
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 3, pp. 530–573. DOI:10.46586/tches.v2024.i3.530-573

Thunderbird: Efficient Homomorphic Evaluation
of Symmetric Ciphers in 3GPP by combining two

modes of TFHE
Benqiang Wei1,2 , Xianhui Lu1,2(�) , Ruida Wang1,2 , Kun Liu1,2 ,

Zhihao Li1,2 and Kunpeng Wang1,2

1 Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, Chinese
Academy of Sciences, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
{weibenqiang,luxianhui}@iie.ac.cn

Abstract. Hybrid homomorphic encryption (a.k.a., transciphering) can alleviate the
ciphertext size expansion inherent to fully homomorphic encryption by integrating a
specific symmetric encryption scheme, which requires selected symmetric encryption
scheme that can be efficiently evaluated homomorphically. While there has been a re-
cent surge in the development of FHE-friendly ciphers, concerns have arisen regarding
their security. A significant challenge for the transciphering community remains the
efficient evaluation of symmetric encryption algorithms that have undergone extensive
study and standardization.
In this paper, we present an evaluation framework, dubbed Thunderbird, which for the
first time presents efficient homomorphic implementations of stream ciphers SNOW
3G and ZUC that are standardized in the 3G Partnership Project (3GPP). Specifically,
Thunderbird combines gate bootstrapping mode and leveled evaluation mode of TFHE
to cater to various function types within symmetric encryption algorithms. In the
gate bootstrapping mode, we propose a variant of the homomorphic full adder that
consumes only a single blind rotation, which may be of independent interest. In the
leveled evaluation mode, we employ the CMux gate combining with hybrid packing
technique to efficiently achieve lookup tables, significantly reducing the need for gate
bootstrapping, and adapt the current optimal circuit bootstrapping to expedite the
Thunderbird framework. We have implemented the Thunderbird framework in the
TFHEpp public library. Experimental results demonstrate that SNOW 3G and ZUC
can homomorphically generate a keyword in only 7 seconds and 9.5 seconds, which
are 52× and 32× faster than the trivial gate bootstrapping mode, respectively. For
the homomorphic evaluation of the AES-128 algorithm using Thunderbird, we achieve
a speedup of 1.9× in terms of latency and use less evaluation key compared to the
state-of-the-art work.
Keywords: Hybrid homomorphic encryption · TFHE · SNOW 3G · ZUC · AES
· Standardized Cipher

1 Introduction
Fully Homomorphic Encryption (FHE) is a cryptographic technique with the remarkable
ability to perform computations on encrypted data without requiring decryption. This
property makes it useful in privacy-preserving applications such as cloud computing, medical
diagnostics and financial analytics. However, current fully homomorphic encryption suffers
from two serious drawbacks: first, the application of FHE results in a severe efficiency
penalty. Secondly, existing FHE schemes suffer from ciphertext size expansion, where

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-01-15 Accepted: 2024-03-15 Published: 2024-07-18

https://doi.org/10.46586/tches.v2024.i3.530-573
https://orcid.org/0009-0001-0653-2070
https://orcid.org/0000-0001-7091-5810
https://orcid.org/0009-0002-1276-1299
https://orcid.org/0009-0002-3781-7404
https://orcid.org/0000-0002-4569-5921
https://orcid.org/0000-0002-3848-6419
mailto:weibenqiang@iie.ac.cn,luxianhui@iie.ac.cn
http://creativecommons.org/licenses/by/4.0/

Benqiang Wei et al. 531

the ciphertext size is several orders of magnitude larger than the corresponding plaintext
size [DGH+23]. This expansion is extremely unfriendly to embedded devices with limited
bandwidth, memory, and computational power. There are two distinct approaches to
address the issue of ciphertext expansion: one is to utilize hybrid homomorphic encryption
(HHE) [NLV11], and the other is to leverage LWE encryption combined with efficient
LWEs-to-RLWE ciphertext conversion [CDKS21, BCK+23]. In this paper, we concentrate
on the HHE that achieves the optimal ciphertext expansion ratio.

1.1 Hybrid Homomorphic Encryption
Hybrid homomorphic encryption, also known as transciphering, was initially proposed
by Naehrig et al. [NLV11] to reduce the transmission cost between the client and the
cloud by combining FHE and symmetric encryption algorithms. Specifically, instead of
directly using FHE to encrypt the data, the client first encrypts the plaintext m using a
symmetric encryption (SYM) scheme and then sends the ciphertext SYM(m) to the cloud
server. The cloud server performs homomorphic evaluation on the decryption circuit of
SYM and converts SYM(m) to homomorphic ciphertext FHE(m), enabling the execution
of homomorphic function computation. As a result, the ciphertext expansion ratio can be
reduced to 1. Note that the data to be sent also includes the evaluation key, but its size is
always much smaller than the homomorphic ciphertext size of m.

Selection of FHE Scheme for HHE Since Gentry’s pioneering work in 2009 [Gen09], vari-
ous practical FHE schemes and their implementations have been proposed, notable schemes
include BGV [BGV14], BFV [Bra12, FV12], CKKS [CKKS17] and TFHE [CGGI20]. The
BGV/BFV scheme supports leveled homomorphic evaluation and Single Instruction Mul-
tiple Data (SIMD) operation, but their parameter sets must be chosen according to the
multiplication depth of the target application. In general, bootstrapping, which is used to
refresh the noise inside the ciphertext to support further computation, is not recommended
to use due to the high computational cost. The CKKS scheme specializes in enabling
approximate homomorphic computation of real numbers. The TFHE scheme stands out
by offering efficient gate bootstrapping and functional bootstrapping, which allows for the
computation of arbitrary functions over finite precision while refreshing the noise. Unlike
the BGV/BFV/CKKS schemes, it is free from the circuit multiplication depth limitation
and is now widely favored for various applications [CJP21, TCBS23]. There is no doubt
that the selection of FHE scheme has a substantial impact on the operational efficiency of
the hybrid homomorphic encryption framework. When considered globally, the efficiency
performance of different FHE schemes for a given real-world computational task varies
significantly.

Selection of Symmetric Encryption Scheme for HHE The HHE execution framework
can reduce the transmission bandwidth at the cost of increasing the computational workload
of the server compared with the traditional FHE framework. To be more specific, the
server is required to homomorphically evaluate the decryption circuit of the symmetric
encryption scheme used, this would lead to a non-negligible additional computational
overhead on the server side. Consequently, the selection of the symmetric encryption
scheme becomes a crucial consideration when applying the HHE framework.

At the beginning, researchers mainly focused on the evaluation of standardized symmet-
ric encryption algorithms, such as the NIST standardized block cipher AES. Various evalu-
ation methods for AES based on different FHE schemes [GHS12, CLT14, DHS16, CHK19],
have been continuously proposed. However, AES was not considered suitable for the tran-
sciphering framework due to the long evaluation latency caused by the high multiplication
depth. Subsequently, some researchers shifted their attention towards evaluating lightweight

532 Efficient Homomorphic Evaluation of Ciphers in 3GPP via TFHE

ciphers, such as SIMON [LN14] and Prince [DSES14]. In the context of applying hybrid
homomorphic encryption, stream ciphers present an appealing choice over block ciphers.
This preference arises from the fact that when using stream ciphers, the generation of the
keystream is independent of the data to be encrypted or decrypted and the homomorphic
keystream can be generated in advance offline. Subsequently, when the cloud receives
symmetrically encrypted data, it can conveniently perform the transciphering operation by
homomorphically XORing it with the pre-computed homomorphic encryption key online.
Canteaut et al. [CCF+16] proposed the first HHE framework based on stream ciphers
and evaluated Trivium using the BGV scheme, which belongs to the eSTREAM portfolio.
Bendoukha et al. [BBS21] evaluated Grain128-AEAD, a NIST finalist for lightweight
cryptography, based on TFHE. Another line of research on HHE is to design FHE-friendly
symmetric encryption ciphers characterized by lower multiplication complexity and multi-
plication depth. Block cipher LowMC was first designed for MPC and FHE scenarios by
Albrecht et al. [ARS+15]. Since then a large number of FHE-friendly ciphers continue
to be proposed such as FLIP [MJSC16], FiLIP [MCJS19, HMR20], Elisabeth [CHMS22],
Rasta [DEG+18], Masta [HKC+20], Dasta [HL20], Fasta [CIR22] and Pasta [DGH+23].

Indeed, these newly designed ciphers bring substantial improvements to the efficiency
of the HHE framework. However, they also pose a distinctive challenge when it comes to
security analysis. This challenge primarily stems from the fact that these ciphers often
incorporate novel mathematical structures and components. As a result, the time required
for thorough security analysis can be extensive, and the path to their deployment in
industrial applications or potential standardization remains uncertain. Furthermore, some
of these newly developed ciphers have faced security attacks, raising concerns about their
reliability. The original design of FLIP was broken by algebraic attack [DLR16]. Liu et
al. [LSMI21] proposed an algebraic attack on Rasta and Dasta with a reduced number
of rounds. They used linearization techniques to exploit the low-degree expressions of
Rasta’s inverse nonlinear layer for their attack. Chaghri [AMT22], a new block cipher
with lower multiplication depth than AES, was quickly attacked by [LAW+23]. Recently,
Rubato [HKL+22] over Zq was also found to be insecure [GAH+23] when q is a non-prime
number. Gilbert et al. [GBJR23] presented several variants of key-recovery attack on
Elisabeth-4 with 128-bit security, which are time-memory tradeoffs. And an algebraic
attack on CKKS-friendly cipher HERA [CHK+21] using multiple collisions was proposed
by [LKSM23]. Radheshwar et al. [RKMR23] studied differential fault attack against Rasta
and FiLIP ciphers. Most of these passwords have been patched afterward, but there is a
long way to go to standardize them.

Considering the security challenges associated with newly designed ciphers in the
context of HHE, it is a judicious approach to prioritize the efficient evaluation of symmetric
cipher algorithms that have already undergone rigorous study and standardization. The 3G
Partnership Project (3GPP) has introduced widely adopted confidentiality and integrity
algorithms for LTE mobile networks, which include 128-EEA1 and 128-EIA1 based on
SNOW 3G, 128-EEA2 and 128-EIA2 based on AES, and 128-EEA3 and 128-EIA3 based
on ZUC. It’s worth noting that SNOW 3G1, AES and ZUC have also been selected as the
core encryption algorithms for the 5G communication system. However, to the best of our
knowledge, except for the AES algorithm, there are no publicly available homomorphic
evaluations and related benchmarks for the stream ciphers SNOW 3G and ZUC. Therefore,
it is evidently both necessary and urgent to delve into the application of SNOW 3G
and ZUC within HHE. Such research endeavors could potentially pave the way for their
integration into the HHE framework.

1Although there are some attacks on SNOW 3G, such as distinguishing and correlation attacks in
[YJM19, GHW23], the complexity of their attacks are far beyond the 128-bit security claimed by SNOW
3G. Only when the key length of SNOW 3G is increased to 256 bits, this result can be considered as an
academic attack. Therefore, SNOW 3G is still secure.

Benqiang Wei et al. 533

1.2 Contributions and Techniques
In this paper, we focus on the efficient evaluation of standardized symmetric ciphers
in 3GPP and explore the prospects of their application in the HHE framework. Our
contributions and techniques are summarized as follows.

• We present an evaluation framework, dubbed Thunderbird, which combines the
existing gate bootstrapping and leveled homomorphic evaluation modes of TFHE,
leading to a significant efficiency improvement for the homomorphic evaluation of the
stream cipher SNOW 3G and ZUC. In the gate bootstrapping mode, for the addition
modulo 232 non-linear function, we propose a variant of the full adder that consumes
only one blind rotation operation, which can be of independent interest. To compute
Sbox nonlinear functions efficiently, we customize the CMux-based evaluation by
combining hybrid packing technique. Particularly, for SNOW 3G, we dramatically
reduce the number of gate bootstrapping used by utilizing 8-to-32-bit lookup tables.

• Secondly, circuit bootstrapping (TLWE-to-TRGSW) serves as a crucial bridge within
the Thunderbird framework. We conduct a comprehensive analysis and provide an
overview of the current state-of-the-art techniques in circuit bootstrapping . Then,
we adapt the optimal circuit bootstrapping to accelerate the Thunderbird framework.
Our tuning is 1.6× faster than the current publicly available circuit bootstrapping
implementation.

• Moreover, we demonstrate the versatility of Thunderbird by extending it to the
homomorphic evaluation of the block cipher AES. Specifically, instead of following
standard AES implementation, we utilize a LUT-based AES implementation that
merges SubBytes, ShiftRows and MixColumns operations into 8-to-32-bit tables,
thus enhancing its compatibility with Thunderbird. The advantage of our LUT-based
AES evaluation over the state-of-the-art is its reduced consumption of XOR gates
and smaller evaluation key size.

• Finally, we implement the Thunderbird framework in the TFHEpp public homomor-
phic encryption library. The experimental results demonstrate that Thunderbird-
based implementations yield impressive performance gains compared to gate boot-
strapping evaluation mode. For SNOW 3G, generating a keyword takes only 7
seconds, which is 52 times faster than the gate bootstrapping mode, while for ZUC, it
takes only 9.5 seconds, a 32-fold improvement over the gate bootstrapping mode. Re-
garding AES, when Thunderbird is integrated with the homomorphic gate HomoXOR,
the latency for one block takes 110 seconds. Additionally, when Thunderbird is
combined with the freeXOR gate, the latency of an AES block is further reduced to 46
seconds, which is about 2 times faster than current state-of-the-art implementation.

1.3 Related Work
In Section 1.3.1, we briefly describe the some works about how to improve the evaluation
latency of existing ciphers that have been standardized and well-studied. And we shortly
discuss the design and performance of FHE-friendly symmetric encryption algorithms with
low multiplicative complexity in Section 1.3.2. In Section 1.3.3, we describe an alternative
method used to reduce transmission bandwidth for FHE applications without symmetric
encryption.

1.3.1 Transciphering Performance using Standardized Cipher

AES stands as a standardized and extensively researched symmetric encryption algorithm,
having evolved into one of the most widely used algorithms. Now it serves as a crucial

534 Efficient Homomorphic Evaluation of Ciphers in 3GPP via TFHE

benchmark in both secure multiparty computing and fully homomorphic encryption
research. Gentry et al. [GHS12] introduced the initial homomorphic evaluation based
on the BGV scheme, reporting latencies of 4 minutes and 18 minutes without and with
bootstrapping, respectively. In other words, each AES block took approximately 6s and
2s under amortization. Recent advancements by Trama et al. [TCBS23] showcased an
AES block evaluation time of only 4.2 minutes using functional bootstrapping under a
single thread. With the integration of multi-threading, they asserted that homomorphic
evaluation of an AES block could be accomplished in a mere 28 seconds. Wei et al.
[WWL+23] presented a reduced evaluation latency of AES to 86 seconds under a single
thread, employing hybrid packing and circuit bootstrapping techniques. Homomorphic
evaluation of AES based on the CKKS scheme was proposed for the first time in [ADE+23]
and the authors further demonstrated the advantages of the transciphering framework
for deep neural network evaluation, achieving an evaluation latency of 31 minutes using
multiple cores under CPU, with an amortization time of 56.7 milliseconds. For the
standardized Trivium, which belongs to the eSTREAM portfolio, was initial evaluated
by [CCF+16] and further improved by Balenbois et al. [BOS23]. Utilizing functional
bootstrapping and parallelization, they achieved a latency of about 1.89 milliseconds per bit
using 128 virtual CPUs. Additionally, Grain128a, a NIST lightweight cryptography finalist,
garnered attention in the work of Bendoukha [BBS21], who provided a homomorphic
evaluation using the TFHE homomorphic compiler. Further, Bendoukha et al. [BCBS23]
reduced the running time of warmup circuit of Grain128-AEAD to 3.98 minutes by means
of functional bootstrapping,

1.3.2 The Design and Performance of FHE-friendly Ciphers for Transciphering

Since the previous standardized symmetric encryption algorithms were designed with
security and efficient implementation in mind, they are not customized for FHE. As a
result, the excessive multiplication depths lead them to be not FHE-friendly. The design
of FHE-friendly symmetric algorithms has received a lot of attention, and symmetric
encryption algorithms with lower multiplication depths and multiplication complexities
have been continuously proposed. FLIP stream cipher [MJSC16] combines the advantages
of block cipher and stream cipher to make the keystream have constant and small noise
during homomorphic evaluation. For the improved FLIP cipher FiLIP over Z2, initially
proposed by Méaux et al. [MCJS19], in [CDPP22] Cong et al. presented the fastest
evaluation time of only 2.6ms per bit. For the Z2q cipher Elisabeth-4 [CHMS22], a stream
cipher tailored for TFHE’s functional bootstrapping, an amortization of about 22.8ms
per bit is achieved under parallel acceleration. The pursuit of minimizing AND depth
and the number of ANDs required per encrypted bit originated with Rasta [DEG+18].
Subsequent studies, including Masta, Dasta, and Fasta, aimed to improve upon Rasta.
Recently, Fp -type cipher Pasta [DGH+23], was designed for BGV/BFV scheme, and their
starting points come from concrete application cases, such as matrix-vector multiplication.
For the Pasta-3, they gave 128*16 bits transciphering in 9.28s based on the SEAL library
[SEA23], equating to approximately 4.5ms per bit.

In Asiacrypt 2021 [CHK+21], the authors presented a Real-to-Finite-field (RtF) hybrid
framework to support the CKKS scheme by combining the BFV scheme and proposed
the FHE-friendly stream cipher HERA. In Eurocrypt 2022, Ha et al. [HKL+22] proposed
a faster Rubato cipher suitable for the RtF framework. HERA and Rubato ciphers,
specifically tailored for the CKKS scheme, achieved throughput of 25µs and 18µs per bit,
respectively.

Benqiang Wei et al. 535

1.3.3 Alternative Approach

In addition to utilizing hybrid homomorphic encryption, Chen et al. [CDKS21] proposed
an alternative method that can effectively reduce the transmission bandwidth of the client.
Briefly, the client encrypts the message using LWE-based symmetric encryption scheme.
After receiving the LWE ciphertexts, the cloud converts them to RLWE ciphertext using
the LWEs-to-RLWE algorithm and then performs the homomorphic function computation.
For all LWE ciphertexts (ai, bi), the random vector part of the i-th LWE ciphertext ai
can be obtained by a pseudo-random number generator f : {0, 1}∗ → ZNq , with input seed
se and index i, i.e., ai = f(se; i).

As a result, the communication cost per LWE ciphertext is only log q bits. The cost
of this approach is transferred to the server-side LWEs-to-RLWE ciphertext conversion.
Chen et al proposed an efficient method to pack many LWE ciphertexts into one RLWE
ciphertext by evaluating trace function. Recently, Bae et al. [BCK+23] proposed more
efficient ring packing using MLWE ciphertexts, which significantly outperforms the HERA
and Rubato proposals when applied to the conversion of LWEs to CKKS ciphertext.

1.4 Paper organization
The paper is organized as follows. Section 2 gives some preliminaries about the TFHE
scheme used in this paper. In Section 3, we first discuss about the evaluation strategy
of the standardized algorithm SNOW 3G. Section 4 describes about the optimization of
circuit bootstrapping and presents our evaluation framework. Based on our framework, we
give efficient evaluation of ZUC and AES in Section 5 and Section 6. Section 7 shows the
specific implementation and experimental results. Section 8 concludes this paper.

2 Preliminaries
In this section, we will review and explain some basic concepts throughout this work,
especially the building blocks of the TFHE scheme.

2.1 Notations
We denote the security parameter by λ. The Real Torus T = R/Z is the set of real numbers
modulo 1. Note that we define the interval of T to be [−1/2, 1/2]. Let B = Z2. Let
A be a set, we denote by Anq the set of vectors with n elements in A modulo q, and by
AN [X]n the set of n vectors with polynomials modulo (XN + 1), where N is a power of 2.
Namely, ZN [X] = Z[X]/(XN + 1) is integer polynomials modulo XN + 1, BN [X] means
the polynomials in ZN [X] with binary coefficients, and TN [X] is the polynomials with
coefficients in T.

We use lower-case bold letters and upper-case bold letters to represent the vectors
and matrices, respectively. For two vectors a and b, we denote their inner product by
〈a,b〉. Mm,n(E) is m × n -size matrix with entries in E. Ring elements are indicated
using lower-case letters, e.g., a ∈ AN [X]. The notation ai refers to the i-th coefficient of
polynomial a(x). We use x← D to represent that x itself or coefficients are sampled from
the distribution D. We denote by � the integer modular addition mod 232 and by ⊕ the
bitwise exclusive OR.

2.2 The TFHE Cryptosystem
The TFHE scheme was proposed by Chillotti et al. [CGGI20] which is built on top of
the FHEW scheme [DM15]. There are three different ciphertext types used for efficient
bootstrapping of TFHE: TLWE, TRLWE and TRGSW. It is worth emphasizing that

536 Efficient Homomorphic Evaluation of Ciphers in 3GPP via TFHE

these three ciphertext types can be transformed into each other to cope with different
computational tasks. Next, we briefly introduce them as follows.

• TLWE. TLWE is the Torus version of the learning with errors (LWE) problem
[Reg09], which can be expressed as (a, b) ∈ Tn+1. Specifically, b = 〈a, s〉 + m + e,
where s ← Bn is the secret key, m ∈ T is the encoded plaintext message and the
error e is drawn from a Gaussian distribution with mean 0 and standard deviation σ.

• TRLWE. TRLWE is the Torus version of the ring-LWE problem [LPR10] and can be
represented as (a(x), b(x)) ∈ TN [X]2. To be specific, b(x) = a(x)s(x) +m(x) + e(x),
where s(x) ∈ BN [X] is the secret key, m(x) ∈ TN [X] is the plaintext message
polynomial and the error e(x) ∈ TN [X] is a polynomial with random coefficients
ei ∈ T sampled from a Gaussian distribution with mean 0 and standard deviation σ.

• TRGSW. TRGSW can be seen as a vector composed of TRLWE, i.e.,M2`,2(TN [X]).
In detail, TRGSW encrypts the message m ∈ B into C as follows:

C =

a1(x) b1(x)
a2(x) b2(x)

...
...

a`(x) b`(x)
a`+1(x) b`+1(x)

...
...

a2`(x) b2`(x)

+m ·

1/Bg 0
1/B2

g 0
...

...
1/B`g 0

0 1/Bg
...

...
0 1/B`g

where (ai(x), bi(x)), for 1 ≤ i ≤ 2` is are TRLWE ciphertexts encrypting 0 using the
same secret key, Bg denotes the basis of gadget decomposition and ` is the length of
gadget decomposition. TRGSW ciphertext is used as bootstrapping key in TFHE.

2.3 Building Blocks in TFHE
In this subsection, we will briefly introduce the building blocks in TFHE bootstrapping,
such as Sample Extraction, Key Switching, CMux gate, Blind Rotation.

2.3.1 Sample Extraction

Sample Extraction can extract the TLWE ciphertext from the TRLWE ciphertext. Specif-
ically, given a ciphertext c = (a(x), b(x)) ∈ TRLWE(m(x)) and an index i ∈ [0, N − 1], we
can extract the TLWE ciphertext encrypting the i-th coefficient of m(x) without intro-
ducing any new noise and we denote this operation by SampleExtracti(c). For example,
SampleExtract0(c) is TLWE(m0)= (a0,−aN−1, · · · ,−a1, b0) ∈ TN+1. This can be simply
proved by the decryption function of TRLWE.

2.3.2 Key Switching

• TLWE-to-T(R)LWE In [CGGI20], the authors proposed two types of key switching.
One is called Public KeySwitching, which allows to implement the public function f
operation on message while packing multiple TLWE ciphertexts. It is used as one of
the building blocks of the TFHE bootstrapping to implement dimension switching.
We call it IdentityKeySwitching when the function is an identity function. Another
is called Private KeySwitching, which allows to embed a private function f into the
key switching key to implement function computation on the message. We put the
details of these two algorithms in Appendix B.1.

Benqiang Wei et al. 537

• TRLWE-to-TRLWE Ciphertext switching between RLWEs is an important com-
ponent in fully homomorphic encryption, and is widely used in schemes constructed
based on the RLWE assumption, such as BGV, BFV, CKKS and TFHE. It is mainly
used to switch the secret key of ciphertext after certain homomorphic operations, such
as ciphertext multiplication, and automorphism on the ciphertext. In essence, the
ciphertext switching between RLWEs is a homomorphic decryption phase operation.
For details, see Appendix B.2. For the analysis of noise analysis, we refer the readers
to [MP21].

Key Switching can be used to pack some TLWE ciphertexts into a TRLWE ciphertext,
while Sample Extraction can unpack TLWE from TRLWE ciphertext. They enable the
inter-conversion of T(R)LWE and TRLWE ciphertexts.

2.3.3 CMux Gate

CMux gate stands for Controlled MUltipleXer and is the fundamental computational unit
in TFHE bootstrapping. Now let us first review the definition of external multiplication:

� : TRGSW× TRLWE→ TRLWE
(A, b) 7−→ A� b = G−1(b) ·A,

where G−1 is the gadget decomposition. The uniqueness of the noise growth of the external
multiplication is the asymmetric growth, allowing the noise of the accumulator to grow
linearly.

CMux gate is constructed by external multiplication, which takes two TRLWE cipher-
texts d0, d1 as input and one TRGSW ciphertext c as selected input, and then outputs
one TRLWE ciphertext:

CMux(c, d1, d0) = c� (d1 − d0) + d0.

For more details on the external multiplication, we refer the readers to [CGGI20].

2.3.4 Blind Rotation

Blind Rotation (BR) is the central building block in TFHE bootstrapping, which is
composed of n CMux gates, where n is the dimension of the TLWE ciphertext to be
bootstrapped. Its key idea is that it can blindly rotate the test polynomial using encrypted
number, for more details refer to Algorithm 1.

Another important application of blind rotation is lookup table (LUT) by vertical
packing, which is introduced in [CGGI20]. Suppose we want to find the correspond-
ing value of x in Table A. We decompose x in a binary way, i.e., x =

∑n−1
i=0 xi ·

2i, and encrypt each component Ci = TRGSW(xi), i ∈ [0, n − 1]. Each function
value of Table A is encrypted as TRLWE ciphertext by coefficient packing. By call-
ing BlindRotation(A, (20, 21, · · · , 2n−1, 0), (C0, · · · , Cn−1)), the function value we want to
find will be moved to the constant term position and then the desired TLWE ciphertext
will be obtained using SampleExtract0 procedure.

2.4 Bootstrapping Types in TFHE
In this subsection, we will briefly introduce several different bootstrap types in the TFHE
scheme to give the readers a more intuitive understanding.

538 Efficient Homomorphic Evaluation of Ciphers in 3GPP via TFHE

Algorithm 1 BlindRotation Algorithm [CGGI20]
Input: A TRLWE ciphertext(or noiseless) c ∈ TRLWE(m(x)).
Input: Integer vector (a1, · · · , an, b) ∈ Zn+1

2N
Input: A set of TRGSW ciphertexts Ci encrypting si, i ∈ [1, n]
Output: A TRLWE ciphertext of X−ρ ·m(x), where ρ = b−

∑n
i=1 si · ai mod 2N

1: ACC← X−b · c
2: for i = 1 to n do
3: ACC← CMux(Ci, Xai ·ACC,ACC)
4: end for
5: return ACC

2.4.1 Gate Bootstrapping

Compared with other fully homomorphic encryption schemes, the TFHE scheme is charac-
terized by efficient bootstrapping operation. It supports various homomorphic logic gates
such as NOT, AND, OR, XOR, etc. This operation is called Gate Bootstrapping (GBS)
[CGGI20], which implies that every logic gate is immediately followed by a bootstrapping
operation. For ease of representation, in gate bootstrapping, binary messages 0 and 1 are
encoded as −1/8 and 1/8 over the torus, respectively. Now assume two TLWE ciphertexts
c1 and c2, then some homomorphic gates are as follows:

• HomoNOT(c) = (0, 1/8) - c (no bootstrapping);

• HomoAND(c1, c2) = (0,−1/8)+ Bootstrap(c1 + c2);

• HomoXOR(c1, c2) = (0, 1/4)+Bootstrap(2(c1 ± c2));

• HomoOR(c1, c2) = (0, 1/8)+ Bootstrap(c1 + c2);

• HomoMUX(c, d0, d1) can evaluate c?d1 : d0 = (c∧ d1)⊕ ((1− c)∧ d0) using two gate
bootstrappings and a public key switching. Compared to CMux gate, HomoMUX is
more expensive, but its input and output ciphertext are both TLWE ciphertexts.

For the details of Bootstrap operation, we refer the readers to Appendix A.

2.4.2 Functional Bootstrapping and Multi-value Bootstrapping

Functional Bootstrapping (FBS) [BGGJ19] (or called Programmable Bootstrapping [CJP21],
PBS) is an extension of gate bootstrapping that supports embedding the value of an arbi-
trary function into the test polynomial T (X). Therefore, it is a very powerful tool that
provides a novel way to evaluate any negacyclic function f : Zt → Zt (i.e., it has to satisfy
f(m + t/2) = −f(m) for all m due to modulo XN + 1) on the encrypted input. If f is
public, then the test polynomial is set as

T (X) =
N−1∑
i=0

f(
⌊
i · t
2N

⌉
) ·Xi.

Note that T (X) contains some redundancy in order to decode noisy ciphertexts.
Furthermore, multi-value functional bootstrapping (MVBS) is first proposed by Carpov

et al. [CIM19], which supports the computation of multiple functions on the same input
while consuming only one functional bootstrapping. Firstly, extract a common function tv0
from all the test polynomial functions (TVFi), and then blindly rotate the test polynomial
v to obtain the ACC using the input TLWE. Finally, multiply TVFi

tv0
(with a small canonical

coefficient) by the accumulator ACC to obtain the result of the function, respectively. We

Benqiang Wei et al. 539

refer the readers to Algorithm 4 in [CIM19]. In 2021, Chillotti et al. [CLOT21] proposed
a novel PBSmanyLUT technique, which can also evaluate many functions simultaneously.
Their strategy is to encode all function values entirely into a test polynomial, thus
consuming only an blind rotation. Finally, all function results are rotated to the first few
coefficients of the test polynomial. We refer the readers to Algorithm 6 in [CLOT21].

2.4.3 Circuit Bootstrapping

In addition to the fully homomorphic evalution (FHE) mode, TFHE also supports a leveled
homomorphic evaluation (LHE) mode, which is built from CMux gates. As shown in
Section 2.3.3, the external multiplication requires the inputs to be the TRLWE ciphertext
and TRGSW ciphertext and the output to be the TRLWE ciphertext. As a result, we
cannot arbitrarily combine circuits like gate bootstrapping or functional bootstrapping.
The multiplication between two TRLWEs is not defined in TFHE. Fortunately, circuit
bootstrapping (CBS) can convert the TLWE to TRGSW ciphertext, thus making the LHE
mode of TFHE feasible. However, its running time is much more expensive than gate
bootstrapping. In Section 4, we would describe in detail circuit bootstrapping and its
optimization.

3 Homomorphic Evaluation of SNOW 3G
3.1 A Short Specification of SNOW 3G
SNOW 3G is the core of the 3GPP standard algorithms EEA2 & EIA2 for data confiden-
tiality and data integrity. It is a stream cipher algorithm for 32-bit word implementations.
It consists of a 16-level linear feedback shift register (LFSR) on F232 and a finite state
machine (FSM). The generation of the keystream sequence consists of an initialization
process shown in Figure 10 and a keystream generation process, as shown in Figure 1.
Here, we mainly focus on the keystream generation stage.

Keystream Generation: After the initialization stage, the FSM is clocked once. The
output word of the FSM is discarded. Then the LFSR is clocked once in Keystream Mode.
After that n keystream words are produced by repeating the following three steps:
for t = 1 to n:

(1) The FSM is clocked and produces a 32-bit output word F ;

(2) The next keystream word is computed as zt = F ⊕ s0, for 1 ≤ t ≤ n;

(3) Then the LFSR is clocked in Keystream Mode.

3.2 Overall Analysis of Function in SNOW 3G
We now first summarize the function types required to perform SNOW 3G, since they
would collectively determine the choice of homomorphic computation method and message
encoding of FHE scheme. In the context of FHE, the choice of message space size affects
the choice of parameters for the homomorphic encryption scheme. The second thing to
note is that the choice of message encoding determines the type of computation supported
by the corresponding homomorphic ciphertext. For example, in BGV, BFV, and CKKS
schemes, slot encoding is usually used to support SIMD addition and multiplication, but
nonlinear functions cannot be evaluated directly and can only be handled by approximate
polynomials. The TFHE scheme supports efficient universal gate bootstrapping so that
arbitrary functions can be computed by circuit constructed by gate bootstrapping. The

540 Efficient Homomorphic Evaluation of Ciphers in 3GPP via TFHE

𝑠"# 𝑠"" ⋯ 𝑠# 𝑠% 𝑠&

' '

𝑅1 𝑅2 𝑅3

FSM

LFSR

𝛼𝛼-"

𝑍/

		𝑆𝐵" 		𝑆𝐵%

Figure 1: Keystream generation of SNOW 3G.

ability of functional bootstrapping to compute arbitrary functions defined in the message
space for free while refreshing the noise has been widely favored [CJP21, TCBS23]. However,
as just stated, once the message space is determined, the type of computation is determined,
and any function in the homomorphic sense must be converted to the basic type of
computation supported by the homomorphic ciphertext. An effective alternative solution
is ciphertext conversion [BGG18, LHH+21], i.e., to convert the ciphertext form to make it
easier to handle specific functions.

Three types of functions are included in the FSM operation: modular addition �,
lookup table SB1/SB2 and bitwise XOR, while in the initialization or keystream mode,
bit shiftings, bitwise XOR and MULα/DIVα functions are needed to update the LFSR.
There is no doubt that evaluating these functions based on the gate bootstrapping mode
is the most straightforward approach. The computational cost of the evaluation mode
based on gate bootstrapping depends on the number of gates consumed by the function
computation. It is particularly suitable for operations such as bit shiftings, bitwise XOR
due to bit-wise encryption. Next we would give the computation strategy for all functions
in SNOW 3G based on gate bootstrapping.

3.3 Evaluation of Modular Addition �
Modular addition in SNOW 3G means modulo 232, i.e., given two 32-bit word X
and Y , then to compute 32-bit output value Sum = X + Y mod 232. This modular
addition(�)operation can be easily computed using Ripple-Carry Adder (RCA) by discard-
ing the most important bit of result. In detail, given two n-bit integers, X and Y, with
their binary representation expressed as X = [X0, X1, · · · , Xn−1], Y = [Y0, Y1, · · · , Yn−1],
we can build the full adder (FA) according to the following formula:

Carryi+1 = (Xi ∧ Yi) ∨ ((Xi ⊕ Yi) ∧ Carryi);
Sumi = Xi ⊕ Yi ⊕ Carryi,

where Carry0 = 0. Under gate bootstrapping mode, we can evaluate ∧, ∨ and ⊕ gate
by HomoAND, HomoOR and HomoXOR homomorphic gates, respectively. Therefore,
this textbook modular addition circuit can be evaluated using 32 ∗ 5 − 3 = 157 gate
bootstrappings, and these gates must be evaluated in serial. How to accelerate the full

Benqiang Wei et al. 541

adder in the homomorphic context is one of the important challenges for TFHE applications,
i.e., to reduce the number of gate bootstrappings consumed.

In fact, FA can be considered as a gate constructed from a 3-input XOR gate (the
lowest important bit of sum of 3-input) and a majority gate (the most important bit of sum
of 3-input) that share the same inputs. Matsuoka et al. [MHSB21] proposed cryptographic
optimization for 3-input gates or multi-output gates using the TFHE scheme, including
half adder, full adder and AOI21. In particular, they proposed an optimized full adder:
the 2BR Full Adder (Algorithm 3 in [MHSB21]) consuming two blind rotations when
the message {0, 1} is encoded to {− 1

8 ,
1
8} respectively, as Section 2.4.1. Specifically, let

CXi, CYi and CCarryi be ciphertexts corresponding to input Xi, Yi and Carryi. First,
we compute Cadd = CXi + CYi + CCarryi, then

• HomoSum(CXi, CYi, CCarryi) = Bootstrap(−2 · Cadd);

• HomoCarry(CXi, CYi, CCarryi) = Bootstrap(Cadd).

A high-level explanation is as follows. For HomoSum gate, the plaintext phase cor-
responding to −2 · Cadd is 1

4 if the number of ciphertexts corresponding to plaintext
with phase 1

8 is odd, and − 1
4 otherwise. Therefore, the evaluation of BlindRotation with

test polynomial TV [X] =
∑N−1
i=0

1
8X

i corresponds to the evaluation of HomoSum. For
HomoCarry gate, if at least 2 of the 3 input ciphertexts correspond to plaintexts with
phase 1

8 , then the plaintext of their sum Cadd is a positive number, i.e., 1
8 or 3

8 and is a
negative number, i.e., − 1

8 or − 3
8 , otherwise. Therefore, the evaluation of BlindRotation

with test polynomial TV [X] =
∑N−1
i=0

1
8X

i corresponds to the evaluation of HomoCarry.

3.3.1 Single-Gate-Bootstrapping for Full Adder

Matsuoka et al. also proposed 1BR Full Adder (Algorithm 4 in [MHSB21]). However,
this requires the message {0, 1} is encoded to {− 1

12 ,
1

12}, respectively. They used the
multi-value bootstrapping technique to evaluate the two output tables of the full adder,
thus consuming only one blind rotation at the cost of increasing the decryption error
probability. Here, we present a new simpler and faster method for full adder evaluation
without changing the message encoding, which may be of independent interest. We observe
that the result of HomoSum can be obtained directly from HomoCarry when the message
{0, 1} is encoded to {− 1

8 ,
1
8}:

HomoSum(CXi, CYi, CCarryi) = Cadd − 2 ·HomoCarry(CXi, CYi, CCarryi).

We call it single-gate-bootstrapping for full adder. Therefore, we can also implement the
evaluation of the full adder with just one gate bootstrapping (or BR) without changing
the message encoding. Notice that compared with HomoCarry, HomoSum would be a
relatively noisy ciphertext, which is exactly the result we want for modular addition �. In
this way, we need only 32 blind rotations to complete the evaluation of 32-bit modular
addition. Theorem 1 demonstrates the correctness of our single-gate-bootstrapping for full
adder and the noise growth.

Theorem 1. Let Bootstrap denote TFHE’s Gate Bootstrapping (Algorithm A), Cadd =
CXi + CYi + CCarryi, then Bootstrap(Cadd) outputs HomoCarry(CXi, CYi, CCarryi),
and Cadd−2Bootstrap(Cadd) outputs HomoSum(CXi, CYi, CCarryi), such that

• σ2
HomoCarry(CXi,CYi,CCarryi)

= σ2
Bootstrap

• σ2
HomoSum(CXi,CYi,CCarryi)

≤ 3σ2
fresh + 2σ2

Bootstrap

where σ2
HomoCarry(CXi,CYi,CCarryi)

, σ2
HomoSum(CXi,CYi,CCarryi)

, σ2
Bootstrap denote the er-

ror variance of the algorithm outputs, σ2
fresh denote the error variance of the fresh ciphetext.

542 Efficient Homomorphic Evaluation of Ciphers in 3GPP via TFHE

Proof. The corresponding plaintext phases of Cadd, Bootstrap(Cadd) and Cadd-Bootstrap(Cadd)
are shown in Table 1:

Table 1: Truth Table

Xi Yi Carryi Cadd Bootstrap(Cadd) Cadd−2Bootstrap(Cadd)

0 0 0 − 3
8 − 1

8 − 1
8

0 0 1 − 1
8 − 1

8
1
8

0 1 0 − 1
8 − 1

8
1
8

0 1 1 1
8

1
8 − 1

8

1 0 0 − 1
8 − 1

8
1
8

1 0 1 1
8

1
8 − 1

8

1 1 0 1
8

1
8 − 1

8

1 1 1 3
8

1
8

1
8

The decoded results of the last two columns are equal to Carryi+1 and Sumi, respectively,
thus without decryption failures, Bootstrap(Cadd) outputs HomoCarry(CXi, CYi, CCarryi),
and Cadd−2Bootstrap(Cadd) outputs HomoSum(CXi, CYi, CCarryi). Then, we analyze
the error growth.

• σ2
HomoCarry(CXi,CYi,CCarryi)

= σ2
Bootstrap(Cadd) = σ2

Bootstrap

• σ2
HomoSum(Xi,Yi,CCarryi)

≤ σ2
Cadd

+ 2σ2
Bootstrap(Cadd) ≤ 3σ2

fresh + 2σ2
Bootstrap

3.4 Evaluation of SB1/SB2

Nonlinear function lookup tables are heavily used in SNOW 3G. The S-Box SB1 maps a
32-bit input to a 32-bit output. Specifically, let w = w0||w1||w2||w3 be the 32-bit input
and then SB1(w) = r0||r1||r2||r3, where r0, r1, r2, r3 are defined as

r0 = MULx(SR(w0), 0x1B)⊕ SR(w1)⊕ SR(w2)⊕MULx(SR(w3), 0x1B)⊕ SR(w3)
r1 = MULx(SR(w0), 0x1B)⊕ SR(w0)⊕MULx(SR(w1), 0x1B)⊕ SR(w2)⊕ SR(w3)
r2 = SR(w0)⊕MULx(SR(w1), 0x1B)⊕ SR(w1)⊕MULx(SR(w2), 0x1B)⊕ SR(w3)
r3 = SR(w0)⊕ SR(w1)⊕MULx(SR(w2), 0x1B)⊕ SR(w2)⊕MULx(SR(w3), 0x1B)

and SR is 8-to-8-bit Rijndael S-Box. The S-Box SB2 also maps a 32-bit input to a 32-bit
output as SB1, except that it uses another Rijndael S-Box SQ. Therefore, we next illustrate
our evaluation method with SB1 as an example.

We first give the evaluation of S-box SR by tree-based lookup table algorithm. It must
be noted that our input ciphertext is in the form of TLWE, and we choose HomoMUX as
the basic gate in our tree lookup table, which ensures that the type of ciphertext remains
uniform after evaluating the S-box lookup table, as shown in Algorithm 2.

For subroutine MULx(V, c) function, it is a branching function:

MULx(V, c) =
{

(V <<8 1)⊕ c , if the most significant bit of V equals 1,

V <<8 1 , else.

Thanks to the utilization of our bit-wise encryption, we can implement bit extraction and
bit shiftings for free and then use HomoMUX gate to achieve result selection according to
the most significant bit of V .

Benqiang Wei et al. 543

Algorithm 2 8-to-8-bit SR lookup table using HomoMUX gate
Input: C256

8,256 TLWE ciphertexts encrypting SR table values
Input: Cinputi , 0 ≤ i ≤ 7 TLWE ciphertexts encrypting eight input values
Output: Coutputi , 0 ≤ i ≤ 7 TLWE ciphertexts encrypting eight output values
1: for i = 0 to 7 do
2: for j = 0 to 7 do
3: for k = 0 to 27−j − 1 do
4: C27−j

i,k = HomoMUX(Cinputj , C28−j

i,2k , C
28−j

i,2k+1)
5: end for
6: end for
7: end for
8: return Coutput = C0

i,0, 0 ≤ i ≤ 7

3.5 Evaluation of MULα, DIVα
MULα and DIVα map 8 bits to 32 bits and are used in initialization mode and keystream
mode to update the LFSR as follows:

MULα(c) =(MULxPOW(c, 23, 0xa9)||MULxPOW(c, 245, 0xa9)
||MULxPOW(c, 48, 0xa9)||MULxPOW(c, 239, 0xa9)),

DIVα(c) =(MULxPOW(c, 16, 0xa9)||MULxPOW(c, 39, 0xa9)
||MULxPOW(c, 6, 0xa9)||MULxPOW(c, 64, 0xa9)),

where

MULxPOW(V, i, c) =
{
V , if i = 0,
MULx(MULxPOW(V, i− 1, c), c) , else.

Obviously, the evaluation of MULα and DIVα are actually the evaluation of MULxPOW,
which is a recursive use of MULx function.

3.6 Discussion of Several evaluation Methods for Lookup Table
In the previous subsections, we evaluate all function operations using the gate bootstrapping
mode. For S-box SR, we use HomoMUX as the basic gate shown in Algorithm 2. An 8-to-8-
bit S-box table lookup evaluation would consume 8∗(128+64+32+16+8+4+2+1) = 2040
HomoMUX gates, equivalent to 4080 gate bootstrappings. If we estimate that each gate
bootstrapping consumes 10ms, an 8-to-8-bit S-box lookup table would consume up to 40
seconds.

Essentially, functional bootstrapping can be viewed as lookup table operation which
encodes all function values into test polynomial. As such, it can directly support S-
box evaluation. For example, in [CHMS22], the authors directly designed stream cipher
algorithm Elisabeth which is friendly to functional bootstrapping. Recently, Trama et
al. [TCBS23] analyzed the cost of AES evaluation based on functional bootstrapping
of TFHE and achieved the lowest evaluation latency with parallel processing of a single
block taking only 28 seconds. Functional bootstrapping appears to be the preferred choice.
However, a crucial consideration is whether the other types of function computations are
also suitable for functional bootstrapping. In the evaluation of AES, they had to transform
the multiplication operation in MixColumns and the XOR operation in AddRoundKey
into lookup tables because of the message encoding within the ciphertext. Basic operations
like bit shifting and bit XOR would become bottlenecks in the overall evaluation process.
Consequently, when dealing with multiple types of function computations simultaneously,

544 Efficient Homomorphic Evaluation of Ciphers in 3GPP via TFHE

evaluations relying on functional bootstrapping can still incur significant computational
costs. Therefore, we do not consider implementation based on functional bootstrapping,
and we resort to leveled evaluation mode, where CMux gate is used as the basic gate to
compose the overall evaluation circuit. Each CMux gate takes about 34µs [CGGI20] and
is much faster than HomoMUX built by gate bootstrapping.

3.7 Optimization of S-box SR Evaluation via LHE Mode
In [CGGI20], the authors proposed two methods of horizontal packing and vertical packing
for arbitrary lookup tables. For security reasons, the dimension of polynomial rings is
generally large, such as N = 1024, 2048, etc. Therefore, roughly speaking, horizontal
packing is suitable for the table with much larger columns than rows, so that we can pack
each row of the table into TRLWE ciphertext (coefficient packing), and then use several
CMux gates together to pick out the TRLWE ciphertext where the desired result is located.
Vertical packing is suitable for the table where the number of rows is much larger than the
columns, so we can pack each column as TRLWE ciphertext and then use blind rotation
to implement the lookup table, as mentioned in Section 2.3.4.

Currently, for TFHE scheme, the dimension of polynomial ring is usually set to
N = 1024. For 8-to-8-bit S-box evaluation, either using horizontal or vertical packing
will result in underutilization of polynomial packing. As a result, we achieve an efficient
evaluation of SR by combining horizontal and vertical packing shown in Algorithm 3.

Algorithm 3 The evaluation of 8-to-8-bit S-box SR using hybrid packing
Input: Eight TRGSW ciphertexts C0, · · · , C7 encrypting the input bits
Input: Two TRLWE ciphertexts T0 and T1 used to pack SR table
Output: Eight TLWE ciphertexts c0, · · · , c7 encrypting the output bits
1: ACC← CMux(C7, T1, T0)
2: BlindRotation(ACC,(8 ∗ 20, · · · , 8 ∗ 26, 0), (C0, · · · , C6))
3: for i = 0 to 7 do
4: c′i = SampleExtracti(ACC)
5: ci = IdentityKeySwitching(c′i)
6: end for
7: return c0, · · · , c7

Based on the table characteristics of SR, we only need to pack it to 8 ∗ 28/N = 2
TRLWE ciphertexts, i.e., T0 and T1. Of course, since an S-box is generally public, it
can be encrypted as noiseless ciphertexts. In line 1 of Algorithm 3, we first pick out the
TRLWE ciphertext where the result is located using the TRGSW ciphertext C7 of the most
significant bit of the input. Then after using the remaining TRGSW ciphertext Ci, for
0 ≤ i ≤ 6, we can move all the results to the first 8 coefficients of the plaintext polynomial
based on the BlindRotation algorithm (line 2). Note that the second parameter setting
in the BlindRotation of Algorithm 3 contains a factor of 8. The reason for this is that
the output of SR is 8-bit, i.e., every 8 bits are treated as a block when the table values
are packed. Finally we obtain the resulting TLWE ciphertext using the SampleExtract
and the IdentityKeySwitching algorithm (lines 4-5). In total, we only need 8 CMux gates,
which is much more efficient than Algorithm 2.

One point that cannot be overlooked in Algorithm 3 is efficient CMux gate requires
that the ciphertext of the selector bit must be a TRGSW ciphertext. In bootstrapping
operation of TFHE scheme, the secret key of TLWE is encrypted in advance as TRGSW
ciphertexts so that the decryption circuit can be evaluated in a leveled mode. However,
our computational task is more complicated, before and after evaluating the S-box, we
have to ensure that the ciphertext is in the form of TLWE to implement other functions

Benqiang Wei et al. 545

based on gate bootstrapping mode. Therefore, when evaluating the lookup tables, we have
to resort to the circuit bootstrapping to transform the TLWE ciphertexts of the input bits
into the TRGSW ciphertexts for Algorithm 3.

4 Bridge of FHE and LHE mode: Circuit Bootstrapping
Circuit bootstrapping can be seen as a bridge to compose the circuit in the TFHE leveled
evaluation mode. Next we first review circuit bootstrapping and its recent development
in Section 4.1. Then in Section 4.2, we present our adjustments to circuit bootstrapping
to further improve the overall efficiency of our evaluation framework, which can be of
independent interest.

4.1 The State-of-the-art of Circuit Bootstrapping
Chillotti et al. [CGGI17] firstly proposed circuit bootstrapping. They note that each line
of TRGSW encrypting message m ∈ B under the secret key S = (−s(x), 1) is a TRLWE
and their corresponding messages are m · Si · 1

Bjg
, for 1 ≤ i ≤ 2, 1 ≤ j ≤ `, where ` is

the decomposition length and Bg is the decomposition basis. Thus the idea of circuit
bootstrapping is to reconstruct all TRLWE ciphertexts in TRGSW using initial TLWE
ciphertext. In their setup, the parameters are set to three levels in order to control the
noise: Level 0, Level 1 and Level 2. Higher levels mean larger parameters and more
tolerable noise. Circuit bootstrapping(TLWE-to-TRGSW) consists of two main steps:

(1) Functional Bootstrapping: The functional bootstrapping from Level 0 to Level 2
takes as input TLWE(m) to compute TLWE(mB−jg), j ∈ [1, `];

(2) TLWE-to-TRLWE Ciphertext Conversion: Convert TLWE(mB−jg) to TRLWE(mB−jg)
from Level 2 to Level 1 using PublicKeySwitching and TRLWE(−m · s ·B−jg) using
PrivateKeySwitching, respectively.

Chillotti et al. provided a proof-of-concept implementation1 and claimed that circuit
bootstrapping takes 137 milliseconds, about 10 times the cost of gate bootstrapping.
With 110-bit security parameters, the first step of the functional bootstrapping operation
accounts for 70% of the running time, and the second step of the ciphertext conversion
accounts for the remaining 30%. Therefore, how to improve the efficiency of circuit
bootstrapping is one of the major challenges in the research area of TFHE.

4.1.1 Improvement of the First Step

In [CJP21], the authors observed that in the first step of TLWE-to-TRGSW, all TLWE
ciphertexts TLWE(mB−jg), j ∈ [1, `] are computed from the same input TLWE(m), and
thus this step can be further optimized by using the PBSmanyLUT technique, which is
a simpler method and has better noise control than multi-value bootstrapping [CIM19].
In this way, the number of functional bootstrapping in the first step is reduced from `
to 1, which greatly improves the efficiency of circuit bootstrapping. For more details of
PBSmanyLUT technique, we refer readers to Lemma 4 in [CJP21]. To the best of our
knowledge, TFHEpp2 is the first publicly available homomorphic cryptographic library
to implement PBSmanyLUT. In [GBA22], the authors provided a faster implementation
using AVX-512 acceleration in the MOSFHET library3.

1https://github.com/tfhe/experimental-tfhe
2https://github.com/virtualsecureplatform/TFHEpp
3https://github.com/antoniocgj/MOSFHET

https://github.com/tfhe/experimental-tfhe
https://github.com/virtualsecureplatform/TFHEpp
https://github.com/antoniocgj/MOSFHET

546 Efficient Homomorphic Evaluation of Ciphers in 3GPP via TFHE

4.1.2 Improvement of the Second Step

As discussed above, after the optimization of PBSmanyLUT, the computational cost of
the second step has been slightly higher than the first step. In 2019, Chen et al. [CCR19]
proposed an improved TRLWE to TRGSW method in order to reduce the communication
cost between the client and the server, mainly originating from the TRGSW ciphertexts
used for the ORAM eviction process. Their observation lies in the fact that the second
` rows of TRGSW ciphertexts are TRLWE(mB−jg), which is independent of the secret
key s, while the first ` rows are TRLWE(−m · s · B−jg), which is related to the secret
key s, and this part of the ciphertexts can be generated by external multiplication of
TRLWE(mB−jg) and TRGSW(−s) for j = 1, · · · , `. Ultimately, these TRLWE ciphertexts
collectively constitute the TRGSW ciphertext that encrypts the message m. The reason
for the speedup in this approach is that a single external multiplication is considerably
less costly than a single PrivateKeySwitching operation.

Further optimizations were found in the MOSFHET library, but the authors are not
currently updating these optimizations in [GBA22]. It is described as follows: instead of
relying on expensive PrivateKeySwitching or external multiplication, they managed to
construct the first ` rows TRLWE ciphertexts of TRGSW directly by applying RLWE
key switching to the second ` rows TRLWE ciphertexts of TRGSW. The operation was
later named EvalSquareMult in [KLD+23]. The cost of a single key switching operation
between RLWEs is roughly half that of an external multiplication, which makes this
approach outperform the method used by Chen et al. [CCR19]. Additionally, the key
size required for key switching between RLWEs is also smaller than that proposed by
Chen et al. Below we briefly describe the EvalSquareMult algorithm: given a keyswitching
key sqk = KeySwitchGen(s, s2) and c = (a, b) ∈ TRLWE(mB−jg), EvalSquareMult(c, sqk)
performs the following two steps:

• Decompose the first part a(x) into some small polynomials
∑`
i=1 ai(x)Big,

• Compute (b, 0) + (
∑
ai(x) · sqk[0]i,

∑
ai(x) · sqk[1]i) = TRLWE(−s ·m · B−jg), as

desired.

4.2 Adjustment of Circuit Bootstrapping for Our Evaluation Frame-
work

As discussed above, the best way to implement circuit bootstrapping currently consists
of two optimizations: one is the PBSmanyLUT technique to accelerate functional boot-
strapping of the first step, and the second is PublicKeySwitching and EvalSquareMul
to implement ciphertext conversion. However, we notice that even though the above
operations have been implemented in the MOSFHET library, they still run very slowly,
the main reason is that the second step of PublicKeySwitching and EvalSquareMult are
executed at Level 2 where large parameters are used.

Recall that here, our aim is to use the TRGSW ciphertext as a selector bit for
implementing the S-box lookup table through the CMux gate. To achieve this, we made
adjustments to the currently optimized circuit bootstrapping process, specifically by moving
the ciphertext transformation to Level 1. While this does lead to an increase in the number
of polynomials required to pack S-box function values, the impact on the leveled evaluation
is minimal. The advantage of this approach is that smaller parameters will result in faster
PublicKeySwitching and EvalSquareMult operations. Figure 2 illustrates formally the
adjustments we made to the circuit bootstrapping to accelerate the overall computational
efficiency. And we provide pseudo-code for our circuit bootstrapping in Algorithm 4. In
Section 7.2.2, we present a detailed efficiency comparison of circuit bootstrapping.

Benqiang Wei et al. 547

TRGSW TRLWE TLWE

TLWE

TLWE

TRGSW

ℓ TRLWE
related to 𝑠(𝑥)

ℓ TRLWE TLWE⋮
𝑃𝑢𝑏li𝑐𝐾𝑒𝑦𝑆witch

𝐸𝑣𝑎𝑙𝑆𝑞𝑢𝑎𝑟𝑒𝑀𝑢𝑙𝑡

𝑃𝐵𝑆𝑚𝑎𝑛𝑦𝐿𝑈𝑇

𝐿𝑒𝑣𝑒𝑙𝑒𝑑		𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑆𝑎𝑚𝑝𝑙𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡

𝐾𝑒𝑦𝑆witch

Level 2

Level 1

Level 0

Figure 2: The figure represents a schematic of the execution of our adaption to circuit
bootstrapping (TLWE-to-TRGSW). The arrows indicate the operations that can be
performed within each level, and how to move from one level to another. The diagram
in the box below shows in detail how the TLWE ciphertext is used to construct all the
TRLWE ciphertexts inside the TRGSW.

Algorithm 4 Faster circuit bootstrapping combining PBSmanyLUT and EvalSquareMult
Input: a Level 0 TLWE ciphertext: ct ∈ TLWE(m)
Input: a test polynomial P (X) =

∑ N
2ρ−1
i=0

∑2ρ−1
j=0 ·

1
2Bjg

X2ρ·i+j encoded all function values
for PBSmanyLUT, where ρ = dlog2(`)e, Bg is the basis of gadget decomposition.

Input: a bootstrapping key from Level 0 to Level 2: bsk
Input: a Level 1 PublicKeySwitching key 1: pubks
Input: a Level 1 EvalSquareMult key 1: sqk
Output: a Level 1 TRGSW ciphertext C ∈ TRGSW(m)
1: {cti}i∈[1,`] ← PBSmanyLUT

(
ct, bsk, P (X) ·XN/2ρ+1

, 1, 0, ρ
)

2: for j = 1 to ` do
3: ct′j = ctj +

(
0, 1

2Bjg

)
4: cj+` ← PublicKeySwitching(ct′j , pubks) // the second ` rows
5: cj ← EvalSquareMult(cj+`, sqk) // the first ` rows constructed by the second ` rows
6: end for
7: return C = (cj),1≤j≤2`

Error Analysis. We propose Theorem 2 to measure the error growth of Algorithm 4.
Theorem 2. Let n, N denote the dimension of TLWE and TRLWE ciphtext on Level 1, B,
`, ε denote the gadget decomposition length, base and error of the Level 1 ciphertext, Bks,
`ks, εks denote the gadget decomposition parameters of the PublicKeySwitching algorithm,
the same variables with underlines/bars for Level 0 and Level 2 parameters, respectively.
Then the error variance of the output C of Algorithm 4 is bounded by

σ2
C ≤

1
3n

¯̀N̄B̄2σ2
fresh+ 2

3n(N̄+1)ε̄2 + 1
12N̄`ksB

2
ksσ

2
fresh+ N̄

6 ε
2
ks + 1

12N`B
2σ2
fresh+ N2

12 ε
2,

548 Efficient Homomorphic Evaluation of Ciphers in 3GPP via TFHE

where σ2
fresh is the error variance of the fresh RLWE ciphertext, which be used as the

evaluation key.

Proof. The adjustment to circuit bootstrapping algorithm mainly consists of 3 steps:
PBSmanyLUT, PublicKeySwitching and EvalSquareMult. We then analyze the noise
growth step by step.

At line 1, according to Theorem 4 in [CLOT21], we have:

σ2
PBSmanyLUT& ≤ 1

3n
¯̀N̄B̄2σ2

fresh + 2
3n(N̄ + 1)ε̄2

At line 4, following Theorem 2 in [CLOT21], the result of the public key switching has
an error bound

σ2
PublicKeySwitching ≤ σ2

PBSmanyLUT + 1
12N̄`ksB

2
ksσ

2
fresh + N̄

6 ε
2
ks,

At line 5, we call EvalSquareMult algorithm on the previous result, then

σ2
EvalSquareMult ≤ σ2

PublicKeySwitching + 1
12N`B

2σ2
fresh + N2

12 ε
2.

In conclusion, the total error variance of the output of Algorithm 4 is bounded by

σ2
C ≤

1
3n

¯̀N̄B̄2σ2
fresh+ 2

3n(N̄+1)ε̄2 + 1
12N̄`ksB

2
ksσ

2
fresh+ N̄

6 ε
2
ks + 1

12N`B
2σ2
fresh+ N2

12 ε
2.

4.3 Putting it together
To summarize the above, we propose a hybrid evaluation mode, dubbed Thunderbird,
which combines the FHE mode using gate bootstrapping with the LHE mode employing
CMux. To the best of our knowledge, this is the first utilization of a combination of these
two modes in a practical application.

Figure 3: Thunderbird: an evaluation mode combining gate bootstrapping and circuit
bootstrapping, which also shows the conversion of all ciphertext types in TFHE. The green
arrow means that the noise would be refreshed, and the blue arrow represents that the
operation would increase the noise.

Figure 3 provides a detailed representation of our evaluation mode for the ciphers in
3GPP. At Level 0, we perform evaluations of various basic functions that are conducive to
gate bootstrapping, including operations like bit shiftings, bit XOR, and modular addition,
as outlined in Section 3.2. In Level 2, we perform the first step of circuit bootstrapping:

Benqiang Wei et al. 549

PBSmanyLUT. At Level 1, we accomplish the TLWE-to-TRLWE ciphertext conversion
for constructing TRGSW using PublicKeySwitching and EvalSquareMult. Then, we use
the CMux gate to evaluate the S-box lookup table. Finally, with the SampleExtract and
IdentityKeySwitching algorithms, we can move back to Level 0 and continue to execute
operations that are favorable for gate bootstrapping mode.

4.4 Further Optimization of SB1/SB2, MULα and DIVα Evaluation
For 32-to-32-bit S-box SB1/SB2 in SNOW 3G, it is composed of 8-to-8-bit SR, MULx
function and a large number of XOR gates. Although we give an efficient leveled evaluation
of SR in Section 3.7, the MULx function and a large number of HomoXOR gates still cause
a huge computational overhead, so further optimization of the SB1/SB2 evaluation is still
necessary. We observe that SB1(w) and SB2(w) can be also computed by using lookup
tables. In detail, SB1(w) and SB2(w), where w = w0||w1||w2||w3, are computed by

SB1(w) = S1_T0(w3)⊕ S1_T1(w2)⊕ S1_T2(w1)⊕ S1_T3(w0),
SB2(w) = S2_T0(w3)⊕ S2_T1(w2)⊕ S2_T2(w1)⊕ S2_T3(w0),

where S1_T0, S1_T1, S1_T2, S1_T3, S2_T0, S2_T1, S2_T2 and S2_T3 are 8-to-32-bit
tables. Similarly, the MULα and DIVα functions both map 8 bits to 32 bits, therefore,
we can also evaluate them by lookup table efficiently rather than gate bootstrapping.
Algorithm 5 presents our efficient leveled evaluation of the 8-to-32-bit table with S1_T0
as an example.

Algorithm 5 Efficient evaluation of S1_T0 (8-to-32-bit) table.
Input: Eight TRGSW ciphertexts C0, · · · , C7 encrypting the input bits
Input: Eight TRLWE ciphertexts Ti, for 0 ≤ i ≤ 7, used to pack S1_T0 table
Output: 32 TLWE ciphertexts ci, for 0 ≤ i ≤ 31, encrypting the output bits
1: for i = 0 to 3 do
2: Tempi = CMux(C5, T2i+1, T2i)
3: end for
4: for i = 0 to 1 do
5: Tmpi = CMux(C6, T emp2i+1, T emp2i)
6: end for
7: ACC← CMux(C7, Tmp1, Tmp0)
8: BlindRotation(ACC,(32 ∗ 20, · · · , 32 ∗ 24, 0), (C0, · · · , C4))
9: for i = 0 to 31 do

10: c′i = SampleExtracti(ACC)
11: ci = IdentityKeySwitching(c′i)
12: end for
13: return c0, · · · , c31

For the 8-to-32-bit table, we need to pack 32 ∗ 28/1024 = 8 TRLWE ciphertexts.
We first use TRGSW ciphertexts of the most significant three bits to select the TRLWE
ciphertext where the result is located (lines 1-7 of Algorithm 5), and then use the remaining
five TRGSW ciphertexts to move the 32 desired output result to the first 32 coefficients
of the plaintext polynomial by calling BlindRotation (line 8 of Algorithm 5). Note
that since the output of S1_T0 table is 32 bits, the second parameter setting in the
BlindRotation algorithm must be adjusted to a multiple of 32 accordingly. Finally, we use
the SampleExtract to extract the TLWE ciphertexts of the first 32 coefficients, which is
exactly what we want, and IdentityKeySwitching back to Level 0.

Compared to Algorithm 3, the number of CMux gates in Algorithm 5 increases from
8 to 12, but the increased cost is almost negligible. The most important reason for the

550 Efficient Homomorphic Evaluation of Ciphers in 3GPP via TFHE

speedup of Algorithm 5 is that it ensures that the number of circuit bootstrappings does
not increase, while eliminating a large number of gate bootstrappings required by the
MULxPow function which recursively calls MULx function.

5 Homomorphic Evaluation of ZUC
ZUC is a word-oriented stream cipher like SNOW 3G. It takes as input a 128-bit initial key
and a 128-bit initial vector (IV) and outputs a keystream consisting of 32 bits, which can
be used for encryption/decryption. The ZUC is executed in two stages: the initialization
stage shown in Figure 11 and the working stage (i.e., keystream generation) shown in
Figure 4. In the first phase, the initialization of the key/IV is performed to update the
LFSR, i.e., the cipher is clocked without generating an output. In the second phase, it
generates a 32-bit word for each clock pulse.

The ZUC has three logic layers. The top layer is a linear feedback shift register (LFSR)
containing 16 stages. Unlike the SNOW 3G, the LFSR of ZUC has 16 31-bit cells, and
each cell si, for 0 ≤ i ≤ 15, is taken from GF (231 − 1). The middle layer is used for
bit-reorganization, and the bottom layer is a nonlinear function F . For more details, please
refer to Appendix D. Here we focus on the keystream generation of ZUC.

5.1 Keystream Generation of ZUC
After the Initialization stage, the algorithm enters the working stage. During the working
stage, the algorithm performs the following operations once:

• BitReconstruction();

• W = F (X0, X1, X2), discard W;

• LFSRWithworkMode().

Lastly, the algorithm enters the keystream generation phase, each iteration performs the
following operations to generate a 32-bit word Z as output:

1. BitReorganization();

2. Z = F (X0, X1, X2)⊕X3;

3. LFSRWithworkMode().

5.2 The Linear Feedback Shift Register (LFSR)
First let’s look at the LFSR. LFSR has two running modes: initialization mode and
working mode, which are used in the initialization phase and work phase, respectively.
The core operation of these two modes is the following equation:

v = 215 · s15 + 217 · s13 + 221 · s10 + 220 · s4 + (1 + 28) · s0 mod (231 − 1) (∗)

Unlike SNOW 3G, the functions in Equation(∗) consists of modular multiplication and
modular addition over GF (231 − 1). How to efficiently compute modulo GF (231 − 1) in
the homomorphic context is a challenge. We propose the following solution idea based on
the gate bootstrapping mode.

Benqiang Wei et al. 551

Figure 4: Keystream generation of ZUC. The picture is taken from [Tea21]

5.2.1 Evaluation of Modular Multiplication over GF (231 − 1)

Updating the LFSR involves multiplying a 31-bit string s by 2i over GF (231 − 1), which
can be achieved by a cyclic shifting s by i bits to the left:

a · 2k mod (231 − 1) = a≪31 k mod (231 − 1).

Therefore, the evaluation of this modular multiplication is free due to the bit-wise encryp-
tion.

5.2.2 Evaluation of the Modular Addition over GF (231 − 1)

For two elements a, b over GF (231 − 1), the modular addition of c = a+ b mod (231 − 1)
operation can be computed using the following two steps:

(1) v = a� b,where v is a 32-bit value;
(2) c = (v & 0x7fffffff)� (v � 31).

Firstly, we compute the addition of a and b using the 32-bit adder. Since (v & 0x7fffffff)
is the least significant 31 bits of 32-bit v and (v � 31) is the most significant bit of 32-bit
c, both of them are directly obtained in gate bootstrapping mode. In total, the evaluation
of modular addition over GF (231 − 1) just needs two � gates.

Notice that in the Equation(*), we need to perform successive additions. If each
addition is followed by a modulo operation, 6 modular additions are required for one
update v, i.e., 12 � adders. In order to optimize this special modular addition operation,
we design a new modular addition strategy based on tree structure: we use 31-bit adder,
32-bit adder and 33-bit adder sequentially to realize arithmetic addition, and finally execute
only one modular addition GF (231− 1), thus this first-add-then-modulo operation method
consumes only 6 � gates in total. Figure 5 illustrates this evaluation idea.

552 Efficient Homomorphic Evaluation of Ciphers in 3GPP via TFHE

Figure 5: Optimization of modular addition in initialization mode/working mode.

One thing that must be noted is that our proposed single-gate-bootstrapping for full
adder is not suitable for LFSR in ZUC. The reason is that its update requires the addition
of the previous cells, which would cause the accumulation of noise, so we choose to use
2BR Full Adder algorithm to evaluate � operation.

5.3 BitReorganization and Nonlinear Function F
BitReorganization extracts 128 bits from the cells of the LFSR to form four 32-bit words,
the first three of which will be used by the nonlinear function F , while the last word will
be involved in generating the keystream. This operation can be evaluated for free due to
bit-wise encryption.

The nonlinear function F is used to update the two 32-bit memory cells R1 and R2.
The F function contains modular addition �, S-box and linear transformations L, which
can all be evaluated using the method presented in Section 3.

6 Homomorphic Evaluation of AES via Thunderbird
6.1 Specification of AES-128
AES-128 is a variant of AES with a 128-bit key that operates on a 128-bit plaintext
message (16 bytes), which is represented as a state matrix. The AES encryption process
consists of multiple rounds (in this case, 10 rounds for AES-128), and each round consists
of four operations: SubBytes, ShiftRows, MixColumns, and AddRoundKey. In detail,

• SubBytes: It transforms each element of state matrix non-linearly using 8-bit-to-8-
bit S-box. SubBytes is the only nonlinear function operation of AES.

• ShiftRows: In a 4× 4 state matrix, the first row is held still and the second row’s
elements are shifted cyclically to the left by one byte. Similarly, the elements of the
third row are cycled two bytes to the left, and the elements of the fourth row are
cycled three bytes to the left.

• MixColumns: A linear mixing operation that operates on the state matrix column-
by-column.

• AddRoundKey: It refers to performing bitwise XOR of state matrix with the
current round key which are generated by the key schedule in advance.

Benqiang Wei et al. 553

As shown in Figure 6, these operations are repeatedly applied to the state matrix to achieve
encryption. Note that there is one more AddRoundKey operation before the start of the
first round. In the last round, no MixColumns operation is performed.

AddRoundKey

SubBytes ShiftRows MixColums AddRoundKey

Message

9 rounds

SubBytes ShiftRows AddRoundKeylast round

Ciphertext

Figure 6: The original encryption process for AES.

We note that Rijndael’s designers also proposed a fast lookup table (LUT) method
for AES implementation, which we present in Figure 7. The core idea of the lookup
table method is to merge the SubBytes, ShiftRows and MixColumns three operations
into 8-to-32-bit lookup tables, which are commonly known as T-Box or T-Table. The
encryption process is 4 8-to-32-bit tables (Te) and the decryption process is 4 8-to-32-bit
tables (Td). Each round of AES is generated by 16 lookup tables. For more details we
refer readers to [DR13].

AddRoundKey

8-to-32-bit LUT AddRoundKey

Message

9 rounds

SubBytes ShiftRows AddRoundKeylast round

Ciphertext

Figure 7: AES-128 encryption implementation using 8-to-32-bit lookup table.

6.2 Homomorphic Evaluation of LUT-based AES
In this subsection, we show that AES can be also efficiently evaluated via the Thunderbird
framework. The AES encryption algorithm is designed based on Substitution-Permutation
Networks (SPN). Unlike SNOW and ZUC, the only remaining function type in the AES
algorithm, besides lookup tables, is the simple XOR operation. Recently, Wei et al.
[WWL+23] proposed an AES homomorphic evaluation using circuit bootstrapping for the
first time. In detail, they homomorphically evaluate the standard implementation steps
of AES. For SubBytes, they evaluate 8-bit-to-8-bit Sbox lookup table computation using
CMux gates; for MixColumns, they convert all scalar multiplications to XOR and bit
shiftings operations. For example, suppose that a byte (from the lowest bit to the highest
bit) is represented as (b0b1b2b3b4b5b6b7), then

b0b1b2b3b4b5b6b7 × 02 = b7b0b1b2b3b4b5b6 ⊕ 0b70b7b7000.

554 Efficient Homomorphic Evaluation of Ciphers in 3GPP via TFHE

In addition, by encoding the message {0, 1} as {0, 1/2} over Torus, XOR operation can
be performed for free, i.e., freeXOR. It is worth noting that since the message space is
the entire Torus, in order to satisfy the negacyclic property (Xi+N = −Xi mod XN + 1)
required by the test polynomial in PBSmanyLUT, the test polynomial should be modified
to

P (X) =
N

2ρ·2−1∑
i=0

2ρ−1∑
j=0

(−1) · 1
2Bjg

X2ρ·i+j +
N
2ρ−1∑
i= N

2ρ·2

2ρ−1∑
j=0

1
2Bjg

X2ρ·i+j , where ρ = dlog2`e.

For details of the proof we refer the readers to Lemma 4 in [CLOT21].
Different from [WWL+23], we evaluate the LUT-based implementation of AES, which

achieves lower evaluation latency. Our efficiency improvement comes from two tricks:
Firstly, by evaluating the 8-to-32-bit table, the lookup table results are rotated to the
first 32 coefficients of the corresponding plaintext polynomial of TRLWE, so that we can
perform all the next XOR operations (including XOR with the round key) directly on
resulting TRLWE ciphertexts on Level 1 rather than TLWE ciphertexts on Level 0. This
has the advantage of requiring fewer XOR operations per round compared to [WWL+23].
In the homomorphic context this reduces the accumulation of noise within the ciphertext
after each round of updates, ultimately resulting in a relatively low decryption failure rate
for homomorphic ciphertexts. In particular, for symmetric key encrypted by homomorphic
encryption as evaluation key, the client can reduce the online transmission ciphertext size
by sequentially packing the round keys as follows:

m0 + · · ·+m127X
127︸ ︷︷ ︸

rk0

+m128X
128 + · · ·+m255X

255︸ ︷︷ ︸
rk1

+ · · ·+mN−1X
N−1︸ ︷︷ ︸

rk N
128−1

When the server requires the corresponding round key, it efficiently obtains them by
rotating these TRLWE ciphertexts encrypting the round key. This rotation involves
multiplying it by X−i to position the desired round key at the first 32 coefficients.
Secondly, as in Section 4.4, we can utilize the CMux gate to give an efficient 8-to-32-bit
lookup table implementation. Although 8-to-32-bit table outputs more bits than 8-to-8-bit
table, in our evaluation framework, the number of inputs is the bottleneck of the overall
evaluation because it determines the number of circuit bootstrappings. Therefore, the
overall evaluation efficiency of AES would be accelerated thanks to the optimization of
the second step of circuit bootstrapping in Section 4.2. Figure 8 illustrates the efficient
evaluation process of LUT-based AES.

Figure 8: Efficient homomorphic evaluation of AES via LHE mode

Remark 1. Considering the purpose of the hybrid homomorphic encryption framework,
i.e., the conversion of AES ciphertexts to TLWE ciphertexts to support homomorphic

Benqiang Wei et al. 555

computation of functions, although the above mentioned framework in Figure 8 supports
efficient AES homomorphic evaluation, this can only support a limited number of function
operations due to the message encoding {0, 1} → {0, 1/2}. If we want to support more
circuits using gate bootstrapping, we can adopt the Thunderbird framework construction,
i.e., implement XOR computation using HomoXOR at Level 0, the disadvantage of which
is that it will reduce the efficiency of transciphering due to the use of a large number of
gate bootstrappings.
Remark 2. Compared to BGV-based method [GHS12], our framework gets rid of the
limitation of circuit depth. Therefore, even AES-192 and AES-256 versions, can be also
evaluated efficiently using our evaluation mode. This provides the possibility of real-world
applications of AES for transciphering.

7 Implementation and Performance
In this section, we present our experimental results and efficiency analysis. Circuit
bootstrapping was first implemented as a proof of concept1, however, it is not compatible
with the original TFHE library2. Matsuoka et al. [MBM+21] presented the Virtual Security
Platform to implement a multi-opcode generic sequential processor on Fully Homomorphic
Encryption (FHE) for Secure Multiparty Computing (SMPC). And they implemented
TFHEpp library, a Scratch C++ implementation of TFHE on CPU. It supports a variety
of homomorphic gate operations, in addition to efficient circuit bootstrapping. Therefore,
we choose to test the efficiency and accuracy of our proposed evaluation framework in the
TFHEpp library.

Our test environment is Intel(R) Core(TM) i5-11500 CPU @ 2.70GHz and 32 GB of
RAM, running the Ubuntu 20.04 operating system.

7.1 Parameter Sets
Notice that our evaluation framework Thunderbird combining gate bootstrapping and
circuit bootstrapping spans three levels, where the parameters of Level 0 and Level 1 are
involved in gate bootstrapping and the parameters of Level 2 are used to serve for circuit
bootstrapping, which requires larger parameters for accommodating noise, e.g., Q̄ = 264

for torus representation on Level 2. We choose experimental parameter sets with a security
level λ at least 128-bit, which are taken from TFHEpp library, as shown in Table 2.

7.2 Performance Results and Analysis
In this subsection, we will give the experimental results based on the above parameter sets.
It is important to emphasize that all our tests use only a single core.

7.2.1 Performance of Full Adder

We first give the some benchmarks for testing full adder on TFHEpp library based on the
above parameters in Table 3. Each operation is tested 1000 times and then the average
time is taken.

7.2.2 Performance of Ciphertext Conversion

We first summarize several implementation methods for T(R)LWE-to-TRGSW ciphertext
conversion, presented in Table 4. Notice that the goal of TRLWE-to-TRGSW is to reduce

1https://github.com/tfhe/experimental-tfhe
2https://github.com/tfhe/tfhe

https://github.com/tfhe/experimental-tfhe
https://github.com/tfhe/tfhe

556 Efficient Homomorphic Evaluation of Ciphers in 3GPP via TFHE

Table 2: Parameter sets on different levels used for the Thunderbird framework.

Level Parameter Sets

Level 0 Dimension of TLWE: n = 635
Standard deviation of noise: α = 2−15

Level 1

Dimension of ring polynomial for TRLWE: N = 1024
Length of gadget decomposition for TRGSW: ` = 3
Basis of gadget decomposition for TRGSW: Bg = 26

Standard deviation of noise: α = 2−25

Level 2

Dimension of ring polynomial for TRLWE: N̄ = 2048
Length of gadget decomposition for TRGSW: ¯̀= 4
Basis of gadget decomposition for TRGSW: B̄g = 29

Standard deviation of noise : ᾱ = 2−44

Level 1 → 0 Length of the digit decomposition during key switching: t = 7
Basis of the digit decomposition during key switching: Bg = 22

Level 2 → 1 Length of the digit decomposition during key switching: t̄ = 10
Basis of the digit decomposition during key switching: B̄g = 23

Table 3: Comparison of message encoding and running time of the state-of-the-art and
our variant of full adder based on TFHE.

Method 2BR FA [MHSB21] 1BR FA [MHSB21] Ours

Message encoding {0, 1} → {−1
8 ,

1
8} {0, 1} → {− 1

12 ,
1

12} {0, 1} → {−1
8 ,

1
8}

Time [ms] 18 9 9

the transmission cost to the client due to the large ciphertext size of TRGSW. In this
paper, we focus on circuit bootstrapping, i.e., TLWE-to-TRGSW ciphertext conversion.
Based on the parameter set in Table 2, we test the execution time of circuit bootstrapping
under different approaches, and present the relative time of functional bootstrapping with
TLWE-to-TRLWE ciphertext conversion in Figure 9.

Table 4: Comparison of the previous T(R)LWE-to-TRGSW method with our fine-tuning.

Ciphertext conversion Method
Chillotti et al. TLWE-to-TRGSW ` FBS + ` PublicKS +

[CGGI17] ` PrivateKS
Chen et al. TRLWE-to-TRGSW Trace function evaluation+
[CCR19] External Multiplication

Chillotti et al. TLWE-to-TRGSW PBSmanyLUT + ` PublicKS +
[CJP21] ` PrivateKS

Guimarães et al. TLWE-to-TRGSW PBSmanyLUT + ` PublicKS(Level 2)
[GBA22] + ` EvalSquareMult(Level 2)
Kim et al. TRLWE-to-TRGSW Trace function evaluation+
[KLD+23] + EvalSquareMult

Ours TLWE-to-TRGSW PBSmanyLUT + ` PublicKS(Level 1)
+ ` EvalSquareMult(Level 1)

Experimental results show that our circuit bootstrapping can be reduced to 36ms,

Benqiang Wei et al. 557

CGGI17 CJP21 GBA22(AVX512) Ours(AVX512)
0

20

40

60

80

100

120

140 Functional Bootstrapping
TLWE-to-TRLWE Conversion

Figure 9: The detailed proportion of each operation in the previous circuit bootstrapping
and our adaption to circuit bootstrapping.

where the first step, that is, the functional bootstrapping over Level 2 takes about 24ms,
and the second step, that is, ciphertext conversion consumes about 12ms. This greatly
accelerates our evaluation framework.

7.2.3 Benchmarks of Transciphering using Standardized Ciphers in 3GPP

We now first present the test benchmarks of two standardized stream ciphers SNOW 3G
and ZUC when used in transciphering framework, as shown in Table 5.

Table 5: Running time [second] for stream cipher SNOW 3G and ZUC initialization and
keystream generation of per block based on TFHE.

SNOW 3G ZUC

mode
stage

Initialization KeyStreamGen Initialization KeyStreamGen

Gate boostrapping 12160 367 9581 301
Thunderbird 217 (56×) 7 (52×) 332 (28×) 9.5 (32×)

Performance Analysis Now let’s explain the data in Table 5. In fact, we are mainly
concerned with the keystream generation time, which can of course be computed offline
in the hybrid homomorphic encryption framework using stream ciphers. Since the two
algorithms SNOW 3G and ZUC are implemented for the first time, we first give a simple
implementation based on gate bootstrapping mode. In gate bootstrapping mode, the
keystream generation time mainly comes from S-box evaluation and linear feedback shift
register. Although TFHE supports efficient gate bootstrapping, it still causes huge latency
due to the high usage of a large number of gates. In Thunderbird, we implement an
CMux-based efficient lookup table by combining with hybrid packing, which is almost

558 Efficient Homomorphic Evaluation of Ciphers in 3GPP via TFHE

negligible. SNOW 3G and ZUC are accelerated by a factor of 52 and 32, respectively,
compared to gate bootstrapping mode. Note that the computational cost of the S-box
evaluation is shifted to circuit bootstrapping. The reason that SNOW 3G has higher
latency than ZUC using gate bootstrapping is that it still uses more gates to evaluate
SB1/SB2, MULα and DIVα. Thunderbird, on the other hand, replaces a large number of
MULx functions with lookup tables, thus increasing the speed of gate bootstrapping mode
by a factor of 52, and outperforming ZUC in latency instead. It is clear that Thunderbird
also significantly reduces the latency of the initialization process both for SNOW 3G and
ZUC, thus reducing the computational burden on cloud services.

7.2.4 Comparing to FHE-friendly Stream Ciphers

Given that our transciphering goal is to use standardized stream ciphers, we would
present a comparison with standardized stream ciphers that have been evaluated, such
as Trivium [BOS23]. Further for completeness, we will extend the comparison to include
newly designed FHE-friendly ciphers, considering aspects such as security, input type,
and efficiency, as shown in Table 6. Note that since these symmetric schemes were tested
with different FHE libraries such as Concrete1, TFHE-rs2, HElib3, SEAL4, Lattigo5, and
FINAL6, care must be taken when comparing their performance.

Table 6: Comparison of running time [ms] of different FHE-friendly ciphers with 128-bit
security. Notice that for Kreyvium and Trivium algorithms, the authors do not provide
running time under a single thread, we present a more reasonable estimate, which is labeled
using asterisks.

Cipher Input Library Latency Time per bit Standardized

FiLIP-144 [CHMS22] Z2 Concrete 134 134 ×

FiLIP-1216 [CHMS22] Z2 Concrete 586 586 ×

FiLIP-1280 [CHMS22] Z2 Concrete 627 627 ×

FiLIP-144 [CDPP22] Z2 FINAL 2.62 2.62 ×

Elisabeth-4(2 KS) [CHMS22] Z2q Concrete 1485 371.25 ×

Elisabeth-4(1 KS) [CHMS22] Z2q Concrete 1648 412.15 ×

Pasta-3 [DGH+23] Fp SEAL 9280 4.53 ×

HERA [HKL+22] Fp Lattigo 141580 0.024 ×

Rubato [HKL+22] Fp Lattigo 106400 0.018 ×

Kreyvium [BOS23] Z2 TFHE-rs 19200* 300* ×

Trivium [BOS23] Z2 TFHE-rs 15488* 242* √
(80-bit)

SNOW3G Z2 TFHEpp 7000 218.75
√

ZUC Z2 TFHEpp 9500 296.88
√

To the best of our knowledge, the current Z2q stream cipher designed for TFHE’s
1https://github.com/zama-ai/concrete
2https://github.com/zama-ai/tfhe-rs
3https://github.com/homenc/HElib
4https://github.com/microsoft/SEAL
5https://github.com/tuneinsight/lattigo
6https://github.com/KULeuven-COSIC/FINAL

https://github.com/zama-ai/concrete
https://github.com/zama-ai/tfhe-rs
https://github.com/homenc/HElib
https://github.com/microsoft/SEAL
https://github.com/tuneinsight/lattigo
https://github.com/KULeuven-COSIC/FINAL

Benqiang Wei et al. 559

functional bootstrapping is Elisabeth, of which the authors provide two versions, Elisabeth
with two KS and single KS. In terms of amortization efficiency, both SNOW 3G and ZUC
outperform the Elisabeth-4 cipher. For the Z2 cipher FiLIP, SNOW 3G and ZUC have
better amortization than FiLIP-1216 and FiLIP-1280, but slower than FiLIP-144, which
were given in [CHMS22]. Note that in [CDPP22], they greatly improved the latency of
FiLIP-144 to only 2.62ms per bit, based on the FINAL homomorphic encryption scheme
and using freeXOR gate to remove all the cost of the XOR gates. However, as we have
previously noted, FiLIP ciphers currently require a longer period of security analysis than
standard ciphers.

For Fp ciphers, Pasta is the state-of-the-art cipher that demonstrates the advantages
of application-specific matrix-vector multiplication. In general, these ciphers are better
suited to be evaluated in homomorphic libraries supporting SIMD packing techniques,
such as HElib and SEAL, which achieve higher throughput but lead to long latency. Two
symmetric ciphers designed for CKKS, HERA and Rubato, show the best amortization
compared to all current FHE-friendly ciphers, taking only microseconds per bit. Similarly,
these ciphers have longer evaluation delays.

The biggest advantage of standardized ciphers in the HHE framework is security and
reliability. This is our starting point for this work. The standardized algorithm Trivium in
[BOS23] gives an amortized implementation of 1.89ms per bit. However, we note that they
use 128 CPUs to accelerate the evaluation. Roughly speaking, Trivium’s amortization
per bit is around 242ms if using only a single thread. It can be seen that SNOW 3G’s
amortization time is better than Trivium’s. Also, Trivium’s design security is only 80-bit,
which seems to be difficult to meet the needs of real world applications. Therefore, if
someone wants to consider using a standard stream cipher with 128-bit security instead of
the FHE-friendly cipher in HHE, we recommend the SNOW 3G cipher.

7.3 Key Size
In the transciphering scenario, the evaluation key must be generated by the client and sent
to the server. Here, we briefly analyze the key size used in the Thunderbird framework, as
shown in Table 7.

Table 7: Key size used in the Thunderbrid framework.

Key Type Size
KeySwitching Key used for switching from Level 1 to 0 69.44 MB

PublicKeySwitching Key used for switching from Level 2 to 1 1280 MB
KeySwitching Key for EvalSquareMult 24 MB

Bootstrapping Key used for gate bootstrapping 29.8MB
Bootstrapping Key used for PBSmanyLUT 158.75 MB

Total evaluation key 1538 MB

To summarize, our transciphering framework requires evaluation key size of about 1538
MB. Recalling that since the initial key needs to be encrypted to TLWE homomorphic
ciphertext, the client also needs to transmit ciphertexts with the size of 128*2.48 = 317.44
KB. Of course, LWE ciphertext transmission can use the seed-based compression technique
proposed in [CDKS21], which can be reduced to only 0.5 KB.

7.4 Comparison of Evaluation of AES with the State-of-the-art
Homomorphic computation of standardized AES is one of the most frequently investigated
and attractive work in transciphering, and evaluation strategies based on various fully
homomorphic encryption algorithms have been continuously proposed, such as BGV, CKKS

560 Efficient Homomorphic Evaluation of Ciphers in 3GPP via TFHE

and TFHE. In this subsection, we focus on comparing the homomorphic computation of
AES with the state-of-the-art work, as shown in Table 8.

Table 8: Comparison of AES-128 evaluation latency based on different fully homomorphic
encryption schemes and different evaluation modes using a single core. It should be noted
that the data with asterisks were obtained by utilizing multi-threaded parallel techniques,
88 threads and 16 threads were used in [ADE+23] and [SMK22] respectively.

Scheme Evaluation mode Latency Time per block

BGV
leveled [GHS12] 4 mins 2 s

bootstrapped[GHS12] 18 mins 6 s

CKKS bootstrapped [ADE+23] 31 mins∗ 56.7 ms∗

TFHE

FBS [SMK22] 4.2 mins∗ 4.2 mins∗

FBS [TCBS23] 270 s 211 s

FBS [BPR23] 211 s 211 s

LHE [WWL+23] 86 s 86 s

Our1(LHE+HomoXOR) 110 s 110 s

Our2(LHE+freeXOR) 46 s 46 s

Since both the BGV and CKKS scheme support efficient SIMD packing technique,
[GHS12, ADE+23] showed the best amortization efficiency when evaluating AES. However,
they have higher latency, which is not friendly for some scenarios requiring low latency.
The TFHE scheme supports efficient functional bootstrapping, so it outperforms BGV
and CKKS in terms of evaluation latency with respect to a single AES block. For
homomorphic evaluation of AES based on our Thunderbird evaluation framework, when
the XOR gates are used with the HomoXOR gate, i.e., {0, 1} → {−1/8, 1/8} over torus,
evaluating a single AES block takes about 110 seconds, with the computational cost
coming from two components: first, the relatively expensive circuit bootstrapping, and
second, the large number of gate bootstrappings. This is 2x faster than the current
best implementation based on functional bootstrapping [TCBS23, BPR23]. When we
use freeXOR, i.e., {0, 1} → {0, 1/2} over torus, the cost mainly comes from circuit
bootstrapping, and the latency of a block under a single core is only 46 seconds, which is
about a 2× improvement over the current implementation based on circuit bootstrapping.
Also compared to [WWL+23], we use less XOR gates due to the 8-to-32-bit lookup table,
which leads to a lower decryption error rate. In terms of symmetric key transfer, our
evaluation has lower ciphertext size. Our homomorphic AddRoundkey can be performed
on the TRLWE ciphertext, so the client encrypts the round keys by simply encrypting
them as d 11

N/128e = 2 TRLWE ciphertexts, not 128 ∗ 11 TLWE ciphertexts. In other words,
we can reduce the homomorphic ciphertext size of the round key from 3492 KB to 16 KB
if we don’t consider the seed-based compression. Therefore, if someone wants to utilize
AES as a symmetric algorithm for transcryption, especially certain companies that make
security and latency their first priority, our AES homomorphic evaluation method is the
current optimal choice.

Simple Comparison of Evaluation Key Size In [GHS12], the authors give the
memory consumption, which are 3.7 GB and 3 GB for bootstrapping and non-bootstrapping
versions, respectively. In [TCBS23], the authors do not give the key size explicitly. They
gave fast AES evaluation based on functional bootstrapping. However, note that in order to
use tree-based lookup table technique, LWEs-to-RLWE packing must be utilized to support

Benqiang Wei et al. 561

the next functional bootstrapping, which requires larger key-switching keys, typically up
to several GBs, e.g., in [GBA21], the key size is up to 4G or more. Thus, our approach
still outperforms them in terms of total key size.

7.5 Discussions
The purpose of transciphering is to avoid transmitting large size ciphertexts online. Since a
server typically has more computational power than a client, it can effectively use multiple
cores to parallelize computation to optimize execution time. Our evaluation framework
has natural parallelism:

• Parallelization Lookup table parallel computation: circuit bootstrapping is compu-
tationally expensive for lookup table evaluation, but their execution in the Thunder-
bird framework have natural parallelism. For example, AES requires 128 paralleled
circuit bootstrappings to be executed per round to perform lookup tables, and if
the server has enough cores, we can get at least an order of magnitude more boost.
For example, Trama et al. [TCBS23] used the OpenMP library to parallelize and
optimize the execution time of homomorphic AES, which was 9× faster using 16
threads than using 1 thread. This implies that with multithreading support, the
latency of homomorphic computation of SNOW 3G, ZUC generation of a keyword
and an AES block based on our framework is expected to be done at the millisecond
level.
Moreover, instead of using RCA, we can consider utilizing parallel adder such as
Carry LookAhead Adder (CLA) or Parallel Prefix Adder (PPA), which further
reduces the latency under multi-threading setting.

• Scalability: We believe that the Thunderbird framework can be extended to be
applied to other SPN-structured ciphers, especially those that use 8-to-8-bit Sboxes,
such as the Chinese block cipher encryption standard SM4. Thunderbird-based
SM4 evaluation can directly bring 2× speedup compared to [WWL+23]. For other
FHE-friendly symmetric algorithms, such as LowMC, Masta, Rasta, Pasta, Chaghri,
although they also utilize SPN structures, these ciphers use relatively small-sized
Sboxes in order to reduce the computational complexity. Therefore, if Thunderbird
is used, the performance may not be as good as the original method.

• Potential applications: We hope that Thunderbird can be applied to other sce-
narios, such as privacy-preserving machine learning, but this may require special
models. For example, in [BGPS23] they propose a neural network model based on
lookup tables. We hope that our evaluation program will accelerate the evaluation
of such models.

8 Conclusion
The hybrid homomorphic encryption framework solves the ciphertext size expansion
problem of fully homomorphic encryption by introducing symmetric encryption schemes.
In this paper, we investigate the possibility of applying the standardized symmetric
encryption algorithms in 3GPP to hybrid homomorphic encryption: SNOW 3G, ZUC, and
AES. Specifically, we propose the Thunderbird evaluation framework, which combines the
TFHE’s leveled evaluation mode and gate bootstrapping mode to address the different
function types involved in symmetric encryption algorithms. As a result, our experimental
results further promote the application of standardized algorithms in real-world scenarios.
We also believe that our evaluation strategies would also provide some new ideas for
designing new FHE-friendly symmetric encryption algorithms.

562 Efficient Homomorphic Evaluation of Ciphers in 3GPP via TFHE

Open Problems: Circuit bootstrapping is a computational bottleneck in our evalua-
tion mode, so how to further improve its efficiency is one of the open problems in FHE
research. One possible direction is to optimize PublicKeySwitching using the method of
Chen et al. [CDKS21]. However, it requires N−1 mod Q to exist and can only be acceler-
ated using NTT. We would explore this in our future work. Another possible direction
is to construct more efficient circuit bootstrapping based on the NTRU assumption to
further optimize our evaluation framework.

Acknowledgments
We are very grateful to the anonymous reviewers for their helpful comments. This work
was supported by the Huawei Technologies Co., Ltd and CAS Project for Young Scientists
in Basic Research (Grant No. YSBR-035).

References
[ADE+23] Ehud Aharoni, Nir Drucker, Gilad Ezov, Eyal Kushnir, Hayim Shaul, and

Omri Soceanu. E2E near-standard and practical authenticated transciphering.
IACR Cryptol. ePrint Arch., page 1040, 2023.

[AMT22] Tomer Ashur, Mohammad Mahzoun, and Dilara Toprakhisar. Chaghri - A
fhe-friendly block cipher. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2022, pages 139–150. ACM,
2022.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,
and Michael Zohner. Ciphers for MPC and FHE. In Advances in Cryptology
- EUROCRYPT 2015, volume 9056 of Lecture Notes in Computer Science,
pages 430–454. Springer, 2015.

[BBS21] Adda-Akram Bendoukha, Aymen Boudguiga, and Renaud Sirdey. Revisiting
stream-cipher-based homomorphic transciphering in the TFHE era. In Foun-
dations and Practice of Security - 14th International Symposium, FPS 2021,
volume 13291 of Lecture Notes in Computer Science, pages 19–33. Springer,
2021.

[BCBS23] Adda-Akram Bendoukha, Pierre-Emmanuel Clet, Aymen Boudguiga, and
Renaud Sirdey. Optimized stream-cipher-based transciphering by means of
functional-bootstrapping. In Data and Applications Security and Privacy
XXXVII, DBSec 2023, volume 13942 of Lecture Notes in Computer Science,
pages 91–109. Springer, 2023.

[BCK+23] Youngjin Bae, Jung Hee Cheon, Jaehyung Kim, Jai Hyun Park, and Damien
Stehlé. HERMES: efficient ring packing using MLWE ciphertexts and applica-
tion to transciphering. In Advances in Cryptology - CRYPTO 2023, volume
14084 of Lecture Notes in Computer Science, pages 37–69. Springer, 2023.

[BGG18] Christina Boura, Nicolas Gama, and Mariya Georgieva. Chimera: a unified
framework for B/FV, TFHE and HEAAN fully homomorphic encryption and
predictions for deep learning. IACR Cryptol. ePrint Arch., page 758, 2018.

[BGGJ19] Christina Boura, Nicolas Gama, Mariya Georgieva, and Dimitar Jetchev.
Simulating homomorphic evaluation of deep learning predictions. In Cyber
Security Cryptography and Machine Learning, CSCML 2019, volume 11527 of
Lecture Notes in Computer Science, pages 212–230. Springer, 2019.

Benqiang Wei et al. 563

[BGPS23] Adrien Benamira, Tristan Guérand, Thomas Peyrin, and Sayandeep Saha.
TT-TFHE: a torus fully homomorphic encryption-friendly neural network
architecture. CoRR, abs/2302.01584, 2023.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully ho-
momorphic encryption without bootstrapping. ACM Trans. Comput. Theory,
6(3):13:1–13:36, 2014.

[BOS23] Thibault Balenbois, Jean-Baptiste Orfila, and Nigel P. Smart. Trivial tran-
sciphering with trivium and TFHE. In Proceedings of the 11th Workshop on
Encrypted Computing & Applied Homomorphic Cryptography, Copenhagen,
Denmark, 26 November 2023, pages 69–78. ACM, 2023.

[BPR23] Nicolas Bon, David Pointcheval, and Matthieu Rivain. Optimized homo-
morphic evaluation of boolean functions. Cryptology ePrint Archive, Paper
2023/1589, 2023. https://eprint.iacr.org/2023/1589.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical gapsvp. In Advances in Cryptology - CRYPTO 2012, volume
7417 of Lecture Notes in Computer Science, pages 868–886. Springer, 2012.

[CCF+16] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María
Naya-Plasencia, Pascal Paillier, and Renaud Sirdey. Stream ciphers: A
practical solution for efficient homomorphic-ciphertext compression. In Fast
Software Encryption - 23rd International Conference, FSE 2016, volume 9783
of Lecture Notes in Computer Science, pages 313–333. Springer, 2016.

[CCR19] Hao Chen, Ilaria Chillotti, and Ling Ren. Onion ring ORAM: efficient constant
bandwidth oblivious RAM from (leveled) TFHE. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, CCS
2019, pages 345–360. ACM, 2019.

[CDKS21] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. Efficient homomorphic
conversion between (ring) LWE ciphertexts. In Applied Cryptography and
Network Security - 19th International Conference, ACNS 2021, volume 12726
of Lecture Notes in Computer Science, pages 460–479. Springer, 2021.

[CDPP22] Kelong Cong, Debajyoti Das, Jeongeun Park, and Hilder V. L. Pereira. Sort-
inghat: Efficient private decision tree evaluation via homomorphic encryption
and transciphering. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2022, pages 563–577. ACM,
2022.

[CGGI17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Faster packed homomorphic operations and efficient circuit bootstrapping for
TFHE. In Advances in Cryptology - ASIACRYPT 2017, volume 10624 of
Lecture Notes in Computer Science, pages 377–408. Springer, 2017.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
TFHE: fast fully homomorphic encryption over the torus. J. Cryptol., 33(1):34–
91, 2020.

[CHK19] Jung Hee Cheon, Kyoohyung Han, and Duhyeong Kim. Faster bootstrapping
of FHE over the integers. In Information Security and Cryptology - ICISC
2019, volume 11975 of Lecture Notes in Computer Science, pages 242–259.
Springer, 2019.

https://eprint.iacr.org/2023/1589

564 Efficient Homomorphic Evaluation of Ciphers in 3GPP via TFHE

[CHK+21] Jihoon Cho, Jincheol Ha, Seongkwang Kim, ByeongHak Lee, Joohee Lee,
Jooyoung Lee, Dukjae Moon, and Hyojin Yoon. Transciphering framework
for approximate homomorphic encryption. In Advances in Cryptology - ASI-
ACRYPT 2021, volume 13092 of Lecture Notes in Computer Science, pages
640–669. Springer, 2021.

[CHMS22] Orel Cosseron, Clément Hoffmann, Pierrick Méaux, and François-Xavier
Standaert. Towards case-optimized hybrid homomorphic encryption - featuring
the elisabeth stream cipher. In Advances in Cryptology - ASIACRYPT 2022,
volume 13793 of Lecture Notes in Computer Science, pages 32–67. Springer,
2022.

[CIM19] Sergiu Carpov, Malika Izabachène, and Victor Mollimard. New techniques
for multi-value input homomorphic evaluation and applications. In Topics
in Cryptology - CT-RSA 2019, volume 11405 of Lecture Notes in Computer
Science, pages 106–126. Springer, 2019.

[CIR22] Carlos Cid, John Petter Indrøy, and Håvard Raddum. FASTA - A stream
cipher for fast FHE evaluation. In Topics in Cryptology - CT-RSA 2022,
volume 13161 of Lecture Notes in Computer Science, pages 451–483. Springer,
2022.

[CJP21] Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable bootstrapping
enables efficient homomorphic inference of deep neural networks. In Cyber
Security Cryptography and Machine Learning, CSCML 2021, volume 12716 of
Lecture Notes in Computer Science, pages 1–19. Springer, 2021.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic
encryption for arithmetic of approximate numbers. In Advances in Cryptology
- ASIACRYPT 2017, volume 10624 of Lecture Notes in Computer Science,
pages 409–437. Springer, 2017.

[CLOT21] Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Im-
proved programmable bootstrapping with larger precision and efficient arith-
metic circuits for TFHE. In Advances in Cryptology - ASIACRYPT 2021,
volume 13092 of Lecture Notes in Computer Science, pages 670–699. Springer,
2021.

[CLT14] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Scale-invariant
fully homomorphic encryption over the integers. In Public-Key Cryptography -
PKC 2014, volume 8383 of Lecture Notes in Computer Science, pages 311–328.
Springer, 2014.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie Lallemand,
Gregor Leander, Eik List, Florian Mendel, and Christian Rechberger. Rasta:
A cipher with low anddepth and few ands per bit. In Advances in Cryptology
- CRYPTO 2018, volume 10991 of Lecture Notes in Computer Science, pages
662–692. Springer, 2018.

[DGH+23] Christoph Dobraunig, Lorenzo Grassi, Lukas Helminger, Christian Rechberger,
Markus Schofnegger, and Roman Walch. Pasta: A case for hybrid homomor-
phic encryption. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(3):30–73,
2023.

[DHS16] Yarkin Doröz, Yin Hu, and Berk Sunar. Homomorphic AES evaluation using
the modified LTV scheme. Des. Codes Cryptogr., 80(2):333–358, 2016.

Benqiang Wei et al. 565

[DLR16] Sébastien Duval, Virginie Lallemand, and Yann Rotella. Cryptanalysis of the
FLIP family of stream ciphers. In Advances in Cryptology - CRYPTO 2016,
volume 9814 of Lecture Notes in Computer Science, pages 457–475. Springer,
2016.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic
encryption in less than a second. In Advances in Cryptology - EUROCRYPT
2015, volume 9056 of Lecture Notes in Computer Science, pages 617–640.
Springer, 2015.

[DR13] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer Berlin
Heidelberg, 2013.

[DSES14] Yarkin Doröz, Aria Shahverdi, Thomas Eisenbarth, and Berk Sunar. Toward
practical homomorphic evaluation of block ciphers using prince. In Financial
Cryptography and Data Security - FC 2014 Workshops, BITCOIN and WAHC
2014, volume 8438 of Lecture Notes in Computer Science, pages 208–220.
Springer, 2014.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. IACR Cryptol. ePrint Arch., page 144, 2012.

[GAH+23] Lorenzo Grassi, Irati Manterola Ayala, Martha Norberg Hovd, Morten Øy-
garden, Håvard Raddum, and Qingju Wang. Cryptanalysis of symmetric
primitives over rings and a key recovery attack on rubato. In Advances in
Cryptology - CRYPTO 2023, volume 14083 of Lecture Notes in Computer
Science, pages 305–339. Springer, 2023.

[GBA21] Antonio Guimarães, Edson Borin, and Diego F. Aranha. Revisiting the
functional bootstrap in TFHE. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2021(2):229–253, 2021.

[GBA22] Antonio Guimarães, Edson Borin, and Diego F. Aranha. MOSFHET: opti-
mized software for FHE over the torus. IACR Cryptol. ePrint Arch., page
515, 2022.

[GBJR23] Henri Gilbert, Rachelle Heim Boissier, Jérémy Jean, and Jean-René Reinhard.
Cryptanalysis of elisabeth-4. In Advances in Cryptology - ASIACRYPT 2023,
volume 14440 of Lecture Notes in Computer Science, pages 256–284. Springer,
2023.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. Stanford University,
2009.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of
the AES circuit. In Advances in Cryptology - CRYPTO 2012, volume 7417 of
Lecture Notes in Computer Science, pages 850–867. Springer, 2012.

[GHW23] Xinxin Gong, Yonglin Hao, and Qingju Wang. Combining MILP modeling
with algebraic bias evaluation for linear mask search: Improved fast correlation
attacks on SNOW. IACR Cryptol. ePrint Arch., page 145, 2023.

[HKC+20] Jincheol Ha, Seongkwang Kim, Wonseok Choi, Jooyoung Lee, Dukjae Moon,
Hyojin Yoon, and Jihoon Cho. Masta: An he-friendly cipher using modular
arithmetic. IEEE Access, 8:194741–194751, 2020.

566 Efficient Homomorphic Evaluation of Ciphers in 3GPP via TFHE

[HKL+22] Jincheol Ha, Seongkwang Kim, ByeongHak Lee, Jooyoung Lee, and Mincheol
Son. Rubato: Noisy ciphers for approximate homomorphic encryption. In
Advances in Cryptology - EUROCRYPT 2022, volume 13275 of Lecture Notes
in Computer Science, pages 581–610. Springer, 2022.

[HL20] Phil Hebborn and Gregor Leander. Dasta - alternative linear layer for rasta.
IACR Trans. Symmetric Cryptol., 2020(3):46–86, 2020.

[HMR20] Clément Hoffmann, Pierrick Méaux, and Thomas Ricosset. Transciphering,
using filip and TFHE for an efficient delegation of computation. In Progress in
Cryptology - INDOCRYPT 2020, volume 12578 of Lecture Notes in Computer
Science, pages 39–61. Springer, 2020.

[KLD+23] Andrey Kim, Yongwoo Lee, Maxim Deryabin, Jieun Eom, and Rakyong Choi.
LFHE: fully homomorphic encryption with bootstrapping key size less than a
megabyte. IACR Cryptol. ePrint Arch., page 767, 2023.

[LAW+23] Fukang Liu, Ravi Anand, Libo Wang, Willi Meier, and Takanori Isobe. Co-
efficient grouping: Breaking chaghri and more. In Advances in Cryptology
- EUROCRYPT 2023, volume 14007 of Lecture Notes in Computer Science,
pages 287–317. Springer, 2023.

[LHH+21] Wen-jie Lu, Zhicong Huang, Cheng Hong, Yiping Ma, and Hunter Qu. PEGA-
SUS: bridging polynomial and non-polynomial evaluations in homomorphic
encryption. In 42nd IEEE Symposium on Security and Privacy, SP 2021,
pages 1057–1073. IEEE, 2021.

[LKSM23] Fukang Liu, Abul Kalam, Santanu Sarkar, and Willi Meier. Algebraic attack
on fhe-friendly cipher HERA using multiple collisions. IACR Cryptol. ePrint
Arch., page 1800, 2023.

[LN14] Tancrède Lepoint and Michael Naehrig. A comparison of the homomor-
phic encryption schemes FV and YASHE. In Progress in Cryptology -
AFRICACRYPT 2014, volume 8469 of Lecture Notes in Computer Science,
pages 318–335. Springer, 2014.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Advances in Cryptology - EUROCRYPT
2010, volume 6110 of Lecture Notes in Computer Science, pages 1–23. Springer,
2010.

[LSMI21] Fukang Liu, Santanu Sarkar, Willi Meier, and Takanori Isobe. Algebraic at-
tacks on rasta and dasta using low-degree equations. In Advances in Cryptology
- ASIACRYPT 2021, volume 13090 of Lecture Notes in Computer Science,
pages 214–240. Springer, 2021.

[MBM+21] Kotaro Matsuoka, Ryotaro Banno, Naoki Matsumoto, Takashi Sato, and Song
Bian. Virtual secure platform: A five-stage pipeline processor over TFHE. In
30th USENIX Security Symposium, USENIX Security 2021, pages 4007–4024.
USENIX Association, 2021.

[MCJS19] Pierrick Méaux, Claude Carlet, Anthony Journault, and François-Xavier
Standaert. Improved filter permutators for efficient FHE: better instances
and implementations. In Progress in Cryptology - INDOCRYPT 2019, volume
11898 of Lecture Notes in Computer Science, pages 68–91. Springer, 2019.

Benqiang Wei et al. 567

[MHSB21] Kotaro Matsuoka, Yusuke Hoshizuki, Takashi Sato, and Song Bian. Towards
better standard cell library: Optimizing compound logic gates for TFHE. In
WAHC ’21: Proceedings of the 9th on Workshop on Encrypted Computing &
Applied Homomorphic Cryptography, pages 63–68. WAHC@ACM, 2021.

[MJSC16] Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude
Carlet. Towards stream ciphers for efficient FHE with low-noise ciphertexts.
In Advances in Cryptology - EUROCRYPT 2016, volume 9665 of Lecture
Notes in Computer Science, pages 311–343. Springer, 2016.

[MP21] Daniele Micciancio and Yuriy Polyakov. Bootstrapping in fhew-like cryp-
tosystems. In WAHC ’21: Proceedings of the 9th on Workshop on Encrypted
Computing & Applied Homomorphic Cryptography, pages 17–28. WAHC@ACM,
2021.

[NLV11] Michael Naehrig, Kristin E. Lauter, and Vinod Vaikuntanathan. Can ho-
momorphic encryption be practical? In Proceedings of the 3rd ACM Cloud
Computing Security Workshop, CCSW 2011, pages 113–124. ACM, 2011.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. J. ACM, 56(6):34:1–34:40, 2009.

[RKMR23] R. Radheshwar, Meenakshi Kansal, Pierrick Méaux, and Dibyendu Roy. Differ-
ential fault attack on rasta and FiLIPdsm. IEEE Trans. Computers, 72(8):2418–
2425, 2023.

[SEA23] Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL, Jan-
uary 2023. Microsoft Research, Redmond, WA.

[SMK22] Roy Stracovsky, Rasoul Akhavan Mahdavi, and Florian Kerschbaum. Faster
evaluation of aes using tfhe. Poster Session, FHE.Org - 2022, 2022. https:
//rasoulam.github.io/data/poster-aes-tfhe.pdf.

[TCBS23] Daphné Trama, Pierre-Emmanuel Clet, Aymen Boudguiga, and Renaud Sirdey.
At last! A homomorphic AES evaluation in less than 30 seconds by means of
TFHE. IACR Cryptol. ePrint Arch., page 1020, 2023.

[Tea21] ZUC Design Team. An addendum to the ZUC-256 stream cipher. IACR
Cryptol. ePrint Arch., page 1439, 2021.

[WWL+23] Benqiang Wei, Ruida Wang, Zhihao Li, Qinju Liu, and Xianhui Lu. Fregata:
Faster homomorphic evaluation of AES via TFHE. In Information Security -
26th International Conference, ISC 2023, volume 14411 of Lecture Notes in
Computer Science, pages 392–412. Springer, 2023.

[YJM19] Jing Yang, Thomas Johansson, and Alexander Maximov. Vectorized linear
approximations for attacks on SNOW 3g. IACR Trans. Symmetric Cryptol.,
2019(4):249–271, 2019.

https://github.com/Microsoft/SEAL
https://rasoulam.github.io/data/poster-aes-tfhe.pdf
https://rasoulam.github.io/data/poster-aes-tfhe.pdf

568 Efficient Homomorphic Evaluation of Ciphers in 3GPP via TFHE

A Gate bootstrapping

Algorithm 6 TFHE’s Gate Boostrapping [CGGI20]
Input: A TLWE ciphertext c = (a, b) ∈ Tn+1

Input: A constant µ ∈ T
Input: A bootstrapping key BKi ∈ TRGSWS(si), for i ∈ [1, n]

Output: c′′ ∈ TLWEs(m̄ · µ), where m̄ =
{

1, if m < 1
2

−1, otherwise.
1: b̄← b2N · be ∈ Z2N and āi ← b2N · aie ∈ Z2N for each i ∈ [1, n]
2: v ←

(
1, X,X2, . . . , XN−1) · µ ∈ TN [X]

3: ACC← BlindRotate
(
(0, v),

(
ā1, . . . , ān, b̄

)
, (BK1, . . . ,BKn)

)
4: c′ = SampleExtract0(ACC)
5: return KeySwitchS→s(c′)

B KeySwitch

B.1 TLWE-to-T(R)LWE Key Switching

Algorithm 7 Public Functional KeySwitching [CGGI20]
Input: p TLWE samples c(z) = (a(z), b(z)) ∈ TLWEs(µz), z ∈ [1, p]
Input: a public R-Lipschitz linear function f : Tp → TN [X]
Input: a precision parameter t ∈ Z
Input: a Key Switching key KSi,j ∈ T(R)LWEs′(

si
2j), for i ∈ [1, n] and j ∈ [1, t]

Output: a T(R)LWE sample c′ ∈ T(R)LWEs′(f(µz)), for z ∈ [1, p]
1: for i = 1 to n do
2: ai ← f(a(1)

i , a
(2)
i , · · · , a(p)

i)
3: Let ãi = daic 1

2t
be the closest multiple of 1

2t to ai
4: Decompose each ãi =

∑t
j=1 ãi,j · 2−j , where ãi,j ∈ BN [X]

5: end for
6: return (0, f(b(1)

i , b
(1)
i , · · · , b(p)

i))−
∑n
i=1
∑t
j=1 ãi,j ·KSi,j

B.2 TRLWE-to-TRLWE Key Switching
Key switching for TRLWE ciphertext include the following two algorithms:

• KeySwitchGen(s, z): Compute ksk = TRLWEz(s ·Bjg) for j = 1, · · · , `.

• KeySwitchs→z(TRLWEs(m), ksk): Given an TRLWEs(m) = (a, b), it evaluates

– Decompose the first part a(x) into some small polynomials
∑`
i=1 ai(x)Big

– Compute the inner product

TRLWEz(m) = (0, b)− (
∑

ai(x) · ksk[0]i,
∑

ai(x) · ksk[1]i).

Benqiang Wei et al. 569

Algorithm 8 Private Functional KeySwitching [CGGI20]
Input: p TLWE samples c(z) = (a(z), b(z)) ∈ TLWEs(µz), z ∈ [1, p]
Input: a precision parameter t ∈ Z
Input: a Key Switching key KSi,j,z ∈ T(R)LWEs′(

fz(si)
2j) for i ∈ [1, n] and KSn+1,j,z ∈

T(R)LWEs′(
fz(−1)

2j), for j ∈ [1, t] and k ∈ [1, p], where fz are linear morphisms
Output: a T(R)LWE sample c′ ∈ T(R)LWEs′(f(µz)), for z ∈ [1, p]
1: for z = 1 to p do
2: for i = 1 to n do
3: Let ãk,i = daz,ic 1

2t
be the closest multiple of 1

2t to az,i
4: Decompose each ãz,i =

∑t
j=1 ãz,i,j · 2−j , where ãz,i,j ∈ BN [X]

5: end for
6: end for
7: return −

∑p
z=1

∑n
i=1
∑t
j=1 ãz,i,j ·KSz,i,j

C Recall on SNOW 3G

C.1 Some functions used in SNOW 3G
(1)The MULx function:

MULx(V, c) =
{

(V <<8 1)⊕ c , if the most significant bit of V equals 1,

V <<8 1 , else.

(2)The MULxPOW function:

MULxPOW(V, i, c) =
{

V , if i = 0,

MULx(MULxPOW(V, i− 1, c), c) , else.

(3)The MULα function:

MULα(c) =(MULxPOW(c, 23, 0xa9)||MULxPOW(c, 245, 0xa9)
||MULxPOW(c, 48, 0xa9)||MULxPOW(c, 239, 0xa9)).

(4)The DIVα function:

DIVα(c) =(MULxPOW(c, 16, 0xa9)||MULxPOW(c, 39, 0xa9)
||MULxPOW(c, 6, 0xa9)||MULxPOW(c, 64, 0xa9)).

C.2 The 32x32-bit S-Box.
The S-Box SB1 maps a 32-bit input to a 32-bit output. Let w = w0||w1||w2||w3 the 32-bit
input and then SB1(w) = r0||r1||r2||r3. Specifically, r0, r1, r2, r3 are defined as

r0 = MULx(SR(w0), 0x1B)⊕ SR(w1)⊕ SR(w2)⊕MULx(SR(w3), 0x1B)⊕ SR(w3),
r1 = MULx(SR(w0), 0x1B)⊕ SR(w0)⊕MULx(SR(w1), 0x1B)⊕ SR(w2)⊕ SR(w3),
r2 = SR(w0)⊕MULx(SR(w1), 0x1B)⊕ SR(w1)⊕MULx(SR(w2), 0x1B)⊕ SR(w3),
r3 = SR(w0)⊕ SR(w1)⊕MULx(SR(w2), 0x1B)⊕ SR(w2)⊕MULx(SR(w3), 0x1B).

where SR is 8-to-8-bit Rijndael S-Box. The S-Box SB2 also maps a 32-bit input to a
32-bit output as SB1, except that it uses another Rijndael S-Box SR.

570 Efficient Homomorphic Evaluation of Ciphers in 3GPP via TFHE

C.3 Initialization Mode and Keystream Mode
In the Initialization Mode the LFSR receives a 32-bit input word F , which is the output
of the FSM. Let s0 = s0,0||s0,1||s0,2||s0,3 and s11 = s11,0||s11,1||s11,2||s11,3. Compute the
intermediate value v as

v = (s0,1||s0,2||s0,3||0x00)⊕MULα(s0,0)⊕ s2 ⊕ (0x00||s11,0||s11,1||s11,2)⊕DIVα(s11,3)⊕ F,

then update LFSR: si = si+1, 0 ≤ i ≤ 14 and s15 = v.
In the Keystream Mode, the LFSR performs the same operation as the initialization

Mode, except that it does not receive any input for calculating v.

C.4 Clocking the FSM
The FSM has two input words s15 and s5 from the LFSR. It produces a 32-bit output
word F = (s15 �R1)⊕R2. Compute the intermediate value r = R2� (R3⊕ s5), then the
registers are updated:

R3 = SB2(R2), R2 = SB1(R1), R1 = r.

C.5 Initialization and Keystream Generation
C.5.1 Initialization

SNOW 3G is initialized with a 128-bit key consisting of four 32-bit words k0, k1, k2, k3
and an 128-bit initialization variable consisting of four 32-bit words IV0, IV1, IV2, IV3 as
follows. Let 1 be the all-ones word (0xffffffff).

s15 = k3 ⊕ IV0 s14 = k2 s13 = k1 s12 = k0 ⊕ IV1
s11 = k3 ⊕ 1 s10 = k2 ⊕ 1⊕ IV2 s9 = k1 ⊕ 1⊕ IV3 s8 = k0 ⊕ 1
s7 = k3 s6 = k2 s5 = k1 s4 = k0
s3 = k3 ⊕ 1 s2 = k2 ⊕ 1 s1 = k1 ⊕ 1 s0 = k0 ⊕ 1

The FSM is initialised with R1 = R2 = R3 = 0. Then the cipher runs the following
two steps 32 times without producing output:

• The FSM is clocked producing the 32-bit word F .

• The LFSR is clocked in Initialization Mode consuming F .

C.5.2 Keystream Generation

First the FSM is clocked once. The output word of the FSM is discarded. Then the LFSR
is clocked once in Keystream Mode. After that n 32-bit words of keystream are produced:
for t = 1 to n

1. The FSM is clocked and produces a 32-bit output word F .

2. The next keystream word is computed as zt = F ⊕ s0.

3. Then the LFSR is clocked in Keystream Mode.

D Recall on ZUC
ZUC consists of three layers: the top layer is a linear feedback shift register (LFSR) of 16
stages; the bottom layer is a nonlinear block which is called F function; while the middle
layer, called BitReorganization layer, is a connection layer between the LFSR and F .

Now we would give some details of the three layers. The linear feedback shift register
(LFSR) has 16 31-bit words s0, s1, · · · , s15 and consists of two modes of operations: the
initialization mode in Figure 11 and working mode in Figure 4.

Benqiang Wei et al. 571

𝑠"# 𝑠"" ⋯ 𝑠# 𝑠% 𝑠&

' '

𝑅1 𝑅2 𝑅3

FSM

LFSR

𝛼𝛼-"

		𝑆𝐵" 		𝑆𝐵%

Figure 10: Initialization of SNOW 3G.

D.1 LFSRWithInitializationMode(u)
The LFSR receives the input u and then performs:

1. v = 215 · s15 + 217 · s13 + 221 · s10 + 220 · s4 + (1 + 28) · s0 mod (231 − 1);

2. s16 = (v + u) mod (231 − 1);

3. if s16 = 0 then set s16 = 231 − 1;

4. (s16, s15, · · · , s2, s1)→ (s15, s14, · · · , s1, s0).

D.2 LFSRWithworkMode()
The LFSR performs similar operations to the initialization process, except that it does not
receive any input and does not require a second step of computation.

1. s16 = 215 · s15 + 217 · s13 + 221 · s10 + 220 · s4 + (1 + 28) · s0 mod (231 − 1);

2. if s16 = 0 then set s16 = 231 − 1;

3. (s16, s15, · · · , s2, s1)→ (s15, s14, · · · , s1, s0).

D.3 BitReorganization
BitReorganization extracts 128 bits from the words of LFSR and forms four 32-bit words,
in which the first three words will be passed to the next layer, that is, the nonlinear
function F , and the last word will participate in generating the key stream.

X0 = s15H || s14L, X1 = s11L || s9H , X2 = s7L || s5H , X3 = s2L || s0H ,

where siH is the high 16 bits of the word si and sjL is the low 16 bits of the word sj .

572 Efficient Homomorphic Evaluation of Ciphers in 3GPP via TFHE

D.4 The Nonlinear function F
There are two 32-bit memory words R1 and R2 in the nonlinear function F . The input of
F is X0, X1, X2, which are the first three words of output of the BitReorganization. It
outputs a 32-bit word W.

1. W = (X0 ⊕R1)�R2; W1 = R1 �X1; W2 = R2 ⊕X2;

2. R1 = S(L1(W1L || W2H)); R2 = S(L2(W2L || W1H)).

where S = (S0, S1, S0, S1) is the 4 parallel S-boxes and L1, L2 are the two 32-bit linear
transformation defined by

L1(X) = X ⊕ (X≪ 2)⊕ (X≪ 10)⊕ (X≪ 18)⊕ (X≪ 24);
L2(X) = X ⊕ (X≪ 8)⊕ (X≪ 14)⊕ (X≪ 22)⊕ (X≪ 30).

D.5 The key loading
The key loading procedure will expand the 128-bit initial key k(k0 || k1 || · · · k15) and the
128-bit initial vector iv(iv0 || iv1 || · · · iv15) into 16 31-bit integers si = ki || di || ivi as
the initial state of the LFSR, where di is a known constant.

D.6 The Execution of ZUC
The execution of ZUC has two stages: the initialization stage and the working stage.

D.6.1 The initialization stage

1. Load the key, IV and constants into the LFSR;

2. Let R0 = R1 = 0;

3. for i = 0 to 31 do

• BitReconstruction();
• W = F (X0, X1, X2);
• LFSRWithInitializationMode(W � 1);

D.6.2 The working stage

After the initialization stage, the algorithm enters the working stage. During the working
stage, the algorithm performs the following operations once:

• BitReconstruction();

• W = F (X0, X1, X2), diszard W;

• LFSRWithworkMode().

Lastly, the algorithm enters the keystream generation phase, each iteration performs the
following operations to generate a 32-bit word Z as output:

1. BitReorganization();

2. Z = F (X0, X1, X2)⊕X3;

3. LFSRWithworkMode().

Benqiang Wei et al. 573

Figure 11: Initialization of ZUC. The picture is taken from [Tea21]

	Introduction
	Hybrid Homomorphic Encryption
	Contributions and Techniques
	Related Work
	Paper organization

	Preliminaries
	Notations
	The TFHE Cryptosystem
	Building Blocks in TFHE
	Bootstrapping Types in TFHE

	Homomorphic Evaluation of SNOW 3G
	A Short Specification of SNOW 3G
	Overall Analysis of Function in SNOW 3G
	Evaluation of Modular Addition
	Evaluation of SB1/SB2
	Evaluation of MUL, DIV
	Discussion of Several evaluation Methods for Lookup Table
	Optimization of S-box SR Evaluation via LHE Mode

	Bridge of FHE and LHE mode: Circuit Bootstrapping
	The State-of-the-art of Circuit Bootstrapping
	Adjustment of Circuit Bootstrapping for Our Evaluation Framework
	Putting it together
	Further Optimization of SB1/SB2, MUL and DIV Evaluation

	Homomorphic Evaluation of ZUC
	Keystream Generation of ZUC
	The Linear Feedback Shift Register (LFSR)
	BitReorganization and Nonlinear Function F

	Homomorphic Evaluation of AES via Thunderbird
	Specification of AES-128
	Homomorphic Evaluation of LUT-based AES

	Implementation and Performance
	Parameter Sets
	Performance Results and Analysis
	Key Size
	Comparison of Evaluation of AES with the State-of-the-art
	Discussions

	Conclusion
	Gate bootstrapping
	KeySwitch
	TLWE-to-T(R)LWE Key Switching
	TRLWE-to-TRLWE Key Switching

	Recall on SNOW 3G
	Some functions used in SNOW 3G
	The 32x32-bit S-Box.
	Initialization Mode and Keystream Mode
	Clocking the FSM
	Initialization and Keystream Generation

	Recall on ZUC
	LFSRWithInitializationMode(u)
	LFSRWithworkMode()
	BitReorganization
	The Nonlinear function F
	The key loading
	The Execution of ZUC

