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Abstract. One category of the digital signatures submitted to the NIST Post-
Quantum Cryptography Standardization Process for Additional Digital Signature
Schemes comprises proposals constructed leveraging the MPC-in-the-Head (MPCitH)
paradigm. Typically, this framework is characterized by the computation and storage
in sequence of large data structures both in signing and verification algorithms,
resulting in heavy memory consumption. While some research on the efficiency of these
schemes on high-performance machines has been done, studying their performance
and optimization on resource-constrained ones still needs to be explored. In this
work, we aim to address this gap by (1) introducing a general method to reduce
the memory footprint of MPCitH schemes and analyzing its application to several
MPCitH proposed schemes in the NIST Standardization Process. Additionally, (2)
we conduct a detailed examination of potential memory optimizations in PERK,
resulting in a streamlined version of the signing and verification algorithms with a
reduced memory footprint ranging from 22 to 85 KB, down from the original 0.3
to 6 MB. Finally, (3) we introduce the first implementation of PERK tailored for
Arm Cortex M4 alongside extensive experiments and comparisons against reference
implementations.
Keywords: Post-Quantum Cryptography · PERK · Stack Usage · Cortex M4

1 Introduction
With the recent unveiling of the latest Post-Quantum Cryptography (PQC) standards, the
National Institute of Standards and Technology (NIST) has released the preliminary public
drafts of FIPS 203, FIPS 204, and FIPS 205, which are founded on cryptographic schemes
commonly known as Kyber [ABD+22], Dilithium [DKL+22] and SPHINCS+ [ABB+22]
respectively. Additionally, NIST has confirmed its intention to standardize Falcon [PFH+22]
in the near future. This milestone marks the culmination of a protracted effort initiated in
2016, spanning three rounds of evaluation and public scrutiny. Concurrently, an ongoing
fourth round permits to conduct further assessments and potentially standardize additional
Key Encapsulation Mechanism (KEM) algorithms [AAB+22a, BCC+22, AAB+22b].

Furthermore, NIST has expressed a keen interest in investigating alternative general-
purpose signature schemes, either those not anchored in structured lattices or those
demonstrating superior performance compared to Dilithium and Falcon. This interest
materialized through a recent call for proposals, inviting submissions of additional digital
signature schemes [NIS23]. Consequently, a multitude of new signature schemes have been
submitted, initiating a fresh scrutiny process and fostering research in this area.

Among these new candidates, a notable subset utilizes the MPC-in-the-Head (MPCitH)
paradigm [IKOS07], a framework facilitating the creation of zero-knowledge proofs via
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Multiparty Computation (MPC) protocols. Such a subset is constituted by Biscuit
[BKPV24], MIRA [ABB+23d], MiRitH [ARZV+23], MQOM [FR23a], PERK [ABB+23a],
RYDE [ABB+23c], and SDitH [MFG+23]. Such a framework was already used by the
digital signature Picnic [ZCD+20] from the previous NIST competition.

A significant area of research revolves around the portability and efficiency of algorithms
concerning resource-constrained devices. Typically, post-quantum cryptographic constructs
exhibit substantial size, leading to implementations that consume significant amounts
of memory. Consequently, the Cortex M4 platform has been regarded as the standard
choice for benchmarking PQC implementations in scenarios where resource constraints are
paramount.

Contribution This paper studies the methods to implement MPCitH signatures schemes
on resource-constrained devices. Our contributions are threefold.

1. We present a general approach to reduce the memory footprint of MPCitH digital
signatures significantly. We apply it analytically to Biscuit, MIRA, MiRitH, MQOM,
and RYDE and analyze the impact on the stack usage of each of these schemes,
paving the way for them to be suitable for memory-constrained devices.

2. For the digital signature PERK, we go through a deep investigation on the techniques
to reduce the memory footprint of the protocol. We obtain and describe a streamlined
version of PERK compliant with the official reference protocol. Our strategies
significantly diminish PERK’s memory requirements, reducing them from thousands
of kilobytes to a maximum of approximately 85 KB for the highest security levels.
Additionally, we introduce a memory-performance trade-off strategy, striking a
balance between the two factors.

3. To the best of our knowledge, we produce the first constant-time implementation1

of PERK tailored for resource-constrained devices, ensuring compatibility within
the memory constraints of the standard STM32F407 discovery board. This achieve-
ment represents the first dedicated implementation of an MPCitH signature scheme
for Cortex M4 devices that covers all security levels. We also provide extensive
information to assess its efficiency and make comparisons against other signatures.

We remark that the streamlined version of PERK that we present is compliant with
the original specifications, i.e., the scheme passes the official known-answer-tests (KATs).
Table 1 gives an overview of the stack reduction of our implementation with respect to the
PERK reference implementation for two parameter sets, see Section 4.2 for more details.

Table 1: Stack usage comparison between PERK reference implementation and our work.

Algorithm Implementation Signing Verification

PERK-I-short3
PERK Ref. [ABB+23a] 1.56 MB 1.56 MB
This work 30.2 KB 26.1 KB

PERK-V-short3
PERK Ref. [ABB+23a] 6.01 MB 6.01 MB
This work 85.6 KB 75.7 KB

Organization Section 2 introduces some helpful background to understand the manuscript.
In Section 3, we present a general approach to streamline MPCitH signatures schemes
and apply it to most of the MPCitH signatures from the NIST competition. Section 4
introduces our implementation of PERK for resource-constrained devices and the results

1Our implementation forks pqm4 [KPR+] and can be accessed publicly at
https://github.com/Crypto-TII/perk-on-resource-constrained-devices.

https://github.com/Crypto-TII/perk-on-resource-constrained-devices
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of extensive experiments. Finally, we compare PERK against other protocols and give
future research directions in Section 5.

2 Background
The sections in this manuscript related to the digital signature PERK follow the notation
from [ABB+23a]. In particular, for integers a < b, we use the notation [a, b] to indicate
the set {a, a+ 1, . . . , b− 1, b}, and [a] := [0, a]. Vectors are denoted with bold lower-case
letters (e.g. v), and matrices with bold upper-case letters (e.g. M). We denote by Sn
the set of all permutations of [n], for a positive n ∈ Z. For a power of a prime q, let Fq
denote the finite field of order q. Let X be a finite set, we use the notation x $←− X to say
that x is chosen uniformly at random from X, and the notation x $,θ←− X to say that x is
sampled pseudo-randomly from X using the seed θ.

We present memory-related data in bytes (B), kilobytes (KB) and megabytes (MB).
We present performance related data in thousands (K) or million (M) of CPU cycles.

2.1 Zero-knowledge Σ-protocols, MPC-in-the-Head and Hypercube
MPC-in-the-Head (MPCitH) is a framework introduced by Ishai et al. [IKOS07] that
leverages techniques from multi-party computation (MPC) to construct zero-knowledge
proofs. Since its introduction, numerous post-quantum digital signature schemes have
been proposed, with seven candidates selected for the first round of the latest NIST call
for additional post-quantum signatures [NIS23] being based on the MPCitH paradigm. In
this section, we recall the necessary definitions regarding this framework. We refer the
reader to [GMR85, GMW86, AF22] and [Lin20, EKR+18] for more detailed sources of
information on the topic.
Commitments. Commitments schemes are essential for zero-knowledge as they allow a
prover P to commit a value without revealing it. Later, when they choose to disclose the
value, the verifier V can trust that it has not been altered, preventing any changes of mind.
Informally, a commitment scheme Com takes as input a message m ∈M and a randomness
ρ ∈ R, where M and R are the message space and the randomness space, respectively. It
outputs a commitment c = Com(m, ρ). Revealing both ρ and m enables the opening of
the commitment, which can be verified by confirming that c = Com(m, ρ). There are two
fundamental security properties for commitment schemes: hiding and binding. Hiding
means that an adversary cannot view the message. Binding ensures that once the prover
commits to a message and sends the commitment to the verifier, the prover cannot alter
the commitment to a different message.
Zero-knowledge Σ-protocols. A zero-knowledge (ZK) protocol allows a prover P to
convince a verifier V of the veracity of a public statement, without revealing any more
information. A Σ-protocol, whose communication diagram is depicted in Figure 1, is an
interactive zero-knowledge protocol where P proves to V the knowledge of a witness x for
a public statement h with a relation R, and which satisfies the following properties.
• Correctness: if P is honest, then an honest verifier will always accept.
• t-special soundness: given t transcripts of the protocol relative to the same commit-
ment, a witness x′ with R(h, x′) can be extracted.

• Special honest-verifier zero-knowledge: assuming that V is honest, there exists a
simulator S that simulates transcripts that are indistinguishable from the real ones.

The Fiat-Shamir transform [FS87] allows deriving a digital signature from a Σ-protocol
by replacing the random challenge with the output of a hash function, making it non-
interactive.
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Prover(h, x) Verifier(h)

Commitment

Challenge 1

Response 1

...

Challenge r

Response r

Return accept or reject

Figure 1: Interactive (2r + 1)-round Σ-protocol.

MPC. We recall some basic notions on Multiparty Computation (MPC). A secure MPC
protocol allows N mutually distrusting parties P1,P2, . . . ,PN to compute a public function
f (usually represented as an arithmetic circuit) on their respective private input x1, . . . , xN .

In this work, we require MPC protocols to be secure in the semi-honest model (or
honest-but-curious), that is, the parties follow the protocol specifications but might try to
derive additional information from the messages available to them. To be secure under
such a model, an MPC protocol should satisfy:

• Correctness: the parties have learned the correct output at the end of the protocol.
• Privacy: the parties do not learn anything about the inputs of honest parties beyond
what f(x1, . . . , xN ) reveals.

The MPC-in-the-Head paradigm. We give here the general approach for obtaining a
zero-knowledge proof via an MPC protocol. Let f be a public function and y be a public
value. Assume that we want to prove the knowledge of a witness x such that f(x) = y
in zero-knowledge. Let P1,P2, . . . ,PN be virtual parties. The prover P computes N
shares JxK1, JxK2, . . . , JxKN of the witness x, and gives each JxKi to the virtual party Pi,
for i = 1, . . . , N .

The prover P then runs an MPC protocol “in the head” for evaluating f on the shares
JxKi, resulting in one protocol transcript for each party. Then, P commits to all these
transcripts and sends the commitments to the verifier V . With an interactive engagement,
a subset of the committed transcripts gets selected and revealed by P . Finally, V checks
the consistency and the validity of the revealed transcripts. The soundness error in the
MPCitH paradigm is around 1/N . Therefore, to achieve the target soundness error 2−λ,
where λ is the security parameter, the prover P executes τ parallel repetitions of the
protocol.

Hypercube. Hypercube is a technique introduced in [AGH+23] to amplify the soundness
of an MPC protocol that uses additive secret sharing. The main idea is to generate a
ND sharing of the initial witness and then use them to create D instances of the MPC
protocol with N parties each. Within each instance, the ND shares are partitioned into N
subsets of D shares, and the shares within each subset are combined by summation. This
process results in N secret shares representing the initial states of N parties, akin to a
hypercube arrangement. The prover P commits to all ND initial shares independently,
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and the verifier V selects one index i from 1 to ND. P then reveals all secret shares
except for share i. This method ensures that one party’s initial state remains undisclosed
in each protocol instance due to the lack of a share for partial recombination. Overall,
the hypercube approach achieves a soundness error of N−D at the computational and
communication cost of D parallel repetitions of the N party protocol, offering the benefits
of virtually increasing the protocol parties without additional auxiliary states.

2.2 MPCitH digital signature schemes in the NIST competition
We list in Table 2 the MPCitH digital signatures candidates to the round 1 of the NIST
post-quantum competition for additional signatures [NIS23] (excluding AIMer [KCC+23]
as it relies on symmetric primitives). Given that this manuscript mainly focuses on the
digital signature PERK, we give below an overview of it. We refer the reader to the relative
specifications for details about the other signatures.

Table 2: List of the MPCitH digital signature schemes submitted to the round 1 of the
NIST post-quantum competition for additional signatures. The third column says whether
the signature scheme uses the hypercube framework or includes a hypercube variant. The
fourth column gives the range of the signature sizes considering all proposed variants for
all parameter sets.

Scheme Underlying assumption Hypercube Signature size
Biscuit [BKPV24] PowAff2 × 4.7–27.3 KB
MIRA [ABB+23d] MinRank X 5.6–27.6 KB
MiRitH [ARZV+23] MinRank X 3.9–34.0 KB
MQOM [FR23a] MQ X 6.3–29.9 KB
PERK [ABB+23b] r-IPKP × 5.7–33.3 KB
RYDE [ABB+23c] RSD X 5.9–29.1 KB
SDitH [MFG+23] SD X 8.2–45.1 KB

2.2.1 PERK overview

PERK is built from a ZK proof of knowledge for the relaxed Inhomogeneous Permuted
Kernel Problem r-IPKP. Informally, given a matrix H ∈ Fm×nq and t pairs of vectors
(xi,yi) ∈ Fnq × Fmq , the r-IPKP problem asks to find a permutation π ∈ Sn such that
Hπ(x) = y where x :=

∑
i κixi (respectively y :=

∑
i κiyi) and κ = (κ1, . . . , κt) ∈ Ftq \ 0.

The zero-knowledge proof of knowledge used in PERK is inspired from [BG23, FJR23]
and constructed using the MPCitH paradigm. It is then transformed into a signature
scheme using the Fiat-Shamir transform within the random oracle model.

For the three security levels specified by NIST, PERK provides four distinct sets of
parameters. Parameters denoted as short are designed to optimize the signature’s size
while parameters denoted as fast prioritize the running time of the algorithms. In addition,
parameters differs based on the value of t (either 3 or 5) in the underlying r-IPKP problem.
As a consequence, PERK instances are referred as PERK-X-Y where X denotes the NIST
security level (I, III or V) and Y is either fast3, fast5, short3 or short5.

3 Streamlining MPCitH Digital Signatures and Time/Memory
Trade-off

The digital signature schemes submitted to the NIST competition for additional signa-
tures [NIS23] constructed according to the MPCitH paradigm are Biscuit [BKPV24],
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MIRA [ABB+23d], MiRitH [ARZV+23], MQOM [FR23a], PERK [ABB+23a], RYDE
[ABB+23c], and SDitH [MFG+23].

This section outlines first our approach to reducing the memory footprint of MPCitH
signatures in general. Then, we deepen into the application of our method to PERK, which
is the principal signature scheme considered in this work and for which an implementation
for resource-constrained devices is presented in Section 4. Finally, we detail how our
method applies to some of the other MPCitH schemes of the NIST competition. We
outline the steps for producing an implementation of these protocols compatible with
resource-constrained devices.

General method. Typically, MPCitH digital signatures require the computation of τ ·N
commitments in the early steps of the signing procedure. These are usually stored in
memory to compute the first challenge. One can save memory by absorbing the inputs to
the hash function for the first challenge on-the-fly while the commitments are computed.
We refer to this method as “streamlining” the commitments and note that the reference
implementations of MIRA and RYDE have already started implementing this idea partially
by utilizing an incremental hashing. However, to generate the response, one of the N
commitments for each of the τ rounds needs to be recomputed. For this reason, all MPCitH
digital signature implementations we analyzed keep all the commitments in memory. Indeed,
it is unknown until the last step of the signing procedure which commitment will be used.
Our method consists of recomputing the required commitment for each round, allowing us
not to store all of them and hence significantly decrease the memory footprint. Typically,
for all N commitments but one (e.g., the 1-st in PERK or the N -th in MIRA) in each
round, such re-computation comes with a relatively small overhead in the time complexity
of the whole algorithm. However, one of the commitments is usually more expensive to
recompute as the values from all other commitments are necessary for its computation.
Hence, only in this case such commitment can be saved in memory to avoid a significant
overload on the time complexity for each round, for a total of τ commitments. Overall,
this approach reduces the memory footprint of the commitments by a factor of N , at the
cost of a relatively small increase in the time complexity.

More optimizations tailored to each protocol are possible and will be discussed separately
in the following subsections. We remark that all the following modifications to the original
signing and verification algorithms are compatible with the original versions, i.e., the
resulting protocols would produce and verify the provided official KATs.

3.1 Reducing the memory footprint of PERK
3.1.1 Stack usage in PERK

In the reference implementation of PERK, the primary factor influencing stack usage during
both signing and verification is the storage of variables such as seed trees, permutations,
and vectors. Let’s explore these variables by examining their computation and usage across
the different steps of the protocol in the provided implementations.

We start by the signing algorithm outlined in [ABB+23a, Figure 4]. In each iteration
e ∈ [1, τ ] of the commitment step (Step 1), the signer generates a seed tree having the seeds
(θ(e)
i )i∈[1,N ] as leaves, the permutations (π(e)

i )i∈[1,N ], the vectors (v(e)
i )i∈[1,N ] and a set of

commitments (cmt(e)
1 , cmt(e)

1,i )i∈[1,N ]. In order to generate the first challenge (Step 2), the
signer uses the commitments computed in the previous step to generate h1, then samples
the first challenge. In the first response step (Step 3), in order to compute the vectors
(s(e)
i )e∈[1,τ ],i∈[1,N ], the signer must possess the pairs (π(e)

i ,v
(e)
i )e∈[1,τ ],i∈[1,N ] generated in

the commitment step. Then, the signer uses the (s(e)
i )e∈[1,τ ],i∈[1,N ] to sample the second

challenge through h2 (Step 4). Finally, in order to generate the signature σ (Step 5),
the signer needs the seeds (θ(e)

i )e∈[1,τ ],i∈[1,N ], the permutations (π(e)
i )e∈[1,τ ],i∈[1,N ] and the
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commitments (cmt(e)
1,i )e∈[1,τ ],i∈[1,N ] generated in the Step 1. It also needs the s

(e)
i computed

in the Step 3. In order to optimize performance and, in light of variable reuse across
different steps of the scheme, the provided implementation leverage a data structure for
storing these variables to enable efficient reuse. One should note that there is a total of τ
instances of the aforementioned data structure allocated in the stack, corresponding to the
number of rounds in the algorithm.

In verification, similar observations can be made. Step 1 the verification algorithm
[ABB+23a, Figure 5] involves parsing the signature and generating the challenges. During
Step 2, the signer generates and stores (π(e)

i ,v
(e)
i )e∈[1,τ ],i∈[1,N ]\α(e) . To achieve this, they

first need to generate their corresponding seeds (θ(e)
i )i∈[1,N ]\α(e) from the partial tree, neces-

sitating the storage of seed trees. Notice that the set of pairs (π(e)
i ,v

(e)
i )e∈[1,τ ],i∈[1,N ]\α(e)

are used later to generate the vectors (s(e)
i )e∈[1,τ ],i∈[1,N ]\α(e) . Then, the signer com-

putes the commitments (cmt(e)
1,i )e∈[1,τ ],i∈[1,N ]\α(e) using the seed trees and computes

(s(e)
i )e∈[1,τ ],i∈[1,N ]\α(e) which are used twice: first, for the computation of commitments

(cmt(e)
1 )e∈[1,τ ] and then subsequently for calculating the hash value h̄2. Finally, the signer

uses the stored commitments (cmt(e)
1 , cmt(e)

1,i )e∈[1,τ ],i∈[1,N ] to compute h̄1. Similarly to the
signing algorithm, the verify algorithm relies on the same data structure to store these
variables.

We provide in Table 11 the stack usage of the official PERK reference implementations.

3.1.2 Reducing memory in signing

Streamlining seed trees sampling and usage. As explained in Section 3.1.1, the seed
trees generated in Step 1 are preserved for later use in Step 5. Storing them requires
τ · (2N − 1)λ/8 bytes hence inducing a large memory consumption. Alternatively, we opt
to generate the seed tree of each iteration, utilize them to derive required variables, and
then promptly erase them from memory. In Step 3 and Step 5, we recompute the seed
trees for each iteration as needed, leveraging the knowledge of the salt and master seed
(salt,mseed). By adopting this approach, we can reduce the amount of stored memory
by a factor τ resulting in substantial savings in terms of memory footprint (see Table 3).
However, this comes at the cost of needing to recalculate the seed trees twice, specifically
in Steps 3 and 5.

Streamlining πi’s and vi’s sampling and usage. The permutations and random
vectors (π(e)

i ,v
(e)
i )e∈[1,τ ],i∈[1,N ] are generated in Step 1 and preserved for subsequent use

in Step 3 and 5. Alternatively, we choose to generate only one pair (π(e)
i ,v

(e)
i ) at a time.

This strategy leads to significant savings in terms of memory footprint as shown in Table 3.
Indeed in the PERK implementation, permutations and vectors are stored using τ · nN
and τ · 2nN bytes respectively while our implementationonly requires 3n bytes. However,
this modification requires recomputation these values in Step 3 and 5.

Streamlining commitments and hash values computation. The commitments
(cmt(e)

1 , cmt(e)
1,i )i∈[1,N ] are generated in Step 1 and used for computing h1 in Step 2. Sub-

sequently, only one commitment among (cmt(e)
1,i )i∈[1,N ] is required for later use in Step

5 where, depending on the challenge α(e), a commitment becomes part of the signature.
Storing these commitments requires a significant amount of memory. Alternatively, instead
of deferring the absorption of these values until Step 2, we can efficiently absorb them
within Step 1 right after their generation. This is feasible for two reasons. Firstly, in
Step 2, the commitments (cmt(e)

1,i )i∈[1,N ] are absorbed before cmt(e)
1 , and the computation

of the latter does not depend on the values of the former. Secondly, the hash function’s
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Table 3: Stack memory required to store seed trees, permutations and vectors

Algorithm Seed Trees Permutations and Vectors
PERK This work PERK This work

PERK-I-fast3 30.2 KB 1 KB 227 KB 237 B
PERK-I-fast5 28.2 KB 1 KB 223 KB 249 B
PERK-I-short3 163 KB 8.1 KB 1.21 MB 237 B
PERK-I-short5 147 KB 8.1 KB 1.14 MB 249 B
PERK-III-fast3 69.5 KB 1.5 KB 494 KB 336 B
PERK-III-fast5 65 KB 1.5 KB 478 KB 348 B
PERK-III-short3 380 KB 12.2 KB 2.66 MB 336 B
PERK-III-short5 343 KB 12.2 KB 2.49 MB 348 B
PERK-V-fast3 122 KB 2 KB 854 KB 438 B
PERK-V-fast5 114 KB 2 KB 820 KB 450 B
PERK-V-short3 670 KB 16.3 KB 4.59 MB 438 B
PERK-V-short5 605 KB 16.3 KB 4.26 MB 450 B

state is prepared in order to absorb these values. Hence, there is no need to wait until the
generation of all commitments is complete to compute h1. This results in a reduction of
the memory usage from τ · 2λ(N + 1) bits down to 2λ bits (see Table 4) as we reuse the
buffer initially used for the computation of (cmt(e)

1,i )i∈[1,N ] for cmt(e)
1 . On the other hand,

since we don’t save the commitment value, this only comes at the cost of recomputing one
commitment cmt(e)

1,α(e) , in Step 5 which is computationally negligible. Similarly, we suggest
simplifying the computation of h2, mirroring the approach taken for h1. Specifically, the
absorption of vectors s

(e)
i occurs within Step 3.

Table 4: Stack memory required to store commitments.

Algorithm PERK This work
PERK-I-fast3 31.6 KB 32 B
PERK-I-fast5 29.5 KB 32 B
PERK-I-short3 164 KB 32 B
PERK-I-short5 148 KB 32 B
PERK-III-fast3 72.8 KB 48 B
PERK-III-fast5 68.1 KB 48 B
PERK-III-short3 382 KB 48 B
PERK-III-short5 345 KB 48 B
PERK-V-fast3 128 KB 64 B
PERK-V-fast5 120 KB 64 B
PERK-V-short3 674 KB 64 B
PERK-V-short5 608 KB 64 B

Streamlining si computation. The vectors s
(e)
i are calculated during Step 3 and used

to compute h2 in Step 4 as well as in Step 5 where depending on the value of the challenge
α(e), a specific s

(e)
α(e) is selected from the set of stored s

(e)
i to be included in the signature.

It’s worth noting that in the current PERK implementation, s
(e)
i and v

(e)
i share the same

memory address. This approach allows to save memory as freshly computed s
(e)
i can be
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stored at the index of the corresponding v
(e)
i used in its computation. Since v

(e)
i is not

used after Step 3, they can be overwritten in the buffer storing s
(e)
i . Rather than reusing

the buffer for v
(e)
i , our strategy involves recalculating s

(e)
i during Step 5. This choice

is based on the fact that, upon computation, each s
(e)
i is immediately absorbed by H2.

Consequently, there is no need to store these values and wait until Step 4. Additionally,
it is important to highlight that in Step 5, we are not required to generate all N pairs;
instead, one can halt the generation at index α(e).

3.1.3 Reducing memory in verification

Step 2 of the verification algorithm involves generating and storing seed trees in memory
for all iterations. Instead, a streamlined technique akin to the signing algorithm detailed
in Section 3.1.2 is adopted; hence, seed trees are computed dynamically in each iteration.

Streamlining πi’s and vi’s sampling and usage. As in the signing algorithm, one can
streamline the generation and use of permutation and vector pairs (π(e)

i ,v
(e)
i ). Specifically,

one generates a single pair for each iteration (e), thus significantly reducing the memory
footprint. The pairs are generated immediately before their usage, precisely for computing
the vectors s

(e)
i , and are promptly removed from memory after.

Streamlining commitments and hash values computation. As outlined in Sec-
tion 3.1.1, PERK involves the computation and storage of commitments (cmt(e)

1 , cmt(e)
1,i )i∈[1,N ]).

We consider a comparable strategy to the aforementioned signing algorithm aiming to
streamline their generation and their application in the computation of h̄1. For each
iteration e and for each party i, and depending on the challenge α(e), the computation of
cmt(e)

1,i involves the seed tree leaves along with data extracted from the signature σ. One
should note that the commitments are absorbed in a reverse order with respect to the
signing algorithm. Once the absorption of cmt(e)

1,i is complete, the computation of cmt(e)
1

follows, and is subsequently absorbed.

Computing h̄2. In our proposed approach, the computation of h̄1 and h̄2 occurs concur-
rently, diverging from the sequential process outlined in the PERK reference implementa-
tion. Despite this difference in computation, it’s noteworthy that our approach yields the
same result as reference PERK. In the reference implementation, s

(e)
i values are initially

computed and stored. Then, h̄1 is computed, and finally, the precomputed s
(e)
i values

are used in the calculation of h̄2. To facilitate parallel computation and eliminate the
necessity of storing s

(e)
i values, we suggest initializing the h̄2 state with salt, m, pk, and

h1, all extractable from the signature σ. Moreover, the absorption of these values can
be accomplished in two stages. Firstly, leveraging the fact that h̄1 and h̄2 share certain
inputs, specifically the values salt, m, and pk, it is prudent to absorb these values initially.
Subsequently, the obtained state can be utilized for the concurrent computation of both
h̄2 and h̄1. This approach ensures efficient utilization of shared inputs in the calculation
process. This modification allows us to absorb s

(e)
i values on-the-fly as they are generated,

fulfilling our objective of abstaining from storing them.

3.2 Reducing the memory footprint of other MPCitH digital signatures
candidates

This section outlines the strategies to reduce memory usage for some of the MPCitH
digital signatures submitted to the NIST competition. Alongside PERK, we study Biscuit,
MIRA, RYDE, MQOM, and MiRitH. Note that MIRA and RYDE also use heap-memory
allocations; however, we were able to isolate and reduce some stack-memory usage in
these cases, obtaining a partial analysis. For the case of MiRitH, we discuss the potential
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improvements given by our method over its already existing streamlined implementation
optimized for Cortex M4 [ABB+24]. While SDitH was not directly addressed in our study
because of its larger signature size exceeding 8 KB and heavy reliance on heap-memory
allocations, we believe similar optimizations could be applied with further investigation.
We also exclude from our analysis Picnic [ZCD+20] (from the previous NIST competition)
and AIMer [KCC+23], both MPCitH based, as they rely on symmetric primitives.

In the following sections, we use the same notations and namings as in the corresponding
reference specification submitted to the NIST competition or as in their updated version
document for each protocol analyzed.

3.2.1 Reducing the memory footprint of Biscuit

Biscuit [BKPV24] relies on a structured variant of the multivariate quadratic equations prob-
lem for its security. It is designed with a five-round Zero-Knowledge Proof-of-Knowledge
(ZKPoK), utilizing the MPCitH paradigm. Its signing algorithm has a much larger memory
consumption than its verification algorithm. Hence, we focus our analysis on the signing
algorithm.

Stack usage in Biscuit.
The Biscuit reference implementation has been integrated into the pqm4 [KKPY24],

with memory consumption benchmarks for the signing algorithm summarized in Table 5.
Among the six parameter sets, three (biscuit128f, biscuit192f, biscuit256f) conform
to the constraints set by the pqm4 project’s evaluation board. Upon scrutinizing the
available source code in parallel to the diagram [BKPV24, Algorithm 12], it has come to
our attention that in the signing algorithm, despite the efficient computation of h1, where
commitments are immediately absorbed post-calculation, all commitments of every round
(com(e,i))e∈[τ ],i∈[N ] are stored for later use in Phase 5. During Phase 5, depending on the
value of īe, the signer integrates com(e,̄ie) from the stored commitments into the signature.

Streamlining Biscuit. We propose not storing them in Phase 1 and instead recomputing
the one corresponding to the īe value in Phase 5. Additionally, we observe that for all
parties i ∈ [N ], the commitment does not depend on auxiliary values; thus, recomputing the
commitment in Step 5 does not pose a heavy computational burden. In Table 5, we outline
the cost of saving commitments for each parameter set and the corresponding improvement
achieved by applying our technique to the current implementation. Our analysis reveals
that for the fast parameters, our strategy reduces stack usage by approximately 13–16%,
while for short parameters, the reduction ranges from 14–17%. Notice that the improvement
in overall stack usage achieved through commitment re-computation for Biscuit is slightly
better than the savings we obtain for PERK. This difference primarily stems from PERK’s
higher overall stack usage than Biscuit, and Biscuit requires fewer commitments than
PERK in the initial step of the signing algorithm.

3.2.2 Reducing the memory footprint of MQOM

MQOM is based on the hardness of the unstructured multivariate quadratic problem on a
finite field. The reference implementation of MQOM makes use of heap-memory allocations,
posing a challenge to our analysis of the impact of streamlining signing and verification
algorithms. Nevertheless, a stack-memory-only variant implementation was created in
[KKPY24], and it is available in a submodule of [KPR+]. Therefore, we base our analysis
on this variant instead of the reference implementation. It’s noteworthy to highlight that
out of the 12 available parameter sets, only MQOM-L1-gf31-fast and MQOM-L1-gf251-fast
are compatible with the evaluation board utilized in the pqm4 project.
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Table 5: The second column reports the stack usage of the Biscuit singing algorithm in
the reference implementation. The third column reports the size of the commitments in
the signing algorithm and the memory percentage saved when streamlining are reported
in the last column.

Algorithm Stack Usage Commitments Improvement
biscuit128f 138 KB 17.5 KB 12.7 %
biscuit128s 1.10 MB 148 KB 13.5 %
biscuit192f 266 KB 41.5 KB 15.6 %
biscuit192s 2.25 MB 369 KB 16.5 %
biscuit256f 478 KB 74.8 KB 15.7 %
biscuit256s 3.99 MB 656 KB 16.5 %

Stack usage in MQOM. Table 62 presents memory consumption benchmarks. Upon
reviewing the available source code, we discovered that the storage of commitments signifi-
cantly influences stack usage during signing and verification procedures. In Phase 1 of the
signing algorithm (outlined in [FR23a, Algorithms 8 and 9]), the signer computes a sharing
of the witness and proceeds to commit to each share. Specifically, in each iteration e ∈ [1 : τ ],
and for each party i ∈ [1 : N ], the tree PRG generates seeds seed[e][i]. The signer then
commits to these shares by computing com[e][i]= Commit(salt, e, i, seed[e][i]) for
every i ∈ [1 : N − 1], and com[e][N]= Commit(salt, e, N , seed[e][N] ‖ x_aux[e]),
where each commitment is of size 2λ bits and x_aux[e] ∈ Fnq represents the auxiliary value
associated with the input sharing. Subsequently, the obtained commitments are used to
compute the hash value h1 in Phase 2. Then, in Phase 8, depending on the view opening
(i?[e] ∈ [1 : N ]), the signer selects {com[e][i?[e]]}e∈[1:τ ] from the saved commitments.
It’s worth noting that a data structure is employed to store a total of τ ·N commitments
to facilitate their reuse and enhance performance. We are now focusing on the verification
algorithm (outlined in Algorithms 10 and 11 [FR23a]), where similar observations can be
made. Indeed, in Phase 1, the verifier recomputes τ · (N −1) commitments and stores them
for later use. Then, in Phase 3, these commitments are utilized to recompute the hash
value h′1. Similarly to the signing algorithm, the verify algorithm depends on a similar
data structure for storing these commitments.

Streamlining the commitments. As discussed above, the storage of commitments
constitutes the primary component consuming stack resources. Rather than storing these
commitments, an alternative approach could involve absorbing them immediately after
their generation, within Phase 1, instead of deferring their absorption until Phase 2.
This strategy allows for efficient management of resources, as the commitments can be
recomputed as needed in Phase 8. This approach is viable because the computation of h1
within the hash function initiates by absorbing the message m, followed by the salt, and
then the commitments. Therefore, streamlining the absorption process is feasible.

In Phase 8, the signer recomputes the commitments similarly to Phase 1, with two
distinct scenarios. Firstly, if i?[e] 6= N , the signer directly computes the commitment
using the corresponding seed without recalculating the secret shares. This step is omitted
because these shares are unnecessary for the commitment computation and aren’t needed
afterward. Conversely, in the second scenario where i?[e] = N , it’s possible to store
the values of x_aux[e] from the initial Phase 1 execution. By preserving these values,
one can regenerate the commitment for party N . Alternatively, if i?[e] = N but the

2In [KPR+], the QEMU simulator was used to measure memory performance up to 4 MiB. It is worth
noting that parameters MQOM-L5-gf31-short and MQOM-L5-gf31-fast are omitted from the table due to
their memory footprint exceeding the simulator’s capacity.
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x_aux[e] values aren’t stored, the signer must rerun Phase 1 entirely to derive the
required commitment. Approximating 1–6KB, depending on the security levels, is the total
memory required to store these values, calculated as τ · n log(q) bits. This tradeoff reduces
computational overhead during Phase 8 at the expense of increased memory utilization.

In Table 6, we provide the stack used to store the commitments for every parameter set
of the scheme and the improvement achieved by implementing our streamlining strategy.
We observe that our strategy improves the stack footprint by 6–14% for the parameters
MQOM-L1-gf31-fast and MQOM-L1-gf251-fast, which are included in the evaluation
platform of the pqm4 project. Improvements for short parameters for the security level 1
are around 19–48%. This improvement paves the way for these parameters to fit in the
evaluation board of the pqm4 project.

Table 6: Second and third columns give the stack usage of the signing and verification
algorithms from the reference implementation of MQOM. The fourth column gives the
size of the commitments. The last two columns give the improvement in percentage over
the whole stack consumption when streamlining.

Algorithm Stack Usage Commitments Improvement
Signing Verification Signing Verification

MQOM-L1-gf31-short 869 KB 555 KB 164 KB 18.9 % 29.6 %
MQOM-L1-gf251-short 666 KB 380 KB 181 KB 27.2 % 47.7 %
MQOM-L1-gf31-fast 613 KB 422 KB 35.9 KB 5.9 % 8.6 %
MQOM-L1-gf251-fast 400 KB 253 KB 34.9 KB 8.8 % 13.8 %
MQOM-L3-gf31-short 2.27 MB 1.78 MB 369 KB 16.3 % 20.8 %
MQOM-L3-gf251-short 1.89 MB 1.15 MB 369 KB 19.6 % 32.1 %
MQOM-L3-gf31-fast 2.15 MB 1.54 MB 78.4 KB 3.7 % 5.1 %
MQOM-L3-gf251-fast 1.29 MB 823 KB 79.9 KB 6.2 % 9.8 %
MQOM-L5-gf251-short 4.12 MB 2.54 MB 672 KB 16.4 % 26.5 %
MQOM-L5-gf251-fast 3.23 MB 2.17 MB 136 KB 4.3 % 6.3 %

3.2.3 Comparisons with the streamlined implementation of MiRitH

The authors of MiRitH implemented only two parameter sets optimized for Cortex
M4 (mirith_hypercube_Ia_fast and mirith_hypercube_Ib_fast) [ABB+24]. However,
their paper lacks comprehensive details on the streamlining techniques employed. Upon
code inspection, it is evident that they partially integrate some concepts we propose,
such as the streamlined computation of commitments com(`)

i during the initial phase
without persistent storage. However, the absorption of commitments com(`) in step 15 in
[ARZV+23, Figure 7] occurs separately, necessitating their storage in memory. Our analy-
sis suggests that integrating these computations into Phase 1 could save memory — 1.3
KB for mirith_hypercube_Ia_fast and up to 4.6 KB for mirith_hypercube_Va_fast
— indicating room for further improvement.

Moreover, MiRitH does not adopt our secondary technique of caching computa-
tionally expensive commitments to avoid redundant heavy calculations. For instance,
in their approach, hashing data to derive the commitment comi∗ , for i∗ = ND, con-
sumes approximately 3.7 KB for mirith_hypercube_Ia_fast and up to 15.7 KB for
mirith_hypercube_Va_fast, introducing notable overhead.

Another divergence lies in MiRitH’s Phase 1 ([ARZV+23, Figure 7]), which involves
computing and storing seed trees (20 KB for mirith_hypercube_Ia_fast and up to 71
KB for mirith_hypercube_Va_fast). These trees are utilized in Phase 5 but could benefit
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from our optimized methods for managing seed usage across different signing algorithm
phases.

3.2.4 Reducing the memory footprint of MIRA and RYDE

MIRA [ABB+23d] is based on the minrank problem, while RYDE [ABB+23c] is based
on syndrome decoding in the rank metric setting. Both schemes are instantiated using
the same MPCitH framework based on a 5-round proof of knowledge with hypercube
optimization. We will analyze them together because they share the same implementation
structure. As already noticed in [KKPY24], both protocol implementations make use of
heap-memory allocations, making it difficult for us to evaluate the impact of streamlining
on the total memory footprint. For this reason, we only study the impact on the stack-
memory occupied by the seeds and the commitments in signing and verification, believing
that streamlining brings a similar impact to the heap-memory allocations relative to the
commitments computation.

Stack usage in MIRA and RYDE. Upon analyzing the source code of the reference
implementation of both schemes, it becomes evident that the storage of seeds and com-
mitments heavily impacts stack usage during signing and verification. In Step 1 of the
signing algorithm (outlined in [ABB+23d, Algorithm 21] and in [ABB+23c, Algorithm
20]), the signer generates a seed seed(e)

i for each party i ∈ [N ], which is used for secret
sharing the witness. Subsequently, the signer commits to these seeds for i ∈ [N − 1], and,
for the party indexed by N , additional auxiliary information is committed along with
its corresponding seed. The seeds (seed(e)

i )i∈[N ] and commitments (cmt(e)
i )i∈[N ] of each

round are stored upon generation in Step 1 and later utilized in Step 5. Indeed, in Step 5,
the signer uses the stored seeds during the reconstruction of secret sharing for the party
i?(e) ∈ [N − 1]. Notably, if i?(e) = N , the shares are not recomputed as they are previously
stored. Additionally, depending on the value of i?(e) ∈ [N ], the signer incorporates the
corresponding saved commitment cmt(e)

i?(e) in the second response.
The verification algorithms are outlined in [ABB+23d, Algorithm 22] and [ABB+23c,

Algorithm 21]. After parsing the public key and challenges in Steps 0 and 1, respectively,
in Step 2, the verifier calculates the commitments (cmt(e)

i )i∈[N ] and uses them to compute
h̄1. Despite the streamlined computation of h̄1, where the commitments are absorbed
immediately after calculation, all these values are stored, resulting in significant stack
consumption. Nevertheless, this issue of storing the commitments can be easily mitigated
by refraining from storing these values, as they are not utilized in the subsequent steps of
the verification algorithm.

In Table 7, we outline the stack utilization for storing seeds and commitments in both
the signing and verification algorithms of MIRA and RYDE, along with the stack usage
improvements achieved through the techniques described below.

Recomputing the commitments. In the signing algorithms of MIRA and RYDE,
commitments are initially generated in Step 1 and utilized to compute h1, after which they
are stored for subsequent use in Step 5. Notably, these commitments are streamed during
Step 1 to compute h1 in the current implementations. Therefore, one can maintain the
current procedure in Step 1 without storing the commitments. To reduce memory usage,
commitments can be regenerated in Step 5 depending on the value of i?(e) ∈ [N ], except for
the commitment corresponding to party N . This commitment is kept in Step 1 because its
computation does not depend solely on a seed. Following this method effectively reduces
the memory footprint, with the total storage cost for these commitments estimated at
2λ · τ bits, reducing it by a factor of N compared to the reference implementation.

Recomputing the seeds. In the signing algorithms of MIRA and RYDE, seeds are
initially generated in Step 1 and utilized in Step 5 to reconstruct the secret sharing of
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Table 7: The second and third columns indicate the stack usage for seeds and commitments
in the signing algorithms of MIRA and RYDE, respectively. The fourth column shows the
size of commitments during verification. To highlight the improvements of the optimization
discussed in this section, the fifth and sixth columns detail the total necessary stack
space when streamlining for storing seeds and commitments in the signing and verification
algorithms, respectively.

Algorithm Signing Verification This work
Seeds Commitments Commitments Signing Verification

MIRA-128f 14.4 KB 28.7 KB 28.7 KB 1.42 KB 0.9 KB
MIRA-128s 73.8 KB 148 KB 148 KB 4.68 KB 0.58 KB
MIRA-192f 31.5 KB 63 KB 63 KB 2.77 KB 2 KB
MIRA-192s 160 KB 320 KB 320 KB 7.5 KB 1.3 KB
MIRA-256f 55.3 KB 111 KB 111 KB 4.6 KB 3.5 KB
MIRA-256s 279 KB 558 KB 558 KB 10.4 KB 2.2 KB

RYDE-128f 15.4 KB 30.8 KB 30.8 KB 1.48 KB 0.96 KB
RYDE-128s 82 KB 164 KB 164 KB 4.74 KB 0.64 KB
RYDE-192f 33.8 KB 67.6 KB 67.6 KB 2.97 KB 2.2 KB
RYDE-192s 179 KB 357 KB 357 KB 7.6 KB 1.4 KB
RYDE-256f 60 KB 119 KB 119 KB 4.9 KB 3.8 KB
RYDE-256s 312 KB 623 KB 623 KB 10.7 KB 2.5 KB

party i?(e) ∈ [N ]. To further reduce the memory usage, seeds can be discarded in Step
1 and then regenerated in Step 5 depending on the value of i?(e) ∈ [N ] and using the
corresponding seed tree root (seed(e)).

4 Enabling PERK on memory-constrained devices

Building upon the memory optimization discussed in Section 3.1, we present the first
implementation of streamlined PERK.3 The optimization and techniques detailed in
Section 4.1 are portable to any resource-constrained platform. However, we use some
symbolic machine code specific to Arm Cortex M4, one of the chosen testing platforms, to
optimize permutation-related operations. In Section 4.2, we perform and present extensive
experiments to assess the impact of our modifications to the signing and verification
algorithms.

4.1 Streamlined implementation Compliant with Specifications

Below, we detail some performance optimizations that we introduced to our implementation
of streamlined PERK. The corresponding diagram specifications for the signing and
verification algorithms are reported in Figure 2 and Figure 3 in the Appendix, respectively.

The implementation here introduced is compliant with PERK specifications version 1.1
[ABB+23b] and passes the KATs.

3The implementation is available at
https://github.com/Crypto-TII/perk-on-resource-constrained-devices.

https://github.com/Crypto-TII/perk-on-resource-constrained-devices
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4.1.1 Performance optimizations

Computing π−1. In Step 1, we calculate π(e)
1 by first computing the permutation

π−1 ◦ (π(e)
N )◦ . . .◦ (π(e)

2 ) and then inverting it. This approach enables the avoidance of N−1
permutation inverses, reducing the computation load to only two inversions: inverting the
secret permutation π and the intermediate result. Since π−1 is utilized in each iteration
e ∈ [1, τ ], we compute and store this value. Doing so mitigates the need to invert π multiple
times in Step 1, incurring only a negligible memory cost of n bytes to store π−1.

Storing permutation π1. As we no longer retain the permutations (π(e)
i )i∈[1,N ] and

instead recalculate them in Step 5, it becomes necessary to recompute the permutation
π

(e)
1 , derived from the permutation (π(e)

2 , . . . , π
(e)
N ). This computation involves composing

(N − 1) permutations, making it a resource-intensive task. To mitigate this, we adopt the
strategy of preserving the value of π(e)

1 for each iteration e in Step 1. This approach induces
an overhead of Nτ bytes in memory consumption, as illustrated in Table 8. Such an
amount is relatively modest, constituting an interesting trade-off considering the substantial
performance gains achieved.

Table 8: Stack memory required for storing π1.

PERK-I- Overhead
fast3 2.3 KB
fast5 2.3 KB
short3 1.5 KB
short5 1.4 KB

PERK-III- Overhead
fast3 5.1 KB
fast5 4.9 KB
short3 3.4 KB
short5 3.2 KB

PERK-V- Overhead
fast3 8.9 KB
fast5 8.5 KB
short3 5.9 KB
short5 5.5 KB

Optimizing permutation sampling and composition. In our streamlined version of
the PERK sign algorithm, right after sampling the permutation πi, this gets composed
with another permutation π1 ◦ (π(e)

i ) in Step 1. We improve these two operations thanks to
the following observation. Assume that we want to sample a permutation π and right after
we want to compute the composition τ ◦ π with another permutation τ . Let e0, . . . , en−1
be the random buffer utilized to sample π via the constant-time software library djbsort
[Ber19]. The main observation here is that this buffer inherently represents the inverse of
πi. More precisely, the sorting of the buffer aligns with the one of π−1

i . Exploiting this
observation, we optimize computations as follows. Construct p = (p0, . . . , pn−1), where
pi = (ei|τi|i). After sorting p using djbsort, the lower bits, corresponding to i, encode
the permutation π while the center bits corresponding to τ precisely encode τ ◦ π. The
advantage of this novel approach is that we perform all these operations by making only
one call to djbsort instead of three (sample, invert, compose). Notice that we can leverage
this idea thanks to the fact that djbsort works with 32 bits words, and this is enough for
using 16 bits for the randomness, 8 bits for i and the remaining bits for τ .

4.1.2 Code optimizations tailored for Arm Cortex M4

Optimizing djbsort for Cortex M4. To obtain a significant speed-up in the operation
of sampling permutations at random, we employed a variant implementation of djbsort
optimized for Cortex M4 devices from the work of [FSL24]. More specifically, this im-
plementation builds upon the portable djbsort/int32/portable4 implementation and
translates the macro int32_MINMAX to its assembly equivalent on the M4 architecture while
maintaining the original functionality. The impact of such an optimization is significant
and can be seen by looking at second and third row-block in Table 10. For instance, one
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can see that the signing algorithm in the reference implementation benefits of around 1.45×
speed-up for PERK-I-fast3 and PERK-I-fast5 from the addition of this optimization.

Stack only permutation compression. The packing algorithm used for the fast
parameters of PERK in the reference implementation does not require any modification
for running on Cortex M4 devices. On the other hand, the ranking and unranking
algorithms used for compressing permutations for the short parameters are memory and
time consuming. For this reason, we dropped the gmp [Pro23] implementation used in
the PERK reference implementation for an equivalent stack-only implementation that
makes use of the tiny-bignum-c4 library for multiple-precision integer operations. More
specifically, tiny-bignum-c is a stack-only multiple-precision library characterized by a
relatively small code size. Here, we customized the library to make use of the minimum
amount of memory for every short parameters set of PERK. Furthermore, we enhanced
big numbers multiplication by integrating it with the Karatsuba integer multiplication
algorithm for big numbers5. Similarly to what is done with gmp in the PERK reference
implementation, we also make use of a look-up table for storing the factorials 0!, 1!, ..., n!
used in the ranking and unranking algorithms. However, while in the PERK reference
implementation the factorial are stored in base-62 representation strings and then converted
when reading, we can store the factorials directly in the tiny-bignum-c native format,
thanks to the fact that in this case, big numbers are represented simply as uint32_t
arrays.

4.2 Experimental results
We present in this section the results of our experiments on the streamlined PERK imple-
mentation introduced in Section 4.1.

Target platform 1. Following the choice in the pqm4 project [KPR+, KKPY24], we
opted to utilize the Nucleo-L4R5ZI evaluation board as our resource-constrained testing and
benchmarking platform. This board is equipped with an STM32L4R5ZI microcontroller
with 2 MiB flash, 640 KiB SRAM, and a core clock frequency up to 120 MHz. Our build
and performance evaluation configuration rely on pqm4, with benchmarks conducted at a
frequency of 20 MHz to minimize flash memory related wait cycles. For each parameter set,
the results have been obtained by computing the average from 10 random instances. In
particular, all cycle counts were produced with the compiler arm-none-eabi-gcc version
13.2.rel1 with the default optimization flags specified by the pqm4 build framework.

Target platform 2. To compare our implementation against PERK reference
implementation, we utilized a machine with enough memory available to run the reference
implementation for all parameter sets of PERK. We chose a machine running Ubuntu
22.04.2 LTS that has 64 GB of memory and an Intel® Core™ i9-13900K @ 3.00 GHz for
which the Hyper-Threading and Turbo Boost features were disabled. The code has been
compiled with gcc (version 11.4.0) with -funroll-loops and -march=native optimiza-
tion flags.

We begin reporting the performances in CPU cycles and the stack consumption of
our implementation in Table 10, performed on Target platform 1. In addition, to
evaluate our contribution, we report the CPU cycles and the stack usage of the reference
implementation running on the same device for the parameter sets PERK-I-fast3 and
PERK-I-fast5, which are the only ones that we were able to run on such resource-
constrained device. The measurements from a variant of the reference implementation

4available at https://github.com/kokke/tiny-bignum-c.
5available at https://github.com/umnikos/tiny-bignum-c.

https://github.com/kokke/tiny-bignum-c
https://github.com/umnikos/tiny-bignum-c
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featuring the optimized djbsort algorithm for Arm Cortex M4 explained in Section 4.1.2
are also reported. This variant is considered when comparing the reference vs. the
streamlined to ensure a fairer comparison. In all cases, we use the symmetric function
provided by the pqm4 framework. In addition, we run the same benchmarks on Target
platform 2 to cover all parameter sets in the reference implementation and report the
results in Table 11. This time, we used gmp to compress permutations for short parameter
sets both in the reference and streamlined implementations to exclude a bias given by
using two different libraries for compression.

Looking at Tables 10 and 11, one can see that the experiments give similar results on
both testing platforms in terms of stack usage reduction and performance degradation
when comparing the reference and the streamlined implementation. Streamlining the
signing algorithm degrades the performance by a factor of around 1.6. On the other hand,
the streamlined verification algorithm gives similar results to the reference one because of
the optimization that we introduced for the computation of h̄2 (see Section 3.1.3). Note
that such an optimization should apply to the reference implementation, too. However,
improving this one is outside the scope of this paper.

Regarding the stack usage, the reduction obtained by our streamlined implementation
is significant. In signing, the memory consumption is reduced between 11 and 14 times
for fast parameters, and between 47 and 70 times for short parameters. In verification,
the reduction is between 13 and 16 times for fast parameters, and between 44 and 80
times for the short parameters. The key-generation algorithm does not get modified when
streamlining; hence, we do not measure any variantion between the two implementations.

Lastly, we report the code size of our implementation for Target platform 1 in
Table 9, for completeness. We do not include the code size of the reference implementation
as it is not able to run for Target platform 1 with all parameters. However, we can
remark that the code size for our implementation is slightly increased, since we need to
accommodate our optimizations.

Table 9: Code size in Bytes for different PERK parameters, measured using the pqm4
framework on TARGET PLATFORM 1, excluding hashing and standard library func-
tions.

Algorithm Size Algorithm Size Algorithm Size
PERK-I-fast3 11717 PERK-III-fast3 12077 PERK-V-fast3 12129
PERK-I-fast5 11709 PERK-III-fast5 12017 PERK-V-fast5 12041
PERK-I-short3 24605 PERK-III-short3 24009 PERK-V-short3 31697
PERK-I-short5 24673 PERK-III-short5 24649 PERK-V-short5 32693

4.2.1 Time/memory trade-off by storing si.

Given a targeted memory limit, one can fine tune the implementation using the si in order
to get the best possible performance with respect to the available memory. By storing
the (s(e)

i )e∈[1,τ ′],i∈[1,N ] values (where τ ′ ≤ τ) after their computation in Step 3, one only
needs to recompute them in Step 5 for the remaining τ − τ ′ rounds thus avoiding τ ′N
computations of si values. In addition, keeping s

(e)
0 is unnecessary and thus its computation

can be omitted once the s
(e)
i values are stored. Table 13 shows the obtained trade-off for

two parameter sets of PERK run on Target platform 1. For PERK-I-fast3, we tested
τ ′ = 16 to reflect the case of devices with 128 KB of RAM, and τ ′ = 30 is the maximum
achievable. For PERK-I-short3, we tested τ ′ = 5 to reflect the case of devices with 256
KB of RAM, and τ ′ = 15 is the maximum allowed on our target platform 1. The cases
τ ′ = 0 stand for when no memory has been traded for efficiency and correspond to the
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Table 10: Performance and memory benchmarks for streamlined PERK in millions (M) of
CPU cycles and kilobytes (KB). The reported values are obtained by averaging the results
from 10 runs on TARGET PLATFORM 1. The third row block refers to the reference
implementation of PERK running a version of djbsort optimized for Arm Cortex M4.

Algorithm Stack Consumption CPU Cycles
Keygen Sign Verify Keygen Sign Verify

This work

PERK-I-fast3 7.70 KB 24.0 KB 20.7 KB 0.64 M 244 M 81.0 M
PERK-I-fast5 9.03 KB 25.2 KB 21.8 KB 0.82 M 240 M 78.1 M
PERK-I-short3 7.70 KB 27.8 KB 25.2 KB 0.65 M 1336 M 460 M
PERK-I-short5 9.03 KB 28.6 KB 26.1 KB 0.82 M 1250 M 428 M

Ref. [ABB+23a] PERK-I-fast3 7.73 KB 313 KB 313 KB 0.70 M 218 M 96.6 M
PERK-I-fast5 9.03 KB 306 KB 305 KB 0.91 M 215 M 93.7 M

Ref. [ABB+23a] + PERK-I-fast3 7.70 KB 313 KB 313 KB 0.65 M 150 M 82.6 M
djbsort [FSL24] PERK-I-fast5 9.03 KB 306 KB 305 KB 0.82 M 147 M 79.8 M

This work

PERK-III-fast3 15.0 KB 47.7 KB 41.4 KB 1.50 M 581 M 195 M
PERK-III-fast5 16.9 KB 48.8 KB 42.4 KB 1.81 M 558 M 187 M
PERK-III-short3 15.0 KB 51.3 KB 46.7 KB 1.50 M 3265 M 1177 M
PERK-III-short5 16.9 KB 51.9 KB 47.3 KB 1.82 M 3031 M 1099 M

This work

PERK-V-fast3 25.5 KB 80.3 KB 69.9 KB 2.60 M 1188 M 419 M
PERK-V-fast5 28.1 KB 80.9 KB 70.6 KB 3.09 M 1134 M 398 M
PERK-V-short3 25.5 KB 82.3 KB 74.8 KB 2.59 M 6746 M 2641 M
PERK-V-short5 28.1 KB 82.1 KB 74.8 KB 3.07 M 6285 M 2457 M

Table 11: Performance and memory benchmarks for streamlined PERK in thousands (K)
or millions (M) of CPU cycles and kilobytes (KB) or megabytes (MB). The reported values
are obtained by averaging the results from 1000 runs on TARGET PLATFORM 2.

Algorithm Stack Consumption CPU Cycles
Keygen Sign Verify Keygen Sign Verify

This work

PERK-I-fast3 10.0 KB 26.5 KB 21.6 KB 80.2 K 36.2 M 10.9 M
PERK-I-fast5 11.1 KB 27.4 KB 22.7 KB 98.6 K 35.3 M 10.6 M
PERK-I-short3 10.0 KB 30.2 KB 26.1 KB 81.7 K 195.4 M 61.3 M
PERK-I-short5 11.1 KB 30.8 KB 26.9 KB 99.2 K 184.1 M 57.2 M

Ref. [ABB+23a]

PERK-I-fast3 10.0 KB 314 KB 314 KB 80.8 K 22.0 M 10.8 M
PERK-I-fast5 11.1 KB 306 KB 306 KB 99.4 K 21.7 M 10.4 M
PERK-I-short3 10.0 KB 1.56 MB 1.56 MB 82.9 K 118 M 59.1 M
PERK-I-short5 11.1 KB 1.46 MB 1.46 MB 99.6 K 113 M 55.5 M

This work

PERK-III-fast3 17.1 KB 50.1 KB 42.3 KB 183 K 86.0 M 27.1 M
PERK-III-fast5 18.7 KB 50.8 KB 43.3 KB 210 K 83.0 M 25.3 M
PERK-III-short3 17.1 KB 53.7 KB 47.6 KB 183 K 469 M 147 M
PERK-III-short5 18.7 KB 53.9 KB 48.2 KB 210 K 442 M 138 M

Ref. [ABB+23a]

PERK-III-fast3 17.1 KB 687 KB 687 KB 183 K 51.9 M 25.5 M
PERK-III-fast5 18.7 KB 663 KB 663 KB 211 K 50.9 M 24.6 M
PERK-III-short3 17.1 KB 3.47 MB 3.47 MB 193 K 281 M 140 M
PERK-III-short5 18.7 KB 3.22 MB 3.22 MB 226 K 265 M 130 M

This work

PERK-V-fast3 27.3 KB 82.6 KB 70.8 KB 315 K 176 M 56.7 M
PERK-V-fast5 29.3 KB 82.1 KB 71.5 KB 349 K 171 M 54.2 M
PERK-V-short3 27.3 KB 84.6 KB 75.7 KB 316 K 977 M 317 M
PERK-V-short5 29.3 KB 83.3 KB 75.7 KB 353 K 900 M 292 M

Ref. [ABB+23a]

PERK-V-fast3 27.3 KB 1.19 MB 1.19 MB 326 K 109 M 56.7 M
PERK-V-fast5 29.3 KB 1.14 MB 1.14 MB 370 K 105 M 53.8 M
PERK-V-short3 27.3 KB 6.01 MB 6.01 MB 330 K 588 M 306 M
PERK-V-short5 29.3 KB 5.55 MB 5.55 MB 375 K 549 M 284 M
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values reported in Table 10. We do not report results for other parameter sets of PERK
because, in these cases, considering the memory available on the Target platform 1,
the allowed trade-off brings only a negligible improvement.

5 Comparisons and Future Directions

This section compares PERK against other MPCitH digital signatures from the NIST
competition. We take the pqm4 project as a reference for the performance of some protocol
implementations on resource-constrained devices. In particular, given that the experiments
in [KKPY24] have been performed on a platform identical to TARGET PLATFORM 1
with analogous settings, we directly compare our numbers with the numbers reported in
[KKPY24, Tables 2 and 3].

PERK vs. MiRitH. Beside our work, MiRitH is the only signature among the MPCitH
NIST candidates for which an implementation optimized for Arm Cortex M4 was pro-
duced [ABB+24], even if for two parameter sets only: mirith_hypercube_Ia_fast and
mirith_hypercube_Ib_fast. Hence, it is the only protocol that allows a fair comparison
against our implementation of PERK. We report in Table 12 the stack consumption and
the CPU cycles for these parameter sets, together with the results from Table 10 of the
corresponding fast PERK instances. While the comparison on performance favors MiRitH
in signing and partially in verification, PERK is faster in key generation and has a smaller
memory footprint overall.

PERK vs. Biscuit/MQOM. Bisquit and MQOM have been tested on Arm Cortex
M4 devices in [KKPY24]. However, their implementations are not optimized for such
memory-constrained devices. Indeed, for both protocols, only a selection of the parameter
sets fits the requirement of the resource-constrained test platform, similar to the reference
implementation of PERK. Hence, comparing their performances against the ones from this
work would not produce a fair comparison. For this reason, we do not report the numeric
values in a table to prevent the reader from drawing incorrect conclusions. Nevertheless,
looking at the values in [KKPY24, Table 2 and 3], we can infer the following preliminary
information. Even if our implementation of PERK is streamlined, and hence expected to
be slower by design, it is still significantly faster in verification than reference MQOM. This
might change if some Arm Cortex M4-specific optimizations are introduced to MQOM.
On the other hand, MQOM is substantially faster in signing. However, such a gap
might be reduced when streamlining MQOM. As expected, streamlined PERK compares
favorably against reference MQOM in terms of memory footprint. Regarding the reference
implementation of Biscuit, our PERK implementation is faster and lighter. We leave as a
future research direction to produce streamlined implementations of Biscuit and MQOM
(following the directives from Section 3) and make a fair comparison against PERK.

Other MPCitH schemes. A comparison against MIRA, RYDE, and SDitH is not pos-
sible at the moment. To do so, one should ideally produce a refactoring of their reference
implementations to drop heap-memory dependence and then apply streamlining techniques
as described in Section 3. We leave this work as a future direction.

In addition, recent works have proposed newer paradigms that improve upon MPCitH,
called respectively Threshold-Computation-in-the-Head [FR23c, FR23b] and VOLE-in-the-
Head [BBD+23, BBdSG+23]. Exploring avenues to streamline these emerging frameworks
is a promising direction for future investigation.
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Table 12: Comparison between the stack consumption and performance (in million of
cycles) of PERK and MiRitH reference implementations optimized for Arm Cortex M4 on
Target Platform 1. For MiRitH, the numbers are extrapolated from [KKPY24, Tables
2 and 3].

Algorithm Stack Consumption CPU Cycles
Keygen Sign Verify Keygen Sign Verify

Section 4 PERK-I-fast3 7.70 KB 24.0 KB 20.7 KB 0.64 M 244 M 81.0 M
PERK-I-fast5 9.03 KB 25.1 KB 21.8 KB 0.82 M 240 M 78.1 M

[ABB+24] mirith_hypercube_Ia_fast 10.0 KB 75.1 KB 20.4 KB 1.00 M 59.0 M 53.6 M
mirith_hypercube_Ib_fast 18.7 KB 94.7 KB 30.5 KB 1.88 M 83.8 M 78.1 M
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Streamlined PERK diagrams

Inputs: The key pair (sk, pk) = (sk_seed, (pk_seed, (yj)j∈[1,t])) and a message m ∈ {0, 1}∗

Step 1: Commitment

1. Sample π ←− PRG(sk_seed) from Sn and compute πinverse = π−1

2. Sample (H, (xj)j∈[1,t])←− PRG(pk_seed) from Fm×nq × (Fnq )t

3. Sample salt and master seed (salt,mseed) $←− {0, 1}2λ × {0, 1}λ

4. h1.state = H.init(salt)
5. h1.state = h2.state = H.update(m, pk)
6. For each iteration e ∈ [1, τ ],

� Set π(e)
1 = πinverse

� Sample seed θ(e) ←− PRG(salt,mseed) from {0, 1}λ

� Compute (θ(e)
i

)i∈[1,N] ←− TreePRG(salt, θ(e))
� For each party i ∈ {N, . . . , 2},

- Sample (π(e)
i
,v

(e)
i

)←− PRG(salt, θ(e)
i

) from Sn × Fnq

- Compute cmt(e)
1,i = H0(salt, e, i, θ(e)

i
) and h1.state = H.update(h1.state, cmt(e)

1,i ))

- π(e)
1 = π

(e)
1 ◦ (π(e)

i
),

- If i = N , v(e) = v
(e)
N

and π
(e)
comp = π

(e)
N

- If i 6= N v(e) = v(e) + π
(e)
comp(v

(e)
i

) and π
(e)
comp = π

(e)
comp ◦ π

(e)
i

� Compute π(e)
1 = π

(e)
1 inverse and cmt(e)

1,1 = H0(salt, e, 1, π(e)
1 , θ

(e)
1 ) // We save π

(e)
1 .

� h1.state = H.update(h1.state, cmt(e)
1,1)),

� Sample v
(e)
1 ←− PRG(salt, θ(e)

1 ) from Fnq

� v(e) = v(e) + π
(e)
comp(v

(e)
1 )

� Compute cmt(e)
1 = H0(salt, e,Hv(e))

� h1.state = H.update(h1.state, cmt(e)
1 ),

Step 2: First Challenge

7. Compute h1 = H1.final(h1.state,H1)

8. Sample (κ(e)
j

)e∈[1,τ],j∈[1,t] ←− PRG(h1) from (Ftq \ 0)τ

Step 3: First Response

9. Use h2.state from 5 (Step 1).
10. Compute h2.state = H.update(h2.state, h1)
11. For each iteration e ∈ [1, τ ],

� Compute s
(e)
0 =

∑
j∈[1,t]

κ
(e)
j
· xj

� Sample seeds θ(e) ←− PRG(salt,mseed) from {0, 1}λ

� Compute (θ(e)
i

)i∈[1,N] ←− TreePRG(salt, θ(e))

� Sample v
(e)
i
←− PRG(salt, θ(e)

1 ) from Fnq

� Compute s
(e)
1 = π

(e)
1 [s(e)

0 ] + v
(e)
1 // We use the saved π

(e)
1 .

� Compute h2.state = H.update(h2.state, s(e)
1 ).

� For each party i ∈ [2, N ],

- Sample (π(e)
i
,v

(e)
i

)←− PRG(salt, θ(e)
i

) from Sn × Fnq

- Compute s
(e)
i

= π
(e)
i

[s(e)
i−1] + v

(e)
i

- Compute h2.state = H.update(h2.state, s(e)
i

).

Step 4: Second Challenge

12. Compute h2 = H2.final(h2.state,H2)

13. Sample (α(e))e∈[1,τ] ←− PRG(h2) from ([1, N ])τ
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Step 5: Second Response

14. For each iteration e ∈ [1, τ ],

� Compute s
(e)
0 =

∑
j∈[1,t]

κ
(e)
j
· xj

� Sample seeds θ(e) ←− PRG(salt,mseed) from {0, 1}λ

� Compute (θ(e)
i

)i∈[1,N] ←− TreePRG(salt, θ(e))

� Sample v
(e)
i
←− PRG(salt, θ(e)

1 ) from Fnq

� Compute s
(e)
1 = π

(e)
1 [s(e)

0 ] + v
(e)
1 // We use the saved π

(e)
1 .

� If α(e) > 1, for each party i ∈ [2, α(e)],

- Sample (π(e)
i
,v

(e)
i

)←− PRG(salt, θ(e)
i

) from Sn × Fnq

- Compute s
(e)
i

= π
(e)
i

[s(e)
i−1] + v

(e)
i

� Compute z
(e)
1 = s(e)

α

� If α(e) 6= 1, z(e)
2 = (π(e)

1 || (θ(e)
i

)
i∈[1,N]\α(e) ), compute cmt(e)

1,α(e) = H0(salt, e, α(e), θ
(e)
α(e) )

� If α(e) = 1, z(e)
2 = (θ(e)

i
)
i∈[1,N]\α(e) , compute cmt(e)

1,α(e) = H0(salt, e, 1, π(e)
1 , θ

(e)
1 )

� Compute rsp(e) = (z
(e)
1 , z

(e)
2 , cmt(e)

1,α(e) )

15. Compute σ = (salt, h1, h2, (rsp(e))e∈[1,τ])

Figure 2: Streamlined PERK - Sign algorithm
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Inputs: The public key pk = (pk_seed, (yj)j∈[1,t]), a signature σ and a message m ∈ {0, 1}∗

Step 1: Parse signature

1. Sample (H, (xj)j∈[1,t])←− PRG(pk_seed) from Fm×nq × (Fnq )t

2. Parse signature as σ = (salt, h1, h2, (z
(e)
1 , z

(e)
2 , cmt(e)

1,α(e) )e∈[1,τ])

3. Recompute (κ(e)
j

)e∈[1,τ],j∈[1,t] ←− PRG(h1) from (Ftq \ 0)τ

4. Recompute (α(e))e∈[1,τ] ←− PRG(h2) from ([1, N ])τ

Step 2: Verification

5. h̄1.state = H.init(salt)
6. h̄1.state = h̄2.state = H.update(m, pk)
7. Compute h̄2.state = H.update(h̄2.state, h1)
8. For each iteration e ∈ [1, τ ],

� (θ(e)
i

)
i∈[1,N]\α(e) ← PartialTreePRG(z2)

� For each party i ∈ {N, · · · , 1}

- If i 6= 1 and i 6= α(e), compute cmt(e)
1,i = H0(salt, e, i, θ(e)

i
) and h̄1.state = H.update(h̄1.state, cmt(e)

1,i ))

- If i = 1 and α(e) 6= 1, compute cmt(e)
1,1 = H0(salt, e, 1, π(e)

1 , θ
(e)
1 ) and h̄1.state = H.update(h̄1.state, cmt(e)

1,1))

- If i = α(e), compute h̄1.state = H.update(h̄1.state, cmt(e)
1,α))

� Compute s
(e)
0 =

∑
j∈[1,t]

κ
(e)
j
· xj and s(e)

α = z
(e)
1

� For each party i ∈ [1, N ],

- If i 6= α(e), Sample (π(e)
i
,v

(e)
i

)←− PRG(salt, θ(e)
i

) from Sn × Fnq

- If i 6= α(e), compute s
(e)
i

= π
(e)
i

[s(e)
i−1] + v

(e)
i

and h̄2.state = H.update(h̄2.state, s(e)
i

)

- If i = α(e), compute h̄2.state = H.update(h̄2.state, s(e)
α )

� Compute cmt(e)
1 = H0(salt, e,Hs

(e)
N
−

∑
j∈[1,t]

κ
(e)
j
· yj)

� Compute h̄1.state = H.update(h̄1.state, cmt(e)
1 ),

9. Compute h̄1 = H1.final(h̄1.state,H1)
10. Compute h̄2 = H2.final(h̄2.state,H2)

11. Output accept if and only if h̄1 = h1 and h̄2 = h2.

Figure 3: Streamlined PERK - Verify algorithm

Tables

Table 13: Time/memory tradeoff in the sign algorithm by storing some of the si. The
experiment were run on the target platform 1. Performance related data is given in
millions (M) of CPU cycles. The reported values are obtained by averaging the results
from 10 runs.

Algorithm τ ′ Stack Consumption CPU Cycles

PERK-I-fast3
0 24.0 KB 244 M

16 105 KB 229 M
30 176 KB 214 M

PERK-I-short3
0 27.8 KB 1336 M
5 230 KB 1285 M

15 634 KB 1128 M
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