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Abstract. Masking is an effective countermeasure against side-channel attacks. It
replaces every logic gate in a computation by a gadget that performs the operation over
secret sharings of the circuit’s variables. When masking is implemented in hardware,
care should be taken to protect against leakage from glitches, which could otherwise
undermine the security of masking. This is generally done by adding registers, which
stop the propagation of glitches, but introduce additional latency and area cost.
In masked pipeline circuits, a high latency further increases the area overheads of
masking, due to the need for additional registers that synchronize signals between
pipeline stages. In this work, we propose a technique to minimize the number of such
pipeline registers, which relies on optimizing the scheduling of the computations across
the pipeline stages. We release an implementation of this technique as an open-source
tool, COMPRESS. Further, we introduce other optimizations to deduplicate logic
between gadgets, perform an optimal selection of masked gadgets, and introduce new
gadgets with smaller area. Overall, our optimizations lead to circuits that improve the
state-of-the art in area and achieve state-of-the-art latency. For example, a masked
AES based on an S-box generated by COMPRESS reduces latency by 19 % and area
by 27 % over a state-of-the-art implementation, or, for the same latency, reduces area
by 45 %.
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1 Introduction

Physical side-channel attacks that exploit information leakage such as the power consump-
tion or the electromagnetic radiation of cryptographic implementations are an important
security threat. Masking is a common countermeasure against these attacks [CJRR99].
Its core principle is to replace every variable x in a computation with a secret sharing
x = (xo,...,xq—1) such that © = z¢ % --- x x4_1, where x is a group law over any set of
d — 1 shares x;. A common example is Boolean masking, where variables belong to Fy
and the group operation is the exclusive or (®). The computations to mask are typically
decomposed in elementary operations (e.g., simple logic gates) which are then replaced by
gadgets: small circuits that securely perform computations over shared data.

Masking a circuit in a secure way is a challenging task. Physical defaults such
as glitches and transitions can break the independence assumptions required for a se-
cure masked implementation [MPGO05, NRS11]. Furthermore, the security of small gad-
gets may not directly extend to their combination, leading to so-called composition
issues [CPRR13, BBD'16]. Physical defaults and composition issues can also arise in a
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combined way [FGPT18, MMSS19, MKSM22]. One possible solution to these challenges
is using the hardware private circuits (HPC) masking scheme [CGLS21, CS21], which is
composable even in the presence of glitches and transitions. With the HPC scheme, linear
and affine operations can be implemented by simple sharewise gadgets, while non-linear
gadgets are more complex. Several multiplication (or AND) gadgets have been proposed,
including the two-cycle HPC1 and HPC2 [CGLS21], and the single-cycle HPC3 [KM22].

Even though trivially composable masking schemes such as HPC simplify the security
analysis of a masked circuit, transforming an unprotected design into a securely masked
one remains a challenging task. Indeed, the HPC multiplication gadgets contain sequential
logic, hence masking a non-linear combinational circuit leads to a sequential circuit,
requiring adjustments to the synchronization logic to take the added latency into account.
AGEMA [KMMS22] is an automated masked circuit generation tool that addresses this
problem. However, the generated designs are often suboptimal, as pointed out by Momin
et al. [MCS22], who introduce handcrafted designs for a masked AES implementation that
have better performance than the circuits generated by AGEMA. While their performance
gains come from carefully crafted high-level architectures and from an improved Sbox
design. The latter is automatically generated by a tool that achieves better performances
than AGEMA, but is much more restricted since it only handles pipelined circuits. This
tool, as well as the recently-introduced AGMNC [WFP*23] (another tool that generates
masked pipelined circuits), do not generate optimal circuits.

Although existing CAD tools implement advanced circuit optimizations, using them
to optimize masked designs is non-trivial, since they do not necessarily preserve the
required security properties. For example, arbitrary re-timing of registers might allow the
propagation of insecure glitches, and logic sharing, along with boundary optimizations
may break Threshold Implementation’s [NRRO6] non-completeness property [CBGT17,
ABP*18, ZSST21, CCGB21, MM22, CMM*23b]. In practice, designers therefore generally
take measures to disable or prevent critical CAD tools’ optimizations when synthesizing
masked circuits.

Contributions In this work, we introduce COMPRESS!, a tool to generate area-optimized
masked pipelined circuits. We make COMPRESS publicly available on Github?. COMPRESS
takes as an input a Boolean circuit describing the circuit to be implemented, and generates
a masked netlist representing the circuit with a latency chosen by the user. Thanks to its
optimizations, it generates more efficient circuits than state-of-the-art tools, while keeping
security-critical structures for masking. The tool supports any-order Boolean masking,
although the techniques it uses also apply to other kinds of masking.

We focus on the generation of pipelined circuits, i.e., circuits that are composed of a
sequence of combinational logic stages, where the wires that connect a stage to the next
are going through registers (typically implemented as D-flip-flops). We build these circuits
by composing HPC gadgets (which are themselves small pipelined circuits) together with
the help of additional registers to ensure proper synchronization of the pipeline stages.
Compared to the alternatives such as clock gating [KMMS22], the big advantage of
pipelined circuits is their simplicity (e.g., there is no control logic) and high throughput
(they perform one evaluation per clock cycle). This makes them good candidates for the
implementation of subcomponents in cryptographic algorithms, where the high throughput
enables serialized implementation strategies, and a single pipelined circuit is used to
perform many parallel computations sequentially (e.g. S-boxes). Pipelined circuits can
then be integrated in circuits with more complex architectures, either by hand [MCS22],
or automatically (e.g., with EASIMAsK [BSG23)).

1Composable Optimizer of Masked Pipelines with Register-Enhanced Staging Selection
2 Available at https://github.com/cassiersg/compress, with all our scripts at https://github.com/
cassiersg/compress_artifact.
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While most previous works focus rather on finding efficient Boolean circuit represen-
tations of functions [BP12, CGLS21] or designing new gadgets with reduced randomness
usage or lower latency, these works generally leave out “low-hanging fruit” optimizations in
the composition of gadgets and inside the gadgets themselves. Most of our optimizations
therefore focus on eliminating and re-timing registers in masked pipelines, which sometimes
represent more than 70 % of the area [MCS22]. This is achieved in two steps. First, at
the gadget composition level, we optimize the staging of computations, i.e., we assign
every gadget in the composition to its pipeline stage(s). If needed, we duplicate gadgets,
for example, when a gadget is small and its output is used in multiple pipeline stages, it
might be more efficient to instantiate the gadget multiple times, instead of having pipeline
registers to forward its output to all later pipeline stages where it is used. Second, we tackle
the issue of redundant pipeline registers, that is, multiple registers that store the same value.
This issue arises when gadgets store their inputs in registers, which may be redundant
with pipeline registers inside other gadgets, or registers added for synchronization between
gadgets.

Furthermore, COMPRESS introduces a variety of other optimizations to reduce the area
of masked designs. At the level of individual HPC2 and HPC3 gadgets, we employ an
optimized handling of the so-called inner-domain terms (i.e., term of the form x; A y;, for
input sharings @ = (zg,...,24-1) and ¥y = (yo,...,Ya—1)). This optimization also leads
to new variants of HPC2 and HPC3 that implement the Toffoli gate in a more efficient
way than the AND-XOR gadgets of [WFP 23], and to the extension of HPC3 to arbitrary
fields, enabling its use in more contexts (such as efficient implementations of the Canright
AES Sbox [Can05]). Finally, we show for the first time that saving area is possible through
combining HPC2 and HPC3 gadgets, rather than exclusively using one or the other. In
general, HPC3 has a lower latency and lower area than HPC2, but it requires double
the amount of randomness, leading to a larger total area (i.e., including the area of the
randomness generation circuit). Small and low-latency circuits can be obtained by sticking
to HPC3 when the operands are both on the critical latency path, but HPC2 elsewhere
(thanks to its 1-2 cycle asymmetric latency).

Combining all these optimizations leads to significant area reductions, and makes
low-latency circuits (which are generally larger) more practically-relevant. In particular,
we design a pipelined AES S-box with up to 50 % latency and 33 % area gain over the
smallest HPC2 implementation in the state of the art, and 45 % area gain over the state
of the art HPC3 implementation (same latency). We further adapt the 32-bit datapath
state-of-the-art masked AES HPC implementation of [MCS22], leading to an overall latency
and throughput improvement of 19 %, and an area reduction of 27 %. Our round-based
AES implementations also exhibit similar improvements over the state of the art in area
and/or latency. COMPRESS is not limited to the design of masked S-boxes. As an example,
we apply it to multiple architectures of 32-bit adders.

Outline Section 2 introduces the HPC masking scheme and its use to build pipelined
circuits from gadgets. Section 3 presents the core ideas behind COMPRESS and the
optimization problem it solves. Section 4 discusses the optimizations to deduplicate
pipelining registers inside gadgets, and Section 5 details the other optimizations to the
HPC2 and HPC3 gadgets. Next, Section 6 discusses the results of the tool and compares
it to the state of the art for multiple masked circuits: AES S-box and its integration in a
complete masked AES, Skinny S-box and binary adders. Finally, we discuss in more detail
the related works (Section 7).
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Algorithm 1 Sharewise-X with d shares.

Input: Sharings @, y, binary gate X (e.g., XOR, AND...).
Output: Sharing z.

for i =0tod—1do
zi = X (%i,Yi)

Algorithm 2 HPC2 AND gadget with d Algorithm 3 HPC3 AND gadget with d

shares. shares.
Input: Sharings x, y Input: Sharings x, y
Output: Sharing z such that z =z A y. Output: Sharing z such that z =z A y.
for i =0tod—1do for i =0tod—1do
for j=i+1tod—1do for j=i+1tod—1do
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2 Background

In this section, we first introduce the glitch- and transition-robust probing model for
analyzing the security of masking schemes in hardware. We then present the HPC
masking schemes and its various multiplication gadgets. Finally, we discuss the issue of
synchronization in masked circuits.

2.1 Robust Probing Model

The security of masked circuits is often evaluated in the ¢-probing model [ISW03], where
computations are represented as an abstract arithmetic circuit, and the adversary may
probe the values carried by any set of ¢ wires in the circuit (¢ is known as the masking
order). A circuit is secure if the values observed by the adversary are independent of the
sensitive values, i.e., all non-masked values represented by sharings in the circuit. When
masking with d shares, the security order ¢ is at most d — 1.

When considering glitches and transitions, the circuit model is closer to concrete
synchronous circuits, where the computation is executed over multiple clock cycles, and
registers carry values from one clock cycle to the next [CS21]. For these circuits, the robust
probing model [FGP* 18] allows the adversary to use extended probes, which leak the value
of multiple wires. For a glitch-extended probe, the observed wires are all the wires that
belong to the combinatorial circuit that computes the probed wire, i.e., glitches propagate
through combinatorial gates but are stopped by registers. For a transition-extended
probe, the value carried by the probed wire is observed at two consecutive clock cycles.
A glitch+transition-extended probe represents the combination of these models, giving
access to all wires in the combinatorial circuit for two consecutive clock cycles.

2.2 Hardware Private Circuit

HPC is an arbitrary-order masking scheme with ¢ = d — 1 robust probing security against
glitches and transitions [CGLS21, CS21]. To mask a circuit with HPC, it must be
decomposed in simple gates (typically XOR, AND, NOT). Then, conceptually, each wire
is replaced by a sharing and each gate is replaced by a gadget. HPC is based on the
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Table 1: Performance characteristics of multiplication/AND gadgets (randomness and
area given for Fo with the NanGate45 PDK).
Latency Latency d Random Area w/o PRNG Area w/ PRNG

Gadget ina inb bits (GE) (GE) Group
GHPC [KSM22] 1 2 2 1 95.3 134.7 Fa
GHPCry, [KSM22] 1 1 2 4 86.7 244.1 Fa
2 2 50.7 129.4
3 5 127.0 323.8
HPC1 [CGLS21] 1 2 4 10 217.3 610.9 Fr
5 15 325.0 915.4
2 1 82.3 121.7
3 3 209.0 327.1
HPC2 [CGLS21] 1 2y . 302.7 628.8 F2
5 10 633.3 1026.9
2 1 55.0 94.4
3 3 168.3 286.4
HPC20 (new) 1 2 4 6 338.7 574.8 F2
5 10 566.0 959.6
2 2 69.3 148.1
’ 3 6 165.0 401.2
HPC3 [KM22] 1 1 4 12 301.3 773.7 2
5 20 478.3 1265.5
2 2 38.7 117.4
3 6 119.0 355.2
HPC30 (new) 1 1 4 12 240.0 712.3 Fr
5 20 401.7 1188.9

composable notion of glitch-robust probe-isolating non-interference (PINI) [CS20], which
ensures that gadgets are trivially composable in the presence of glitches: if all gadgets are
glitch-robust PINI, the masked circuit is glitch-robust PINI as well. Further, HPC has
also been proven secure against glitch+transition leakage under some additional conditions
on its structure, which are trivially satisfied in many cases, such as when implementing a
substitution-permutation network (SPN) with at least 2 clock cycles per round [CS21].

For linear gates (e.g., XOR), there exists simple sharewise gadgets (e.g., Sharewise-XOR
shown in Algorithm 1) which are glitch-robust PINI. Similarly, for affine gates, we can use
a sharewise gadget where the affine map is applied to one of the shares and the associated
linear map is applied to the other shares (e.g., a NOT gadget may simply apply the NOT on
the first share). Non-linear gates are more complex, and the design of multiplication/AND
gadgets is an active research area, with state-of-the-art gadgets listed in Table 1. The
gadgets are characterized by their latency (number of cycles between providing each of
the input sharings and generating the output), the number of shares supported, their
randomness usage and area requirement.

Given the high randomness requirements of the HPC gadgets, masked circuits using
them generally use dedicated PRNGs. Assuming that such a PRNG is used allows us to
simplify the gadget comparison: we estimate the area of the PRNG needed to provide
enough randomness to run the gadget continuously, and integrate it in the area of the
gadget. We therefore compare gadgets based on their area with randomness generation,
and do not focus on the randomness usage itself. For the PRNG area of generating
one bit of randomness per cycle, we take the area of an unrolled Trivium (as suggested
by [CMMT23a]) divided by the unrolling factor (we take an unrolling factor of 512),
amounting to 39.4 GE/bit with NanGate45.

In Table 1, it appears that HPC2 [CGLS21] and HPC3 [KM22] have respectively
lower (PRNG-included) area than the Generic Hardware Private Circuit (GHPC) and
its low latency variant (GHPCy) [KSM22], for the same latency. HPC1 is similarly less
performant than HPC2. We therefore mainly focus on the HPC2 and HPC3 gadgets in
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Figure 1: Example of a masked Figure 2: COMPRESS flow. Rectangles denote flow
pipelined circuit as a composition steps, rounded corners denote inputs, outputs and
of gadgets and masked registers. intermediate flow artifacts.

this paper, and use HPC1 only when multiplication in a larger field (i.e., not Fs) is used.
The HPC2 and HPC3 gadgets are described in Algorithm 2 and Algorithm 3, where R (+)
denotes a glitch-stopping register (i.e., one that is needed for security) and PR () denotes
a pipeline register (i.e., one that is only needed for turning the gadget into a pipeline).

2.3 Synchronization in Masked Hardware Circuits

While masking a circuit with only sharewise gadgets is a simple transformation, using the
HPC2 or HPC3 gadget (or, generally, gadgets implementing a non-linear gate) is more
complex because these gadgets introduce additional latency in the circuit. This means that
masked non-linear sub-circuits such as S-boxes in SPNs often have a high latency, which
may greatly diminish the overall efficiency of masked implementations [KMMS22]. Indeed,
masking a circuit by simply replacing gates with gadgets will need to cleverly use clock
gating to properly synchronize all the signals in the circuit, and pay a high cost in latency,
on top of the area overhead of masking. Another strategy for masked implementations
is to exploit pipelining: the synchronization is achieved through the addition of registers
instead of clock gating, as shown in Figure 1. Pipelining does not improve latency and
increases area cost, but it increases the throughput of the sub-circuit.

When multiple computations can be performed in parallel (e.g., a block cipher in a
parallelizable mode of operation), pipelining translates into a large throughput gain over
clock gating, at a small area overhead. Another way to exploit pipelining is to switch to a
more serialized architecture. For example, in a round-based (parallel) implementation of an
SPN, the masked S-box can be instantiated multiple times such that that all S-boxes can
be evaluated in parallel (each instance is evaluated only once per round). By contrast, a
serialized implementation may instantiate the masked S-box only once (or a few times) and
evaluate it multiple times in order to evaluate a round. Serializing the architecture reduces
the area cost, and it combines well with pipelining: the high throughput of the pipeline
minimizes the latency overhead of serialization. As a result, masking with pipelining is
a technique that can achieve better latency/area trade-offs than clock gating, but may
require handcrafted designs [MCS22].

3 Generic Optimization of Masked Pipelined Circuits

COMPRESS takes as input the Boolean circuit to mask and outputs a netlist that implements
the circuit as a masked HPC pipeline. As shown in Figure 2, COMPRESS also takes as input
a masked gadget library, whose areas (including PRNG cost) are used to parameterize an
optimization goal. The latency of the generated circuit is also a parameter of COMPRESS,
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Figure 4: Examples of COMPRESS optimization of pipeline registers (registers and @
represent sharewise gadgets, wires represent sharings).

it must be at least equal to the AND depth of the input circuit (otherwise the circuit
cannot be implemented using the HPC2 and HPC3 gadgets).

The goal of COMPRESS is to generate a pipeline of masked gadgets with optimal gadget
selection and computation scheduling in order to achieve the requested latency while
minimizing area. The tool exploits the following degrees of freedom: gadget selection,
scheduling of computations across pipeline stages, and gadget replication. First, COMPRESS
selects a suitable gadget for AND gates. There are multiple gadgets with different latency,
area and randomness usage characteristics (HPC2, HPC3, etc.) available, as illustrated
in Figure 3. The assignment of input sharings is also considered in case of asymmetric
gadgets, such as HPC2. Second, COMPRESS optimizes the scheduling of computations by
deciding which pipeline stage a computation should best be performed in, and instantiating
the pipeline registers that forward the computed data across register stages. Optimized
scheduling reduces the number of pipeline registers to be instantiated, thereby reducing
area as shown in Figure 4a. Third, COMPRESS may perform gadget replication, which
means that if a value is used in multiple clock cycles and the gadget that computes it is
small (e.g., an XOR gadget), it might be more efficient to replicate the gadget in multiple
pipeline stages instead of instantiating pipeline registers (provided that the operands of
the gadget are available at the corresponding pipeline stages). For example, in Figure 4b,
an XOR gadget is duplicated in order to avoid the instantiation of two masked registers
(the dashed line indicates a value used elsewhere in the circuit).

The core part of COMPRESS consists representing the masked circuit generation as a
constraint optimization problem. We then use OR-tools [PF] to solve this problem, and
the solution is then translated into a verilog netlist. We next give a high-level description
of this optimization problem (the complete algorithm is given in Appendix B).

COMPRESS splits the computation in pipeline stages 0, ..., L, where the inputs are fed
in the circuit at stage 0, while the outputs are connected to stage L. For each intermediate
value w in the Boolean circuit and for each pipeline stage s, COMPRESS instantiates a
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“valid” Boolean variable vy’, which is true iff there is a sharing representing the value w in
the pipeline stage s. For each of these variables, there is also a “compute” Boolean variable
c? that is true iff there is a gadget that outputs w at the stage s (for now, we consider
gadgets that output a single sharing, multi-output gadgets are handled in Appendix B).
The “pipeline” variable rY indicates the presence of a pipeline register that forwards the
value of w from stage s to stage s+ 1, for all w and for s € {0,...,L — 1}. These variables
are connected by the following constraints, which define the “valid” variable as a function
of “compute® and “pipeline”:

w o w
Vo = Cp

v =c?V (v¥ Aryy) for s> 0.

Let us next model the instantiation of gadgets, which will determine the value of the
“compute” variables. Each value w is computed by a logic gate (e.g. XOR, AND, ...)
that can be implemented by one or multiple gadget types (e.g., an XOR gate can only
be implemented by an XOR gadget, while an AND gate can be implemented by HPC2
or HPC3). For each value w, each stage s, and each gadget type ¢ the “gadget” Boolean
variable g% indicates if a gadget of type ¢ is instantiated to output w in stage s. In order
to ensure correctness of the generated circuit, gb* is set to false (i.e., the gadget is not
instantiated) when (i) the gadget implements a different gate than the one computing w,

or (ii) when the corresponding gadget would take an input before stage 0 (e.g., for any w,
HPC2,w _ HPC2,w
0 1

= 1, i.e., they are set to false). Next, the following constraint requires
the inputs of an instantiated gadget to be valid: we let

t,w w’
gs— = /\ Us—lat(t,w,w’)’
w’ €op(w)

where op(w) is the set of operands of the logic gate that computes w, while lat(¢, w, w’) is,
for the gadget ¢, the latency of the input sharing w’ relative to the output sharing w (i.e.,
the difference in pipeline stages between the input and the output).

Gadget instantiations determine the value of the “compute” variables:

wo_ t,w
Cs - \/gs’

teG

where G is the set of all gadget types®. As an exception, the inputs of the circuit are not
computed by gadgets, they are provided at stage 0, which we model as follows: for all
input wires w, ¢ = T and ¢ = L for all s > 0.

The last constraint is for outputs: for all output wires w, vy = T. Together, the
constraints ensure that any admissible solution to the problem corresponds to a correct
masked circuit implementation?.

Next, the objective of the optimization problem is the minimization of the area used by
the masked circuit. Therefore, COMPRESS takes as an input the area cost of each gadget
type, including a “pipeline register” gadget. The total cost is then defined as the sum of the
areas of the instantiated gadgets (as determined by the g% and r¥ variables). We take into
account the cost of randomness generation for the masked gadgets as follows. We assume
that a PRNG is instantiated along with the masked circuit, and that it should provide
enough randomness to run the pipeline continuously: each randomness input of a gadget

3In order to provide most optimization opportunities (including the optimizations performed
by [MCS22]) for gadgets that have functionally identical input sharings with different latencies (e.g.,
HPC2), we have multiple variants of these gadgets in G that are all equivalent, up to a re-ordering of
functionally identical inputs.

4Except that it allows useless and nonsensical pipeline register instantiations, but these never occur in
practice thanks to the optimization.
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Figure 5: Illustration of register de-duplication thanks to the separation of a pipeline
register out of the HPC3 gadget.

is connected to an output of the PRNG, and the PRNG should be able to refresh its full
output at every clock cycle. Concretely, we use an unrolled Trivium, following [CMM*23a).
Then, we observe that the marginal area cost of one additional bit of randomness per clock
cycle from the PRNG is roughly constant. As a result, the PRNG cost is included into the
area optimization function as an increase of the area of each gadget by the area needed to
generate the randomness it uses.

Let us finally remark that while the optimization problem is order-specific (the gadget
costs depend on the masking order), COMPRESS’s output is still generic: it can be
synthesized at all masking order, provided that the gadgets support it.

4 Register Reuse through Gadget Decomposition

In this section, we further reduce the amount of registers in the masked circuits by looking
at registers instantiated inside gadgets. For example, an HPC3 gadget contains pipeline
registers for the x; shares (see Algorithm 3). If two HPC3 gadgets have the same input
sharing «, then these registers will be duplicated. The same can also happen between a
register inside a gadget and a pipeline register outside any gadget. Our approach to avoid
such inefficiencies is to decompose gadgets into multiple parts, which eliminates pipeline
registers from such gadgets, and instead exposes them as latency constraints. This avoids
duplication and COMPRESS’s gadget selection (e.g., by choosing the order of the input
sharings in a gadget) may bring further optimizations.

4.1 Separate Pipeline Registers

As a first step, we handle the de-duplication of pipeline registers on input sharings, which
is illustrated in Figure 5. The de-duplication is implemented in COMPRESS by putting
these pipeline registers outside of the gadgets. If a gadget contains registers PR (z;) (where
@ is an input sharing, see e.g. HPC3), these can be removed from the gadget and these
values replaced by the shares 2’; of a new input sharing. The new input sharing =’ is
encoded as taking the same value of &, but being used one clock cycle later than x. This
leads COMPRESS to instantiate a pipeline register to generate x’, which may be used as
an input for other gadgets. Concretely, this technique is applied to the input shares y; of
HPC2 (separating d registers), and to the input shares x; and y; of HPC3 (separating 2d
registers).

The new gadgets bring new additional constraints in COMPRESS. Indeed, a naive
implementation of the techniques presented above would require that the values represented
by the sharings £ and z’ are the same, while, for the circuit to be correct, the values
of the individual shares must be equal. These conditions are not equivalent due to the
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Algorithm 4 HPC3-cross gadget with d shares. Algorithm 5 HPC3 AND decomposed

Input: Sharings x, y. in gadgets.
Output: Sharing z.

Input: Sharings x, y
fori=0tod—1do Output: Sharing z such that z =z - y.

for j=i+1tod—1do

s a < HPC3-cross (z, y)
rij  Fa; rj; < 745 b <+ Sharewise-AND (z, y)
T;J & Fy: T;i - 7";:,' 2z < Sharewise-XOR (a, b)
for i=0tod—1do
for j=0tod—1,j #ido

pij < R (@ APR(r:;)) & 7);) &R (@s AR (y; & 745))

@GFI
2 < -
g §=0,j#i Pij

duplication of gadgets discussed in Section 3, when a non-deterministic gadget (i.e., one
whose output sharing depends on some randomness) gets duplicated®. To ensure that such
a case does not happen, we add constraints to the optimization problem of COMPRESS,
enforcing all sharings of the same value to be identical®. Concretely, this means that a
sharing cannot be computed by gadgets of different types: for all wires w,

AtMostOne ((Any <(9§’w)s—0,-~7b))teg> =T, (1)

where Any(+) is true if any element of its input tuple is true, and AtMostOne(+) is true if
at most one element of its input tuple is true. Further, a gadget that uses randomness
cannot be duplicated: for all wires w and all gadget types ¢t that use randomness,

AtMostOne ((g?w)szo,...,L> =T. (2)

Regarding security, the only change we apply to the circuit is the de-duplication of
registers that store identical values, which does not change the set of probes in the probing
model (including glitches and transitions).

4.2 Separate Inner-domain Terms

While some pipeline registers can be optimized by separating them out of the gadgets, the
above optimization does not apply to all pipeline registers. In this section, we look at the
pipeline registers on the so-called inner-domain terms in the HPC2 and HPC3 gadgets,
namely the terms z; A y;. Indeed, since these terms perform only sharewise computation,
registers are not needed for security, only for proper pipeline staging. Again, our goal is to
move these registers outside of the gadgets, such the COMPRESS can optimize them.

We achieve this by splitting the AND gadgets into a part that computes the inner-
domain terms (a sharewise AND gadget), a part that computes the other terms (HPC2/3-
cross), and a gadget that XORs their outputs (sharewise), as illustrated in Figure 6. The
decomposition of HPC3 is given in Algorithm 4 and Algorithm 5, and the decomposition
of HPC2 follows the same pattern. The three resulting gadgets perform exactly the same
computation as the original gadget, except for the now-unspecified pipeline registers.

5The issue can also appear if a logic gate can be implemented by multiple types of gadgets (with or
without randomness), and the “duplication” instantiates two different types.

6These constraints are stronger than strictly necessary since we could apply them (recursively) only to
inputs of gadgets with pipeline register separation. This is not an issue in practice, since the only logic
gate for which we have multiple gadget types is the AND gate, and these gadgets (which are also the only
ones using randomness) have a large area. Therefore, it is unlikely that duplicating these gadgets is more
efficient than adding pipeline registers.
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O

Sharewise-AND
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(a) Without separation (b) With full separation

Figure 6: Illustration of register de-duplication thanks to register separation and inner-
domain terms separation.

Algorithm 6 HPC2o Toffoli gadget with d Algorithm 7 HPC3o Toffoli gadget with d

shares. shares.
Input: Sharings w, @, y. Input: Sharings w, x, y.
Output: Sharing z such that z = w @ (z A y). Output: Sharing z such that z = w @ (z A y).
for i =0tod—1do fori=0tod—1do
for j=i+1tod—1do for j=i4+1tod—1do
$ $
Tij < ]FQ; Tji £ Tij Tij ]FQ; Tji £ Tij

fori=0tod—1do . - /
1 ifi=0 i < Fay 1y
Ji < . for i=0tod—1do
0 otherwise 1 ifi=0
for j=0tod—1,7#1¢do ]Le{
if j = j; then , >
pij = R(w; ® (2 APR(y:) ® (T3 APR (ryy)))@  forj=0ted=1,j7ido

0 otherwise

R(z; AR (y; @ rij5)) if j = j; then )
else pij < R (w'i D (i A (yi ®Tij)) © "“ij)@(PR (zi)A
pij & R(@iAPR(ri;)) VR (i AR(y; ®7i5))  R(y; @ ri;))
d—1
Z; @j:()‘j#i Dij else

pij < R (@i Arig) ®71;) D(PR (2:) AR (y; @ 745))

@(Fl
2 ¢ .
¢ j=0,55i P4

Regarding the security analysis, there is no change to the leakage, except for the
addition or removal of registers that are not needed for security purposes (the original
security proofs of HPC2 and HPC3 did not assume the presence of these registers, and
adding registers can only make the adversary weaker).

5 Optimized Gadgets: HPC20 and HPC3o0
5.1 New Gadget Designs

In this section, we go beyond the register re-use of Section 4 by completely eliminating
some pipeline registers through optimizations inside the AND gadgets.

Inner-domain term optimization Instead of separating the inner-domain terms in HPC2
and HPC3, we propose to merge these terms with cross-domain terms. For HPC2, we
modify Algorithm 2 as follows. For every ¢ =0, ...,d— 1, we select an arbitrary j; # i (e.g.,
Ji =0 for all i # 0, and jo = 1). Then, we replace the computation R (Z; A PR (r;;,)) with
R ((xi APR(yi)) ® (i APR(r45))) (see Algorithm 6), which integrates the term x; A y;
into the term p;j;,. This transformation removes d registers from the HPC2 gadget and



G. Cassiers, B. Gigerl, S. Mangard, C. Momin and R. Nagpal 511

does not damage the security: for the PINI security analysis, we added a term of the
domain ¢ to a term that already involves the domain ¢ (see proof in Appendix A).

For HPC3 (Algorithm 3), we first apply a simplification to the gadget, by remarking
that the NOT gate in the computation R ((Z7 A riy) @ 7i;) ® PR(z;) AR(y; @ ry;) can
be removed. Namely, replacing this computation with R ((z; Ari;) @ 7};) @ PR (2;) A
R (y; ® ri;) still leads to a correct gadget: while the original computation results in the
value (z; Ay;) @ r;; © rij and the new one gives (x; A y;) @ 7;, both lead to a correct
gadget (i.e., the output is a sharing of A y). Regarding the security, the core observation
is that, similarly to the original gadget, the new computation R ((mZ NTij) @ rgj) has the
distribution of a fresh random value if 7;; is not observed elsewhere. In other words, the
cancellation of the random r;; has no security impact. While the removal of a NOT gate
in the gadget has no significant performance impact by itself”, it becomes useful when
optimizing the inner-domain terms. Indeed, we can apply a similar optimization to HPC2
by turning R ((z; A ry,) @ rf;,) into R (@5 A (y; @ 145,)) @ 75, ), which additionally saves
one AND gate (see Algorithm 7).

Finally, we remark that, where x;y; is computed, a share w; of a third input w can
be XORed without breaking the PINT property (intuitively, this is because the set of
manipulated “share domains” is not changed). This addition turns the HPC20 and HPC3o
gadgets into Toffoli gadgets, saving pipeline registers for w;. The final gadgets are given in
Algorithm 6 and Algorithm 7, their performance characteristics are listed in Table 1 and
their formal security proofs are given in Appendix A.® The new gadgets have the same
functionality as the AND-XOR gadgets of [WFPT23], but are more efficient.’

Gate area optimization We introduce another optimization in the HPC2 gadget. In the
computation of p;; for j # j; and j # i (i.e., for the cross-domain terms where the above
optimization is not applied), R (Z; A PR (r;;)) and R (z; AR(y; @ r;)) are never both 1.
Therefore, combining these terms with an XOR gate gives the same results as combining
them with a OR gate, which has a lower area in CMOS designs. This optimization is
implemented in Algorithm 6.

5.2 Using Toffoli Gates in Compress

COMPRESS takes as input circuits composed of AND, XOR and NOT gates. Therefore, in
order to efficiently make use of the HPC20 and HPC3o gadgets, it should extract Toffoli
gates from a circuit of AND and XOR gates.

We use the following approach. For each output sharing a of an AND gate, if a is
XORed with b (¢ = a @ b) and not used in any other gate, then we may instantiate a
Toffoli gate with b as the third (w) input. Further, if ¢ is itself used only once in an XOR
with d, then d (or ¢ ® d) is also a good candidate as an input to a Toffoli gate. This
continues, until the value is not used in an XOR, or if it is an operand of more than one
operation (we do not want to force logic duplication). All these variables can be XORed
into the input of the Toffoli gate that contains the AND computation of a, which may save
pipelining registers. However, some of these variables could be more efficiently computed
at a later cycle, and we should not adopt a restrictive all-or-none approach. We therefore
consider that a subset of these variables may be XORed in the input of the Toffoli gate,

"Let us remark that removing the NOT gate makes the gadget trivially generalizable to any field
(our security proof is field-agnostic, provided that the gadget is made correct by turning XOR gates into
additions and subtractions where needed, and turning AND gates into products). The change also makes
the randomness 7;; local [CGZ20] to the gadget, which might help with masking randomness re-use, but
is beyond the scope of this work.

8 As a sanity-check (and also to avoid implementation bugs), our implementations of HPC20 and
HPC30 have been verified with SILVER [KSM20] for d = 2, 3.

9 Actually the AND-XOR gadgets share the registers between the w; and x;y; terms. However, they
do not share these registers with cross-domain terms, as is done in HPC20 and HPC3o.
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Algorithm 8 Identification of Toffoli gates in Boolean circuit

Input: A Boolean circuit, g a AND gate in the circuit.
Output: (Ly, Ry) where L is a set of XOR-operands for a Toffoli gate instantiation and Ry .
for all AND gates g in the circuit do
Let z be the output of g.
o< z
while o is the operand of only one operation do
Let o be the output of that operation.
Ry, <o > o is now the “result” variable.
S + {o}
Ly« 0
if o # z then
while S # () do
Pop an element @ from S
if « is the output of an XOR gate ¢’ and @ is the operand of only one operation then
Add the operands of g’ to S.
else
Add = to L.

while others may be XORed to its output. Further, if d = e ® f and d is only used once in
the circuit, then we should take e and f in our list of XOR operands instead of d, in order
to maximize flexibility and avoid dependency on the parentheses between the additions in
original circuit representation.

The flow of COMPRESS is therefore modified as follows. First, for every AND gate in the
circuit, Algorithm 8 is executed in order to identify a list of variables that are candidates
to be XORed in a Toffoli gate, and the name of a “result” variable, that is, the XOR of
all these variables and of the output of the AND gate. Next, we add an alternative way
of computing the result (we keep the approach without Toffoli gate as a solution). This
alternative way is based on an extended Toffoli gate, which takes as input the operands of
the AND gate and the variables in the candidates list, and it outputs the result.

By introducing multiple computations inside a single extended Toffoli gadget, we go
against our previous decomposition approach and, as a result, could lose some scheduling
optimizations of COMPRESS. We circumvent this issue by making the extended Toffoli
gadget very flexible w.r.t. input and output latency, and by providing COMPRESS the
knobs to exploit this flexibility (as well as information on the cost of the gadget depending
on how it is used). In more details, the Toffoli gadgets take inputs sharings x, y and (w;);.
They are based on the HPC20 or the HPC30 gadget, whose input w is the XOR, of a subset
of the sharings w; (computed using XOR gadgets). The output z of the HPC20/HPC30
gadget is then forwarded to an arbitrary (subject to optimization) stage deeper in the
pipeline by means of registers. In the pipeline stages covered by these registers, the other
w; operands are XORed to the forwarded state (again, the staging of these XOR operations
is selected by the optimization solver).

6 Case Studies

In this section, we look at the performance characteristics of the masked pipelines generated
by COMPRESS and we compare them to the state-of-the-art designs. The area numbers
are obtained by synthesizing the designs with Yosys 0.33 and the Nangate 45 PDK, while
the latency for S-boxes and adders is the number or register layers.

6.1 Optimized S-boxes

As a first case study for COMPRESS, we generated optimized implementations of the AES
S-box and of the 8-bit Skinny S-box. For the AES S-box, we considered two of the most
commonly-used and state-of-the-art representations for masking: the 34 AND gate Boyar-
Peralta representation [BP12] and the Canright tower field representation [Can05], while
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Table 2: Performance characteristics of new masked AES S-box implementations (Boyar-
Peralta representation [BP12], AND depth: 4).

Security Lat Desi Random Area w/o PRNG  Area w/ PRNG
order atency  Design bits (kGE) (kGE)
Base 3.53 5.34
4 Sep 46 3.24 5.05
Opt 2.78 4.59
Base 3.81 5.26
1 5 Sep 37 3.51 4.97
Opt 3.08 4.54
Base 4.06 5.40
6 Sep 34 3.77 5.11
Opt 3.34 4.67
Base 7.91 13.34
4 Sep 138 7.47 12.90
Opt 6.79 12.22
Base 8.54 12.91
2 5 Sep 111 8.10 12.47
Opt 7.47 11.84
Base 9.00 13.01
6 Sep 102 8.56 12.57
Opt 7.92 11.94
Base 14.03 24.89
4 Sep 276 13.44 24.30
Opt 12.96 23.82
Base 15.17 23.91
3 5 Sep 222 14.58 23.32
Opt 14.14 22.87
Base 15.87 23.90
6 Sep 204 15.28 23.31
Opt 14.88 22.91
Base 21.89 40.00
4 Sep 460 21.15 39.26
Opt 20.45 38.55
Base 23.68 38.25
4 5 Sep 370 22.95 37.51
Opt 22.24 36.80
Base 24.69 38.07
6 Sep 340 23.95 37.33
Opt 23.27 36.65

Table 3: Performance characteristics of new masked AES S-box implementations (Canright
representation [Can05], multiplication depth: 4).

Security Lat Desi Random Area w/o PRNG Area w/ PRNG

order atency  Lesigh bits (kGE) (kGE)
4 36 1.95 3.37

1 5 36 2.04 3.46

6 36 2.13 3.55

4 96 4.56 8.34

2 5 92 4.57 8.19

6 Opt 90 472 8.27

4 192 8.06 15.62

3 5 184 7.74 14.98

6 180 7.83 14.92

4 300 12.48 24.29

4 5 280 11.63 22.65

6 270 11.59 22.22
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Table 4: Performance characteristics of state-of-the-art masked AES S-box implementa-

tions.
Security Laten Desien Random Area w/o PRNG  Area w/ PRNG
order atency esig bits (kGE) (kGE)
1 34 4.24 5.58
2 , 102 9.27 13.29
3 6 [MCS22] 204 16.24 24.27
4 340 25.14 38.52
1 34 5.06 6.39
2 5 1}1?50%13 102 10.49 14.51
3 (Boyar-Peralta) 204 17.87 25.89
4 340 27.18 40.56
1 68 3.48 6.16
2 4 ﬁ?fcl\gé 204 7.30 15.33
3 (Boyar-Peralta) 408 12.49 28.55
4 680 19.07 45.84
1 40 5.60 7.17
2 5 ‘_\I?F]?(I;gf 120 11.80 16.52
3 (Canright) 240 20.28 29.72
4 antis 400 31.04 46.78
1 80 3.95 7.10
2 4 ’f‘ngcNéf 240 8.34 17.79
3 (Canright) 480 14.36 33.25
4 & 800 22.00 53.49
1 33 3.97 5.06
2 5 AGMNC 99 9.08 12.37
3 [WFP+23]t 198 16.24 22.81
4 330 25.47 36.43
1 6 [ADN*22] Design I* 54 2.71 4.84
1 5 [ADN*22] Design IT# 36 4.33 5.75
1 4 [BGN+15]# 32 2.84 4.10
1 4 [Sug19)t 0 3.50 3.50
2 8 [DsMm22] 155l 6.21 12.31
1 18 2.45 3.16
2 . DOM 54 4.80 6.93
3 [GMK16]T 108 7.90 12.15
4 180 11.76 18.84

*AGEMA [KMMS22] in pipeline mode.

TResults reported by the designers. Synthesized with Synopsis Design Compiler on NanGate45.
fResults reported by [ADN*22]. Synthesized with Synopsis Design Compiler on UMC 0.18um
Genericll Logic Process.

8Optimized synthesis by [BGNT15] achieves 2.22kGE with Synopsis Design Compiler on UMC
0.18um Genericll Logic Process. The latency of 4 clock cycles is composed of 2 clock cycles for the
“core” 3-shares S-box design, and 2 clock cycles for the adaptation to a 2-shares AES design (input
refreshing and output compression).

Il Includes 139 bits that can be shared.

Y Does not have a security proof.
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Table 5: Performance characteristics of masked 8-bit Skinny S-box implementations, AND
depth: 4.

Security Latenc Desi Random  Area w/o PRNG  Area w/ PRNG
order ney sign bits (kGE) (kGE)
Base 1.01 1.48
4 Sep 12 0.97 1.45
Opt 0.84 1.32
Base 1.14 1.49
1 5 Sep 9 1.12 1.47
Opt 0.98 1.34
Base 1.25 1.57
6 Sep 8 1.23 1.55
Opt 1.10 1.42
Base 2.10 3.51
4 Sep 36 2.04 3.46
Opt 1.85 3.27
Base 2.36 3.43
2 5 Sep 27 2.33 3.39
Opt 2.13 3.20
Base 2.56 3.50
6 Sep 24 2.53 3.47
Opt 2.34 3.28
Base 3.57 6.41
4 Sep 72 3.50 6.34
Opt 3.32 6.16
Base 4.03 6.15
3 5 Sep 54 3.98 6.11
Opt 3.86 5.99
Base 4.32 6.21
6 Sep 48 4.28 6.17
Opt 4.18 6.07
Base 5.44 10.16
4 Sep 120 5.36 10.08
Opt 5.11 9.83
Base 6.13 9.67
4 5 Sep 90 6.08 9.62
Opt 5.89 9.43
Base 6.54 9.69
6 Sep 80 6.49 9.63
Opt 6.33 9.47
1 8 1.33 1.65
2 * 24 2.68 3.62
3 6 [MCS22] 48 4.48 6.37
4 80 6.74 9.89
1 8 1.60 1.92
2 8 AGEMA 24 3.09 4.03
3 -HPC2 48 5.03 6.92
4 80 7.42 10.57
1 16 1.00 1.63
2 4 AGEMA 48 1.99 3.88
3 -HPC3 96 3.30 7.08
4 160 4.93 11.23
1 2 0.72 0.80
2 6 1.25 1.49

b

3 9 [veos22) 12 1.90 2.37
4 20 2.66 3.44
4 Spoz [CCGB21] 0.60 0.60
1 3 So3o [CCGBQl] 0 0.82 0.82
3 Sa» [CCGB21] 0.63 0.63
2 Sy [CCGB21] 1.59 1.59

*This design is generated by the tool of [MCS22], and is used in [VCS22].

TAGEMA [KMMS22] in pipeline mode [KM22].

fThis design is not pipelined, it is a serial implementation that performs 2 S-box
evaluations in 9 clock cycles.
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the other state-of-the-art representations for masking [RP10, GPS14] use multiplications
in Fos56, which is inefficient in hardware. For the Canright S-box, we implemented the
F4 and Fy¢ multiplications with the HPC1 and HPC3o0 gadgets, which can be viewed as
Boolean gadgets that use multiple input and multiple output bit sharings.

Our results are given in Table 2, Table 3 and Table 5. We provide the masking order
and desired latency as parameters to COMPRESS. Furthermore, in order to analyze the
individual contributions of our different optimizations, three results are provided for each
parameter set. The “Base” case corresponds to COMPRESS (as described in Section 3) with
the HPC2 and HPC3 gadgets. For “Sep”, we add all gadget decomposition techniques of
Section 4. Lastly, for “Opt”, all optimizations of this paper are enabled (the Canright
S-box requires “Opt”, otherwise it has no single-cycle multiplication gadget). We also
report similar results from related works in Table 4 for AES and Table 5 for Skinny.

Generally, the circuits generated by COMPRESS achieve better performance than the
state of the art, and all our optimizations (“Sep” over “Base” and “Opt” over “Sep”) bring
significant improvements. Further, we observe that some low latency designs require less
area than the higher latency ones, even when taking into account the PRNG. This may
seem surprising at first, since lower latency designs require more randomness due to the
use of more low-latency HPC3 gadgets in place of HPC2 gadgets. However, lower latency
generally means a lower amount of pipeline registers, which explains the area gain. These
two effects mostly cancel each other, resulting in similar area costs (with PRNG) for the
AES and Skinny S-boxes with 4, 5 or 6 cycles of latency, at all considered masking orders.

Regarding the AES designs, the “Opt” circuits generated by COMPRESS for the Boyar-
Peralta representation are smaller and lower-latency than the AGEMA-HPC2, [MCS22]
and AGMNC designs, and have lower area than the AGEMA-HPC3 designs. Using the
Canright representation further reduces the size of the circuit generated by COMPRESS,
which is the opposite of what happens with AGEMA, due the usage of bit-level operations
for the implementation of finite-field multiplications in AGEMA’s Canright representa-
tion [KMMS22]. We conclude that COMPRESS has better results than the state of the art
(AGEMA and the tool of [MCS22]) when implementing the same circuit representation,
that natively handling larger field multiplication brings significant benefits, and that when
using good representations such as Boyar-Peralta or Canright, COMPRESS produces better
results than AGMNC (which generates its own optimized representation of the S-box).

Extending the comparison beyond automated tools, COMPRESS’s Canright AES S-
box also outperforms all comparable!® first- and second-order state-of-the-art threshold
implementation (TT) designs [ADN+22 BGNT15, Sugl9, DSM22] w.r.t. area, while having
equal or better latency. The arbitrary-order DOM-indep S-box [GMK16] is based on the
Canright representation and was previously the smallest-known AES masked S-box but, in
contrast with all other designs discussed above, it does not have a security proof. Compared
to this design, COMPRESS achieves a large latency reduction (4 clock cycles instead of 7)
and has lower S-box area, but requires more randomness, which results in a larger total
area when taking the Trivium PRNG into account.

For the Skinny S-box, we observe the same trend when comparing to AGEMA
and [MCS22]: lower latency and/or lower area. Compared to the other S-box design
of [VCS22], the comparison is more difficult, since this S-box is based on an iterative design
and performs 2 S-box evaluations in 9 clock cycles. In 9 clock cycles, COMPRESS’s circuit
(with latency 4) performs 5 evaluations, while using only 65 % more (PRNG-included) area.
Finally, the first-order TT designs of [CCGB21], achive a lower area and/or lower latency

10At the first order, S-boxes with 3 shares (or more) cannot be directly compared with 2-shares
S-boxes, since they either increase the cost of the non-S-box layers in the cipher (state and key registers,
MixColumns, MUXing logic. .. are then implemented with 3 shares instead of 2), or need to be adapted
to 2-shares inputs and outputs by wrapping them with refreshing and compression layers, which increases
the S-box area and latency. In our comparison, we consider the latter option which, e.g., increases the
latency of the S-box of [BGNT15] from 2 to 4 clock cycles.
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Table 6: Performance characteristics of masked AES-128 implementations (encrypt only).

Security

Design Datapath width  Latency order

Area w/ PRNG (kGE)

—_

33.4
67.3
115.9
176.7

132.9
293.3
520.3
815.2

170.9
354.2
602.9
917.2

32-bit 106
[MCS22]

128-bit 71

AGEMA-HPC2

(Boyar-Peralta) 128-bit 9

148.4
344.2
621.1
979.2

29.0
64.1
114.2
175.9

108.4
268.3
504.3
813.0

24.4
47.4
81.2
120.0

85.0
190.9
343.6
521.5

AGEMA-HPC3

(Boyar-Peralta) 128-bit ol

32-bit 86

Opt
(Boyar-Peralta)

128-bit 51

32-bit 86

Opt
(Canright)

128-bit 51

W INFE R WD R WNRFE BRWNDRFE | R WNRFE | R WNDFE| R WNE BRWwN

than COMPRESS, the latter being achieved by building implementations for degree-3
functions directly.

6.2 Optimized AES

Let us now investigate the impact of the optimized S-boxes generated by COMPRESS on
masked cipher implementations. For this purpose we integrate the new latency 4 “Opt”
AES S-box (Canright and Boyar-Peralta) to two architectures implementing a masked
AES-128 encryption (including the key schedule). The architectures are based on the ones
of [MCS22].

The first case study is a 128-bit (round-based) pipelined architecture. It instantiates
20 S-boxes among which 16 are dedicated to the round computation and 4 to the key-
scheduling operating in parallel. The architecture considered is the same as the round-
based architecture presented in [MCS22] where the S-boxes instances have been replaced
(together with some minor control logic modifications). This architecture performs 5 parallel
encryptions to fill its pipeline, achieving a high throughput (0.1 encryption per clock cycle).

The second architecture is a 32-bit serial implementation instantiating 4 S-boxes that
are shared between the computation of the rounds and the key scheduling algorithm.
In particular, the data routed to the S-boxes is interleaved appropriately such that the
round operations and the key schedule operations are performed in parallel during a round
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execution. Overall, the architecture is similar to the 32-bit one from [MCS22].1! For
this architecture, the modifications are a bit more substantial. Indeed, only integrating
the (4 cycles) new S-boxes in the key holder described in [MCS22, Figure 8] leads to
a situation where the computation are not performed properly anymore. In particular,
the implementation computes a round by first feeding into the S-boxes a column of the
round key, preparing the update of the key for the next round. Then, in the next four
clock cycles, each column of the state is added to a part of the round key and sent to the
S-box. During this process, the shift register that holds the key is rotated to ensure that
the correct part of the round key is added to the state. Then, once the whole state has
been fed to the S-boxes, the round key is updated, in parallel with the MixColumns and
ShiftRows operations. While this procedure works with a latency of 6 clock cycles for the
S-box, it does not work with 4 clock cycles: the lower latency means that the state update
for the round is finished before the key update process is completed. We therefore modify
the handling of the round key to make its update start earlier in the round, which allows
it to be completed at the same time as the state computation. More details are provided
in supplementary material.

Table 6 includes the post-synthesis implementation results for the two architectures
(the Trivium PRNG is included in the masked AES designs), whose security has been
verified by fullVerif [Cas20]. The performance comparison of the implementations based
on the Canright representation with the implementation of [MCS22] shows that a latency
reduction of roughly 19 % for the 32-bit architecture (resp. 29 % for the 128-bit architecture)
is achieved by the new implementations. With regard to area, a reduction of about 27 % is
achieved at the first order for the 32-bit architecture (36 % for the 128-bit one), with similar
results at higher orders. For AGEMA, using the round-based architecture of [KMMS22]
(which is similar to our 128-bit architecture with the Boyar-Peralta S-box), we achieve a
43 % area reduction over the HPC3 implementation (same latency) and 50 % area reduction
over the HPC2 implementation (44 % latency reduction).

In order to test the scalability of our tool to larger circuits, we automatically generated a
full AES round using 20 Boyar-Peralta S-boxes. For all d < 5, COMPRESS completed in less
than 1 minute, with a result almost identical to the round of our 128-bit implementation
(there is an area overhead below 1%, explained by the COMPRESS-generated round
having masked pipeline registers for the round constants which can be avoided in our
implementation).

6.3 Optimized Adder Implementations

Modular additions are often used by cryptographic algorithms such as post-quantum
schemes and ARX-based designs. When applying a Boolean masking scheme in such cases
to protect against side-channel attacks, the modular addition is usually implemented as a
masked binary adder computing the sum of Boolean masked operands. In a third case
study, we investigate four different 32-bit modular adder architectures to realize masked
binary adders, as such a building block is commonly needed in cryptographic algorithms.
Such circuits are interesting study cases since they are larger than the S-boxes and have a
higher AND depth, therefore they test the scalability of COMPRESS. These cases are also
practically relevant and, despite being more regular than S-box circuits, the complexity of
some adders makes it non-obvious how to best implement them.

We study both ripple-carry (RC) and parallel-prefix designs (the Kogge-Stone adder
(KS) [KST73], the Sklansky adder [Skl60], and the Brent-Kung adder (BK) [BK78]). In
general, an RC architecture performs addition by chaining 1-bit full adders, where each
carry bit ripples to the next full adder. Every 1-bit full adder takes two summands and

1 Our implementation is derived from the open-source one by the authors of [MCS22]: https://github.
com/simple-crypto/SMAesH.
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Table 7: Performance characteristics of 32-bit adder implementations.

. . Security Random Area w/o PRNG Area w/ PRNG

Design Architecture order Latency bits (KGE) (kGE)

1 31 32 19.04 20.30

RC 32 31 19.76 20.98

9 31 96 31.20 34.98

32 93 32.31 35.97

1 5 374 16.72 31.44

KS 6 309 18.61* 30.77*

2 5 1122 43.30 87.47

Opt 6 927 47.77* 84.26%

1 6 172 12.88 19.65

Sklansky 7 161 13.65%* 19.98*

2 6 516 31.71 52.02

7 483 33.09* 52.10*

1 9 128 12.13 17.17

BK 10 122 13.03* 17.83*

2 9 384 27.96 43.08

10 366 29.23* 43.63*

RC 1 32 31 20.61 21.83

2 32 93 33.57 37.23

KS 1 10 249 28.31 38.11

[MCS22] 2 10 747 63.75 93.16

Sklansky 1 9 151 18.88 24.82

2 9 453 41.23 59.06

BK 1 12 117 17.32 21.93

2 12 351 35.98 49.80

RC 1 62 31 37.10 38.32

2 62 93 58.30 61.96

AGEMA KS 1 10 249 31.71 41.51

HPC2 2 10 747 68.85 98.26

Sklansky 1 12 151 23.40 29.34

2 12 453 48.01 65.84

BK 1 18 117 22.38 26.98

2 18 351 43.57 57.38

RC 1 31 62 19.49 21.93

2 31 186 31.13 38.45

AGEMA KS 1 5 498 21.83 41.43

_HPC3 2 5 1494 47.94 106.74

Sklansky 1 6 302 15.37 27.26

2 6 906 32.27 67.93

BK 1 9 234 14.05 23.26

2 9 702 28.22 55.85
1 1 4
[SMG15] (TT) RC ) 32 s
1 249
[BG22] (HPC2) KS 5 12 e

[BG22] (TI) i 6 13119 N/al N/Al
(BG22] (HPC2)  qansky 2 12 357
[BG22] (TT) 1 6 41
1 74
[BG22] (HPC2) BK ) 18 oo
[BG22] (TI) 1 9 31

*Might not be optimal area since the solver stopped early due to the 1h timeout.
fThreshold Implementation, not an HPC design (first- and second-order security).
fDesigns are not open-source and area numbers for ASIC designs are not given.
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a carry-in and computes the respective sum bit and carry-out. Since every carry-out c;
depends on the previous carry-in ¢;_1, the carry-part of the sum needs to be computed
iteratively, leading to a logic depth of n — 1 AND gates for a n-bit masked adder. Parallel-
prefix adders [BLO1, BK82, HC87] aim at reducing the depth by computing the carry-part
in parallel using a tree-like structure. To do so, they split the carry generation into generate
and propagate functions. A generate function determines if two input bits generate a
carry-out, while the propagate function determines if a carry-in will be propagated to the
computation of the next carry-out. Both functions can be combined to span larger blocks
(groups) of bits, which can be combined again on the next levels, leading to a tree-like
structure. KS, Sklansky and BK adders differ in the way of creating these groups, and
therefore target different optimization goals.

The results of our case study are given in Table 7. For every adder, we give the security
order, the number of shares, the desired latency, the amount of random bits required and
the resulting area. We focus on first- and second-order designs (higher-order designs are
not more difficult to generate and do not bring significantly different results than low-order
ones), and give the design with the lowest possible latency, and for higher latencies. We
compare our results with the designs of Schneider et al. [SMG15] and Bache et al. [BG22]
in addition to automatically-generated HPC2 and HPC3 ones using the tools of [MCS22]
and [KMMS22] respectively. We put a timeout of 1h on COMPRESS, i.e., if the optimal
solution cannot be found within that time frame, the solver will return the best solution
found so far. From our experiments, only KS, Sklansky and BK adders with non-minimal
latency reached the timeout (these are indeed the largest circuits, and non-minimal latency
greatly increases the solution space). Since these clearly correspond to suboptimal cases,
since the adders can be implemented using half the latency and less area, we consider that
COMPRESS scales successfully to 32-bit adders.

Compared to the TT designs of [SMG15, BG22], COMPRESS achieves equal or better
latency, while having at most half the latency of the HPC2 designs of [BG22]. ASIC
area is not given in [SMG15, BG22]. It can however be noted that the RC adder uses 3
shares at first-order and a mix of 5 and 10 at second-order, whereas the non-TT designs
use only the minimal amount (respectively 2 and 3 shares). The comparison with the
automatically-generated designs yields a similar conclusion as for the S-boxes.

7 Related Works

In this section, we compare COMPRESS to other automated tools for the generation of
masked designs.

AGEMA AGEMA [KMMS22] was the first tool introduced to perform automated masked
hardware circuit generation. AGEMA is a very flexible tool that takes any netlist as an
input and masks it, using a Mealy machine representation. That is, contrary to this work
and to the other tools discussed in this section, it is not limited to pipeline computations.
AGEMA can work in a “naive” mode, where the generated circuit follows the structure of
the input circuit, or in “BDD” modes where the logic representation is re-synthesized from
a lookup table representation. The naive mode generally performs better when the input
circuit is already optimized, e.g., with the Boyar-Peralta AES S-box or the Skinny S-box.
The circuits generated by AGEMA can be either in a pipeline structure, or exploit clock
gating. The latter enables some area reduction (fewer registers are needed), at the cost
of a lower throughput, which is typically not interesting when the logic circuit processes
many parallel computations (e.g., an S-box in a block cipher).

AGEMA can further generate circuits using HPC1, HPC2 or GHPC gates (this was
later extended to HPC3 in [KM22]). It appears that AGEMA does not perform any latency
optimization: every HPC1 or HPC2 instance leads to a latency cost of 2 clock cycles.
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Further, it does not optimize the scheduling of the computations. Overall, it appears that
AGEMA and CoMPRESS focus on different goals: AGEMA handles general circuit masking
and interaction between masked and non-masked parts of the circuits, while COMPRESS
optimizes masked pipelines.

Momin et al.’s tool In [MCS22], Momin et al. demonstrate that handcrafted architectures
for masked AES implementations may lead to more efficient circuits than automated
masking. This result comes from designing serialized AES architectures that efficiently
exploit the high-latency pipeline S-box (the AES of Section 6.2 is based on that architecture).
Regarding the S-box design itself, the authors develop an automated masking tool'? that
generates a pipeline, which has a purpose similar to COMPRESS. This tool works exclusively
with the HPC2 gadget, and exploits its asymmetric latency characteristic (it has a latency
of 2 clock cycles regarding one of the input sharings, and only one clock cycle regarding
the other one) to minimize the overall latency. This minimization can be performed by a
simple greedy algorithm, and the tool performs no further optimization of the pipeline
scheduling (every operation is started as soon as its operands are computed).

AGMNC Recently, Wu et al. [WFP*23] introduced the AGMNC tool, which also gen-
erates masked pipelines. Their tool is based on two steps. The first step consists in
a logic synthesis from a lookup table representation. In the second step, the circuit is
implemented into a masked pipeline. This pipeline is then optimized for latency, using
the same technique as [MCS22]. A pipeline staging optimization step is also performed.
Finally, AGMNC also comes with new masked gadgets. These gadgets, named AND-XOR1
and AND-XOR2 are variants of HPC1 and HPC2 that perform the same operation as our
Toffoli gadgets.

The pipeline implementation and optimization steps of AGMNC fulfill the same function
as COMPRESS. A detailed comparison of the two tools is difficult given the lack of details
in how the optimizations are performed in AGMNC. However, COMPRESS appears to
have more features than AGMNC (e.g., selection between multiple kinds of AND gadgets,
duplication of gadgets) and it further guarantees an optimal solution, while the algorithm
of AGMNC is not described.

To the best of our knowledge, this work and [WFP 23] overlap in their goal, but not in
the contributions, except for gadgets that implement a Toffoli gate. AGMNC introduces new
AND-XOR gadgets for this purpose, saving d registers over an HPC1/HPC2 composition
with an XOR gadget. This optimization is a subset of the optimizations enabled by the
inner-domain term separation described in COMPRESS (Section 4.2). We also introduce
the HPC20 and HPC3o0, which are even more optimized than AND-XOR (in particular,
both AND-XOR2 and HPC20 are based on HPC2, but HPC2o0 has a lower area).

EasiMask EasiMask [BSG23] is another recent tool for automating masked circuit
generation. Similarly to AGEMA, this is a high-level tool that transforms a description of
a relatively complex operation into a masked circuit. This tool is mainly concerned with
high-level architecture decisions, e.g., its user can choose between unrolled, round-based
or serial architectures. EASIMASK comes with a library of masked S-boxes to choose
from, and does not generate S-boxes itself. Therefore, the feature sets of EASIMASK
and COMPRESS do not overlap. In fact, the output of COMPRESS could be integrated to
EASIMASK’s library.

12 Available at https://github.com/simple-crypto/SMAesH/blob/main/hdl/aes_enc128_32bits_
hpc2/sbox/hpc_veriloger.py.
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8 Conclusion

COMPRESS optimizes the area of masked pipelines by minimizing the amount of pipeline
registers and by the choice of efficient masked gadgets adapted to the latency constraint.
Further, the separation of gadgets in smaller components allows the deduplication of
some logic, and the new HPC20 and HPC3o0 gadgets have identical characteristics as
HPC2 and HPC3, except for a smaller area footprint and the added Toffoli gate feature.
These optimizations, along with the combination of HPC2 and HPC3 gadgets in a single
circuit, lead to implementations with low latency while improving the state-of-the art area
requirements. Our methodology takes into account the amount of randomness required
by the different gadgets: it includes the area cost of generating the required randomness
using a PRNG.

Since COMPRESS generates only pipeline circuits, it does not in itself provide a full
solution to mask complete cryptographic operations, whose implementations are typically
not fully unrolled. However, COMPRESS’s output can easily be integrated into a handcrafted
design (as done in this work), or into automated workflows. For example, tools that exploit
libraries of masked components (e.g., masked S-boxes in EASIMASK [BSG23]) could be
easily integrated with COMPRESS in a design flow.

Acknowledgements

Gaétan Cassiers is a postdoctoral researcher of the Belgian Fund for Scientific Research
(FNRS-F.R.S.). This work was supported in part by the FWF SFB project SpyCoDe
F8504, by the Walloon Region through the FEDER, project USERMedia (501907-379156)
and the Win2Wal project PIRATE (1910082), by the ERC Advanced Grant 101096871
(BRIDGE) and by SGS. Views and opinions expressed are those of the authors only and
do not necessarily reflect those of the European Union or the European Research Council.
Neither the European Union nor the granting authority can be held responsible for them.

References

[ABP*18] Victor Arribas, Begiil Bilgin, George Petrides, Svetla Nikova, and Vincent
Rijmen. Rhythmic keccak: SCA security and low latency in HW. TACR
Trans. Cryptogr. Hardw. Embed. Syst., 2018(1):269-290, 2018.

[ADN*22] Amund Askeland, Siemen Dhooghe, Svetla Nikova, Vincent Rijmen, and
Zhenda Zhang. Guarding the first order: The rise of AES maskings. In
CARDIS, volume 13820 of Lecture Notes in Computer Science, pages 103-122.
Springer, 2022.

[BBD*16]  Gilles Barthe, Sonia Belaid, Frangois Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In CCS, pages 116-129.
ACM, 2016.

[BBPT16]  Sonia Belaid, Fabrice Benhamouda, Alain Passelégue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Randomness complexity of private
circuits for multiplication. In EUROCRYPT (2), volume 9666 of Lecture
Notes in Computer Science, pages 616—648. Springer, 2016.

[BG22] Florian Bache and Tim Giineysu. Boolean masking for arithmetic additions
at arbitrary order in hardware. Applied Sciences, 12(5), 2022.



G. Cassiers, B. Gigerl, S. Mangard, C. Momin and R. Nagpal 523

[BGN15]

[BK78]
[BKS2]

[BLO1]

[BP12]

[BSG23]

[Can05]

[Cas20)
[CBG17]

[CCGB21]

[CGLS21]

[CGZ20]

[CJRRY]

[CMM+23a]

[CMM*23D)

Begiil Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. Trade-offs for threshold implementations illustrated on AES. IEEFE
Trans. Comput. Aided Des. Integr. Circuits Syst., 34(7):1188-1200, 2015.

Richard P. Brent and H. T. Kung. Fast algorithms for manipulating formal
power series. J. ACM, 25(4):581-595, 1978.

Richard P. Brent and H. T. Kung. A regular layout for parallel adders. IEEE
Trans. Computers, 31(3):260-264, 1982.

Andrew Beaumont-Smith and Cheng-Chew Lim. Parallel prefix adder design.
In IEEE Symposium on Computer Arithmetic, page 218. IEEE Computer
Society, 2001.

Joan Boyar and René Peralta. A small depth-16 circuit for the AES s-box.
In SEC, volume 376 of IFIP Advances in Information and Communication
Technology, pages 287-298. Springer, 2012.

Fabian Buschkowski, Pascal Sasdrich, and Tim Giineysu. Easimask-towards
efficient, automated, and secure implementation of masking in hardware. In
DATE, pages 1-6. IEEE, 2023.

David Canright. A very compact s-box for AES. In CHES, volume 3659 of
Lecture Notes in Computer Science, pages 441-455. Springer, 2005.

Gagtan Cassiers. FullVerif, 2020.

Thomas De Cnudde, Begiil Bilgin, Benedikt Gierlichs, Ventzislav Nikov,
Svetla Nikova, and Vincent Rijmen. Does coupling affect the security of
masked implementations? In COSADE, volume 10348 of Lecture Notes in
Computer Science, pages 1-18. Springer, 2017.

Andrea Caforio, Daniel Collins, Ognjen Glamocanin, and Subhadeep Banik.
Improving first-order threshold implementations of SKINNY. In IN-
DOCRYPT, volume 13143 of Lecture Notes in Computer Science, pages
246-267. Springer, 2021.

Gaétan Cassiers, Benjamin Grégoire, Itamar Levi, and Francois-Xavier Stan-
daert. Hardware private circuits: From trivial composition to full verification.
IEEE Trans. Computers, 70(10):1677-1690, 2021.

Jean-Sébastien Coron, Aurélien Greuet, and Rina Zeitoun. Side-channel
masking with pseudo-random generator. In EUROCRYPT (3), volume 12107
of Lecture Notes in Computer Science, pages 342-375. Springer, 2020.

Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards sound approaches to counteract power-analysis attacks. In CRYPTO,
volume 1666 of Lecture Notes in Computer Science, pages 398-412. Springer,
1999.

Gaétan Cassiers, Loic Masure, Charles Momin, Thorben Moos, Amir Moradi,
and Francois-Xavier Standaert. Randomness generation for secure hardware
masking - unrolled trivium to the rescue. JACR Cryptol. ePrint Arch., page
1134, 2023.

Gaétan Cassiers, Loic Masure, Charles Momin, Thorben Moos, and Frangois-
Xavier Standaert. Prime-field masking in hardware and its soundness
against low-noise SCA attacks. TACR Trans. Cryptogr. Hardw. Embed.
Syst., 2023(2):482-518, 2023.



524

COMPRESS: Generate Small and Fast Masked Pipelined Circuits

[CPRR13]

[CS20]

[CS21]

[DSM22)

[FGP+18]

[GMK16]

[GPS14]

[Gun19]

[HCS7]

[ISW03]

[KM22]

[KMMS22]

[KS73]

[KSM20]

Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas
Roche. Higher-order side channel security and mask refreshing. In FSF,
volume 8424 of Lecture Notes in Computer Science, pages 410-424. Springer,
2013.

Gaétan Cassiers and Frangois-Xavier Standaert. Trivially and efficiently
composing masked gadgets with probe isolating non-interference. IEEFE
Trans. Inf. Forensics Secur., 15:2542-2555, 2020.

Gagtan Cassiers and Francois-Xavier Standaert. Provably secure hardware
masking in the transition- and glitch-robust probing model: Better safe than
sorry. TACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(2):136-158, 2021.

Siemen Dhooghe, Aein Rezaei Shahmirzadi, and Amir Moradi. Second-order
low-randomness d + 1 hardware sharing of the AES. In CCS, pages 815-828.
ACM, 2022.

Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and Francois-Xavier Standaert. Composable masking schemes in the presence
of physical defaults & the robust probing model. TACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(3):89-120, 2018.

Hannes Grof}, Stefan Mangard, and Thomas Korak. Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection order.

In TISQCCS, page 3. ACM, 2016.

Vincent Grosso, Emmanuel Prouff, and Francois-Xavier Standaert. Efficient
masked s-boxes processing - A step forward -. In AFRICACRYPT, volume
8469 of Lecture Notes in Computer Science, pages 251-266. Springer, 2014.

Tias Guns. Increasing modeling language convenience with a universal n-
dimensional array, cppy as python-embedded example. In Proceedings of the
18th workshop on Constraint Modelling and Reformulation at CP (Modref
2019), volume 19, 2019.

Tack-Don Han and David A. Carlson. Fast area-efficient VLSI adders. In
IEEE Symposium on Computer Arithmetic, pages 49-56. IEEE Computer
Society, 1987.

Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In CRYPTO, volume 2729 of Lecture
Notes in Computer Science, pages 463-481. Springer, 2003.

David Knichel and Amir Moradi. Low-latency hardware private circuits. In
CCS, pages 1799-1812. ACM, 2022.

David Knichel, Amir Moradi, Nicolai Miiller, and Pascal Sasdrich. Automated
generation of masked hardware. TACR Trans. Cryptogr. Hardw. Embed. Syst.,
2022(1):589-629, 2022.

Peter M. Kogge and Harold S. Stone. A parallel algorithm for the efficient
solution of a general class of recurrence equations. IEEE Trans. Computers,
22(8):786-793, 1973.

David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - statistical
independence and leakage verification. In ASTACRYPT (1), volume 12491 of
Lecture Notes in Computer Science, pages 787-816. Springer, 2020.



G. Cassiers, B. Gigerl, S. Mangard, C. Momin and R. Nagpal 525

[KSM22]

[MCS22]

[MKSM22]

[MM22]

[MMSS19]

[MPGO5]

[NRRO6]

[Sugl9]

[VCS22]

David Knichel, Pascal Sasdrich, and Amir Moradi. Generic hardware private
circuits towards automated generation of composable secure gadgets. TACR
Trans. Cryptogr. Hardw. Embed. Syst., 2022(1):323-344, 2022.

Charles Momin, Gaétan Cassiers, and Frangois-Xavier Standaert. Handcraft-
ing: Improving automated masking in hardware with manual optimizations.
In COSADE, volume 13211 of Lecture Notes in Computer Science, pages
257-275. Springer, 2022.

Nicolai Miiller, David Knichel, Pascal Sasdrich, and Amir Moradi. Tran-
sitional leakage in theory and practice unveiling security flaws in masked
circuits. IJACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(2):266-288, 2022.

Nicolai Miiller and Amir Moradi. PROLEAD A probing-based hardware leak-
age detection tool. JACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(4):311-
348, 2022.

Thorben Moos, Amir Moradi, Tobias Schneider, and Francois-Xavier Stan-
daert. Glitch-resistant masking revisited or why proofs in the robust probing
model are needed. TACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):256-
292, 2019.

Stefan Mangard, Thomas Popp, and Berndt M. Gammel. Side-channel
leakage of masked CMOS gates. In CT-RSA, volume 3376 of Lecture Notes
in Computer Science, pages 351-365. Springer, 2005.

Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold imple-
mentations against side-channel attacks and glitches. In ICICS, volume 4307
of Lecture Notes in Computer Science, pages 529-545. Springer, 2006.

Svetla Nikova, Vincent Rijmen, and Martin Schléffer. Secure hardware
implementation of nonlinear functions in the presence of glitches. J. Cryptol.,
24(2):292-321, 2011.

Laurent Perron and Vincent Furnon. Or-tools.

Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking
of AES. In CHES, volume 6225 of Lecture Notes in Computer Science, pages
413-427. Springer, 2010.

Jack Sklansky. Conditional-sum addition logic. IRE Trans. Electron. Comput.,
9(2):226-231, 1960.

Tobias Schneider, Amir Moradi, and Tim Giineysu. Arithmetic addition over
boolean masking - towards first- and second-order resistance in hardware. In
ACNS, volume 9092 of Lecture Notes in Computer Science, pages 559-578.
Springer, 2015.

Takeshi Sugawara. 3-share threshold implementation of AES s-box without
fresh randomness. JACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(1):123~
145, 2019.

Corentin Verhamme, Gaétan Cassiers, and Frangois-Xavier Standaert. Ana-
lyzing the leakage resistance of the nist’s lightweight crypto competition’s
finalists. In CARDIS, volume 13820 of Lecture Notes in Computer Science,
pages 290-308. Springer, 2022.



526 COMPRESS: Generate Small and Fast Masked Pipelined Circuits

[WFPT23] Lixuan Wu, Yanhong Fan, Bart Preneel, Weijia Wang, and Meigin Wang.
Automated generation of masked nonlinear components: From lookup tables
to private circuits. Cryptology ePrint Archive, Paper 2023/831, 2023.

[ZSST21] Sara Zarei, Aein Rezaei Shahmirzadi, Hadi Soleimany, Raziyeh Salarifard,
and Amir Moradi. Low-latency keccak at any arbitrary order. JACR Trans.
Cryptogr. Hardw. Embed. Syst., 2021(4):388-411, 2021.

A Security Proof of HPC20 and HPC3o0

Let us now prove the security of the HPC20 and HPC3o0 gadgets. We work in the glitch-
robust probing model for hardware circuits, which are modeled as directed acyclic graphs
whose edges are wires and whose nodes are gates. Gates include logic gates, registers, and
input/output gates, and a glitch+transition-extended probe leaks all the inputs of the
combinatorial circuit that generates a value, for two consecutive clock cycles.

Let us now formally introduce the notion of gadget.

Definition 1 (Gadget). A gadget G is a sub-circuit whose input and output wires a
grouped in d-tuples named sharings. The index of a share is its (zero-indexed) position in its

sharing. A gadget with input sharings (z{,...2z}_,),..., (z§",...27" ;) and output sharings
(Yey---yh )y (yB, .. y"_,) implements a function f iff (Y &---®yd |,...,00® - @
yr ) =fl@he- @y |,...,xf @@ ) for all possible values of the input shares

and randomness sampled inside the gadget.

Unlike many previous works (e.g., [[SW03, CS21]), we consider gadgets that do not
implement any function (e.g., Sharewise-AND, HPC2-Cross, HPC3-Cross). This change in
the definition of a gadget does not impact the following security notions.

Definition 2 (Glitch-robust simulatability [BBD*16, FGP*18]). Let P be a set of [
glitch-extended probes in a gadget G. Let Z be a set of k input shares of G. Let Gp(x) be
the random variable denoting the values observed by the adversary when x is the value of
the input shares of the gadget, and let z|z. The set of probes P can be simulated with the
set of input wires Z if, for any = and 2’ such that z|r = x|z, the distributions of G p(z)
and Gp(z’) are identical.

In particular, if there exists a (randomized) function S (named the simulator) such that
the distribution of S(z|z) (where x|z denotes the values of the input shares x that belong
to Z) and Gp(x) are equal for any x, then the glitch-robust probes P can be simulated by
the input shares Z [BBP'16].

Definition 3 (Probe Isolating Non-Interference (PINI) [CS20]). A d-shares gadget G is
glitch-robust ¢-probe-isolating non-interferent (¢+-PINT) if, for any set A C {0,...,d — 1}
and any set of glitch-extended probes P such that |A| + |P| < ¢, there exists a set
B C {0,...,d— 1} with |B| < |P] such that the glitch-extended probes P and glitch-
extended probes on all output shares of G with index in A can be simulated by the inputs
of G with index in AU B.

The security proof for HPC20 is very similar to the proof for HPC2 [CGLS21].
Proposition 1. The HPC20 gadget (Algorithm 6) is glitch-robust PINI.

Proof. Let us build a glitch-robust PINT simulator. We assume wlog that only the input
wires of registers and the outputs of the gadgets are probed, (since the other extended
probes are less powerful). Namely, these probes can be z;, u;; := T; A 135, vij 1= y; B 1i;
and x; A vy;. For j = j;, we instead have u;; := w; ® (i Ny:) BT A r;j. Given a set of
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probes adversarial extended probes P and probed output shares A, the set of required
input shares X is computed as follows: for each probed z;, add i to X. Then, for each
i # j pair, if two out of u;;, vi; and x;v;; are probed, or if i of j belongs to X: add 7 and
J to X. Otherwise, if u;; or x; A v;; is probed, add 7 to X, and if v;; is probed, add j to
X. The set B is computed as X \ A.

We observe that the set B satisfies the PINI definition: |B| < |P| by construction.
All the values to be simulated that depend only on input shares with index in X and
on randomness are computed as specified by Algorithm 6 (the required randomness is
generated by the simulator). The allows to simulate all the extended probes on u;; and
v;5, by construction of X. Then, for all remaining extended probes (z; (for which i € A)
and z;v;;), we observe that ¢ € X. They can therefore be computed as it is done by the
gadget, except when the simulation of v;; = y; ® r;; is needed and j ¢ X. In this case, the
simulator simulates v;; by sampling a fresh random 77; (we say that the simulator cheats
for ij).

Let us show that this algorithm is indistinguishable from the true gadget. The behavior
of the simulator is identical to the behavior of the gadget, except when it cheats for ij. We
therefore only need to prove that if the simulator cheats for 77, then r;; is not observed
in the set of probes, except through v;;, therefore v;; is indistinguishable from a fresh ng
and simulation is correct.

The simulator cheats for 75 only if j € X and a value depending on v;; is probed. The
first condition implies that none of z;, u;;, z;v;; and v;; are probed, and at most one
of z;, x;v45, ui; and vj; can be probed. The second condition implies that z;, or x;v;;
is probed (v;; cannot be probed due to the previous observation). Therefore, the only
values depending on r;; that can be probed are z; or x;v;;, and exactly one of those is
probed. If z;v;; is probed, then the simulation is correct: the extended probe expands
to {xi, vij, x;v;; }, which are the only observations depending on r;;. If z; is probed, then
observations depending on r;; are u;; and x;v;;, and functions of these values. If x; = 0,
then z; A v;; = 0 does not depend on r;;, which is thus only observed through w;;, hence
the simulation is correct. Otherwise, we have Z; = 0, which implies that u;; = 0 for j # j;
or u;; = w; ® (x; Ay;) for j = j;, thus r;; is only observed through v;;, which is correctly
simulated as a fresh random.!3 O

Proposition 2. The HPCS30 gadget (Algorithm 7) is glitch-robust PINI.

Proof. We the proof is similar to the proof of Proposition 1. We again consider only
the probes z;, u;; = (x; A1i5) @ rgj and v;; := y; ® ryj. For j = j;, we instead have
wij = w; B (x; Arij) ® rgj. Given a set of probes adversarial extended probes P and
probed output shares A, the set of required input shares X is computed in the same way
as in the proof of Proposition 1 (except that x; A v;; does not exist as a possible probe).
The set B is again computed as X \ A, and satisfies the PINI definition.

Similarly to HPC2o, the simulation follows Algorithm 7, except when the simulation of
vij = y; ®rij is required and j ¢ X. In this case, the simulator cheats for 4, by simulating
both v;; and w;; as fresh randoms. Since cheating on ¢j occurs only when simulation of
v;; is needed, this means that z; is probed, hence ¢ € X. Further, since j ¢ X, there is no
other probe than z; through which the adversary may observe r;; or r; ;- Therefore, the
value u;; appears as a uniform random to the adversary since rgj is not observed otherwise.

As a consequence, r;; is not observed except through the value v;;, which appears as a
fresh random.* O

13This argument does not work in larger fields, in which the HPC20 multiplication gadget is therefore
not glitch-robust PINT.
14Let us remark that, unlike the proof for HPC20, this proof is not specific to Fa.
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B Optimization problem

In this section, we describe in more detail the optimization problem generated by COMPRESS.
This problem is modelled using the CPMpy [Gun19] modeling library and solved using
OR-Tools [PF]. Thanks to the expressive modeling features of CPMpy, the constraint
given below can be straightforwardly implemented.

COMPRESS takes as input an integer latency L > 0 (the number of register stages in the
generated pipeline), a description of the circuit, and a set of gadgets. The circuit contains
a list of input variables (variables are represented by their label v and are Boolean), a list
of output variables, and a set of operations. Each operation is represented by a function
call under the form (yi1,...,yn) = f(21,...,2,), where all z;’s and y;’s are variables.
The set of computations must represent a well-formed logic circuit: there must be no
cyclic dependency and each variable must be assigned to exactly once (inputs count as
assignments). Computations can be simple logic gates such as AND, XOR or NOT, but
they can also be more complex, multi-output functions (e.g., a multiplication in GF(2%)
using a particular representation of GF2* as 4 Booleans). Each gadget in the set G is
a masked implementation of a computation, and it is characterized by its area (in GE),
randomness usage (in bits), and the input-to-output latency for each input sharing (for
simplicity, we assume that all output shares have the same latency).

Algorithm 9 is executed by COMPRESS to generate the optimization problem. We use
the following notations: The Variable x instruction instantiates a Boolean variable x in the
optimization problem (if the x variable has already been instantiated, this does nothing),
and Constraint - adds a constraint to the problem (a Boolean predicate that must be true).
Let I be the set of input variable labels, O be the set of variable labels, and V' be the set
of all variable labels that appear in a computation or in the inputs/outputs. For w € V|
we denote by f(w) the computation that computes w (i.e., f(w) = f(w') iff w and w’ are
generated by the same computation), and op(w) denotes the set of variables that are the
operands of the computation f(w). For a gadget t € G, lat(t, w,w’) > 0 is the latency of
the input sharing w’ relative to the output sharing w (i.e., the difference in pipeline stages
between the input and the output), and maxlat(t) = max,, . lat(t, w,w’).

Finally, a; is the area (including randomness) of the masked gadget t (areg and ayor are
the areas of the sharewise register and XOR, respectively). Since the solver works only
with integers, we use a fixed point representation for the areas a;.



G. Cassiers, B. Gigerl, S. Mangard, C. Momin and R. Nagpal 529

Algorithm 9 Generation of the optimization problem.

A« 0 > Set of all gadget instances.
> “valid”, “compute” and “pipeline” variables described in Section 3.
for s=0to L, w € V do
Variable v’
Variable ¢}
Variable 7
CY «0 > All possible ways to compute w in stage s.
for t € G do
Variable g% /(@)
Add g;’f(w) to CY and to A.
> No pipelining from before the first pipeline stage.
for w € V do
Constraint v’ = ¢’
> Input wires are “computed” only at the first stage.
for w € I do
Constraint ¢y’ = T
for s=1to L, w € V do
Constraint ¢/ = L
> Output wires must be valid at the last stage.
for w € O do
Constraint v’ = T
> A gadget can only be instantiated if its inputs are valid and its type matches the expected computation.
for s=0to L,weV,teGdo
if t does not implement f(w) or maxlat(t) > s then
Constraint gt (®) = |
else

int gt w’
Constraint g = /\w,@p(u,) Vs —lat(t,w,w’)

> Add Toffoli gates: due to the possibility of XORing terms at stages after the output of the AND gate, we
add a series of registers on the output of the Toffoli gate.
TR+ 0, TX < 0 > Sets of registers and XOR gadgets related to Toffoli gates.
for s=0to L, weV,te TG do
if f(w) is a AND operation and maxlat(t) > s then

Let (XOR_OPS,,, RES,,) be the output of Algorithm 8 running on f(w).

Variable tof? /(¥

Add tof (") to A and (toft/ () | XOR_OPS, |) to TX.

’

. t,f(w) w . :
Constraint tof}, = /\w’eop(w) Vol tat(t,w,w’) > AND inputs must be valid.

for s =s+1to L do

Variable rtofi’ifw>

Add rto]civ]:/(“’) to TR. > Instantiate register chain on Toffoli gate’s output.
Constraint rtofi’rﬁgr“i) = tof,F(w)
for s =s+2to L do

Constraint noft’ifw) = rtof

8,8
> XOR operand must be valid at the input or output stage of the Toffoli gate, or sometime within the
register chain.
for w’ € XOR_OPS,, do

. £, f (w) w’ w w’ t,w
Constraint tof?, = vy Vvl Vv \/s’e{s-%—l,.--,L} Vg A rtOfs,s’

s

t, f(w)

s,s’ =1

for s’ =s+1' to L — 1 do

Add rtofi’vifw) A —\rtofz:i,(ii to CSR,ES“’.
Add toff F () A —rtof 274 to CRESw .
Add rtof 5 o O

> Define the “compute” variables from sets of possible computations.
for s=0to L, w € V do

Constraint ¢ = \/ T
s zeCy¥

> Avoid duplication of gadgets that would break sharing’s equalities (see (1) and (2)).
for w € V do

Constraint AtMostOne ((A”y ((g?f(w)) 0 L)) )
s=0,..., teGUTG

for s=0to L, w € V do
if at least on of the gadgets that implement f(w) use randomness then

i t, f(w)
Constraint AtMostOne ((gS )s=0,,.,,L)

The goal to minimize is

L
E at + E E Qreg + E Qxor + E Qreg

g‘f;f(w)eA:gZ,f(w):T =0 weVir® =T (z,n)ETX:z=T 2ETRiz=T
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