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Abstract. HAWK is a lattice-based signature scheme candidate to the fourth call
of the NIST’s Post-Quantum standardization campaign. Considered as a cousin of
Falcon (one of the future NIST post-quantum standards) one can wonder whether
HAWK shares the same drawbacks as Falcon in terms of side-channel attacks. Indeed,
Falcon signature algorithm and particularly its Gaussian sampler, has shown to be
highly vulnerable to power-analysis attacks. Besides, efficiently protecting Falcon’s
signature algorithm against these attacks seems a very challenging task.
This work presents the first power analysis leakage review on HAWK signature scheme:
it extensively assesses the vulnerabilities of a central and sensitive brick of the scheme,
the discrete Gaussian sampler. Knowing the output x of the sampler for a given
signature leads to linear information about the private key of the scheme.
This paper includes several demonstrations of simple power analysis attacks targeting
this sample x with various attacker strengths, all of them performed on the reference
implementation on a ChipWhisperer Lite with STM32F3 target (ARM Cortex M4).
We report being able to perform key recoveries with very low (to no) offline resources.
As this reference implementation of HAWK is not claimed to be protected against
side-channel attacks, the existence of such attacks is not surprising, but they still
concretely warn about the use of this unprotected signature on physical devices.
To go further, our study proposes a generic way of assessing the performance of a side-
channel attack on x even when less information is recovered, in a setting where some
protections are implemented or when the attacker has less measurement possibilities.
While it is easy to see that x is a sensitive value, quantifying the residual complexity
of the key recovery with some knowledge about x (like the parity or the sign of some
coefficients) is not straightforward as the underlying hardness assumption is the newly
introduced Module-LIP problem. We propose to adapt the existing methodology of
leaky LWE estimation tools (Dachman-Soled et al. at Crypto 2020) to exploit the
retrieved information and lower down the residual key recovery complexity.
To finish, we propose an ad-hoc technique to lower down the leakage on the identified
vulnerability points. These modifications prevent our attacks on our platform and
come with essentially no cost in terms of performance. It could be seen as a temporary
solution and encourages more analysis on proven side-channel protection of HAWK
like masking.
Keywords: Side-channel attack · HAWK signature scheme · Residual complexity

1 Introduction
Structured lattice-based signature schemes are promising solutions for post-quantum
protocols. The study of their performance and security has accelerated in the last decade
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with the NIST call for post-quantum algorithms and the second NIST 2023 call that
specifically aims at signature schemes. These schemes can be divided into two families:
the signatures following the Hash-and-Sign framework [GPV08] and the ones using the
Fiat–Shamir transform [Lyu09, Lyu12]. Now, concrete schemes in both families are
available and among them, two future NIST post-quantum standards: Falcon [PFH+22]
and Crystals-Dilithium [LDK+22]. Other candidate signature schemes may join these two
finalists in the future as the standardization campaign is still ongoing.

While still slightly moving, the black-box security analysis of existing lattice-based
signature algorithms has been theoretically documented with many convenient evalua-
tion tools e.g. [ADPS16, ACD+18]. The grey-box or side-channel security analysis of
these schemes has been part of a second step analysis. But, seven years after NIST’s
first round opening, the side-channel resistance of the current future standards starts to
be well furnished. For Crystals-Dilithium, we can cite the following recent attack exam-
ples [MUTS22, EAB+23, BVC+23]. For Falcon, the main target of the side-channel attacks
has been its core and critical part: the Gaussian sampler. This block has shown to be
vulnerable to several types of side-channel attacks. A theoretical timing attack [FKT+20]
has highlighted the need for efficient countermeasures which are now implemented in
the reference implementation of Falcon [PFH+22]. Concerning the resistance against
other types of side-channel attacks such as power analysis, several key recoveries were
published recently [KH18, GMRR22, ZLYW23]. While provable countermeasures like
masking are costly but achievable for Crystals-Dilithium [ABC+23, CGTZ23], efficient
provable countermeasures are very challenging to implement for Falcon. The Gaussian
sampler is again the difficult part. An attempt to modify this sampler to make it easier
to protect [EFG+22] has been invalidated [Pre23]. Hence, efficiently protecting Falcon
against physical attack remains an open issue, preventing the use of this signature for
physical applications.

Hawk [JOL+23] is a new post-quantum signature scheme that has been submitted to
the second NIST call for post-quantum signatures. It presents similarities with Falcon.
The main (and non-negligible) difference is the use of a new structured lattice-based
problem: the Lattice Isomorphism Problem (LIP). This problem has been introduced
in [HR14, Dv22] and its use as an underlying problem for designing public key cryptography
is relatively new [DPPv22]. Hawk is a signature scheme based on [DPPv22] with a module
variant of LIP. Such a new problem allows to use a quadratic form as a public key and
leads to very interesting performance results, bypassing the already very compact and
efficient Falcon. On the other hand, the black-box security of Hawk’s underlying problem
may still be fluctuating due to its relative youth compared to other lattice-based problems.
Hence, more theoretical analysis on this problem is still needed and several papers will
probably argument on the security (or vulnerability) of this problem in the future. On the
side-channel analysis side, whether Hawk shares the same drawbacks as Falcon in terms
of physical vulnerabilities is a natural question. We think that anticipating side-channel
leakages on new schemes is good practice1.

Inherited from the Hash-and-Sign structure shared with Falcon, Hawk uses a discrete
Gaussian sampler. As for Falcon, it is expectedly the most complex and critical step of the
signature scheme in terms of side-channel leakage. The goal of this sampler is to derive a
small sample x that will be multiplied by the inverse of the private matrix B in order to
provide a signature. More technical details will be proposed later on in the paper.

Contributions. The goal of the paper is to open the sampler box, analyze the reference
code and assess all the possible side-channel vulnerabilities of this sampler leading to key

1This could even be a lesson learned from the analysis of Crystals-Dilithium and Falcon. Since the
focus on the side-channel security arrived after a long period of black-box analysis, modifying the schemes
to protect them against physical attacks was somehow prevented. This partly explains why some other
side-channel friendly variant schemes like Raccoon [dPEK+23] emerged in the second NIST call.



158 A Not So Discrete Sampler: Power Analysis Attacks on HAWK signature scheme

recoveries. We hope that this work will encourage more analysis on proven side-channel
protections of Hawk. More precisely, we propose the following contributions:

• We first describe several power-analysis attacks targeting the output sample x with
various attacker strengths, all of them performed on the reference implementation
on a ChipWhisperer Lite with STM32F3 target (ARM Cortex M4). Our power
measurement traces and attack code are available online for easy reproducibility. We
detail all the leakage points in the sampling algorithm and propose three levels of
attack. The first attack is a simple power analysis (SPA), meaning that it uses only
one trace. It also does not use any template (i.e. it does not assume a learning phase
on traces with known secret key). This attack analyzes the most leaky instructions. It
is able to deduce some information about x like the parity and sign of its coefficients
but does not directly lead to a key recovery. In our second attack, we go a bit deeper
in the analysis, still with only one trace and without templates, this analysis allows to
recover almost all x. This can lead to a complete key recovery with a small residual
offline work (e.g. 255 remaining elementary operations for Hawk-1024). Finally, we
present a stronger profiled simple power analysis with a light template, leading to a
full knowledge of x and thus a direct key recovery.
The success of such attacks is of course not groundbreaking as the authors of Hawk
do not claim a protection of their implementation against these power analysis
attacks. However, we report and detail a large amount points of leakage and very
low resource adversaries. Hence, it can be seen as a concrete warning on the use of
Hawk for physical devices, and it is a motivation for side-channel protection of such
instructions.

• In a second step, we go further and study a generic way of assessing the performance
of a side-channel attack on x even when less information is recovered. This could
apply in a setting where some protections are implemented or when the attacker
has less measurement possibilities. We quantify the residual complexity of the key
recovery with some knowledge about x (like the parity or the sign of some coefficients).
Because the underlying hardness assumption is the recently introduced Module-LIP
problem, we had to adapt the existing methodology of leaky LWE estimation tools
[DDGR20, DGHK23] to exploit the retrieved information and compute the residual
key recovery complexity. In another approach, we propose a direct more brute-force
oriented, key-recovery method when more information about x is recovered.

• Finally, we propose an ad-hoc technique to lower down the leakage on identified
vulnerability points. These simple modifications prevent all of our attacks on our
platform. It comes with almost no cost in terms of performance. While it is not a
provable solution, it could be seen as a temporary fix.

Structure of the paper. In Section 2, we outline the necessary linear algebra notions
and a simplified description of Hawk signature scheme. In Section 3, we extensively
detail the specific targeted instructions of the discrete Gaussian sampler and our different
single-trace side-channel attacks with their success results. In Section 4, we detail a
generic key recovery when partial information is recovered on the sampled value with a
lattice reduction residual complexity analysis. This part is generic but can be applied
to the attacks of 3. In Section 5, we detail a particular key recovery brute force-based
technique that does not use lattice reduction for the particular case when the sample is
almost entirely recovered. This key recovery is detailed for one of our attacks in Section 3
for Hawk-1024. Finally, we present our code modification techniques to avoid obvious
leakages in Section 6.
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2 Preliminaries

2.1 Algebra
Notations. Vectors will be denoted with bold lowercase letters and matrices with bold
uppercase letters. We denote by bi the i-th row of a matrix B. We denote by ‖v‖ the
Euclidean norm L2 of a vector v and by 〈u,v〉 its associated inner product with a second
vector u.

Number fields. Let n be a power of two, Kn = Q[X]/(Xn + 1) a cyclotomic number
field and its ring of integers Rn = Z[X]/(Xn + 1). For a polynomial f ∈ Kn, let
f = f0 + f1X + · · ·+ fn−1X

n−1 and define a bijection that maps it to the column vector
of its coefficients vec : Kn → Qn, f → (f0, . . . , fn−1). The elements of Kn and RN will be
equivalently represented as polynomials or vectors of coefficients.

Negacyclic matrix. We call the negacyclic matrix of f ∈ Kn the matrix

nrot(f) := (vec(f), vec(Xf) . . . , vec(Xn−1f)) =

 f0 . . . fn−1
...

. . .
...

−fn−1 . . . f0


Hermitian adjoint and Gram matrix. We denote the Hermitian adjoint of an element
f ∈ Kn by f∗ = f0 +

∑n−1
i=1 −fn−1X

i. We extend the notations to elements B ∈ Kr×r
n :

B∗ denotes the entry-wise adjoint of BT, the transpose of B. For any element B ∈ Kr×r
n ,

we call the Gram matrix of B the matrix Q = B∗B.

Unimodular matrix. Given n ∈ N, U ∈ Zn×n is an unimodular matrix if det(U) = ±1.

Q-inner product and Q-norm. For a matrix B ∈ Kr×r
n , let Q = B∗B. We define the Q-

inner product as 〈·, ·〉Q : Kr
n×Kr

n → Q, (f ,g)→ 1
nTr(f

∗Qg) with Tr(·) being the algebraic
trace over the field extension Kn/Q. Similarly, we define the Q-norm of an element f ∈ Kr

n

as ‖f‖Q =
√
〈f , f〉Q. In particular, we have the following identity: ‖B · f‖ = ‖f‖Q.

2.2 HAWK signature scheme
We describe here the high-level idea behind Hawk. For further details on the signature
scheme, we refer to the official specification [JOL+23].

Hawk keypair. Let n ∈ {256, 512, 1024} be a fixed parameter. The Hawk private key
consists in four small polynomials f, g, F,G ∈ Rn which satisfy the equation fG− gF =
1 mod Xn + 1. The polynomials f and g are sampled according to a centered binomial
distribution with η = n/128 and are used to find F and G to verify the previous equation.
Lastly, the keypair (sk, pk) is defined as sk := B and pk := Q. The matrices B and Q are
computed as

B :=
(
f F
g G

)
,Q := B∗ ·B

and by construction B is unimodular while Q is a Gram matrix. Note that both are
blockwise negacyclic matrices (i.e. B,Q ∈ R2×2

n ).
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Signature overview. At a very high level, Hawk signature algorithm can be summarized
as follows:

• Hash the message to a vector h ∈ R2
n.

• Compute a binary target t = Bh mod 2 using the private key B.
• Sample a vector x from a distribution that approximates a Gaussian on 2Z2n + t

with a standard deviation of 2σsign where σsign is a fixed parameter. Hence, ‖x‖ is
small.

• Compute w = B−1x and then the signature s = 1
2 (h−w).

To verify a signature, w is recomputed from public data (s and h) and ‖w‖Q = ‖x‖ is
checked to be short enough. Here, we want to emphasize that, although x is a secret data,
its L2-norm is public, which in itself is not a vulnerability.

Discrete sampling. To sample a short vector x, the signature generation uses a discrete
Gaussian sampler algorithm called SamplerSign. The center is the target t and the
standard deviation is fixed for each variant of Hawk. Each coefficient x[i] is sampled
separately, with center being the corresponding t[i]. The algorithm uses two Reverse
Cumulative Distribution Tables (RCDTs), depending on the value of the current t[i] (either
0 or 1). A uniform 78-bit integer is generated and compared to each entry of both RCDTs.
A counter is incremented if the random integer is smaller than the current entry in the
corresponding RCDT. Once the integer is greater than a table entry it will be greater than
all the following table entries, but both tables are fully parsed to avoid timing attacks. In
the end, a sign bit is drawn uniformly and applied to each x[i].

3 Side-channel analysis of the discrete sampler
The central building block of Hawk signature generation consists in the discrete Gaussian
sampler SamplerSign (called in the third step of the signature presented in Section 2).
For efficiency purpose, this sampler relies on two distribution tables. Such duplication is
quite unusual for table-based samplers. However, it has no impact from a side-channel
attack point of view, since a simple power analysis allows us to target indifferently one or
two consecutive table look-ups.
Remark 1. By looking at this high level description of the Hawk signature algorithm,
the second step could also appear as a straightforward target for a side-channel attack.
However, the secret polynomials composing B are reduced modulo 2 before the actual
multiplication with h. Hence, one could only recover very limited information by targeting
this operation.

The goal of this section is to open the SamplerSign box in order to extract as much
information as possible.

Targeted sensitive value. Two intermediate values are involved in the sampler: the
center t and the sample x which is also the output of the sampler. Both values depend on
the secret matrix B with linear equations. On the one hand, t = Bh mod 2 where h can
be publicly recomputed. On the other hand, x = Bw where w can also be recomputed
from s and h. Let us note that the first linear equation is a particular case of the second:
since x ∈ 2Z2n + t, x ≡ t = Bh mod 2. Thus, we will concentrate our efforts on recovering
as much as we can from the vector x.

In a perfectly favorable case where the full exact value of x can be recovered with
a side-channel analysis, the secret matrix B can be deduced from two signatures and
their associated samples x and x′ with high probability (given than w and w′ are linearly
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� �
1 Inputs: lab_hi, tab_lo (RCDTs), v (index), t (target), hi, lo (randomness)
2 Ouputs: x[v] (sample for index v), sn (squared norm of x)
3

4 uint32_t neg = -(uint32_t)(lo >> 63); 4
5 uint32_t pbit = (t[v >> 3] >> (v & 7)) & 1;

6 uint64_t p_odd = -(uint64_t)pbit; ©
7 uint32_t p_oddw = (uint32_t)p_odd;
8 uint32_t r = 0;
9 for (size_t i = 0; i < hi_len; i += 2) {

10 uint64_t tlo0 = tab_lo[i + 0];
11 uint64_t tlo1 = tab_lo[i + 1];

12 uint64_t tlo = tlo0 ^ (p_odd & (tlo0 ^ tlo1)); ©
13 uint32_t cc = (uint32_t)((lo - tlo) >> 63); �
14 uint32_t thi0 = tab_hi[i + 0];
15 uint32_t thi1 = tab_hi[i + 1];

16 uint32_t thi = thi0 ^ (p_oddw & (thi0 ^ thi1)); ©
17 r += (hi - thi - cc) >> 31; �
18 }
19 uint32_t hinz = (hi - 1) >> 31;
20 for (size_t i = hi_len; i < lo_len; i += 2) {
21 uint64_t tlo0 = tab_lo[i + 0];
22 uint64_t tlo1 = tab_lo[i + 1];

23 uint64_t tlo = tlo0 ^ (p_odd & (tlo0 ^ tlo1)); ©
24 uint32_t cc = (uint32_t)((lo - tlo) >> 63); �

25 r += hinz & cc; �
26 }

27 r = (r << 1) - p_oddw; ©
28 r = (r ^ neg) - neg ; 4
29 x[v] = (int8_t)*(int32_t *)&r;

30 sn += r * r; � 4
 	
Listing 1: Extract of SamplerSign2, with leakage of the sign (4), parity (©) and
value (�) of x. Inputs and outputs are written here to provide some context.

independent). The vectors x and x′ being in R2
n, we separate their coordinates in Rn by

noting x = (x0, x1) and x′ = (x′0, x′1). Hence, we can write(
f F
g G

)
=
(
x0 x′0
x1 x′1

)
·
(
w0 w′0
w1 w′1

)−1
. (1)

In practice, such a favorable case is unlikely, and the recovered information may only
concern the sign or parity of the sample x. In this section, we will detail the leaking
instructions inside the sampling algorithm and extract as much information as possible
with different single trace analysis techniques (profiled or non-profiled).

Targeted code. Listing 1 shows the targeted code, which samples only one coefficient. It
is extracted from the SamplerSign in the reference implementation, which loops over
this code in order to sample all the coefficients in one call. In Line 4, the sign is sampled
and stored in a register neg. In Line 6, the parity is generated and stored in a register

2From https://github.com/hawk-sign/dev/blob/main/src/hawk_sign.c, function
sig_gauss, commit ac3a98c3107ea030cc18fb2afef7f5655c588138

https://github.com/hawk-sign/dev/blob/main/src/hawk_sign.c
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Figure 1: Power consumption during execution of Listing 1 (20 power traces). Red and blue
lines correspond respectively to the iterations of the first (line 6) and second (line 17) for-loops.

p_odd. Next, the code contains two for-loops where a variable r is either incremented
by 0 or 1 depending on the result of the comparison between a random number lo and
the corresponding entry in the reverse cumulative distribution table. The final steps in
Lines 27, 28 and 30 respectively correspond to the application of the parity, the sign
and the computation of the norm. Lines where leakage has been observed have been
highlighted, and will be referred to in the following sections.

Experimental setup. The power traces have been recorded with a ChipWhisperer Lite
with STM32F3 target (ARM Cortex M4). As the length of recordable power traces is
limited by our acquisition device, we only record the sampling of one coefficient at a time,
as shown in the Listing 1. Thus, we store one power trace by coefficient. One can easily
generalize the attack for all the coefficients by measuring one long power trace running for
the whole execution of the SamplerSign and divide it into one trace per coefficient, as
the coefficients are sampled sequentially in the original code.

Generation of our trace database. In order to assess the accuracy of our simple power
analysis (SPA) attacks, 10 000 power traces have been generated (i.e. 10 000 coefficients).
Such a large number allows to make various accuracy tests for our classifiers. The
coefficients have been generated according to the parameters of Hawk-1024. We chose
the highest security level to be able to assess as well the theoretical success of the attack
on Hawk-256 and Hawk-512 by ignoring the large coefficients. The trace database and
attack scripts are available online3.

Figures. All the figures representing the power consumption always show 20 power traces.
Figures can be regenerated from the traces with the provided code for better readability.

Global analysis of an iteration. In Figure 1, we plot twenty power measurements of the
execution of Listing 1, each trace corresponding to the sampling of one coefficient. In
this figure, starting from sample 93, one can observe 5 times the same repeating pattern
corresponding to the traversal of the first distribution table. From sample 838, there is
another pattern repeating 8 times, corresponding to the traversal of the second distribution
table. Those patterns are really helpful to match quite precisely the power consumption
to the corresponding instructions in a non-profiled setting. In the next section, we detail
the leakages corresponding to specific points of leakages (also called points of interest). In
other words, we identify the samples (in the x-axis of Figure 1) where information about x
can be retrieved.

3https://github.com/mguerrea/HawkPowerAnalysis/

https://github.com/mguerrea/HawkPowerAnalysis/
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(a) Power consumption dur-
ing the computation of the sign
(Line 4).

(b) Power consumption dur-
ing the application of the sign
(Line 28).

(c) Power consumption dur-
ing the norm computation
(Line 30).

Figure 2: Blue (resp. red) traces correspond to coefficients with a positive (resp. negative) sign.

3.1 A first non-profiled power analysis
3.1.1 Sign recovery

Computation of the sign in Line 4 of Listing 1. The sign of the sampled coefficient is
computed at the very beginning of the loop at the first line of Listing 1. The register
holding the value of neg will be either filled with zeros or with ones, hence having a
Hamming weight of either 0 or 32. This is a first point of leakage where the sign can
be retrieved by analyzing the power traces. In Figure 2a, the power consumption of the
sign computation for various traces is plotted. It is possible to see a slight difference in
consumption between two groups of traces, which does not exactly correspond to the sign
of the coefficients. This is due to the fact that, as for all other values, a sign is also drawn
for the zeros. Thus, the zero coefficients that one could consider as positive ones, are
actually classified alternatively as positive or negative. Hence, some blue traces are in the
lower group of traces in Figure 2a, corresponding to the “negative zeros”.

Application of the sign in Line 28 of Listing 1. The sign is applied at the end of the
sampler, at line 28 on listing 1. In the corresponding Figure 2b, the power traces are very
clearly divided into two groups, due to very high leakage in the operation. The leakage
is so significant that it can be seen with bare eyes. A simple threshold computed with
the mean of the traces is enough to split them into two distinct subsets. Here again, as
all other values, the zeros also get a sign applied to them. If the sign is negative, then
the zero will be classified as a negative number, because its Hamming weight will greatly
increase during the operation. If the sign is positive, then the zero will be classified as
a positive number, as its Hamming weight will remain at 0 during the whole operation.
Hence, here again our “negative zeros” are in the lower group of traces in Figure 2b.

Computation of the norm in Line 30 of Listing 1. The operation immediately following
the sign application is the norm computation. The traces are shown in Figure 2c and will
be analyzed further in Section 3.2 but we can already also clearly distinguish the sign.
Using this leakage, we obtain two different but related pieces of information.

• First, we can easily split the power traces into two sets to distinguish between positive
and negative coefficients.

• Next, contrary to the sign application analyzed above, all the zeros behave as positive
integers, as they indeed have a Hamming value of 0 after the sign application. This
allows for the second extraction, as if a coefficient has been classified as negative with
the analysis of the sign application and then positive with the norm computation, it
should be a zero. Hence, we can clearly identify all the zero coefficients that have
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previously been classified as negative integers (the so-called “negative zeros”) by
taking an intersection of two classifications. The number of such zeros is around half
of the zero coefficients as there is a probability of exactly 0.5 to get a negative sign.

Recovered information. The sign can be recovered with 100% success rate over our
10 000-coefficient database. Any of the three points of leakage highlighted above is
sufficient to recover the drawn sign, but only the norm computation allows us to correctly
classify the zeros as positive coefficients. Additionally, the combination of this last point
of leakage (Line 30) with the first (Line 4) or second (Line 28) classification allows the
identification of half of the coefficients equal to 0 with perfect accuracy. The number of
recovered zero coefficients is around 7% for Hawk-1024 of the total number of coefficients,
and would be around 8% for Hawk-512 and 9% for Hawk-256. Those percentages
correspond to half of the probability of 0 in the distribution of x.

3.1.2 Parity recovery

A similar analysis on Lines 12, 16, 23 and 27 of Listing 1 allows to recover the parity with
100% accuracy over our 10 000-coefficient database. The details of this analysis will be
provided in the full version of this paper.

3.2 Looking deeper in the power traces
During each iteration of the two for-loops, the variable r is either incremented by 0 or
1 depending on the result of the comparison between a random 72-bits number and the
corresponding entry in the table. As the table is filled with reverse cumulative distribution,
once the random number is less than a table entry it will be inferior to all the following
entries.

Analysis of the first and second iterations. Note that if r is not incremented in the
first iterations, then it will not be incremented later on and will remain 0 until eventually
a sign and a parity is applied to it. Hence, much information can be deduced from the
leakage of the first two iterations. While the leakage is less obvious than the one caused by
the sign and the parity, we used a simple one-dimensional clustering methods (k-means)
to achieve 100% accuracy. A detailed analysis can be provided in the full version of this
paper. In a nutshell, thanks to the first two iterations of lines 13 and 17 of Listing 1, it is
possible to obtain the value of all the coefficients in [−3, 3] with 100% accuracy on our
database.

Third iteration. Further analysis is required to recover information on larger coefficients.
We can extend this attack on the third execution of lines 13 and 17. We report being
able to obtain the following bit of information by analysing the leakage of the increment of r:

(Case A) either r has not been incremented for sure,

(Case B) or the classifier does not know.
Indeed, if r has not been incremented (Case A), this means that x[i] ∈ [−5, 5], since

we are on the third iteration of the loop. As all the coefficients in [−3, 3] were previously
identified, we can correctly retrieve the information x[i] ∈ {−5,−4, 4, 5} if a coefficient is
assigned to Case A and was not previously found in a former classification. In the second
case (Case B), nothing can be deduced on the value of x[i]. In fact, a large number of
coefficients fall in this second case. For example, almost all the 0 are assigned to Case B,
thus we simply disregard the Case B coefficients. The key point is that Case A do not
have any false positives and the partial classification it provides is thus reliable.
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In our 10 000-coefficient database, we had 1449 coefficients belonging to {−5,−4, 4, 5},
and only 31 of them were classified in Case B. Besides, all the coefficients equal to ±5
are correctly classified in Case A. So, if a value (not previously classified as in [−3, 3]) is
classified in Case A and it is odd, one can conclude that it is a ±5. And if a value (not
previously classified as in [−3, 3]) is classified in Case A and it is even, one can conclude
that it is a ±4. However, we recall that some ±4 are assigned to Case B and are thus not
recovered.

Computation of the norm. It is possible to distinguish even larger coefficients by looking
at other points of interest like the computation of the norm. Recall that by looking at
Line 30 of listing 1 and particularly samples 1529 to 1541, it is possible to recover the sign
of the coefficient (See Section 3.1). However, more can be exploited in the power traces.
Indeed, as it can be seen in Figure 3, the traces appear to be divided in not only 2 distinct
sets but 3 distinct sets, two of them corresponding to positive coefficients while the last
one corresponding to negative coefficients.

By looking at the sampled coefficients, we remark that the group of traces in the middle
corresponds to positive coefficients with their 3rd LSB set to 1. Hence, it is possible to
partition the values according to the identified set during the norm computation.
Let us define these three sets. We generated 10 000
coefficients and none of them were outside the interval
[−6, 9], which is expected with very high probability
due to the standard deviation used in the sampler. In
the sequel, we will assume than 9 is a maximum value
for a coefficient of x and −6 a minimum value. In other
words, we tolerate a very small failure probability (even
smaller for low security levels of Hawk).
With this assumption, we define the following parti-
tioning for our traces, also visible in Figure 3:

• S1 = {0, 1, 2, 3, 8, 9} (top in blue)

• S2 = {4, 5, 6, 7} (middle in yellow)

• S3 = {−1,−2,−3,−4,−5,−6} (bottom in red)

Figure 3: Power consump-
tion during the norm com-
putation (Line 30). Top
traces correspond to S1, mid-
dle traces to S2, and bottom
traces to S3.

To wrap up, a finer analysis of the power consumption of Line 30 of listing 1 allows to
obtain the j such that x[i] ∈ Sj . As we were able to retrieve all coefficients between −3
and 3 with the table comparison, it follows that we can identify the coefficients equal to 8
and 9. Indeed, if a value that was not classified before is assigned in S1, then it is a 8 if
it is even and a 9 if it is odd. The values 8 and 9 correspond to a total of 82 for 10 000
coefficients.

At this point, in a total of 10 000 coefficients, 258 of them are still not classified,
belonging to the following subset: {−4, 4, 7,−6, 6}. Note that we do not have any false
positives, all coefficients that have been previously classified have been with 100% accuracy.
The only odd possible value is 7 so its classification is straightforward. The only unknown
now concerns the 220 unclassified even coefficients, that could be equal to ±4 or ±6.

Conclusion. Combining the information gained from the table comparison and the norm
computation (and the sign and parity obtained in Section 3.1), we report being able to
recover the exact value of a large fraction of the coefficients of the sample x, we refer to
Table 1 for more details. The final percentage of recovered coefficients is around 98% for
Hawk-1024, with no false positives, and only two possible values left for the unknown
coefficients. For other variants of Hawk, the accuracy is expected to be even higher as
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Table 1: Number of retrieved coefficients in each subset for 10 000 coefficients. There is no
false positives in classified coefficients. In the unrecoverable coefficients, we list the coefficients
that were assigned to Case B during the analysis of the table comparison and for which the
computation of the norm could not help deducing any information about their value.

Subset Number of retrieved coefficients Number of unrecoverable coefficients

{−1, 0, 1} 4308 0
{−3,−2, 2, 3} 3934 0
{−4, 4} 941 31
{−5, 5} 208 0
{−6, 6} 0 189
{−7, 7} 38 0
{−9,−8, 8, 9} 82 0
Total 9780 220

the standard deviation of the sampler is smaller, leading to smaller coefficients which are
easier to classify.

3.3 A profiled power analysis
In this section, we assess the feasibility of a straightforward template on the whole algorithm
to conclude our extensive leakage analysis.
Template generation. The template was generated
with 10 000 coefficients, which would correspond to
approximately 5 traces in a realistic setup for Hawk-
1024, as each signature requires the sampling of 2048
coefficients. Points of interest (PoIs) were classically
determined with a Sum of Differences (SoD) method.
The best results were obtained with 30 points of in-
terest, so that each iteration of the two loops was
represented by at least two PoIs. We represent the
sum of differences used to build the template in Fig-
ure 4. We did not use the norm computation to build
our template, because the leakage of the sign value
overrides any other information in this operation.

Figure 4: Sum of Differences
used to build the template

Accuracy of the attack. To assess the accuracy of our template, we generated a set of
1 000 new coefficients. The classification accuracy was of 100%, which would lead to a
straightforward key recovery from two different signatures by computing a matrix inversion
as described in Equation 1.

3.4 Discussion
As shown in Table 2, the three attacks presented above allow to recover progressively a lot
of information about the sample x. The substantial leakage comes from the many different
vulnerable points identified in the reference code.

Such a leakage is of course unsurprising given that the targeted reference implementation
is unprotected. Table 2 provides a very favorable example that cannot represent realistic
attacks where the target device could be more physically protected. Although, in a general
setting, given the very large amount of points of leakage, one can assume that some
information may still be recovered. For example, one can assume that it is possible to
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Table 2: Recovered information from the different analysis. parity (©), sign (4), value (�)

© 4 � for Hawk-1024

Non-profiled 1 (Sec. 3.1) 100% 100% 7%
Non-profiled 2 (Sec. 3.2) 100% 100% 98%
Profiled (Sec. 3.3) 100% 100% 100%

recover x parity bits, y signs and z exact values of coefficients (as shown in Section 3.2,
some values like the zeros are very leaky). It is important to show how a partial information
can impact the security of the scheme and which are the ways to proceed to a key recovery.
In the next section, we expose the general impact of partial or complete leakage of the
sign, parity and value of x on the lattice reduction key recovery attack.

4 Impact of partial information on x on the lattice reduc-
tion key recovery attack

Overview of the key recovery. Secret key recovery in lattice-based cryptography of-
ten resorts in finding a short vector by applying lattice reduction techniques (mostly
BKZ [Kan83]). It implies using BKZ on the lattice whose Gram matrix is the public
key Q = B∗ · B where B is the secret key. This technique is used by the authors of
Hawk to estimate the security of the scheme as well as to highlight necessary security
parameters. Given the partial hints that may be obtained through side-channel attacks,
one can improve these attacks to lower the security of the scheme. To gauge the impact of
the hints, we use the evolution of BKZ-like attacks by incorporating the hints depending on
their nature following [DDGR20, DGHK23]. Informally, these hints can allow to sparsify,
intersect or project (depending on the nature of the hints) leading to resultant lattices
with different volumes and/or lower dimensions. To remain brief, the volume of a lattice
can be seen geometrically as the multidimensional volume delimited by its fundamental
domain. Another equivalent definition exists using the Gram matrix, which is handy as it
directly corroborates with the studied signature scheme. More precisely, if V is a basis of
the lattice Λ then Vol(Λ) =

√
det(V∗ ·V).

This security estimation is performed using the notion of block size β, a crucial param-
eter of the algorithm BKZ which is directly related to its complexity. Since hints directly
impact the volume of a lattice as well as potentially its dimension, it directly impacts
the value of β and thus the underlying complexity to find a short vector. We use this to
practically lower the security of HAWK given side-channel information.

For the rest of the section, let us denote by Λ the lattice whose Gram matrix corresponds
to the public key Q = B∗ ·B. It can be constructed from existing tools like [ACD+18,
DDGR20, JOL+23]. Note that one basis of Λ can be the short secret matrix B and the
vector

(
f g

)
is a short vector that will be the target of the attack.

Remark 2 (Search for unusually short vectors). The authors of Hawk note that if the lattice
reduction is successful enough, it may provide another basis V of Λ that is unimodular,
meaning V ∈ GL2n(Z). In particular, it can provide a basis V whose vectors in Z2n

are of norm 1, which is smaller than the norm of
(
f g

)
. If this is the case, while this

V ∈ GL2n(Z) may be different from B, it allows anyone to sign as if the matrix B was
used. Indeed, it is enough to use the unstructured version of the signature with V instead
of B. We refer to [JOL+23, Section 5.1] for more details about this cryptanalysis. While
the search for unusually short vectors is more efficient that aiming at

(
f g

)
, it cannot be

helpful in our setting as we would like to include information about
(
f g

)
.
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4.1 Key recovery complexity evaluation
Finding a short vector in Λ consists in applying BKZ algorithm with a block size β that is
large enough. The choice of the block size of BKZ offers a trade-off between the quality of
the output and the complexity: higher block sizes lead to shorter vectors at the expense of
the runtime. The complexity of such an algorithm as function of the block size has been
very well documented in the literature [GN08, CN11, ADPS16, AGVW17]. In particular,
the link between the blocksize β of BKZ, the size of the target short vector, denoted here
‖s‖, and the lattice Λ is as follows:√

β/dim(Λ) · ‖s‖ ≤ δ2β−dim(Λ)−1
β ·Vol(Λ)1/ dim(Λ) (2)

where δβ is the root-Hermite-Factor of BKZ-β. For small β’s, the root-Hermite-Factor
can be tabulated and for β ≥ 50, it is predictable using the Gaussian Heuristic [CN11]

δβ =
(

(πβ)
1
β · β

2πe

)1/(2β−2)
.

To estimate the complexity of BKZ, the authors of Hawk use a technique inspired
from [DDGR20]. A first step in the analysis consists in scaling the lattice by a factor

√
2n.

In other words, Λ becomes
√

2n ·Λ. Hence, in Equation 2, we can then apply the following:
dim(Λ) = 2n
Vol(Λ) =

√
2n2n det(Q) = 2nn (det(Q) = 1 because B is unimodular)

‖s‖ = σkrsec (given as a parameter)
(3)

The scaling by
√

2n allows to move the dependency in n into the volume instead of the
size of the short vector ‖s‖ whose size should normally be σkrsec

√
2n.

The complexity estimation script is provided in the Hawk submission (accessible
at https://github.com/hawk-sign/aux/blob/main/code). In particular, the
function predict_beta_and_prev_sd roughly computes the minimum β such that
Equation 2 including Equation 3 becomes true. The computation is optimized by using
logarithms to avoid large numbers in the volume and a probabilistic technique (see [JOL+23]
for more details).
Such a β provides a good estimate of the complexity of BKZ but converting it into a
precise bit-security is delicate as such conversions are based on heuristic (still moving)
models. For this study, the key notion is the relative difference between the black-box
security and the residual security with the knowledge gained by side-channel information.
So, we can stay with β as a complexity metric and refer for example to [ACD+18] for a
summary of existing cost conversion models. We could recompute the block size β with
this script for the different versions of Hawk (see the second column of Table 4) and get
the same values as in [JOL+23, Table 7].
Remark 3 (Variants of the security estimation). In addition to this presented estimation
technique inspired from [DDGR20], the authors of Hawk also use the GSA intersect method
[AGVW17] which provides slightly better results. However, we will keep the technique
inspired from [DDGR20] because it is more convenient to include information gained by
side-channel. The authors of Hawk also use the dimensions for free optimization [Duc18],
denoted "d4f" in the specification. As we are interested in the relative modification of the
block size before and after the application of the side-channel information, we decide to
ignore the application of this optimization.

4.2 Modifying the lattice to estimate a residual complexity
The i-th coefficient of the polynomial x corresponds to the i-th coefficient of Bw which is
the zero-th coefficient of Bw̃ where w̃ is a (known) rotation of w. Hence, any information

https://github.com/hawk-sign/aux/blob/main/code
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Table 3: Type of side-channel information
Gained knowledge Type of hint

sign 4 x0[i] ≥ 0 or ≤ 0 Inequality hint or approximate hint
parity © x0[i] mod 2 = 0 or 1 Modular hint
value � value of x0[i] Perfect hint

about a coefficient of the polynomial x0 provides linear information on the secret vector(
f g

)
. Such a linear information may be of three types (as shown in section 3.1): sign 4,

parity © and exact value �. Each information may be included in the lattice reduction
with an adaptation of the hints technique of [DDGR20] as shown in Table 3.

Remark 4. The side-channel information obtained in Section 3.1 is provided on both x0
and x1. However, x1 provides linear information on

(
F G

)
and not on

(
f g

)
. Naturally

we would like to use fG− gF = 1 mod Xn + 1 to obtain additional information on
(
f g

)
.

But, it appears that partial linear information on F (resp. G) does not directly translate to
f (resp. g). Additionally, we found no useful resource for this use case and therefore we let
this issue as an open problem. However, we argue that besides improvements over existing
NTRU attacks, this problem would be particularly interesting to improve our current
attack complexity-wise. In a nutshell, this section will only make use of the side-channel
information obtained for x0.

4.3 Sign or parity knowledge
Let us start by analyzing the parity knowledge. Plugging this information in the lattice
reduction attack consists in sparsifying the lattice Λ. One can see the equation x = B ·w
mod 2 a collection of n modular hints on

(
f g

)
.

The estimation script presented above in Section 4.1 only takes the dimension of the lattice
and its volume as inputs. To assess the security loss thanks to the n modular hints, it is
possible to use [DDGR20, Lemma 13] and deduce that, under a primitivity hypothesis on
w, the volume is multiplied by a factor 2 for each hint, so the volume is multiplied by 2n
in total (hence, n can simply be added to the logarithm of the volume). We present in the
third column of Table 4 the obtained estimated residual β and in Listing 2 the script for
finding such values. We can deduce from these results that the knowledge of the parity
alone is not enough to recover the secret key with lattice reduction.� �

1 f o r d in {512 , 1024 , 2048} :
2 beta , _ = predict_beta_and_prev_sd (d , d∗ l og (d) /2 + d/2 ,

l i ft_union_bound=True , number_targets=d , tour s=1)
3 pr in t ( beta )
 	

Listing 2: Estimation of the residual complexity with the knowledge of the parity of x0

Moving to the sign information, this hint is an inequality. Following [DDGR20], it
can be considered as an approximate hint where the lattice is shifted toward the correct
direction (recentering) and the standard deviation of the target short vector is diminished.
The a posteriori standard deviation can be computed as the standard deviation of the
binomial distribution of parameter η when all the negative values are discarded. For all sets
of parameters, our computation gives σaposteriori

krsec ≈ σkrsec/1.5. While using a lattice coset
instead of a centered lattice does not impact the complexity estimate, the modification of
the standard deviation of the target short vector is equivalent to scaling the lattice by the
factor 1.5. Hence, the volume of the lattice is changed to Vol(Λ) = Vol(Λ) · (1.5)n for n
hints (so a factor n · log2(1.5) is added to the logarithm of the volume).
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Table 4: Estimated residual beta obtained with the knowledge of the parity of x0 © and/or the
sign of x0 4.

β No information © 4 © + 4

HAWK-256 211 172 192 157
HAWK-512 452 387 420 362
HAWK-1024 940 829 886 784

� �
1 f o r d in {512 , 1024 , 2048} :
2 beta , _ = predict_beta_and_prev_sd (d , d∗ l og (d) /2 + log ( 1 . 5 )

∗ (d / 2) , l i ft_union_bound=True , number_targets=d , tour s=1)
3 pr in t ( beta )
 	

Listing 3: Estimation of the residual complexity with the knowledge of the sign of x0

We present in the fourth column of Table 4 the obtained residual β and in Listing 3
the script for finding such values. The sign alone is also not enough to recover the secret
key with lattice reduction.

In addition, we can note that combining both knowledge is possible as the sparsification
of the lattice and the scaling are compatible. The total gain is relatively significant, as
presented in the last column of Table 4.

Remark 5. It is also possible to use [DGHK23], a recent modification of [DDGR20] that
allows an estimation of inequality hints. The modification of the volume corresponds to the
equations presented in [DGHK23, Section 4.1] with α = 0 (as the inequality is comparing
to zero) and r = d. This geometric estimation technique provides in theory more insurance
on the final estimation but as a consequence the recovered block size in our case are only
slightly affected by the integration of the hints. This approach is more relevant when α is
close to 1.

4.4 Residual security with the knowledge of some exact coefficients
of x0

The hint to be integrated in Λ is an exact linear equation. For each such equation, following
[DDGR20, Lemma 12], the dimension of the lattice is decreased by one and the volume
of the lattice is multiplied by ‖w‖. To avoid complicating the computations, we place
ourselves in the worst case for the attacker where ‖w‖ = 1, in other words, when the lattice
volume stays unchanged and only the dimension decreases. In practice, the obtained β
may be slightly below the estimated one but the provided estimate is enough to see the
impact of the knowledge of exact coefficients of x0.

In Figure 5, we present the decrease of the residual block size β with the progressive
inclusion of perfect hints corresponding to the recovery of exact coefficients of x0. The
script for generating this table is in Listing 4. Note that for each coefficient, either a
perfect hint is integrated, or a modular and approximate are integrated (but not both as
it would be a duplicate of the extra information).

One can conclude from Figure 5 that if all x0 is recovered, the lattice reduction key
recovery is a valid path to finish the attack. However, it still remains costly especially for
Hawk-1024 where a residual complexity needs β = 163 even with the full knowledge of x0.
In the next section, we present a full key recovery that leverages the information on both
x0 and x1 when almost all x0 is recovered.
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Figure 5: Residual β as a function of the partial information recovered on x0, i.e. with © +
4 and increasing number of �. A conversion to the logarithm of the number of bit operations is
given in the y-axis, it uses the 0.292× β cost model of [ACD+18].

� �
1 f o r d in {512 , 1024 , 2048} :
2 f o r nb_perfect_hints in range (0 , d/2 ,10) :
3 beta , _ = predict_beta_and_prev_sd (d − nb_perfect_hints ,

d∗ l og (d) /2 + ( log ( 1 . 5 ) +1)∗(d/2−nb_perfect_hints ) ,
l i ft_union_bound=True , number_targets=d , tour s=1)

4 pr in t ( nb_perfect_hints , beta )
 	
Listing 4: Estimation of the residual complexity with the knowledge of the sign and
parity of x0 and the values of some coefficients of x0

5 Key recovery without lattice reduction when most of x
is recovered

In this section, we present a full key recovery that leverages the information on both x0 and
x1 and that does not use a lattice reduction key recovery technique. The attack is detailed
for Hawk-1024 where the length of x is 2048 and the lattice reduction attack remains
prohibitive. The case study will be the side-channel attack presented in Section 3.1 that
can correctly retrieve 98% of the x[i], leaving an average of only 46 unknown coefficients in
{−6,−4, 4, 6}. In this section, we propose a simple way to retrieve the missing coefficients,
leading to a key recovery in reasonable computation time.

Computation of the coefficients distribution. As highlighted in Section 2.2, we can
recover ‖x‖ from public data and

‖x‖2 = x[0]2 + · · ·+ x[n− 1]2. (4)

By subtracting the squares of the x[i] that we already know to the square of its norm
and with a reordering, we can simplify the equation to

α = x[0]2 + · · ·+ x[j]2 (5)
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with j being the number of unknown coefficients in x and α is known. As pointed
earlier, the unknown coefficients x[i] can only take two absolute values: 4 or 6. We can
thus rewrite the equation as α = n4 · 16 + n6 · 36, with nd = #{x[i] | x[i] = ±d} and
n4 + n6 = j. This is a simple linear system with two equations and two variables, allowing
us to retrieve n4 and n6.

Recovery of the private key. The number of possible combinations of the unknown x[i] is
given by the binomial coefficient, the worst case being

(
j
j/2
)

=
(46

23
)
< 230. The distribution

between coefficients whose absolute value is equal to 4 or 6 is however not uniform, and a
more realistic bound is given by

(46
7
)
< 218. We recall that a signature s is computed as

follows: s = 1
2 (h−w), with Bw = x. As shown by Equation 1, we need to recover two

different x and x′ to attempt the recovery of the private basis B which amounts to around
236 different combinations.

We recall that because of the algebraic structure used in Hawk, all matrices are block-
wise negacyclic, and the inversion of a matrix consists on operations on a few polynomials,
which can be optimized by various methods (for example with NTT with a small modulus).
As we are working with 2x2 matrices, the total number of polynomial multiplications to
naively compute Equation 1 is 14 ≈ 24, each of them with a complexity of approximately
215 thanks to NTT. This amounts to a total complexity for the key recovery (with a very
large margin) of 255 in terms of elementary operations.

6 Reducing the leakage with simple modifications
6.1 Our modifications
In a similar manner as [GMRR22], we propose very light adaptations to the discrete sampler
to greatly reduce the leakage induced by the operations. Please note that these adaptations
are in no way a provable countermeasure but they are some almost free implementation
tricks to avoid straightforward leakages. The modified sampler is presented in Listing 5.

Parity. To prevent the parity from leaking in each iteration of both loops, we recommend
sampling into two registers r0 and r1 during the tables traversal, and only applying
the parity at the very end just before the norm computation, as it was designed in the
pseudocode of the Hawk specification. This however implies an overhead as some of the
operations need now to be done twice, but on the other hand we remove two XOR and
one AND, mitigating the global overhead.

To choose between r0 and r1 at the end of the algorithm, we can use the same technique
as the one proposed in the original code to choose from one of the two tables:

r = r0 ^ (p_odd & (r0 ^ r1));

However, even if we reduce the size of the registers to 8 bits, this operation is still very
leaky as the Hamming weight of p_odd is either 8 or 0. We can tackle this by using only
the one bit stored in p_bit and performing a multiplication:

r = (1 - pbit) * r0 + pbit * r1;

Multiplications require more CPU cycles than bit-wise operations, but as this operation is
only performed once by coefficient the overhead is reasonable. However, multiplication is
not constant-time on all the CPUs, and in particular it can be faster if one of the operands
is zero or a power of two. To mitigate this, we propose a simple trick inspired by BearSSL4

and tailored for our small values:
4https://www.bearssl.org/ctmul.html

https://www.bearssl.org/ctmul.html
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#define MUL5(x,y) ((uint16_t)((x) | (uint16_t)0b11000000) \

* (uint16_t)((y) | (uint16_t)0b110000000) \
& (uint16_t)0b111111)

Contrary to BearSSL, we also manage the case when one of the operands is a power of
two as this will necessarily happen.� �

1 uint32_t neg = -(uint32_t)(lo >> 63);
2 uint8_t pbit = (t[v >> 3] >> (v & 7)) & 1;

3 uint8_t r0 = 0, r1 = 0; ©
4 for (size_t i = 0; i < hi_len; i += 2) {
5 uint64_t tlo0 = tab_lo[i + 0];
6 uint64_t tlo1 = tab_lo[i + 1];

7 uint64_t tmp0 = 0x7FFFFFFFFFFFFFFF; �

8 uint64_t tmp1 = 0x7FFFFFFFFFFFFFFF; �

9 uint32_t cc0 = (uint32_t)((tmp0 - lo + tlo0) >> 63); � ©

10 uint32_t cc1 = (uint32_t)((tmp1 - lo + tlo1) >> 63); � ©
11 uint32_t thi0 = tab_hi[i + 0];
12 uint32_t thi1 = tab_hi[i + 1];

13 tmp0 = 0x7FFF; �

14 tmp1 = 0x7FFF; �

15 r0 += (tmp0 - hi + thi0 + cc0) >> 15; � ©

16 r1 += (tmp1 - hi + thi1 + cc1) >> 15; � ©
17 }
18 uint32_t hinz = (hi - 1) >> 31;
19 for (size_t i = hi_len; i < lo_len; i += 2) {
20 uint64_t tlo0 = tab_lo[i + 0];
21 uint64_t tlo1 = tab_lo[i + 1];

22 uint64_t tmp0 = 0x7FFFFFFFFFFFFFFF; �

23 uint64_t tmp1 = 0x7FFFFFFFFFFFFFFF; �

24 uint32_t cc0 = (uint32_t)((tmp0 - lo + tlo0) >> 63); � ©

25 uint32_t cc1 = (uint32_t)((tmp1 - lo + tlo1) >> 63); � ©

26 r0 += hinz & cc0; ©
27 r1 += hinz & cc1; ©
28 }

29 uint8_t r = MUL5((1 - pbit), r0) + MUL5(pbit, r1); ©
30 r = (r << 1) | pbit; ©
31 x[v] = (int8_t)r;
32 sn += (uint32_t)(r * r)
33 x[v] = (x[v] ^ neg) - neg;
 	

Listing 5: SamplerSign with modified lines to mitigate leakage of parity (©) and value (�) of
x highlighted. Norm computation and sign application in Lines 32 and 33 are also permuted.

Comparison with RCDT. We propose a straightforward application of [GMRR22] on
the last operation of the first loop, corresponding to line 17. Two variables of 15 bits are
subtracted into a 32-bit register, leading to the 17 MSB of the result being either all 1 or
all 0 and thus a Hamming weight difference between positive and negative results of at
least 17. By initializing the register to 215 − 1 and inverting the sign of the operands, we
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can transform the physical underflow into a logical overflow, causing an average Hamming
weight difference of only 1.

Reducing the leakage for the norm computation. As a very simple additional modifi-
cation, we permuted the computation of the norm and the application of the sign in Lines
32 and 33. Functionally, this does not change the result as the norm does not depend on
the sign of the coefficients. This allows to reduce the leakage as the sign induces very high
Hamming weight differences during the multiplication.

Conclusion. We have presented simple modifications that remove many leakage spots
without affecting the performance. Indeed, with the modifications, some sensitive values
are no longer used in each loop iteration, and the intensity of the leakage for the spots
corresponding to the parity is highly reduced as we limit the Hamming weight difference
to at most 1 compared to 17 initially. In the next section, we focus our analysis on the
effect of our techniques on the leakage.

6.2 Experimental validation
Since the attack targets a sampler, we are in a simple power analysis context (as x is fresh
each time it is sampled). Hence, it is not possible to apply commonly known statistical
techniques like Test Vector Leakage Assessments (TVLA) because this test measures the
leakage according to a fixed secret and random input (which does not work in our SPA
setting). To our knowledge, the most relevant way of validating a countermeasure against
an SPA is to compute the signal-to-noise ratio (SNR) reduction of the modified code. A
common rule is to validate the design if the SNR is below a certain threshold, preventing
SPA attacks for a certain level of noise of the device.

Reduction of the leakage. To estimate the reduction of the leakage, we have plotted
the SNR with respect to the value of x of each sample point of the sampler trace. The
impact of our modifications is presented in Figures 6a and 6b. One can see that the
leakage is greatly reduced. More precisely, during the core operations of the sampler, i.e.
during the tables traversal (before sample 1450), the SNR shows that the leakage is almost
unnoticeable. The trick of removing the sign from the norm computation is also highly
diminishing the SNR. The SNR of the spike corresponding to the norm is going from 1228
to 89. The sign is still slightly leaking as shown in the graph of Figure 6b.

Performance. The impact of our modifications on the performance is also unnoticeable.
As illustrated by the graphs 6a and 6b, a similar number of samples is needed to capture
the targeted function before and after the application of our modifications. Overall, we
did not notice any change of the number of cycles in the whole signature process.

Residual leakage. The leakage cannot be totally mitigated with our techniques as they
are not provable generic masking techniques with fresh randomness. As outlined, Lines 32
and 33 of Listing 5 correspond to the computation of the norm and the sign after the tables
traversal. While we permuted them to lower down the leakage, there are no simple tweaks
to totally mitigate the leakage: for the sign, it would require modifying the encoding
and lead to incompatibility with the rest of the signature, for the norm computation, the
multiplication operation leaks the absolute value of r. Therefore, while highly reduced,
these two operations still leak some information about x.
Note that since they consist in usual multiplication, XOR and subtraction operations, they
could be protected with existing masking techniques with two shares for example. The
algorithms (called gadgets) for performing these masked tasks can be found in [BBD+16].
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(a) SNR on the original code (Listing 1) (b) SNR on our modified code (Listing 5)

Figure 6: SNR before and after modification of the code. Remaining spot of leakage in figure 6b
correspond to computation of the norm and application of the sign.

Table 5: Recovered information with different attacks on 1000 coefficients.
Recovered values of x for Hawk-1024

Non-Profiled (Sec. 3.1/ 3.2) on the original code 7% and 98%
Non-Profiled (Sec. 3.1/ 3.2) on the modified code 0% and 0%
Profiled (Sec. 3.3) on the original code 100%
Profiled (Sec. 3.3) on the modified code 78% (at unknown positions)

The norm computation can be performed with a SecMult gadget for instance. The cost of
such generic countermeasure is certainly a bit more expensive than our ad-hoc modifications
but it would allow to efficiently remove the residual leakage in a device with very low noise.
As this would require a new implementation and a masking proof, this is left as interesting
future work.

Applying our attacks with the modified code. Traces generated after the application
of our modifications are also available on the repository. Our non-profiled attacks from
Section 3.1 and Section 3.2 can no longer recover the key as even the 0’s and 1’s cannot
be distinguished. Regarding our profiled attack from Section 3.3, we applied it again and
store the average percentage of correctly classified coefficients with and without leakage
mitigation on 1000 coefficients in Table 5. Contrarily to Table 2, the percentage of the
last line leads to a much weaker knowledge as the positions of the correctly classified
coefficients of x are unknown. Hence, a heavy brute-force step is necessary to guess the
correct positions and this classification cannot work with the key recovery complexity
analysis presented in Section 4. All in all, recovering the key from such information seems
very challenging.

7 Conclusion
In this paper, we have provided a review of many vulnerable instructions in Hawk’s
discrete Gaussian sampler and a diversity of ways to use them to recover the private key.
In terms of vulnerability, we would be tempted to conclude that side-channel assisted key
recoveries are more accessible for Hawk than for Falcon due to the many points of leakage
in the Gaussian sampler. The next research step would clearly be to apply side-channel
countermeasures to Hawk. On the one hand, protecting Hawk could be technically easier
than protecting Falcon because Hawk is free from floating points. But on the other hand,
due to the many sensitive instructions inside the sampler, the open issue will rely on
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minimizing the performance overhead. We hope that our work can provide a basis for
more evolved attacks later on if practical protections are one day implemented.
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