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Abstract. To make cryptographic processors more resilient against side-channel
attacks, engineers have developed various countermeasures. However, the effectiveness
of these countermeasures is often uncertain, as it depends on the complex interplay
between software and hardware. Assessing a countermeasure’s effectiveness using
profiling techniques or machine learning so far requires significant expertise and effort
to be adapted to new targets which makes those assessments expensive. We argue
that including cost-effective automated attacks will help chip design teams to quickly
evaluate their countermeasures during the development phase, paving the way to
more secure chips.
In this paper, we lay the foundations toward such automated system by proposing
GPAM, the first deep-learning system for power side-channel analysis that generalizes
across multiple cryptographic algorithms, implementations, and side-channel counter-
measures without the need for manual tuning or trace preprocessing. We demonstrate
GPAM’s capability by successfully attacking four hardened hardware-accelerated
elliptic-curve digital-signature implementations. We showcase GPAM’s ability to
generalize across multiple algorithms by attacking a protected AES implementation
and achieving comparable performance to state-of-the-art attacks, but without man-
ual trace curation and within a limited budget. We release our data and models as
an open-source contribution to allow the community to independently replicate our
results and build on them.
Keywords: Deep Learning · Side-Channel Analysis · AES · ECC

1 Introduction
Cryptographic co–processors, which are widely used to perform security-sensitive op-
erations, can be vulnerable to side-channel attacks. These attacks aim to extract the
secrets these chips safeguard, such as AES [KJJ99] or RSA keys [Koc96]. Broadly speak-
ing, side-channel attacks recover secret data by collecting signals such as timing, power
consumption [MOP08], and electromagnetic emissions [QS01] while the chip runs compu-
tations. These signals are later processed using statistical methods [CRR03] or machine
learning techniques [MPP16] to recover the targeted secret information (e.g., the AES
key). Attackers can then use the recovered secrets to bypass vital security features such as
secure boot,1remote attestation [Fid15, MSEH20], and identity protection.2

In recent years, side-channel attacks assisted with machine learning (SCAAMLs) [PB19]
due to their superior accuracy, reduced manual work, and lesser need of domain knowledge,
have started to replace profiling attacks such as Template attacks [CK14, CRR03]. In
particular, SCAAML attacks have proved to be effective at recovering AES keys, even

1https://source.android.com/docs/security/features/verifiedboot
2https://source.android.com/docs/security/features/biometric/measure
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when facing strong masking countermeasures [ERR+18, MPP16, CDP17].
Despite their clear effectiveness against specific targets, several obstacles limit SCAAMLs

broad adoption during the product development cycle [PPM+23], where engineers need
to be notified of potential leaks in a matter of hours or days to stick to the production
schedule, including:

• Lack of cross-algorithm generality: SCAAMLs have not been reported to gen-
eralize beyond a single protected cryptographic algorithm [LBM15, MPP16, CDP17,
ERR+18, MS23, WHJ+21, HGG19, ZS20, WP20, PP21, WAGP20, AGF23, WPP22,
ZBHV20, PCP20, RBA20, ZSX+20, BCH+20, LZC+21]. There is currently no known
machine learning technique that is able to attack both highly protected AES and
ECC for example.

• Lack of cross-implementation generality: Current attacks rely on custom ML
architectures tailored to a very specific target [PP21, WAGP20, AGF23, WPP22,
ZBHV20, PCP20]. Targeting a different implementation that uses different counter-
measures requires to manually modify the attack.

• High-expertise requirements: So far SCAAMLs require expertise to not only
modify the neural network architecture and its objectives but most of them also
require expert manual pre-processing of the traces (e.g., [LZC+21]) so they can be
used by the neural network.

In this paper, we provide the first step toward addressing these limitations by proposing
a novel deep-learning architecture, GPAM (Generalized Power Analysis Model), that is
able to perform fully automated power side-channel attacks against multiple protected
algorithms, namely ECC and AES, countermeasures, and implementations. GPAM
is designed to work on raw traces straight from the oscilloscope doing away with the
expensive requirement of expertly preprocessing traces before performing attacks. Our
novel architecture, presented in Section 5, combines temporal patchification [LMW+22]
to process the very long traces generated by algorithms incorporating countermeasures,
state-of-the-art Transformer encoder blocks [HDLL22] to efficiently identify long-range
trace data relationships, and multi-task learning [Rud17] to allow the model to attack
masked implementations.

We demonstrate GPAM effectiveness by carrying out power analysis attacks against four
protected ECDSA implementations in Section 6. These implementations counter-measures
range from a simpler-to-defeat constant-time countermeasure to masking protections
that are considered resistant to side channels attacks [Cor99, PCBP21, GRV17, RLMI21].
Specifically, GPAM is able to recover the four most significant bits of the secret scalar
with an accuracy between 71.86% to 96.39% depending on the targeted implementation.
At that level of accuracy, combining the model predictions confidence with a lattice
attacks is enough to recover the full secret key [HGS01, NS02], as demonstrated in
Section 6.8. To the best of our knowledge, this is the first time that these highly-protected
ECDSA implementations have been proven to be vulnerable to power side-channel attacks,
demonstrating that GPAM architecture is not only general but also highly effective at
attacking state-of-the-art hardware defenses. We note that generalized models, such as
GPAM, fulfill a different need than custom attack models. Custom attack models excel at
uncovering vulnerabilities in high-value targets, but require the expertise of side-channel
specialists. Instead, generalized models empower non-experts, such as implementation
engineers, to evaluate the side-channel security of their designs without specialized attack
knowledge. As such, they complement, and not supersede, custom attack models.

In Section 7, we show-case GPAM’s ability to generalize to multiple cryptographic
algorithms without architectural changes by successfully recovering masked AES keys.
When compared with state-of-the-art attacks that rely on manual trace pre-processing and
hand-tuning (which GPAM does not require), GPAM achieves comparable performance.

Last but not least in Section 6.8, we demonstrate that GPAM generalization capabilities
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also extend beyond white-box attacks by demonstrating its ability to recover hardware
masked ECC scalar in a black-box settings.

Overall, the sum of our experimental results highlights that this new generation
of generalized automated attacks is competitive with algorithm-specific state-of-the-art
approaches for evaluating power leakage countermeasures. Moreover as discussed in
Section 5.3, the operational costs of adapting GPAM to a new target via automated
hyper-tuning, a few hours of GPU time, is considerably lower than hiring side-channel
experts. Our attack generality, speed, and cost-effectiveness move us closer to more secure
chips by empowering design teams to incorporate automated countermeasure testing as
part of the development process.

To allow the community to independently replicate our results and get us closer to the
standardization of fully-automated side-channel leakage evaluations we open-source both
our models and datasets under the Apache 2 Licence at [anonymized].

Ethics This research was intentionally performed on research implementations, not
production ones. Accordingly, these results do not warrant a coordinated responsible
disclosure.

2 Background

This section provides the key background information on cryptography, side-channel
attacks, and deep learning needed to understand the paper.

2.1 Elliptic-curve cryptography

Elliptic-curve cryptography (ECC), which supports both key exchange and digital sig-
natures, comprises public parameters, and a public/private key pair. Public parameters
include an elliptic curve E, a point G on the curve, and the integer order n of G over E.
The secret key d is a random integer satisfying 1 < d < n− 1. The public key is calculated
as Q = d×G (× is the scalar multiplication operation supported by curve E). As relevant
to this paper, to generate a signature for a message hash h, ECDSA algorithm chooses
a random secret k such that 1 < k < n− 1, computes (x, y) = k ×G, r = x mod n, and
s = k−1(h+ r · d) mod n, and outputs (r, s) as the signature pair.

It is critical for the private key d and the per-message random secret k to remain secret.
An attacker who acquires one instance of k for a known signature can simply calculate the
private key as d = r−1(s · k − h) mod n. An attacker who can recover part of k can apply
lattice-based cryptanalysis to recover the private key from partial knowledge of k from
several signature-generation operations [HGS01, NS02].

2.2 Side-Channel Attack and Defense

Side-channel attacks (SCA) target the execution of cryptographic algorithms [MOP08,
Koc96]. During the execution, certain physical signals may be generated by intermediate
computations that depend on the secret data bits being processed. The attacker can
build a distinguisher that identifies which signals are related to which secret bits. This is
typically accomplished by attacking each segment of the key separately. For instance, we
build a distinguisher that can find the correct key byte for AES, which can be repeated for
each of the 16 different key bytes of the 128-bit AES key.

There are two primary scenarios for constructing a distinguisher: In direct attacks,
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such as SPA [MOP08] or DPA [KJJ99], the attacker attempts to retrieve the key from
traces without prior modeling of the target. In profiling-based attacks, e.g., Template
attacks [CRR03], the attacker first constructs a model based on previous observations of
the target (or a similar one). We focus on white-box profiling-based attacks, which are
valuable for assessing the security of an implementation against a strong, well-informed
attacker.

One can use masking countermeasures to mitigate side-channel attacks by disrupting
the statistical correlation between intermediate values and the physical signal, e.g., power
consumption. To achieve this, implementations can generate a random value and combine
it with secret parameters and intermediate values during computation. As a result, the
computation is carried out using blinded secrets instead of cleartext ones.

A common protection for ECC implementations is to randomize the secret integer (d
or k) during scalar multiplication [Cor99]. For this, implementations can add a random
multiple of the curve order n to the private integer k as k′ → k + r · n. Later on, when
computing the scalar multiplication k′ × G as in the signature generation, it results as
(k + r · n) × G = k × G + r · n × G. Since n × G is equal to the point at infinity (the
identity element), the expression simplifies to k × G. Randomizing the secret integer
can also be achieved using the euclidean division k = bk/rc · r + (k mod r), or the secret
integer can be divided into multiple random shares for extra security k = k1 + . . .+ km.
In this paper, we evaluate the security of ECC masking with single and double shares
that are considered secure when the random share r is chosen in a way that ‖r‖ ≥ ‖n‖/2
(see [RLMI21, RIL20, GRV17]) where ‖n‖ stands for the bit-length of a natural number n.
These implementations include hardware-accelerated constant time scalar multiplication
(CM0), additive masking (CM1), multiplicative masking (CM2), and a combination of the
previous two (CM3). For details, see Section 6.1.

2.3 Deep Learning

Throughout the paper, we assume a certain familiarity with standard deep-learning terms
such as layer, activation function, and loss. Those terms are defined in widely available
textbooks (e.g., [GBC16] and [Cho21]).

To process long traces efficiently GPAM borrows ideas from the recent advances in
image patchification techniques which were introduced in vision transformers to efficiently
process images [LMW+22].

In terms of architecture, GPAM leverages the Transformer architecture [VSP+17] which
is at the heart of the recent breakthroughs in deep-learning including large language models
(LLMs) such as chatGPT and Gemini. What makes the transformer architecture well-suited
to side-channels attacks is its use of self-attention [VSP+17], which enables the model to
efficiently understand long-range dependencies and capture contextual information. These
abilities are key to build a generic and efficient side-channel attack model as it allows it
to exploit complex data leaks that occur through interconnected relationships between
distant data points. In our work, we use a high-performance transformer block called GAU
(Gated Attention Unit) which was introduced by Hua et al. [HDLL22]. GAUs enhance
the Transformer encoder block by replacing the vanilla attention and feed-forward network
with a combined gating mechanisms that improve data representation and computation
speed, leading to faster training and improved accuracy.

Activation functions play a key role in model accuracy by introducing different form of
non-linearity. Different functions are better suited to different type of data and use-cases.
As suggested by [XTG+20], we use swish [RZL17], a smooth activation function which is
more robust in the presence of counter-measures. Last but not least GPAM heavily relies
on using multi-task learning [Car98] to converge and generalize.
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3 Threat model
We assume the attacker has access to a clone of the targeted hardware and the tools to
collect power traces following side channel attacks’ standard assumptions [CRR03].

Our main threat model is the white-box model, even though, as illustrated in Section 6.8,
it is also able to perform well in a black-box setting. Following SCA standard model, we
also assume attacks are carried in two phases: the training phase during which the attacker
collects data using the cloned hardware to train their attacks and the attack phase where
the attacker is attempting to recover secret from the targeted device.

During the attack phase, the model exclusively processes the raw traces from the
targeted device to recover the targeted secret without any access to the countermeasure
parameters regardless of the threat model considered. We ensure our dataset collection
process is consistent with this modus operandi by using two different chips to collect our
data: one chip is used for creating the training and testing data while the other one is
used to collect the holdout dataset used for attack evaluations.

During training, we consider two threat models:

1. Black-box threat model: In this threat model, the attacker has no knowledge of
the deployed countermeasures, only knows the input and output of the cryptographic
primitive and can only control the inputs (chosen text attack).

2. White-box threat model: In this threat model, the attacker has full knowledge of
the countermeasures used and they control all the protection parameters during the
training phase. This is the main threat model used in this paper because it mimics
the level of access that chip development teams or certification evaluators have.

4 Related Work
Machine-learning (ML) side-channel attacks. Machine learning has been repeatedly
shown to be an effective approach to SCA. For example, Lerman et al. [LBM15] out-
performed template attacks [CRR03] in recovering keys from masked implementations of
AES, leveraging classical ML algorithms such as support–vector machine (SVM). Maghrebi
et al. [MPP16] later applied deep–learning algorithms, including CNNs and LSTMs, to
attack AES. Bursztein et al. [B+19, BP19] then proved the feasibility of full-trace attacks
using deep learning. These attacks tend to require a higher number of traces than classical
attacks, though other researchers also adopted MLPs and CNNs to reduce the number of
traces required [CCC+19, ZBHV21, CDP17].

To improve upon these early results, research is still needed to overcome the following
three challenges:

(1) Trace preprocessing: This remains a costly endeavor done by experts. There
are works that develop techniques to address this issue. Notably, Won et al. [WHJ+21]
developed a framework based on a multi-scale CNN to enable the integration of user-
defined preprocessing phases. Hettwer et al. [HGG19] explored various image–classification
metrics for finding points–of–interest in the signal. Zhou and Standaert [ZS20] proposed
a technique based on residual networks for aligning SCA traces. Wu and Picek [WP20]
used autoencoders to filter out noise added by mitigations such as clock jitter and random
delays. Transformations of one dimensional traces into two dimensional images and using
established network architectures for images have been studied by [HHGG20].

Direct use of the whole traces remains rare when the traces are long. Even very recent
publications [HCM24] suggest that using raw traces of tens of thousands of points is still
not a solved problem. To the best of our knowledge, the following are the only papers
which directly target traces of at least 100k points using ML (the threshold is somewhat
arbitrary since for each threshold there are papers which almost make it, e.g., [GJS20]
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with 65k point traces). [MBC+20] target AES implementations automatically protected
by code polymorphism (traces up to 160k points). Lu et al. [LZC+21] developed an ML
architecture (autoencoders and attention mechanism) acting directly on raw traces of up
to 300k samples to target AES implementations from public datasets. [GLS22] directly
use traces of length up to 219k samples from the CHES 2020 contest. Our model has
improved the result of [LZC+21] on the ASCADv1 variable key dataset. Our approach
improves on prior art as it does not require trace preprocessing and can support very long
traces, up to 16 million samples and up to 1 million points on a public dataset.

(2) Generalizability: Prior art has mainly focused on identifying the optimal network
architecture for each device, implementation, and crypto algorithm [PP21, WAGP20]. This
is an effective strategy to find an optimal solution for a specific attack configuration, but it
is not clear how well it serves embedded engineers trying to identify leaks in a new product.
Some works are addressing this issue, by searching for the right ML architecture based on
various tools such as Information Theory [AGF23], Bayesian Optimization [WPP22], and
Gradient Visualization [ZBHV20]. Pernin et al. [PCP20] take a different approach, using
an ensemble of ML models based on average class probabilities to improve generalization.
Whereas there are works that target multiple implementations (e.g., [WCPB21]), to the
best of our knowledge, no prior work has studied generalization across multiple algorithms
(e.g., AES, ECC, RSA). Our approach differs from prior art as we find a single architecture
capable of generalizing across devices (with identical model weights), implementations,
and algorithms (using the same tunable architecture), thus reducing training costs and
heading toward a fully-automated SCA leakage evaluation for hardware certifications.

(3) Portability: Identical hardware devices, even when originating from the same
production line, exhibit minute physical variations that result in differences in their power
traces. ML models that generalize across devices are superior, as during training, they
do not need access to the devices they will eventually attack. Prior research has looked
into incorporating device-to-device variation into SCAAML training [RBA20, ZSX+20,
BCH+20]. Our holdout datasets are also captured on different physical chips.

Side-channel attacks on ECC. Single-trace side-channel attacks on ECC aim to
recover most of the secret bits in one execution of scalar multiplication. This is ideal for
signature schemes, like ECDSA, which performs scalar multiplications on a fresh integer
every time. However, these attacks [SI11, JB17, NC18, HIM+14, WPB19] have only been
successful when scalar blinding has low entropy. Most recently, Pernin et al. [PCBP21]
showed ML’s effectiveness in unsupervised attacks, recovering 90% of the secret bits when
scalar blinding is performed with 32 and 64 randomly-generated bits. [RIL20] leveraged
ML to attack ECC key generation by collecting multiple traces from scalar multiplication
for the same secret.

Prior work has also shown lattice-based attack’s effectiveness in recovering keys from
partial leakage collected on real cryptographic chips when no masking countermeasure
is applied [MSEH20, JSSS20, RLMI21]. However, the effectiveness of SCAAML in as-
sisting lattice attacks and bypassing stronger countermeasures is unknown. Goudarzi
et al. [GRV17] combine lattice attacks with side-channel (using hypothetical SNR analysis)
and show that attacks are probable when ‖r‖ is 16, 32, 64 bits. Based on these works, the
current understanding in the community is that if ‖r‖ ≥ ‖n‖/2, the countermeasure is
safe.

To the best of our knowledge, our approach is the first to show that SCAAML driven
lattice-attacks can recover the ECDSA key when ‖r‖ ≥ ‖n‖/2 (‖r‖ ≥ 128 bits in our case)
and even for higher-order masking with more than one share.
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5 GPAM
In this section, we present the GPAM (Generic Power Analysis Model) architecture and
discuss how we train it. We start by discussing the training objective along with the
metrics used to evaluate convergence. Next, we detail GPAM model architecture. Finally,
we discuss relevant implementation details.

5.1 Training objective and metrics

Training objective GPAM’s training objective is to predict the value of a specific
key byte ki. Following standard machine learning practices, we cast this problem as a
classification problem where the model is tasked to produce the correct byte value out of
256 possibilities. In practice, this translates to the model outputting softmax probabilities
P for every possible key candidate c, i.e., P [ki = c] for c = 0x00, . . . , 0xFF, each indicating
the likelihood that the predicted key byte ki is equal to c. We use categorical cross-entropy
as our loss function.
Metrics We use the following metrics to evaluate GPAM performance:

• Accuracy is our main metric. It is defined as the categorical accuracy of the output,
meaning the ratio of which the model predicts the correct output. The baseline
accuracy for a random guess is 1/256 = 0.39%. We will indicate it in the rest of the
paper with the symbol.

• Rank is the position of the correct value in the ranking of predicted byte values,
sorted in descending order by probability. A rank of zero is assigned to the highest
probability and 255 is assigned to the lowest probability, given that a byte has 256
possible values.

• MaxRank is the maximum rank over a set of model predictions for a batch of
examples. The baseline MaxRank is 255. A value less than 255 implies that the key
space required to bruteforce the correct value, in the worst case, has been successfully
reduced, as each correct prediction is contained in a smaller range of values.

• MeanRank is the average rank of predictions. The baseline MeanRank for a random
guess is 127.5. A lower value implies that the key space was successfully reduced
and that on average, the correct value is within a smaller range of values.

• Confidence reflects the standard margin sampling confidence [BJSR22] the dif-
ference between the highest and second-highest probabilities (i.e., the value pre-
diction.sort(); prediction[-1] - prediction[-2]). Intuitively, this metric is
one of the most informative way to measure how much the model is confident that
the predicted value is correct.

These metrics are well suited to inform an evaluator about the presence of leakage.
For instance, one such indicator is the accuracy rising over the threshold given by the 3σ
rule. However, the leakage detected by these metrics does not imply a successful attack.
To account for this, we also evaluate models as part of end-to-end attacks from trace
collection to recovered key to understand their real-world performance. For example, we
attack ECDSA end-to-end in Section 6.8, and AES in Section 7.1.

Following machine learning best practices, we conduct experiments with the GPAM
model on the test split (called validation split by some authors), then pick the best model
according to the metrics discussed above, and evaluate only once on the holdout (which is
collected on a different chip) by carrying the end to end attack.

5.2 Architecture
At a high-level, GPAM is composed of three functional components, as depicted in Figure 1:
a temporal patchification stem designed to group traces into a sequence that preserves the
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Figure 1: GPAM architecture for predicting k0 in CM1 (see Section 6.1 for description
of CM1 and the attack points k0, km0, r0). The attacked key byte is k0, with k0 having
related outputs km0 and r0.

temporal inductive bias, a trunk that attends to the temporal sequence using transformer
encoder blocks to extract information, and a multi-headed directed acyclic graph that is
used to implement multi-task learning, i.e., predicting multiple values at once.

5.2.1 Temporal Patchification

The temporal patchification stem has two goals:
1. Preserve the temporal inductive bias while making the sequence faster to process by

transformer encoder blocks by grouping adjacent points – recall here that attention
computation cost is quadratic in the length of its input sequence. To achieve
this we reshape the trace into blocks of N contiguous non-overlapping chunks, or
“patches”. This approach, while slightly different, is inspired by state-of-the-art image
patchification techniques [LMW+22].

2. Potentially provide positional information to allow the transformer encoder block to
perform efficiently. This is done by injecting global positional encoding information
to the sequence [CTB+21].

5.2.2 Trunk

The trunk’s main function is to attend to the patchified sequence by extracting the
latent representation of the traces needed by the heads to predict the targeted values.
To do so, GPAM uses a trunk made of three state-of-the-art GAU transformer encoder
blocks [HDLL22] that are able to isolate and process long-range interacting features. In
addition to the transformer blocks, the trunk also includes a combiner module made of
convolutional layers that is meant to combine the output of the three encoder blocks into
a unified latent representation. Combining the output of the encoder blocks instead of
using the output of the last one, as traditionally done in NLP, is useful because each block
extracts features at a different level of "abstraction". Those multi-level representations are
commonly used in other signal processing applications such as speech recognition [CZH+21].

5.2.3 Heads and Relational Outputs

The last component of GPAM is its multi-headed DAG (directed acyclic graph). This
component is designed to achieve two goals:

1. Allow multi-task learning: GPAM relies on multi-task learning [Car98] to perform
efficiently against masked implementation, as reported in Section 6.4. Multi-task
learning is accomplished by not only predicting the targeted byte value but also
predicting intermediate values such as the mask and random nonce values.

2. Inject domain expertise: Standard multi-task learning involves jointly predicting
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values without establishing relation between the outputs. We found out, as reported
in Section 6.4, that we can increase GPAM performance by representing the outputs
as a DAG where intermediate outputs feed into the byte prediction output, as
depicted in Figure 1. This allows the model to benefit from expert understanding
and makes it easier for it to learn which intermediate values are useful for computing
a given output. We note that defining those relations is fully configuration driven
and does not require to change the model architecture or fiddle with the code.

5.2.4 Heads design
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Figure 2: Single head output.

Unlike standard transformer architectures, where the output is a single layer, we
discovered during our architecture search that having a deeper head architecture improves
model performance. As visible in Figure 2, GPAM head architecture comprises several
dense layers and a single dropout layer. Extensive initial testing during the architectural
development phase revealed that adding normalization layers, residual connections, or
more dropout layers did not seem to improve model performance or convergence speed.

5.3 Hyper-parameter tuning
GPAM is designed to be automatically hyper-tuned (using Keras-tuner) to quickly adapt
to new cryptographic implementations. To minimize GPAM production costs, we focus
on reducing the tuner search space to a minimum. We perform a one-time extensive
architecture search to isolate which parameters should be hyper-tuned and which should
be considered canonical. We emphasize that this search is a one–time cost paid by this
research, and will not be run when deployed in an automated testing environment. For
example, the activation function used (Swish), the number of layers per head, and the
number of GAU blocks (3) all proved to be close to optimal choices across algorithms and
implementations and therefore were excluded from hyper-tuning.

Table 1: Model hyper-parameters for each targeted implementation used in this paper.

CM0 CM1 CM2 CM3 ASCADv2
Batch size 128 64 64 32 64
Steps per epoch 200 200 200 400 1,000
Epochs 25 500 500 500 150
Target learning rate 0.0006 0.0006 0.0006 0.0003 0.00005
Merge filter 1 16 16 16 16 0
Merge filter 2 8 8 8 8 0
Trace length 1,620,000 4,194,304 8,388,608 16,777,216 1,000,000
Patch size 1,200 2,048 4,096 4,096 400

All in all, at the end of the architecture search, GPAM only requires 8 parameters to
be tuned for each new application. The values of those 8 parameters for all the ECC and
AES implementations targeted in this paper are reported in Table 1.

• Batch size depends purely on the hardware available for training, and should be
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maximized as much as the GPU memory allows (as a standard machine learning prac-
tice, doubling batch size implies halving steps per epoch and doubling target
learning rate).

• Trace length and patch size depend on the size of the dataset, and the capture
sample rate. The Patch size is the square root of trace length (rounded).

• Target learning rate and number of epochs depends on the difficulty for the
optimizer to learn. Learning rate is to be searched for in logarithmic scale (good
values are 0.001, 0.0001, 0.00001).

• Merge filter 1 and Merge filter 2 are used to make the trunk output length
more manageable. Merge filter 1 and 2 are searched among the powers of two, and
as a rule of thumb merge filter 2 is half of the merge filter 1.

We emphase that hyper–tuning the 8 parameters is straightforward and automated.
For example, we hyper–tuned GPAM to attack ASCADv2 using NVIDIA RTX 4090 GPUs.
The training totaled 29 days (cumulative across GPUs), which amounts to 7 hours spent
training for each parameter configuration. We note here that during hyper-tuning we do
not train fully, instead we only use 10% to 30% of the number of epochs used for the final
full training. This amount of compute being enough to figure out which parameter values
are the best.

Using a server with eight GPUs, a standard number when using NVIDIA SMX tech-
nology, this hyper-tuning search can be done under 3.6 days. For example running this
training on a similar configuration on Google Cloud Compute costs under $2.5k3. This
hypertuning can alternatively be performed on a local server with equivalent features if
a local deployment is preferred, albeit for a higher startup cost. This is a comparatively
small price to pay to avoid having experts manually preprocess traces and manually tweak
attack parameters, whose cumulative hourly rate can quickly surpass this dollar value.
Also, note that this hypertuning price has to be paid only once per targeted combination
of hardware platform, algorithm, and countermeasure.

5.3.1 Weight Initialization Influence

Training instability is a well-known issue in deep learning in general, and for transformers
in particular, where an unlucky initialization can lead to model collapse or sub-par
performance (see for instance [NS19]). Following machine-learning practices, we mitigate
this issue by using a custom learning-rate scheduler. We start from a low initial learning
rate value, then steadily increase it to reach its target value, and finally decrease it with a
cosine decay as the model converges [LH16]. During the warm-up phase, a low learning
rate allows the model to perform smaller steps along the gradient, reducing the influence
of the weight initialization.

5.4 Implementation
We implement the GPAM architecture and conduct training using TensorFlow [AAB+15]
and the Keras API [C+15]. We use Keras Tuner [OBL+19] to hypertune GPAM automati-
cally. The temporal patchification code was specially designed and implemented for GPAM.
The GAU layer is a custom implementation based on the pseudo-code provided in [HDLL22].
The relational output technique is our own contribution and its implementation unique to
GPAM. All in all, the GPAM code is about 1,000 lines of Python.

The estimated training times for attacking the various datasets used in the paper, using

3This price is calculated in September 2023 with Google Cloud Pricing Calculator (https://cloud.
google.com/products/calculator) running a a2-highgpu-8g host for 3.6 days. In reality, the GPUs
offered by that configuration (A100 80GB) are slightly more performant than our 4090 cards (benchmark
https://lambdalabs.com/gpu-benchmarks), so this price tag estimate is an upper bound.

https://cloud.google.com/products/calculator
https://cloud.google.com/products/calculator
https://lambdalabs.com/gpu-benchmarks
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Table 2: Training time estimates.

Dataset CM0 CM1 CM2 CM3 ASCADv2
Training time [hours] 1 24 48 150 20

an NVIDIA RTX 4090 as reference GPU, are reported in Table 2. In practice, we use
multiple servers with various GPU configurations, as the total computation required to
complete all our experiments presented in this paper requires over 1 year of computation. As
mentioned throughout the paper, we did our best to avoid running unnecessary experiments
to minimize carbon emissions.

6 Generic attacks against hardware-protected ECC
In this section, we evaluate GPAM’s ability to generalize to multiple hardware-protected
implementations by performing side-channel attacks against scalar multiplication on four
distinct implementations of ECDSA. The targeted hardware implementation includes a
constant-time implementation and three distinct algebraic masking implementations that
are considered state-of-the-art protections [Cor99, BR23]. We start by describing the
implementations targeted, then describe our collection process. Next, we evaluate GPAM’s
performance against those datasets. Finally, we discuss how we can attack the ECDSA
signature scheme by combining the partial nonce K recovered via GPAM and a lattice
attack.

Here we answer the following questions:
1. Does GPAM generalize to multiple hardware implementations? (Section 6.3)
2. Is Multi-task learning needed to detect leakage in a protected implementation, and

if yes, which tasks are needed? (Section 6.4 and Section 6.5)
3. Are related outputs only learning a function of other outputs, or are they also using

the latent representation provided by the trunk? (Section 6.6)
4. How many traces are needed for GPAM to successfully detect leakage in various

implementations? (Section 6.2)

6.1 Targeted hardware implementations
Given our goal to evaluate GPAM against highly-protected hardware implementations,
we use the NXP K82F dedicated cryptographic accelerator (LTC – LP Trusted Crypto)
as a base for all implementations to perform constant-time hardware-accelerated scalar
multiplication and point addition. Relying on this accelerator ensures that all our im-
plementations are not vulnerable to timing attacks or software-based leakages. All our
ECDSA implementations use the elliptic curve FRP2564 from ANSSI, but our results
apply equally to other curves (e.g., NIST P-256), as the scalar multiplication algorithm is
typically the same for all Weierstrass curve implementations.

6.1.1 Countermeasures

We evaluate the following four implementations to highlight the effectiveness of GPAM
against increasingly stronger protections. Here, we use B to denote computation done
in software and to indicate computation done on the chip. The k ← δL(N) notation
indicates the generation of a random number with N bits where each bit is selected
independently and uniformly at random. The four implementations considered in this
section are:

1. Constant-time execution (CM0). A simple countermeasure effective against
4https://neuromancer.sk/std/anssi/FRP256v1

https://neuromancer.sk/std/anssi/FRP256v1
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timing attacks, but not power side channels. It exclusively relies on our chip’s
constant-time accelerated scalar multiplication, without randomizing the secret
multiplier.

2. Additive masking (CM1): This implementation is significantly more resistant to
power side channel attacks compared to CM0, thanks to the addition of multiplier
masking. A random integer r is added to k so the scalar multiplication executes on
the blinded secret scalar. More formally, it
(a) Chooses an independent 256-bit random mask r.
(b) Computes the difference km between the secret multiplier k (the ECDSA nonce)

and the mask r.
(c) On chip, computes Pkm = km×G and Pr = r ×G.
(d) On chip, computes Pkm + Pr and returns this value.
Here is the pseudo code used to implement this scheme:

k ← δL(256) (secret multiplier B)

r ← δL(256) (random mask B)

km = (k − r) mod n (k masked B)

Pkm = km×G (scalar multiplication )

Pr = r ×G (scalar multiplication )

Result = Pkm + Pr (equal to k ×G )

3. Multiplicative masking (CM2): In this implementation, we use a Euclidean
division rather than addition computation, which is another canonical way to mask
the secret scalar [BR23, Cor99]. Formally, it:
(a) Chooses an independent 128-bit random mask r.
(b) Computes km, the quotient of the division of the secret multiplier k and r. It

also computes the remainder.
(c) On chip, computes Pkm = km×G and Pr = rem×G.
(d) On chip, computes Pkm2 = r × Pkm, then returns Pr + Pkm2 (equal to k ×G).

k ← δL(256) (secret multiplier B)

r ← δL(128) (random mask B)

km = bk/rc (B)

rem = k mod r (B)

Pkm = km×G ( )

Pr = rem×G ( )

Pkm2 = r × Pkm ( )

Result = Pr + Pkm2 (equal to k ×G )

4. Combined countermeasure (CM3): This combines CM1 and CM2 techniques
in an attempt to further increase security with higher-order masking.

k ← δL(256) (secret multiplier B)

r1 ← δL(256) ( CM1 random mask B)

r2 ← δL(128) (CM2 random mask B)

r3 ← δL(128) (CM2 random mask B)

km1 = (k − r1) mod n (B)
(CM2 (a) instead of Pkm1 = km1 ×G)

km2 = bkm1/r2c (B)

rem2 = km1 mod r2 (B)

Pkm2 = km2 ×G ( )

Pkm2 = r2 × Pkm2 ( )

Pr2 = rem2 ×G ( )

Pkm1 = Pr2 + Pkm2 ( )

(CM2 (b) instead of Pr1 = r1 ×G)

km3 = br1/r3c (B)

rem3 = r1 mod r3 (B)

Pkm3 = km3 ×G ( )

Pkm3 = r3 × Pkm3 ( )

Pr3 = rem3 ×G ( )

Pr1 = Pr3 + Pkm3 ( )

Result = Pkm1 + Pr1 (same as k ×G )
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Random masks selection We discuss the choice of the random mask r (or r1, r2, r3
in the case of CM3). For additive masks, we choose r in a way that ‖r‖ = ‖n‖, i.e., 256
bits. However for the multiplicative masks, we have to choose r in a way that ‖r‖ < ‖k‖,
otherwise, the mask would not be effective. We choose r as ‖r‖ = ‖n‖/2, i.e., 128 bits, to
ensure that it meets this property, but it also achieves the level of resistance to side-channel
attacks, as suggested by prior work [GRV17, RLMI21]. We also choose each byte of k and
r (or r1, r2, r3 for CM3) independently and uniformly at random for each computation to
ensure we are performing attacks against implementations that do not have a bias in their
random entropy.

6.2 Power trace collection
Our capture setup consists of a Chipwhisperer CW308 UFO board with a CW308T-K82F
target board connected to it. The firmware of the target chip was solely responsible for
curve addition and scalar multiplication. We did not rely on any software implementation
for curve arithmetic. Scalar multiplication and point addition operations were performed
by sending an integer and a point, or two points, respectively, to the LTC. For creating
labels for model training, we additionally record on the host computer the secret multiplier
and random parameters used for masking each trace.
Capture setup We collect power measurements using the Teledyne LeCroy WavePro
404HD-MS [Tel] oscilloscope connected to the embedded resistor shunt on the ChipWhisper
NAE-CW308T-K82F [New] target board. The oscilloscope probe is hooked to the test
point TP5 of the CW308 UFO board to measure the current, while digital channel D0 is
connected to the GPIO4/TRIGGER pin to get the trigger signal, which starts the capture.
We insert a 7.37MHz crystal into the X1 socket and adjust the clock source selection jumper
J3 to the CRYSTAL position to provide the clock signal. This configuration ensures that
there is no correlation between the target chip clock and the oscilloscope sampling clock,
resulting in asynchronous measurements. The oscilloscope channel is set to AC coupling
with a bandwidth limited to 200MHz. The first scalar multiplication is always aligned
using a trigger signal for each operation, and there is no additional alignment performed.
The trigger signal was configured to stay high during each operation performed by the
LTC. We use the first rising edge of the trigger signal as the oscilloscope trigger to start
capturing.
Experimental leakages We ensure that no UART communication is leaking by
conducting one experiment where we replace captured points in the training set with
Gaussian noise when the trigger signal is low. After training a model, we observe no
performance loss when compared to training on raw traces, indicating that no discernible
UART leakeage is occurring in the replaced points. Note that all other experiments are
conducted with raw traces.
Datasets Collected Table 3 provides a technical summary of the datasets generated
using the implementation discussed in Section 6.1. We use the SCAAML ([B+19]) dataset
library to store our traces and attack point values as TFRecord files. We ensure that no
key is reused between the splits by tracking which keys were previously used. Overall each
dataset collection process takes anywhere from several weeks (CM0) to months (CM3) to
complete.

Note that to ensure that the attack generalizes between chips of the same family despite
potential subtle hardware variations, we use a different chip to collect the training/test
splits and the holdout split. The holdout splits, following machine learning best practices,
are never used to tune the models or during experimentation. Instead, they were reserved
for the final evaluation presented in Section 6.3.

Note that Table 3 also reports the ASCADv2 dataset that we use to evaluate GPAM
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generalization across multiple algorithms in Section 7. This dataset was made public in
[ERR+18]; we simply convert it to the SCAAML dataset format. Since there was no
apparent restriction on how to divide the samples into splits (train, test, holdout), we took
a portion of consecutive samples for train, a portion for test, and a portion for holdout.

Table 3: List of ECC evaluation datasets used in this study to evaluate GPAM generaliza-
tion to multiple hardware implementations. The names refer to protected implementations
described in Section 6.1. The table also includes the ASCADv2 dataset collected in
[ERR+18] that is used in Section 7 to evaluate GPAM generality across multiple algo-
rithms.

Name Trace Train Test Holdout File size
length length length length [TB]

ECC CM0 1,6M 57,344 8,192 8,192 0.2
ECC CM1 5M 194,544 8,192 8,192 1.5
ECC CM2 10M 122,880 8,192 8,192 2.1
ECC CM3 17,5M 122,880 8,192 8,192 3.7
ASCADv2 1M 640,000 80,000 80,000 0.9

6.3 Generalization over multiple implementations
Overall, GPAM can successfully attack all four ECC hardware implementations in white-
box settings using multi-task relational outputs training as reported in Table 4. These
results are computed on the holdout splits which, as discussed previously, are captured
on a different chip of the same family and were not used for model tuning or any other
experiments discussed later in this section. As discussed in the threat model section
(Section 3), white-box setting means that the model had access to the intermediate values
(masks and random values) during training.

Note that we only evaluate GPAM on the initial (most-significant byte k0), middle
(k15), and last (least-significant byte k31) byte of each implementation, as those bytes are
representative of GPAM performance against those implementations. We make this choice
because these experiments are resource intensive, and the goal of GPAM is to identify
leakage.

Table 4: GPAM white-box key byte recovery success rate on the four ECC hardware
protected implementations holdout splits.

Dataset Attack Accuracy MeanRank MaxRank
point [%]

CM0 k0 100.00 0 0
CM0 k15 100.00 0 0
CM0 k31 100.00 0 0

CM1 k0 78.80 0.75 192
CM1 k15 93.20 0.31 253
CM1 k31 92.98 0.24 218

CM2 k0 66.22 1.40 254
CM2 k15 0.30 127.29 255
CM2 k31 11.31 8.76 233

CM3 k0 8.60 19.77 255
CM3 k15 - - -
CM3 k31 0.37 127.89 255

As expected, as the strength of the protection increases, the model accuracy decreases
to the point where for CM3, only the initial byte can be attacked successfully. Note that
an accuracy of 0.4% is close to random chance. We hypothesize that increasing GPAM’s
performance against stronger countermeasures requires more training data, not increased
model capacity. This is empirically supported by our experiment in Section 6.7, which
looks at model accuracy as a function of the number of training traces, showing that
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Table 5: GPAM black-box key byte recovery success rate on the first three ECC hardware
protected implementations using the holdout splits.

Dataset Attack Accuracy MeanRank MaxRank
point [%]

CM0 k0 100 0 0
CM1 k0 0.29 127.5 255
CM2 k0 22.81 5.55 231

GPAM’s accuracy against CM3 only starts to rise past 100k traces. Furthermore, looking
at the MaxRank results, it is clear that the model did not fully generalize for CM1, CM2
and CM3, as it is close to its 255 upper bound.

In Table 5, we report GPAM results under black-box settings on the holdout splits.
Unlike when using the white-box settings, GPAM is not always able to successfully recover
even the initial byte k0. Interestingly, GPAM fails to recover CM1 k0 but is able to recover
CM2 k0, which is surprising given that in the white-box setting, CM1 appears to be easier
than CM2. We hypothesize that CM1 is harder in the black-box setting because its random
mask uses 256 bits whereas CM2 only uses 128 bits. Having access to intermediate values
seems to make the size of the random mask irrelevant in the white box setting but a strong
defense in the black box setting.

6.4 Multi-task effectiveness evaluation
In the following set of experiments, we study whether using multi-task learning improves
GPAM’s accuracy. In particular, we are interested in understanding which additional tasks
beyond the key byte prediction improve model accuracy, if any. To not taint our holdout
splits, the results reported in this section are computed on the test splits. Once again we
only perform experiments on representative bytes to limit the computation time, namely
the initial bytes (k0, k1, k2), middle one (k15) and final ones (k29, k30, k31). For that same
reason, we also only target the middle of the road dataset CM2 and reserve the study of
CM1 for the ablation study discussed later in the paper in Section 6.5.

Overall, there are two types of additional tasks that can be included in the training:
Adjacency predictions and Intermediate predictions. Adjacency predictions ask the model
to predict the key bytes on the left and the right of the targeted bytes with the hope it
helps with carry issues and generalization. Intermediate predictions involve the model
predicting the value of intermediate computation points, including mask and random
nonces values.

The model can operate in two modes when performing multi-task learning using
intermediate values: the multi-outputs mode and relational outputs mode. In the multi-
outputs mode, the model outputs all the asked values without any interaction between
outputs. This is the classical form of multi-task learning used by many models to boost
generality and accuracy. In the relational output mode, as illustrated in Figure 1, we create
a directed acyclic graph between the heads to model expert knowledge of how the outputs
relate to each other according to the protecting algorithm (CM1-CM3). Obviously this
type of knowledge is only available in white box testing conditions.
Notation To make the results tables easier to understand, we are using the following
visual convention to distinguish between the various relation conditions:

• Circles are byte indexes centered at the column index (if the column byte index is i
then the circles represent [i− 1, i, i+ 1]).

• A white circle at position j means not leveraging multi-task learning.
• A gray circle at position j means using multi-task learning.
• A black circle means using relational outputs learning.
Here are a few examples of such notations for the column k2 of Table 6:
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Outputs: k2, relations: []. Byte k2 is targeted and no multi-task learning is used.
Outputs: k2, km2, r2, relations []. The model operates in the multi-task learning
mode and predicts the values of k2, km2, and r2.
Outputs: k2, km2, r2, relations [km2 → k2, r2 → k2]. The model uses relational
outputs to predict the values of k2, km2, and r2. The values of km2 and r2 are fed
into k2.
Outputs: k2, km1, r1, km2, r2, relations [km1 → k2, r1 → k2, km2 → k2, r2 → k2].
The model uses relational outputs and adjacency relations to predict the values of
k2, km2, and r2. The values of km1, r1, km2 and r2 are fed into k2.

Table 6: GPAM accuracy in % on CM1 test dataset when trained using various forms of
multi-task learning.

Relations k0 k1 k2 k15 k29 k30 k31

0.39 0.39 0.20 0.20 0.39 0.78 0.59
81.50 79.20 85.45 43.36 86.62 86.13 92.68
85.35 71.88 88.09 85.64 85.64 87.21 92.58

– 67.68 81.45 40.82 82.52 83.38 93.65
87.40 74.80 83.98 63.67 82.03 87.70 –

– 63.38 80.96 41.11 84.08 88.48 –

Results Overall, we observe that multi-task learning is needed for the attack to succeed
as reported on CM1 in Table 6. Without any relations, denoted using the symbol, the
model predictions are unable to exceed random chance (k0, k1, k2, k15, k29) or barely
exceed it (k30 and k31). Using the simplest form of multi-task learning, denoted using
the symbol, the model obtains high accuracy for almost all the bytes except k15. Using
relational-output, denoted using the symbol, the model accuracy improves further overall
compared to using multi-task learning.

Conversely, the effectiveness of adjacency relations is marginal. As reported in Table 6,
adjacency relations introduce model instability with the accuracy slightly increasing on
some bytes (e.g., k0, k30, k31) but decreasing significantly on others (e.g., k15). Given our
goal to have a stable fully automated attack, we decided against using adjacency relations.
We leave it as future work to make better use of them.
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Figure 3: ECC validation accuracy for k0 when using relational outputs.

Effect of multi-task learning on model convergence The positive impact of multi-task
learning is best visualized by looking at how each of the output accuracies improve as
training progresses. Regardless of the hardware implementation, we observe that outputs
start to converge one after the other. For example, as visible in Figure 3(a), we observe
that the mask prediction (km0) accuracy rises before the random nonce (r0) prediction
accuracy improves, and the key value (k0) prediction starts converging only after both the
mask and the random nonce have reached a high accuracy. The same effect is observed for
CM2 (Figure 3(b)) and CM3 (Figure 3(c)).

Additionally, we observe that in each case the model first learns to predict the mask
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values and then the random nonces. This behavior is consistent with the hypothesis
that multi-task learning is critical to create generalized SCAAML attacks as it allows
models to learn to "unpack" protections one step at a time. It also supports the hypothesis
that black-box attacks are significantly harder, because models greatly benefit from the
extra information. Last but not least, this behavior seems to confirm the effectiveness of
higher-order masks against advanced side channel attacks such as SCAAML.

6.5 Multi-task ablation study

In this section, we perform an ablation study to better understand which intermediate
values are needed for the attacks to succeed on CM1 and CM2. We exclude CM0, as there
are no intermediate values. We also exclude CM3, as GPAM’s relatively low accuracy on
this dataset makes it hard to confidently separate the results, and CM3 experiments would
take roughly 16 months of computation.

Table 7: CM1 relational outputs ablation.

Target Dependency Accuracy [%] MeanRank MaxRank
k0 km0, r0 86.26 0.17 9
k0 km0 0.39 130.00 255
k0 r0 86.60 0.14 4
k0 Nothing 0.29 127.90 255

k15 km15, r15 44.00 1.07 58
k15 km15 0.48 125.60 255
k15 r15 0.29 126.20 255
k15 Nothing 0.48 125.69 255

k31 km31, r31 92.87 0.09 15
k31 km31 0.48 123.46 255
k31 r31 93.85 0.07 7
k31 Nothing 0.20 126.94 255

For CM1, as reported in Table 7, removing the prediction of the mask (r∗) at training
time results in the model being unable to successfully attack CM1. Removing the prediction
of the random nonce (km∗) drastically reduces the accuracy of the model for the middle
key byte but has no effect on the initial and last byte. We are not sure why this happens.

Table 8: CM2 relational outputs ablation.

Target Dependency Accuracy [%] MeanRank MaxRank

k0 Nothing 18.26 8.44 235
k0 Outputs: r0, km16, rem16 52.44 1.78 235
k0 r0, km16, rem16 66.50 1.99 252
k0 r0, km16 66.50 2.14 254
k0 r0, rem16 39.16 4.47 244
k0 km16, rem16 32.40 4.21 223
k0 r0 39.26 4.43 247
k0 km16 36.23 2.63 160
k0 rem16 11.72 15.37 203

k31 Nothing 0.39 125.60 255
k31 Outputs: r15, km31, rem31 9.00 6.74 192
k31 r15, km31, rem31 10.40 10.60 238
k31 r15, km31 10.74 9.90 142
k31 r15, rem31 8.49 10.33 207
k31 km31, rem31 8.59 8.58 195
k31 r15 9.27 8.99 155
k31 km31 1.36 41.38 215
k31 rem31 8.59 9.90 165

We only target k0 and k31 in Table 8, as the model is only able to target the most and
least significant bytes of CM2.
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Figure 4: ECC k0 accuracy and MeanRank while using only a part of the dataset. Results
evaluated on the test split.

6.6 Trunk ablation study

In this ablation study, we evaluate whether the relational outputs benefit from the trunk
output. To validate this hypothesis, we try to predict k15 but with only using the output
of the km15 and r15 heads not the output of the trunk. Additionally we prevent the model
from cheating and encoding k15 prediction information in the intermediate outputs by
applying a stop gradient on the km15 and r15 output layers. For this ablation study, the
head outputting k15 looks like the one in Figure 2 when one removes the “Trunk” input.

Table 9: CM1 ablation of trunk output for the k15 head.

Trunk Accuracy [%] MeanRank MaxRank
yes 85.64 0.52 198
no 30.6 1.53 126

When the key byte prediction head is not directly connected to the trunk, the model
exhibits an accuracy drop of 55 percentage points as reported in Table 9. Those results
strongly support the hypothesis that the transformer encoder blocks’ latent representations
and compute power are critical for accurate prediction.

6.7 Dataset size impact evaluation

In this section, following the insights of [KMH+20] where the authors showed that trans-
former models are bound by capacity, compute, or data, we attempt to determine which of
these factors is limiting GPAM performance. We already know, thanks to the experiment
ran in Section 6.4, that GPAM is not bounded by compute since the performance plateaus
after a few hundred epochs - see Figure 3(a) for example. Accordingly, to decide whether
the model is capped by the amount of data available or the model capacity/architecture,
we trained the same model on an increasing number of traces from CM1, CM2, and CM3.
We take 10%–100% of the 122,880 available examples and learn to predict k0.

We found out, as visible in Figure 4(a) and Figure 4(b), that GPAM is most likely
bounded by the lack of data since the accuracy keeps rising as the amount of training
examples increases. In particular, for CM3, GPAM starts to generalize only when at least
110,000 examples are used, suggesting that increasing the dataset size would most likely
lead to significant accuracy gain. However, the CM3 dataset already requires 3.7TB of
storage, so we decided against increasing the dataset size further, as GPAM is already able
to successfully attack CM3, and increased accuracy does not bring significant additional
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benefits.

6.8 ECDSA attack
Due to the presence of highly-secure countermeasures, GPAM is not able to recover all
bytes of the multiplier at once with sufficient confidence. Thus, a single-trace attack similar
to [WCPB21] seems out of reach. This is expected, as custom attack models have an edge
over generalized models in this regard. However, a multi-trace attack is feasible, as we shall
demonstrate. Specifically, the partial leakage we obtained can be combined with a lattice
attack to recover the key from about 8000 traces, as demonstrated by [MSEH20, RLMI21].

We apply a standard lattice attack [HGS01, NS02] to leverage the partial leakage from
ECC scalar multiplication protected by either CM1, CM2 (even blackbox), or CM3 and
recover the private key from ECDSA ([JMV01]). To simulate a realistic attack, we take
our holdout split (captured on a different physical chip than the training data), treat it as
the nonce multiplication of ECSDA k ×G explained in Section 2.1, and predict the most
significant byte. One caveat is that our multipliers in the holdout split are chosen to test
the deep learning model so that each byte is chosen independently and uniformly at random
between 0 and 255. Since for ECDSA we require the nonce k to be 1 ≤ k < n, where
n is the size of the elliptic curve, we exclude all measurements that have the multiplier
outside of this range, after which we are left with roughly 7,800 examples (depending on
the dataset – CM1, CM2, CM3). We try to closely simulate an attacker with a profiling
device (i.e., the chip the attacker uses to collect training and validation splits) and traces
from the device under attack. The attacker is free to leverage the model’s outputs as they
wish, as long as they are able to recover the secret key in reasonable time. The way of
using prediction confidence described below is specific to our attack configuration (model
and dataset), and we do not claim that it directly transfers to other attack configurations.

The lattice attack requires all predictions to be correct for it to work, or as shown
by [DDME+18], it can tolerate a very small number of noisy signatures. After trial and
error with the predictions, our intuition is that if we turn byte predictions into predictions
of the four most significant bits (MSBs), we will achieve the highest accuracy. To compute
the probability of the 4 MSB of the nonce for a given signature, we sum the probabilities of
the 16 possible LSB values with the same 4 MSBs. Table 10 shows the prediction accuracy
of the four most significant bits. As we can see, we have a much higher accuracy in this
case.

Table 10: Results of predicting the 4 most significant bits (on holdout).

Experiment Accuracy [%] MeanRank
CM1 94.83 0.06
CM2 96.39 0.07
CM2 black-box 85.75 0.20
CM3 71.86 0.87

A lattice attack using the four MSBs of the nonce requires 80 signatures [JSSS20,
MSEH20] predicted by the model. Still, random sampling of 80 signatures will have a high
chance of having erroneous signatures, especially when the accuracy is still under 90%.
However, we notice that in cases where the correct key 4 MSBs are detected with high
accuracy, the prediction value has a higher confidence (highest probability - second highest
probability). We use the confidence of predictions as weights when randomly sampling
(using the parameter weights of random.choices in Python). This approach retrieves
the secret key after several retries for CM1 and CM2.

For the case of CM3, we employ the following heuristics to succeed in the attack. First,
we give more weight to samples with higher confidence; we achieve this by using confidence
to the power of eight as weights when sampling for the subset used in the lattice attack.
The constant eight is chosen by profiling the attack on the validation set (also roughly
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8,200 examples). Second, we discard samples with too high confidence (more than 0.25,
chosen by trial and error) when predicting the byte value, discarding roughly 10% of
examples. This excludes all (and thus also the wrong) predictions that are too confident
and would occur in most random samples.

We use the lattice construction of [BVdPSY14] and [NS02] with the [The20] implemen-
tation of the BKZ algorithm [SE94]. The attacks take a few minutes. The longest is the
black box attack on ECDSA using CM2, which takes roughly 15 minutes on a desktop
computer with AMD Ryzen 9 CPU. This is due to several retries needed to get all 80
samples correct.

Additional evaluation on a public ECC dataset To better compare to prior work, we
evaluate GPAM against the REASSURE ECC dataset introduced by [Chm20]. This
datasets consists of roughly 6,000 unprotected traces subdivided into 255 sub-traces that
are aligned to expose the corresponding cswap bit of the Montgomery ladder. Each of the
sub-traces consists of 5,500 points.

The model described in [NCOS16] predicts the cswap bits with 99.6% accuracy and
therefore recovers the whole key from a single trace. GPAM achieves comparable accuracy
99.57% without the need for hypertuning, showcasing once again its ability to generalize
across datasets and use-cases.

Evaluating prior-art models on our datasets Finally, to evaluate the difference in gener-
alization capability between GPAM and previous work, we train the LSTM model proposed
in [LZC+21] on ECC CM0, targeting k0. This model achieves 91.4% accuracy but fails at
attacking CM1. This demonstrates its limitations in generalizing past simple constant-time
defenses to strongly protected implementations. On the other hand it proves our point
that a single model can be used for multiple algorithms ([LZC+21] were targetting AES).

We also train a CNN model similar to [WCPB21] to evaluate convolution networks
generalization potential. We had to halve the number of filters and lower the batch size to
32 to be able to run it on our longer ECC traces. This model achieved 100% accuracy on
CM0 k0 but, similarly to [LZC+21], failed to show significant leakage on CM1 km0 (mean
rank 118). This highlights a similar limited ability to generalize against strong defenses.

We note that those finding are consistent with our extensive internal experiments before
landing on GPAM, during which we were not able to get even state-of-the-art convolutional
architecture such as ConvNeXt [LMW+22] to achieve results as good as GPAM’s.

7 Generalizing GPAM to AES
In this section, we show that GPAM generalizes across cryptographic algorithms by
demonstrating its effectiveness in attacking an AES software-protected implementation,
namely the publicly available ASCADv2 dataset [MS23], in an end-to-end manner without
trace processing. Additionally we evaluate GPAM on two other publicly available AES
datasets namely ASCADv1 [ERR+18] and CHES 2023 challenge to assess its ability to
generalize to various AES implementations and compare its performances to previous
specialized approaches.

AES attack evaluation Leakage from a single trace is often not enough to uncover the
secret key in AES. In this case, the attacker may combine information from multiple traces
with the same key but variable plaintext. Predictions of key byte values are then combined
over a set of attack traces to a maximum likelihood score vector (their logarithms are
summed). The index in this vector with the largest value is the predicted value of the key
byte. More generally, Guessing Entropy (GE) [SMY06] is the average number of entries
larger than the one corresponding to the correct value (also mean rank of the correct value
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in the score vector). When the GE of all key bytes is less than one we call the attack
successful.

When a sensitive value s (e.g., value of a byte of the S-BOX input) is split into two
shares, bytes x, y, we may target x and y separately and then from their probabilities we
compute P [s = b] =

∑0xFF
i=0x00 P [x = b⊕ i]P [y = i] for any byte value b ∈ {0x00, . . . , 0xFF}.

Analogous formulas for other types of masking (shuffling and affine masking) are derived
by [MS23].

7.1 ASCADv2 dataset
The ASCADv2 dataset [MS23] comprises 800,000 power traces collected from a Cortex M4
microcontroller manufactured by ST Microelectronics (STM32F303RCT7) while it was
performing AES-128 encryptions. The firmware implements affine masking and shuffling
to protect the AES encryption computation from side-channel attacks. More details about
the dataset can be found in [BKPT20].

Attack Scenario We replicate the “First Threat Scenario” described in [MS23]. We
target the following equation from the AES S-BOX masked operation [MS23]:

c[i] = rm × Sbox[pt[p[i]]⊕ k[p[i]]]⊕ rout

where × and ⊕ stand for multiplication and addition in the Rijndael finite field [DR01],
Sbox is the AES S-BOX, rm and rout are affine mask bytes, p[i] is the permutation index,
pt[i] is the byte of the plaintext, and k[i] is the byte of the AES round key.

Critically, unlike previous work [MS23], we perform an attack by using all 1, 000, 000
points of each trace without preprocessing, instead of using an SNR (signal-to-noise ratio
analysis) analysis to use only 15, 000 points (1.5%) out of the total trace. Additionally,
we do not modify the GPAM architecture to perform the attack and solely rely on
hyperparameter tuning to adjust the model hyperparameters to this new target.

AES attack evaluation For c[i], we report the best of 7 runs (due to the influence of
initialization weights, see Section 5.3.1). That is, we train a model seven times, and for
each attack point, we pick the model with the highest accuracy on the validation set. We
then use that to evaluate the performance on the holdout split. Our model targets the
intermediate value c[i], mask bytes rm, rout, and the permutation p[i] (for i = 0, . . . , 15).
Table 11 shows a comparison of ML metrics of GPAM and the results of [MS23]. We
then estimate GE to also compare attack results from the acquired intermediate values.
Following [MS23] we simulate a fixed key (all zero) by replacing pt by its XOR with the
corresponding random key. Since rm has very high accuracy we use it directly instead
of the whole probability distribution. We sample 10,000 times to estimate the GE and
need roughly 80 traces to have GE of all key bytes under 1, comparable with the 60 traces
needed by [MS23] (but use heavy preprocessing).

Table 11: ASCADv2 results (c[i] is the best out of 7 runs) compared with results of [MS23],
measured on holdout dataset with 80,000 examples. For the sake of brevity we average
results when there are multiple indexes.

Attack Accuracy MeanRank MaxRank Acc MeanRank
point [%] [MS23] [MS23]

rm 100.00 0 0 99.2 –
rout 18.25 4.78 65 21.1 –
c[i] (average) 1.18 80.65 255 1.6 80
p[i] (average) 95.07 0.055 4.44 88.9 –
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7.2 ASCADv1 variable key
ASCADv1 the precursor of ASCADv2 is comprised of two electromagnetic emission datasets
captured of an ATmega8515 micro-controller running a masked AES implementation.
Following [EST+22] we target the dataset with variable key and compare to the SOTA
attacks [LZC+21] and [HCM24]. For this attack we hypertune the patch size (possible
values [100, 200, 400, 625, 1000, 2000]) and merge filter 1 (possible values [0, 4, 8, 16, 32, 64])
Each tuning run comprise 50 epochs of 500 steps and use a batch size of 256. The learning
rate is set to 0.0005 and we use the full trace length. A total of 49 experiments run over
two days with the best model having a merge filter 1 equal to 0 and a patch size of 625.
This configuration was fully trained for 500 epochs and achieves a 95.94% accuracy on the
third byte of S-BOX input which is the standard target as the first two bytes in the dataset
are unprotected due to the mask being always zero. With 95.94% GPAM significantly
outperforms both [LZC+21] which only achieve 6% accuracy and [HCM24] neither of which
achieves a single trace attack. Full training of GPAM required twice as long as [LZC+21]
on similar hardware but reached 90% validation accuracy halfway through.

7.3 CHES 2023 SMAesH challenge
We evaluate GPAM on the the CHES 2023 conference challenge5 consisting of two protected
AES datasets A7 (Artix-7 FPGA) and S6 (Spartan-6 FPGA). GPAM uncovers leakage
but does not achieve top results.

S6 dataset: we target bytes 1, 6, 11, and 12 as suggested by the winner. GE with 250k
traces was under 15 (0.85 in one case). Other bytes did not leak enough for an attack.

A7 dataset: a single model targets msk_plaintext[i]⊕msk_key[i] and msk_plaintext[i+
16]⊕msk_key[i+ 16] (since the XOR of these is the XOR of the original key and plaintext).
These targets reach 124 mean rank. For some i one of those values did not converge and
prevented the recovery of the corresponding key byte (re-training might be beneficial).
Best GE at 290k traces (current winner) was 23.7 (for i = 2) which is still too high for an
attack.

8 Conclusion
In this paper we presented GPAM, the first deep-learning architecture that can perform
power side-channel analysis against multiple protected cryptographic algorithms, namely
ECC and AES. We demonstrate GPAM’s ability to generalize by successfully attacking
several highly protected ECC implementations without changing the model architecture,
and verify its effectiveness on multiple devices. To enable reproducibility of these results,
we open-source our models and datasets. This research moves us one step closer to a
fully-automated side-channel attacks and leakage detection system that could be used as
part of a hardware product release process and to test new countermeasures. Our results
also suggest that some advanced countermeasures that are currently considered sufficient
to thwart side-channels attacks can be defeated. Accordingly, there is a pressing need to
devise new countermeasures that are resilient to deep-learning attacks.
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