
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 4, pp. 1–39. DOI:10.46586/tches.v2024.i4.1-39

SAT-based Formal Verification of Fault Injection
Countermeasures for Cryptographic Circuits∗

Huiyu Tan1,2, Pengfei Gao3, Fu Song4,5 (�), Taolue Chen6 and Zhilin Wu4

1 ShanghaiTech University, Shanghai 201210, China
2 Wingsemi Technology Co., Ltd., Shanghai 201203, China

3 Bytedance, Beijing 100098, China
4 Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory
of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China,

songfu@ios.ac.cn
5 Nanjing Institute of Software Technology, Nanjing 211135, China

6 Birkbeck, University of London, WC1E 7HX, UK

Abstract. Fault injection attacks represent a type of active, physical attack against
cryptographic circuits. Various countermeasures have been proposed to thwart such
attacks, however, the design and implementation of which are intricate, error-prone,
and laborious. The current formal fault-resistance verification approaches are limited
in efficiency and scalability. In this paper, we formalize the fault-resistance verification
problem and show that it is coNP-complete. We then devise a novel approach for
encoding the fault-resistance verification problem as the Boolean satisfiability (SAT)
problem so that modern off-the-shelf SAT solvers can be utilized. The approach is
implemented in an open-source tool FIRMER which is evaluated extensively on realistic
cryptographic circuit benchmarks. The experimental results show that FIRMER is
able to verify fault-resistance of almost all (72/76) benchmarks in 3 minutes (the
other three are verified in 35 minutes and the hardest one is verified in 4 hours). In
contrast, the prior approach fails on 31 fault-resistance verification tasks even after
24 hours (per task).
Keywords: Fault Injection · Cryptographic Circuits · SAT · Formal Verification

1 Introduction
Cryptographic circuits have been widely used in providing secure authentication, privacy,
and integrity, due to rising security risks in sensor networks, healthcare, cyber-physical
systems, and the Internet of Things [AIM10, TS21, NIS22]. However, cryptographic circuits
are vulnerable to various effective physical attacks, which remains an open challenge even
after two decades of research. This paper focuses on an infamously effective attack, i.e.,
fault injection attacks [BS97, BDF+14, BHL17, Bak22].

Fault injection attacks deliberately inject disturbances into a cryptographic circuit when
it is running cryptographic computation, and analyze the information from the correct (non-
faulty) and the incorrect (faulty) outputs, attempting to deduce information on the secret
key. Fault injection attacks allow the adversary to bypass certain assumptions in classical
cryptanalysis methods where the cipher is considered to be a black box and therefore cannot

∗This work was funded by the Strategic Priority Research Program of CAS (XDA0320101), National
Natural Science Foundation of China (62072309), CAS Project for Young Scientists in Basic Research
(YSBR-040), ISCAS New Cultivation Project (ISCAS-PYFX-202201), ISCAS Fundamental Research
Project (ISCAS-JCZD-202302), an overseas grant from the State Key Laboratory of Novel Software
Technology, Nanjing University (KFKT2023A04).

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-04-15 Accepted: 2024-06-15 Published: 2024-09-05

https://doi.org/10.46586/tches.v2024.i4.1-39
mailto:songfu@ios.ac.cn
http://creativecommons.org/licenses/by/4.0/

2 Formal Verification of Fault Injection Countermeasures

be tampered. The disturbances could be injected in various different ways, such as clock
glitches [ADN+10, ESH+11, SHO19], underpowering [SGD08], voltage glitches [ZDCT13],
electromagnetic pulses [DDRT12, DLM19, DLM21] and laser beams [SA03, RSDT13,
CLFT14, SFG+16, DBC+18]. Secret information can be deduced by differential fault
analysis [BS97], ineffective fault analysis [Cla07a], statistical fault analysis [FJLT13], and
statistical ineffective fault analysis [DEG+18]. Therefore, fault injection attacks pose a
severe security threat to embedded computing devices with cryptographic modules.

Both detection-based and correction-based countermeasures have been proposed to
defend against fault injection attacks [MSY06, AMR+20, SRM20]. The former aims to
detect fault injections and infect the output result with an error flag in the presence of
faults so an attacker cannot exploit them; the latter aims to correct the faulty cryptographic
computation in the presence of faults. An effective countermeasure must be fault-resistance,
i.e., detecting or correcting faults in time once they occur. Designing and implementing
secure, efficient, and low-cost cryptographic circuits is notably error-prone, hence it is
crucial to rigorously verify fault-resistance, especially at the gate level (which is closer to
the final circuit sent to the fab for the tape-out). Typically this is done at the last stage of
the front-end design so the flaws introduced by front-end tools (e.g., optimization passes)
can be detected.

There is more specialized work for assuring fault-resistance, (e.g., [SKK13, BGE+17,
SMD18, AWMN20, KRH17, SSR+20, WLR+21, NOV+22]), but almost all of them focus
on finding flaws or checking the effectiveness of user-specified instances (given by fault test
vectors). In principle, to achieve completeness, all the possible test vectors (varying in fault
types, injected gates, and clock cycles) must be checked under all valid input combinations,
which is virtually infeasible in practice, as already recognized, e.g., by [RBSS+21]. To
alleviate this issue, recently, a binary decision diagram (BDD) [Bry86] based approach,
called FIVER [RBSS+21], was proposed, which does not need to explicitly enumerate all
valid input combinations and is optimized to avoid some fault test vectors. However, it
still has to repeatedly build BDD models for a huge number of fault test vectors, failing to
verify relatively larger circuits in a reasonable amount of time. (For instance, it fails to
prove fault-resistance of a single-round 2-bit protected AES in 24 hours.)
Contributions. In this work, inspired by the consolidated fault model for precisely defin-
ing fault injection adversaries [RBSG23], we define a fault-resistance model as ζ(ne, nc, T, `),
where ne specifies the maximum number of fault events per clock cycle, nc specifies the
maximum number of clock cycles in which fault events can occur, T specifies the set of
allowed fault types including bit-set, bit-reset and bit-flip; and ` specifies the types of gates
that can be faulted including logic gates in combinational circuits and memory gates.

Note that, as in [RBSG23, RBSS+21], we focus on transient fault events that are of a
dynamic nature and become inactive after certain periods or changes in the circuit. More
precisely, each fault event is accompanied with the clock cycle of the fault injection. There
are persistent and permanent fault events which are of a static nature and will remain
active for several or even the entire clock cycles. As remarked by [RBSS+21], the latter
two can be modeled as repetitive transient fault events, thus are not explicitly considered
in the fault-resistance model. Moreover, following [RBSG23, RBSS+21], we assume that
the adversary can precisely control fault injections, consequently, fault-resistance against
random faults can be achieved as they can be encoded by fault vectors and our verification
approach covers all the feasible fault vectors. We formalize the fault-resistance verification
problem using the fault-resistance model which is shown to be coNP-complete.1 This lays
a solid foundation for the subsequent verification.

We propose novel SAT-based approaches for verifying fault-resistance. Technically, with

1In the computational complexity theory, coNP is the class of problems the complement of which are
in NP, where NP is the class of problems which can be solved in polynomial-time by a nondeterministic
Turing machine.

H. Tan et al. 3

a countermeasure and a fault-resistance model, we generate a new conditionally-controlled
faulty circuit, which is in turn reduced to the SAT problem. Intuitively we replace each
vulnerable gate with a designated gadget (i.e., sub-circuit) with (1) a control input for
controlling if a fault is injected on the gate, and (2) selection inputs for choosing which
fault type is injected. This approach avoids explicit enumeration of all the possible fault
test vectors and can fully utilize the conflict-driven clause learning (CDCL) feature of
modern SAT solvers. Furthermore, we introduce a reduction technique to safely reduce the
number of vulnerable gates when verifying fault-resistance, which significantly improves
the verification efficiency.

We implement our approach in an open-source tool FIRMER (Fault Injection counteR
Measure verifiER), based on Verilog gate-level netlists. We evaluate FIRMER on 33
realistic cryptographic circuits (i.e., rounds of AES, CRAFT, LED, GIFT, PRESENT and
SIMON) with both detection- and correction-based countermeasures, where the number
of gates ranges from 608 to 68,703. The results show that our approach is effective and
efficient in verifying the fault-resistance against various fault-resistant models. Almost all
the benchmarks (72 out of 76) can be verified in less than 3 minutes (except for three
which take 35 minutes and one which takes 4 hours). In comparison, FIVER runs out of
time (with timeout 24 hours) on 31 fault-resistance verification tasks in the same setting.

To summarize, we make the following major contributions:

• We formalize the fault-resistance verification problem and identify its coNP-complete
computational complexity for the first time.

• We propose a novel SAT-based approach for formally verifying fault-resistance with
an accelerating technique.

• We implement an open-source tool for verifying fault-resistance in Verilog gate-level
netlists.

• We extensively evaluate our tool on realistic cryptographic circuits, demonstrating
its effectiveness and efficiency.

Outline. Section 2 briefly recaps circuits, fault injection attacks and their countermeasures.
Section 3 formulates the fault-resistance verification problem, studies its computational
complexity, and introduces an illustrating example. Section 4 presents our SAT-based
verification approach. Section 5 reports experimental results. We discuss related work in
Section 6 and finally conclude this work in Section 7.

To foster further research, benchmarks, experimental data and the source code of our
tool are released at

https://github.com/S3L-official/FIRMER.

2 Preliminary
2.1 Notations
We denote by B the Boolean domain {0, 1} and by [n] the set of integers {1, · · · , n} for an
integer n ≥ 1. To describe standard circuits, we consider the logic gates: and (∧), or (∨),
nand (∧), nor (∨), xor (⊕), xnor (⊕), and not (¬), all of which are binary gates except
for not. Note that •(x1, x2) = ¬ • (x1, x2), so • may be used to denote • for • ∈ {∧,∨,⊕}.
In addition, we introduce three auxiliary logic gates to describe faulty circuits: nnot (¬),
set (u) and reset (t), where ¬x = x, u and t are two constant logic gates whose outputs
are 1 and 0, respectively.

2.2 Synchronous Circuits
We first introduce combinational circuits based on which we define synchronous circuits.

https://github.com/S3L-official/FIRMER

4 Formal Verification of Fault Injection Countermeasures

Definition 1 (Combinational circuit). A combinational circuit C is a tuple
(V, I,O,E, g),

where
• V is a finite set of vertices, I ⊂ V is a set of inputs, and O ⊂ V is a set of outputs;
• E ⊆ (V \O)× (V \ I) is a set of edges each of which represents a wire connecting

two vertices and carrying a digital signal from the domain B;
• (V,E) forms a directed acyclic graph (DAG);
• each internal vertex v ∈ V \ (I ∪O) is a logic gate associated with its function, given

by g(v), whose fan-in size is equal to the in-degree of the vertex v.
Intuitively, a combinational circuit represents a Boolean function. The behavior of a

combinational circuit is memoryless, namely, the outputs depend solely on the inputs and
are independent of the circuit’s past history. The semantics of the combinational circuit C
is described by the associated Boolean function JCK : B|I| → B|O| such that for any signals
~x ∈ B|I| of the inputs I, JCK(~x) = ~y iff under the input signals ~x the output signals O of
the circuit C are ~y.

A (synchronous) sequential circuit is a combinational circuit with feedback synchronized
by a global clock. It has primary inputs, primary outputs, a combinational circuit and
memory in the form of registers (or flip-flops). The output signals of registers at a clock
cycle represent an internal state. At each clock cycle, the combinational circuit produces
its output using the current internal state and the primary inputs as its inputs. The
output comprises two parts: one is used as primary output while the other is stored in the
registers, which will be the internal state for the next clock cycle and can be seen as the
feedback of the combinational circuit to the next clock cycle.

We focus on round-based circuit implementations of cryptographic primitives so that
the synchronous circuits always have bounded clock cycles and can be automatically
unrolled by clock cycles. However, in theory, our methodology is generic and our approach
may be adapted to handle other architectures with bounded clock cycles. The details are
left as future work.
Definition 2 (Synchronous circuit). A k-clock cycle synchronous (sequential) circuit S
for k ≥ 1 is a tuple

(I,O,R, ~s0, C),
where

• I (resp. O) is a finite set of primary inputs (resp. primary outputs);
• R = R0] · · ·]Rk is a set of registers, called memory gates;
• ~s0 ∈ B|R0| gives initial signals to the memory gates in R0;
• C = {C1, · · · , Ck} where Ci = (Vi, Ii, Oi, Ei, gi) for each i ∈ [k] is a combinational

circuit. Moreover, the inputs Ii are only connected from the primary inputs and
memory gates Ri−1, the outputs Oi are only connected to the primary outputs and
memory gates Ri, and Vi ∩ Vj = ∅ for any j 6= i.

Since memory gates are used for synchronization only and are essentially the same as
the identity function, for the sake of presentation, we extend the function gi such that for
every memory gate r ∈ Ri−1, gi(r) = ¬. However, we emphasize that it may be changed if
fault injections are considered.

A state ~s of the circuit S comprises the output signals of the memory gates. At any
clock cycle i ∈ [k − 1], given a state ~si−1 and signals ~xi of the primary inputs I, the next
state ~si is JCiK(~si−1, ~x) projected onto the registers Ri and JCiK(~si−1, ~x) projected onto O
gives the primary outputs ~yi. In general, we write ~si−1

~xi|~yi−→ ~si for the state transition at
the i-th clock cycle.

A run π under a given sequence of primary inputs (~x1, · · · , ~xk) is a sequence

H. Tan et al. 5

~s0
~x1|~y1−→ ~s1

~x2|~y2−→ ~s2
~x3|~y3−→ ~s3 · · ·~sk−1

~xk|~yk−→ ~sk.

The semantics of the circuit S is described by its associated Boolean function

JSK : (B|I|)k → (B|O|)k

such that for any sequence of input signals ~x1, · · · , ~xk ∈ (B|I|)k, the following condition
holds:

JSK(~x1, · · · , ~xk) = (~y1, · · · , ~yk) iff ~s0
~x1|~y1−→ ~s1

~x2|~y2−→ ~s2
~x3|~y3−→ ~s3 · · ·~sk−1

~xk|~yk−→ ~sk.

Given an output o ∈ O, we define JSK↓o as a function such that for any sequence of
input signals ~x1, · · · , ~xk ∈ (B|I|)k, JSK↓o(~x1, · · · , ~xk) is the signal of the output o at the
k-th clock cycle. Given a clock cycle i ∈ [k], we denote by Si the sub-circuit of the circuit
S in which all the combinational circuits Cj for j > i are removed. Thus, for any sequence
of input signals ~x1, · · · , ~xk ∈ (B|I|)k such that JSK(~x1, · · · , ~xk) = (~y1, · · · , ~yk), we have:
JSiK(~x1, · · · , ~xi) = (~y1, · · · , ~yi). Furthermore, JSiK↓o(~x1, · · · , ~xi) is the signal of the output
o of the circuits Si and S at the i-th clock cycle.

We remark that in practice, the combinational circuits Ci’s in round-based hardware
implementations of a cryptographic primitive are often similar (many of them are actually
the same up to renaming of the vertices), because the internal rounds of a cryptographic
primitive often perform similar computations. Furthermore, only partial signals of primary
inputs I may be used in one clock cycle and only the signals of primary outputs O produced
in the last clock cycle may be useful for the circuit functionality (in which case the signals
of primary outputs O in the other clock cycles are useless for the circuit functionality).
Our formalization is designed to be general.

2.3 Fault Injection Attacks
Fault injection attacks are a type of physical attacks that actively inject faults on some logic
and/or memory gates during the execution of a cryptographic circuit and then statistically
analyze the faulty primary outputs to deduce sensitive data such as the cryptographic
key [Bak22]. Over the last two decades, various fault injection mechanisms have been
proposed such as clock glitches [ADN+10, ESH+11, SHO19], underpowering [SGD08],
voltage glitches [ZDCT13], electromagnetic pulses [DDRT12, DLM19, DLM21], and laser
beams [SA03, RSDT13, CLFT14, SFG+16, DBC+18].

Clock glitch causes transient faults in circuits by tampering with a clock signal with
glitches. Under the normal clock, the clock cycle is larger than the maximum path delay
in combinational circuits, allowing full propagation of the signals so that the input signals
to memory gates are stable before the next clock signal triggers the sampling process of
the memory gates. In contrast, under a clock with glitches, some clock periods are shorter
than the maximum path delay so the input signals to memory gates become unstable (i.e.,
only parts of input signals have reached). As a result, the memory gates may sample faulty
results.

Underpowering and voltage glitches are similar to clock glitches except that underpow-
ering lowers the supply voltage of the device throughout an entire execution while voltage
glitches only lower the supply voltage for a limited period of time during an execution. In
contrast to clock glitches that decrease clock periods, lowering supply voltage increases
the maximum path delay in combinatorial circuits which also induces memory gates to
sample faulty results.

Electromagnetic pulses induce currents in wire loops that are power and ground
networks in integrated circuits. The induced current in a wire loop leads to a (negative or
positive) voltage swing between the power and ground grid. A negative (resp. positive)
voltage swings decreases (resp. increases) the clock and input signals to memory gates,

6 Formal Verification of Fault Injection Countermeasures

often leading to reset (resp. set) of the corresponding memory gates, thus injecting faults on
memory gates. A laser beam on a transistor produces a dense distribution of electron-hole
pairs along the laser path, leading to a reduced voltage and eventually a temporary drift
current. The temporary drift current can be used to alter the output signal of a (logic or
memory) gate.

Clock glitches, underpowering and voltage glitches are non-invasive, as they do not
require a modification of the targeted device, thus are considered as rather inexpensive. In
contrast, electromagnetic pulses and laser beams are semi-invasive, allowing the adversary
to inject localized faults, thus have higher precision than non-invasive attacks, but still at
reasonable equipment and expertise requirement.

2.4 Countermeasures
Various countermeasures have been proposed to defend against fault injection attacks.
For clock glitches, underpowering and voltage glitches, an alternative implementation of
the circuit can be developed where signal path delays in combinatorial circuits are made
independent of the sensitive data. For instance, delay components can be added to certain
signal paths [GAS14, ELH+15], or combinational circuits can be reorganized [EWW16],
so that the arrival time of all output signals of logic gates are independent of the sensitive
data. However, such countermeasures fail to defend against electromagnetic pulses and
laser beams.

Redundancy-based countermeasures are proposed to detect the presence of a fault. For
instance, spatial redundancy recomputes the output multiple times in parallel [MSY06];
temporal redundancy recomputes the output multiple times consecutively [MSY06], and
information redundancy leverages linear error code from coding theory [AMR+20]. Once a
fault is detected, the output is omitted or the sensitive data is destroyed, with an error flag
signal. However, such countermeasures are still vulnerable against advanced fault injection
attacks such as Ineffective Fault Attack (IFA) [Cla07b] and Statistical Ineffective Fault
Analysis (SIFA) [DEK+18]. The linear error-code based approach proposed in [AMR+20]
was extended in [SRM20], which can correct faults to protect against IFA and SIFA.

In this work, we are interested in verifying redundancy based countermeasures including
detection- and correction-based ones [MSY06, AMR+20, SRM20]. We do not consider
countermeasures that make the arrival time of all output signals of logic gates independent
of the sensitive data [GAS14, ELH+15], as they fail to defend against more advanced fault
injection attacks.

3 The Fault-Resistance Verification Problem
In this section, inspired by the consolidated fault model [RBSG23], we first formalize the
fault-resistance verification problem, and then present an illustrating example.

3.1 Problem Formulation
Fix a k-clock cycle circuit S = (I,O,R, ~s0, C), where C = {C1, · · · , Ck} and Ci =
(Vi, Ii, Oi, Ei, gi) for each i ∈ [k]. We assume that S is a cryptographic circuit without
deploying any countermeasures. Let S ′ = (I,O′,R′, ~s′0, C′) be the protected counterpart of
S using a detection-based or correction-based countermeasure [MSY06, AMR+20, SRM20],
where C′ = {C ′1, · · · , C ′k} and C ′i = (V ′i , I ′i, O′i, E′i, g′i) for each i ∈ [k]. We assume that
O′ = O ∪ {oflag}, where oflag is an error flag output indicating whether a fault was
detected when the circuit S ′ adopts a detection-based countermeasure. If S ′ adopts a
correction-based countermeasure, i.e., no error flag output is involved, for clarity, we
assume that the error flag output oflag is added but is always 0.

H. Tan et al. 7

To formalize the fault-resistance verification problem, we first introduce some notations.
We denote by B the blacklist of gates that are protected against fault injection attacks.
Note that the blacklist B is configurable which may be empty as in [RBSS+21]. It
usually contains the gates used in the sub-circuits implementing a detection or correction
mechanism, otherwise, the adversary can directly inject faults into them. It can be seen as
a set of minimal vulnerable gates that should be protected. Note that the effects of faults
injected on the other gates can be propagated into the gates in B.

To model the effects of different fault injections, we introduce the following three fault
types:

• bit-set fault τs: when injected on a gate, its output becomes 1;
• bit-reset fault τr: when injected on a gate, its output becomes 0;
• bit-flip fault τbf : when injected on a gate, its output is flipped, i.e., either from 1 to

0 or from 0 to 1.

These fault types are able to capture all the effects of faults induced by both non-
invasive fault injections (i.e., clock glitches, underpowering and voltage glitches) and
semi-invasive fault injections (i.e., electromagnetic pulses and laser beams). We refer
readers to [RBSG23] for the detailed discussion. We denote by T = {τs, τr, τbf} the set of
fault types.

A fault injection with fault type τ ∈ T on a gate can be exactly characterized by
replacing its associated function • with τ(•), where

τ(•) :=

 u, if τ = τs;
t, if τ = τr;
•, if τ = τbf .

To specify when, where and how a fault is injected, we introduce fault events.

Definition 3 (Fault event). A fault event is given by e(σ, β, τ), where

• σ ∈ [k] specifies the clock cycle of the fault injection, namely, the fault injection
occurs at the σ-th clock cycle;

• β ∈ R′σ−1 ∪V ′σ \ (I ′σ ∪O′σ) specifies the gate on which the fault is injected; we require
that β 6∈ B;

• τ ∈ T specifies the fault type of the fault injection.

A fault event e(σ, β, τ) yields the faulty circuit S ′[e(σ, β, τ)] = (I,O′,R′, ~s′0, C′′), where
C′′ = {C ′′1 , · · · , C ′′k }, for each i ∈ [k] and every β′ ∈ R′σ−1 ∪ V ′σ \ (I ′σ ∪O′σ),

• C ′′i :=
{

(V ′i , I ′i, O′i, E′′i , g′′i), if i = σ;
C ′i, if i 6= σ;

• g′′σ(β′) :=
{
τ(g′σ(β)), if β′ = β;
g′σ(β), if β′ 6= β,

• E′′i is obtained from E′i by removing the incoming edges of β if τ ∈ {τs, τr}.

Intuitively, the faulty circuit S ′[e(σ, β, τ)] is the same as the circuit S ′ except that the
function g′σ(β) of the gate β is transiently replaced by τ(g′σ(β)) in the σ-th clock cycle,
while all the other gates at all the clock cycles remain the same. We denote by τ(β) the
faulty counterpart of the gate β with fault type τ .

In practice, multiple fault events can occur simultaneously during the same clock
cycle and/or consecutively in different clock cycles, allowing the adversary to conduct
sophisticated fault injection attacks. To formalize this, we introduce fault vectors, as a
generalization of fault events.

Definition 4 (Fault vector). A fault vector V(S ′,B, T) is given by a (non-empty) set of
fault events

8 Formal Verification of Fault Injection Countermeasures

V(S ′,B, T) :=
{

e(α1, β1, τ1), · · · , e(αm, βm, τm) | ∀i, j ∈ [m].αi ∈ [k] ∧ τi ∈ T∧
(i 6= j ∧ αi = αj =⇒ βi 6= βj)

}
.

A fault can be injected to a gate at most once in the circuit S ′, but multiple faults
can be injected to different gates, in the same or different clock cycles. Note that S ′ is
unrolled with clock cycles where each physical gate in the original circuit is renamed in
different clock cycles. As a result, different gates in a fault vector may correspond to the
same physical gate in the original circuit, allowing us to capture persistent and permanent
faults (called multi-cycle faults hereafter) using fault vectors.

For instance, consider a physical gate β 6∈ B in the original circuit. The unrolled
counterpart S ′ consists of k versions {β1, · · · , βk} of the physical gate β, where the gate
βk denotes the physical gate β in the k-th clock cycle of the original circuit. A d-cycle
fault on the physical gate β with fault type τ is captured by the set of fault vectors{

Vα(S ′,B, {τ}) | 0 ≤ α < k
}
, where the fault vector Vα(S ′,B, {τ}) is defined as

Vα(S ′,B, {τ}) =
{

e(α+ 1, βα+1, τ), · · · , e(α+ d′, βα+d′ , τ) | d′ = min(d, k − α)
}
.

A fault vector V(S ′,B, T) on the circuit S ′ yields the faulty circuit S ′[V(S ′,B, T)],
which is obtained by iteratively applying fault events in V(S ′,B, T), i.e.,

S ′[V(S ′,B, T)] := S ′[e(α1, β1, τ1)] · · · [e(αm, βm, τm)].

Definition 5 (Effectiveness of fault vectors). A fault vector V(S ′,B, T) is effective if
there exists a sequence of primary inputs (~x1, · · · , ~xk) such that the sequences of primary
outputs JS ′K(~x1, · · · , ~xk) and JS ′[V(S ′,B, T)]K(~x1, · · · , ~xk) differ at some clock cycle which
is before the clock cycle when the error flag output oflag differs.

Intuitively, an effective fault vector breaks the functional equivalence between S and
S ′ and the fault is not successfully detected (i.e., setting the error flag output oflag). Note
that there are two possible cases for an ineffective fault vector: either JS ′K(~x1, · · · , ~xk) and
JS ′[V(S ′,B, T)]K(~x1, · · · , ~xk) are the same for each sequence of primary inputs (~x1, · · · , ~xk)
or the fault is successfully detected in time.

Hereafter,]Clk(V(S ′,B, T)) denotes the cardinality of the set {α1, · · · , αm}, i.e., the
number of clock cycles when fault events can occur, and by MaxFEpClk(V(S ′,B, T)) the
maximum number of fault events per clock cycle, i.e., maxα∈[k] |{e(α, β, τ) ∈ V(S ′,B, T)}|.
Inspired by the consolidated fault model [RBSG23], we introduce the security model of
fault-resistance which characterizes the capabilities of the adversary.

Definition 6 (Fault-resistance model). A fault-resistance model is given by ζ(ne, nc, T, `),
where

• ne is the maximum number of fault events per clock cycle;
• nc is the maximum number of clock cycles in which fault events can occur;
• T ⊆ T specifies the allowed fault types; and
• ` ∈ {l, m, lm} defines vulnerable gates: l for logic gates in combinational circuits, m

for memory gates and lm for both logic and memory gates.

For instance, the fault-resistance model ζ(ne, k, T , lm) gives the strongest capability
to the adversary for a large ne allowing the adversary to inject faults to all the gates
simultaneously at any clock cycle (except for those protected in the blacklist B). The
fault-resistance model ζ(1, 1, {τbf}, l) only allows the adversary to choose one logic gate
to inject a bit-flip fault in one chosen clock cycle. Formally, ζ(ne, nc, T, `) defines the
set Jζ(ne, nc, T, `)K of possible fault vectors that can be conducted by the adversary, i.e.,
Jζ(ne, nc, T, `)K is

{V(S ′,B`, T) | MaxFEpClk(V(S ′,B`, T)) ≤ ne ∧]Clk(V(S ′,B`, T)) ≤ nc, }

H. Tan et al. 9

where B` :=


B, if ` = lm;
B ∪R, if ` = l;
B ∪

⋃
i∈[k] V

′
i \ (I ′i ∪O′i), if ` = m.

The circuit S ′ is fault-resistant w.r.t. a blacklist B and a fault-resistance model
ζ(ne, nc, T, `), denoted by 〈S ′,B〉 |= ζ(ne, nc, T, `), if all the fault vectors V(S ′,B, T) ∈
Jζ(ne, nc, T, `)K are ineffective on the circuit S ′.

Definition 7 (Fault-resistance verification problem). The fault-resistance verification
problem is to determine if 〈S ′,B〉 |= ζ(ne, nc, T, `), and in particular, if 〈S ′,B〉 |=
ζ(ne, nc, T , lm).

The definition of our fault-resistance covers all the feasible fault vectors V(S ′,B, T) ∈
Jζ(ne, nc, T, `)K, allowing us to verify fault-resistance against both multi-cycle faults and
random faults by choosing proper values for the parameters ne and nc. For instance, it
suffices to set ne = n ·min(d,m) and nc = max(m · d, k) for n number of d-cycle (random)
faults per clock cycle in at most m clock cycles for m ≤ k (i.e., up to n ·m number d-cycle
faults in total).

Proposition 1. If 〈S ′,B〉 |= ζ(ne, nc, T , lm), then 〈S ′,B〉 |= ζ(ne, nc, T, `) for any T ⊆ T
and any ` ∈ {l, m, lm}.

Theorem 1. The problem of determining whether a circuit S ′ is fault-resistant is coNP-
complete.

Proof. We show that the problem of determining whether a circuit S ′ is not fault-resistant
is NP-complete.

To show that this problem is in NP, for a given fault-resistance model ζ(ne, nc, T, `),
we first non-deterministically guess a sequence of primary inputs (~x1, · · · , ~xk) and a fault
vector V(S ′,B, T) ∈ Jζ(ne, nc, T, `)K, then construct the faulty circuit S ′[V(S ′,B, T)] in
polynomial time by traversing and manipulating gates in the circuit S ′, and finally check
if the sequences of primary outputs JS ′K(~x1, · · · , ~xk) and JS ′[V(S ′,B, T)]K(~x1, · · · , ~xk)
differ at some clock cycle before the error flag output oflag differs in polynomial time
by explicitly computing the sequences of primary outputs using the sequence of primary
inputs (~x1, · · · , ~xk). If yes, then 〈S ′,B〉 6|= ζ(ne, nc, T, `).

The NP-hardness is shown by reducing from the SAT problem2. Let Cϕ be a combina-
tional circuit representing a Boolean formula ϕ, where the inputs of Cϕ are the Boolean
variables of ϕ (say x1, · · · , xm), and the output indicates the result of ϕ. We create a
circuit S ′ = (I,O,R, ~s0, C) as shown in Fig. 1, where

• I = {x1, · · · , xm} is the set of inputs of the circuit Cϕ;
• O is the set {oi, oflag | 1 ≤ i ≤ 2ne + 1};
• R = R1 ∪R2, with R1 = {ri | 1 ≤ i ≤ 2ne + 1} and R2 = {r′i | 1 ≤ i ≤ 2ne + 1};
• ~s0 is a vector consisting of 0;
• C = {C1, C2, C3}, such that

– C1 comprises 2ne + 1 copies of the circuit Cϕ: all the copies share the same
inputs I, the output of the i-th copy is connected to ri, and the output oflag is
always 0;

– C2 outputs signals of the memory gates R1 and stores them into the memory
gates R2 again, checks if 1 ≤

∑2ne+1
i=1 ri ≤ ne, and the output oflag is 1 iff

1 ≤
∑2ne+1
i=1 ri ≤ ne;

– C3 checks whether 1 ≤
∑2ne+1
i=1 r′i ≤ 2ne, and the output oflag is 1 iff 1 ≤∑2ne+1

i=1 r′i ≤ 2ne.

2A Boolean formula is satisfiable iff there is an assignment of the variables under which the formula
evaluates to true. The SAT problem is to determine whether a Boolean formula is satisfiable or not.

10 Formal Verification of Fault Injection Countermeasures

.

.

. Cφ

.

.

. Cφ

.

.

.

x1

xm

x1

xm

o1

2ne+1 2ne+1
oflag1≤∑i=1 ri≤ne

iff

oflag=1

1≤∑i=1 ri≤2ne

iff

oflag=1

oflag

C1 C3

r

.

.

.

2ne+1

r1

o2ne+1

C2

o1

r

.

.

.

2ne+1

r1

o2ne+1

oflag

’

’

’

Figure 1: The circuit S ′ for NP-hardness.

Table 1: Truth table of the S-box in the block cipher RECTANGLE.

~x 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
S(~x) 0110 0101 1100 1010 0001 1110 0111 1001 1011 0000 0011 1101 1000 1111 0100 0010

S[s7, τs](~x) 1110 1101 0100 0010 0001 0110 1111 1001 1011 1000 0011 0101 0000 0111 1100 1010
S[s7, τr](~x) 0110 0101 1100 1010 1001 1110 0111 0001 0011 0000 1011 1101 1000 1111 0100 0010
S[s7, τbf](~x) 1110 1101 0100 0010 1001 0110 1111 0001 0011 1000 0011 0101 0000 0111 1100 1010
S[s9, τs](~x) 0011 0101 1101 1011 0001 1111 0111 1001 1011 0101 0011 1101 1001 1111 0001 0111
S[s9, τr](~x) 0110 0000 1100 1010 0000 1110 0010 1100 1110 0000 0010 1100 1000 1110 0100 0010
S[s9, τbf](~x) 0011 0000 1101 1011 0000 1111 0010 1100 1110 0101 0010 1100 1001 1110 0001 0111

Claim. The circuit S ′ is not fault-resistant w.r.t. the blacklist B = ∅ and the fault-
resistance model ζ(ne, 1, {τbf}, m) iff the Boolean formula ϕ is satisfiable.
(⇐) Suppose ϕ is satisfiable. Let ~x be the satisfying assignment of ϕ. Obviously, under
the primary inputs ~x, the output oflag is 0 and the outputs {oi | 1 ≤ i ≤ 2ne + 1} are 1 in
all the clock cycles. Consider the fault event e(2, r1, τbf). Along the sequence of primary
outputs JS ′[e(2, r1, τbf)]K(~x), the output oflag is 0 at the first two clock cycles and becomes
1 at the 3-rd clock cycle. However, the output o1 differs in JS ′K(~x) and JS ′[e(2, r1, τbf)]K(~x)
at the 2nd clock cycle due to the bit-flip fault injection on the memory gate r1. Thus,
〈S ′, ∅〉 6|= ζ(ne, 1, {τbf}, m), i.e., the circuit S ′ is not fault-resistant w.r.t. the blacklist B = ∅
and the fault-resistance model ζ(ne, 1, {τbf}, m).
(⇒) Suppose ϕ is unsatisfiable. Obviously, under any primary inputs ~x, all the primary
outputs {oflag, oi | 1 ≤ i ≤ 2ne + 1} are 0 in all the clock cycles. For any fault vector
V(S ′,B, T) ∈ Jζ(ne, 1, {τbf}, m)K, at most ne memory gates can be bit-flipped in one single
clock cycle. If some memory gates in R1 are bit-flipped at the 2nd clock cycle, then the
output oflag is 1 at the 2nd clock cycle, successfully detecting the fault injection. If no
memory gates of R1 are bit-flipped at the 2nd clock cycle and some memory gates in R2
are bit-flipped at the 3rd clock cycle, the primary outputs {oi | 1 ≤ i ≤ 2ne + 1} are 0
at the 2nd clock cycle, oflag is 1 at the 3rd clock cycle successfully detecting the fault
injection, although some primary outputs of {oi | 1 ≤ i ≤ 2ne + 1} become 1 at the 3-rd
clock cycle. Hence 〈S ′, ∅〉 |= ζ(ne, 1, {τbf}, m), i.e., the circuit S ′ is fault-resistant w.r.t. the
blacklist B = ∅ and the fault-resistance model ζ(ne, 1, {τbf}, m).

3.2 An Illustrating Example
Consider the S-box used in the cipher RECTANGLE [ZBL+15], which is a 4-bit to 4-bit
mapping S : B4 → B4 given in Table 1 (the top two rows). It can be implemented in a
combinational circuit as shown in Fig. 2 (grey-area). It has four 1-bit inputs {a, b, c, d}
denoting the binary representation of the 4-bit input ~x, and four 1-bit outputs {w, x, y, z}
denoting the binary representation of the 4-bit output S(~x), where a and w are the most

H. Tan et al. 11

c

d

s2

s4

s3b

a

z

s5 s6

ys1

s7

w
s8

b
c

a
d

b

x

b

a

c

d

c

d

a

p1
p3

p2

p4

p5

p6 flag

S-box

Redundancy

⊕

∧

∧

∧

∧

∧

∨
∨

∨

∨

¬

⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕

⊕

⊕

⊕

Parity Checking

c1

c3

c2

s10

s9

s11

s12

Figure 2: Circuit representation of the illustrating example.

1 RECTANGLE S-box
2 Input : a,b,c,d
3 Output : w,x,y,z,flag
4 s1 = b ⊕ c
5 s2 = ¬ c
6 s3 = b ⊕ a
7 s4 = s2 ∧ d
8 s5 = s2 ∨ a
9 z = s3 ⊕ s4

10 s6 = s5 ⊕ d
11 s7 = s3 ∧ s6
12 s8 = s1 ∨ z
13 w = s1 ⊕ s7
14 x = s8 ⊕ s6
15 y = b ⊕ s6
16 p1 = c ⊕ d
17 p2 = a ∨ c

18 p3 = a ∧ p1
19 p4 = p2 ∧ d
20 p5 = p4 ∧ b
21 p6 = p3 ∨ p5
22 c1 = w ⊕ x
23 c2 = y ⊕ z
24 c3 = c1 ⊕ c2
25 flag = c3 ⊕ p6

Figure 3: Pseudo-code of the illustrating example.

significant bits. The values of the inputs a,b,c and d depend upon the secret key. The
corresponding pseudo-code of the illustrating example is given in Fig. 3, where the left
two columns implements the function of the S-box and the right column implements a
single-bit parity protection mechanism.

If a fault with fault type τ is injected on the gate s7 (i.e., the gate whose output is s7),
its function g(s7) is changed from ∧ to τ(∧). As highlighted in red color in Fig. 2, the
effect of this fault will be propagated to the output w. We denote by S[s7, τ] the faulty
S-box, given in Table 1 for each τ ∈ T , where the faulty output is highlighted in bold.
Since the distribution of the XOR-difference S[s7, τ](~x)⊕ S(~x) is biased, the adversary
can narrow down the solutions for ~x according to the value of S[s7, τ](~x)⊕ S(~x) which is
known to the adversary. Finally, the adversary solves ~x uniquely, based on which a round
key can be obtained (Details refer to [Bak22]).

To thwart single-bit fault injection attacks, one may adopt a single-bit parity protection
mechanism [KKG03, BBK+03], as shown in Fig. 2. The sub-circuit in the blue-area is a
redundancy part which computes the Hamming weight of the output of the S-box from
the input but independent on the sub-circuit in the grey-area, i.e., p6. The sub-circuit
in the yellow-area checks the parity of the Hamming weights of S(~x) computed in two
independent sub-circuits, i.e., flag = p6⊕ w⊕ x⊕ y⊕ z. If no faults occur, flag is 0.

Re-consider the fault injected on the gate s7. We can see that either flag becomes 1,
i.e., this fault injection can be successfully detected, or the outputs of S[s7, τ](~x) and S(~x)
are the same, thus the fault injection is ineffective.

However, the entire circuit is still vulnerable against single-bit fault injection attacks,
as one single-bit fault injection can yield an even number of faulty output bits so that the
Hamming weight of the faulty output remains the same. For instance, the fault injection
on the gate s9 will affect both the outputs x and z. As shown in Table 1, the fault injection
cannot be successfully detected if one of the following items holds:

• τ = τs ∧ ~x ∈ {0000, 1001, 1110, 1111},

12 Formal Verification of Fault Injection Countermeasures

c

d

s9

s3

b

a

zy

s11

s10

w

b

c

a

d

b

x

b

a

c

d

c

d

a

p1
p3

p2

p4

p5

p6
flag

S-box

Redundancy

⊕

∧

∧

∧

∧

∧

∨

∨

∨

∨

¬

⊕
⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

Parity Checking

c1

c3

c2

c

s2b

a

⊕

¬

b

c

⊕

c

a

c

a

∨ ⊕
¬

¬ ∨ ⊕

¬ ∧

⊕

⊕

⊕

d

⊕

d

b

a

c

d

s1
s4

s5

s6

s7

s8

s12

s13
s14

s15

s16
s17

s18

s19
s20

s21

Figure 4: Circuit representation of the revised illustrating example.

• τ = τr ∧ ~x ∈ {0001, 0110, 0111, 1000},
• τ = τbf ∧ ~x ∈ {0000, 0001, 0110, 0111, 1000, 1001, 1110, 1111}.

It is fault-resistant against single-bit fault injection attacks when the blacklist B includes
all the logic gates in the parity checking (i.e., yellow-area) and all the logic gates in the
S-box (i.e., grey-area) whose out-degree is larger than 2 (highlighted in blue color in
Fig. 2). This issue also could be avoided by leveraging the independence property defined
by [AMR+20], to ensure an n-bit fault injection attack only affects at most n output bits,
at the cost of the circuit size.

1 RECTANGLE S-box
2 Input : a,b,c,d
3 Output : w,x,y,z,flag
4 s1 = ¬ c
5 s2 = a ⊕ b
6 s3 = b ⊕ c
7 s4 = s1 ∨ a
8 s5 = s4 ⊕ d
9 s6 = s2 ∧ s5

10 s7 = ¬ c
11 s8 = a ⊕ b
12 s9 = s7 ∧ d
13 s10 = s8 ⊕ s9

14 s11 = b ⊕ c
15 s12 = s10 ∨ s11
16 s13 = ¬ c
17 s14 = a ∨ s13
18 s15 = d ⊕ s14
19 s16 = ¬ c
20 s17 = d ∧ s16
21 s18 = a ⊕ b
22 s19 = ¬ c
23 s20 = a ∨ s19
24 s21 = d ⊕ s20
25 w = s3 ⊕ s6
26 x = s12 ⊕ s15

27 y = s17 ⊕ s18
28 z = s12 ⊕ b
29 p1 = c ⊕ d
30 p2 = a ∨ c
31 p3 = a ∧ p1
32 p4 = p2 ∧ d
33 p5 = p4 ∧ b
34 p6 = p3 ∨ p5
35 c1 = w ⊕ x
36 c2 = y ⊕ z
37 c3 = c1 ⊕ c2
38 flag = c3 ⊕ p6

Figure 5: Pseudo-code of the revised illustrating example.

Revised implementation. The circuit representation of the revised implementation
of the RECTANGLE S-box is shown in Fig. 4 and its pseudo-code is shown in Fig. 5,

H. Tan et al. 13

following the independence property defined by [AMR+20].
This circuit is fault-resistant against single-bit fault injection attacks when the blacklist

B includes only the logic gates in the parity checking. We can observe that any fault
injection on one single logic gate in the redundancy part does not change any of the outputs
{w, x, y, z}, any fault injection on one single logic gate in the S-box part only change one
of the outputs {w, x, y, z} and also changes the error flag output flag. Thus, the revised
implementation is fault-resistant w.r.t. the blacklist B and the fault-resistance model
ζ(1, 1, T , l), where B only contains the logic gates in the parity checking.

4 SAT-based Formal Verification
We propose an SAT-based countermeasure verification approach, which reduces the fault-
resistance verification problems to SAT solving.

4.1 Overview
An overview of our approach is depicted in Fig. 6. Given a circuit S (without any
countermeasures), a protected circuit S ′ (i.e., S with a countermeasure), a blacklist B
of gates on which faults cannot be injected, and a fault-resistance model ζ(ne, nc, T, `),
FIRMER outputs a report on whether the circuit S ′ is fault-resistant.

Circuit S

Protected
circuit S'

Blacklist B

Fault-resistance
model

ζ(ne,nc,T,ℓ)

SAT

Encoding

Vulnerable

Gate Reduction

FIRMER

SAT Solver

Results

Fault

Encoding

Figure 6: Framework of our verification approach.

FIRMER consists of three key components: vulnerable gate reduction, fault encoding
and SAT encoding. The vulnerable gate reduction safely reduces the number of vulnerable
gates, thus reducing the size of the resulting Boolean formulas and improving efficiency.
The fault encoding replaces each vulnerable gate with a gadget (i.e., sub-circuit) with
additional primary inputs controlling whether a fault is injected and selecting a fault type.
The SAT encoding is an extension of the one for checking functional equivalence, where
(i) the maximum number of fault events per clock cycle and the maximum number of
clock cycles in which fault events can occur are both expressed by constraints over control
inputs, and (ii) a constraint on the error flag output is added.

Below, we present the details of our fault encoding method, SAT encoding method and
vulnerable gate reduction

4.2 Fault Encoding
Gadgets. To encode a fault injection on a gate β with fault type τ ∈ T and gate function
g(β) = •, we define a gadget Gβ,τ shown in Fig. 7. Note that τ(β) denotes the faulty
counterpart of the gate β w.r.t. the fault type τ , i.e., g(τ(β)) = τ(•). Indeed, the gadget
Gβ,τ for a binary gate β defines a Boolean formula JGβ,τ K with

JGβ,τ K(in1, in2, c) = c ? (in1 � in2) : (in1 • in2),

14 Formal Verification of Fault Injection Countermeasures

Gadget Gβ,τ for a unary gate β

∨ ¬
β

in1

in2

out1

τ(β)
in1

in2 out2

c

∧

∧ βin
out1

τ(β)in
out2

c

Gadget Gβ,τ for a binary gate β

out
∨ ¬

∧

∧
out

Figure 7: Gadgets for encoding one fault type.

where � = τ(•), and c is a control input indicating whether a fault is injected or not.
Namely, Gβ,τ is equivalent to the faulty gate τ(β) if c = 1, otherwise Gβ,τ is equivalent to
the original gate β. Note that the incoming edges of τ(β) should be omitted if τ ∈ {τs, τr}.
The gadget Gβ,τ for a unary gate β is defined similarly as:

JGβ,τ K(in, c) = c ? (�in) : (•in).

We now generalize the gadget definition to accommodate different fault types T =
{τs, τr, τbf}. Besides a control input c, selection inputs (b1, b2) are introduced to choose
fault types. The gadget Gβ,T for a binary logic gate β defines a Boolean formula JGβ,T K
such that

JGβ,T K(in1, in2, c, b1, b2) = c ?
(
b1 ? (b2 ? (in1 � in2) : (in1 † in2)) : (in1 ‡ in2)

)
: (in1 • in2),

where � = τs(•), † = τr(•) and ‡ = τbf (•). Intuitively,

• c = 0 means that no fault is injected, i.e., Gβ,T is equivalent to the gate β;
• c = 1 means that a fault is injected. Moreover, the selection inputs (b1, b2) are

defined as:
– if b1 = b2 = 1, then Gβ,T becomes the faulty logic gate τs(β);
– if b1 = 1 and b2 = 0, then Gβ,T becomes the faulty logic gate τr(β);
– if b1 = 0, then Gβ,T becomes to the faulty logic gate τbf (β);

The gadget Gβ,T for a unary gate β can be defined as the Boolean formula JGβ,T K
such that

JGβ,T K(in, c, b1, b2) = c ?
(
b1 ? (b2 ? (�in) : (†in)) : (‡in)

)
: (•in).

For a subset of fault types T = {τ1, τ2} ⊂ T , the gadget Gβ,T for a binary or unary
gate β can be defined accordingly such that

JGβ,T K(in1, in2, c, b) = c ?
(
b ? (in1 � in2) : (in1 † in2)

)
: (in1 • in2),

JGβ,T K(in, c, b) = c ?
(
b ? (�in) : (†in)

)
: (•in),

where � = τ1(•) and † = τ2(•).
We remark that the faulty counterpart τ(β) of a register β is implemented by adding

a logic gate so that no additional registers are introduced. More specifically, τs(β) (resp.
τr(β)) is a constant logic gate that always outputs the signal 1 (resp. 0), and τbf (β) is a
not logic gate with the incoming edge from the output of the register β.
Conditionally-controlled faulty circuits. From the protected circuit S ′, we construct
a conditionally-controlled faulty circuit S ′′, where each vulnerable gate is replaced by a
gadget defined above.

Fix a fault-resistance model ζ(ne, nc, T, `). Assume that the control input c and the
set of selection inputs of each gadget Gβ,T are distinct and different from the ones used

H. Tan et al. 15

in the circuit S ′. We define the conditionally-controlled faulty circuit S ′′ w.r.t. B and
ζ(ne, nc, T, `) as

S ′[B, ζ(ne, nc, T, `)] := (I] I ′,O′,R′, ~s′0, C′′),
where I ′ =

⋃
i∈[k] I

′′
i and C′′ = {C ′′1 , · · · , C ′′k }.

For every i ∈ [k], the circuit C ′′i = (V ′i] V ′′i , I ′i] I ′′i , O′i, E′i] E′′i , g′′i) is obtained from
the combinational circuit C ′i as follows:

For every gate β ∈ R′i−1∪V ′i \ (I ′i ∪O′i), if β 6∈ B`, then β is replaced by the gadget
Gβ,T , the control and selection inputs of the gadget Gβ,T are added into I ′′i , the gates
and edges of Gβ,T are added into V ′′i and E′′i respectively, the mapping g′i is expanded
to g′′i accordingly.

Intuitively, a fault vector V(S ′,B, T) ∈ Jζ(ne, nc, T, `)K is encoded as a sequence
(~b1, · · · ,~bk) of the primary inputs I ′ for controlling fault types such that e(α, β, τ) ∈
V(S ′,B, T) iff the gadget Gβ,T is equivalent to the faulty gate τ(β) under the primary
inputs ~bα, i.e., the control input of Gβ,T is 1 and the selection inputs of Gβ,T choose τ(β).
We note that if e(α, β, τ) 6∈ V(S ′,B, T) for any τ ∈ T , then the gadget Gβ,T is equivalent
to the original gate β under the primary inputs ~bα, i.e., the control input of the gadget
Gβ,T is the signal 0.

We say that a fault vector V(S ′,B, T) and a sequence (~b1, · · · ,~bk) of the primary inputs
I ′ are compatible if the sequence (~b1, · · · ,~bk) encodes the fault vector V(S ′,B, T). Note
that a sequence (~b1, · · · ,~bk) of the primary inputs I ′ determines a unique compatible fault
vector V(S ′,B, T), but a fault vector V(S ′,B, T) determines a unique compatible sequence
(~b1, · · · ,~bk) of the primary inputs I ′ only if T ⊂ T , because Gβ,T is equivalent to the
faulty logic gate τbf (β) if b1 = 0 no matter the value of b2. Thus, we can get:

Proposition 2. The number of gates of the circuit S ′′ (i.e., S ′[B, ζ(ne, nc, T, `)]) is at
most 6|T | times than that of the circuit S ′, and the following statements hold:

1. for each fault vector V(S ′,B, T) ∈ Jζ(ne, nc, T, `)K, there exists a compatible sequence
(~b1, · · · ,~bk) of the primary inputs I ′ such that for each sequence (~x1, · · · , ~xk) of primary
inputs I,

JS ′[V(S ′,B, T)]K(~x1, · · · , ~xk) = JS ′′K((~x1,~b1), · · · , (~xk,~bk));

2. for each sequence (~b1, · · · ,~bk) of the primary inputs I ′, there exists a unique compatible
fault vector V(S ′,B, T) ∈ Jζ(ne, nc, T, `)K such that for each sequence (~x1, · · · , ~xk) of
primary inputs I,

JS ′[V(S ′,B, T)]K(~x1, · · · , ~xk) = JS ′′K((~x1,~b1), · · · , (~xk,~bk)).

Hereafter, for any sequence (~b1, · · · ,~bk) of the primary inputs I ′, we denote by
]Clk(~b1, · · · ,~bk) the number of clock cycles i such that at least one control input of
~bi is 1, and by MaxFEpClk(~b1, · · · ,~bk) the maximum sum of the control inputs of ~bi per
clock cycle i ∈ [k].

4.3 SAT Encoding
Recall that 〈S ′,B〉 |= ζ(ne, nc, T, `) iff each fault vector V(S ′,B, T) ∈ Jζ(ne, nc, T, `)K is
ineffective, i.e., for any sequence (~x1, · · · , ~xk) of primary inputs, either JS ′K(~x1, · · · , ~xk) =
JS ′[V(S ′,B, T)]K(~x1, · · · , ~xk) or the fault is successfully detected by setting the error flag
output oflag in time. By Proposition 2, 〈S ′,B〉 |= ζ(ne, nc, T, `) iff for any sequence

16 Formal Verification of Fault Injection Countermeasures

((~x1,~b1), · · · , (~xk,~bk)) of primary inputs I ∪ I ′ such that]Clk(~b1, · · · ,~bk) ≤ nc and
MaxFEpClk(~b1, · · · ,~bk) ≤ ne, either JS ′K(~x1, · · · , ~xk) = JS ′′K((~x1,~b1), · · · , (~xk,~bk)) or the
fault is successfully detected by setting the error flag output oflag in time.

The above conditions can be reduced to the SAT problem by adapting the SAT encoding
for equivalence checking [KvE02, KH03], with two additional constraints:

]Clk(~b1, · · · ,~bk) ≤ nc and MaxFEpClk(~b1, · · · ,~bk) ≤ ne.

Formally, the fault-resistance problem of the circuit S ′ can be formulated as:

∀~x1, · · · , ~xk ∈ B|I|. ∀~b1 ∈ B|I′′
1 |, · · · ,∀~bk ∈ B|I′′

k |.∀i ∈ [k]. ∀o ∈ O \ {oflag}.(
]Clk(~b1, · · · ,~bk) ≤ nc ∧ MaxFEpClk(~b1, · · · ,~bk) ≤ ne

)
⇒
(
ψi,o 6= ψ′′i,o ⇒ ∃j ∈ [i]. ψ′′j,oflag

) (1)

where ψi,o is a Boolean formula that is satisfiable under an assignment (~x1, · · · , ~xi) iff
JS ′iK↓o(~x1, · · · , ~xi) = 1, and ψ′′i,o is a Boolean formula that is satisfiable under an assignment
((~x1,~b1), · · · , (~xi,~bi)) iff JS ′′i K↓o((~x1,~b1), · · · , (~xi,~bi)) = 1. Note that JS ′iK↓o(~x1, · · · , ~xi)
(resp. JS ′′i K↓o((~x1,~b1), · · · , (~xi,~bi))) denotes the signal of the output o of the circuit S ′i
(resp. S ′′i) at the i-th clock cycle.

Intuitively, Eqn.1 is valid iff for any sequence ((~x1,~b1), · · · , (~xk,~bk)) of primary inputs
I ∪ I ′ such that]Clk(~b1, · · · ,~bk) ≤ nc and MaxFEpClk(~b1, · · · ,~bk) ≤ ne, if some primary
output o (except for the error flag oflag) differs at some clock cycle i, then the error flag
oflag should be 1 at some clock cycle j with j ≤ i, i.e., the fault injection is detected in
time.

By negating the above formula, the fault-resistance verification problem is reduced to
the satisfiability of the Boolean formula (Ψfr):

Ψfr :=
(

Ψnc ∧Ψne ∧
∨
i∈[k]

∨
o∈O\{oflag}

(
ψi,o 6= ψ′′i,o ∧

∧
j∈[i] ¬ψ′′i,oflag

)
,
)

where
Ψnc

:=
(∧

i∈[k](di ⇔
∨~bi,ctrl)) ∧∑i∈[k] di ≤ nc, Ψne

:=
∧
i∈[k](

∑~bi,ctrl ≤ ne)

and for each i ∈ [k], ~bi,ctrl denotes the set of control inputs in the primary inputs ~bi.
Intuitively, Ψnc

encodes the constraint]Clk(~b1, · · · ,~bk) ≤ nc, where for each i ∈ [k], di
is a fresh Boolean variable such that di is 1 iff some control input in ~bi,ctrl is 1. Thus,∑
i∈[k] di is the total number of clock cycles during which at least one fault is injected on

some gate. Ψne
encodes the constraint MaxFEpClk(~b1, · · · ,~bk) ≤ ne, where for each i ∈ [k],∑~bi,ctrl is the total number of faults injected at the i-th clock cycle.

Though cardinality constraints of the form
∑
i∈[n] bi ≤ k are used in both Ψnc

and
Ψne , they can be efficiently translated into Boolean formulas in polynomial time, and
the size of the resulting Boolean formula is also polynomial in the size of the cardinality
constraint [ES06, Wyn18]. In our implementation, we use the sorting network implemented
in Z3 [dMB08] for translating cardinality constraints into Boolean formulas.
Proposition 3. 〈S ′,B〉 |= ζ(ne, nc, T, `) iff the formula Ψfr is unsatisfiable, where the
size of Ψfr is polynomial in the size of the circuit S ′.
Example 1. Consider the fault-resistance model ζ(1, 1, T , l). Suppose S is the circuit in
Fig. 2 (grey-area), S′ is the entire circuit in Fig. 2, and the blacklist B contains all the
logic gates in the redundancy and parity checking parts. The Boolean formula Ψfr of the
example is

Ψfr := Ψnc
∧Ψne

∧
(∨
o∈{w,x,y,z}

ψ1,o 6= ψ′′1,o
)
∧ ¬ψ′′1,flag

12∧
i=1

φi

where

H. Tan et al. 17

Ψnc :=
(
d1 ⇔

∨12
i=1 ci

)
∧ d1 ≤ 1 Ψne := (

∑12
i=1 ci ≤ 1)

ψ1,x := ((b⊕ c) ∨ (b⊕ a⊕ (¬c ∧ d)))⊕ ((¬c ∨ a)⊕ d) ψ1,y := b⊕ (¬c ∨ a)⊕ d
ψ1,w := (b⊕ c)⊕ ((b⊕ a) ∧ ((¬c ∨ a)⊕ d)) ψ1,z := b⊕ a⊕ (¬c ∧ d)
φ1 := g1 ⇔ G′′⊕,T (b, c, c1, b1,1, b1,2) ψ′′1,w := g10
φ2 := g2 ⇔ G′′¬,T (c, c2, b2,1, b2,2) ψ′′1,y := g12
φ3 := g3 ⇔ G′′⊕,T (b, a, c3, b3,1, b3,2) ψ′′1,x := g11
φ4 := g4 ⇔ G′′∧,T (g2, d, c4, b4,1, b4,2) ψ′′1,z := g9
φ5 := g5 ⇔ G′′∨,T (g2, a, c5, b5,1, b5,2) φ6 := g6 ⇔ G′′⊕,T (g5, d, c6, b6,1, b6,2)
φ10 := g10 ⇔ G′′⊕,T (g1, g7, c10, b10,1, b10,2) φ7 := g7 ⇔ G′′∧,T (g3, g6, c7, b7,1, b7,2)
φ11 := g11 ⇔ G′′⊕,T (g6, g8, c11, b11,1, b11,2) φ8 := g8 ⇔ G′′∨,T (g1, g9, c8, b8,1, b8,2)
φ12 := g12 ⇔ G′′⊕,T (g6, b, c12, b12,1, b12,2) φ9 := g9 ⇔ G′′⊕,T (g3, g4, c9, b9,1, b9,2)
ψ′′1,flag := g9 ⊕ g10 ⊕ g11 ⊕ g12 ⊕

((
a ∧ (c⊕d)

)
∨
(
((a ∨ c)∧d) ∧ b

))
.

Note that gi for each i ∈ [12] is a fresh Boolean variable as a shortcut of a common
gadget via φi, bi,1 and bi,2 (resp. ci) for each i ∈ [12] are fresh Boolean variables denoting
the selection inputs (resp. control input) of the corresponding gadget, Ψnc can be removed
from Ψfr since it always holds, and Ψne

can be efficiently translated into an equivalent
Boolean formula.

We can show that Ψfr is satisfiable, thus S′ is not fault-resistant w.r.t. the blacklist B
and ζ(1, 1, T , l). Note that in practice, B only contains all the logic gates in the parity
checking. For simplicity, B also contains all the logic gates in the redundancy part in this
example.

4.4 Vulnerable Gate Reduction
Consider a fault event e(α, β, τ) to the circuit S ′. For any fixed sequence of primary inputs
(~x1, · · · , ~xk), if the output signal of the gate β does not change, e(α, β, τ) will not affect
the primary outputs and thus can be omitted; otherwise, the effect of e(α, β, τ) must be
propagated to the successor gates.

Assume the output of the gate β is only connected to one vulnerable logic gate β′. If
the output signal of β′ does not change, the effect of the fault event e(α, β, τ) terminates
at β′, thus e(α, β, τ) can be omitted. If it changes, it is flipped either from 1 to 0 or from 0
to 1, the same effect can be achieved by applying the fault event e(α, β′, τbf), or the fault
event e(α, β′, τs) if it is flipped from 0 to 1 or the fault event e(α, β′, τr) if it is flipped from
1 to 0. As a result, it suffices to consider fault injections on the gate β′ instead of both β
and β′ when τbf ∈ T or {τs, τr} ⊆ T , which reduces the number of vulnerable gates.
Theorem 2. Consider a fault-resistance model ζ(ne, nc, T, `) such that τbf ∈ T or
{τs, τr} ⊆ T , and ` ∈ {l, lm}. Let

V1(S ′,B, T) = V(S ′,B, T) ∪ {e(α, β, τ)} ∈ Jζ(ne, nc, T, `)K

be an effective fault vector on the circuit S ′. If the output of the gate β is only connected to
one logic gate β′ and β′ 6∈ B, then there exists a fault vector V′(S ′,B, T) ⊆ V(S ′,B, T) ∪
{e(α, β′, τ ′)} for some τ ′ ∈ T such that V′(S ′,B, T) is also effective on the circuit S ′.

Moreover, if V(S ′,B, T) = ∅, then {e(α, β′, τ ′)} for some τ ′ ∈ T is effective on the
circuit S ′.

Proof. Suppose V1(S ′,B, T) is an effective fault vector on S ′. There exists a sequence of
primary inputs (~x1, · · · , ~xk) such that the sequence of primary outputs JS ′K(~x1, · · · , ~xk)
and JS ′[V1(S ′,B, T)]K(~x1, · · · , ~xk) differ at some clock cycle before the error flag output
oflag differs. We proceed by distinguishing whether the output signal of the gate β′
differs in the circuits S ′ and S ′[V1(S ′,B, T)] under the same sequence of primary inputs
(~x1, · · · , ~xk).

18 Formal Verification of Fault Injection Countermeasures

• If the output signal of the gate β′ is the same in the circuits S ′ and S ′[V1(S ′,B, T)]
under the same sequence of primary inputs (~x1, · · · , ~xk), then the effect of the fault
event e(α, β, τ) is stopped at the gate β′, as the output of the gate β is only connected
to the gate β′. Thus, the sequences of primary outputs JS ′[V(S ′,B, T)]K(~x1, · · · , ~xk)
and JS ′[V1(S ′,B, T)]K(~x1, · · · , ~xk) are the same, implying that the sequences of primary
outputs JS ′[V(S ′,B, T)]K(~x1, · · · , ~xk) and JS ′K(~x1, · · · , ~xk) differ at some clock cycle
before the error flag output oflag differs. The result follows immediately.

• If the output signal of the gate β′ differs in the circuits S ′ and S ′[V1(S ′,B, T)] under
the same sequence of primary inputs (~x1, · · · , ~xk), then the fault propagation from
the fault event e(α, β, τ) flips the output signal of the gate β′. Let V2(S ′,B, T) =
V(S ′,B, T)∪{e(α, β′, τ ′)}, where τ ′ = τbf if τbf ∈ T , otherwise τ = τs if the output signal
of the gate β′ flips from 0 to 1 due to the fault event e(α, β, τ) and τ = τr if the output
signal of the gate β′ flips from 1 to 0 due to the fault event e(α, β, τ). Then, the sequences
of primary outputs JS ′[V1(S ′,B, T)]K(~x1, · · · , ~xk) and JS ′[V2(S ′,B, T)]K(~x1, · · · , ~xk)
are the same, as the output of the gate β is only connected to the gate β′. Thus,
JS ′K(~x1, · · · , ~xk) and JS ′[V2(S ′,B, T)]K(~x1, · · · , ~xk) differ at some clock cycle before the
error flag output oflag differs. The result follows immediately.

Moreover, if V(S ′,B, T) = ∅, the output signal of the gate β′ must differ in the
circuits S ′ and S ′[V1(S ′,B, T)] under the same sequence of primary inputs (~x1, · · · , ~xk),
otherwise V1(S ′,B, T) is ineffective on the circuit S ′. The result follows from the fact that
V2(S ′,B, T) = {e(α, β′, τ ′)}.

Let B′ be the set of gates β such that the output of β is only connected to one logic
gate β′ 6∈ B, which can be computed by a graph traversal of the circuit S ′. By Theorem 2,
B′ can be safely merged with the blacklist B while no protections are required for those
gates. Moreover, 〈S ′,B〉 |= ζ(ne, nc, T, `) entails 〈S ′,B∪B′〉 |= ζ(ne, nc, T, `). We get that:

Corollary 1. Given a fault-resistance model ζ(ne, nc, T, `) such that τbf ∈ T or {τs, τr} ⊆
T , and ` ∈ {l, lm}, 〈S ′,B ∪B′〉 |= ζ(ne, nc, T, `) iff 〈S ′,B〉 |= ζ(ne, nc, T, `).

We remark that the vulnerable gate reduction does not consider conditional fault
propagation because the inputs of the gates are not fixed to constants 1/0 when considering
all the valid inputs to the circuit. It could be adapted if some inputs of AND/OR gates
are fixed.

Example 2. Consider the fault-resistance model ζ(1, 1, T , l), the circuit S in Fig. 2
(grey-area), and the entire circuit S′ in Fig. 2. All the gates in the redundancy part except
for the gate p6 (i.e., the gate whose output is p6) can be added into B′, as the effect of an
effective fault injection on any of those gates can be achieved by at most one bit-flip fault
injection on p6. Note that p6 itself cannot be added into B′ because the gate flag is in
B. Similarly, the gates s4,s5,s7,s8 in the grey-area can be added into B′, but the other
gates cannot as their outputs are connected to more than one gate or some outputs of
{w, x, y, z}. Now, the fault-resistance verification problem w.r.t. the fault-resistance model
ζ(1, 1, T , l) and the blacklist B is reduced to SAT solving of the Boolean formula (Ψ′′fr)

Ψ′′fr := Ψ′nc
∧Ψ′ne

∧
(∨
o∈{w,x,y,z}

ψ1,o 6= ψ′′1,o

)
∧ ¬ψ′′1,flag ∧

12∧
i=1

φ′i,

where φ′i := φi for i ∈ Z = {1, 2, 3, 6, 9, 10, 11, 12}, φ′4 := g4 ⇔ g2 ∧ d, φ′5 := g5 ⇔ g2 ∨ a,
φ′7 := g7 ⇔ g3 ∧ g6, φ′8 := g8 ⇔ g1 ∧ g9, Ψ′nc

:= (d1 ⇔
∨
i∈Z ci) ∧ d1 ≤ 1 and Ψ′ne

:=
(
∑
i∈Z ci ≤ 1).

H. Tan et al. 19

Table 2: Benchmark statistics, where Ri denotes i rounds, bi denotes countermeasure for
i-bit faults, and D (resp. C) denotes detection-(resp. correction-)based countermeasure.

Name #Clk |B| #in #out #gate #and #nand #or #nor #xor #xnor #not #reg
AES-R1 1 0 256 128 21201 464 7936 592 8480 464 560 2705 0
AES-R1-b1-D 1 432 256 129 24864 576 9446 560 9705 828 852 2897 0
AES-R1-b2-D 1 1055 256 129 34159 704 12698 833 13012 1440 1584 3888 0
AES-R2 2 0 384 128 42112 928 15872 1184 16960 992 1056 4864 256
AES-R2-b1-D 2 865 384 129 50017 1152 18892 1121 19410 1656 1704 5794 288
AES-R2-b2-D 2 2111 384 129 68703 1408 25396 1667 26024 2880 3168 7776 384
CRAFT-R1 2 0 128 64 480 0 160 16 80 80 32 48 64
CRAFT-R1-b1-C 2 192 128 64 3140 0 864 48 656 460 728 272 112
CRAFT-R1-b2-C 2 1312 128 64 20948 336 7856 384 6576 1484 2056 2080 176
CRAFT-R1-b1-D 2 159 128 65 925 41 155 65 148 187 193 56 80
CRAFT-R1-b2-D 2 383 128 65 1522 49 266 49 211 201 539 95 112
CRAFT-R1-b3-D 2 511 128 65 1807 48 282 97 292 240 640 80 128
CRAFT-R2 3 0 192 64 960 0 320 32 160 160 64 96 128
CRAFT-R2-b1-C 3 192 192 64 5848 0 1680 96 1248 808 1264 528 224
CRAFT-R2-b2-C 3 1312 192 64 40184 672 15152 752 12576 2680 3936 4064 352
CRAFT-R2-b1-D 3 400 192 65 1880 100 292 120 311 382 394 121 160
CRAFT-R2-b2-D 3 959 192 65 3139 97 553 100 449 434 1094 188 224
CRAFT-R3 4 0 256 64 1440 0 480 48 240 240 96 144 192
CRAFT-R3-b3-D 4 1791 256 65 5567 192 954 193 836 672 2048 288 384
CRAFT-R4 5 0 320 64 1920 0 640 64 320 320 128 192 256
CRAFT-R4-b3-D 5 2303 320 65 7295 256 1242 257 1124 944 2576 384 512
LED-R1 1 0 128 64 976 16 272 16 32 288 304 48 0
LED-R1-b1-D 1 240 128 65 1552 16 346 32 53 416 608 81 0
LED-R1-b2-D 1 575 128 65 2463 17 479 64 111 512 1168 112 0
LED-R2 2 0 128 64 1952 32 544 32 64 512 608 96 64
LED-R2-b1-D 2 480 128 65 2976 32 690 64 109 760 1112 129 80
LED-R2-b2-D 2 1151 128 65 4687 33 951 128 231 984 2072 176 112
LED-R3 3 0 128 64 2928 48 816 48 96 736 912 144 128
LED-R3-b1-D 3 720 128 65 4400 48 1030 96 169 1116 1604 177 160
LED-R3-b2-D 3 1727 128 65 6911 49 1411 192 363 1492 2940 240 224
GIFT-R1 1 0 192 64 416 16 128 0 64 0 80 64 64
GIFT-R1-b1-D 1 240 192 65 1152 16 266 16 213 96 336 129 80
GIFT-R1-b2-D 1 575 192 65 2047 33 431 32 415 80 768 176 112
GIFT-R2 2 0 192 64 832 32 256 0 128 0 160 128 128
GIFT-R2-b1-D 2 544 192 65 2320 32 553 33 469 168 616 289 160
GIFT-R2-b2-D 2 1343 192 65 4191 65 924 67 959 136 1368 448 224
PRESENT-R1 1 0 192 64 544 16 272 16 32 48 48 48 64
PRESENT-R1-b1-D 1 240 192 65 1464 20 550 40 213 156 264 141 80
PRESENT-R1-b2-D 1 575 192 65 2567 41 863 56 431 164 668 232 112
PRESENT-R2 2 0 192 64 1088 32 544 32 64 96 96 96 128
PRESENT-R2-b1-D 2 540 192 64 2940 40 1143 95 429 289 473 311 160
PRESENT-R2-b2-D 2 1331 192 64 5219 81 1854 157 871 307 1171 554 224
SIMON-R1 1 0 192 64 160 0 32 0 0 32 32 0 64
SIMON-R1-b1-D 1 288 192 65 608 0 124 12 23 130 190 49 80
SIMON-R1-b2-D 1 719 192 65 1239 1 269 36 85 110 514 112 112
SIMON-R2 2 0 192 64 320 0 64 0 0 64 64 0 128
SIMON-R2-b1-D 2 516 192 65 1108 1 195 0 63 252 370 67 160
SIMON-R2-b2-D 2 1259 192 65 2203 4 378 0 221 244 998 221 224

5 Evaluation

We have implemented our approaches as an open-source tool FIRMER. Given circuits S
and S ′ in Verilog gate-level netlists, and a configuration file describing the blacklist and
fault-resistance model, FIRMER verifies the fault-resistance of S ′. FIRMER first expresses

20 Formal Verification of Fault Injection Countermeasures

the constraints in quantifier-free bit-vector theory (QF_BV) using our SAT encoding and
then translates to Boolean formulas (in the DIMACS format) via Z3 4.11.2.0 with card2bv
and tseitin-cnf options [dMB08]. Those Boolean formulas can be solved by off-the-shelf
SAT solvers. Currently, FIRMER uses the parallel SAT solver Glucose 4.2.1 [AS18].
Benchmarks. We use the VHDL implementations of six cryptographic algorithms (i.e.,
CRAFT, LED, AES, GIFT, PRESENT and SIMON), taken from [AMR+20, SRM20].
Among all the available benchmarks of [AMR+20, SRM20], CRAFT, LED, and AES are
the same as FIVER; GIFT is the newest algorithm; PRESENT and SIMON are the most
widely cited algorithms in the literature. The VHDL implementations are unrolled and
transformed into Verilog gate-level netlists using the Synopsys design compiler (version
O-2018.06-SP2). The CRAFT benchmarks adopt both detection-based (D) and correction-
based (C) countermeasures while the others adopt a detection-based countermeasure. To
thoroughly evaluate the scalability of FIRMER, these benchmarks vary with the number of
rounds (Ri) and the maximal number of protected faulty bits (bi) (i.e., the circuit S ′ is
claimed to be fault-resistant), in particular, CRAFT-R3-b3-D and CRAFT-R4-b3-D are
added as large benchmarks with detection countermeasures for evaluating the scalability of
FIRMER in terms of rounds and maximal number of protected faulty bits. As a result, the
number of gates ranges from 608 to 68,703. The blacklists are the same as the ones used
in FIVER. The detailed statistics of the benchmark are given in Table 2, where the first
three columns respectively give the benchmark name, number of clock cycles, size of the
blacklist B, and the other columns give the numbers of primary inputs, primary outputs,
gates and each specific gate. Circuits without any protections are given as reference.
Setup. We compare FIRMER with (1) the state-of-the-art verifier FIVER [RBSS+21]
that utilizes BDD and (2) an SMT-based approach which directly checks the constraints
generated by our encoding method without translating to Boolean formulas for which
we use the SMT solver Bitwuzla 1.0-prerelease [NP23], the winner of QF_BV (Single
Query Track) Division at SMT-COMP 2021 and 2022. We only report the results for
fault-resistance models with all the fault types T = {τs, τr, τbf}, which are more important
than the others with fewer fault types according to Proposition 1. The results w.r.t.
fault-resistance models limited to the fault type τbf are given in Appendix B from which a
similar conclusion can be drawn.

The experiments were conducted on a machine with Intel Xeon Gold 6342 2.80GHz
CPU, 1TB RAM, and Ubuntu 20.04.1. (Note that 1TB RAM is the memory of the
machine used for evaluation instead of memory consumption and the maximum amount of
consumed memory in our experiments is less than 1GB for single-thread setting.) Each
verification task was run with 24 hours timeout (real time). The SAT solver Glucose 4.2.1
is run with 8 threads and default parameters unless stated otherwise; the SMT solver
Bitwuzla 1.0-prerelease is run with a single thread and default parameters as there are
no promising parallel SMT solvers for (quantifier-free) bit-vector theory; the BDD-based
verifier FIVER is run with 8 threads, 8 GB RAM for its internal computation on BDD,
and an early-abort strategy (i.e., setting interrupt to true so that the analysis is stopped
when an effective fault vector is found). A detailed technical comparison between FIVER
and FIRMER is given in Section 6.
Results. The results are reported in Table 3. Columns “#Var” and “#Cls” respectively
give the numbers of Boolean variables and Clauses of the resulting Boolean formula.
Columns “2CNF” and “Solving” give the execution time of building and solving Boolean
formulas in seconds, respectively. Columns “Total” and “Time” show the total execution
time in seconds. Mark 3 (resp. 7) indicates that the protected circuit S ′ is fault-resistant
(resp. not fault-resistant) w.r.t. the given fault-resistance model in column “Model”.

Overall, FIRMER (i.e., SAT-based approach) solved all the verification tasks, the
SMT-based approach ran out of time on one verification task (24 hours per task), while
FIVER ran out of time on 31 verification tasks. The SAT/SMT-based approach becomes

H. Tan et al. 21

Table 3: Verification results, where R denotes Result, and DR denotes Desired Result.
Name Model FIRMER (SAT) SMT FIVER R DR#Var #Cls 2CNF Solving Total Time Time

AES-R1-b1-D ζ(1, 1, T , lm) 57340 310569 1.97 193.27 195.24 4856.58 59.49 3 3
AES-R1-b1-D ζ(2, 1, T , lm) 69088 246108 1.96 0.61 2.57 3650.83 34744.40 7 7
AES-R1-b2-D ζ(2, 1, T , lm) 86333 329543 4.84 1845.23 1850.07 23542.57 timeout 3 3
AES-R1-b2-D ζ(3, 1, T , lm) 90428 354018 4.38 0.91 5.28 3386.38 timeout 7 7

AES-R2-b1-D ζ(1, 1, T , lm) 120044 658527 33.76 1706.67 1740.43 48359.73 timeout 3 3
AES-R2-b1-D ζ(2, 1, T , lm) 138266 579518 33.82 2.13 35.95 32302.85 timeout 7 7
AES-R2-b2-D ζ(2, 1, T , lm) 185415 740484 79.86 14243.80 14323.66 timeout timeout 3 3
AES-R2-b2-D ζ(3, 1, T , lm) 194500 807305 80.19 3.50 83.69 95.05 timeout 7 7

CRAFT-R1-b1-C ζ(1, 1, T , lm) 6767 33938 0.13 0.66 0.79 9.81 0.14 3 3
CRAFT-R1-b1-C ζ(2, 1, T , lm) 7608 32039 0.14 0.06 0.20 0.28 1.34 7 7
CRAFT-R1-b2-C ζ(2, 1, T , lm) 52901 234385 2.79 130.00 132.79 2898.55 338.23 3 3
CRAFT-R1-b2-C ζ(3, 1, T , lm) 55099 258959 2.80 0.59 3.39 21.49 4491.08 7 7
CRAFT-R1-b1-D ζ(1, 1, T , lm) 2255 10735 0.03 0.10 0.13 0.33 0.04 3 3
CRAFT-R1-b1-D ζ(2, 1, T , lm) 2567 10316 0.03 0.03 0.06 0.01 0.35 7 7
CRAFT-R1-b2-D ζ(2, 1, T , lm) 3356 13780 0.02 0.22 0.24 1.02 1.13 3 3
CRAFT-R1-b2-D ζ(3, 1, T , lm) 3538 15058 0.03 0.03 0.06 0.20 117.54 7 7
CRAFT-R1-b3-D ζ(3, 1, T , lm) 3974 19042 0.03 0.43 0.46 4.43 8007.42 3 3
CRAFT-R1-b3-D ζ(4, 1, T , lm) 4132 20428 0.04 0.03 0.07 0.34 82955.17 7 7

CRAFT-R2-b1-C ζ(1, 1, T , lm) 12644 63451 0.36 11.27 11.63 101.19 4.20 3 3
CRAFT-R2-b1-C ζ(2, 1, T , lm) 14215 59873 0.31 0.14 0.45 0.60 394.79 7 7
CRAFT-R2-b2-C ζ(2, 1, T , lm) 104139 452464 6.68 2054.13 2060.81 13585.63 5012.34 3 3
CRAFT-R2-b2-C ζ(3, 1, T , lm) 108384 498341 7.74 2.67 10.41 3000.80 29120.79 7 7
CRAFT-R2-b1-D ζ(1, 1, T , lm) 4195 20279 0.06 0.88 0.94 6.16 1.04 3 3
CRAFT-R2-b1-D ζ(2, 1, T , lm) 4795 19338 0.07 0.03 0.10 0.18 23.63 7 7
CRAFT-R2-b1-D ζ(1, 2, T , lm) 4195 20279 0.06 1.76 1.82 8.25 1291.12 3 3
CRAFT-R2-b1-D ζ(1, 3, T , lm) 4194 20277 0.06 1.35 1.41 7.19 timeout 3 3
CRAFT-R2-b2-D ζ(2, 1, T , lm) 5959 25370 0.09 3.25 3.34 34.93 88.35 3 3
CRAFT-R2-b2-D ζ(3, 1, T , lm) 6268 27935 0.11 0.06 0.17 1.38 9141.86 7 7
CRAFT-R2-b2-D ζ(2, 2, T , lm) 5959 25370 0.11 3.47 3.58 43.36 timeout 3 3

CRAFT-R3-b3-D ζ(3, 1, T , lm) 10364 48541 0.20 37.66 37.86 414.00 timeout 3 3
CRAFT-R3-b3-D ζ(4, 1, T , lm) 10760 51937 0.21 0.10 0.31 4.69 timeout 7 7
CRAFT-R3-b3-D ζ(3, 2, T , lm) 10366 48560 0.20 57.54 57.74 393.80 timeout 3 3
CRAFT-R3-b3-D ζ(3, 3, T , lm) 10364 48541 0.21 36.83 37.04 357.59 timeout 3 3
CRAFT-R3-b3-D ζ(3, 4, T , lm) 10363 48537 0.20 31.64 31.84 385.19 timeout 3 3

CRAFT-R4-b3-D ζ(3, 1, T , lm) 13516 63332 0.61 61.46 62.07 1188.03 timeout 3 3
CRAFT-R4-b3-D ζ(4, 1, T , lm) 14039 67789 0.63 0.14 0.77 8.25 timeout 7 7
CRAFT-R4-b3-D ζ(3, 2, T , lm) 13518 63363 0.61 155.14 155.75 978.78 timeout 3 3
CRAFT-R4-b3-D ζ(3, 3, T , lm) 13518 63363 0.61 81.47 82.08 900.28 timeout 3 3
CRAFT-R4-b3-D ζ(3, 4, T , lm) 13516 63332 0.62 70.53 71.15 916.13 timeout 3 3
CRAFT-R4-b3-D ζ(3, 5, T , lm) 13515 63325 0.61 54.55 55.16 922.49 timeout 3 3

LED-R1-b1-D ζ(1, 1, T , lm) 2673 13295 0.05 1.07 1.12 11.63 0.23 3 3
LED-R1-b1-D ζ(2, 1, T , lm) 3038 12073 0.05 0.02 0.07 0.85 8.39 7 7
LED-R1-b2-D ζ(2, 1, T , lm) 3726 16057 0.08 2.01 2.09 33.40 10.18 3 3
LED-R1-b2-D ζ(3, 1, T , lm) 3853 16852 0.09 0.02 0.11 0.83 2292.60 7 7

LED-R2-b1-D ζ(1, 1, T , lm) 5215 27405 0.12 9.64 9.76 139.78 timeout 3 3
LED-R2-b1-D ζ(2, 1, T , lm) 5783 26245 0.12 0.05 0.17 1.68 timeout 7 7
LED-R2-b2-D ζ(2, 1, T , lm) 7300 34132 0.18 13.67 13.85 336.45 timeout 3 3
LED-R2-b2-D ζ(3, 1, T , lm) 7554 36930 0.18 0.06 0.24 2.78 timeout 7 7

LED-R3-b1-D ζ(1, 1, T , lm) 7674 40655 0.14 36.57 36.71 588.07 timeout 3 3
LED-R3-b1-D ζ(2, 1, T , lm) 8528 38988 0.14 0.11 0.25 2.90 timeout 7 7
LED-R3-b2-D ζ(2, 1, T , lm) 10924 49866 0.24 47.75 47.99 860.20 timeout 3 3
LED-R3-b2-D ζ(3, 1, T , lm) 11305 53487 0.25 0.12 0.37 3.72 timeout 7 7

GIFT-R1-b1-D ζ(1, 1, T , lm) 1871 9060 0.07 0.09 0.16 1.85 0.02 3 3
GIFT-R1-b1-D ζ(2, 1, T , lm) 2157 8554 0.08 0.03 0.12 1.37 0.14 7 7
GIFT-R1-b2-D ζ(2, 1, T , lm) 2975 13226 0.13 0.20 0.33 11.55 0.81 3 3
GIFT-R1-b2-D ζ(3, 1, T , lm) 3101 14616 0.13 0.04 0.17 9.96 42.14 7 7

GIFT-R2-b1-D ζ(1, 1, T , lm) 3584 17658 0.15 0.27 0.42 7.00 0.17 3 3
GIFT-R2-b1-D ζ(2, 1, T , lm) 4169 16645 0.15 0.05 0.20 5.18 3.33 7 7
GIFT-R2-b2-D ζ(2, 1, T , lm) 5490 24697 0.30 0.66 0.96 22.97 15.59 3 3
GIFT-R2-b2-D ζ(3, 1, T , lm) 5743 27294 0.30 0.08 0.38 0.35 1278.12 7 7

PRESENT-R1-b1-D ζ(1, 1, T , lm) 2324 11145 0.09 0.10 0.19 2.50 0.03 3 3
PRESENT-R1-b1-D ζ(2, 1, T , lm) 2619 10768 0.08 0.03 0.11 1.69 0.16 7 7
PRESENT-R1-b2-D ζ(2, 1, T , lm) 3875 17048 0.14 0.24 0.38 8.63 0.95 3 3
PRESENT-R1-b2-D ζ(3, 1, T , lm) 4065 19014 0.14 0.05 0.19 8.47 42.61 7 7

Continued on next page

22 Formal Verification of Fault Injection Countermeasures

Table 3 – continued from previous page
Name Model FIRMER (SAT) SMT FIVER R DR#Var #Cls 2CNF Solving Total Time Time

PRESENT-R2-b1-D ζ(1, 1, T , lm) 4519 22601 0.16 0.42 0.58 6.88 0.22 3 3
PRESENT-R2-b1-D ζ(2, 1, T , lm) 5097 21700 0.17 0.06 0.23 6.19 4.76 7 7
PRESENT-R2-b2-D ζ(2, 1, T , lm) 7645 32847 0.30 0.67 0.97 19.47 16.09 3 3
PRESENT-R2-b2-D ζ(3, 1, T , lm) 7978 35924 0.31 0.08 0.39 0.48 1259.90 7 7

SIMON-R1-b1-D ζ(1, 1, T , lm) 1346 6162 0.04 0.09 0.13 0.93 0.01 3 3
SIMON-R1-b1-D ζ(2, 1, T , lm) 1556 5893 0.05 0.02 0.07 0.84 0.17 7 7
SIMON-R1-b2-D ζ(2, 1, T , lm) 2223 9341 0.08 0.15 0.23 2.66 0.78 3 3
SIMON-R1-b2-D ζ(3, 1, T , lm) 2333 10443 0.08 0.02 0.10 2.02 65.93 7 7

SIMON-R2-b1-D ζ(1, 1, T , lm) 2504 11819 0.07 0.20 0.27 3.64 timeout 3 3
SIMON-R2-b1-D ζ(2, 1, T , lm) 2838 11420 0.07 0.03 0.10 2.59 timeout 7 7
SIMON-R2-b2-D ζ(2, 1, T , lm) 4071 16900 0.12 0.63 0.75 9.82 timeout 3 3
SIMON-R2-b2-D ζ(3, 1, T , lm) 4276 18697 0.13 0.05 0.18 6.56 timeout 7 7

increasingly efficient than FIVER with the increase of round numbers (i.e., Ri) and the
maximal number of protected faulty bits (i.e., bj). FIRMER is significantly more efficient
than the SMT-based approach on relatively larger benchmarks (e.g., AES-R1-b1, AES-
R1-b2, AES-R2-b1, AES-R2-b2, CRAFT-R1-b2-C, CRAFT-R2-b2-C, CRAFT-R3-b3-D,
CRAFT-R4-b3-D, LED-R2-b1-D, etc.) while they are comparable on smaller benchmarks.

Interestingly, we find that (i) implementations with correction-based countermeasures
are more difficult to prove than those with detection-based countermeasures (e.g., CRAFT-
Ri-bj-C vs. CRAFT-Ri-bj-D, for i = 1, 2 and j = 1, 2), because implementing correction-
based countermeasures require more gates; (ii) FIRMER is more efficient at disproving
than proving fault-resistance, because it is often more difficult to prove UNSAT instances
than finding satisfying assignments for SAT instances in CDCL SAT solvers. (iii) FIRMER
often scales very well with the increase of the round numbers (i.e., Ri for i = 1, 2, 3, 4), the
maximal number of protected faulty bits (i.e., bj for j = 1, 2, 3), the maximum number of
fault events per clock cycle (i.e., ne) and the maximum number of clock cycles in which
fault events can occur (i.e., nc), but FIVER has very limited scalability because FIVER
may have to build more BDD models, the size of which may dramatically increase.

1 2 4 6 8 10 12
threads

0

5000

10000

15000

20000

tim
e(

s)

AES-R1-b1-ne1-nc1
AES-R1-b1-ne2-nc1
AES-R1-b2-ne2-nc1
AES-R1-b2-ne3-nc1
AES-R1-b1-ne1-nc1-SMT
AES-R1-b1-ne2-nc1-SMT
AES-R1-b2-ne2-nc1-SMT
AES-R1-b2-ne3-nc1-SMT

(a) AES-R1-b1-D and AES-R1-b2-D

1 2 4 6 8 10 12
threads

0

200

400

600

800

1000

1200

tim
e(

s)

CRAFT-R4-b3-ne3-nc1
CRAFT-R4-b3-ne4-nc1
CRAFT-R4-b3-ne3-nc2
CRAFT-R4-b3-ne3-nc3
CRAFT-R4-b3-ne3-nc4
CRAFT-R4-b3-ne3-nc5
CRAFT-R4-b3-ne3-nc1-SMT
CRAFT-R4-b3-ne4-nc1-SMT
CRAFT-R4-b3-ne3-nc2-SMT
CRAFT-R4-b3-ne3-nc3-SMT
CRAFT-R4-b3-ne3-nc4-SMT
CRAFT-R4-b3-ne3-nc5-SMT

(b) CRAFT-R4-b3-D

Figure 8: Results with different number of threads

Different threads. The experiments reported above are based on 8 threads. To un-
derstand the effect of the number of threads, we evaluate FIRMER on AES-R1-b1-D,
AES-R1-b2-D, and CRAFT-R4-b3-D by varying the number of threads from 1 to 12. The
results are depicted in Fig. 8(a) and Fig. 8(b), respectively, where nei and ncj denote the
fault-resistance mode ζ(i, j, T , lm). Detailed results are given in Appendix A. In general,
on the fault-resistant benchmarks, with the increase of the number of threads, FIRMER
becomes increasingly more efficient but the improvement diminishes. Besides the great

H. Tan et al. 23

Table 4: Evaluation of FIRMER with different SAT and SMT solvers.

Benchmark
SMT Solver SAT Solver

Z3 Bitwuzla STP Yices Yices- CaDiCal Glucose
CaDiCal 1 Thread 8 Thread

AES-R1-b1-ne1-nc1 timeout 4,856.58 23,109.85 16,163.72 11,290.39 893.63 1,234.31 195.24
AES-R1-b1-ne2-nc1 13,839.48 3,650.83 5.62 15,124.50 7,923.09 5.34 2.34 2.57
AES-R1-b2-ne2-nc1 timeout 23,542.57 timeout timeout 40,131.98 12,283.65 11,028.35 1,850.07
AES-R1-b2-ne3-nc1 67,045.41 3,386.38 6,194.25 30,926.79 12,319.77 5.63 5.16 5.28

C
R
A
F
T
-R

4-b3

ne3-nc1 30,747.60 1,188.03 15,132.7 1,136.39 420.54 258.94 453.57 62.07
ne4-nc1 64.20 8.25 15.02 27.35 2.43 0.65 0.73 0.77
ne3-nc2 timeout 978.78 timeout 2,435.13 467.50 329.24 998.18 155.75
ne3-nc3 timeout 900.28 83,138.92 1,714.56 360.00 289.67 577.90 82.08
ne3-nc4 timeout 916.13 45,375.81 1,084.05 343.49 291.83 398.52 71.15
ne3-nc5 timeout 922.49 40,622.68 1,215.18 402.85 285.91 396.56 55.16

advance in SAT solving, it is another reason that SAT solving outperforms SMT solving
due to the lack of promising parallel SMT solvers for (quantifier-free) bit-vector theory. On
the non-fault-resistant benchmarks, multi-threading does not improve performance (rather
slightly worsens the performance), because these benchmarks are easy to be disproved and
thread scheduling causes overhead.

Comparisons of different SAT/SMT solvers. To understand the performances of
SAT and SMT solvers, we further evaluate FIRMER on AES-R1-b1-D, AES-R1-b2-D, and
CRAFT-R4-b3-D using various SAT and SMT solvers. Besides Bitwuzla, we additionally
consider three widely used SMT solvers, i.e., Z3, STP 2.3.3 [GD07], and Yices 2.6.4 [Dut14]
with their default SAT engines, where STP is the winner of QF_BV (Single Query Track)
Division at SMT-COMP 2023. We also configure Yices with the promising sequential SAT
solver CaDiCal 1.9.5 [BFFH20] as the underlying SAT engine, denoted by Yices-CaDiCal.
(CaDiCal is superior to all the other 15 state-of-the-art SAT solvers on Bit-vector problems
in [Dut20], thus it is also utilized for Boolean satisfiability checking.) All these solvers are
run with a single thread and default parameters (except that the SAT solver Glucose is
run with 8 threads). The results are reported in Table 4, where the execution time of SAT
Solvers includes the execution time of bit-blasting. We can observe that the SAT solvers
almost always perform better than the SMT solvers in our application. In particular,
Glucose with 8 threads is significantly more efficient than the others. The performance
discrepancy between the SMT and SAT solvers (between Yices-CaDiCAL and CaDiCAL)
suggests that the heuristic optimization techniques used in SMT solvers are ineffective
and instead, bring significant overhead to our application. We recommend translating
SMT constraints into Boolean formulas via bit-blasting and then solving them using
parallel SAT solvers. We also find that the performance of FIRMER differs in SAT/SMT
solvers. In detail, the SMT solvers Bitwuzla and Yices-CaDical with ups and downs on
both sides often significantly outperform the other three SMT solvers (i.e., Z3, STP and
Yices), because of the difference between underlying decision procedures and heuristic
optimization techniques; the SAT solver CaDiCAL often performs better than Glucose
with a single thread but always performs worse than Glucose with 8 threads, because
Glucose is optimized for parallel computing while CaDiCAL is optimized for sequential
computing. We remark that the parameters of these SAT/SMT solvers may be tuned to
improve efficiency, which is costly and out of the scope of the current paper.

Vulnerable gate reduction. To understand the effectiveness of the vulnerable gate
reduction for accelerating fault-resistance verification, we evaluate FIRMER with/without

24 Formal Verification of Fault Injection Countermeasures

Table 5: Results of FIRMER (SAT) with/without vulnerable gate reduction.

Name Model Without reduction With reduction R DR#Var #Cls #Gate Time #Var #Cls #Gate Time

AES-R1-b1-D ζ(1, 1, T , lm) 149993 749449 24432 2334.24 57340 310569 7920 195.24 3 3
AES-R1-b1-D ζ(2, 1, T , lm) 172910 589178 24432 2.74 69088 246108 7920 2.57 7 7
AES-R1-b2-D ζ(2, 1, T , lm) 247606 698415 33104 timeout 86333 329543 10640 1850.07 3 3
AES-R1-b2-D ζ(3, 1, T , lm) 263989 748906 33104 5.10 90428 354018 10640 5.28 7 7

AES-R2-b1-D ζ(1, 1, T , lm) 317669 1620894 49152 8473.38 120044 658527 15872 1740.43 3 3
AES-R2-b1-D ζ(2, 1, T , lm) 380116 1326203 49152 44.67 138266 579518 15872 35.95 7 7
AES-R2-b2-D ζ(2, 1, T , lm) 501449 1786080 66592 timeout 185415 740484 21408 14323.66 3 3
AES-R2-b2-D ζ(3, 1, T , lm) 526182 2044293 66592 98.15 194500 807305 21408 83.69 7 7

CRAFT-R1-b1-C ζ(1, 1, T , lm) 19233 92262 2948 4.24 6767 33938 760 0.79 3 3
CRAFT-R1-b1-C ζ(2, 1, T , lm) 21882 82851 2948 0.15 7608 32039 760 0.20 7 7
CRAFT-R1-b2-C ζ(2, 1, T , lm) 148552 558649 19636 2519.00 52901 234385 5672 132.79 3 3
CRAFT-R1-b2-C ζ(3, 1, T , lm) 157002 642847 19636 2.84 55099 258959 5672 3.39 7 7
CRAFT-R1-b1-D ζ(1, 1, T , lm) 5185 23589 766 0.30 2255 10735 274 0.13 3 3
CRAFT-R1-b1-D ζ(2, 1, T , lm) 6021 21519 766 0.05 2567 10316 274 0.06 7 7
CRAFT-R1-b2-D ζ(2, 1, T , lm) 8402 31227 1139 1.64 3356 13780 376 0.24 3 3
CRAFT-R1-b2-D ζ(3, 1, T , lm) 8900 35991 1139 0.07 3538 15058 376 0.06 7 7
CRAFT-R1-b3-D ζ(3, 1, T , lm) 10236 41474 1296 7.62 3974 19042 448 0.46 3 3
CRAFT-R1-b3-D ζ(4, 1, T , lm) 10714 45532 1296 0.07 4132 20428 448 0.07 7 7

CRAFT-R2-b1-C ζ(1, 1, T , lm) 36565 176024 5656 60.97 12644 63451 1440 11.63 3 3
CRAFT-R2-b1-C ζ(2, 1, T , lm) 42083 157194 5656 0.34 14215 59873 1440 0.45 7 7
CRAFT-R2-b2-C ζ(2, 1, T , lm) 291588 1099486 38872 timeout 104139 452464 11200 2060.81 3 3
CRAFT-R2-b2-C ζ(3, 1, T , lm) 308229 1269539 38872 7.80 108384 498341 11200 10.41 7 7
CRAFT-R2-b1-D ζ(1, 1, T , lm) 9960 45624 1480 4.98 4195 20279 508 0.94 3 3
CRAFT-R2-b1-D ζ(2, 1, T , lm) 11849 41318 1480 0.06 4795 19338 508 0.10 7 7
CRAFT-R2-b1-D ζ(1, 2, T , lm) 9960 45624 1480 7.22 4195 20279 508 1.82 3 3
CRAFT-R2-b1-D ζ(1, 3, T , lm) 9959 45622 1480 6.35 4194 20277 508 1.41 3 3
CRAFT-R2-b2-D ζ(2, 1, T , lm) 16137 59108 2180 60.37 5959 25370 672 3.34 3 3
CRAFT-R2-b2-D ζ(3, 1, T , lm) 17146 67617 2180 0.09 6268 27935 672 0.17 7 7
CRAFT-R2-b2-D ζ(2, 2, T , lm) 16137 59108 2180 91.31 5959 25370 672 3.58 3 3

CRAFT-R3-b3-D ζ(3, 1, T , lm) 29109 119401 3776 7049.02 10364 48541 1104 37.86 3 3
CRAFT-R3-b3-D ζ(4, 1, T , lm) 30481 131197 3776 0.25 10760 51937 1104 0.31 7 7
CRAFT-R3-b3-D ζ(3, 2, T , lm) 29111 119420 3776 3547.68 10366 48560 1104 57.74 3 3
CRAFT-R3-b3-D ζ(3, 3, T , lm) 29109 119401 3776 2361.28 10364 48541 1104 37.04 3 3
CRAFT-R3-b3-D ζ(3, 4, T , lm) 29108 119397 3776 1513.75 10363 48537 1104 31.84 3 3

CRAFT-R4-b3-D ζ(3, 1, T , lm) 38299 158236 4992 6074.49 13516 63332 1440 62.07 3 3
CRAFT-R4-b3-D ζ(4, 1, T , lm) 40118 173925 4992 0.76 14039 67789 1440 0.77 7 7
CRAFT-R4-b3-D ζ(3, 2, T , lm) 38301 158267 4992 15014.46 13518 63363 1440 155.75 3 3
CRAFT-R4-b3-D ζ(3, 3, T , lm) 38301 158267 4992 5448.20 13518 63363 1440 82.08 3 3
CRAFT-R4-b3-D ζ(3, 4, T , lm) 38299 158236 4992 4292.37 13516 63332 1440 71.15 3 3
CRAFT-R4-b3-D ζ(3, 5, T , lm) 38298 158229 4992 4009.42 13515 63325 1440 55.16 3 3

LED-R1-b1-D ζ(1, 1, T , lm) 8306 39057 1312 4.81 2673 13295 240 1.12 3 3
LED-R1-b1-D ζ(2, 1, T , lm) 9749 31481 1312 0.12 3038 12073 240 0.07 7 7
LED-R1-b2-D ζ(2, 1, T , lm) 14433 41129 1888 24.79 3726 16057 336 2.09 3 3
LED-R1-b2-D ζ(3, 1, T , lm) 15296 43876 1888 0.18 3853 16852 336 0.11 7 7

LED-R2-b1-D ζ(1, 1, T , lm) 16464 79748 2496 65.85 5215 27405 480 9.76 3 3
LED-R2-b1-D ζ(2, 1, T , lm) 18527 72422 2496 0.25 5783 26245 480 0.17 7 7
LED-R2-b2-D ζ(2, 1, T , lm) 27208 95236 3536 170.95 7300 34132 672 13.85 3 3
LED-R2-b2-D ζ(3, 1, T , lm) 28694 106194 3536 0.38 7554 36930 672 0.24 7 7

LED-R3-b1-D ζ(1, 1, T , lm) 24168 117662 3680 233.72 7674 40655 720 36.71 3 3
LED-R3-b1-D ζ(2, 1, T , lm) 27669 105378 3680 0.21 8528 38988 720 0.25 7 7
LED-R3-b2-D ζ(2, 1, T , lm) 39256 140834 5184 343.16 10924 49866 1008 47.99 3 3
LED-R3-b2-D ζ(3, 1, T , lm) 41301 158823 5184 0.31 11305 53487 1008 0.37 7 7

GIFT-R1-b1-D ζ(1, 1, T , lm) 5704 26145 912 0.36 1871 9060 224 0.16 3 3
GIFT-R1-b1-D ζ(2, 1, T , lm) 7061 23130 912 0.18 2157 8554 224 0.12 7 7
GIFT-R1-b2-D ζ(2, 1, T , lm) 10319 38706 1472 1.19 2975 13226 336 0.33 3 3
GIFT-R1-b2-D ζ(3, 1, T , lm) 10909 45280 1472 0.36 3101 14616 336 0.17 7 7

GIFT-R2-b1-D ζ(1, 1, T , lm) 11111 51407 1776 1.16 3584 17658 432 0.42 3 3
GIFT-R2-b1-D ζ(2, 1, T , lm) 13653 45509 1776 0.41 4169 16645 432 0.20 7 7
GIFT-R2-b2-D ζ(2, 1, T , lm) 20198 74433 2848 5.29 5490 24697 624 0.96 3 3
GIFT-R2-b2-D ζ(3, 1, T , lm) 21299 86374 2848 0.77 5743 27294 624 0.38 7 7

PRESENT-R1-b1-D ζ(1, 1, T , lm) 7744 36218 1224 0.49 2324 11145 260 0.19 3 3
PRESENT-R1-b1-D ζ(2, 1, T , lm) 8972 31884 1224 0.21 2619 10768 260 0.11 7 7
PRESENT-R1-b2-D ζ(2, 1, T , lm) 14811 49592 1992 1.55 3875 17048 448 0.38 3 3
PRESENT-R1-b2-D ζ(3, 1, T , lm) 15649 55766 1992 0.36 4065 19014 448 0.19 7 7

Continued on next page

H. Tan et al. 25

Table 5 – continued from previous page
Name Model Without reduction With reduction R DR#Var #Cls #Gate Time #Var #Cls #Gate Time

PRESENT-R2-b1-D ζ(1, 1, T , lm) 15141 71892 2400 1.71 4519 22601 504 0.58 3 3
PRESENT-R2-b1-D ζ(2, 1, T , lm) 17428 63730 2400 0.41 5097 21700 504 0.23 7 7
PRESENT-R2-b2-D ζ(2, 1, T , lm) 28676 97703 3888 5.70 7645 32847 848 0.97 3 3
PRESENT-R2-b2-D ζ(3, 1, T , lm) 30385 110124 3888 0.75 7978 35924 848 0.39 7 7

SIMON-R1-b1-D ζ(1, 1, T , lm) 2123 9582 320 0.15 1346 6162 176 0.13 3 3
SIMON-R1-b1-D ζ(2, 1, T , lm) 2564 8797 320 0.07 1556 5893 176 0.07 7 7
SIMON-R1-b2-D ζ(2, 1, T , lm) 3871 14581 520 0.37 2223 9341 272 0.23 3 3
SIMON-R1-b2-D ζ(3, 1, T , lm) 4077 16627 520 0.29 2333 10443 272 0.10 7 7

SIMON-R2-b1-D ζ(1, 1, T , lm) 3869 18102 592 0.29 2504 11819 336 0.27 3 3
SIMON-R2-b1-D ζ(2, 1, T , lm) 4582 16588 592 0.13 2838 11420 336 0.10 7 7
SIMON-R2-b2-D ζ(2, 1, T , lm) 7088 26327 944 1.37 4071 16900 496 0.75 3 3
SIMON-R2-b2-D ζ(3, 1, T , lm) 7461 29628 944 0.24 4276 18697 496 0.18 7 7

the vulnerable gate reduction using 8 threads for SAT solving. The results are reported
in Table 5, where the columns (#Gate) give the number of vulnerable gates that should
be considered when verifying fault-resistance. We can observe that the vulnerable gate
reduction can significantly reduce the number of vulnerable gates, achieving over 70%
reduction rate on average. Consequently, it significantly reduces the size of the resulting
Boolean formulas. Interestingly, reducing the size of the resulting Boolean formula does
not necessarily improve the overall verification efficiency. Indeed, the vulnerable gate
reduction is very effective in proving fault-resistant benchmarks irrespective of the adopted
countermeasure, fault-resistance model, fault-resistance and size of the benchmarks, but
sightly worsens the performance for disproving non-fault-resistant benchmarks as they are
easy to disprove and the vulnerable gate reduction itself has some overhead.

6 Related work
Various equivalence checking techniques have been proposed such as SAT/SMT-based ones
(e.g., [GPB01, KH03, KSHK07, AA17, MCBE06]) and BDD-based ones (e.g., [Pix92, vE98,
Bry86, KK97]). Similarly, SAT/SMT-based (e.g., [BCCZ99, MSKM16, JKSC08, BCC+99,
BCF+07, BM10, Bra11, LS14]) and BDD-based (e.g., [BCM+90, BCL+94, CG18]) safety
verification techniques have been proposed via model-checking, where safety properties
are expressed as assertions using temporal logic. However, they are orthogonal to our
work and these approaches cannot be directly applied to check fault-resistance, though our
SAT encoding method is inspired by the existing SAT-based ones for checking equivalence.
Indeed, the fault-resistance problem is significantly different from the functional equivalence
problem and cannot be easily expressed as a safety property. Moreover, our vulnerable gate
reduction which is very effective in improving verification efficiency cannot be leveraged
using existing tools.

Due to the severity of fault injection attacks, many simulation- and SAT-based ap-
proaches have been proposed to find effective fault vectors or check the effectiveness of a
user-specified fault vector (e.g., [SKK13, BGE+17, SMD18, AWMN20, KRH17, SSR+20,
WLR+21, NOV+22, BDF+14, FM14, WMGF18, WGF19, WGF20]). Though promising,
it is infeasible, if not impossible, to verify a given circuit considering all possible fault
vectors that could occur under all valid input combinations. To fill this gap, a BDD-based
approach FIVER was proposed [RBSS+21], which exclusively focuses on fault-resistance
verification.

In general, for each possible fault vector, FIVER builds a BDD model to represent
the concrete faulty circuit w.r.t. the fault vector and analyzes fault-resistance w.r.t. the
fault vector by comparing the BDD model with the BDD model of the original circuit.
FIVER can efficiently find all the effective fault vectors when the BDD model is successfully
constructed. For a fair comparison, we adopted the early-abort strategy of FIVER in

26 Formal Verification of Fault Injection Countermeasures

our experiments which stops the analysis process when an effective fault vector is found.
FIVER can also be used to compute the maximal number of fault events per clock cycle for
which the circuit is fault-resistant. Though several optimizations were proposed, it suffers
from the combinatorial exploration problem with the increase of fault types, vulnerable
gates and clock cycles, in particular, it may fail to construct BDD models when the size of
the circuit increases, thus is limited in efficiency and scalability. In contrast, our goal is
to prove/disprove fault-resistance instead of finding all the effective fault vectors w.r.t. a
given fault-resistance model or computing the maximal number of fault events per clock
cycle for which the circuit is fault-resistant. We propose to reduce the problem to SAT
solving instead of using BDD to fully utilize the conflict-driven clause learning feature
of modern SAT solvers. Thanks to our novel fault event encoding method and effective
vulnerable gate reduction, our approach does not need to explicitly enumerate all the
possible fault vectors. Thus, FIRMER scales very well and is significantly more efficient than
FIVER on relatively larger benchmarks. In summary, the BDD-based approach, FIVER, is
exclusively able to find all the effective fault injections and compute the maximal number
of fault events per clock cycle, and is suitable for proving/disproving fault-resistance on
small benchmarks. Instead, our SAT-based approach, FIRMER, is better particularly on
relatively large benchmarks, but currently only reports one effective fault vector if the
circuit is not fault-resistant, and cannot compute the maximal number of fault events per
clock cycle for which the circuit is fault-resistant. We remark that with our fault event
encoding method (without vulnerable gate reduction), one could generate all effective fault
vectors by applying ALLSAT (e.g. [LMZY22]) on the resulting Boolean formula, though it
may be costly. Indeed, ALLSAT can find all the satisfying assignments for a given Boolean
formula. Our approach could also be used for computing the maximal number of fault
events per clock cycle for which the circuit is fault-resistant by iteratively increasing this
number from 1. We leave them as interesting future work.

In the concurrent work [TAC+23], an approach was proposed for formal analysis of a full
system composed of hardware and software components under microarchitecture-level fault
injections. In contrast, we focus on cryptographic circuits against gate-level fault injections.
Besides this, there are several key differences with our work. (1) The extension of fault
injections to combinational circuits is not formalized in [TAC+23] although implemented in
their tool; we present the detailed encoding. (2) [TAC+23] considered different fault types
for verifying reachability properties but only added an extra variable to control the fault
injection; we additionally used variables to choose fault types for verifying equivalence-like
properties. Explicitly enumerating all the combinations of fault types for full coverage
and equivalence-like properties using [TAC+23] is not scalable. (3) [TAC+23] relies on
off-the-shelf SMT-based model-checkers; we directly reduce the problem to SAT/SMT
solving. (4) We further present the coNP-completeness result and a novel vulnerable gate
reduction which is very effective in proving fault-resistant benchmarks.

Countermeasure synthesis techniques have been proposed to repair flaws (e.g., [EWW16,
WLR+21, RRHB20]). However, they do not provide security guarantees (e.g., [WLR+21,
RRHB20]) or are limited to one specific type of fault injection attacks (e.g., clock glitches
in [EWW16]) and thus are still vulnerable to other fault injection attacks.

7 Conclusion
We have formalized the fault-resistance verification problem and proved that it is coNP-
complete for the first time. We proposed novel fault encoding and SAT encoding methods to
reduce the fault-resistance verification problem to the SAT problem so that state-of-the-art
SAT solvers can be harnessed. We also presented a novel vulnerable gate reduction technique
to effectively reduce the number of vulnerable gates, which can significantly improve
verification efficiency. We implemented our approach in an open-source tool FIRMER which

H. Tan et al. 27

has been extensively evaluated on a set of real-world cryptographic circuits, demonstrating
its effectiveness and efficiency. Experimental results showed that our approach significantly
outperforms the state-of-the-art fault-resistance verification approaches. Our tool enables
hardware designers to assess and verify the countermeasures in a systematic and automatic
way, thus improving the development and security of cryptographic circuits.

For future research, it would be interesting to develop automated flaw repair techniques
by leveraging the verification approaches from our approach. Moreover, the current work
targets cryptographic circuits, but it would be interesting to extend our approach to
general circuits, in particular, CPU designs, and furthermore, full systems composed of
CPU design and software components.

References
[AA17] Mohammad Reza Azarbad and Bijan Alizadeh. Scalable smt-based equivalence

checking of nested loop pipelining in behavioral synthesis. ACM Trans. Design
Autom. Electr. Syst., 22(2):22:1–22:22, 2017.

[ADN+10] Michel Agoyan, Jean-Max Dutertre, David Naccache, Bruno Robisson, and
Assia Tria. When clocks fail: On critical paths and clock faults. In Proceedings
of the 9th IFIP WG 8.8/11.2 International Conference (CARDIS), pages
182–193, 2010.

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A
survey. Comput. Networks, 54(15):2787–2805, 2010.

[AMR+20] Anita Aghaie, Amir Moradi, Shahram Rasoolzadeh, Aein Rezaei Shahmirzadi,
Falk Schellenberg, and Tobias Schneider. Impeccable circuits. IEEE Transac-
tions on Computers, 69:361–376, 2020.

[AS18] Gilles Audemard and Laurent Simon. On the glucose SAT solver. International
Journal on Artificial Intelligence Tools, 27(1):1840001:1–1840001:25, 2018.

[AWMN20] Victor Arribas, Felix Wegener, Amir Moradi, and Svetla Nikova. Cryptographic
fault diagnosis using verfi. In Proceedings of the IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pages 229–240, 2020.

[Bak22] Anubhab Baksi. Classical and Physical Security of Symmetric Key Crypto-
graphic Algorithms. Springer Singapore, 2022.

[BBK+03] Guido Bertoni, Luca Breveglieri, Israel Koren, Paolo Maistri, and Vincenzo
Piuri. Error analysis and detection procedures for a hardware implementation
of the advanced encryption standard. IEEE Trans. Computers, 52(4):492–505,
2003.

[BCC+99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Masahiro Fujita, and
Yunshan Zhu. Symbolic model checking using SAT procedures instead of bdds.
In Proceedings of the 36th Conference on Design Automation (DAC), pages
317–320, 1999.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without bdds. In Proceedings of the 5th International
Conference on Tools and Algorithms for Construction and Analysis of Systems
(TACAS), pages 193–207, 1999.

28 Formal Verification of Fault Injection Countermeasures

[BCF+07] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio,
Ziyad Hanna, Alexander Nadel, Amit Palti, and Roberto Sebastiani. A lazy and
layered smt(BV) solver for hard industrial verification problems. In Proceedings
of the 19th International Conference on Computer Aided Verification (CAV),
pages 547–560, 2007.

[BCL+94] Jerry R. Burch, Edmund M. Clarke, David E. Long, Kenneth L. McMillan,
and David L. Dill. Symbolic model checking for sequential circuit verification.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 13(4):401–424, 1994.

[BCM+90] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill,
and L. J. Hwang. Symbolic model checking: 10ˆ20 states and beyond. In
Proceedings of the Fifth Annual Symposium on Logic in Computer Science
(LICS), pages 428–439, 1990.

[BDF+14] Gilles Barthe, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire,
and Jean-Christophe Zapalowicz. Synthesis of fault attacks on cryptographic
implementations. In Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security, pages 1016–1027, 2014.

[BFFH20] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger.
CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling entering the SAT
Competition 2020. In Tomas Balyo, Nils Froleyks, Marijn Heule, Markus Iser,
Matti Järvisalo, and Martin Suda, editors, Proceedings of SAT Competition
2020 – Solver and Benchmark Descriptions, volume B-2020-1 of Department
of Computer Science Report Series B, pages 51–53. University of Helsinki,
2020.

[BGE+17] Jan Burchard, Mael Gay, Ange-Salomé Messeng Ekossono, Jan Horácek,
Bernd Becker, Tobias Schubert, Martin Kreuzer, and Ilia Polian. Autofault:
Towards automatic construction of algebraic fault attacks. In Proceedings of
the Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC),
pages 65–72, 2017.

[BHL17] Jakub Breier, Xiaolu Hou, and Yang Liu. Fault attacks made easy: Differential
fault analysis automation on assembly code. Cryptology ePrint Archive, Report
2017/829, 2017.

[BM10] Robert K. Brayton and Alan Mishchenko. ABC: an academic industrial-
strength verification tool. In Proceedings of the 22nd International Conference
on Computer Aided Verification (CAV), pages 24–40, 2010.

[Bra11] Aaron R. Bradley. Sat-based model checking without unrolling. In Proceedings
of the 12th International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI), pages 70–87, 2011.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Trans. Computers, 35(8):677–691, 1986.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Proceedings of the 17th Annual International Cryptology Conference
Santa Barbara (CRYPTO), pages 513–525, 1997.

[CG18] Sagar Chaki and Arie Gurfinkel. Bdd-based symbolic model checking. Hand-
book of Model Checking, pages 219–245, 2018.

H. Tan et al. 29

[Cla07a] Christophe Clavier. Secret external encodings do not prevent transient fault
analysis. In Proceedings of the 9th International Workshop on Cryptographic
Hardware and Embedded Systems (CHES), pages 181–194, 2007.

[Cla07b] Christophe Clavier. Secret external encodings do not prevent transient fault
analysis. In Proceedings of the Workshop on Cryptographic Hardware and
Embedded Systems, 2007.

[CLFT14] Franck Courbon, Philippe Loubet-Moundi, Jacques J. A. Fournier, and Assia
Tria. Adjusting laser injections for fully controlled faults. In Proceedings of
the 5th International Workshop on Constructive Side-Channel Analysis and
Secure Design (COSADE), pages 229–242, 2014.

[DBC+18] Jean-Max Dutertre, Vincent Beroulle, Philippe Candelier, Stephan De Castro,
Louis-Barthelemy Faber, Marie-Lise Flottes, Philippe Gendrier, David Hély,
Régis Leveugle, Paolo Maistri, Giorgio Di Natale, Athanasios Papadimitriou,
and Bruno Rouzeyre. Laser fault injection at the CMOS 28 nm technology
node: an analysis of the fault model. In Proceedings of the Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), pages 1–6, 2018.

[DDRT12] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and Assia Tria. Elec-
tromagnetic transient faults injection on a hardware and a software imple-
mentations of AES. In Proceedings of the Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), pages 7–15, 2012.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Stefan Mangard, Flo-
rian Mendel, and Robert Primas. Statistical ineffective fault attacks on masked
AES with fault countermeasures. In Proceedings of the 24th International
Conference on the Theory and Application of Cryptology and Information
Security (ASIACRYPT), pages 315–342, 2018.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard, Flo-
rian Mendel, and Robert Primas. SIFA: Exploiting ineffective fault inductions
on symmetric cryptography. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2018:547–572, 2018.

[DLM19] Mathieu Dumont, Mathieu Lisart, and Philippe Maurine. Electromagnetic
fault injection : How faults occur. In Proceedings of the Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), pages 9–16, 2019.

[DLM21] Mathieu Dumont, Mathieu Lisart, and Philippe Maurine. Modeling and
simulating electromagnetic fault injection. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst., 40(4):680–693, 2021.

[dMB08] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT
solver. In Proceedings of the 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 337–340,
2008.

[Dut14] Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors, Pro-
ceedings of the 26th International Conference on Computer Aided Verification,
volume 8559, pages 737–744, 2014.

[Dut20] Bruno Dutertre. An empirical evaluation of SAT solvers on bit-vector prob-
lems. In François Bobot and Tjark Weber, editors, Proceedings of the 18th
International Workshop on Satisfiability Modulo Theories, volume 2854, pages
15–25, 2020.

30 Formal Verification of Fault Injection Countermeasures

[ELH+15] Sho Endo, Yang Li, Naofumi Homma, Kazuo Sakiyama, Kazuo Ohta, Daisuke
Fujimoto, Makoto Nagata, Toshihiro Katashita, Jean-Luc Danger, and Taka-
fumi Aoki. A silicon-level countermeasure against fault sensitivity analysis and
its evaluation. IEEE Transactions on Very Large Scale Integration Systems,
23(8):1429–1438, 2015.

[ES06] Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints
into SAT. Journal on Satisfiability, Boolean Modeling and Computation,
2(1-4):1–26, 2006.

[ESH+11] Sho Endo, Takeshi Sugawara, Naofumi Homma, Takafumi Aoki, and Akashi
Satoh. An on-chip glitchy-clock generator for testing fault injection attacks.
Journal of Cryptographic Engineering, 1(4):265–270, 2011.

[EWW16] Hassan Eldib, Meng Wu, and Chao Wang. Synthesis of fault-attack counter-
measures for cryptographic circuits. In Proceedings of the 28th International
Conference on Computer Aided Verification (CAV), pages 343–363, 2016.

[FJLT13] Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard. Fault
attacks on AES with faulty ciphertexts only. In Proceedings of the Workshop
on Fault Diagnosis and Tolerance in Cryptography, pages 108–118, 2013.

[FM14] Masahiro Fujita and Alan Mishchenko. Efficient sat-based ATPG techniques
for all multiple stuck-at faults. In Proceedings of the International Test
Conference (ITC), pages 1–10, 2014.

[GAS14] Nahid Farhady Ghalaty, Aydin Aysu, and Patrick Schaumont. Analyzing
and eliminating the causes of fault sensitivity analysis. In Proceedings of the
Design, Automation & Test in Europe Conference & Exhibition DATE), pages
1–6, 2014.

[GD07] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and
arrays. In Proceedings of the 19th International Conference on Computer
Aided Verification, pages 519–531, 2007.

[GPB01] Evguenii I. Goldberg, Mukul R. Prasad, and Robert K. Brayton. Using SAT
for combinational equivalence checking. In Proceedings of the Conference on
Design, Automation and Test in Europe (DATE), pages 114–121, 2001.

[JKSC08] Himanshu Jain, Daniel Kroening, Natasha Sharygina, and Edmund M. Clarke.
Word-level predicate-abstraction and refinement techniques for verifying RTL
verilog. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 27(2):366–379,
2008.

[KH03] Zurab Khasidashvili and Ziyad Hanna. Sat-based methods for sequential
hardware equivalence verification without synchronization. In Proceedings of
the 1st International Workshop on Bounded Model Checking, pages 593–607,
2003.

[KK97] Andreas Kuehlmann and Florian Krohm. Equivalence checking using cuts and
heaps. In Proceedings of the 34st Conference on Design Automation (DAC),
pages 263–268, 1997.

[KKG03] Ramesh Karri, Grigori Kuznetsov, and Michael Gössel. Parity-based concur-
rent error detection of substitution-permutation network block ciphers. In
Proceedings of the 5th International Workshop on Cryptographic Hardware
and Embedded Systems (CHES), pages 113–124, 2003.

H. Tan et al. 31

[KRH17] Punit Khanna, Chester Rebeiro, and Aritra Hazra. Xfc: a framework for
exploitable fault characterization in block ciphers. In Proceedings of the 54th
Annual Design Automation Conference (DAC), pages 1–6, 2017.

[KSHK07] Daher Kaiss, Marcelo Skaba, Ziyad Hanna, and Zurab Khasidashvili. Industrial
strength sat-based alignability algorithm for hardware equivalence verification.
In Proceedings of the 7th International Conference on Formal Methods in
Computer-Aided Design, pages 20–26, 2007.

[KvE02] Andreas Kuehlmann and Cornelis AJ van Eijk. Combinational and sequential
equivalence checking. Logic synthesis and Verification, pages 343–372, 2002.

[LMZY22] Jiaxin Liang, Feifei Ma, Junping Zhou, and Minghao Yin. AllSATCC: Boosting
allsat solving with efficient component analysis. In Luc De Raedt, editor,
Proceedings of the 31st International Joint Conference on Artificial Intelligence,
pages 1866–1872, 2022.

[LS14] Suho Lee and Karem A. Sakallah. Unbounded scalable verification based on
approximate property-directed reachability and datapath abstraction. In Pro-
ceedings of the 26th International Conference on Computer Aided Verification
(CAV), pages 849–865, 2014.

[MCBE06] Alan Mishchenko, Satrajit Chatterjee, Robert K. Brayton, and Niklas Eén.
Improvements to combinational equivalence checking. In Proceedings of the
International Conference on Computer-Aided Design (ICCAD), pages 836–843,
2006.

[MSKM16] Rajdeep Mukherjee, Peter Schrammel, Daniel Kroening, and Tom Melham.
Unbounded safety verification for hardware using software analyzers. In
Proceedings of Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 1152–1155, 2016.

[MSY06] Tal Malkin, François-Xavier Standaert, and Moti Yung. A comparative
cost/security analysis of fault attack countermeasures. In Proceedings of the
3rd International Workshop on Fault Diagnosis and Tolerance in Cryptography,
pages 159–172, 2006.

[NIS22] NIST. Projects/programs: Lightweight cryptography. https://www.nist.
gov/programs-projects/lightweight-cryptography, 2022.

[NOV+22] Pascal Nasahl, Miguel Osorio, Pirmin Vogel, Michael Schaffner, Timothy
Trippel, Dominic Rizzo, and Stefan Mangard. SYNFI: pre-silicon fault analysis
of an open-source secure element. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2022(4):56–87, 2022.

[NP23] Aina Niemetz and Mathias Preiner. Bitwuzla. In Constantin Enea and Akash
Lal, editors, Proceedings of the 35th International Conference on Computer
Aided Verification, pages 3–17, 2023.

[Pix92] Carl Pixley. A theory and implementation of sequential hardware equivalence.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 11(12):1469–1478,
1992.

[RBSG23] Jan Richter-Brockmann, Pascal Sasdrich, and Tim Güneysu. Revisiting fault
adversary models - hardware faults in theory and practice. IEEE Transactions
on Computers, 72:572–585, 2023.

https://www.nist.gov/programs-projects/lightweight-cryptography
https://www.nist.gov/programs-projects/lightweight-cryptography

32 Formal Verification of Fault Injection Countermeasures

[RBSS+21] Jan Richter-Brockmann, Aein Rezaei Shahmirzadi, Pascal Sasdrich, Amir
Moradi, and Tim Güneysu. Fiver - robust verification of countermeasures
against fault injections. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2021:447–473, 2021.

[RRHB20] Indrani Roy, Chester Rebeiro, Aritra Hazra, and Swarup Bhunia. SAFARI:
automatic synthesis of fault-attack resistant block cipher implementations.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 39(4):752–765, 2020.

[RSDT13] Cyril Roscian, Alexandre Sarafianos, Jean-Max Dutertre, and Assia Tria. Fault
model analysis of laser-induced faults in SRAM memory cells. In Proceedings
of the Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC),
pages 89–98, 2013.

[SA03] Sergei P Skorobogatov and Ross J Anderson. Optical fault induction at-
tacks. In Proceedings of the 4th International Workshop Redwood Shores on
Cryptographic Hardware and Embedded Systems (CHES), pages 2–12, 2003.

[SFG+16] Falk Schellenberg, Markus Finkeldey, Nils Gerhardt, Martin Hofmann, Amir
Moradi, and Christof Paar. Large laser spots and fault sensitivity analysis.
In Proceedings of the IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pages 203–208, 2016.

[SGD08] Nidhal Selmane, Sylvain Guilley, and Jean-Luc Danger. Practical setup time
violation attacks on AES. In Proceedings of the 7th European Dependable
Computing Conference (EDCC), pages 91–96, 2008.

[SHO19] Bodo Selmke, Florian Hauschild, and Johannes Obermaier. Peak clock: Fault
injection into pll-based systems via clock manipulation. In Proceedings of the
3rd ACM Workshop on Attacks and Solutions in Hardware Security Workshop
(ASHES@CCS), pages 85–94, 2019.

[SKK13] Aleksandar Simevski, Rolf Kraemer, and Milos Krstic. Automated integration
of fault injection into the ASIC design flow. In Proceedings of the IEEE Interna-
tional Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFTS), pages 255–260, 2013.

[SMD18] Sayandeep Saha, Debdeep Mukhopadhyay, and Pallab Dasgupta. Expfault:
An automated framework for exploitable fault characterization in block ci-
phers. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2018(2):242–276, 2018.

[SRM20] Aein Rezaei Shahmirzadi, Shahram Rasoolzadeh, and Amir Moradi. Impec-
cable circuits ii. Proceedings of the 57th ACM/IEEE Design Automation
Conference (DAC), pages 1–6, 2020.

[SSR+20] Milind Srivastava, Patanjali Slpsk, Indrani Roy, Chester Rebeiro, Aritra Hazra,
and Swarup Bhunia. Solomon: An automated framework for detecting fault
attack vulnerabilities in hardware. In Proceedings of the Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 310–313, 2020.

[TAC+23] Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann, and
Mathieu Jan. µarchifi: Formal modeling and verification strategies for microar-
chitectural fault injections. In Alexander Nadel and Kristin Yvonne Rozier,
editors, Proceedings of the Formal Methods in Computer-Aided Design, pages
101–109, 2023.

H. Tan et al. 33

[TS21] Amit Kumar Tyagi and N. Sreenath. Cyber physical systems: Analyses,
challenges and possible solutions. Internet of Things and Cyber-Physical
Systems, 1:22–33, 2021.

[vE98] C. A. J. van Eijk. Sequential equivalence checking without state space traversal.
In Proceedings of Design, Automation and Test in Europe (DATE), pages
618–623, 1998.

[WGF19] Peikun Wang, Amir Masoud Gharehbaghi, and Masahiro Fujita. Automatic
test pattern generation for double stuck-at faults based on test patterns of
single faults. In Proceedings of the 20th International Symposium on Quality
Electronic Design (ISQED), pages 284–290, 2019.

[WGF20] Peikun Wang, Amir Masoud Gharehbaghi, and Masahiro Fujita. An automatic
test pattern generation method for multiple stuck-at faults by incrementally
extending the test patterns. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst., 39(10):2990–2999, 2020.

[WLR+21] Huanyu Wang, Henian Li, Fahim Rahman, Mark M Tehranipoor, and Farimah
Farahmandi. SoFI: Security property-driven vulnerability assessments of ICs
against fault-injection attacks. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 41(3):452–465, 2021.

[WMGF18] Peikun Wang, Conrad J. Moore, Amir Masoud Gharehbaghi, and Masahiro
Fujita. An ATPG method for double stuck-at faults by analyzing propagation
paths of single faults. IEEE Trans. Circuits Syst. I Regul. Pap., 65-I(3):1063–
1074, 2018.

[Wyn18] Ed Wynn. A comparison of encodings for cardinality constraints in a SAT
solver. CoRR, abs/1810.12975, 2018.

[ZBL+15] Wentao Zhang, Zhenzhen Bao, Dongdai Lin, Vincent Rijmen, Bohan Yang,
and Ingrid Verbauwhede. RECTANGLE: a bit-slice lightweight block cipher
suitable for multiple platforms. SCIENCE CHINA Information Sciences,
58(12):1–15, 2015.

[ZDCT13] Loic Zussa, Jean-Max Dutertre, Jessy Clediere, and Assia Tria. Power supply
glitch induced faults on fpga: An in-depth analysis of the injection mechanism.
In Proceedings of the IEEE 19th International On-Line Testing Symposium
(IOLTS), pages 110–115, 2013.

A Detailed Results of the Number of Threads of Section 5
The detailed experimental results of AES-R1-b1-D, AES-R1-b2-D, and CRAFT-R4-b3-D
by varying the number of threads from 1 to 12 are reported in Table 6.

34 Formal Verification of Fault Injection Countermeasures

Table 6: Results of verifying fault-resistance of AES-R1-b1-D, AES-R1-b2-D, and CRAFT-
R4-b3-D using FIRMER (SAT) by varying the number of threads.

FIRMER (SAT) SMT
#Thread 1 2 4 6 8 10 12
AES-R1-b1-ne1 1234.31 662.06 385.52 258.38 195.24 179.58 146.25 4856.58
AES-R1-b1-ne2 2.34 2.39 2.44 2.50 2.57 2.65 2.70 3650.83
AES-R1-b2-ne2 11028.35 6218.07 3317.16 2329.37 1850.07 1536.98 1364.48 23542.57
AES-R1-b2-ne3 5.16 5.00 5.05 5.21 5.28 5.41 5.46 3386.38
CRAFT-R4-b3-ne3-nc1 453.57 264.05 136.66 94.12 62.07 55.14 45.52 1188.03
CRAFT-R4-b3-ne4-nc1 0.73 0.71 0.74 0.76 0.77 0.80 0.81 8.25
CRAFT-R4-b3-ne3-nc2 998.18 524.15 295.33 206.91 155.75 136.38 127.18 978.78
CRAFT-R4-b3-ne3-nc3 577.90 290.44 150.73 102.40 82.08 66.91 55.21 900.28
CRAFT-R4-b3-ne3-nc4 398.52 217.15 120.24 76.40 71.15 54.40 45.34 916.13
CRAFT-R4-b3-ne3-nc5 396.56 208.42 103.70 75.11 55.16 46.08 37.08 922.49

B Fault-resistance Verification with Fault Type τbf Only
In this section, in additional to the previous section, we evaluate FIRMER for verifying
fault-resistance with the fault type τbf solely.

B.1 Efficiency of FIRMER for Fault-resistance Verification
We compare FIRMER with (1) the state-of-the-art verifier FIVER and (2) an SMT-based
approach which directly checks the constraints generated by our encoding method without
translating to Boolean formulas.

The results are reported in Table 7, where both the SAT solver Glucose and the
BDD-based verifier FIVER are run with 8 threads while the SMT solver Bitwuzla is run
with a single thread. Columns (2CNF) and (Solving) give the execution time of building
and solving Boolean formulas in seconds, respectively. Columns (Total) and (Time) give
the total execution time in seconds. Mark 3 (resp. 7) indicates that the protected circuit
S ′ is fault-resistant (resp. not fault-resistant) w.r.t. the given fault-resistance model in
column “Model".

Overall, FIRMER (i.e., SAT-based approach) solved all the verification tasks, the
SMT-based approach ran out of time on one verification task, while FIVER ran out of
time on 30 verification tasks. The SAT/SMT-based approach becomes more and more
efficient than FIVER with the increase of round numbers (i.e., Ri) and the maximal
number of protected faulty bits (i.e., bj). FIRMER is still significantly more efficient than
the SMT-based approach on relatively larger benchmarks (e.g., AES-R1-b1, AES-R1-b2,
AES-R2-b1, AES-R2-b2, CRAFT-R1-b2-C, CRAFT-R2-b2-C, CRAFT-R3-b3-D, CRAFT-
R4-b3-D, LED-R2-b1-D, LED-R2-b2-D, LED-R3-b1-D, LED-R3-b2-D, etc.) while they
are comparable on smaller benchmarks.

Interestingly, we found that (i) implementations with correction-based countermeasures
are more difficult to prove than those with detection-based countermeasures (e.g., CRAFT-
Ri-bj-C vs. CRAFT-Ri-bj-D, for i = 1, 2 and j = 1, 2), because implementing correction-
based countermeasures require more gates; (ii) FIRMER is more efficient at disproving
fault-resistance than proving fault-resistance, because UNSAT instances are often more
difficult to prove than SAT instances in CDCL SAT solvers. (iii) FIRMER often scales very
well with an increase of the round numbers (i.e., Ri for i = 1, 2, 3, 4), the maximal number
of protected faulty bits (i.e., bj for j = 1, 2, 3), the maximum number of fault events per
clock cycle (i.e., ne) and the maximum number of clock cycles in which fault events can
occur (i.e., nc), but FIVER has very limited scalability.

To understand the effect of the number of threads, we evaluate FIRMER on the

H. Tan et al. 35

1 2 4 6 8 10 12
threads

0

5000

10000

15000

20000

25000
tim

e(
s)

AES-R1-b1-ne1-nc1
AES-R1-b1-ne2-nc1
AES-R1-b2-ne2-nc1
AES-R1-b2-ne3-nc1
AES-R1-b1-ne1-nc1-SMT
AES-R1-b1-ne2-nc1-SMT
AES-R1-b2-ne2-nc1-SMT
AES-R1-b2-ne3-nc1-SMT

(a) AES-R1-b1-D and AES-R1-b2-D

1 2 4 6 8 10 12
threads

0

100

200

300

400

500

tim
e(

s)

CRAFT-R4-b3-ne3-nc1
CRAFT-R4-b3-ne4-nc1
CRAFT-R4-b3-ne3-nc2
CRAFT-R4-b3-ne3-nc3
CRAFT-R4-b3-ne3-nc4
CRAFT-R4-b3-ne3-nc5
CRAFT-R4-b3-ne3-nc1-SMT
CRAFT-R4-b3-ne4-nc1-SMT
CRAFT-R4-b3-ne3-nc2-SMT
CRAFT-R4-b3-ne3-nc3-SMT
CRAFT-R4-b3-ne3-nc4-SMT
CRAFT-R4-b3-ne3-nc5-SMT

(b) CRAFT-R4-b3-D

Figure 9: Results with different number of threads and only the fault type τbf

Table 7: Verification results with only the fault type τbf .

Name Model FIRMER (SAT) SMT FIVER R DR#Var # Cls 2CNF Solving Total Time Time

AES-R1-b1-D ζ(1, 1, τbf , lm) 34822 246273 1.87 159.44 161.31 4728.67 24.50 3 3
AES-R1-b1-D ζ(2, 1, τbf , lm) 46570 181812 2.33 0.41 2.74 3192.99 10154.53 7 7
AES-R1-b2-D ζ(2, 1, τbf , lm) 56196 243722 4.50 1397.42 1401.92 24397.81 timeout 3 3
AES-R1-b2-D ζ(3, 1, τbf , lm) 60291 268197 4.44 0.66 5.10 5254.88 timeout 7 7

AES-R2-b1-D ζ(1, 1, τbf , lm) 74678 528469 33.18 1132.13 1165.31 47809.92 timeout 3 3
AES-R2-b1-D ζ(2, 1, τbf , lm) 92900 449460 33.25 3.13 36.38 20206.54 timeout 7 7
AES-R2-b2-D ζ(2, 1, τbf , lm) 124574 565820 78.85 5905.02 5983.87 timeout timeout 3 3
AES-R2-b2-D ζ(3, 1, τbf , lm) 133659 632641 79.25 6.27 85.52 88.75 timeout 7 7

CRAFT-R1-b1-C ζ(1, 1, τbf , lm) 4326 26659 0.09 0.64 0.73 5.87 0.10 3 3
CRAFT-R1-b1-C ζ(2, 1, τbf , lm) 5167 24760 0.09 0.06 0.15 0.16 1.03 7 7
CRAFT-R1-b2-C ζ(2, 1, τbf , lm) 35997 188158 2.11 142.04 144.15 2586.82 175.84 3 3
CRAFT-R1-b2-C ζ(3, 1, τbf , lm) 38195 212732 2.24 0.56 2.80 9.79 958.40 7 7
CRAFT-R1-b1-D ζ(1, 1, τbf , lm) 1347 7890 0.02 0.16 0.18 0.36 0.03 3 3
CRAFT-R1-b1-D ζ(2, 1, τbf , lm) 1659 7471 0.03 0.02 0.05 0.01 0.06 7
CRAFT-R1-b2-D ζ(2, 1, τbf , lm) 2165 10140 0.03 0.31 0.34 0.61 0.17 3 3
CRAFT-R1-b2-D ζ(3, 1, τbf , lm) 2347 11418 0.04 0.04 0.08 0.01 8.64 7 7
CRAFT-R1-b3-D ζ(3, 1, τbf , lm) 2572 14530 0.04 0.64 0.68 5.12 310.40 3 3
CRAFT-R1-b3-D ζ(4, 1, τbf , lm) 2730 15916 0.04 0.05 0.09 0.58 1724.35 7 7

CRAFT-R2-b1-C ζ(1, 1, τbf , lm) 8008 49988 0.18 13.44 13.62 91.76 2.09 3 3
CRAFT-R2-b1-C ζ(2, 1, τbf , lm) 9579 46410 0.20 0.13 0.33 0.42 41.27 7 7
CRAFT-R2-b2-C ζ(2, 1, τbf , lm) 70834 361687 5.50 1891.50 1897.00 12779.36 1770.58 3 3
CRAFT-R2-b2-C ζ(3, 1, τbf , lm) 75079 407564 5.60 2.20 7.80 2464.15 3317.16 7 7
CRAFT-R2-b1-D ζ(1, 1, τbf , lm) 2595 15155 0.04 0.91 0.95 1.89 0.64 3 3
CRAFT-R2-b1-D ζ(2, 1, τbf , lm) 3195 14214 0.03 0.04 0.07 0.04 1.05 7 7
CRAFT-R2-b1-D ζ(1, 2, τbf , lm) 2595 15155 0.05 0.85 0.90 3.63 124.40 3 3
CRAFT-R2-b1-D ζ(1, 3, τbf , lm) 2594 15153 0.06 0.62 0.68 3.53 25815.91 3 3
CRAFT-R2-b2-D ζ(2, 1, τbf , lm) 4015 19410 0.09 0.94 1.03 6.03 6.50 3 3
CRAFT-R2-b2-D ζ(3, 1, τbf , lm) 4324 21975 0.05 0.06 0.11 0.05 89.51 7 7
CRAFT-R2-b2-D ζ(2, 2, τbf , lm) 4015 19410 0.14 1.02 1.16 8.63 timeout 3 3

CRAFT-R3-b3-D ζ(3, 1, τbf , lm) 7066 38313 0.17 13.11 13.28 241.14 timeout 3 3
CRAFT-R3-b3-D ζ(4, 1, τbf , lm) 7462 41709 0.17 0.11 0.28 3.19 timeout 7 7
CRAFT-R3-b3-D ζ(3, 2, τbf , lm) 7068 38332 0.17 15.08 15.25 243.42 timeout 3 3
CRAFT-R3-b3-D ζ(3, 3, τbf , lm) 7066 38313 0.18 16.36 16.54 242.72 timeout 3 3
CRAFT-R3-b3-D ζ(3, 4, τbf , lm) 7065 38309 0.15 14.32 14.47 241.82 timeout 3 3

CRAFT-R4-b3-D ζ(3, 1, τbf , lm) 9209 50064 0.60 23.10 23.70 717.94 timeout 3 3
CRAFT-R4-b3-D ζ(4, 1, τbf , lm) 9732 54521 0.62 0.16 0.78 6.87 timeout 7 7
CRAFT-R4-b3-D ζ(3, 2, τbf , lm) 9211 50095 0.59 34.93 35.52 667.81 timeout 3 3
CRAFT-R4-b3-D ζ(3, 3, τbf , lm) 9211 50095 0.56 26.07 26.63 671.85 timeout 3 3
CRAFT-R4-b3-D ζ(3, 4, τbf , lm) 9209 50064 0.58 25.43 26.01 688.15 timeout 3 3
CRAFT-R4-b3-D ζ(3, 5, τbf , lm) 9208 50057 0.57 25.95 26.52 691.08 timeout 3 3

LED-R1-b1-D ζ(1, 1, τbf , lm) 1866 10623 0.06 0.46 0.52 11.63 0.07 3 3
LED-R1-b1-D ζ(2, 1, τbf , lm) 2231 9401 0.05 0.02 0.07 0.02 0.74 7 7
LED-R1-b2-D ζ(2, 1, τbf , lm) 2628 12473 0.09 1.54 1.63 12.01 1.40 3 3
LED-R1-b2-D ζ(3, 1, τbf , lm) 2755 13268 0.07 0.03 0.10 0.03 32.71 7 7

Continued on next page

36 Formal Verification of Fault Injection Countermeasures

Table 7 – continued from previous page
Name Model FIRMER (SAT) SMT FIVER R DR#Var # Cls 2CNF Solving Total Time Time

LED-R2-b1-D ζ(1, 1, τbf , lm) 3594 21569 0.12 1.68 1.80 54.22 timeout 3 3
LED-R2-b1-D ζ(2, 1, τbf , lm) 4162 20409 0.09 0.07 0.16 1.44 timeout 7 7
LED-R2-b2-D ζ(2, 1, τbf , lm) 5116 26420 0.12 3.21 3.33 266.12 timeout 3 3
LED-R2-b2-D ζ(3, 1, τbf , lm) 5370 29218 0.14 0.08 0.22 2.21 timeout 7 7

LED-R3-b1-D ζ(1, 1, τbf , lm) 5249 31588 0.13 4.28 4.41 263.93 timeout 3 3
LED-R3-b1-D ζ(2, 1, τbf , lm) 6103 29921 0.13 0.11 0.24 2.96 timeout 7 7
LED-R3-b2-D ζ(2, 1, τbf , lm) 7735 38318 0.12 7.79 7.91 394.05 timeout 3 3
LED-R3-b2-D ζ(3, 1, τbf , lm) 8116 41939 0.22 0.15 0.37 3.06 timeout 7 7

GIFT-R1-b1-D ζ(1, 1, τbf , lm) 1214 7028 0.07 0.08 0.15 2.30 0.02 3 3
GIFT-R1-b1-D ζ(2, 1, τbf , lm) 1500 6522 0.07 0.03 0.10 1.50 0.05 7 7
GIFT-R1-b2-D ζ(2, 1, τbf , lm) 2058 10370 0.12 0.13 0.25 5.31 0.19 3 3
GIFT-R1-b2-D ζ(3, 1, τbf , lm) 2184 11760 0.12 0.03 0.15 3.45 4.01 7 7

GIFT-R2-b1-D ζ(1, 1, τbf , lm) 2323 13610 0.13 0.18 0.31 6.82 0.10 3 3
GIFT-R2-b1-D ζ(2, 1, τbf , lm) 2908 12597 0.14 0.04 0.18 3.73 0.44 7 7
GIFT-R2-b2-D ζ(2, 1, τbf , lm) 3817 19365 0.26 0.43 0.69 20.48 2.71 3 3
GIFT-R2-b2-D ζ(3, 1, τbf , lm) 4070 21962 0.27 0.05 0.32 0.23 120.08 7 7

PRESENT-R1-b1-D ζ(1, 1, τbf , lm) 1576 8719 0.08 0.08 0.16 2.61 0.02 3 3
PRESENT-R1-b1-D ζ(2, 1, τbf , lm) 1871 8342 0.08 0.03 0.11 1.67 0.06 7 7
PRESENT-R1-b2-D ζ(2, 1, τbf , lm) 2665 13245 0.14 0.13 0.27 9.25 0.24 3 3
PRESENT-R1-b2-D ζ(3, 1, τbf , lm) 2855 15211 0.15 0.04 0.19 9.71 4.19 7 7

Continued on next page

H. Tan et al. 37

Table 8: Results of verifying fault-resistance of AES-R1-b1-D, AES-R1-b2-D, and CRAFT-
R4-b3-D using FIRMER (SAT) with only the fault type τbf by varying the number of
threads.

FIRMER (SAT) SMT
#Thread 1 2 4 6 8 10 12
AES-R1-b1-ne1 1192.68 513.15 317.66 226.61 161.31 145.69 119.36 4728.67
AES-R1-b1-ne2 2.71 2.70 2.74 2.84 2.74 2.91 3.02 3192.99
AES-R1-b2-ne2 8882.96 4349.25 2564.76 1796.85 1401.92 1253.49 1139.42 24397.81
AES-R1-b2-ne3 6.59 6.78 6.67 6.77 6.67 6.99 7.08 5254.88
CRAFT-R4-b3-ne3-nc1 82.61 51.79 31.79 24.56 23.70 19.56 17.15 484.17
CRAFT-R4-b3-ne4-nc1 0.67 0.67 0.69 0.67 0.78 0.81 0.86 6.87
CRAFT-R4-b3-ne3-nc2 120.11 91.31 48.79 40.44 35.52 30.15 26.83 437.81
CRAFT-R4-b3-ne3-nc3 93.24 62.00 36.55 28.61 26.63 26.40 24.06 481.85
CRAFT-R4-b3-ne3-nc4 90.88 62.49 37.16 27.81 26.01 23.66 21.79 498.15
CRAFT-R4-b3-ne3-nc5 94.53 58.37 35.38 28.61 26.52 25.07 24.04 531.08

Table 7 – continued from previous page
Name Model FIRMER (SAT) SMT FIVER R DR#Var # Cls 2CNF Solving Total Time Time

PRESENT-R2-b1-D ζ(1, 1, τbf , lm) 3074 17622 0.15 0.25 0.40 8.90 0.13 3 3
PRESENT-R2-b1-D ζ(2, 1, τbf , lm) 3652 16721 0.16 0.04 0.20 1.31 0.77 7 7
PRESENT-R2-b2-D ζ(2, 1, τbf , lm) 5418 25447 0.31 0.43 0.74 22.87 3.16 3 3
PRESENT-R2-b2-D ζ(3, 1, τbf , lm) 5751 28524 0.30 0.06 0.36 0.34 113.94 7 7

SIMON-R1-b1-D ζ(1, 1, τbf , lm) 781 4788 0.04 0.06 0.10 1.04 0.01 3 3
SIMON-R1-b1-D ζ(2, 1, τbf , lm) 991 4519 0.04 0.02 0.06 0.88 0.04 7 7
SIMON-R1-b2-D ζ(2, 1, τbf , lm) 1348 7121 0.08 0.11 0.19 2.89 0.14 3 3
SIMON-R1-b2-D ζ(3, 1, τbf , lm) 1458 8223 0.08 0.03 0.11 1.88 6.21 7 7

SIMON-R2-b1-D ζ(1, 1, τbf , lm) 1312 8555 0.06 0.08 0.14 3.46 timeout 3 3
SIMON-R2-b1-D ζ(2, 1, τbf , lm) 1646 8156 0.06 0.03 0.09 2.07 timeout 7 7
SIMON-R2-b2-D ζ(2, 1, τbf , lm) 2485 12623 0.12 0.20 0.32 16.91 timeout 3 3
SIMON-R2-b2-D ζ(3, 1, τbf , lm) 2690 14420 0.12 0.04 0.16 6.97 timeout 7 7

benchmarks AES-R1-b1-D, AES-R1-b2-D, and CRAFT-R4-b3-D by varying the number of
threads from 1 to 12. The results are depicted in Fig. 9(a) and Fig. 9(b), respectively, where
nei and ncj denote the fault-resistance mode ζ(i, j, τbf , lm). Detailed results are reported
in Table 8. We can observe that FIRMER always outperforms the SMT-based approach.
On the fault-resistant benchmarks (i.e., curves with bj-nek such that j ≥ k), FIRMER
becomes more and more efficient while the improvement becomes less and less, with the
increase of the number of threads. On the non-fault-resistant benchmarks (i.e., curves
with bj-nek such that j < k), multi-threading does not improve performance and instead
slightly worsens performance, because they are easy to disprove and thread scheduling
causes overhead.

B.2 Effectiveness of the Vulnerable Gate Reduction
We evaluate FIRMER with/without the vulnerable gate reduction using 8 threads for SAT
solving, considering only the fault type τbf .

The results are reported in Table 9, where columns (#Gate) give the number of
vulnerable gates that should be considered when verifying fault-resistance. We can observe
that our vulnerable gate reduction is able to significantly reduce the number of vulnerable
gates that should be considered when verifying fault-resistance, 70% reduction rate on
average, consequently, significantly reducing the size of the resulting Boolean formulas
and accelerating fault-resistance verification, no matter the adopted countermeasure,
fault-resistance model, fault-resistance and size of the benchmarks.

38 Formal Verification of Fault Injection Countermeasures

Table 9: Results of FIRMER with/without vulnerable gate reduction using only
the fault type τbf .

Name Model Without reduction With reduction R DR#Var #Cls #Gate Time #Var #Cls #Gate Time

AES-R1-b1-D ζ(1, 1, τbf , lm) 77675 577979 24432 972.45 34822 246273 7920 161.31 3 3
AES-R1-b1-D ζ(2, 1, τbf , lm) 100592 417708 24432 3.52 46570 181812 7920 2.74 7 7
AES-R1-b2-D ζ(2, 1, τbf , lm) 149413 466954 33104 timeout 56196 243722 10640 1401.92 3 3
AES-R1-b2-D ζ(3, 1, τbf , lm) 165796 517451 33104 6.09 60291 268197 10640 5.10 7 7

AES-R2-b1-D ζ(1, 1, τbf , lm) 172147 1277143 49152 4749.92 74678 528469 15872 1165.31 3 3
AES-R2-b1-D ζ(2, 1, τbf , lm) 234594 982452 49152 40.11 92900 449460 15872 36.38 7 7
AES-R2-b2-D ζ(2, 1, τbf , lm) 303910 1319943 66592 timeout 124574 565820 21408 5983.87 3 3
AES-R2-b2-D ζ(3, 1, τbf , lm) 328643 1578156 66592 90.39 133659 632641 21408 85.52 7 7

CRAFT-R1-b1-C ζ(1, 1, τbf , lm) 9773 70431 2948 3.71 4326 26659 760 0.73 3 3
CRAFT-R1-b1-C ζ(2, 1, τbf , lm) 12422 61020 2948 0.28 5167 24760 760 0.15 7 7
CRAFT-R1-b2-C ζ(2, 1, τbf , lm) 88296 415886 19636 2263.07 35997 188158 5672 144.15 3 3
CRAFT-R1-b2-C ζ(3, 1, τbf , lm) 96746 500084 19636 4.10 38195 212732 5672 2.80 7 7
CRAFT-R1-b1-D ζ(1, 1, τbf , lm) 2657 17579 766 0.26 1347 7890 274 0.18 3 3
CRAFT-R1-b1-D ζ(2, 1, τbf , lm) 3493 15509 766 0.08 1659 7471 274 0.05 7 7
CRAFT-R1-b2-D ζ(2, 1, τbf , lm) 4716 22755 1139 1.32 2165 10140 376 0.34 3 3
CRAFT-R1-b2-D ζ(3, 1, τbf , lm) 5214 27519 1139 0.12 2347 11418 376 0.08 7 7
CRAFT-R1-b3-D ζ(3, 1, τbf , lm) 5990 31598 1296 10.24 2572 14530 448 0.68 3 3
CRAFT-R1-b3-D ζ(4, 1, τbf , lm) 6468 35656 1296 0.18 2730 15916 448 0.09 7 7

CRAFT-R2-b1-C ζ(1, 1, τbf , lm) 18430 134017 5656 71.00 8008 49988 1440 13.62 3 3
CRAFT-R2-b1-C ζ(2, 1, τbf , lm) 23948 115187 5656 0.76 9579 46410 1440 0.33 7 7
CRAFT-R2-b2-C ζ(2, 1, τbf , lm) 172699 818270 38872 timeout 70834 361687 11200 1897.00 3 3
CRAFT-R2-b2-C ζ(3, 1, τbf , lm) 189340 988323 38872 10.88 75079 407564 11200 7.80 7 7
CRAFT-R2-b1-D ζ(1, 1, τbf , lm) 5169 34088 1480 3.14 2595 15155 508 0.95 3 3
CRAFT-R2-b1-D ζ(2, 1, τbf , lm) 7058 29782 1480 0.16 3195 14214 508 0.07 7 7
CRAFT-R2-b1-D ζ(1, 2, τbf , lm) 5169 34088 1480 4.32 2595 15155 508 0.90 3 3
CRAFT-R2-b1-D ζ(1, 3, τbf , lm) 5168 34086 1480 3.59 2594 15153 508 0.68 3 3
CRAFT-R2-b2-D ζ(2, 1, τbf , lm) 9294 43390 2180 58.66 4015 19410 672 1.03 3 3
CRAFT-R2-b2-D ζ(3, 1, τbf , lm) 10303 51899 2180 0.25 4324 21975 672 0.11 7 7
CRAFT-R2-b2-D ζ(2, 2, τbf , lm) 9294 43390 2180 33.45 4015 19410 672 1.16 3 3

CRAFT-R3-b3-D ζ(3, 1, τbf , lm) 17284 92557 3776 1274.24 7066 38313 1104 13.28 3 3
CRAFT-R3-b3-D ζ(4, 1, τbf , lm) 18656 104353 3776 0.43 7462 41709 1104 0.28 7 7
CRAFT-R3-b3-D ζ(3, 2, τbf , lm) 17286 92576 3776 2323.82 7068 38332 1104 15.25 3 3
CRAFT-R3-b3-D ζ(3, 3, τbf , lm) 17284 92557 3776 1615.21 7066 38313 1104 16.54 3 3
CRAFT-R3-b3-D ζ(3, 4, τbf , lm) 17283 92553 3776 1461.67 7065 38309 1104 14.47 3 3

CRAFT-R4-b3-D ζ(3, 1, τbf , lm) 22681 122758 4992 2152.98 9209 50064 1440 23.70 3 3
CRAFT-R4-b3-D ζ(4, 1, τbf , lm) 24500 138447 4992 1.08 9732 54521 1440 0.78 7 7
CRAFT-R4-b3-D ζ(3, 2, τbf , lm) 22683 122789 4992 8174.81 9211 50095 1440 35.52 3 3
CRAFT-R4-b3-D ζ(3, 3, τbf , lm) 22683 122789 4992 4473.37 9211 50095 1440 26.63 3 3
CRAFT-R4-b3-D ζ(3, 4, τbf , lm) 22681 122758 4992 3864.15 9209 50064 1440 26.01 3 3
CRAFT-R4-b3-D ζ(3, 5, τbf , lm) 22680 122751 4992 3626.20 9208 50057 1440 26.52 3 3

LED-R1-b1-D ζ(1, 1, τbf , lm) 3886 29433 1312 3.87 1866 10623 240 0.52 3 3
LED-R1-b1-D ζ(2, 1, τbf , lm) 5329 21857 1312 0.10 2231 9401 240 0.07 7 7
LED-R1-b2-D ζ(2, 1, τbf , lm) 8128 27465 1888 27.49 2628 12473 336 1.63 3 3
LED-R1-b2-D ζ(3, 1, τbf , lm) 8991 30212 1888 0.20 2755 13268 336 0.10 7 7

LED-R2-b1-D ζ(1, 1, τbf , lm) 8139 61143 2496 26.85 3594 21569 480 1.80 3 3
LED-R2-b1-D ζ(2, 1, τbf , lm) 10202 53817 2496 0.29 4162 20409 480 0.16 7 7
LED-R2-b2-D ζ(2, 1, τbf , lm) 15630 69468 3536 279.56 5116 26420 672 3.33 3 3
LED-R2-b2-D ζ(3, 1, τbf , lm) 17116 80426 3536 0.57 5370 29218 672 0.22 7 7

LED-R3-b1-D ζ(1, 1, τbf , lm) 11963 90062 3680 63.25 5249 31588 720 4.41 3 3
LED-R3-b1-D ζ(2, 1, τbf , lm) 15464 77778 3680 0.45 6103 29921 720 0.24 7 7
LED-R3-b2-D ζ(2, 1, τbf , lm) 22448 103306 5184 453.41 7735 38318 1008 7.91 3 3
LED-R3-b2-D ζ(3, 1, τbf , lm) 24493 121295 5184 0.69 8116 41939 1008 0.37 7 7

GIFT-R1-b1-D ζ(1, 1, τbf , lm) 2959 20017 912 0.30 1214 7028 224 0.15 3 3
GIFT-R1-b1-D ζ(2, 1, τbf , lm) 4316 17002 912 0.13 1500 6522 224 0.10 7 7
GIFT-R1-b2-D ζ(2, 1, τbf , lm) 5835 28978 1472 1.04 2058 10370 336 0.25 3 3
GIFT-R1-b2-D ζ(3, 1, τbf , lm) 6425 35552 1472 0.25 2184 11760 336 0.15 7 7

GIFT-R2-b1-D ζ(1, 1, τbf , lm) 5756 39119 1776 0.90 2323 13610 432 0.31 3 3
GIFT-R2-b1-D ζ(2, 1, τbf , lm) 8298 33221 1776 0.25 2908 12597 432 0.18 7 7
GIFT-R2-b2-D ζ(2, 1, T , lm) 11673 55595 2848 4.41 3817 19365 624 0.69 3 3
GIFT-R2-b2-D ζ(3, 1, τbf , lm) 12774 67536 2848 0.53 4070 21962 624 0.32 7 7

PRESENT-R1-b1-D ζ(1, 1, τbf , lm) 4063 27837 1224 0.48 1576 8719 260 0.16 3 3
PRESENT-R1-b1-D ζ(2, 1, τbf , lm) 5291 23503 1224 0.17 1871 8342 260 0.11 7 7
PRESENT-R1-b2-D ζ(2, 1, τbf , lm) 8967 36377 1992 1.55 2665 13245 448 0.27 3 3
PRESENT-R1-b2-D ζ(3, 1, τbf , lm) 9805 42551 1992 0.28 2855 15211 448 0.19 7 7

Continued on next page

H. Tan et al. 39

Table 9 – continued from previous page
Name Model Without reduction With reduction R DR#Var #Cls #Gate Time #Var #Cls #Gate Time

PRESENT-R2-b1-D ζ(1, 1, τbf , lm) 7976 55262 2400 1.76 3074 17622 504 0.40 3 3
PRESENT-R2-b1-D ζ(2, 1, τbf , lm) 10263 47100 2400 0.33 3652 16721 504 0.20 7 7
PRESENT-R2-b2-D ζ(2, 1, τbf , lm) 17371 71719 3888 6.10 5418 25447 848 0.74 3 3
PRESENT-R2-b2-D ζ(3, 1, τbf , lm) 19080 84140 3888 0.58 5751 28524 848 0.36 7 7

SIMON-R1-b1-D ζ(1, 1, τbf , lm) 1087 7301 320 0.12 781 4788 176 0.10 3 3
SIMON-R1-b1-D ζ(2, 1, τbf , lm) 1528 6516 320 0.07 991 4519 176 0.06 7 7
SIMON-R1-b2-D ζ(2, 1, τbf , lm) 2182 10860 520 0.30 1348 7121 272 0.19 3 3
SIMON-R1-b2-D ζ(3, 1, τbf , lm) 2388 12906 520 0.12 1458 8223 272 0.11 7 7

SIMON-R2-b1-D ζ(1, 1, τbf , lm) 1941 13625 592 0.27 1312 8555 336 0.14 3 3
SIMON-R2-b1-D ζ(2, 1, τbf , lm) 2654 12111 592 0.11 1646 8156 336 0.09 7 7
SIMON-R2-b2-D ζ(2, 1, τbf , lm) 4070 19437 944 0.81 2485 12623 496 0.32 3 3
SIMON-R2-b2-D ζ(3, 1, τbf , lm) 4443 22738 944 0.20 2690 14420 496 0.16 7 7

	Introduction
	Preliminary
	Notations
	Synchronous Circuits
	Fault Injection Attacks
	Countermeasures

	The Fault-Resistance Verification Problem
	Problem Formulation
	An Illustrating Example

	SAT-based Formal Verification
	Overview
	Fault Encoding
	SAT Encoding
	Vulnerable Gate Reduction

	Evaluation
	Related work
	Conclusion
	Detailed Results of the Number of Threads of Section 5
	Fault-resistance Verification with Fault Type bf Only
	Efficiency of FIRMER for Fault-resistance Verification
	Effectiveness of the Vulnerable Gate Reduction

