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Abstract. SHA-3, the latest hash standard from NIST, is utilized by numerous
cryptographic algorithms to handle sensitive information. Consequently, SHA-3 has
become a prime target for side-channel attacks, with numerous studies demonstrating
successful breaches in unprotected implementations. Masking, a countermeasure
capable of providing theoretical security, has been explored in various studies to
protect SHA-3. However, masking for hardware implementations may significantly
increase area costs and introduce additional delays, substantially impacting the speed
and area of higher-level algorithms. In particular, current low-latency first-order
masked SHA-3 hardware implementations require more than four times the area
of unprotected implementations. To date, the specific structure of SHA-3 has not
been thoroughly analyzed for exploitation in the context of masking design, leading
to difficulties in minimizing the associated area costs using existing methods. We
bridge this gap by conducting detailed leakage path and data dependency analyses
on two-share masked SHA-3 implementations. Based on these analyses, we propose
a compact and low-latency first-order SHA-3 masked hardware implementation,
requiring only three times the area of unprotected implementations and almost no
fresh random number demand. We also present a complete theoretical security proof
for the proposed implementation in the glitch+register-transition-robust probing
model. Additionally, we conduct leakage detection experiments using PROLEAD,
TVLA and VerMI to complement the theoretical evidence. Compared to state-of-the-
art designs, our implementation achieves a 28% reduction in area consumption. Our
design can be integrated into first-order implementations of higher-level cryptographic
algorithms, contributing to a reduction in overall area costs.
Keywords: SHA-3 · Keccak · Masking · Side-Channel Attacks · Glitch · Hardware
Implementation · Low Latency

1 Introduction
The Secure Hash Algorithm-3 (SHA-3) is the latest hash standard according to the
National Institute of Standards and Technology (NIST). Upon its release in FIPS 202
[NIS15], SHA-3 has been adopted as a common building block in a variety of cryptographic
schemes. Many of these schemes use SHA-3 to process some form of secret input. For
example, in NIST’s Post-Quantum Cryptography (PQC) project, SHA-3 is utilized in
multiple key encapsulation mechanisms (KEMs) and digital signature schemes to process
secret seeds, generate secret pseudorandom numbers, and directly handle private keys
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[SAB+22, LDK+22, HBD+22]. Moreover, in NIST’s recommendation SP800-185 [KjCP16],
the Keccak Message Authentication Code (KMAC) employs SHA-3 for processing secret
keys. These applications make SHA-3 a potential single point of failure of the system.

Numerous studies have investigated side-channel attacks targeting SHA-3. In the case of
both hardware and software implementations of KMAC, differential power analysis (DPA)
has been demonstrated to be effective in key recovery [LFF+14, LFF+15, TS13b, TS13a].
Additionally, for software implementations of SHA-3, template attacks have been shown to
be able to recover inputs [KPP20, YK20, YK21]. These works highlight the importance of
safeguarding SHA-3 against side-channel attacks.

Masking is one of the most investigated countermeasures against side-channel attacks,
and its theoretical security has been thoroughly analyzed and proven in several formal
models [CJRR99, ISW03, PR13, DDF14]. Masking schemes randomly split a secret into
several shares, severing the connection between the secret and the low-order statistical
moments of the side-channel leakage distributions [BDF+17]. As a result, attackers
must rely on higher-order statistical moments to extract secret information, a task that
becomes exponentially difficult with sufficient noise [BDF+17]. Exploiting second-order
information for attacks exponentially increases costs, which is especially challenging for
highly parallelized hardware with high noise levels. Thus, first-order hardware masking
schemes are particularly appealing and have been the subject of considerable research
[BNN+12, SM21a, KM22] due to the good trade-off between implementation cost and
security. Thus, this paper focuses on first-order hardware masking for SHA-3.

In multiple application scenarios of masking SHA-3, speed is a critical factor. For the
PQC algorithms Kyber and Dilithium, SHA-3 operations constitute a significant portion of
the computational workload [ABCG20, GKS21], and they can become a speed bottleneck
in masked implementations [BGR+21, ABC+23]. For KMAC and hash-based signatures,
SHA-3 is used for nearly all of the computations [KjCP16, HBD+22]. Therefore, the speed
of SHA-3 directly impacts the overall speed of these schemes. In addition, when masking
schemes are applied in hardware implementations, glitches in combinational logic may
introduce additional leakage [FGP+18]. One direct approach to mitigate this issue is to use
additional registers; however, this approach leads to additional delays [ABP+18, SM21b].
Consequently, numerous studies have focused on reducing the latency of masked hardware
implementations of SHA-3 [BDN+13, ABP+18, ZSS+21], preventing additional delays
introduced by side-channel countermeasures.

Hardware masking of SHA-3 also results in substantial area overhead. Given that
the SHA-3 module typically occupies a high proportion of the area of the cryptographic
hardware engine [ZZW+22, AMI+23], masking SHA-3 significantly influences the overall
area needed by the cryptographic implementation. Several studies have attempted to
minimize the area of masked round-based implementations of SHA-3. These works
can be classified into two primary categories based on the masking method: threshold
implementation (TI)-based methods [NRR06] and domain-oriented masking (DOM)-based
methods [GMK16]. Among them, TI-based methods [BDN+13, ABP+18] require more
than four times the area of unprotected SHA-3 implementations, and since the number
of shares already approaches the theoretical limit, further optimization within the TI
framework becomes challenging. DOM-based implementations [GSM17a, ZSS+21] need
more than three times the area, introducing either additional registers, which introduce
additional cycles, or high random number consumption, which leads to significant additional
area costs for the pseudorandom number generator (PRNG). For existing masking methods,
reducing the area of low-latency masked SHA-3 proves to be highly challenging.

SHA-3 functions are based on instances of the Keccak algorithm, and the number
of state bits b can vary from 25 to 1600. Several existing works [ABP+18, ZSS+21] have
focused on optimizing the masking scheme for the general Keccak. However, SHA-3
exclusively utilizes the b = 1600 version of Keccak, and an optimal masking scheme for
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this particular version has not yet been developed.
In this paper, we propose a compact and low-latency first-order masked SHA-3 hardware

implementation, achieving a new area record. Our contributions are summarized as follows:

• We conducted a detailed analysis of leakage paths and data dependencies for the
b = 1600 version of the DOM masking of Keccak, which enables more refined
SHA-3 masking designs.

• We propose a compact and low-latency first-order masked SHA-3 hardware imple-
mentation, reducing the area cost by 28% compared to state-of-the-art designs and
consuming only 2 bits of fresh random numbers per cycle.

• We provide theoretical security proofs for the proposed design under the glitch+register-
transition-robust probing model. Furthermore, we experimentally evaluated the
security of our design using PROLEAD, TVLA, and VerMI.

We release the RTL codes of our design and all the programs we used during the
security proofs of our design at https://github.com/zck15/CLLFO-SHA-3.

Outline. Section 2 provides background knowledge on Keccak and hardware masking.
Section 3 presents the leakage analysis of SHA-3’s DOM masking and our design rationale.
Section 4 describes the details of our hardware architecture. Section 5 provides theoretical
security proofs under robust probing models. Section 6 presents the experimental leakage
evaluation results. Section 7 presents the synthesis results and comparisons with related
works. Finally, Section 8 provides conclusions and discussions on composability.

Related Works. The designers of Keccak [BDPA10a] proposed a first-order hardware
masking Keccak design with three shares based on TI. However, this design failed to
achieve uniformity and is thus not provably secure [BDN+13]. Bilgin et al. [BDN+13]
proposed enhanced first-order TI-based Keccak masking designs, including a 3-share
version requiring 4-bit fresh randomness per cycle and a 4-share version requiring no
fresh randomness, with area overheads 4.1 and 5.0 times greater than the area of the
unprotected design, respectively. Daemen [Dae17] extended the method used in [BDN+13]
and introduced the famous Changing of the Guards (COTG) method, which can achieve
uniformity at a low cost of fresh randomness. Arribas et al. [ABP+18] proposed a two-
round unrolled TI-based architecture using 5 to 10 shares, reducing the number of clock
cycles by half but requiring several tens of times the area cost. Due to the limitations
of the TI method, all first-order TI-based Keccak implementations require at least 3
shares, limiting further area reduction. Additionally, these works are only designed to resist
glitch-induced leakage, without considering potential leakage introduced by transitions.

Some other works have attempted to use the minimum number of shares to achieve
smaller-area Keccak masking implementations, i.e., d+ 1 shares for d-th order security.
Gross et al. [GSM17b] presented arbitrary-order d+1-share Keccak masking designs based
on DOM. Their first-order implementation requires only 3 times the original area without
fresh randomness but fails to achieve uniformity. Additionally, in their Keccak-f [200]
implementations, Arribas et al. [ABP+18] identified glitch-induced leaks. To mitigate
glitch propagation, Gross et al. added an additional register stage in an updated version
of the implementation [GSM17a], resulting in double the number of clock cycles. Zarei et
al. [ZSS+21] proposed single-cycle-per-round implementations that are resilient to glitches.
These implementations are based on DOM and uses d+ 1 shares for dth-order security.
However, a significant number of logic circuits are used to resist glitch-induced leakage,
and a large amount of randomness is applied to achieve uniformity. Shahmirzadi et al.
[SM21b] proposed first- and second-order Keccak nonlinear layers with d+ 1 shares that
achieve uniformity without fresh randomness. However, they need 3 clock cycles per round

https://github.com/zck15/CLLFO-SHA-3
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Figure 1: The Keccak sponge function. f represents permutation Keccak-f [b].

to prevent glitch-induced leakage, and their first-order implementation requires 4.2 times
the area. These d+ 1-share works either require more cycles per round or maintain an area
overhead of more than 4 times the original level. Additionally, these works only consider
glitch-robust security and do not consider transitions.

The S-boxes of Xoodyak and Ascon are similar to those of Keccak. Peng et al.
[PYY+23] proposed a low-randomness first-order Xoodyak implementation. Their S-box
structure is similar to that of Gross for Keccak [GSM17b] and thus suffers from glitch-
induced leakage and nonuniformity when applied to Keccak. Prasad et al. [PMSN23]
proposed randomness-free Ascon implementations, which use two cycles per round to resist
glitches and thus cannot be directly used for single-cycle-per-round Keccak masking
designs.

2 Notations and Preliminaries

2.1 Notations
We denote variables with lower-case italic a, specific values with upper-case italic A, i-th
share of a variable with subscripts ai, set of all shares with hats â = (a1, a2, . . . ), and
vectors with bold italic a.

For variables in the Keccak operation, we denote coordinates in the state array in
triple form as [x, y, z] or in pair form as [x, j], where j = 64y + z represents the row index.
When describing relationships that apply to every row, we ignore row indices and use [x]
to denote the coordinates. We denote variables in the n-th round with superscripts an,
input for the n-th round with sn, output of θ with tn, output of ρ with un, output of π
with vn, output of χ with wn, flip-flops in χ with dn, result of π(ρ(sn)) (bypassing θ) with
s′n, fresh random bits with rn, and guards generated using COTG-like methods with gn.

2.2 Keccak
Keccak is a family of sponge functions that forms the basis of the NIST standard
SHA-3 [NIS15]. All six functions standardized in SHA-3 are instances of the Keccak
sponge functions (Figure 1) with different parameters. The primary operation in these
sponge functions is the Keccak permutation, known as Keccak-f [b]. The Keccak-f [b]
permutation family, in its original definition, includes seven permutations with different
bit widths b, ranging from 25 to 1600. In the SHA-3 standard, only the permutation
Keccak-f [1600] is utilized, which is the protection target of this paper.

Keccak-f [1600] operates on a three-dimensional 1600-bit state array s, where the bit
at coordinates (x, y, z) is denoted as s[x, y, z]. The Keccak-f [1600] permutation consists
of 24 rounds, with each round composed of the following 5 steps:

round = ι ◦ χ ◦ π ◦ ρ ◦ θ,with
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θ : tn[x, y, z]← sn[x, y, z]⊕
4⊕

y′=0
sn[x− 1, y′, z]⊕

4⊕
y′=0

sn[x+ 1, y′, z − 1],

ρ : un[x, y, z]← tn[x, y, z −OFFSρ[x, y]], where OFFSρ are constant offsets,
π : vn[x, y, z]← un[x+ 3y, x, z],
χ : wn[x, y, z]← vn[x, y, z]⊕ vn[x+ 1, y, z]vn[x+ 2, y, z],
ι : sn+1 ← wn ⊕ RCn, where RCn is the round constant for round n.

Note that because the size of the state array s is 5 × 5 × 64, the addition and
subtraction operations for the x and y coordinates are modulo 5, while the operations for
the z coordinate are modulo 64. The values of OFFSρ and RC can be found in Table 2 of
[NIS15] and Section 3.2.5 of [NIS15], respectively.

2.3 Masking
Masking schemes split sensitive data randomly into several shares; as a result, an adversary
needs all shares to obtain sensitive information. Formal theoretical analysis indicates
that the security of masking relies on two fundamental requirements [PR13]: each side-
channel sample depends on a limited number of shares (ideally one), and leakage from
shares contains sufficient noise. The first requirement of independence is closely tied to
algorithmic-level scheme design, which is the primary focus of this paper. The second
requirement of noise is more circuit-level and product specific, and we refer to [GS18] for
further discussion on this aspect.

To assess whether specific masking schemes satisfy the independence requirement,
various attacker models have been developed to evaluate this aspect of the design, as
introduced in Section 2.3.1. Multiple masking design frameworks have been developed to
meet the independence requirement; here, we introduce the TI and DOM frameworks in
Sections 2.3.2 and 2.3.3, respectively.

2.3.1 Probing Security

To assess the independence between side-channel leakage and secret information, probing
security models, introduced by Ishai et al. [ISW03], are widely employed. In the probing
security model, a dth-order attacker directly reads the intermediate values on d wires
in the circuit. If a circuit does not leak any sensitive information when facing such
attackers, it is referred to as a dth-order probing secure. The probing security model does
not rely on specific leakage models or attack methods but rather directly examines the
independence between intermediate variables and sensitive information, aiming to ensure
the first fundamental assumption in the theoretical security of masking operations.

The probing security model works well in software masking implementations. However,
in hardware implementations, physical defaults such as glitches and transitions can generate
side-channel information that combines multiple intermediate variables [MPG05, MPO05].
This may reduce the security in the bounded order model [BDF+17] and cannot be
detected by the probing security model. To address this issue, Faust et al. [FGP+18]
proposed a robust probing security model that considers the possible combinations caused
by physical defaults. For combinational logic circuits, applying a glitch-extended probe
on any output of a gadget allows an adversary to observe all the inputs to the gadget.
For memory cells, applying a transition-extended probe on a register allows an adversary
to observe any pair of values stored in two consecutive invocations. If a design does not
leak sensitive information when facing glitch-extended or transition-extended probes, the
design is termed glitch-robust or transition-robust probing secure. Cassiers et al. [CS21]
proposed a more conservative model considering the transitions of all wires rather than just
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transitions of memory cells. To distinguish between these two models, we refer to them as
the register-transition-robust and wire-transition-robust probing models, respectively.

2.3.2 Threshold Implementation

Threshold implementation (TI), introduced by Nikova et al. [NRR06], is a popular hardware
masking method due to its easily understandable security requirements, particularly for
first-order masking. TI requires that the circuit satisfies the non-completeness property,
preventing any combinatorial logic operations from having access to all the shares of
sensitive variables and thus preventing leaks caused by glitches. The specific requirements
for first-order TI are as follows. A target function z = f(x, y, . . . ) is divided into n
component functions f1, f2, . . . , fn. The component functions must satisfy the following
two properties:

Property 1 (Non-completeness [NRR06]). Every function is independent of at least one
share of each of the input variables x, y, . . . .

Property 2 (Correctness [NRR06]). The sum of the output shares gives the desired
output.

For input variables x, y, . . . , their shares x̂ = (x1, x2, . . . , xm), ŷ = (y1, y2, . . . , ym), . . .
must satisfy the following property:

Property 3 (Uniformity [NRR06]). The conditional probability distribution Pr(x̂ =
X̂, ŷ = Ŷ , . . . |x = X, y = Y, . . . ) of every possible sharing vector is uniform:

Pr(x̂ = X̂, ŷ = Ŷ , . . . ) = cPr(x =
⊕
i

Xi, y =
⊕
i

Yi, . . . ).

Nikova et al. [NRR06] proved that implementations satisfying the above conditions
are first-order secure in the presence of glitches, as stated in the following theorem.

Theorem 1 ([NRR06]). In a circuit implementing a set of functions satisfying Property 1
and Property 2, when the input satisfies Property 3, all the intermediate results are
independent of the inputs x, y, . . . and the output z. Additionally, the power consumption
and any other characteristic of each individual function fi are independent of x, y, . . . and
z.

Since the input for the subsequent function is formed by the output of the previous
function, the input uniformity of the subsequent function can be achieved by ensuring that
the previous function satisfies the balanced property.

Property 4 (Balance [NRR06]). Functions are balanced if for all input share distributions
satisfying Property 3, the output distribution satisfies Property 3.

This property holds if the function is invertible. However, achieving the balance
property with a minimal number of shares is sometimes not trivial. In theory, the lower
bound for the number of shares in a TI of the χ function in SHA-3 is 3 [NRR06]. However,
a balanced 3-share TI for χ has not yet been found [BDN+13].

2.3.3 Domain-Oriented Masking

Domain-oriented masking (DOM), introduced by Gross et al. [GMK16], aims to provide
dth-order security using only d + 1 shares. In DOM implementations, each share of a
variable is associated with one share domain. For linear operations, calculations are
performed within each domain. For nonlinear operations, the authors proposed two types
of AND gates, namely, DOM-indep and DOM-dep, for cases in which the two inputs are
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Figure 2: First-Order DOM-Indep Gate.

independent and dependent, respectively. We focus on the first-order DOM-indep gate
(Figure 2), which we abbreviate as the DOM gate for brevity. The calculation process of
the DOM gate involves computing products, including two inner-domain products and
two cross-domain products; resharing the cross-domain products with a fresh random
bit; and compressing the outputs of registers within the same domain. Two points must
be considered when using the DOM scheme. First, the shares of the two inputs to the
DOM gate must be independent to prevent potential leakage in the cross-domain products.
Second, each DOM gate requires a fresh random bit, which may lead to a relatively high
overall demand for fresh random numbers when many DOM gates are used.

3 Leakage Analysis and Design Rationale
In this section, we analyze potential leaks in two-share DOM-based Keccak masking
schemes and rationalize our design choices. Section 3.1 discusses leaks in the DOM-
Keccak scheme [GSM17b], clarifying that the leaks reported by Arribas et al. [ABP+18]
do not exist in the f [1600] version and pointing out two additional issues: a new source of
leakage and uniformity. Section 3.2 introduces the new source of leakage and discusses
its classification, sources and countermeasures. Section 3.3 discusses solutions to the
uniformity issue and its impact on potential leakage. Section 3.4 presents our final design
choices and explains the reasons for selecting this approach.

3.1 Analysis of Leakage in DOM-Keccak
Gross et al. [GSM17b] proposed a two-share DOM-based masking implementation of
Keccak. In their design, linear operations are performed separately on each of the two
shares, and the AND gates in χ are replaced with DOM gates. Arribas et al. [ABP+18]
reported that the non-completeness property is compromised in the f [200] version and
verified the leakage through experiments. The reason for this leakage is that the inputs to
the DOM gates in χ come from the outputs of the preceding linear operations, and the
diffusion in θ causes the two input variables of some DOM gates to be correlated with a
common θ input variable. In other words, under the glitch-robust probing model, a probe
on the cross-domain terms in the DOM gate can extend to both shares of the related θ
input simultaneously. This implies that side-channel information induced by glitches may
reveal the secret value of the θ input.

We examined the f [1600] version of DOM-Keccak and found that the same type of
leakage did not occur. The reason is discussed as follows. The diffusion in θ is confined to
states with the same and neighboring z values, while the subsequent ρ operation disperses
the states in the z direction. As f [1600] has a larger z-direction length, with W = 64, the
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Figure 3: Modified DOM Gate with No Fresh Random Number for χ Operations by
[GSM17b].

related states become more scattered in the z direction after ρ. Consequently, in the χ
operations, for which the inputs come from states in the same row and thus have the same
z coordinates, the inputs are no longer correlated. This finding indicates that there is no
first-order leakage under the glitch-robust probing model for the first-round operation of
DOM-Keccak-f [1600] due to the non-completeness property.

However, this security holds only for the first round. There are two other issues in
subsequent rounds: there is a new source of leakage, and the input of these rounds does not
satisfy the uniformity property. Regarding the new leakage issue, starting from the second
round, glitch-extended probes can be extended to the DOM registers dn−1

i in the previous
round instead of being confined to the compressed round input sni . The knowledge of
these registers’ values may reveal some unshared values of the corresponding χn−1 inputs
vn−1. Regarding the uniformity property, the authors replaced the fresh random bit
in the original DOM gate with adjacent χ input shares (Figure 3). This randomness
optimization prevents the χ operation from maintaining the uniformity of the state, as
noted by [GSM17b]. This implies that starting from the second round, the input does not
satisfy the uniformity property, making it challenging to guarantee theoretical security.

3.2 New Leakage Types and Countermeasures
In this section, a new source of leakage in DOM-Keccak-f [1600] occurring after the first
round is discussed. In the n-th round, a glitch-extended probe can obtain the corresponding
DOM register values dn−1

i . Known values of multiple registers in the same row may reveal
the unshared values of their common χ inputs. We categorize this potential leakage into
two types, as shown in Table 1. Below, we elaborate on how each type arises and discuss
possible countermeasures.

Table 1: New Leakage Types in DOM-Keccak-f [1600]: Each Row Represents a Potential
Leak Where a Glitch-Extended Probe’s Input List Contains Multiple Registers in the
Same Row.

Type I (Inner-Domain) Type II (Inner-Domain) Type II (Cross-Domain)
dn−1

0,1 [x],dn−1
0,1 [x+ 1] dn−1

0,1 [0],dn−1
0,1 [3] dn−1

0,1 [0],dn−1
2,3 [3]

dn−1
2,3 [x],dn−1

2,3 [x+ 1] dn−1
2,3 [0],dn−1

2,3 [3] dn−1
2,3 [0],dn−1

0,1 [3]
dn−1

0,1 [0],dn−1
0,1 [1],dn−1

0,1 [3] dn−1
0,1 [0],dn−1

0,1 [1],dn−1
2,3 [3]

dn−1
2,3 [0],dn−1

2,3 [1],dn−1
2,3 [3] dn−1

2,3 [0],dn−1
2,3 [1],dn−1

0,1 [3]
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Figure 4: Type I Leakage Illustration: A Glitch-Extended Probe’s Input List Contains
Four X-Axis Adjacent Registers in the Same Domain.

Table 2: An Example of Type I Leakage: Solving Equations with Given Register Values
Reveals All Possible Input Vectors Corresponding to a Fixed Unshared Value.

d2[4] d3[4] d2[0] d3[0] v1[4] v1[0] v1[1] v0[1] v1[2] v0[2] v[2]
1 1 1 1 0 1 1 1 1 0 1
1 1 1 1 1 1 1 0 1 0 1

Type I leakage is illustrated in Figure 4. When a glitch-extended probe is applied to
any output of the θ operation, it extends to four consecutive DOM registers in the same
row. An example is provided in Table 2, which demonstrates how the values of these
four registers reflect the secret value. When all four register values are read as ones, all
possible input vectors correspond to the sensitive value v[2] = 1. This type of leakage
occurs ubiquitously, as any two adjacent x-axis χ outputs in the same row will be XORed
together in some θ of the subsequent round.

Type II leakage occurs in 384 glitch-extended probes preceding registers dn0,1,2,3[0, 0, z]
and dn1,2[1, 0, z]. An example of a probe placed on dni [0, 0, 44] is shown in Figure 5. All
these probes simultaneously extend to χ inputs vni [1, 0, z] and vnk [2, 0, z], which are the
causes of leakage. The corresponding indices for these χ inputs before steps π, ρ and θ are
as follows:

vni [1, 0, z]← uni [1, 1, z]← tni [1, 1, z − 44]← sni [0, y, z − 44], sni [1, 1, z − 44], sni [2, y, z − 45]
← dn−1

2i,2i+1[0, y, z − 44],dn−1
2i,2i+1[1, 1, z − 44],dn−1

2i,2i+1[2, y, z − 45]
vnk [2, 0, z]← unk [2, 2, z]← tnk [2, 2, z − 43]← snk [1, y, z − 43], snk [2, 2, z − 43], snk [3, y, z − 44]

← dn−1
2k,2k+1[1, y, z − 43],dn−1

2k,2k+1[2, 2, z − 43],dn−1
2k,2k+1[3, y, z − 44]

Figure 5: Type II Leakage Illustration: The Glitch-Extended Probe on dni [0, 0, 44] Extends
to θ Inputs in the Same Row.

The corresponding θ inputs sni [. . . ] have no overlap; thus, they do not impact the
security in the first round. However, they include θ inputs in the same row, highlighted
in orange and cyan. This causes the values in the preceding registers dn−1

2i,2i+1[. . . ] to be
related to some common χ inputs. Placing a probe on dn0/3[0, 0, z] or dn1/3[1, 0, z] will
simultaneously extend to χ inputs vni [1, 0, z] and vnk [2, 0, z] from the same domain (i = k),
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causing five inner-domain Type II leaks. Placing a probe on dn1/2[0, 0, z] will simultaneously
extend to χ inputs vni [1, 0, z] and vnk [2, 0, z] from different domains (i 6= k), causing five
cross-domain Type II leaks.

Next, we discuss countermeasures against these leaks. Type I leaks occur in all x-
adjacent registers in the same domain, so we aim to develop countermeasures with minimal
cost. We tested all possible variations of no-randomness DOM gates in Figure 3, including
different positions of the NOT gates and whether v0,1[x] were XORed with the inner-domain
products or cross-domain products. We found that the joint distribution of the four registers’
values in the Type I case is statistically independent of sensitive information when both of
the following conditions are satisfied. First, the NOT operation on v[x+ 1] is dispersed
on products in different domains, i.e., either (v0[x+ 1]v0[x + 2], v1[x+ 1]v1[x + 2]) or
(v0[x+ 1]v1[x+2], v1[x+ 1]v0[x+2]). Second, v[x]

0,1 are XORed with cross-domain products,
not inner-domain products.

For Type II leaks, only (dn−1
0,1 [0],dn−1

0,1 [3]) and (dn−1
2,3 [0],dn−1

2,3 [3]) can be addressed using
the above method. A possible countermeasure for addressing Type II leaks is to use random
numbers to reshare the products of the χ operations for x = 0, 1, 3. Note that in Type
II leaks, dn−1

2i,2i+1[0] and dn−1
2i,2i+1[1] are always in the same domain, while dn−1

2k,2k+1[3] can
be in a different domain from dn−1

2i,2i+1[0] and dn−1
2i,2i+1[1]. For each χ operation, resharing

can be performed in several ways: resharing the products before registers dn−1
0 and dn−1

3 ,
denoted as (d0, d3); resharing (d1, d2); resharing (d0, d1) and (d2, d3); or resharing (d0, d3)
and (d1, d2). The last method is the most effective but requires two independent random
bits.

3.3 Achieving Uniformity
The nonuniformity of the current module’s output affects the security of subsequent
modules. The χ operation in DOM-Keccak is shown as follows:

w0[x] = v0[x]⊕ v0[x+ 1]v0[x+ 2]⊕ v0[x+ 1]v1[x+ 2]
w1[x] = v1[x]⊕ v1[x+ 1]v0[x+ 2]⊕ v1[x+ 1]v1[x+ 2]

(1)

The output of a single χ operation satisfies uniformity, but the outputs of the five χ
operations in the same row do not exhibit a jointly uniform distribution, which can be
checked through the noninvertibility of the distribution. A similar situation arises in
the 3-share TI-Keccak proposed by the Keccak designers [BDPA10a], as reported in
[BDN+13].

To achieve uniformity for this 5-bit S-box, there are two methods discussed in the
literature: restricting the input to the original 5 bits and searching for functions that
satisfy uniformity [SM21b] or employing additional inputs such as fresh random numbers
[ZSS+21] or guards in the COTG method [BDN+13, Dae17]. The first method requires two
additional register layers before and after the S-box, resulting in a triple delay. Therefore,
our focus and discussion here primarily revolve around the COTG method.

Bilgin et al. [BDN+13] proposed a COTG-like method for 3-share TI-Keccak. The
principle can be summarized as follows: the uniformity of ŵ[2] is ensured by v̂[2], ŵ[1] by
v̂[1], and ŵ[0] by v̂[0]; however, the uniformity of ŵ[3] and ŵ[4] cannot be ensured by v̂[3]
and v̂[4], as v̂[3] and v̂[4] have already appeared in the computation of ŵ[2]. Therefore,
another row’s v0[3, j′] and v0[4, j′] are used to ensure this property. This method requires
the following conditions: the two coordinates to be uniformed by other rows must be
consecutive but can otherwise be arbitrarily chosen. The random numbers (v0[3, j′],
v0[4, j′]) do not have to be from an adjacent row and only need to be from an unrelated
row. As these two rows can be considered connected, all 320 rows should form a cycle-free
chain, and two fresh random bits are used at the end of this chain.
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Figure 6: Hardware Architecture.

However, this method introduces additional challenges to ensuring non-completeness.
Using χ inputs from other rows in the χ operation introduces additional data dependencies,
providing extra information to glitch-robust probing attackers and potentially exacerbating
the new leakage introduced in Section 3.2. Therefore, careful selection of the source rows
of randomness is necessary.

3.4 Our Design Choices
For Type I leaks, we employ the countermeasures discussed in Section 3.2, which mitigate
such leaks at minimal cost. We address Type II leaks and the issue of uniformity together to
simplify the design. We use the approach discussed in Section 3.3 to address uniformity, i.e.,
resharing the x-axis adjacent outputs of the current row using the two inputs from other rows
as random numbers. Moreover, we use these two random numbers to counteract Type II
leaks, specifically choosing to reshare (d[0], d[1]), (d[2], d[3]) or (d[3], d[4]). By computing the
distribution of the outputs, we find that using only these two random numbers is insufficient
for counteracting Type II leaks. Therefore, for a DOM gate at wn−1[x = 0/1/3, y, z],
we leverage two shares s′n−1

0,1 [x, y, z], which are the middle states sn−1
0,1 [x′, y′, z′] of the

corresponding θ inputs (sn−1
0,1 [x′ − 1, 0 · · · 4, z′], sn−1

0,1 [x′, y′, z′], sn−1
0,1 [x′ + 1, 0 · · · 4, z′ − 1])

of the χ inputs vn−1
0,1 [x, y, z], simultaneously resharing products (dn−1

0 [x, y, z], dn−1
1 [x, y, z])

and (dn−1
2 [x, y, z], dn−1

3 [x, y, z]) within the two domains. Compared to using additional χ
inputs vn−1

i as random numbers, this approach does not introduce new data dependencies,
meaning that glitch-extended probes do not extend to additional registers.

Based on these considerations, the remaining decisions to be made include determining
which row’s χ inputs vn−1

i should be used as random numbers, the x coordinates of these
two χ inputs, whether these two χ inputs are XORed with inner-domain products or cross-
domain products, and which DOM gate should be reshared with θ inputs. Regarding the
first point, we observe that χ inputs adjacent to the z-axis are more likely to be mutually
independent in preceding linear operations. Therefore, we use j = 64y + z to label the row
number and aim to use rows with similar j values as random numbers. Concerning the
remaining options, we calculate the distribution of register values to identify several viable
choices for preventing Type II leaks, which are listed in Table 3. Finally, we explore the
design space using a computer program and select the final design parameters, described in
Section 4, through algorithmic verification of the security results, as discussed in Section 5.

Table 3: Viable Design Choices for Preventing Type II Leaks.

x Coordinates of vn−1
i as Rand. ([0], [1]) ([0], [1]) ([0], [1]) ([2], [3]) ([3], [4])

XORed Products+ (i/c,i) (c,i/c) (c,i/c) (i/c,i/c) (i/c,i/c)
x Coordinate of ŝ′n−1 as Rand. [0] [1] [3] [3] [3]
+ i: inner-domain products; c: cross-domain products.
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Table 4: χpr Operations.

Registers x = 0 x = 1 x = 2, 3, 4 Products
dn

0 [x] pn
0 [x] ⊕ gn[x] ⊕ s′n0 [x] pn

0 [x] ⊕ gn[x] pn
0 [x] pn

0 [x] = vn
0 [x+ 1]vn

0 [x+ 2]
dn

1 [x] pn
1 [x] ⊕ vn

0 [x] ⊕ s′n0 [x] pn
1 [x] ⊕ vn

0 [x] pn
1 [x] ⊕ vn

0 [x] pn
1 [x] = vn

0 [x+ 1]vn
1 [x+ 2]

dn
2 [x] pn

2 [x] ⊕ vn
1 [x] ⊕ s′n1 [x] pn

2 [x] ⊕ vn
1 [x] pn

2 [x] ⊕ vn
1 [x] pn

2 [x] = vn
1 [x+ 1]vn

0 [x+ 2]
dn

3 [x] pn
3 [x] ⊕ gn[x] ⊕ s′n1 [x] pn

3 [x] ⊕ gn[x] pn
3 [x] pn

3 [x] = vn
1 [x+ 1]vn

1 [x+ 2]
* For j = 64y + z > 0, gn[x, j] = vn

0 [x, j − 11]; and for j = 0, gn[x, j] = rn
x .

(a) Gadget for x = 2, 3, 4

(b) Gadget for x = 1 (c) Gadget for x = 0

Figure 7: The Proposed Gadgets for χ.

4 Hardware Architecture
Our overall hardware architecture is illustrated in Figure 6. The inputs, outputs, and
intermediate variables each consist of two uniform shares of their corresponding secret
variables. Two θ, π, and ρ circuits operate on the two shares separately, while one ι circuit
operates on the first share. Additionally, the 640 bits of θ input, where y = 0, bypass θ,
pass directly through ρ and π, and are then fed into χ as pseudo-random numbers. The χ
operation uses three types of gadgets, as shown in Figure 7.

All gadgets used in χ employ the technique to counteract Type I leakage, which
distributes the NOT operation across v0[x+ 1] and v1[x+ 1]. This ensures that the values
of the register combinations, corresponding to Type I leakage (Table 1), are statistically
independent of the secret values. To resist Type II leakage, we use g[x] to reshare d0[x] and
d3[x] in the gadget for x = 1, and both g[x] and s′0,1[x] to reshare the four registers in the
gadget for x = 0. These two gadgets ensure that the values of the register combinations,
corresponding to Type II leakage (Table 1), are statistically independent of the secret
values. The g[x] used in these two gadgets is the guard ensuring uniformity through the
COTG method, reused to counteract Type II leakage. The s′0/1[x] in the gadget for x = 0
is one of the 11 θ inputs corresponding to v0/1[x]. Therefore, using s′0/1[x] does not provide
additional information to a glitch-extended probing attacker. These gadgets are designed to
introduce minimal extra data dependency while resisting leakage and ensuring uniformity,
which ensures simplicity in our design and consequently reduces the area required.
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Figure 8: Illustration of the First Round and the Complete Round Processes.

5 Security Proofs
This section provides security proofs for the proposed design under the first-order glitch+register-
transition-robust probing model. Given that the probe propagation in the glitch-robust
probing model is bounded by registers, we provide security proofs for different stages with
the registers as boundaries. As illustrated in Figure 8, we use the term “first round” to
refer to the process from the input to the registers and the term “complete round” to
denote the process from the registers through one round of combinational logic back to
the registers. The data paths for the first round and the complete round are not identical,
so we present security proofs for the first round and the complete round in Sections 5.1
and 5.2, respectively, under the glitch-robust probing model. In Section 5.3, we provide
security proofs under the combined glitch+register-transition-robust probing model.

5.1 Glitch-Robust Probing Security in the First Round
We aim to demonstrate that the first round is a first-order non-complete TI implementation
with two-share inputs and four-share outputs (2 → 4). These outputs correspond to
registers d̂0 in χ, where every four registers d0

0,1,2,3[x, y, z] constitute four shares of a
variable d0[x, y, z]. First-order non-completeness implies that each output share d0

i [x, y, z]
is independent of at least one share of each input variable s0

k[x′, y′, z′].
We utilize Algorithm 1 to generate an index list of related inputs for each output share

to assess non-completeness. This algorithm labels each input share s0
i [x, y, z] with an index

(x, y, z, i) and simulates the circuit described in Section 4 to generate an index list for each
intermediate variable, containing all related input indices.

Algorithm 1 Glitch-extended probing index list generation.
1: for all x ∈ {0, . . . , 4}, y ∈ {0, . . . , 4}, z ∈ {0, . . . , 63}, i ∈ {0, 1} do
2: list_s[x, y, z, i]← [(x, y, z, i)] . Input indices
3: list_t[x, y, z, i]← [(x, y, z, i), (x− 1, 0 · · · 4, z, i), (x+ 1, 0 · · · 4, z − 1, i)] . θ
4: list_s′ ← Pi(Rho(list_s))
5: list_v ← Pi(Rho(list_t))
6: list_d← Chi_pr(list_s′, list_v) . Defined in Table 4
7: output list_d

Theorem 2. When the input ŝ0 satisfies Property 3, the first round is secure under the
first-order glitch-robust probing model.

Proof. The correctness of the circuit is easy to verify. An review of the index lists generated
by Algorithm 1 indicates that each list contains at most one share of each input variable.
Thus, first-order non-completeness is satisfied in the first round. Consequently, according
to Theorem 1, when the input satisfies Property 3, the characteristics of any individual
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glitch-extended probe

compr.

complete round

Figure 9: Analysis of the Complete Round Under the Glitch-Robust Probing Model: The
Red Part Demonstrates the Extending Process of Probes, and the Yellow Part Shows the
Related χn−1

pr Operations.

Theorem 3
 Balance of

Lemma 1
Add randomness

Algorithm 3
Partition subsets

Algorithm 4
Truth tables of       s

Algorithm 1
  Index lists 

Lemma 3
Uniform

Complete 
round
glitch-
robust 
security

Algorithm 2
Proofs generation

Lemma 2
Uniform

Theorem 4
Independence

Figure 10: Relationships among the Theorems, Lemmas, and Algorithms Used in the
Security Proof of the Complete Round.

function are independent of sensitive data. As attackers can obtain information about only
individual functions in the first-order glitch-robust probing model, they cannot obtain
sensitive information.

5.2 Glitch-Robust Probing Security in the Complete Round
The main difference between the complete round and the first round lies in the compression
in χn−1, which allows the glitch-robust attacker to gain additional access to the values of
uncompressed registers dn−1

i . Through slightly modified Algorithm 1, it can be verified that
first-order non-completeness is satisfied in the complete round. However, the uncompressed
inputs d̂n−1 do not satisfy the uniformity conditions, thus rendering Theorem 1 inadequate
for proving security in this case.

To demonstrate the security of the complete round, we generate lists of inputs related to
each glitch-extended probe using a slightly modified Algorithm 1. As depicted in Figure 9,
the values of registers dn−1

k in the list are computed from the corresponding χn−1
pr inputs

s′n−1
i [. . . ] and vn−1

i [. . . ]. In the glitch-robust probing model, attackers possess knowledge
of these register values dn−1

k , and their targets are the unshared secret values of the related
inputs s′n−1[. . . ] or vn−1[. . . ]. We prove in Theorem 4 that these register values are
independent of the secret values of the corresponding inputs.

As a first step, we need to establish two lemmas regarding uniformity. First, we
demonstrate in Lemma 3 that the χn−1

pr inputs (s′n−1
i [. . . ], vn−1

i [. . . ]) corresponding to
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the registers in each list, as highlighted in yellow in Figure 9, satisfy uniformity, forming
the basis for Theorem 4. Second, in Lemma 2, we prove that all five operations θ, ρ, π, χ, ι
in our design maintain the uniformity of outputs, allowing us to iteratively apply our
proofs in each subsequent round. The relationships between these theorems and lemmas
are illustrated in Figure 10.

To establish the uniformity of the χ output, we present the following lemma, which is
a variant of Lemma 1 from [BDN+13]. The proof of this lemma follows a similar structure
to that presented in the original text and is omitted here for conciseness.
Lemma 1 (A Variant of Lemma 1 in [BDN+13]). Let (a0,a1) be shares (not necessarily
uniform) of an n-bit variable a and (b0, b1) be uniform shares of an m-bit variable b. Let
(c0, c1) be uniform n-bit shares statistically independent of (a0,a1) and (b0, b1). Then,
((a0 + c0, b0), (a1 + c1, b1)) are uniform n+m-bit shares.

In our χ circuit, as described in Table 4, for x ∈ {2, 3, 4}, the compressed output
(wn0 [x], wn1 [x]) satisfies Equation 2, while for x ∈ {0, 1}, it satisfies Equation 3, where
j = 64y + z and r0,1 are two fresh random bits.

wn0 [x, j]← χ′x,j(vn0 ,vn1 ) , vn0 [x+ 1, j]vn0 [x+ 2, j]⊕ vn0 [x+ 1, j]vn1 [x+ 2, j]⊕ vn0 [x, j]
wn1 [x, j]← χ′x,j(vn1 ,vn0 ) , vn1 [x+ 1, j]vn1 [x+ 2, j]⊕ vn1 [x+ 1, j]vn0 [x+ 2, j]⊕ vn1 [x, j]

(2)

wn0 [x, j]← χ′x,j(vn0 ,vn1 )⊕ gn[x, j]
wn1 [x, j]← χ′x,j(vn1 ,vn0 )⊕ gn[x, j] , where gn[x, j] ,

{
vn0 [x, j − 11] for j 6= 0
rnx for j = 0 (3)

Theorem 3. When the inputs (vn0 ,vn1 ) to Equation 2 for x ∈ {2, 3, 4} and to Equation 3
for x ∈ {0, 1} are shared uniformly, the outputs (wn

0 ,w
n
1 ) are shared uniformly.

Proof. All the operations involving j below are performed modulo 320, and we omit the mod-
ulo notation for convenience. We begin with the row where j = 11×319 = 309. For simplic-
ity, we use the notation αx,j(vn0 ,vn1 ) , vn0 [x+ 1, j]vn0 [x+2, j]⊕vn0 [x+1, j]vn1 [x+2, j], which
implies that χ′x,j(vn0 ,vn1 ) = vn0 [x, j]⊕ αx,j(vn0 ,vn1 ) and that αx,j(vn0 ,vn1 ) is related only to
(vn0 [x+1 · · ·x+2, j],vn1 [x+1 · · ·x+2, j]). Since (vn0 [4, j], vn1 [4, j]) is uniform and independent
of (α4,j(vn0 ,vn1 ), α4,j(vn1 ,vn0 )), it follows from Lemma 1 that (wn0 [4, j], wn1 [4, j]) is uniform.
Because (vn0 [3, j], vn1 [3, j]) is uniform and independent of (α3,j(vn0 ,vn1 ), α3,j(vn1 ,vn0 )) and
(wn0 [4, j], wn1 [4, j]), we obtain that (wn

0 [3 · · · 4, j],wn
1 [3 · · · 4, j]) is also uniform. Similarly,

by utilizing the uniformity of (vn0 [2, j], vn1 [2, j]) and its independence from (α2,j(vn0 ,vn1 ),
α2,j(vn1 ,vn0 )) and (wn

0 [3 · · · 4, j],wn
1 [3 · · · 4, j]), we find that (wn

0 [2 · · · 4, j],wn
1 [2 · · · 4, j])

is uniform. Next, since (vn0 [0 · · · 1, j − 11], vn0 [0 · · · 1, j − 11]) is uniform and indepen-
dent of (χ′

0···1,j(vn0 ,vn1 ), χ′
0···1,j(vn1 ,vn0 ) and (wn

0 [2 · · · 4, j],wn
1 [2 · · · 4, j]), the entire row

(wn
0 [0 · · · 4, j],wn

1 [0 · · · 4, j]) is uniform.
We can apply this process recursively, with j = 11i starting at i = 319 and decreasing

to i = 0. In each case, the aim is to show that if rows (wn
0 [0 · · · 4, 11× ((i+ 1) · · · 319)],

wn
1 [0 · · · 4, 11 × ((i + 1) · · · 319)]) are uniform, then rows (wn

0 [0 · · · 4, 11 × (i · · · 319)],
wn

1 [0 · · · 4, 11× (i · · · 319)]) are also uniform.
For each row, the proof process is similar to that of the first row. By applying Lemma 1

recursively, we can sequentially add (wn0 [4, 11i], wn1 [4, 11i]), (wn0 [3, 11i], wn1 [3, 11i]), and
(wn0 [2, 11i], wn1 [2, 11i]) to the uniform set, leveraging the independence of (vn0 [4, 11i],
wn1 [4, 11i]), (vn0 [3, 11i], wn1 [3, 11i]), (vn0 [2, 11i], wn1 [2, 11i]) and the existing uniform set,
respectively. Subsequently, leveraging the uniform and independent (gn[0 · · · 1, 11i],
gn[0 · · · 1, 11i]), we can add (wn

0 [0 · · · 1, 11i], wn
1 [0 · · · 1, 11i]) to the uniform set; thus,

rows (wn
0 [0 · · · 4, 11× (i · · · 319)], wn

1 [0 · · · 4, 11× (i · · · 319)]) are uniform.

Lemma 2. For the scheme described in Section 4, when the external input ŝ0 satisfies
Property 3, the outputs of the θ, ρ, π, χ, and ι steps in each round, i.e., t̂n, ûn, v̂n, ŵn

and ŝn+1 (n = 0, 1, . . . ), individually satisfy Property 3.
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Algorithm 2 Generating the proof steps for the uniformity of (v̂n−1[. . . ], ŝ′n−1[. . . ]) for
each glitch-extended probe.

1: for all list ∈ index_lists generated by Algorithm 1 do
2: v_list, s′_list← inputs of chi(list)
3: . Calculate corresponding indices before ρ and π /
4: t_list, s_list← index backwards(v_list, s′_list)
5: repeat
6: s_counts← the occurrences of each s in the calculation of t_list.
7: s_counts+ = the occurrences of each s in s_list.
8: for all s, count ∈ s_counts do
9: if count = 1 then

10: Remove the t using s as input from t_list.
11: Record (s, t) to steps.
12: until t_list is empty or no t in t_list can be removed
13: if t_list is empty then
14: return steps in reversed order . Pass
15: else
16: return Fail

Proof. The χ step maintains the uniformity of the output, as proven in Theorem 3. The
ρ, π, and ι steps are merely shift and constant addition operations and thus do not affect
uniformity. The θ step is invertible [BDPA10b], thus satisfying Property 4 [NRR06] and
ensuring a uniform output.

Lemma 3. When ŝn−1 satisfies Property 3, for the χn−1
pr operations before registers

dn−1
i [. . . ] corresponding to each glitch-extended probe, their input (v̂n−1[. . . ], ŝ′n−1[. . . ])

satisfies Property 3.

Proof. As the entire state of the θ input ŝn−1 is uniform, it is evident that subset ŝ′n−1[. . . ]
is also uniform. We refer to the currently known maximum uniform input set as the
‘uniform set’, which initially consists of ŝ′n−1[. . . ]. The variable v̂n−1[x, y, z] in v̂n−1[. . . ]
is calculated by XORing 11 θ inputs ŝn−1[. . . ]. If among these 11 θ inputs there exists one
input ŝn−1[x′, y′, z′] independent of the uniform set, Lemma 1 allows us to add it to the
uniform set. If this process can be repeated until all variables in v̂n−1[. . . ] are added to the
uniform set, this proves that (v̂n−1[. . . ], ŝ′n−1[. . . ]) satisfies uniformity. Using Algorithm 2,
we examine the case for each glitch-extended probe, checking whether the above process
can be completed and providing specific steps. The computation results of Algorithm 2
indicate that (v̂n−1[. . . ], ŝ′n−1[. . . ]) for each glitch-extended probe satisfies uniformity.

Table 5: Classified Subsets of Index Lists: Each Subset Comprises Registers with Common
χn−1
pr Inputs and May Cause Leakage.

One-Row Subsets Two-Row Subsets
dn−1

0,1 [x],dn−1
0,1 [x+ 1] dn−1

0,1 [0],dn−1
0,1 [1],dn−1

0,1 [3] dn−1
0,1 [0, j],dn−1

0,1 [1, j + 11]
dn−1

2,3 [x],dn−1
2,3 [x+ 1] dn−1

2,3 [0],dn−1
2,3 [1],dn−1

2,3 [3] dn−1
0,1 [0, j],dn−1

2,3 [1, j + 11]
dn−1

0,1 [0],dn−1
0,1 [3] dn−1

0,1 [0],dn−1
0,1 [1],dn−1

2,3 [3] dn−1
0,1 [0, j],dn−1

0,1 [1, j],dn−1
0,1 [1, j + 11]

dn−1
2,3 [0],dn−1

2,3 [3] dn−1
2,3 [0],dn−1

2,3 [1],dn−1
0,1 [3] dn−1

0,1 [0, j],dn−1
0,1 [1, j],dn−1

2,3 [1, j + 11]
dn−1

0,1 [0],dn−1
2,3 [3] dn−1

0,1 [0],dn−1
0,1 [3],dn−1

0,1 [4] dn−1
0,1 [0, j],dn−1

0,1 [4, j],dn−1
0,1 [0, j + 11]

dn−1
2,3 [0],dn−1

0,1 [3] dn−1
0,1 [0],dn−1

2,3 [3],dn−1
2,3 [4] dn−1

0,1 [0, j],dn−1
0,1 [4, j],dn−1

2,3 [0, j + 11]
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Algorithm 3 Partitioning index lists into independent subsets.
1: for all list ∈ index_lists generated by Algorithm 1 do
2: repeat
3: Pop an element dn−1

i [x, y, z] from list.
4: Put dn−1

i [x, y, z] into a new empty subset.
5: Put all dn−1

k [x′, y′, z′] sharing common χn−1
pr inputs with dn−1

i [x, y, z] into a new
empty check_list.

6: while check_list is not empty do
7: Pop an element d from check_list.
8: if d ∈ list then
9: Pop d from list and add d into subset.

10: Add all dn−1
k [x′, y′, z′] sharing common χn−1

pr inputs with d into
check_list.

11: Store subset.
12: until list is empty
13: Classify all subsets.

Below, we demonstrate the independence between the register values dn−1
i [. . . ] known

to the attacker and the target secret values (s′n−1,vn−1). As the number of these variables
is too large to directly check the independence, we partition these registers into several
independent subsets and check the independence separately. We consider involving at least
one same input variable during the χn−1

pr operation as an equivalence relation, partitioning
each index list into multiple subsets by Algorithm 3. Thus, registers in different subsets
have completely independent inputs. Table 5 summarizes cases in which the subset size is
greater than 1.

Algorithm 4 Checking the independence of the register values dn−1(k)
i and secret values

vn−1(k) and s′n−1(k) for each subset.
1: for all subset(k) ∈subsets generated by Algorithm 3 do
2: c(k) ← {v(k), s′(k)}. . The inputs are uniformly denoted as c
3: n

(k)
c , n

(k)
d ← the bit widths of c(k),d

(k)
i .

4: f
(k)
d ← the function maps from ĉ(k) to d(k)

i .
5: procedure truth table generation(n(k)

c , n
(k)
d , f

(k)
d )

6: for all possible input value Ĉ(k)
∈ {0, 1}2n(k)

c do
7: Calculate corresponding register values D(k)

i = f
(k)
d (Ĉ(k)).

8: Calculate corresponding unshared secret values C(k) = C
(k)
0 ⊕C(k)

1 .
9: for all possible register value D(k)

i ∈ {0, 1}n
(k)
d do

10: n
(k)
D ← the number of rows where d(k)

i = D
(k)
i in truth_table.

11: for all possible secret value C(k) ∈ {0, 1}n(k)
c do

12: n
(k)
D,C ← the number of rows where d(k)

i = D
(k)
i and c(k) = C(k) in

truth_table.
13: if n(k)

D,C 6= n
(k)
D /2n(k)

c then
14: return Fail
15: return Pass

Theorem 4. When the θ inputs in the previous round ŝn−1 satisfy Property 3, the complete
round is secure under the first-order glitch-robust probing model.

Proof. To establish first-order glitch-robust security, our discussion focuses on the circuit
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preceding a single glitch-extended probe, with these arguments applicable to any such
probe. Initially, we demonstrate the independence of the register values (dn−1

i ) and secrets
(vn−1 and s′n−1) for each subset. Subsequently, we establish the independence of the
register values and secrets for the entire circuit preceding a probe.

Considering the uniformity of all inputs (v̂n−1[. . . ], ŝ′n−1[. . . ]) corresponding to a probe,
as confirmed by Lemma 3, we represent them uniformly as ĉ, where ĉ = {v̂n−1[. . . ], ŝ′n−1[. . . ]}.
Within the k-th subset, variables are denoted with the superscript (k). The bit width of
inputs ĉ(k) is represented as 2n(k)

c , with n(k)
c indicating the bit width of unshared inputs

c(k). Additionally, n(k)
d denotes the bit width of the register values d(k)

i .
For each subset, we analyze the truth table generated by Algorithm 4. According to

Property 3, the probability associated with each row in the truth table Pr(ĉ(k) = Ĉ
(k)),

abbreviated as Pr(Ĉ(k)), can be expressed as:

Pr(Ĉ(k)) = 1
2n(k)

c

Pr(C(k)).

According to Algorithm 4, within the n(k)
D rows in the truth table where d(k)

i = D
(k)
i ,

the number of rows with secret value c(k) equal to each possible C(k) is n(k)
D /2n(k)

c . This
implies that:

Pr(D(k)
i ,C(k)) = n

(k)
D

2n(k)
c

· 1
2n(k)

c

Pr(C(k)) = n
(k)
D

22n(k)
c

Pr(C(k))

Pr(D(k)
i ) =

∑
C(k)

Pr(D(k)
i ,C(k)) =

∑
C(k)

n
(k)
D

22n(k)
c

Pr(C(k)) = n
(k)
D

22n(k)
c

.

This proves that for each subset, the register values are independent of the secret values, i.e.,
Pr(D(k)

i ,C(k)) = Pr(D(k)
i ) Pr(C(k)). Next, we merge the truth tables of all the subsets

into a single large truth table, where each row corresponds to each possible input value
Ĉ = (Ĉ(1)

, . . . , Ĉ
(m)) and columns correspond to register values di = (d(1)

i , . . . ,d
(m)
i ) and

secret values c = (c(1), . . . , c(m)). According to Property 3, the probability associated with
each row in the large truth table is:

Pr(Ĉ) = 1
2nc

Pr(C),

where nc =
∑m
k=1 n

(k)
c . Due to the independence among the calculations for distinct

subsets, a large truth table is formed by taking the direct product of the truth tables of
these subsets. Therefore, the number of rows in the large table where di = Di is equal to∏m
k=1 n

(k)
D . Similarly, the number of rows in the large table where di = Di and c = C is

equal to
∏m
k=1

n
(k)
D

2n(k)
c

. Thus, we obtain:

Pr(Di,C) =
m∏
k=1

n
(k)
D

2n(k)
c

· 1
2nc

Pr(C) =
∏m
k=1 n

(k)
D

2nc
· 1

2nc
Pr(C) =

∏m
k=1 n

(k)
D

22nc
Pr(C)

Pr(Di) =
∑
C

Pr(Di,C) =
∏m
k=1 n

(k)
D

22nc
.

Therefore, Pr(Di,C) = Pr(Di) Pr(C), indicating that the register values and secret values
corresponding to a single glitch-extended probe are independent.
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Figure 11: PROLEAD Results for DOM-Keccak and Our Design.

Figure 12: First-Order TVLA Results for DOM-Keccak and Our Design.

5.3 Glitch+Register-Transition-Robust Probing Security
In this section, we additionally consider the potential leakage caused by register transitions,
namely, the combined glitch+register-transition-robust probing security. In this model, the
attacker can additionally gain knowledge of the consecutive two-cycle values of a register.
The security proof under this model can be easily integrated into the proof process in Section
5.2 as follows. For a glitch-extended probe placed at dni [x, y, z], Algorithm 1 generates
an index list of corresponding inputs dn−1

k [. . . ]. For the combined model, we append
dn−1
i [x, y, z] to the list, which represents the value in the previous cycle of the probed

register. Subsequently, we executed the remaining security proof components outlined
in Section 5.2, which establish the first-order combined glitch+register-transition-robust
probing security.

To the best of our knowledge, existing round-based masked Keccak implementations
only guarantee glitch-robust probing security. Although no transition-related leakage has
been found in these implementations yet, they did not provide formal proofs of transition-
robust security. Our design additionally ensures first-order combined security with register
transitions. Meeting the more conservative glitch+wire-transition-robust probing security
is highly challenging for low-latency round-based implementations. Furthermore, the
impact of this combination on security is believed to be negligible under sufficient noise
levels [FGP+18]. To assess the potential leakage in the glitch+wire-transition-robust
model, we use the simulation-based verification tool PROLEAD to evaluate our design in
Section 6.

6 Leakage Evaluation
In this section, we evaluate the security of our design with experimental leakage assessments,
including the PROLEAD verification tool [MM22], Test Vector Leakage Assessment
(TVLA) experiments [BCD+13], and the VerMI verification tool [ANR18], serving as
complementary evidence to support our theoretical security proofs.

PROLEAD. PROLEAD is a simulation-based leakage detection tool that evaluates the
security of masking designs by directly analyzing the distribution of intermediate variables.
PROLEAD can be used to assess both glitch-robust [FGP+18] and glitch+wire-transition-
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Table 6: Keccak-f [1600] Round-Based First-Order Masking Implementations’ Perfor-
mance Results and Comparison Using NanGate 45 nm Library.

Designs Area (kGE) Rand. Clock Freq.
θ χ State Other Total Ratio (bits) cycles (MHz)

Plain[BDN+13] 6.4 5.6 9.0 7.1 28.1 1.0× - 24 690
This work 13.2 26.1 36.3 7.9 83.5 3.0× 2 24 763

[BDN+13]-3sh 19.2 40.6 27.2 29.6 116.6 4.1× 4 25 592
[BDN+13]-4sh 25.6 48.7 36.3 28.8 139.4 5.0× 0 24 588

[ZSS+21]a 50.3 21.9 36.3 6.5 115.0 4.1× 1600 24 877
[GSM17a]b,c 15.0 38.4 32.2 - 85.7 3.0× 0 48 891
[SM21b]d - - - - 129.3 4.2× 0 72 775

[ABP+18]-6she 11.3 44.6 8.0 6.2 70.1 25× 0 9 437
a Results synthesized using the open-source codes of original works.
b Results synthesized with library UMC 90 nm.
c Implementation lacking uniformity and thus theoretically insecure.
d Results synthesized with library UMC 130 nm.
e Implementation of Keccak-f [200].

robust [CS21] probing models. The assessment results are expressed as p values, with
the authors suggesting a typical threshold of 10−5. However, due to the large number
of probing sets in our case (2.26× 105), there is a significant probability (approximately
90%) of encountering false positives [MM22]. Therefore, we adjusted the threshold to
10−6, corresponding to a false-positive probability of approximately 20%. Additionally,
the decisive factor for leakage does not exceed the threshold but rather is the continuous
increase in the p value with an increasing number of simulations [Mül23].

As an illustration, we conducted 1 million simulations on DOM-Keccak using PRO-
LEAD’s compact mode, and the relationship between the minimum p value and the
number of simulations is shown in Figure 11. In the presence of leakage, the p value quickly
increases with the number of simulations. We conducted 500 million simulations for our
implementation under both glitch-robust and glitch+wire-transition-robust probing models
using PROLEAD’s compact mode, and the results are shown in Figure 11. Notably, our
p values do not increase with the number of simulations for either the glitch-robust or
glitch+wire-transition-robust probing models. Furthermore, all our final p values are below
the threshold of 10−6. This indicates that even when considering the glitch+wire-transition-
robust probing model and testing with noise-free PROLEAD, there is no observable leakage
in our implementation.

TVLA. We conducted the fixed-versus-random t-test on the power traces of a Kintex-7
FPGA-based evaluation platform (SAKURA-X) following the strategies and procedures
explained in [SM15]. Using a WaveRunner 8404M oscilloscope, we measured the AC-
amplified voltage drop over a 10 mΩ shunt resistor placed on the VDD path of the target
FPGA. The Keccak design was clocked at a frequency of 14.3 MHz, and the power traces
were sampled at 1 GS/s. To reduce noise, all fresh random numbers used in the operations
were generated in advance by a Trivium-based pseudorandom number generator [De 06].

We evaluated our design using 100 million traces and simultaneously tested the one-
cycle-per-round DOM-Keccak design in the same experimental setup for comparison. The
test results are presented in Figure 12, where the red dashed line represents the threshold
for leakage detection. Our design exhibited no leakage in the test, with 100 million traces.
In contrast, significant leakage was detected for the DOM-Keccak design, with only 100
thousand traces.

VerMI. VerMI is a verification tool designed for masked implementations to detect
whether they satisfy non-completeness and uniformity. Since our design is too large for
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VerMI to check uniformity, we only assessed non-completeness. Our design successfully
passed the VerMI non-completeness test. Notably, this validation cannot replace all manual
proofs. The test results demonstrate that there is no leakage in the first round, and any
glitch-extended probe in subsequent rounds will not extend to all shares of a variable.

7 Results and Comparison
This section presents the ASIC implementation results of the proposed design and a
comparison with related works. We used the Synopsys Design Compiler with the Nan-
Gate 45 nm Open Cell Library to synthesize our design. The options -exact_map and
-no_autoungroup were set during the synthesis to maintain the hierarchy and prevent any
optimization that could affect the security. The implementation results and state-of-the-art
round-based first-order masking implementations of Keccak are presented in Table 6. To
highlight the area cost of the masking, we also present the plain implementation without
countermeasures proposed by [BDN+13], along with the relative area ratio compared to
the area of the plain implementation for each design. The results reported in [ZSS+21]
are only for Keccak-f [200], and we synthesized the f [1600] version based on the authors’
open-source code [ZSM21] for comparison. The first-order design of [GSM17a] does not
satisfy uniformity conditions and thus is not theoretically first-order secure. The results
reported in [ABP+18] are only for Keccak-f [200], and the source code is not available
for resynthesis.

Bilgin et al. [BDN+13] proposed first-order TI designs of Keccak, including a 3-
share version with 4-bit randomness requirements per cycle and a 4-share version without
randomness requirements. Our design uses only two shares instead of at least three in
TIs, which enables us to achieve lower area costs for θ, χ, and MUXs. Compared to their
implementations, ours reduces area requirements by at least 28%, translating to just three
times the area of the plain implementation, rather than over four times for theirs.

Zarei et al. [ZSS+21] proposed DOM-based masking implementations of Keccak for
arbitrary orders. To prevent leakage caused by glitches, they deferred the compression step
of DOM until the completion of the θ operation in the next round, resulting in a fourfold
increase in the θ area and an eightfold increase in the MUX area. To achieve uniformity,
their first-order implementation uses 1600 bits of random numbers per cycle. In contrast,
our leakage countermeasure adds only a small number of XOR gates compared to the
original DOM implementation, reducing the number of θ circuits by half and requiring
many fewer MUXs, resulting in a 27% reduction in area consumption. Furthermore, our
carefully designed COTG-like method for achieving uniformity reduces random number
consumption by 1598 bits per cycle.

Gross et al. [GSM17a] proposed DOM-based implementations of Keccak. To avoid
leakage caused by glitches, they require two cycles to execute one round. Additionally,
they attempted to remove the randomness requirements in the first-order implementation
but failed to achieve uniformity. In contrast, we prevent glitch-induced leakage through a
new structure rather than adding an extra stage of registers, resulting in a halved delay
compared to that in their design. Our design meets the theoretical uniformity requirements,
thereby achieving provable security. By using 1600 bits of fresh randomness per cycle, their
design can also be adapted to address uniformity. However, even with a high-throughput
stream cipher-based PRNG such as Trivium, this results in at least 48 kGE in area with
the 65 nm library [CMM+23].

Shahmirzadi et al. [SM21b] designed a 2-share masked χ function that achieves
uniformity without fresh randomness requirements. However, the new χ function is much
more complex than the original, introducing new data dependencies and a larger area cost.
To avoid leakage caused by glitches, they require three cycles to execute one round. In
contrast, we achieve uniformity through a COTG-like approach, maintaining the simplicity
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of the χ function, resulting in a smaller area. Moreover, our new structure for preventing
glitch-induced leakage reduces our delay to only one-third of theirs.

Arribas et al. [ABP+18] proposed first-order masked Keccak implementations where
two rounds are executed in one cycle. These implementations are based on TIs with more
than five shares, achieving half the clock cycles of the plain implementation but at the
cost of more than 25 times the area. In comparison, we achieve the same clock cycles as
the plain implementation with only three times the area.

8 Conclusions and Discussions
In this work, we conducted a detailed analysis of potential leaks in two-share first-order
masked SHA-3, paving the way for further reducing the area cost of masking SHA-
3. Future research could explore additional optimization techniques to achieve more
efficient implementations. We present a compact and low-latency first-order masked SHA-3
implementation, which significantly reduces the area cost from more than four times that
of unprotected implementations to only three times that of unprotected implementations.
A complete theoretical proof of security under the glitch+register-transition-robust probing
model and the results of experimental leakage detection are reported for this implementation.
The RTL design codes, leakage analysis programs, and security proof algorithms used are
available at https://github.com/zck15/CLLFO-SHA-3. The presented leakage analysis
for first-order masked SHA-3 can guide the design of additional masking protections for
SHA-3. The proposed implementation can be employed in crafting compact and efficient
implementations of higher-level cryptographic schemes, such as post-quantum cryptography
algorithms.

When incorporating our design as a constituent within larger masking circuits, it is
important to note that our design does not satisfy Non-Interference (NI) [BBD+16], Strong
Non-Interference (SNI) [BBD+16], or Probe-Isolating Non-Interference (PINI) [CS20].
Nevertheless, due to first-order security allowing only one probe at a time, our design
can be trivially integrated to construct a large first-order secure circuit with the following
considerations. Prior to feeding inputs into our design or utilizing its outputs, signals
should be stored in registers to prevent glitch-robust probes from extending to unexpected
locations. Uniformity conditions should be satisfied for the entire 2× 1600-bit input state.
The outputs of a single squeeze operation ensure uniformity, as corroborated by Lemma 2.
Due to constraints on the total entropy of the inputs, the aggregate outputs of multiple
squeezes cannot achieve uniformity. However, since the outputs of multiple squeezes are
spaced by 24 rounds of diffusion, we believe that exploiting the relationships between these
outputs would be challenging.

Our achievement in significant area reduction is based on optimizations tailored for the
round-based Keccak-f [1600] version. Therefore, our circuit structure cannot be directly
applied to other Keccak-f [b] versions with smaller b values or higher orders. However,
our leakage analysis can provide insights for protecting other versions of Keccak. The
technique of utilizing θ inputs as random numbers can be utilized by other masking designs.
Moreover, our security proof methodology and scripts can serve as references for other
first-order masking designs.
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