
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 4, pp. 133–155. DOI:10.46586/tches.v2024.i4.133-155

Another Evidence to not Employ Customized
Masked Hardware

Identifying and Fixing Flaws in SCARV

Felix Uhle 1, Florian Stolz 1 and Amir Moradi 2

1 Ruhr-Universität Bochum, Horst Görtz Institute for IT Security, Bochum, Germany
firstname.lastname@rub.de

2 Technische Universität Darmstadt, Darmstadt, Germany
firstname.lastname@tu-darmstadt.de

Abstract. As a well-studied countermeasure against side-channel analysis attacks,
there is a general interest in applying masking to different cryptographic functions
executed on different platforms. On the one hand, despite their high performance,
masked hardware implementations are dedicated to specific algorithms, making
them inflexible. On the other hand, applying masking on software involves serious
challenges including significant overhead in terms of efficiency and difficulties to
maintain theoretical security guarantees in practice. As a result, a line of research has
been devoted to enable masked operations in flexible platforms (i.e., microprocessors)
by including some masked modules in their hardware, hence a combination of flexibility
and performance. In such scenarios, RISC-V is a natural choice as hardware can
be adjusted to the extended instruction set. One such attempt presented at CHES
2021 is known as SCARV, which extends the Instruction Set Architecture (ISA) of a
RISC-V core with a rich number of first-order masked operations on both Boolean
and arithmetic masked operands. In this work, we conduct a comprehensive analysis
of SCARV. Instead of relying on empirical measurements to demonstrate security, we
utilize tool-assisted evaluations. Through these evaluations, we identified a couple
of design flaws that lead to leakage in the masked implementations hosted by the
corresponding processor. These flaws are primarily due to the lack of composability
of cascaded components. While heuristic and ad-hoc design principles can result
in secure, small, and efficient designs, they lack formal security proofs, which may
lead to security flaws, like those we report here. Consequently, this work serves as a
motivation for using composable masked modules and tool-assisted evaluations when
constructing complex circuits.
Keywords: Masking · Hardware/Software co-design · RISC-V · SCARV

1 Introduction
Numerous Side-Channel Analysis (SCA) attacks against secure cryptographic algorithms
have been proposed, exploiting the correlation between device physical characteristics and
processed data values. One SCA attack vector is the analysis of the power consumption
while processing secret data.

To prevent such attacks, countermeasures have been introduced to dissociate processed
data from physical characteristics. An advantage of masking over other countermeasures,
such as hiding, is that the security of a masked implementation can be formally proven
within a specified attacker model, rather than relying solely on empirical evaluations. Var-
ious masking schemes exist, with Boolean masking being notable, especially for symmetric

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-04-15 Accepted: 2024-06-15 Published: 2024-09-05

https://doi.org/10.46586/tches.v2024.i4.133-155
https://orcid.org/0009-0006-0480-3283
https://orcid.org/0000-0002-0898-8135
https://orcid.org/0000-0002-4032-7433
mailto:felix.uhle@rub.de, florian.stolz@rub.de
mailto:amir.moradi@tu-darmstadt.de
http://creativecommons.org/licenses/by/4.0/

134 Another Evidence to not Employ Customized Masked Hardware

ciphers. Given that symmetric cipher operations are predominantly Boolean, Boolean
masking facilitates comparably efficient masked implementations of symmetric ciphers.

All masking schemes necessitate data sharing, leading to a linear increase in the amount
of data to be processed. This increase depends on the chosen security order, resulting in
varying overheads across different implementations. Two approaches are typically employed
to handle this overhead: First, increasing the area of the circuit involved in computation.
This allows for parallel processing of the shared data representation, mitigating higher
latency. Second, keeping the area constant but processing the shared data sequentially,
leading to higher latency (more cycles) due to the increased amount of data to be processed
compared to a non-masked design. Both strategies result in higher energy consumption.
Whether increasing the area or the number of cycles, more state changes of transistors
occur, inevitably leading to increased energy consumption.

Both software and hardware platforms can host masked implementations. Hardware
masking, which has extensively grown during the last decade, offers designs with provable
security features that maintain the desired security level in practice. However, they lack
flexibility and cannot be manipulated after fabrication unless implemented on FPGAs.
Software masking, on the other hand, offers flexibility, but suffers from two main drawbacks:
1) very high latency overhead regarding the number of clock cycles [GR17, SBM18, GD23],
and 2) inconsistency between theory and practice. In other words, the designs which are
proven to be secure in theory often exhibit leakage in practice [BWG+22], originating
from the micro-architecture of the processor, which is typically unknown for commercial
devices. Solutions to these shortcomings can be categorized into three categories: First,
addressing leakage by modifying the assembly code of the implementation and re-evaluating
empirically [SCS+21], albeit in a somewhat heuristic manner. Second, considering a
conservative model for the micro-architecture to avoid micro-architectural leakages. This,
however, leads to extreme overhead [ZM24]. Third, constructing a customized processor
to facilitate masked operations, typically by extending the instruction set to include
new operations for working on masked operands. These operations are implemented in
hardware, providing the flexibility offered by the microprocessor, while the latency can be
highly mitigated.

In this work, our focus is on the third category. More precisely, we concentrate on an
instruction set extension for RISC-V platforms to support masked operations published at
CHES 2021 [GGM+21].

As we elaborate later in Section 2.3, creating masked implementations is a time-
consuming, and complex task. In the case study in [MM22], several designs crafted by
security experts with years of experience were discovered to still exhibit unexpected leakage.
Many flaws go unnoticed due to the limitations of experimental evaluations. Experimental
results may vary when employing different measurement setups or making minor design
changes, such as altering the placement and routing of masked hardware designs or using
different microprocessors (even from the same family but produced by different vendors)
in masked software implementations.

Several tools have been developed recently to check the security of circuits under
specific security models, such as robust probing or random probing models, aiming to assist
designers in evaluating masked designs and addressing the limitations of experimental circuit
evaluations [BBD+15, BGI+18, KSM20, BMRT22, RBFSG22]. However, many of these
tools are limited to analyzing small implementations and gadgets due to their exhaustive
analysis approach, rendering them impractical for more complex designs. One recent tool
capable of simulating complex designs, due to its incomplete nature, is PROLEAD [MM22],
which was utilized for many experiments in this work.

In the past, the absence of such tools made computer-assisted studies of complex designs
impossible. As a consequence, security claims for complex circuits often relied solely on
empirical evaluations. This work highlights that tool-assisted evaluations can detect flaws

Felix Uhle, Florian Stolz, Amir Moradi 135

that empirical evaluations may overlook. This is particularly important for complex circuits
designed for performance and efficiency without using composable components. Based on
our findings, we recommend employing composable circuits for designing complex systems
due to the challenges associated with analyzing such circuits.

Our Contributions. In a tedious process spanning several months, we conducted an
in-depth analysis of the masked ALU proposed by [GGM+21]. During this analysis, we
revealed a couple of vulnerabilities in the masked ALU, each contributing to leakage in
masked operations. We provide insights into why certain constructs used in the design
are prone to leaking. Subsequently, we address all identified vulnerabilities and perform
an incomplete verification of the security using the glitch and transition extended robust
probing model with PROLEAD [MM22]. Furthermore, we demonstrate through examples
the critical importance of verifying even the smallest components of a design to ensure
correct masking. This underscores the necessity of thoroughly verifying masked circuits,
especially when combining modules that have not been proven to be composable, as such
combinations can lead to insecure implementations.

2 Background
2.1 Masking
One way to implement a cryptographic algorithm secure against SCA attacks is to apply
masking. The concept of masking was introduced in [CJRR99] leveraging Adi Shamir’s
renowned secret sharing scheme [Sha79]. Following the fundamental principles of secret
sharing, the concept of masking involves the fragmentation of secret information into
random and independent shares. Thus, only if all shares are known, information about the
secret is uncovered. From a cryptographic engineering perspective, masking decouples the
processed data from their physical characteristics (on a specific device). One advantage
of masking over other countermeasures, e.g., hiding, is that the security of a masked
implementation can be proven in a given (attacker) model and not only based on empirical
evaluations [MOP07]. For symmetric ciphers Boolean masking is the most common choice
to efficiently implement a masked realization of an algorithm. This makes it an important
candidate to be implemented as part of an Instruction Set Extension (ISE) with the
purpose of accelerating the execution of (symmetric) cryptographic algorithms.

Boolean Masking. Boolean masking was presented as a countermeasure to SCA in
[CJRR99]. A Boolean masked sensitive information x ∈ (F2)n is represented with k ≥ 2
independent random shares xi ∈ (F2)n such that x =

⊕k−1
i=0 xi. Usually, a Boolean sharing

of x is generated by sampling k − 1 shares xi uniformly at random from (F2)n. The
remaining share is then given by xk−1 = (

⊕k−2
i=0 xi)⊕ x. Thus, knowing d < k shares is

not enough to reconstruct x. A Boolean masked algorithm has to compute all operations
involving the sensitive information x on its shared representation {x0, . . . , xk−1}.

2.2 d-Probing Model
As stated, security of masked implementations can be formally evaluated by means of
various adversary models. The d-probing model [ISW03] offers a high level of abstraction,
simplifying its usability in comparison to other models [CJRR99, DFS15, PR13]. This ease
of use is due to the abstraction of inherent physical characteristics of circuits. Therefore,
it is a prominent model to prove SCA resistance.

The model operates under the assumption of ideal circuits and defines an adversary
capable of measuring up to d freely chosen, noise-free, and stable signals. Hence, the
model allows the adversary access up to d intermediate values. Security within this model

136 Another Evidence to not Employ Customized Masked Hardware

depends on the adversary’s inability to learn information about the sensitive data processed.
This, in turn, requires that the distribution of the processed sensitive information remains
independent of the distribution across the d intermediate values. The standard d-probing
model was expanded to the robust d-probing model [FGMDP+18] to cover the imperfections
in hardware circuits, deviating from the ideal, and acknowledging physical phenomena
such as glitches, transitions, and couplings, which can introduce additional information
leakage. In the robust probing model, the original d probes are systematically extended
and uniquely tailored to the specific physical effect under consideration. These diverse
extensions share a common objective: addressing the worst-case scenario in terms of
potential information leakage caused by a specific effect.

By extending the d probes in a manner that comprehensively accounts for all theoreti-
cally possible information leakage associated with a given physical effect, the model takes
a conservative approach. This conservative assumption is pivotal in modeling arbitrary
hardware circuits, as it allows the inclusion of all information that may leak. While
this level of conservativeness may seem stringent, it enables the modeling of arbitrary
hardware circuits without the need for details about the manufacturing process, or physical
characteristics, such as routing and placement. A less conservative approach may not
be capable of achieving this without incorporating comprehensive details regarding the
specific hardware attributes.

Glitches. Glitches manifest as temporary and unintended signal transitions in the combi-
national logic between two register stages. This physical effect occurs when signals, with
different paths and switching delays, arrive asynchronously at a gate. Thus, the gate
computes preliminary outputs before all input signals stabilize. In the context of SCA,
glitches can lead to unintended signal recombination.

The transient outputs of a gate depend on complex physical properties of the man-
ufactured circuit, rendering it unfeasible to estimate the concrete information, which is
leaked. Due to this limitation, the robust probing model extends the original d probes
with allowing them to access all stable intermediate values (register outputs and global
inputs), which impact the original probed wires. This extension empowers the adversary to
compute all possible leakage functions, including those that arise in an arbitrary hardware
realization of a circuit, caused by its physical properties. Consequently, the robust probing
model is suitable for testifying security in the presence of glitches.

Transitions. Data transition within memory elements, such as registers, allows an adver-
sary to potentially gain knowledge of the current and the new value stored in a memory
element. In response to this, the robust probing model permits the adversary to observe
two consecutive clock cycles to model the potential leakage resulting from transitions. As
a result, a single probe placed on a register output is extended to two probes within the
robust probing models, with one measuring the current and one measuring the new value.

Couplings. Coupling refers to a class of physical effects that cause neighboring wires to
influence each other. From the SCA perspective, the influence on adjacent wires may lead
to unintentional recombination of signals. Since coupling is a spatial effect, the original
probing set is extended with probes, which observe the neighboring wire in a given radius
to form a coupling-extended probing set. This however needs information about physical
realization of the circuits, i.e., its layout, and is not the focus of our work as it deals with
designs at Register-Transfer Level (RTL).

(g, t, c)-Robust d-Probing Model. The notion of (g, t, c)-robust d-probing introduced
in [FGMDP+18], indicates the physical effects considered within the robust probing model.
Specifically, g and t take binary values (0 or 1) to indicate whether glitches (g) and
transitions (t) are considered. For couplings, c ≥ 0 quantifies how many wires influence
each other. In the remainder of this work we use the (1, 1, 0)-robust d-probing model

Felix Uhle, Florian Stolz, Amir Moradi 137

to verify SCA resistance of the underlying circuits. Security in this model is achieved
if the criteria of the original d-probing model are fulfilled for a glitch and transition
extended probing set. For the remainder of this work, the term “security” exclusively refers
to security within the (1, 1, 0)-robust d-probing model. It is crucial to emphasize that
neither d-probing security nor (g, t, c)-robust d-probing security provides any guarantee of
composability. Therefore, independently secure components should be composed with care
to maintain the desired security [MMSS19, CS20].

2.3 Hardware Masking
In general, two strategies for building masked hardware implementations can be distin-
guished. On one side is a handcrafted approach which relies mainly on intuition, heuristics,
and empirical evaluation. The counterpart of the handcrafted strategy is the gadget-based
masking, which utilizes composable security notions and can deliver proofs for the security
of the composed circuit.

Handcrafted Masking. The process of manually implementing a masked circuit requires
that the masking is applied to the whole circuit. Combining two such circuits may not
lead to a secure design. Every small change to the circuit must be evaluated in the
context of the entire design. This makes the process of implementing an SCA-resistant
variant of even a small algorithm a challenging, time-consuming, and error-prone task.
Additionally, it is not trivial to prove that a handcrafted masked circuit is secure under,
e.g., robust d-probing model. Therefore, experimental evaluations are often given for such
designs instead of proofs. Due to the strong dependency of experimental evaluations on
the measurement setup, such evaluations are only valid in the specific context in which
the experiments were conducted. As an example, we can refer to two evaluations of the
same design reported in [BBA+22] and [LMMRS23].

Gadget-Based Masking. To design an SCA-resistant circuit, a typical scenario is to
divide the chosen algorithm into small components, typically atomic Boolean functions.
Each function is then replaced with its masked variant called a gadget. If the gadgets fulfill
some well-defined composability properties, it can be guaranteed that the combination of
the gadgets leads to a circuit secure in the robust d-probing model. Typically, these gadgets
are comparably small, hence it is easy to show that they fulfill the desired composability
notions. The downside of this technique is its higher area and/or latency overhead compared
to the handcrafted designs.

Domain-Oriented Masking (DOM). DOM is a generic hardware masking technique
introduced in [GMK16], which keeps all signals belonging to a share domain independent
of the other share domains. Therefore, an implementation following the DOM approach
can use d+ 1-shares to achieve d-th order security in the glitch extended probing model.
Since the computation of linear functions over Boolean masking involves only shares
of one domain, it is trivial to keep the shares separated. The realization of non-linear
functions, e.g., an AND operation in a Boolean sharing context, is more challenging, since
the component functions involve shares from more than one domain.

The DOM AND operation, introduced in [GMK16], extends the concept of [ISW03]
to accommodate the robust d-probing model by adding a fresh random and a register
stage. In short, two designs for a masked AND module have been presented: 1) DOM-indep,
requiring independently shared inputs, and 2) DOM-dep, requiring more randomness and
area but without any constraints on the sharing of the inputs. In Figure 1 we show the
architecture of a first-order DOM-dep AND with two fresh masks1. We should highlight
that – although highly secure and efficient – DOM gates do not fulfill any composability
properties.

1The other DOM-dep AND design presented in [GMK16] requires three fresh mask bits.

138 Another Evidence to not Employ Customized Masked Hardware

a0
(rs1_s0)

b0
(rs2_s0)

b1
(rs2_s1)

a1
(rs1_s1)

z0

z1

clk
D

Q

reg0
D

Q

reg1
D

Q

reg2
D

Q

reg3

q0
(rd_s0)

q1
(rd_s1)

Figure 1: RTL design of an efficient first-order (d = 1) DOM-dep AND gate. z0 and z1

denote fresh masks. The labels in parentheses, e.g., rs0_s0, rs1_s1 and rd_s0 follow
the notation from [GGM+21] used for inputs to the Arithmetic Logic Unit (ALU). The
absence of the red registers in the design and Figure 2a of [GGM+21] results in leakage in
the glitch-extended probing model.

2.4 PROLEAD
PROLEAD [MM22] is a simulation-based leakage detection tool designed to analyze the
security of masked circuits within the (1, 1, 0)-robust d-probing model. To verify the
security of a circuit, PROLEAD simulates the circuit with different inputs and examines
the dependencies between the secret and the distributions observed by glitch- and transition-
extended probes placed on the gate-level netlist of the underlying circuit. Such dependencies
are estimated by means of a statistical test, known as G-test [Hoe12].

Although PROLEAD offers the advantage of being able to verify more sophisticated
designs compared to formal verification tools such as [BBD+15, BGI+18, KSM20, BMRT22,
RBFSG22], its simulation-based approach also introduces a drawback, i.e., incomplete
verification. Consequently, the result of the verification by PROLEAD is an approximation,
which can be improved by increasing the number of simulations and different input vectors
until it attains completeness.

PROLEAD’s current version has two limitations: it is incapable of simulating circuits
clocked on both negative and positive edges, and it is incapable of simulating dedicated
memory modules in system-on-chip and microprocessor designs. The first issue can be
addressed by adopting the Device Under Test (DUT) to be clocked on a single edge, which
does not affect the characteristics relevant to SCA. The second restriction requires the
removal of the memory module. Therefore, leakage caused by the memory cannot yet be
evaluated by PROLEAD.

2.5 RISC-V
RISC-V is an open-source Instruction Set Architecture (ISA), aiming for simplicity in
both hardware and software through the usage of the Reduced Instruction Set Computer
(RISC) principle. In contrast to Complex Instruction Set Computer (CISC) architectures,
such as x86, RISC processors implement simple instructions in order to keep the space
requirements of the decoder and other functional units relatively small. This in turn

Felix Uhle, Florian Stolz, Amir Moradi 139

ideally allows instructions to complete in one or two cycles. Furthermore, RISC-V employs
modularization to tailor processors for specific use cases. The base ISA, referred to as
RV32I (for 32-bit architectures), only defines a register set consisting of 32 general-purpose
registers (x0 - x31) and provides basic integer arithmetic and control-flow instructions.
If the designer requires more instructions, additional extensions can be added. For
example, the M extension includes multiplication as well as division. Linux-capable
machines usually implement the G extension, which groups many extensions such as the
M extension together. This modularization, as well as its open-source license, allows
researchers to propose and implement own extensions for special purpose acceleration,
such as cryptographic computations. The RISC-V standard reserves specific opcode ranges
for these custom instructions [PW17].

2.6 Design under Study
In this work, we analyze the instruction set extension for first-order masking proposed by
Gao et al. in [GGM+21]. The provided instructions allow designers to implement efficient
and fast masked implementations in software without utilizing specialized co-processor.
They use the SCARV2 RISC-V core [MP21], which is an advanced embedded-class processor
featuring a 5-stage pipeline and implementing RV32I as well as three standard extensions to
accelerate bit manipulation, integer multiplication and to allow for compressed instructions.
The SCARV project aims to create an open platform which can be used to prototype
instruction set extensions that accelerate cryptographic implementations. They also aim
for a side-channel hardened processor, which can be achieved by extensions such as the
one by Gao et al. In their work, the authors extend the core with a random number
generator module to generate fresh masks. A Linear Feedback Shift Register (LFSR)
with an optional ring oscillator, which provides one true random bit, provides 32 bits of
randomness. Furthermore, a masked ALU is added, which implements different kinds of
instruction classes. Each class realizes specific masked operations, such as Boolean masking,
arithmetic masking, conversions between the two and acceleration of field operations. The
core employs the general-purpose register set to store shares and was modified to make
the loading of four values (two operands in shared form) in parallel possible. Accidental
share combination is prevented by storing one share of each operand in bit-reversed form.
The pipeline was also modified to propagate all operands to the masked ALU, where the
bit-reversing is eliminated and the requested operation is carried out. Internally, the ALU
uses an instantiation of the same LFSR structure described earlier to generate randomness.
In their work, Gao et al. assess the security of their implementation by performing a Test
Vector Leakage Assessment (TVLA).

2.7 Notation
Each submodule of the ALU reduces at most two shared data inputs to one shared
data output. The word size of the ALU is given with l = 32. a and b are reserved
to label the data inputs and q to label the output. a is a sharing of a ∈ (F2)l with
a = (a0, a1) ∈ (F2)l × (F2)l and a = a0 ⊕ a1 ∈ (F2)l. If required, we address the i-th
bit (0 ≤ i ≤ l) of share a0 with a(i)

0 ∈ F2. We designate (a0, b0) and (a1, b1) as the first
and second domain, respectively. The six used masks are given with zj ∈ (F2)l with
j ∈ [0, 5]. We use parentheses here to distinguish a bit index of a share from an index
referring to a specific mask. The i-th bit of a j-th mask is referred with zj,(i) ∈ (F2). Due
to the requirements of an iterative circuit, computations of consecutive rounds must be
distinguishable. ȧ0 is the value of a0 in the previous round and ä0 is the value in the round
before that. Gao et al. [GGM+21] refer to the global inputs of ALU with rs1_s0, rs1_s1,
rs2_s0 and rs2_s1. The outputs are named rd_s0 and rd_s1. The two shares of each

2Available at: https://github.com/scarv/scarv-cpu/tree/scarv/xcrypto/masking-ise

https://github.com/scarv/scarv-cpu/tree/scarv/xcrypto/masking-ise

140 Another Evidence to not Employ Customized Masked Hardware

data inputs are distinguished by _s0 and _s1. We follow this scheme to label the inputs
and outputs at the boundaries of the ALU.

3 Experimental Analysis I (SCARV)
In the following section we detail our measurement setup and show that the original
extended SCARV core provided by Gao et al. [GGM+21] exhibits leakage by performing a
power side-channel analysis.

3.1 Setup
In order to analyze the underlying design, we employed two setups. Both use the latest
masked SCARV core as provided by the authors in the xcrypto/masking-ise branch of
the GitHub repository2 (commit b6720e5). The first setup, referred to as the SoC setup,
uses the ChipWhisperer CW305 board. This specific board was chosen as it features an
Artix xc7a100tftg256 Field Programmable Gate Array (FPGA), which was also used
in the original paper. Furthermore, the authors provide a full System on a Chip (SoC)
project for this specific FPGA comprising the Central Processing Unit (CPU) as well
as various peripherals, such as General-Purpose Input/Output (GPIO), which we use
for setting up a trigger, and a Universial Asynchronous Receiver Transmitter (UART)
for sending data. The CPU receives code as well as data from a control computer. The
SoC is clocked at 25MHz by an on-board Phased-Locked Loop (PLL) and its power
consumption is measured via a shunt resistor located on the CW305 board. The signal
is passed through a 20 dB amplifier and captured by an oscilloscope capable of 2.5GS/s.
Our second setup, referred to as the low-noise setup, employs a Sakura-G board, which
is specially designed for low-noise measurements. Furthermore, the board is physically
located in a room that is shielded from day-to-day noise sources. It features two Spartan-6
FPGA, one acts as a controller and the other one as the device-under-test. The power
consumption is captured via a shunt resistor, afterwards the signal is amplified by 21 dB
and sampled at 2.5GS/s. The FPGA is supplied by a 4MHz clock source. Such a slow
clock rate is a common practice in side-channel evaluation as it allows obtaining clear
power traces, as the switching noise is considerably reduced. This represents a worst-case
scenario for a defender; hence, a secure implementation should not exhibit leakage even
under such circumstances. On this setup we only instantiate the masked ALU instead of
the whole core to eliminate any other potential leakage sources.

3.2 Evaluation
We evaluate the robustness of the original design using a fixed vs. random t-test. For the
SoC setup, we designed microbenchmarks that only focus on a single instruction of interest
as shown in Listing 1. Each benchmark consists of a sequence that activates the trigger,
creates a gap via No-Operation (nop) instructions, executes the desired instruction, and
then resets the trigger. A gap between the trigger and the instruction under test is required,
as we use a memory-mapped peripheral to set a GPIO pin high. Thus, any consecutive
instruction following the store instruction would have already executed and would stay
stalled in the pipeline as the load-store unit performs its action. Therefore, we cannot
capture the effects created by executing a single masked instruction. Internally a nop
is decoded as addi x0,x0,0 which is executed just like any other arithmetic instruction,
hence creating a short delay, which allows us to activate the oscilloscope in time. Notably,
the nop does not completely clear the micro-architectural state in the pipeline, which is
however unproblematic, as each measurement is performed using independently and freshly
masked inputs accompanied by fresh masks. To perform the t-test the control computer
chooses a fixed or random (masked) value and transmits it to the core. Afterwards,
it instructs the core to execute the microbenchmark. For demonstration purposes, we

Felix Uhle, Florian Stolz, Amir Moradi 141

0k 200k 400k
Number of Measurements

2.5

3.0

3.5

4.0

4.5

5.0

t-
va
lu
e

(a) t-statistic for masked ADD.

0k 200k 400k
Number of Measurements

2.5

3.0

3.5

4.0

4.5

5.0

t-
va
lu
e

(b) t-statistic for masked AND.

Figure 2: t-statistic over 450,000 measurements for a masked ADD as well as AND operation
on the SoC setup.

selected the Boolean masked AND as well as ADD instructions. As shown in Figure 1, the
AND module misses critical registers, which should lead to detectable leakage. The ADD was
chosen as a representative of more complex operations, which combine multiple primitives.
microbenmark :
li t0 , 0x40002000 ; Memory - mapped GPIO used for trigger
li t1 , 8 ; Bitmasks to activate / deactivate trigger
li t2 , 0
li a5 , 0 ; Clear result registers
li a4 , 0
nop
sw t1 , 0(t0) ; Activate the trigger
nop ; Wait a few cycles for trigger to go high
...
mask.b.add (a5 ,a4) ,(a3 ,a2) ,(a1 ,a0) ; Instruction under test
nop ; Wait in order for mask.b.add to pass through all pipeline stages
...
sw t2 , 0(t0) ; Deactivate the trigger
ret ; Return

Listing 1: Example of a microbenchmark which is used to assess the leakage of the masked
addition.

The results are shown in Figure 2. After around 450,000 measurements the t-value
crosses the 4.5 boundary with a clear upward trend for both operations, meaning that the
fixed and random sets can be differentiated with > 0.99 probability, thus indicating leakage.
As our traces are not perfectly aligned and also include noise, we believe that the design
leaks with fewer measurements under more ideal conditions. To ensure that the leakage is
entirely or in-part caused by the masked ALU, we performed the same experiment on the
low-noise setup, where the ALU is instantiated without the surrounding core. As we will
show later, the randomness generation employed in the original work is not robust. Without
changing it, we were able to detect leakage after around 700,000 measurements. The
required measurements for both setups differ, because other computational units within
the SoC potentially amplify the leakage as explained in Section 5. For comparison reasons,
we removed the randomness source and replaced it with a Keccak f-[800] core. Here, the
module started to exhibit first-order leakage after 5 million measurements. Figure 3 shows
a t-test result after 8 million measurements, where the peaks are more pronounced.

4 Leakage Mitigation
In this section, we analyze the leaking components of [GGM+21], using the latest masked
SCARV core as provided by the authors in the xcrypto/masking-ise branch of the

142 Another Evidence to not Employ Customized Masked Hardware

0 2500 5000 7500 10000
sample point

-8

-4

0

4

8

t-
va
lu
e

Figure 3: t-test after 8 million measurements for the original masked ALU using an
improved randomness engine on the low-noise setup.

GitHub repository2 (commit b6720e5), and show how to fix them. The extracted modules
and the used PROLEAD configurations are available on GitHub3. We restrict our analysis
to the masked ALU [GGM+21] and within that to the proposed B-class submodule to
limit the complexity of this time-consuming process. The modules responsible for field
arithmetic (F-class operations) and operations under arithmetic masks (A-class operations)
are disabled and removed from the synthesized netlist. Throughout our analysis, we
operate under the assumption of ideal masks unless explicitly stated otherwise. We start
our investigation by scrutinizing individual components before proceeding to evaluate the
combination of these modules.

4.1 BoolBitwise Module

The BoolBitwise module is used to compute bitwise operations, such as AND, OR, NOT,
XOR. All operations, except the OR operation, are implemented independent of each other.
Therefore, within the limits of the BoolBitwise module, they cannot interfere and cause
leakage. Since bitwise operations process each bit separately, we focus on a single bit and
omit positional indices.

The linear operations of the BoolBitwise module are implemented in the expected
way: The shares of the two domains are never combined. Thus, a first order adversary
cannot gain knowledge of the unshared values. Additionally, a non-necessary remasking
step is performed as part of the XOR operation, but no register is added after the remasking
step. Thus, an adversary in the glitch-extended robust probing model learns trivially
the used mask z1. This renders the remasking step ineffective in increasing probing
security. In a broader context where the BoolBitwise module is incorporated alongside
other components, this could potentially even diminish security. This is because z1 is also
utilized in the AND operation as illustrated in Figure 1. Taking a conservative approach to
avoid potential leakage, we decided to add a register after the remasking step. Another
alternative is to completely remove the remasking step, but as we have later verified with
PROLEAD, this will lead to leakage when an operation involves the BoolAdder module.

The OR operation is realized by using the AND operation and applying De Morgan’s law.
However, employing De Morgan’s law does not impose any additional security constraints
in an SCA setting. This is because it only requires two Boolean negations, which are
linear operations and thus do not interfere with the distinct shares. The security of the OR
follows from the security of the AND implementation.

The AND operation is implemented in hardware following the DOM-dep strategy
[GGM+21]. We start our analysis with the implementation of the AND operation, as it is
utilized multiple times within the masked ALU.

3https://github.com/ChairImpSec/scarv-leakage-analysis

https://github.com/ChairImpSec/scarv-leakage-analysis
https://github.com/ChairImpSec/scarv-leakage-analysis

Felix Uhle, Florian Stolz, Amir Moradi 143

First-order optimized DOM-dep AND. Gross et al. show in [GMK16, Eq. (12)] a
formula enabling the computation of an AND operation utilizing only two fresh masks
instead of three. [GGM+21, Figure 2a] computes exactly this formula, but lacks two
necessary registers to ensure first-order robust probing security. Figure 1 illustrates a non-
leaking hardware realization of [GMK16, Eq. (12)]. The red-colored registers are missing
in the implementation and visualization of [GGM+21]. The necessity of the red-colored
registers to maintain first-order security in the robust probing model is demonstrated in
the following.

Probing q0 (Figure 1) in the glitch-extended robust probing model leads to the probing
set

Pq0 = {a0, z
0, z1, b0, z

0 ⊕ b1}

with (z0 ⊕ b1) stored in reg1. The elements of Pq0 can be used to compute the secret
information b with

b = z0 ⊕ (z0 ⊕ b1)⊕ b0 = b1 ⊕ b0.

Incorporating the red-colored register prevents the adversary from gaining access to the
plain mask z0 through glitches. Consequently, it becomes infeasible to eliminate the mask
z0 from z0⊕b1. As a result, the computation of b becomes unattainable. Having previously
developed a generic version of the DOM-dep AND, we decided to substitute the vulnerable
AND with our non-leaking generic version, configured with d = 1.

4.2 BoolAdder Module

mxor mand

counter

dom-indep shifter shifter dom-indep*

BoolBitwise

BoolAdder

rs1_s0

rs1_s1

rs2_s0

rs2_s1

z5 z0

z1

z4

rd_s0 rd_s1

q1 q0

q1q0

a0

a1

b0

b1

z5
q1 q0

b1

b0

a1

a0 z0
z1
z4

a0 b0 b1 a1

q0 q1

b0 b1 c0 c1 a0 a1

q0 q1a1 a0

a1 a0

b1 b0

b1 b0

1 ≤ x ≤ 6
= 0> 0 > 0= 0

Figure 4: High-level overview of the iterative Kogge-Stone adder (BoolArith) implemented
in [GGM+21]. Red edges represent signal paths where changes were introduced to address
leakage. Blue connections denote alternative positions for introducing countermeasures
that were not utilized.

The addition and subtraction operations are implemented using an iterative Kogge-
Stone adder [KS73]. The BoolAdder module executes the iterative and post-processing
steps of the adder, while the necessary preprocessing is handled by the BoolBitwise
module. Recognition of the interplay between these modules is crucial for conducting
an SCA. For this purpose, we introduce a wrapper, which instantiates both modules
and connects them in the appropriate way. We refer to this wrapper in the following
with BoolArith module. The BoolArith module allows us to focus on the relevant parts

144 Another Evidence to not Employ Customized Masked Hardware

and exclude effects related to further dependency of other components of the circuit.
A high-level overview of the wrapper is given in Figure 4. All wires, which are drawn,
represent 32 bit of the same share, e.g. a0 = (a(31)

0 , a
(30)
0 , . . . , a

(0)
0) ∈ Fl

2, where a0 is one
of the shares of a. Note that the wrapper requires six random bits, whereas the original
design only necessitates four. This additional requirement originates from the inclusion of
a generic DOM-dep AND gate, which demands one bit of randomness per data bit more
compared to the initial used optimized DOM-dep AND version. Another mask (z5) is added
to exclude one source of leakage which we are going to discuss later in Section 4.2.

As illustrated in Figure 4, the iterative part of the computation of a 32-bit addition
involves six components.

• Two DOM-indep modules: One module strictly adheres to the pipelined design
given in Figure 2 [GMK16]. The other module is slightly modified to incorporate an
additional XOR operation into the DOM-indep module. In Figure 4, the modified
module is denoted as DOM-indep*.

• One counter: This component controls the multiplexer and the shifter. The
counter is realized as 6-bit shift register, counting the adder cycles from x = 1
(000001) to x = 6 (100000) using one-hot encoding. The connection between the
iterations of the adder, the counter state, and the impact on the shifter can be
taken from Table 1.

• Two shifter components: These are used to interleave the 32-bit iterative intermedi-
ates, following the Kogge-Stone approach. The inputs connected to the shifter are
always shifted by at least one bit position. The number of shifted bits is controlled
by the counter. Table 1 outlines the connection between the counter state and the
number of shifted bits.

• Two multiplexers: Used to distinguish the inputs of the first cycle of the BoolAdder
from those in subsequent cycles. Each multiplexer selects one of two groups, each
containing both shares of a computation result, and forwards the chosen group. In
the first cycle (x = 1), the preprocessed inputs are fed into the DOM-indep logic.
Specifically, one input sharing (b) of the DOM-indep components is directly driven
by the result (q) of the corresponding computation of the BoolBitwise operation,
while the other sharing (a) is linked to the shifted result (q << y). In the remaining
cycles (x > 1), the outputs of the DOM-indep modules are fed to the inputs of both
the shifter and the DOM-indep modules. This means, one input sharing (b) of
the DOM-indep modules is directly fed from the output sharing (q) of the same
DOM-indep component, while the other input sharing (a) is fed by a shifted version
of the output sharing (q << y). This is illustrated in Figure 4 and Table 1.

The mxor and mand module are part of the BoolBitwise module, computing the AND and
XOR operation and utilized in the preprocessing step of the ADD and SUB computation.

First-order flaw. The BoolAdder module incorporates a single register stage, integrated
within both the DOM-indep and DOM-indep* modules. By way of illustration, we

Table 1: This table illustrates the number of shifted bits, which depends on the state of
the counter.

Iteration of Adder (x) Counter State #Shifted Bits (y)
1 000001 1
2 000010 2
3 000100 4

4, 5, 6 001000, 010000, 100000 8, 8, 8

Felix Uhle, Florian Stolz, Amir Moradi 145

D Q

ṫp0,(2)
z3,(2) D Q

tp0,(2)

D Q

ṫp1,(2)
D Q

tp1,(2)

D Q

ṫp2,(1)
shifter D Q

tp2,(2)

D Q

ṫp3,(1)
D Q

tp2,(3)

First cycle Second cycle

a0
b0

b0
a1

c0
a1

a1
c1

ż3,(2)

ż3,(1)

x = 1

x 6= 1

Figure 5: Computation of the second bit of the DOM-indep module in the second
iteration (x = 2) of the BoolAdder. The dotted lines are used to emphasize that the signal
is propagated through the shift module leading to the visualized connection. The red line
represents the signal path where changes were introduced to address leakage. The blue
connection denotes an alternative position for introducing countermeasures that were not
utilized.

demonstrate through an example that the proposed design fails to meet the criteria for
first-order glitch-extended probing security. To provide clarity, our attention is directed
towards the computation of the second bit of the tp1 register within the DOM-indep
module during the second iteration of the BoolAdder. Figure 5 illustrates the components
implicated in the signal propagation, which provide a glitch-extended probing set sufficient
to observe leakage.

The extension of the probe along the depicted connections is feasible solely due to the
fact that the only register stage involved pertains to the DOM-indep module, allowing
glitches to propagate through the shifter. It is worth noting that all visualized components
linked to the port of the shifter labeled with x = 1 do not affect the actual computation.
This is intentional, as we are analyzing the second iteration (x = 2) of the BoolAdder,
and assume that the signal forwarded by the shifter is shifted by two positions (refer
to Table 1). However, the illustrated connections accommodate a signal shifted by only
one bit, corresponding to x = 1. The notation x 6= 1 pertains to the remaining three
shifts of the shifter module, whose computation is not illustrated, as it is unnecessary
for explaining the occurrence of leakage. The inputs connected to the first cycle’s gates by
dotted lines represent signals that actually propagate to the shifter (x = 1). However,
due to space constraints, the depiction of these shifter modules is omitted.

Following the illustrated connections, a probe placed on tp1,(2) register can be extended
to, the probing set

P ′tp1,(2) = {(a0 · b0), ((b0 · a1)⊕ ż3,(2)), ((c0 · a1)⊕ ż3,(1)), (a1 · c1)}. (1)

We subsequently reduce this set to

P ′′tp1,(2) = {P 1
tp1,(2) , P

4
tp1,(2)} = {(a0 · b0), (a1 · c1)}. (2)

The two removed probes reveal no information because ż3,(2) and ż3,(1) are fresh and

146 Another Evidence to not Employ Customized Masked Hardware

Table 2: Histogram of the joint distribution of P 1
tp1,(2) and P 4

tp1,(2) based on the value of a.

(P0, P4) (0, 0) (0, 1) (1, 0) (1, 1)
a = 0 5 1 1 1
a = 1 4 2 2 0

Table 3: Histogram of the joint distribution of F 1
tp1,(2) and F 4

tp1,(2) based on the value of a.
(F 1

tp1,(2) , F
4
tp1,(2)) (0, 0) (0, 1) (1, 0) (1, 1)

a = 0 16 16 16 16
a = 1 16 16 16 16

independent masks. The histogram for the joint distribution of the remaining probes for
a fixed a ∈ F2 is given in Table 2. The effect of this flaw in a simulation based probing
security assessment conduct via PROLEAD is shown in Figure 6a.

Leakage mitigation. The described leakage can be mitigated through two distinct strate-
gies:

1. By preventing the probe extension to all possible shifts of the shifter component,
achieved by adding a register stage after the shifter in the blue marked data path
of Figure 4 and Figure 5.

2. By avoiding the probe extension to the four individual component functions of the
DOM-indep module, accomplished by adding registers after the compression stage
in the red marked data path of Figure 4 and Figure 5.

We opt for the second approach to minimize the number of added registers and the changes
required to adopt the control logic. Recall, that the leaking probing set, as given in
Equation (2), is constructed by observing two of the four individual component functions
that contribute to the result of the second iteration of the BoolAdder.

Adding a register stage after the compression layer leads to the probing set

Ftp1,(2)=
{
F 1

tp1,(2) , F
4
tp1,(2)

}
=
{(

(a0 · b0)⊕
(

(b0 · a1)⊕ ż3,(2)
))

,
((

(c0 · a1)⊕ ż3,(1)
)
⊕ (a1 · c1)

)}
. (3)

The corresponding histogram is depicted in Table 3. Probing the added register enables
access to the component functions of F 1

tp1,(2) and F 4
tp1,(2) respectively. It is evident that

both probing sets reveal no information, as one component function of each probing set is
perfectly random due to the mask involved in the computation. To prevent transitional
leakage, we opt to reset both the added post-compression-layer register and the original
DOM-indep register (tp register in Figure 5) when the captured value is not required in
the next clock cycle. Therefore, the two register stages are reset alternating. We adopt
the modifications of the DOM-indep module to the DOM-indep* component.

We verified the resulting circuit using PROLEAD in a glitch and transition enabled
setting. PROLEAD is configured with default statistical parameters as outlined in [MM22].
Specifically, PROLEAD processes a sufficient number of simulations to detect all effects
with an effect size φ = 0.01 and a false-positive probability of β = 10−5.

The results obtained from PROLEAD are presented in Figure 6b. In the plot, the
minimum p-values are depicted in black on a − log10(p) scale. The red horizontal line
represents the false-positive threshold β. The null hypothesis is rejected if the − log 10(p)
value exceeds this threshold, indicating leakage in the (1, 1, 0)-robust 1-probing model.

Felix Uhle, Florian Stolz, Amir Moradi 147

The gray line represents the quotient of the number of evaluated simulations and the
number required to detect all effects with effect size φ and false-positive probability β.
The blue horizontal line signifies the threshold where the number of evaluations equals the
number of required ones. If the gray line exceeds this threshold, PROLEAD has conducted
a sufficient number of simulations. Figure 6b shows that our version of the BoolAdder in
combination with our version of the BoolBitwise computes an ADD instruction without
exhibiting any first-order leakage.

Incompatibility of BoolBitwise and BoolAdder. As discussed in Section 4.1, the security
of the BoolAdder relies on the implementation of the BoolBitwise module. More precisely,
the mxor circuit outlined in [GGM+21] lacks a crucial register after the masking step,
rendering it unsuitable for non-leaking operation alongside the BoolAdder.

This deficiency is exhibited in Figure 6c through the simulation of an instantiation of
the BoolArith module, comprising our version of the BoolAdder and the original proposed
version of the BoolBitwise module. For this simulation, we set the effect size φ = 0.3, as
this is sufficient to detect leakage. The resulting p-value exceeds the threshold by multiple
orders of magnitude, indicating leakage.

Additionally, we conduct five supplementary experiments to investigate the impact of
reusing a mask and one experiment avoiding the remasking step of the XOR operation. In
each experiment, we replace z5 with one mask from the set Z = {z0, z1, z2, z3, z4, 0} and
employ PROLEAD to verify the security of the circuit. These experiments reveal that
substituting z5 with any masks of Z results in a circuit that violates the requirements for
a first-order security in the robust probing model.

Flawed LFSR-based random generator. Up to this point, we have assumed uniformly
distributed random and independent masks. To ensure this we have utilized PROLEAD
to generate the masks in the experiments above. In the following, we investigate the effect
of the proposed randomness generator outlined in [GGM+21], employing our non-leaking
versions of the BoolArith module.

The randomness generator proposed in [GGM+21] is based on 32-bit LFSRs. In each
clock cycle, each LFSR is used to generate up to 64 bit randomness. For this purpose, all
32 bits of the current state r and of the next state r̂, given by

r =
{
c , first cycle
˙̂r , otherwise

(4)

r̂ = (r << 1)||(r(31) � r(21) � r(1) � r(0) ⊕ tr), (5)

are used in each clock cycle. Here, tr is a true random bit, c is a constant used to initialize
the LFSR and ˙̂r is the next state r̂ of the previous cycle. To assess the impact of the
proposed randomness generator, we connect the four random masks z0, z1, z2, z3 to the two
instantiations of the suggested LFSRs. Each LFSR is initialized with different random
seeds c generated by PROLEAD. Moreover, the tr bits of both LFSRs are independently
generated by PROLEAD.

Once again, the p-value exceeds the threshold by several orders of magnitude, as
demonstrated in Figure 6d. This finding indicates that the random number generator
utilized by Gao et al. is unsuitable for achieving first-order robust probing security.

As shown by [CMM+24] it is known that LFSR based randomness generation can lead
to insecurity and a better alternative is to use an unrolled implementation of the Trivium
Cipher [DC06, DCP08]. For our experiments we continue to use the randomness generated
by PROLEAD.

148 Another Evidence to not Employ Customized Masked Hardware

0 2000 4000 6000 8000 10000 12000 14000
Number of Simulations

0

50

100

150

200

250

300

lo
g 1

0
(p

)

0.0

0.2

0.4

0.6

0.8

1.0

(E
va

l./
Re

q.
) S

im
ul

at
io

ns

-log(p)
= 10 5

(Eval./Req.) Simulations
-Effects detected with

(a) Original BoolArith (ADD).

0.0 0.5 1.0 1.5 2.0
Number of Simulations 1e6

0

1

2

3

4

5

6

lo
g 1

0
(p

)

0.2

0.4

0.6

0.8

1.0

1.2

(E
va

l./
Re

q.
) S

im
ul

at
io

ns

-log(p)
= 10 5

(Eval./Req.) Simulations
-Effects detected with

(b) Our modified BoolArith (ADD).

0 5000 10000 15000 20000 25000
Number of Simulations

0

20

40

60

80

lo
g 1

0
(p

)

0.2

0.4

0.6

0.8

1.0

(E
va

l./
Re

q.
) S

im
ul

at
io

ns
-log(p)

= 10 5

(Eval./Req.) Simulations
-Effects detected with

(c) Modified BoolArith (ADD) with original XOR
computation.

0 5000 10000 15000 20000 25000
Number of Simulations

0

50

100

150

200

250

300

350
lo

g 1
0
(p

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(E
va

l./
Re

q.
) S

im
ul

at
io

ns

-log(p)
= 10 5

(Eval./Req.) Simulations
-Effects detected with

(d) Modified BoolArith (ADD) with original
randomness generator.

0 500 1000 1500 2000 2500 3000 3500
Number of Simulations

0

50

100

150

200

250

300

350

lo
g 1

0
(p

)

0.2

0.4

0.6

0.8

1.0

(E
va

l./
Re

q.
) S

im
ul

at
io

ns

-log(p)
= 10 5

(Eval./Req.) Simulations
-Effects detected with

(e) Original Bool2Arith.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Number of Simulations 1e6

0

1

2

3

4

5

6

lo
g 1

0
(p

)

0.2

0.4

0.6

0.8

1.0

(E
va

l./
Re

q.
) S

im
ul

at
io

ns
-log(p)

= 10 5

(Eval./Req.) Simulations
-Effects detected with

(f) Modified Bool2Arith.

Figure 6: Results of PROLEAD simulations comparing the original design from [GGM+21]
(leaking) with our modified design (non-leaking). The red line denotes the false-positive
threshold set to β = 10−5, while the blue line represents the number of traces needed
to detect effects with effect size φ. When the gray line surpasses the blue threshold,
PROLEAD has processed sufficient traces to detect effects with the desired effect size.
This is particularly relevant for demonstrating the security of a given design. We infer
leakage when the black line consistently exceeds the red line.

Felix Uhle, Florian Stolz, Amir Moradi 149

rst

D Q

rst

D Q

Bo
ol

Ar
it

h

a0

a1

z2
s

z3
s

u0

u1

s0

s1

Figure 7: Circuit involved in the computation of the Bool2Arith instruction. The red
registers, although not originally part of the circuit, are necessary to prevent leakage. s0
and s1 denote the outputs of the BoolArith module and u0 and u1 are both shares of the
computed arithmetic sharing u. z2

s and z3
s remain fixed throughout the computation of

the arithmetic sharing.

4.3 Bool2Arith Operation
The Bool2Arith operation4 converts Boolean masked values to arithmetic masked values.
Although not part of the B-class operations, we analyze it as it solely involves operations
from the B-class submodule. This operation takes both shares (a0, a1) of a Boolean sharing
a and computes the arithmetic sharing u = (u0, u1) = ((a0 ⊕ a1) + (z2 ⊕ z3), (z2 ⊕ z3)).
The corresponding circuit is shown in Figure 7.

The red-colored registers are not part of the original Bool2Arith operation. We
simulate the circuit, without these red registers using PROLEAD with φ = 0.5. In the
simulated circuit we utilize our non-leaking version of the BoolArith module. However,
as demonstrated in Figure 6e, the Bool2Arith operation leaks even when computed using
our modified version of the BoolArith module. This leakage occurs because the adversary
gains access to temporary values of both output shares s1 and s2 of the BoolAdder module.
To address this, we introduce the red registers, which are reset until the Bool2Arith
computation is completed. This prevents the recombination of the input shares by
temporary computations. Figure 6f demonstrates by visualizing PROLEAD’s simulation
results that our adopted version mitigates the leakage. The downside of this approach is
that we need one cycle more to compute the instruction.

4.4 Masked ALU
In this section, we investigate the (1, 1, 0)-robust first-order probing security of the entire
ALU, incorporating the modifications made to the BoolBitwise, BoolAdder, BoolArith
and Bool2Arith components. Additionally, the ALU comprises two further modules:

1. The BoolMask module, responsible for generating a sharing a of an unshared data
input a and performing remasking operations.

2. The BoolShift component, capable of computing left and right shifts and rotating
a given sharing a by a specified number of bits.

All these modules are connected to a multiplexer, which selects the expected output
based on the chosen opcode. The BoolBitwise unit computes all bitwise operations when
an opcode representing such an operation is active. Due to the multiplexer, an adversary
can observe one output share of all bitwise operations. Furthermore, the adversary has
access to the inputs of the BoolMask module, since it contains no register. The mask used

4We should note that the Bool2Arith module is different from the BoolArith module explained and
discussed in Section 4.2.

150 Another Evidence to not Employ Customized Masked Hardware

in the BoolMask operation is z0. Recall that z0 is also used in the computation of the
AND operation. Consequently, probing the rd_s2 output of the ALU while any bitwise
operation is computed reveals the partially glitch- and transition-extended probing set

Prd_s2 =
{
a1 · ż1,

(
(a1 · ż0)⊕ ż4) , b0 ⊕ ż0, b1 ⊕ ż1, a1, ż

0
}
. (6)

Note, that ż0 is only accessible through transitions. The vulnerability introduced by ż0 is
shown in the histogram Table 4 of Prd_s2. This issue can be resolved by avoiding z0 as the
mask of the BoolMask module.

Table 4: Histogram of the joint distribution of Prd_s2 based on the value of b.

(Prd_s2) 0 1 2 3 4 5 6 7 8 9
b = 0 6 22 22 12 12 12 4 8 10 4
b = 1 8 20 22 12 10 14 10 2 4 10

We opt to replace z0 with z5, as the later one is solely utilized in the remasking step of
the XOR operation. While this adjustment suffices to secure the computation of a single
AND operation within the ALU circuit, it falls short when different operations with distinct
opcodes, but identical data inputs are executed consecutively. Rather than tackling each
individual issue arising from the various combinations of subsequently executed operations,
we choose to address them collectively.

Recall that while we have individually demonstrated the security of each module, we
cannot directly infer the security of the entire ALU from the security of its constituent
components. This limitation arises because the output shares of different modules can
potentially be probed simultaneously through a single glitch or transition extended probe
and no composability notions are used. To circumvent the probe extension to multiple
modules, we introduce a new register stage before the inputs of the output multiplexer of
the ALU. Each output of the different modules is connected to a register, which is set to
zero as long as the opcode and the ready signal of the corresponding instruction are not
active. Consequently, the multiplexer is always driven by at most one final output signal,
with the other inputs being zero. This prevents the probe extension to different inputs of
the multiplexer by glitches, but introduces one cycle overhead for each instruction.

Moreover, since each computation involves at least one register, there is always one
clock cycle between two completed operations where all inputs to the multiplexer are
zero. This prevents the extension of a probe to different output signals by transitions.
Collectively, these measures allow us to conclude the security of the entire ALU from the
security of its independent modules. The simulation results for the entire ALU computing
an ADD are presented in Figure 8.

5 Experimental Analysis II (Fixed ALU)
We now evaluate our improved ALU by performing a power side-channel analysis. We
employ the same setup described in Section 3.1 and measure the ALU both in isolation
and as an integrated part in the core. As explained in Section 4.2, the randomness
generation originally implemented in the SCARV core is flawed. For our measurements,
we thus replaced the LFSRs with a more robust Keccak-f[800] core, which generates 576
pseudo-random bits per cycle. First, we instantiated our ALU on the low-noise setup
and verified that it is leakage-free by asserting different opcodes and observing the power
consumption.

Figure 9 shows the t-value of a masked addition over all sample points after 100
million traces. This operation was again chosen, as the masked addition combines multiple

Felix Uhle, Florian Stolz, Amir Moradi 151

0 1 2 3 4
Number of Simulations 1e6

0

1

2

3

4

5

6

lo
g 1

0
(p

)
0.25

0.50

0.75

1.00

1.25

1.50

1.75

(E
va

l./
Re

q.
) S

im
ul

at
io

ns

-log(p)
= 10 5

(Eval./Req.) Simulations
-Effects detected with

Figure 8: Result of simulating our non-leaking masked ALU (ADD) conducted by PRO-
LEAD.

0 2500 5000 7500 10000
sample point

-8

-4

0

4

8

t-
va
lu
e

Figure 9: t-test after 100 million measurements for our improved masked ALU on the
low-noise setup.

0k 200k 400k
Number of Measurements

2.5

3.0

3.5

4.0

4.5

5.0

t-
va
lu
e

Figure 10: t-statistic over 500,000 measurements for a masked ADD using our improved
ALU on the SoC setup.

primitives. Notably, all t-values stay below the threshold of 4.5, indicating no leakage.
This is in stark contrast to our results in Section 3.2, where the ALU leaked after only
5 million measurements when performing the same operation. Integration into the SoC
setup is straight-forward. We removed the old ALU and replaced it with our improved
version, including the Keccak core. No further changes were required, even though our
design sometimes requires more cycles, as the pipeline stalls automatically as long as the
internal valid signal of the masked ALU stays unasserted. The results of running a masked
addition microbenchmark can be seen in Figure 10.

Surprisingly, the core still exhibits leakage after around 500,000 measurements. However,
as we have above, our ALU does not leak. Thus, there are multiple possible explanations:
First, the leakage may be caused by memory operations. Neither PROLEAD nor our
low-noise setup took memory operations into account. However, no memory interactions

152 Another Evidence to not Employ Customized Masked Hardware

Table 5: Hardware overhead of the original masked ALU and our improved ALU using a
45nm manufacturing node.

Module Original ALU Improved ALU
Bool2Arith 208.27 GE 208.27 GE
BoolAdder 3235.90 GE 3845.82 GE
BoolBitwise 1077.00 GE 2773.31 GE
BoolShift 451.13 GE 1285.04 GE
Other 1184.06 GE 3068.80 GE
Total Area 6607.48 GE 11180.24 GE

(e.g., to load shares from memory) take place during or right before the measurement
starts. It is therefore safe to assume that the memory is not the main cause of the leakage.
Second, our simulations do not consider FPGA specific effects, such as coupling, where
shares which are routed through physically adjacent wires cause interference and accidental
share combination. While this may be the case, we believe these effects to be relatively
minuscule and therefore unable to create the significant leakage we observe after only
500,000 measurements. During further inspection of the execution stage of the core we
noticed that the operands are propagated to all functional units within the pipeline stage.
This includes the, for example, normal ALU, but also units responsible for multiplication
and resolving conditional jumps. Additionally, the pipeline stage performs a two-stage
decoding process. A global select signal decides, which result the pipeline stage should
select, i.e., the output of which functional unit should be forwarded. An operation-select
signal decides, what operation a functional unit should carry out. The operation-select
signal may overlap with other functional units, meaning that the same signal instructs
unit X to perform some operation and unit Y to perform some other operation at the
same time. Therefore, during the execution of a masked operation, all other units will
calculate some result using the input shares. The multiplier in particular receives three
inputs, of which two are a shared operand. Thus, it has access to both shares of one input
value. Even though the masked ALU is the only module with access to the unprotected
shares (e.g., eliminating the bit-reversed form), it seems the protected shares still leak
information. One obvious edge case may be a shared value of 0, as both shares will combine
to 0 regardless of the bit orientation. However, further investigation is required to identify
the exact leakage source within the SCARV core, which is out-of-scope for this work.

We furthermore evaluated our solution regarding area as well as timing overhead.
For our comparison we employed Synopsys Design Compiler as well Silvaco’s Open-Cell
45nm FreePDK. We synthesized the original ALU without the modules, which we did
not consider in this work (namely: field multiplication as well as arithmetic masking),
and our improved leakage-free version. The results can be seen in Table 5. Notably, the
improvement in security comes at the cost of additional logic gates and clock cycles. The
most overhead is created by additional register stages within each module. Concerning
the timing overhead, it should be noted that the original ALU requires only one clock
cycle for most operations except for the Boolean addition/subtraction and Bool2Arith
operation which takes 6 clock cycles. Our ALU requires two clock cycles for Boolean logic
operations, 13 cycles for an addition/subtraction and 14 for a Bool2Arith conversion.
These overheads are again created by additional register stages, which are required for a
leakage-free design.

6 Conclusions
In this work, we conducted a thorough analysis of the masked ALU proposed in [GGM+21],
identifying and addressing eight flaws leading to detectable leakage in both simulation

Felix Uhle, Florian Stolz, Amir Moradi 153

and practice. Two critical flaws, including the weak randomness generator and the
incorrectly implemented DOM-dep module, could have been easily avoided by using
formal verification tools. The remaining six flaws originate from combining independently
non-leaking modules, resulting in leakage due to interference. Detecting these flaws with
complete formal verification tools is not possible due to computational requirements,
necessitating the use of incomplete tools like PROLEAD to check module combinations.
However, even with tool support, identifying all flaws is a complex and time-consuming
task, and there is no guarantee of detecting all vulnerabilities. This highlights once
again the error-prone nature of implementing large circuits solely through customized
handcrafted masking approaches. Therefore, employing provably composable gadgets is a
preferable approach to implement larger circuits, such as an ALU, and ensure security in
the first-order robust probing model. Even the area efficiency of a handcrafted masking
strategy for such a complex circuit is questionable, due to the large amount of overhead
introduced to mitigate the flaws in the described simulate-fix-repeat procedure. It is worth
highlighting that we do not assume that only composable gadgets can lead to secure
circuits. In particular, for smaller circuits the handcrafted approach might be preferable
due to its potential to produce more compact, efficient, and secure designs.

Furthermore, employing a non-leaking version of the ALU throughout the entire CPU
core does not guarantee a non-leaking CPU core. This demonstrates the non-trivial nature
of combining masked and non-masked parts of a core. The countermeasures presented
in [GGM+21] seem insufficient to prevent leakage. Therefore, we assume that the registers
used for masked instructions must be strictly separated from those involved in non-masked
instructions. This aspect could be investigated further in a natural follow-up study. One
approach could involve replacing the ALU with one constructed based on composable
gadgets. With such an ALU, it is possible to delve deeper into the approach of [GGM+21]
for combining the masked ALU with the unmasked parts of the CPU, analyzing it in
more detail.

Moreover, the discrepancies between the measurements conducted in [GGM+21] and
ours underscore the limitations of empirical validation through measurements in verifying
the general security of a design, as these measurements are influenced by additional factors.

Acknowledgments
The work described in this paper has been supported in part by the Federal Ministry of
Education and Research of Germany through the Project KOSEF (16KIS1597).

References
[BBA+22] Yaacov Belenky, Vadim Bugaenko, Leonid Azriel, Hennadii Chernyshchyk,

Ira Dushar, Oleg Karavaev, Oleh Maksimenko, Yulia Ruda, Valery Teper,
and Yury Kreimer. Redundancy aes masking basis for attack mitigation
(rambam). IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2022(2):69–91, Feb. 2022.

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque,
Benjamin Grégoire, and Pierre-Yves Strub. Verified Proofs of Higher-Order
Masking, pages 457–485. Springer Berlin Heidelberg, 4 2015.

[BGI+18] Roderick Bloem, Hannes Gross, Rinat Iusupov, Bettina Könighofer, Stefan
Mangard, and Johannes Winter. Formal Verification of Masked Hardware
Implementations in the Presence of Glitches, pages 321–353. Springer
International Publishing, 3 2018.

154 Another Evidence to not Employ Customized Masked Hardware

[BMRT22] Sonia Belaïd, Darius Mercadier, Matthieu Rivain, and Abdul Rahman
Taleb. Ironmask: Versatile verification of masking security. In 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 5 2022.

[BWG+22] Arthur Beckers, Lennert Wouters, Benedikt Gierlichs, Bart Preneel, and
Ingrid Verbauwhede. Provable Secure Software Masking in the Real-World,
pages 215–235. Springer International Publishing, 3 2022.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards Sound Approaches to Counteract Power-Analysis Attacks, pages
398–412. Springer Berlin Heidelberg, 12 1999.

[CMM+24] Gaëtan Cassiers, Loïc Masure, Charles Momin, Thorben Moos, Amir Moradi,
and François-Xavier Standaert. Randomness generation for secure hard-
ware masking – unrolled trivium to the rescue. IACR Communications in
Cryptology, 1(2), 7 2024.

[CS20] Gaetan Cassiers and Francois-Xavier Standaert. Trivially and efficiently
composing masked gadgets with probe isolating non-interference. IEEE
Transactions on Information Forensics and Security, 15:2542–2555, 2020.

[DC06] Christophe De Cannière. Trivium: A Stream Cipher Construction In-
spired by Block Cipher Design Principles, pages 171–186. Springer Berlin
Heidelberg, 2006.

[DCP08] Christophe De Cannière and Bart Preneel. Trivium, pages 244–266. Springer
Berlin Heidelberg, 2008.

[DFS15] Stefan Dziembowski, Sebastian Faust, and Maciej Skorski. Noisy Leakage
Revisited, pages 159–188. Springer Berlin Heidelberg, 4 2015.

[FGMDP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglia-
longa, and François-Xavier Standaert. Composable masking schemes in the
presence of physical defaults & the robust probing model. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2018(3):89––120,
8 2018.

[GD23] John Gaspoz and Siemen Dhooghe. Threshold implementations in soft-
ware: Micro-architectural leakages in algorithms. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2023(2):155–179, Mar.
2023.

[GGM+21] Si Gao, Johann Großschädl, Ben Marshall, Dan Page, Thinh Pham, and
Francesco Regazzoni. An instruction set extension to support software-based
masking. IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 283–325, 8 2021.

[GMK16] Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-oriented
masking: Compact masked hardware implementations with arbitrary
protection order. Cryptology ePrint Archive, Paper 2016/486, 2016.
https://eprint.iacr.org/2016/486.

[GR17] Dahmun Goudarzi and Matthieu Rivain. How Fast Can Higher-Order
Masking Be in Software?, pages 567–597. Springer International Publishing,
4 2017.

[Hoe12] Jesse Hoey. The two-way likelihood ratio (g) test and comparison to two-way
chi squared test. Jun 2012.

https://eprint.iacr.org/2016/486

Felix Uhle, Florian Stolz, Amir Moradi 155

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Secur-
ing Hardware against Probing Attacks, pages 463–481. Springer Berlin
Heidelberg, 2003.

[KS73] Peter M. Kogge and Harold S. Stone. A parallel algorithm for the efficient
solution of a general class of recurrence equations. IEEE Transactions on
Computers, C-22:786–793, 8 1973.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER – Statistical In-
dependence and Leakage Verification, pages 787–816. Springer International
Publishing, 12 2020.

[LMMRS23] Daniel Lammers, Amir Moradi, Nicolai Müller, and Aein Rezaei Shah-
mirzadi. A Thorough Evaluation of RAMBAM. In CCS ’23: ACM SIGSAC
Conference on Computer and Communications Security. ACM, 11 2023.

[MM22] Nicolai Müller and Amir Moradi. Prolead. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, pages 311–348, 8 2022.

[MMSS19] Thorben Moos, Amir Moradi, Tobias Schneider, and François-Xavier Stan-
daert. Glitch-resistant masking revisited: or why proofs in the robust
probing model are needed. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2019(2):256–292, Feb. 2019.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis
attacks - revealing the secrets of smart cards. Springer, 2007.

[MP21] Ben Marshall and Daniel Page. Scarv: a side-channel hardened risc-v
platform. 2021.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against Side-Channel At-
tacks: A Formal Security Proof, pages 142–159. Springer Berlin Heidelberg,
2013.

[PW17] David Patterson and Andrew Waterman. The RISC-V Reader: An Open
Architecture Atlas. Strawberry Canyon, 1st edition, 2017.

[RBFSG22] Jan Richter-Brockmann, Jakob Feldtkeller, Pascal Sasdrich, and Tim
Güneysu. Verica - verification of combined attacks. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 255–284, 8 2022.

[SBM18] Pascal Sasdrich, René Bock, and Amir Moradi. Threshold Implementation
in Software, pages 227–244. Springer International Publishing, 4 2018.

[SCS+21] Madura A. Shelton, Łukasz Chmielewski, Niels Samwel, Markus Wagner,
Lejla Batina, and Yuval Yarom. Rosita++: Automatic higher-order leakage
elimination from cryptographic code. In CCS ’21: 2021 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 11 2021.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22:612–
613, 11 1979.

[ZM24] Jannik Zeitschner and Amir Moradi. PoMMES: Prevention of Micro-
architectural Leakages in Masked Embedded Software. IACR Trans. Cryp-
togr. Hardw. Embed. Syst., 2024(3), 2024. https://eprint.iacr.org/
2024/574.

https://eprint.iacr.org/2024/574
https://eprint.iacr.org/2024/574

	Introduction
	Background
	Masking
	d-Probing Model
	Hardware Masking
	PROLEAD
	RISC-V
	Design under Study
	Notation

	Experimental Analysis I (SCARV)
	Setup
	Evaluation

	Leakage Mitigation
	BoolBitwise Module
	BoolAdder Module
	Bool2Arith Operation
	Masked alu

	Experimental Analysis II (Fixed ALU)
	Conclusions

