations have the same rows in Figure 4).
The leaves vary in size, with the largest leaf containing 30 configurations and 26 leaves
containing one configuration each. This imbalance in the leaf sizes also explains why the
high error oracle with a low success rate has higher precision than the low error oracle
(see Figure 7c).

When considering the coordinate system only, of which there are 11, the method
achieves a precision of 94%. Our experiment with asymmetric error probabilities did
not behave symmetrically due to the decision tree being unbalanced. The success rate
was slightly better in the prevalence of 0 — 1 errors over 1 — 0 errors. We omit this
visualization due to space.



https://pyecsca.org/notebook/re/zvp.html

Jancar et al. 373

11100.0% 99.9% 95.4% | ik BT NI 100 35
9{100.0% 99.6% 92.4% 31.5% % 80 30
& 25§
£ 71100.0% 98.9% 87.7% 60 5 £ a
> (‘E > o
z- n z- Qo
g 54100.0% 96.7% 49.5% 25.2% a0 & g <
o i
g 15
34100.0% 89.5% 11.5%
20 10
11100.0%
o o 5
0 0.1 0.2 0.3 0.4 0.5 . 0.2 0.3
error probability error probability
(a) Success rate. (b) Oracle query rate.
12.2% % 14.9% 24.0% 100
8.5
12.1% 80 8.0
7.5
g 15.5% 60 3 £ z
> a > &
2 o > <
2 s £ 7.0 &
g 12.1% 122% 12.0% 12.7% 16.4% 24.4% 40 R g »
6.5
20 6.0
12.1% 13.1% 15.7% 19.4% 24.2% 55
o .
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
error probability error probability
(c) Precision. (d) Average result size.

Figure 7: Results for the ZVP-RE method with a binary oracle with symmetric noise.

Count oracle. Using the count oracle (the number of zero intermediate values) improves
the precision of the method significantly, to an average result size of 2.4 (precision of
41.6%). Figure 8 shows that even a large amount of noise can be handled by this method.
Note that majority voting does not help increase the precision; it only increases the success
rate. The tree remains unbalanced like in the case of the binary oracle, which leads to
higher precision in higher noise scenarios.

Position oracle. The position oracle outputs the position of zero intermediate values in
the power traces. Using this oracle, the expected results size is 1.2 (Table 3), improving the
precision of ZVP-RE to 85.6%. Additionally, since the arity of the decision tree increases
with the oracle output size, the expected oracle query rate reduces to 1.1 (the first level of
the tree is given by the coordinate system assumptions).

RQ3
As our results show, the RPA-RE method is always precise in determining the scalar
multiplier and is successful under considerable noise. While the ZVP-RE method has
limits in its ability to distinguish individual formula pairs, its precision improves when
considering the zero count (41.6%) or the zero position oracle (85.6%). Furthermore,
when considering the coordinate system only, it achieves a precision of over 94% with
the binary oracle.




374 pyecsca: Reverse engineering black-box ECC via side-channel analysis

204100.0% 97.1% 63.6% 48.3% 41.1% 100 204 60.8 606 594 580 568 55.7 60
D 9 9 9 80 50
10 100.0% 48.4% 36.2% 30.3% 10
® a0 3
» 51100.0% 608 , 5 o
@ 2 o ®
Q n [=% _g
£ 3 £ 30 g
MR B OONGZY 57.5% 39.3% 29.5% 22.0% 20 % 2 3 <
S &
20 "
24100.0% 19.5% 16.7% 20 2
10
1100.0% 0 1
0 10 20 0 4 10 20 40 60
binom n binom n
(a) Success rate. (b) Oracle query rate.
100
41.6% 41.7% 42.2% 43.4% 44.9% 46.6%
2.3
9 80
41.7% 22
)
] 60 7 212
5 @ a S
£ 5 £ 200
@ 41.6% 43.9% 46.4% 49.6% 53.6% 55.9% 202 »
1.9
41.3% 20 s
45.6% 50.5% 55.6% 59.1% 60.4% 0 1.7
10 20 10
binom n binom n
(c) Precision. (d) Average result size.

Figure 8: Results for the ZVP-RE method with a zero count oracle with binomial noise.

7 Conclusions

Implementing elliptic curve cryptography is a non-trivial process, requiring a range of
implementation choices — especially when considering fast yet side-channel and fault-
induction resilient implementations. The space of ECC implementation configurations
has not been systematically studied so far, we arrived at a conservative estimate of
139489 possibilities. By analyzing 18 open-source ECC libraries, we indeed documented a
surprisingly wide variety of implementation decisions, likely to be also present in black-
box implementations in secure hardware or smartcards. This variety is an obstacle to
an attacker mounting a side-channel attack, as knowing the implementation details is
frequently crucial for a successful attack. However, this knowledge is often treated as a
mandatory assumption in the literature describing attacks on ECC.

This work provides a novel approach for systematic analysis and reverse engineering
of black-box ECC implementations that is able to obtain the used scalar multiplier, the
coordinate system, and the addition formulas. We take known side-channel attacks (RPA,
ZVP, and EPA) and their dependence on the implementation configurations and turn
them into reverse-engineering methods. We implement these methods as part of pyecsca —
the first toolkit for automatic reverse engineering of ECC implementations. The toolkit is
well-documented and tested, providing extensive functionality, including the enumeration
of millions of ECC implementations, their synthesis for embedded devices, as well as the



Jancar et al. 375

acquisition, processing, and visualization of traces. We hope that our toolkit will be used
in future research into side-channel analysis and elliptic curve cryptography.

The results of the experimental evaluation demonstrate that RPA-RE and ZVP-RE
can be used to automatically reverse-engineer the scalar multiplier and the coordinate
system of a black-box ECC implementation. Furthermore, the ZVP-RE method is able
to considerably reduce the space of possible addition formulas. Our reverse-engineering
methods are resistant to coordinate and curve randomization. We leave the adaptation of
the methods against more countermeasures (e.g., scalar randomization) as future work.
Furthermore, the application of our methods to real-world black-box implementations,
such as JavaCards or TPMs, is interesting for future research.

Acknowledgements

We would like to thank Jan Kvapil, Vashek Matyas as well as anonymous reviewers for
their insightful reviews. Thanks to Tom4s Jusko and Andrej Batora for their contributions
to the toolkit. Jan Jancar was supported by Red Hat Czech. J. Jancar, V. Suchanek, P.
Svenda, and ¥.. Chmielewski were supported by the Al-SecTools (VJ02010010) project. V.
Sedlacek was supported by the NSF grant CNS-2124692.

References

[ACD%05] Roberto M. Avanzi, Henri Cohen, Christophe Doche, Gerhard Frey, Tanja
Lange, Kim Nguyen and Frederik Vercauteren. Handbook of elliptic and
hyperelliptic curve cryptography. CRC press, 2005. 1SBN: 978-1-4398-4000-9.

[ACL21] Rodrigo Abarzta, Claudio Valencia Cordero and Julio Cesar Lépez-Hernandez.
Survey on performance and security problems of countermeasures for passive
side-channel attacks on ECC. Journal of Cryptographic Engineering, 11(1):71-
102, April 2021. DoI: 10.1007/513389-021-00257-8.

[AFVO07] Frederic Amiel, Benoit Feix and Karine Villegas. Power analysis for secret
recovering and reverse engineering of public key algorithms. In SAC 2007,
volume 4876 of LNCS, pages 110-125. Springer, Heidelberg, August 2007. DOI:
10.1007/978-3-540-77360-3_8.

[ASRT22] Cesar N. Arguello, Hunter Searle, Sara Rampazzi and Kevin R. B. Butler. A
practical methodology for ML-based EM side channel disassemblers. CoRR,
abs/2206.10746, 2022. DOL: 10.48550/arXiv.2206.10746.

[AT03] Toru Akishita and Tsuyoshi Takagi. Zero-value point attacks on elliptic curve
cryptosystem. In ISC' 2003, volume 2851 of LNCS, pages 218-233. Springer,
Heidelberg, October 2003. DoI: 10.1007/10958513_17.

[BBC*T20] Dmitry Belyavsky, Billy Bob Brumley, Jests-Javier Chi-Dominguez, Luis
Rivera-Zamarripa and Igor Ustinov. Set it and forget it! Turnkey ECC for in-
stant integration. In ACSAC ’20: Annual Computer Security Applications Con-
ference, Virtual Event / Austin, TX, USA, 7-11 December, 2020, pages 760—
771. ACM, 2020. DOI: 10.1145/3427228.3427291.

[BCH"23] Lejla Batina, Lukasz Chmielewski, Bjorn Haase, Niels Samwel and Peter
Schwabe. SoK: SCA-secure ECC in software - mission impossible? TACR
TCHES, 2023(1):557-589, 2023. 1SSN: 2569-2925. DOI: 10 . 46586/ tches .
v2023.11.557-589.

[BH22] Dachyeon Bae and JaeCheol Ha. Implementation of disassembler on microcon-
troller using side-channel power consumption leakage. Sensors, 22(15):5900,
2022. DOI: 10.3390/522155900.


https://doi.org/10.1007/s13389-021-00257-8
https://doi.org/10.1007/978-3-540-77360-3_8
https://doi.org/10.48550/arXiv.2206.10746
https://doi.org/10.1007/10958513_17
https://doi.org/10.1145/3427228.3427291
https://doi.org/10.46586/tches.v2023.i1.557-589
https://doi.org/10.46586/tches.v2023.i1.557-589
https://doi.org/10.3390/S22155900

376

pyecsca: Reverse engineering black-box ECC via side-channel analysis

[BHL*01]

[BIJP*15]

[BL17]

[Boo51]

[CIM*15]

[CK12]

[Cla04]

[CLH19]

[Cor99)

[DGH*13]

[DLM*05]

[Don19]

Michael Brown, Darrel Hankerson, Julio Lopez and Alfred Menezes. Software
implementation of the NIST elliptic curves over prime fields. In Topics in
Cryptology—CT-RSA 2001: The Cryptographers’ Track at RSA Conference
2001 San Francisco, CA, USA, April 8-12, 2001 Proceedings, pages 250-265.
Springer, 2001. DOI: 10.1007/3-540-45353-9_19.

Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, Jean-René Reinhard and
Justine Wild. Horizontal collision correlation attack on elliptic curves — exten-
ded version. Cryptogr. Commun., 7(1):91-119, 2015. DOI: 10.1007/s12095~-
014-0111-8.

Daniel J. Bernstein and Tanja Lange. Explicit-formulas database. 2017. URL:
https://hyperelliptic.org/EFD/ (visited on 10/07/2024).

Andrew D. Booth. A signed binary multiplication technique. The Quarterly
Journal of Mechanics and Applied Mathematics, 4(2):236-240, January 1951.
ISSN: 0033-5614. DOI: 10.1093/qjmam/4.2.236.

Common Criteria. ISO/IEC 15408 Information technology — Security tech-
niques — Evaluation criteria for IT security. In ISO/IEC 15/08-1:2022.
ISO/IEC, 2022.

David V. Chudnovsky and Gregory V. Chudnovsky. Sequences of numbers
generated by addition in formal groups and new primality and factorization
tests. 7(4):385-434, December 1986. 1SSN: 0196-8858. DOI: 10.1016/0196-
8858(86)90023-0.

Christophe Clavier, Quentin Isorez, Damien Marion and Antoine Wurcker.
Complete reverse-engineering of AES-like block ciphers by SCARE and FIRE
attacks. Cryptogr. Commun., 7(1):121-162, 2015. DOI: 10.1007/512095-014~
0112-7.

Claude Crépeau and Raza Ali Kazmi. An analysis of ZVP-Attack on ECC
cryptosystems. Cryptology ePrint Archive, Report 2012/329, 2012. https:
//eprint.iacr.org/2012/329.

Christophe Clavier. Side channel analysis for reverse engineering (SCARE) —
an improved attack against a secret A3/A8 GSM algorithm. Cryptology ePrint
Archive, Report 2004/049, 2004. https://eprint.iacr.org/2004/049.

Valence Cristiani, Maxime Lecomte and Thomas Hiscock. A bit-level approach
to side channel based disassembling. In CARDIS 2019, Prague, Czech Republic,
November 11-13, 2019, Revised Selected Papers, volume 11833 of LNCS,
pages 143-158. Springer, 2019. DOL: 10.1007/978-3-030-42068-0_9.

Jean-Sébastien Coron. Resistance against differential power analysis for elliptic
curve cryptosystems. In Cryptographic Hardware and Embedded Systems,
pages 292-302, Berlin, Heidelberg. Springer, 1999. po1: 10.1007/3-540~-
48059-5_25.

Jean-Luc Danger, Sylvain Guilley, Philippe Hoogvorst, Cédric Murdica and
David Naccache. A synthesis of side-channel attacks on elliptic curve crypto-
graphy in smart-cards. Journal of Cryptographic Engineering, 3(4):241-265,
November 2013. DOI: 10.1007/s13389-013-0062-6.

Rémy Daudigny, Hervé Ledig, Frédéric Muller and Frédéric Valette. SCARE

of the DES. In ACNS 05, volume 3531 of LNCS, pages 393-406. Springer,
Heidelberg, June 2005. DOI: 10.1007/11496137_27.

Ledger Donjon, 2019. URL: https://github.com/Ledger-Donjon/rainbow
(visited on 01/12/2023).


https://doi.org/10.1007/3-540-45353-9_19
https://doi.org/10.1007/s12095-014-0111-8
https://doi.org/10.1007/s12095-014-0111-8
https://hyperelliptic.org/EFD/
https://doi.org/10.1093/qjmam/4.2.236
https://doi.org/10.1016/0196-8858(86)90023-0
https://doi.org/10.1016/0196-8858(86)90023-0
https://doi.org/10.1007/s12095-014-0112-7
https://doi.org/10.1007/s12095-014-0112-7
https://eprint.iacr.org/2012/329
https://eprint.iacr.org/2012/329
https://eprint.iacr.org/2004/049
https://doi.org/10.1007/978-3-030-42068-0_9
https://doi.org/10.1007/3-540-48059-5_25
https://doi.org/10.1007/3-540-48059-5_25
https://doi.org/10.1007/s13389-013-0062-6
https://doi.org/10.1007/11496137_27
https://github.com/Ledger-Donjon/rainbow

Jancar et al.

377

[FGM*+10]

[FV12]

[GLVO1]

[GOP22]

[Gou03]

[GS21]

[GSM*10]

[HR76]

[HV]

[HVMO4]

[1T03]

Datashader: Accurately render even the largest data. URL: https://datashader.
org/ (visited on 10/04/2024).

Thomas Eisenbarth, Christof Paar and Bjorn Weghenkel. Building a side
channel based disassembler. Trans. Comput. Sci., 10:78-99, 2010. DOI: 10.
1007/978-3-642-17499-5_4.

Junfeng Fan, Xu Guo, Elke De Mulder, Patrick Schaumont, Bart Preneel
and Ingrid Verbauwhede. State-of-the-art of secure ECC implementations: A
survey on known side-channel attacks and countermeasures. In HOST 2010,
Proceedings of the 2010 IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST), 13-14 June 2010, California, USA, pages 76-87.
IEEE, 2010. por: 10.1109/HST.2010.5513110.

Junfeng Fan and Ingrid Verbauwhede. An updated survey on secure ECC
implementations: Attacks, countermeasures and cost. In Cryptography and
Security: From Theory to Applications - FEssays Dedicated to Jean-Jacques
Quisquater on the Occasion of His 65th Birthday, volume 6805 of LNCS,
pages 265-282. Springer, 2012. DOL: 10.1007/978-3-642-28368-0_18.

Robert P Gallant, Robert J Lambert and Scott A Vanstone. Faster point
multiplication on elliptic curves with efficient endomorphisms. In Annual
International Cryptology Conference, pages 190-200. Springer, 2001. DOI:
10.1007/3-540-44647-8_11.

Si Gao, Elisabeth Oswald and Dan Page. Towards micro-architectural leakage
simulators: reverse engineering micro-architectural leakage features is practical.
In Advances in Cryptology — EUROCRYPT 2022: 41st Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Trondheim, Norway, May 30 — June 3, 2022, Proceedings, Part 111, pages 284—
311, Trondheim, Norway. Springer-Verlag, 2022. 1SBN: 978-3-031-07081-5. DOI:
10.1007/978-3-031-07082-2_11.

Louis Goubin. A refined power-analysis attack on elliptic curve cryptosystems.
In PKC 2003, volume 2567 of LNCS, pages 199-210. Springer, Heidelberg,
January 2003. Do1: 10.1007/3-540-36288-6_15.

Cesar Pereida Garcia and Sampo Sovio. Size, speed, and security: An Ed25519
case study. In NordSec 2021, Virtual Event, November 29-30, 2021, volume 13115
of LNCS, pages 16-30. Springer, 2021. DOI: 10.1007/978-3-030-91625-1_2.

Sylvain Guilley, Laurent Sauvage, Julien Micolod, Denis Réal and Frédéric
Valette. Defeating any secret cryptography with SCARE attacks. In LATIN-
CRYPT 2010, volume 6212 of LNCS, pages 273-293. Springer, Heidelberg,
August 2010. DOT: 10.1007/978-3-642-14712-8_17.

Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision
trees is NP-complete. Inf. Process. Lett., 5(1):15-17, 1976. DOI: 10.1016/0020~
0190(76)90095-8.

Holoviews: Stop plotting your data — annotate your data and let it visualize
itself. URL: https://holoviews.org/ (visited on 10/04/2024).

Darrel Hankerson, Scott Vanstone and Alfred Menezes. Guide to elliptic curve
cryptography. Springer Professional Computing. Springer, New York, NY,
January 2004. 1SBN: 978-0-387-95273-4.

Tetsuya Izu and Tsuyoshi Takagi. Exceptional procedure attack on elliptic
curve cryptosystems. In PKC 2003, volume 2567 of LNCS, pages 224—-239.
Springer, Heidelberg, January 2003. DOI: 10.1007/3-540-36288-6_17.


https://datashader.org/
https://datashader.org/
https://doi.org/10.1007/978-3-642-17499-5_4
https://doi.org/10.1007/978-3-642-17499-5_4
https://doi.org/10.1109/HST.2010.5513110
https://doi.org/10.1007/978-3-642-28368-0_18
https://doi.org/10.1007/3-540-44647-8_11
https://doi.org/10.1007/978-3-031-07082-2_11
https://doi.org/10.1007/3-540-36288-6_15
https://doi.org/10.1007/978-3-030-91625-1_2
https://doi.org/10.1007/978-3-642-14712-8_17
https://doi.org/10.1016/0020-0190(76)90095-8
https://doi.org/10.1016/0020-0190(76)90095-8
https://holoviews.org/
https://doi.org/10.1007/3-540-36288-6_17

378

pyecsca: Reverse engineering black-box ECC via side-channel analysis

[ITO*24]

[Jan20)

[JIL]

[Jinja2]

[JSS*20]

[Ker83]
[Kob87]

[LewT78]

[LTM]
[Mac61]

[MHL*+22]

[Mi186]

[MMM14]

[Mon85]

[Mon87]

Vishnuvardhan V. Iyer, Aditya Thimmaiah, Michael Orshansky, Andreas
Gerstlauer and Ali E. Yilmaz. A hierarchical classification method for high-
accuracy instruction disassembly with near-field EM measurements. ACM
Trans. Embed. Comput. Syst., 23(1):10:1-10:21, 2024. DOI: 10.1145/3629167.

Jan Jancar. PYECSCA: Reverse-engineering black-box Elliptic Curve Crypto-
graphy implementations via side-channels. Master’s thesis, Masaryk University,
Brno, Czechia, 2020. URL: https://is.muni.cz/th/fjgay/.

Senior Official Group Information Systems Security. Application of Attack
Potential to Smartcards and Similar Devices. Joint Interpretation Library,
November 2022. URL: https://www.sogis.eu/documents/cc/domains/sc/
JIL-Application-of-Attack-Potential-to-Smartcards-v3.2.pdf.

The Pallets Projects. Jinja. URL: https://jinja.palletsprojects.com/
en/2.11.x/ (visited on 10/04/2024).

Jan Jancar, Vladimir Sedlacek, Petr Svenda and Marek Sys. Minerva: The
curse of ECDSA nonces. JACR TCHES, 2020(4):281-308, 2020. 1SSN: 2569-
2925. DOI: 10.13154/tches.v2020.14.281-308.

Auguste Kerckhoffs. La cryptographie militaire. Journal des sciences militaires,
I1X:161-191, 1883.

Neal Koblitz. Elliptic curve cryptosystems. Math. Comp., 48(177):203-209,
1987. 1ssN: 0025-5718. DOI: 10.2307/2007884.

Art Lew. Optimal conversion of extended-entry decision tables with general
cost criteria. Commun. ACM, 21(4):269-279, 1978. DOL: 10.1145/359460.
3594609.

Tom St Denis and Contributors. Libtommath. URL: https://www.libtom.
net/LibTomMath/ (visited on 10/04/2024).

Olin Lowe Macsorley. High-speed arithmetic in binary computers. Proceedings
of the IRE, 49(1):67-91, 1961. po1: 10.1109/JRPROC. 1961.287779.

Julien Maillard, Thomas Hiscock, Maxime Lecomte and Christophe Clavier.
Towards fine-grained side-channel instruction disassembly on a system-on-
chip. In 25th Furomicro Conference on Digital System Design, DSD 2022,
Maspalomas, Spain, August 31 - Sept. 2, 2022, pages 472-479. IEEE, 2022.
DOI: 10.1109/DSD57027.2022.00069.

Victor S. Miller. Use of elliptic curves in cryptography. In CRYPTO’85,
volume 218 of LNCS, pages 417-426. Springer, Heidelberg, August 1986. DOI:
10.1007/3-540-39799-X_31.

Mehari Msgna, Konstantinos Markantonakis and Keith Mayes. Precise instruction-
level side channel profiling of embedded processors. In ISPEC 201/, Fuzhou,
China, May 5-8, 2014. Proceedings, volume 8434 of LNCS, pages 129-143.
Springer, 2014. DOI: 10.1007/978-3-319-06320-1_11.

Peter L. Montgomery. Modular multiplication without trial division. Mathem-
atics of Computation, 44(170):519-521, 1985. 1SsN: 00255718, 10886842. DOT:
10.2307/2007970.

Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of
factorization. Mathematics of Computation, 48(177):243-264, 1987. 1SSN:
00255718, 10886842. DOI: 10.2307/2007888. (Visited on 01/12/2023).


https://doi.org/10.1145/3629167
https://is.muni.cz/th/fjgay/
https://www.sogis.eu/documents/cc/domains/sc/JIL-Application-of-Attack-Potential-to-Smartcards-v3.2.pdf
https://www.sogis.eu/documents/cc/domains/sc/JIL-Application-of-Attack-Potential-to-Smartcards-v3.2.pdf
https://jinja.palletsprojects.com/en/2.11.x/
https://jinja.palletsprojects.com/en/2.11.x/
https://doi.org/10.13154/tches.v2020.i4.281-308
https://doi.org/10.2307/2007884
https://doi.org/10.1145/359460.359469
https://doi.org/10.1145/359460.359469
https://www.libtom.net/LibTomMath/
https://www.libtom.net/LibTomMath/
https://doi.org/10.1109/JRPROC.1961.287779
https://doi.org/10.1109/DSD57027.2022.00069
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/978-3-319-06320-1_11
https://doi.org/10.2307/2007970
https://doi.org/10.2307/2007888

Jancar et al.

379

[MSE+20]

[MST+13]

[MVV18]

[NAH21]

[NSS*17]

(0C14]

[Ora23]

[Pip76]

[Pol65)

[PXJ+18]

[QS02]

[RDG*08]

[RLM+21]

Daniel Moghimi, Berk Sunar, Thomas Eisenbarth and Nadia Heninger. TPM-
FAIL: TPM meets timing and lattice attacks. In USENIX Security 2020,
pages 2057-2073. USENIX Association, August 2020. URL: https://www.
usenix . org/ conference /usenixsecurity20 /presentation/moghimi -
tpm.

Santi Martinez, Daniel Sadornil, Juan Tena, Rosana Tomas and Magda Valls.
On Edwards curves and ZVP-attacks. Appl. Algebra Eng. Commun. Comput.,
24(6):507-517, 2013. DOI: 10.1007/500200-013-0211-2.

Alfred J. Menezes, Paul C. Van Oorschot and Scott A. Vanstone. Handbook
of applied cryptography. CRC press, 2018. 1SBN: 9780429466335.

Pouya Narimani, Mohammad Ali Akhaee and Seyedamin Habibi. Side-channel
based disassembler for AVR micro-controllers using convolutional neural
networks. In ISCISC 2021, Isfahan, Iran, September 1-2, 2021, pages 75-80.
IEEE, 2021. por: 10.1109/ISCISC53448.2021.9720466.

Matus Nemec, Marek Sys, Petr Svenda, Dusan Klinec and Vashek Matyas.
The return of Coppersmith’s attack: Practical factorization of widely used
RSA moduli. In ACM CCS 2017, pages 1631-1648. ACM Press, October 2017.
DOI: 10.1145/3133956.3133969.

Colin O’Flynn and Zhizhang (David) Chen. ChipWhisperer: An open-source
platform for hardware embedded security research. In COSADE 2014, Paris,
France, April 13-15, 2014. Volume 8622 of LNCS, pages 243—-260. Springer,
2014. por: 10.1007/978-3-319-10175-0_17.

Oracle. Oracle Java Card technology, 2023. URL: https://www.oracle.com/
java/java-card/ (visited on 20/10/2023).

Nicholas Pippenger. On the evaluation of powers and related problems. In
17th Annual Symposium on Foundations of Computer Science (SFCS 1976),
pages 258-263. IEEE, 1976. por: 10.1109/SFCS.1976.21.

Solomon L. Pollack. Conversion of limited-entry decision tables to computer
programs. Commun. ACM, 8(11):677—682, 1965. DOL: 10 . 1145/ 365660 .
365681.

Jungmin Park, Xiaolin Xu, Yier Jin, Domenic Forte and Mark M. Tehranipoor.
Power-based side-channel instruction-level disassembler. In Proceedings of the
55th Annual Design Automation Conference, DAC 2018, San Francisco, CA,
USA, June 24-29, 2018, 119:1-119:6. ACM, 2018. DOI: 10.1145/3195970.
3196094.

Jean-Jacques Quisquater and David Samyde. Automatic code recognition
for smart cards using a Kohonen neural network. In Proceedings of the 5th
Conference on Smart Card Research and Advanced Application Conference
- Volume 5, CARDIS’02, page 6, San Jose, CA. USENIX Association, 2002.
DOI: 10.5555/1250988.1250994.

Denis Réal, Vivien Dubois, Anne-Marie Guilloux, Frédéric Valette and M hamed
Drissi. SCARE of an unknown hardware Feistel implementation. In CARDIS
2008, London, UK, September 8-11, 2008, volume 5189 of LNCS, pages 218—
227. Springer, 2008. DOI: 10.1007/978-3-540-85893-5_16.

Thomas Roche, Victor Lomné, Camille Mutschler and Laurent Imbert. A
side journey to Titan. In USENIX Security 2021, pages 231-248. USENIX
Association, August 2021. URL: https://www.usenix.org/conference/
usenixsecurity2l/presentation/roche.


https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://doi.org/10.1007/s00200-013-0211-2
https://doi.org/10.1109/ISCISC53448.2021.9720466
https://doi.org/10.1145/3133956.3133969
https://doi.org/10.1007/978-3-319-10175-0_17
https://www.oracle.com/java/java-card/
https://www.oracle.com/java/java-card/
https://doi.org/10.1109/SFCS.1976.21
https://doi.org/10.1145/365660.365681
https://doi.org/10.1145/365660.365681
https://doi.org/10.1145/3195970.3196094
https://doi.org/10.1145/3195970.3196094
https://doi.org/10.5555/1250988.1250994
https://doi.org/10.1007/978-3-540-85893-5_16
https://www.usenix.org/conference/usenixsecurity21/presentation/roche
https://www.usenix.org/conference/usenixsecurity21/presentation/roche

380

pyecsca: Reverse engineering black-box ECC via side-channel analysis

[RR13]

[SBO*+15]

[SCI*21]

[SDB*24]

[Si186]

[SJS20]

[SKN+22]

[SSG11]

[Str64]

[TQP*14]

[vGB22]

[VMA20]

Matthieu Rivain and Thomas Roche. SCARE of secret ciphers with SPN
structures. In ASTACRYPT 2013, Part I, volume 8269 of LNCS, pages 526—
544. Springer, Heidelberg, December 2013. DOT: 10.1007/978-3-642-42033~
T_2T7.

Daehyun Strobel, Florian Bache, David F. Oswald, Falk Schellenberg and
Christof Paar. Scandalee: A side-channel-based disassembler using local elec-
tromagnetic emanations. In Proceedings of the 2015 Design, Automation &
Test in Furope Conference € Exhibition, DATFE 2015, Grenoble, France, March
9-13, 2015, pages 139-144. ACM, 2015. DOI: 10.5555/2755753. 2755784,

Vladimir Sedlacek, Jesus-Javier Chi-Dominguez, Jan Jancar and Billy Bob
Brumley. A formula for disaster: A unified approach to elliptic curve special-
point-based attacks. In ASIACRYPT 2021, Part I, volume 13090 of LNCS,
pages 130-159. Springer, Heidelberg, December 2021. DOI: 10.1007/978-3-
030-92062-3_5.

Petr Svenda, Antonin Dufka, Milan Broz, Roman Lacko, Tomas Jaros, Daniel
Zatovic and Josef Pospisil. TPMScan: A wide-scale study of security-relevant
properties of tpm 2.0 chips. In TACR Transactions on Cryptographic Hardware
and Embedded Systems, volume 2024, No. 2, pages 714-734, 2024. DOI: 10.
46586/tches.v2024.12.714-734.

Joseph H. Silverman. The Arithmetic of Elliptic Curves, number 106 in
Graduate Texts in Mathematics. Springer-Verlag, 1986. 1SBN: 978-0-387-09493-
9.

Vladimir Sedlacek, Jan Jancar and Petr Svenda. Fooling primality tests on
smartcards. In ESORICS 2020, Part II, volume 12309 of LNCS, pages 209-229.
Springer, Heidelberg, September 2020. DOI: 10.1007/978-3-030-59013~
0_11.

Petr Svenda, Rudolf Kvasnovsky, Imrich Nagy and Antonin Dufka. JCAlgTest:
Robust identification metadata for certified smartcards. eng. In 19th Inter-
national Conference on Security and Cryptography, pages 597-604, Lisabon.
INSTICC, 2022. 1SBN: 978-989-758-590-6. DOI: 10.5220/0000163500003283.

Manuel San Pedro, Mate Soos and Sylvain Guilley. FIRE: Fault injection for
reverse engineering. In WISTP 2011, Heraklion, Crete, Greece, June 1-3, 2011,
volume 6633 of LNCS, pages 280-293. Springer, 2011. DOI: 10.1007/978-3-
642-21040-2_20.

Ernst Gabor Straus. Problems and solutions: Addition chains of vectors.
American Mathematical Monthly, 71(806-808), 1964.

Ming Tang, Zhenlong Qiu, Hongbo Peng, Xiaobo Hu, Yi Mu and Huanguo
Zhang. Toward reverse engineering on secret S-boxes in block ciphers. Sci.
China Inf. Sci., 57(3):1-18, 2014. por: 10.1007/811432-013-5053-9.

Jurian van Geest and Ileana Buhan. A side-channel based disassembler for
the ARM-Cortex M0. In ACNS 2022 Satellite Workshops, Rome, Italy, June
20-28, 2022, volume 13285 of LNCS, pages 183-199. Springer, 2022. DOI:
10.1007/978-3-031-16815-4_11.

Shahram Vafa, Massoud Masoumi and Amir Amini. An efficient profiling at-
tack to real codes of PIC16F690 and ARM cortex-m3. IEEE Access, 8:222520—
222532, 2020. po1: 10.1109/ACCESS.2020.3043395.


https://doi.org/10.1007/978-3-642-42033-7_27
https://doi.org/10.1007/978-3-642-42033-7_27
https://doi.org/10.5555/2755753.2755784
https://doi.org/10.1007/978-3-030-92062-3_5
https://doi.org/10.1007/978-3-030-92062-3_5
https://doi.org/10.46586/tches.v2024.i2.714-734
https://doi.org/10.46586/tches.v2024.i2.714-734
https://doi.org/10.1007/978-3-030-59013-0_11
https://doi.org/10.1007/978-3-030-59013-0_11
https://doi.org/10.5220/0000163500003283
https://doi.org/10.1007/978-3-642-21040-2_20
https://doi.org/10.1007/978-3-642-21040-2_20
https://doi.org/10.1007/S11432-013-5053-9
https://doi.org/10.1007/978-3-031-16815-4_11
https://doi.org/10.1109/ACCESS.2020.3043395

Jancar et al. 381

[vWB11]  Jasper G. J. van Woudenberg, Marc F. Witteman and Bram Bakker. Improving
differential power analysis by elastic alignment. In CT-RSA 2011, volume 6558
of LNCS, pages 104-119. Springer, Heidelberg, February 2011. por: 10.1007/
978-3-642-19074-2_8.

[VWGO07] Dennis Vermoen, Marc F. Witteman and Georgi Gaydadjiev. Reverse engi-
neering Java Card applets using power analysis. In WISTP 2007, Heraklion,

Crete, Greece, May 9-11, 2007, volume 4462 of LNCS, pages 138-149. Springer,
2007. por: 10.1007/978-3-540-72354-7_12.

[WR20] Pete Whittaker and Tom Randall. Wide Boyz. 2020. URL: https://www.
youtube. com/@WideBoyz (visited on 19/12/2023).

[ZLL12] Fangguo Zhang, Qiping Lin and Shengli Liu. Zero-value point attacks on
Kummer-based cryptosystem. In ACNS 12, volume 7341 of LNCS, pages 293—
310. Springer, Heidelberg, June 2012. bo1: 10.1007/978-3-642-31284-7_18.


https://doi.org/10.1007/978-3-642-19074-2_8
https://doi.org/10.1007/978-3-642-19074-2_8
https://doi.org/10.1007/978-3-540-72354-7_12
https://www.youtube.com/@WideBoyz
https://www.youtube.com/@WideBoyz
https://doi.org/10.1007/978-3-642-31284-7_18

	Introduction
	Background
	Elliptic curve cryptography
	Side-channel attacks
	Reverse engineering

	Analysis of open-source libraries
	Specific implementations
	Curve models
	Scalar multipliers
	Coordinate systems
	Formulas

	Reverse-engineering techniques
	RPA
	ZVP
	EPA

	Toolkit
	Configuration
	Simulation
	Code generation
	Emulation
	Miscellaneous

	Results
	RPA-RE
	ZVP-RE

	Conclusions

