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Abstract. White-box cryptography aims at protecting implementations of cryp-
tographic algorithms against a very powerful attacker who controls the execution
environment. The first defensive brick traditionally embedded in such implementa-
tions consists of encodings, which are bijections supposed to conceal sensitive data
manipulated by the white-box. Several previous works have sought to evaluate the
relevance of encodings to protect white-box implementations against grey-box attacks
such as Differential Computation Analysis (DCA). However, these works have been
either probabilistic or partial in nature. In particular, while they showed that DCA
succeeds with high probability against AES white-box implementations protected by
random encodings, they did not refute the existence of a particular class of encodings
that could prevent the attack. One could thus wonder if carefully crafting specific
encodings instead of drawing random bijections could be a solution.
This article bridges the gap between preceding research efforts and investigates this
question. We first focus on the protection of the S-box output and we show that no
4-bit encoding can actually protect this sensitive value against side-channel attacks.
We then argue that the use of random 8-bit encodings is both necessary and sufficient,
but that this assertion holds exclusively for the S-box output. Indeed, while we
define a class of 8-bit encodings that actually prevents a classical DCA targeting
the MixColumns output, we also explain how to adapt this attack and exploit the
correlation traces in order to defeat even these specific encodings. Our work thus
rules out the existence of a set of practical encodings that could be used to protect
an AES white-box implementation against DCA-like attacks.
Keywords: White-Box Cryptography · Encodings · Side-Channel Attacks · Differ-
ential Computation Analysis · AES

1 Introduction
The goal of white-box cryptography is to protect the secret keys embedded in software
implementations of cryptographic algorithms that are executed in untrusted environments.
In their seminal works [CEJvO03a,CEJVO03b], Chow et al. presented the two first white-
box implementations of DES and AES respectively. For both these implementations, the
main idea is to split the algorithm into a network of small look-up tables – small in the
sense that they take a restricted number of bits as input. To hide the potentially key-
dependant data contained in these tables, Chow et al. introduced the notion of encoding,
which is a random bijection applied to the output of a table, later cancelled by the inverse
bijection applied to the input of the next table in the network. The input encoding of
the first table and the output encoding of the last one are called external encodings, as
opposed to all other ones refered to as internal encodings. This sementical distinction
comes from the fact that, contrary to internal encodings designed to cancel each other,
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external encodings cannot be removed without revealing them. Therefore, the white-box
designer is constrained either to implement a non-standard algorithm, or to set the external
encodings to the identity, which is the mandatory choice in most situations.

Unfortunately, encodings have been proven to be insufficient to protect white-box
implementations. Indeed, Chow et al.’s proposals were broken only a few years after their
publication by efficient algebraic attacks [BGEC05,WMGP07]. After that, several authors
tried to find secure AES white-box designs [XL09,Kar11,BCD06], most of them keeping
the idea of encodings but changing their size or adding other layers of security. But again,
these designs were all broken by algebraic attacks [DMWP10,LRDM+14,DMRP13].

Despite the efficiency of these attacks, encodings remain of common use in white-box
designs. Indeed, in such a context where no theoretically secure implementation of any
standard block cipher is known, public white-box designs like those submitted to WhibOx
contests1 essentially rely on encoding techniques and a layer of obfuscation to defend their
embedded key. Obfuscation makes algebraic attacks practically difficult as they require the
adversary to recover some intermediate variables that obfuscation makes hard to identify
without a painful reverse-engineering work. To free the attacker from such an arduous
task, Bos et al. [BHMT16] proposed to adapt the well-known grey-box Differential Power
Analysis of Kocher et al. [KJJ99] to the white-box model. Their so-called Differential
Computation Analysis (DCA) consists, as its grey-box counterpart, in exploiting execution
traces and recovering secret information through the use of statistical tests. The only
difference between the two attacks lies in the nature of the traces. In the grey-box model,
the traces render the intermediate variables of the algorithm through noisy side-channels
such as execution time or power consumption. In the white-box model, instead of relying
on noisy information indirectly linked to the computations, the adversary may record and
analyze the values that are read or written by the computing device. This way, the traces
are completely noise-free and the attack is even more devastating than in the grey-box
model. Furthermore, the usual countermeasure against side-channel attacks that consists
in masking the sensitive variables can be costly and presents challenges in the white-box
model. In particular, it implies to draw some random values at run-time that must be
kept secret and unaltered, which is not an easy task for the white-box designer.

In this context, encodings appear to be an attractive alternative solution. If, on the one
hand, external encodings defeat DCA by impeding the attacker to predict intermediate
key-dependant values, they are impossible to use in many use-cases because they imply
a modification of the algorithm and thus make the scheme not standard anymore. On
the other hand, intuitively, internal encodings may counter DCA because they lower the
correlation between the predicted variables and the trace samples. However, this intuition
is mitigated by many successful DCA led notably in [BHMT16] against white-box instances
using internal encodings. Sasdrich et al. were the first to try to explain this phenomenon
in [SMG16]. They made several experiments and argued that the success of DCA against
encoded implementations is directly linked to the presence of high values in the Walsh
spectrum of many encodings. A few years later, Alpirez Bock et al. found some necessary
conditions for the encodings to prevent a DCA targeting an AES S-box output [ABBMT18].
Rivain and Wang then generalised their results in [RW19] and managed to compute the
probability of success of DCA depending on some parameters. They proved that picking
encodings at random cannot be a good strategy to protect white-box implementations
against side-channel attacks, but did not discuss the idea of carefully crafting them. Since
the success probabilities that they derived are never equal to 1, Rivain and Wang did not
rule out the possibility of the existence of a particular class of encodings that effectively
prevents DCA.

1https://whibox.io/contests/

https://whibox.io/contests/
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Our Contributions. In this paper, we look for such DCA-resistant encodings for white-box
implementations of AES. We investigate encodings which length is a power of 2 in order
to avoid practical implementation difficulties. We exclude 2-bit bijections as there are only
twenty-four of them, which is not enough to prevent exhaustive search on sensitive values.
Moreover, the memory cost of encoding is prohibitive from 16 bits onwards. We thus focus
on 4-bit and 8-bit encodings.

We show, based on Sasdrich et al.’s work, that the S-box output can be protected
against DCA by random 8-bit encodings only. In particular, we argue that no 4-bit
encoding can preserve the S-box output from DCA-like attacks. Regarding MixColumns,
although it has been demonstrated that random 8-bit encodings are ineffective, we define
a class of 8-bit encodings that actually prevent DCA. However, we also explain how to
adapt the traditional attack in order to defeat even these specific encodings. We exhibit
a difference of behaviour of the correlation coefficient depending on the key hypothesis,
allowing the attacker to identify the correct key guess, regardless of the 8-bit encodings
applied. Therefore, we show that MixColumns, and thus AES, cannot be protected from
DCA by encodings of practical size.

Organisation. The rest of the paper is organised as follows: in Sect. 2, we introduce
some notations and we recall the concepts that we will need in the subsequent sections.
In Sect. 3, we expose our results about the protection of the S-box output. The case of
MixColumns is discussed in Sect. 4. We conclude our work in Sect. 5.

2 Preliminaries
Throughout the paper, we use the notations described in Table 1.

Table 1: Notations.

HW(x) The Hamming weight of x
〈x, y〉 The scalar product between x and y
S(x) The result of the application of the AES S-box on x
#A The cardinality of the set A
U(A) The uniform distribution over the set A
Fi A coordinate function of F

2.1 Chow et al.’s White-Box Implementation of AES
AES. The Advanced Encryption Standard (AES) [DR99], was selected by the NIST in
2000 as the new American standard for symmetric encryption. This block cipher takes
128-bit inputs and can be configured for several key length. In this paper, we will focus on
AES-128, which is the version with a 128-bit key. The encryption algorithm then consists
of 10 rounds during which four operations are successively applied on a 16-byte state.

1. AddRoundKey: A 128-bit round key derived from the master key is added to the
state using an exclusive-or operation.

2. SubBytes: A non-linear bijection called S-box is applied on each byte of the state.

3. ShiftRows: This operation permutes the indexes of the state bytes.

4. MixColumns: The state is divided into four 4-byte vectors that are each multiplied
by a 4× 4 matrix MC.

In the last round, the MixColumns operation is replaced by an exclusive-or with a post-
whitening key.
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Chow et al.’s White-box. The first white-box implementation of AES was published by
Chow et al. in 2002 [CEJVO03b]. Their main idea was to implement all the operations
in the form of a network of look-up tables, the content of which is hidden by random
permutations called encodings.

Definition 1 (Encoding). Let F : Fn
2 → Fm

2 . Let E(0) and E(1) be bijections over Fn
2

and Fm
2 respectively. The function F = E(1) ◦ F ◦ E(0) is called an encoded function of F ,

and E(0) and E(1) are called the input and output encodings respectively.

Chow et al’s white-box implementation of AES is inspired from the T-tables suggested
by Daemen and Rijmen in their AES proposal [DR99]. A very good simplified but
complete description of this white-box implementation is given by Muir in [Mui13]. In a
nutshell, the white-box proposed by Chow et al. implements AES in the following way. Let
(kr,0, kr,1, . . . , kr,15) be the rth round key. The rth round of AES, 1 ≤ r ≤ 9, is decomposed
into:

1. Sixteen tables Tr,i that take as input a byte x of the state and return an encoded
S-box output.

2. Sixteen tables Mr,i that take as input an encoded byte from the previous step and
return an encoded version of a column vector of MC multiplied by the decoded input
byte,

3. A number of xor-tables that take two encoded inputs and return the encoded bitwise
exclusive-or of the decoded inputs.

These xor-tables are used to complete the multiplication of the input state of MixColumns
by MC. Thus, they receive as input the 32-bit output of the tables Mr,i. Since it is
not possible to have 64-bit inputs for xor-tables, they actually receive two 4-bit or 8-bit
inputs. This implies that the output encoding of Mr,i has a special form: it is either eight
concatenated 4-bit encodings, or four concatenated 8-bit encodings.

2.2 Differential Computation Analysis
In 2016, Bos et al. [BHMT16] showed that the side-channel attacks, although invented
for the grey-box context, are even more devastating in the white-box model. The main
idea of their Differential Computation Analysis (DCA) remains unchanged: secret values
are extracted from leakage traces with the help of statistical tools. The only difference
consists of the nature of the traces: while in the grey-box context the adversary would
measure side-channel information that is only indirectly linked to secret values, as power
consumption for example, a white-box attacker can obtain noise-free software traces by
recording the accessed memory addresses or even the values of intermediate variables.

In more details, DCA consists of the following steps:

1. Select a sensitive variable Vk that depends on a few key bits only. For example for
AES, one could select Vk = S(x⊕ k) for any byte x of the plaintext.

2. Acquire a set T of computation traces of length t.

3. For all key guess k̂ and all point index 0 ≤ i < t, compute ρk̂,i = ∆(Vk̂, Ti) with ∆ an
arbitrary score function. Note that in the following, we will often drop the subscript
and denote by ρ× (resp. ρ∗) the score for a bad (resp. correct) key hypothesis.

4. Validate the key hypothesis that maximises ρk̂,i.

In our work, like in many others [BU18, RW19, SMG16, HBG23], we choose for ∆
Pearson’s correlation coefficient in order to measure the correlation between trace points
and sensitive values.



456 On the (Im)possibility of Preventing DCA with Internal Encodings

Definition 2 (Correlation coefficient). Given two random variablesX and Y , Pearson’s
correlation coefficient is defined as

Cor(X,Y ) = Cov(X,Y )
σXσY

,

with Cov(X,Y ) denoting the covariance between X and Y and σX (resp. σY ) being the
standard deviation of X (resp. Y ).

While not specifically designed to protect an implementation against side-channel
attacks, the encodings intuitively hinder the attacker since they can lower the correlation
between the trace samples and the hypothesised sensitive variable. Nevertheless, many
encoded implementations of AES have been broken by DCA [BHMT16]. The reason
behind the success of these attacks was studied by Sasdrich et al. [SMG16] and Rivain and
Wang [RW19] with the help of tools from the theory of Boolean functions.

2.3 Boolean Functions
First, let us recall a few definitions. Let n,m ≥ 1 be two integers. A function f from Fn

2
to F2 is called a Boolean function while a function F from Fn

2 to Fm
2 is called a vectorial

function. If F (x) = (F0(x), F1(x), . . . , Fm−1(x)), the Boolean functions F0, F1, . . . , Fm−1
are often referred to as the coordinate functions of F . The function F is said to be balanced
if, for all y ∈ Fm

2 , #{x ∈ Fn
2 |F (x) = y} = 2n−m.

In the rest of this paper, we will use the notions of Walsh transform and Walsh spectrum
of Boolean (resp. vectorial) functions. We thus recall the following definitions.
Definition 3 (Walsh transform, Walsh spectrum).

• The Walsh transform of a Boolean function f : Fn
2 → F2 is defined as:

Wf : Fn
2 → Z

u 7→
∑

x∈Fn
2

(−1)f(x)+〈u,x〉 .

• The Walsh transform of a vectorial function F : Fn
2 → Fm

2 is defined as:

WF : Fn
2 × Fm

2 → Z

(u, v) 7→
∑

x∈Fn
2

(−1)〈v,F (x)〉+〈u,x〉 .

• The Walsh spectrum of a vectorial function F : Fn
2 → Fm

2 is the set of all the values
that WF (u, v) can take:

W(F ) = {WF (u, v) | (u, v) ∈ Fn
2 × Fm

2 } .

In this paper, we are only interested in the case where the inputs u and v are of
Hamming weight 1. In this case, the value WF (u, v) can be seen as a measure of the
correlation between one input bit and one output bit of F . We will denote by W1(F ) the
subset of the Walsh spectrum restricted to the values u and v of Hamming weight 1:

W1(F ) = {WF (u, v) | (u, v) ∈ Fn
2 × Fm

2 ,HW(u) = HW(v) = 1} .

In the following, we will focus on the Walsh spectrum of encodings. Since the latter are
bijections, their coordinate functions are balanced Boolean functions and their Walsh
transforms have the following property.
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Proposition 1. Let n ≥ 2 and f : Fn
2 → F2 be a balanced Boolean function. For all

u ∈ Fn
2 such that HW(u) = 1, Wf (u) is a multiple of 4.

Proof. Let n ≥ 2 and f : Fn
2 → F2 be a balanced Boolean function. Let u ∈ Fn

2 with
HW(u) = 1. Let us denote by A the biggest set A ⊆ Fn

2 such that
∑

x∈A(−1)f(x)+〈x,u〉 = 0
and by B the set B = Fn

2 \A. We then have:

Wf (u) =
∑
x∈B

(−1)f(x)+〈x,u〉 .

The value (−1)f(x)+〈x,u〉 is constant over B since otherwise we could add at least two
values in A. Therefore, proving that the cardinality of B is a multiple of 4 would conclude
this proof. Since #B = 2n−#A and n ≥ 2, it is also sufficient to prove that the cardinality
of A is a multiple of 4.

If f = x 7→ 〈x, u〉 or f = x 7→ ¬〈x, u〉, then we have #A = 0, which concludes the
proof. Otherwise, since f is balanced, there exist x1, x2, x3 and x4 in Fn

2 such that:

〈x1, u〉 = 0 and f(x1) = 1,
〈x2, u〉 = 0 and f(x2) = 0,
〈x3, u〉 = 1 and f(x3) = 1,
〈x4, u〉 = 1 and f(x4) = 0.

These four values x1, x2, x3 and x4 are different, so by definition of A, they belong to A.
Now let E = Fn

2 \ {x1, x2, x3, x4}. If f(x) = 〈x, u〉 or f(x) = ¬〈x, u〉 for all x in E , then
#A = 4. Otherwise, the argument above can be applied on E and the cardinality of A is
increased by 4. Recursively, we get that #A is always a multiple of 4, then so are #B and
Wf (u).

2.4 Previous Works
Sasdrich et al. were the first authors to try to understand the reason behind the success of
side-channel attacks on encoded implementations [SMG16]. They made some experiments
on an implementation using randomly generated 4-bit encodings as proposed by Chow
et al. and successfully retrieved the secret key by targeting the outputs of the first-round
S-boxes. They experimentally observed that this is linked to the high values in the Walsh
spectrum of the encodings that were used but left the construction of secure ones as future
work.

Alpirez Bock et al. also studied the link between internal encodings and the success of
DCA [ABBMT18] even if they did not use the Walsh transform to do so. They showed that
with a linear 8-bit encoding, a DCA targeting the output of a first-round S-box succeeds if
and only if at least one of the rows of the matrix generating the encoding has a Hamming
weight equal to 1. Alpirez Bock et al. also showed that with non-linear 4-bit encodings,
the value of the correlation coefficient obtained for the right key guess is always a multiple
of 1/4, which leads to a successful DCA in most cases.

One year later, Rivain and Wang took over the studies of Alpirez Bock et al. and
generalised their results [RW19]. Placing themselves in an idealised model, they managed
to compute the formula for the probability of success of a DCA depending on different
parameters:

• The number of plaintext bits involved in the computation of the sensitive variable

• The bit-size of the encodings,

• The size #K of the set of key hypotheses.
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In the particular case of 4-bit encodings, their analysis is consistent with the one of Alpirez
Bock et al. Contrary to what was believed at the time, Rivain and Wang also showed that
it is actually possible to break an implementation using random non-linear 8-bit encodings
by targeting the output of the MixColumns instead of the one of the S-box. If we focus
on AES white-boxes protected by 4-bit or 8-bit encodings, the conclusion of their work is
roughly the following:

• An attack targeting an S-box output will succeed with very high probability if the
encodings are only applied on nibbles while it will succeed with very low probability
in the presence of 8-bit encodings.

• An attack targeting the output of the MixColumns will succeed with very high
probability even with 8-bit encodings.

Rivain and Wang did not explain in which case the attacks were successful or not and
only gave success probabilities in the presence of random encodings. In other words, they
did not point out a potential common characteristic of the encodings that make DCA fail.
The question that arises from their work is thus the one of the existence of a particular
class of encodings that always prevent the attack. In the rest of the paper, we study the
possibility of crafting encodings with a specific property instead of randomly drawing
them.

3 Protecting the S-box Output
In [RW19], Rivain and Wang showed that in an idealised model, a DCA targeting one bit
of a first round’s S-box output protected by 4-bit encodings succeeds with probability close
to 0.926, while an implementation using 8-bit encodings is broken with probability 0.0025
only. In this section, we will show that it is actually impossible to find 4-bit encodings that
are efficient against side-channel attacks. We will also demonstrate that selecting 8-bit
encodings with specific properties in order to further reduce the DCA success probability of
0.0025 is counterproductive. We will indeed argue that randomly drawing 8-bit encodings
is both necessary and sufficient to prevent DCA.

3.1 Why Not to Use 4-bit Encodings
Since they are less expensive than their 8-bit counterpart in terms of memory, 4-bit
encodings are often used in the literature. In the implementation described in Sect. 2.1, if
the outputs of Mr,i are encoded by 4-bit encodings, the total memory space per round
of xor-tables amounts to 8 · 28 · 4 = 213 bits, while with 8-bit encodings it reaches
4 · 216 · 8 = 221 bits. Unfortunately, we will show in this section that there exists no family
of 4-bit encodings that could be used to prevent side-channel attacks targeting the first
round’s S-box outputs.

We know from [SMG16] that the success of DCA is directly linked to the Walsh
spectrum of the encoding that hides the targeted value. Our study consists in computing
all the possible values for the Walsh transforms of 4-bit encodings and showing that the
implementation can be broken by side-channel attacks for all of them. Let us start with a
proposition.

Proposition 2. Let E(1), E(2) : Fn
2 → Fn

2 be two bijections with n ≥ 2. Let f = E(1)‖E(2)

and {fi}0≤i<2n be the coordinate functions of f . For all 0 ≤ i < 2n and for all ω ∈ F2n
2

with HW(ω) = 1, Wfi
(ω) is a multiple of 2n+2.

Proof. For the sake of clarity, we will assimilate Fn
2 to the set of integers J0, 2n − 1K using

the bijection (x0, x1, . . . , xm−1) 7→ x0 + 2x1 + · · ·+ 2m−1xm−1.
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We will only prove the proposition for 0 ≤ i < n, but the demonstration is similar for
n ≤ i < 2n. Let S be the set:

S = {{u+ 2nv | v ∈ J0, 2n − 1K} | u ∈ J0, 2n − 1K}.

By construction, S forms a partition of J0, 22n − 1K, so for all ω ∈ F2n
2 , we have

Wfi
(ω) =

∑
x∈F2n

2

(−1)fi(x)+〈x,ω〉

=
∑
S∈S

∑
x∈S

(−1)fi(x)+〈x,ω〉 .

When 0 ≤ i < n, fi is constant over S for all S ∈ S so for any xS ∈ S, we get:

Wfi(ω) =
∑
S∈S

(−1)fi(xS)
∑
x∈S

(−1)〈x,ω〉 . (1)

If ω < 2n and HW(ω) = 1, then the function g : S → F2 such that g(x) = 〈x, ω〉
is balanced for all S ∈ S, so

∑
x∈S(−1)〈x,ω〉 = 0 and Wfi(ω) = 0, which is obviously a

multiple of 2n+2.
If ω ≥ 2n and HW(ω) = 1, the function g : S → F2 such that g(x) = 〈x, ω〉 is constant

for all S ∈ S, so: ∑
x∈S

(−1)〈x,ω〉 = #S · (−1)〈xS ,ω〉 .

By construction, all the sets in S share the same cardinality, hence (1) becomes:

Wfi
(ω) = 2n

∑
S∈S

(−1)fi(xS)+〈xS ,ω〉 . (2)

Furthermore, the integers 0, 1, . . . , 2n−1 are all in different sets. Then, by choosing them
as representatives of their respective set, (2) can be re-written as:

Wfi(ω) = 2n
∑

0≤xs<2n

(−1)fi(xs)+〈xS ,ω〉 .

The above sum corresponds to the Walsh transform of a coordinate function of E(2). Note
that this function is balanced on Fn

2 because E(2) is a bijection, so Proposition 1 applies
and its Walsh transform is a multiple of 4. Hence, Wfi

(ω) is a multiple of 2n+2.

Proposition 2 states that the Walsh spectrum of a function corresponding to the
concatenation of two 4-bit encodings only contains multiples of 64. This gives information
on the possible correlation scores under the correct key guess for a DCA targeting one bit
of an S-box output protected by 4-bit encodings through the following proposition.

Proposition 3. Let E : Fn
2 → Fn

2 be an encoding. We have:

Cor(Ei(x), xj) = 1
2n
·WEi

(2j)

for each bit xj of the random variable x ∼ U(Fn
2 ) and each coordinate function Ei of E,

with 0 ≤ i, j < n.

Proof. Let f1, f2 : Fn
2 → F2 be two balanced Boolean functions and x ∼ U(Fn

2 ). According
to [RW19, Sect. 2.4], we have:

Cor(f1(x), f2(x)) = 1
2n

∑
u∈Fn

2

(−1)f1(u)⊕f2(u) . (3)
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Since E is a bijection, all its coordinate functions are balanced. Furthermore, the bit
xj of x can be written as the output of the function gj(x) = 〈x, 2j〉 which is also balanced.
Hence, we get:

Cor(Ei(x), xj) = Cor(Ei(x), gj(x))

= 1
2n

∑
u∈Fn

2

(−1)Ei(u)+〈u,2j〉

= 1
2n
·WEi

(2j) .

Therefore, if one applies 4-bit encodings on the S-Box outputs, the correlation scores
for a DCA will always be multiples of 64/256 = 1/4. Note that this was also shown in a
different manner by Alpirez Bock et al. in [ABBMT18].

Proposition 3 implies that, in order to resist DCA, one should select encodings with
only small (absolute) values in their Walsh spectrum. One could then be tempted to craft
encodings E such that W1(E) = {0}. This means that, for any coordinate function Ei

of E and any bit xj of the targeted intermediate value x = S(m⊕ k), Cor(Ei(x), xj) = 0.
Therefore, the classical DCA would fail, but a variant that consists in searching the key
hypothesis with the lowest maximum correlation score would succeed with very high
probability, as we explain now.

Let n ≥ 2 and u ∈ Fn
2 with HW(u) = 1. Let f be a random variable following the

uniform distribution on the set Bn of balanced n-variable Boolean functions. A consequence
of [RW19, Lemma 1] is that Wf (u) can be modeled as an affine transformation of a random
variable X following a hypergeometric distribution with parameters (2n, 2n−1, 2n−1):

Wf (u) ∼ 4X − 2n . (4)

Proposition 3 trivially translates (4) into:

Cor(f(x), xj) ∼ 4
2n
X − 1 . (5)

Let x(k̂) be an S-box output computed under the key hypothesis k̂. Then, setting
y = E(x), we get Cor(Ei(x), x(k̂)

j ) = Cor(Ei(x), g(k̂)(E(x))) = Cor(g(k̂)(y), yi) with:

g(k̂) : F8
2 → F2

z 7→ Sj(S−1(E−1(z))⊕ k̂ ⊕ k) .

Thanks to the good cryptographic properties of S, we can assimilate the functions g(k̂),
k̂ ∈ K \ {k}, to outcomes of a random variable following the uniform distribution on B8.
Then, (5) holds, which means that, for all k× ∈ K \ {k}, Cor(Ei(x), x(k×)

j ) is an outcome
of the random variable Cor(f(x), xj). Therefore:

P(Cor(Ei(x), x(k×)
j ) = 0) = P

(
X = 28

4

)
.

The probability for ρ× to be equal to 0 for a wrong key guess k× is the probability
that Cor(Ei(x), x(k×)

j ) = 0 for all 0 ≤ i < 8. Let us assume, as in [RW19], that Ei(x)
and Ei′(x) are two independent and identically distributed random variables when i 6= i′.
Then:

P(ρ× = 0) = P
(
X = 28

4

)8

.
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Figure 1: DCA targeting the most significant bit of the S-box output protected by 4-bit
encodings having only zero in their Walsh spectrum. Top: Correlation traces for wrong
(resp. good) key guesses in grey (resp. red). Bottom: The highest absolute value of the
correlation scores for each key guess (good hypothesis highlighted in red).

Consequently, the correct key guess is the only one for which ρ = 0 with probability
(1−P(X = 26)8)#K−1 ≈ 1−2−18.6. Therefore, the correct key guess can be identified with
very high probability as the only one that never gives any correlation. We verified this
experimentally (see Fig. 1), performing a DCA targeting the output of S7 on 28 simulated
traces: one trace per possible value of the input byte m, each trace being computed as
E0 ◦ S(m⊕ k)|| . . . ||E7 ◦ S(m⊕ k).

Since selecting encodings E = E(1)‖E(2) such that W1(E) = {0} does not work, one
could think of crafting encodings E(1) and E(2) with only the lowest possible non-zero
(absolute) value in their Walsh spectrum. The latter being equal to 64 in the case of 4-bit
encodings applied to the S-box output, we would have W1(E(i)) ⊆ {−64, 64} for i ∈ {1, 2}.
Then, if one targets the bit x(k)

j with 0 ≤ j < 4, the correlation peaks should equal ±0.25
for all point Ei(x) with 0 ≤ i < 4. Similarly, if one targets the bit x(k)

j with 4 ≤ j < 8, the
correlation peaks should equal ±0.25 for all point Ei(x) with 4 ≤ i < 8. This phenomenon
can be observed in Fig. 2.

The probability that a wrong key hypothesis exhibits a correlation score higher than
0.25 on some of the eight points equals:

P
(
|ρ×| > 1

4

)
= 1− P

(
28 − 26

4 < X <
28 + 26

4

)8

≈ 2−10.3 .
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Figure 2: DCA targeting the most significant bit of the S-box output. Here, the Walsh
spectrum of the 4-bit encodings do not contain any other value than 64 or −64. Top:
Correlation traces for wrong (resp. good) key guesses in grey (resp. red). Bottom:
The highest absolute value of the correlation scores for each key guess (good hypothesis
highlighted in red).

It would thus be very unlikely that the DCA does not succeed. Furthermore, even if there
are some higher peaks for some bad key guesses, the attacker could just focus on key
hypotheses that give a correlation coefficient equal to ±0.25 as noticed by Alpirez Bock et
al. [ABBMT18].

Moreover, a DCA searching for the least correlation score could still succeed. Indeed, as
a consequence of (1), if one targets the bit x(k)

j with 0 ≤ j < 4, then the correlation scores
under the correct key guess for the points Ei(x) for all 4 ≤ i < 8 would equal 0. Similarly,
if one targets the bit x(k)

j with 4 ≤ j < 8, then the correlation scores under the correct key
guess for the points Ei(x) for all 0 ≤ i < 4 would equal 0 as well. The probability of this
happening under a wrong key guess is P(ρ× = 0) = P(X = 28/4)4 ≈ 2−13.3.

Therefore, we can conclude that a white-box implementation using 4-bit encodings to
protect the S-box output can always be broken by DCA. The attacker could first perform
a classical DCA and see if any key hypothesis gives very high correlations. If this is not
the case, the attacker could verify if any key hypothesis gives correlation scores equal to 0
or ±0.25.

3.2 On 8-bit Encodings
In the previous section, we have seen that one cannot successfully prevent a DCA targeting
one bit of an S-box output by using 4-bit encodings. The case of 8-bit encodings is different.
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Rivain and Wang [RW19] showed that applying random 8-bit encodings instead of two
concatenated 4-bit ones decreases the success probability of such a DCA from 0.926 to
approximately 0.0025. While this probability is notably low, it is not absolute zero. One
might thus consider discarding encodings with Walsh spectrum values exceeding a certain
threshold. This would prevent an excessively high correlation score for the correct key
guess, but somewhat unexpectedly, it is actually counterproductive. Indeed, as we explain
now, randomly selecting 8-bit encodings allows to decorrelate the sensitive value from the
trace points, which is the best possible protection.

Let E : F8
2 → F8

2 be a random encoding. As argued in Sect. 3.1, for all k× ∈ K \ {k},
Cor(Ei(x), x(k×)

j ) is an outcome of the random variable Cor(f(x), xj). Moreover, so is
Cor(Ei(x), x(k∗)

j ), as the random selection of E from the set of bijections in F8
2 enables

Ei to be considered an outcome of a random variable following U(B8). This implies that
the correlation scores of all key hypotheses follow the same distribution. Consequently,
the probability of observing a given score is independent of the key byte’s value, and all
hypotheses share an equal probability of obtaining the highest correlation score.

Another way to get this intuition is to realise that for any wrong key guess k×, there
exists an encoding E′ such that E′(S(x⊕ k×)) = E(S(x⊕ k)), namely

E′(z) = E(S(S−1(z)⊕ k× ⊕ k)) .

This shows that without the knowledge of the encodings, the trace points do not give any
information on the correct key byte. Note that a similar argument can be given for the
protection of other sensitive variables, as long as the encoded value is in bijection with
the part of the plaintext involved in its computation. In other words, randomly selecting
encodings having the same size as the sensitive variable that they are supposed to protect
is an efficient countermeasure against side-channel attacks.

In summary, random 8-bit encodings can thus serve as a flawless solution for the
protection of the S-box output. Unfortunately, we will see in the next section that securing
the MixColumns output is a far greater challenge.
Remark 1. At first glance, the success rate of 0.0025 computed by Rivain and Wang might
seem contradictory to our conclusion which might mistakenly suggest that the success
probability should equal 1/256 ≈ 0.0039. Nevertheless, it should be noted that the success
probability given by Rivain and Wang corresponds to the event where the correct key guess
obtains the maximum score alone. It is thus expected that this probability is lower than
1/256. When considering the possibility of multiple candidates achieving the maximum
score simultaneously, the success rate is actually higher than 1/256 since the events “k(i)

has the maximum score” and “k(j) has the maximum score” are not disjoint.

4 Protecting the MixColumns Output
4.1 Attack Scenario
Considering what has been discussed in the previous section to protect the S-box output,
a straightforward way to protect the output of the first-round’s MixColumns from a
side-channel attacker would consist in evaluating MixColumns through a large look-up
table that takes a 32-bit input and returns a 32-bit value encoded through a bijection of
F32

2 . The unaffordable drawback of this solution is the huge amount of memory that each
such table would require.

For this reason, tables Mr,i are used in [CEJVO03b], protected by either 4-bit or 8-bit
encodings. SinceMr,i contains the S-box output by definition ofMC, it cannot be encoded
with 4-bit encodings to resist DCA. Therefore, we only consider in the following the case
of 8-bit encodings.
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Rivain and Wang theoretically studied the side-channel resistance of this strategy
in [RW19]. They considered an output byte of the first round’s MixColumns as target for a
DCA. Although it is computationally feasible, guessing four bytes of the key to predict the
targeted sensitive byte can be quite long. Nevertheless, if the attacker is able to choose the
messages to encrypt, he may reduce the number of hypotheses by setting two appropriate
bytes of the plaintexts to a constant. If we denote the plaintext by (m0,m1,m2,m3), with
m2 and m3 two constants, the targeted byte s can be written as:

s = S(m0 ⊕ k0)⊕ S(m1 ⊕ k1)⊕ 2 · S(m2 ⊕ k2)⊕ 3 · S(m3 ⊕ k3)
= S(m0 ⊕ k0)⊕ S(m1 ⊕ k1)⊕ c

(6)

for some unknown constant c. Then, the value S(m0 ⊕ k0)⊕ S(m1 ⊕ k1) can be predicted
under an only 16-bit key hypothesis while c does not hinder the attacker since the addition
of a constant only affects the sign of the correlation scores.

In such an attack scenario, Rivain and Wang showed that, if the encodings that hide
the output of the MixColumns are random bijections over F8

2, the probability of success of
a DCA targeting one bit of s is very close to 1 – approximately 0.99995. Nevertheless, this
probability is not 1, so the problem that naturally arises from this result is to describe the
set of encodings that prevent these attacks.

4.2 On Encodings with a Null Walsh Spectrum
We know from our analysis in Sect. 3.1 that, in order to reduce the correlation scores
between a sensitive variable and its encoded version, one needs to select an encoding with
a Walsh spectrum that contains only small (absolute) values. The question of describing
the set of encodings that prevent DCA then boils down to finding an appropriate bound
on the maximum tolerable (absolute) value in the Walsh spectrum of the encoding.

Let us first investigate the case W1(E) = {0}. We have seen in Sect. 3.1 that when
targeting an S-box output protected by an encoding with a Walsh spectrum containing
only 0, the attacker may distinguish the correct key guess as the one showing the least
correlation. Consequently, one could wonder if the same phenomenon happens when
targeting a MixColumns output. We thus made an experiment. Let f : F8

2 × F8
2 → F8

2
be the function (x0, x1) 7→ S(x0 ⊕ k0)⊕ S(x1 ⊕ k1). We performed a DCA targeting the
output of f0 on 216 simulated traces: one trace per possible value of (x0, x1), each trace
being computed as E0 ◦ f(x0, x1)|| . . . ||E7 ◦ f(x0, x1). The result of this experiment is
shown in Fig. 3.

Contrary to what we observed for the S-box output in Fig. 1, the correct key guess
is far from being the only one with a correlation score at 0 when W1(E) = {0}. In fact,
we count exactly 511 key hypotheses with a null score out of 216. Since the application
of [RW19, Formula (2)] gives a probability P(ρ× = 0) ≈ 2−58.6 that an incorrect key guess
produces a null score, these hypotheses cannot be a random outcome. Figure 4 shows a
structured behaviour that strengthens this intuition. To understand what happens, we
have to study in depth the behaviour of the correlation coefficient when the key guess is
incorrect.

Since the functions f and E ◦ f are surjective and balanced, so are their coordinate
functions. Thus, for any 0 ≤ i, j < 8, the correlation score between Ej ◦ f and fi can be
calculated using (3), seeing f as a function from F16

2 to F8
2:

Cor(Ej ◦ f, fi) = 1
216

∑
x0∈F8

2

∑
x1∈F8

2

(−1)Ej◦f(x0,x1)⊕fi(x0,x1)

= 1
216

∑
x0∈F8

2

∑
x1∈F8

2

(−1)Ej◦f(x0,x1)⊕Si(x0⊕k0)⊕Si(x1⊕k1) .
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Figure 3: DCA targeting f0. Here, the Walsh spectrum of the 8-bit encoding contains
only 0. Top: Correlation traces for wrong (resp. good) key guesses in grey (resp. red).
Bottom: The highest absolute value of the correlation scores for each key guess (good
hypothesis highlighted in red).
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Figure 4: Zoom on the correct key guess of the bottom part of Fig. 3.
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Among all the 216 possible hypotheses for the couple (k0, k1), let us consider the
elements from the set {(k′0, k1)}k′0∈F8

2
. Let f ′ : (x0, x1) 7→ S(x0 ⊕ k′0) ⊕ S(x1 ⊕ k1). The

correlation scores between Ej ◦ f and f ′i can be written as:

Cor(Ej ◦ f, f ′i) = 1
216

∑
x0∈F8

2

∑
x1∈F8

2

(−1)Ej◦f(x0,x1)⊕Si(x0⊕k′0)⊕Si(x1⊕k1)

= 1
216

∑
x0∈F8

2

∑
x1∈F8

2

(−1)Ej◦f(x0,x1)⊕Si(x0⊕k′0)⊕Si(x0⊕k0)⊕Si(x0⊕k0)⊕Si(x1⊕k1)

= 1
216

∑
x0∈F8

2

(−1)Si(x0⊕k′0)⊕Si(x0⊕k0)
∑

x1∈F8
2

(−1)Ej◦f(x0,x1)⊕Si(x0⊕k0)⊕Si(x1⊕k1) .

Notice that the sum over x1 is equal to WEj (ω) for ω such that fi = 〈f, ω〉. Indeed, for all
x0 ∈ F8

2, x1 7→ f(x0, x1) is a bijection so we can make the change of variable u = f(x0, x1)
and write:

Cor(Ej ◦ f, f ′i) = 1
216

∑
x0∈F8

2

(−1)Si(x0⊕k′0)⊕Si(x0⊕k0)
∑
u∈F8

2

(−1)Ej(u)⊕〈u,ω〉

= WEj (ω) · 1
216

∑
x0∈F8

2

(−1)Si(x0⊕k′0)⊕Si(x0⊕k0) . (7)

Therefore, the correlation scores obtained under a wrong key guess (k′0, k1) are multiples
of the Walsh transform of some coordinate function of the encoding. The same reasoning
can be applied to key hypotheses of the form (k0, k

′
1) for all k′1 ∈ F8

2. Consequently, when
W1(E) = {0}, all the correlation scores for those 511 key guesses will be equal to zero.

No other key guess is expected to get a null correlation score since, as stated previously,
it happens with probability 2−58.6 for a random guess. Then, when W1(E) = {0}, the
correct key is revealed by the following procedure:

1. Gather in a set Z the hypotheses that get a null correlation score; there are at least
511 of them,

2. For all z ∈ Z, compute z mod 256; the value that appears the most frequently – at
least 256 times – is the correct value of one key byte,

3. For all z ∈ Z, compute bz/256c; the value that appears the most frequently – at
least 256 times – is the correct value of the other key byte.

Since the implementation can be broken if the encodings have been selected such that
W1(E) = {0}, one could be interested in what happens when encodings with small absolute
values in their Walsh spectrum are preferred.

4.3 On Encodings with a Non-Null Walsh Spectrum
Let E : F8

2 → F8
2 be a random encoding with W1(E) 6= {0}. According to Proposition 1,

any non-zero value in W1(E) is a multiple of 4. This implies through Proposition 3 that
|ρ∗| is a multiple of 1/64. In addition, [RW19, Formula (2)] implies that under an incorrect
key guess, P(|ρ×| > 1/64) ≈ 2−10.9. This means that even for the lowest non-zero possible
absolute value of W1(E), only about thirty key guesses in average show higher correlation
scores than the correct one, as can be observed in Fig. 5. Hence, the attacker could
successfully recover the entire AES key by brute-force (about 2(16−10.9)·8 ≈ 240 remaining
keys to test). Thus, even if in such a case a DCA is considered by Rivain and Wang as
having failed since the correct guess does not get the best correlation score, E should be
regarded as insecure as soon as W1(E) contains a non-zero value.
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Figure 5: DCA targeting f0. Here, the Walsh spectrum of the 8-bit encoding is included
in {0, 4,−4}. Top: Correlation traces for wrong (resp. good) key guesses in grey (resp.
red). Bottom: The highest absolute value of the correlation scores for each key guess. The
good hypothesis is highlighted in red and is ranked 34th.

Furthermore, note that (7) also has an effect that defeats any value of W1(E) more
efficiently. One can in fact exhaustively verify that the sum over x0 can take only ten
values: 0, 256, ±8, ±16, ±24, ±32, with 256 appearing only for k′0 = k0. Therefore, the
distribution of the correlation scores when one of the guessed bytes is correct shows a
specific behaviour that can be detected by an attacker and used to identify the correct
byte value:

1. After the DCA has been performed, build 256 groups of 256 correlation traces, each
group gathering the traces for which one byte of the key hypothesis is constant,

2. If, in a group, some samples from the correlation traces take exactly ten different
values, then consider the corresponding constant key hypothesis as the correct one.

Figure 6 exhibits the particular distribution of the correlation scores when both key bytes
are incorrect and when one of the two bytes is correct.

In the end, we have seen in Sect. 4.2 and Sect. 4.3 that no matter the 8-bit encodings
that are selected to protect the MixColumns output, the resulting implementation can
always be broken by DCA. Therefore, this work does rule out the existence of a particular
class of encodings that could protect AES against side-channel attacks.
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Figure 6: Top: Correlation traces for random key guesses. Bottom: Correlation traces
when one of the two key guess bytes is correct. The curve highlighted in red corresponds
to the two correct key bytes.

5 Conclusion

In this paper, we have elaborated on the research conducted by Rivain and Wang in [RW19].
Their work showed that the success probability of a DCA targeting an S-box output is
quite high when employing random 4-bit encodings but significantly low with the use of
their 8-bit counterpart. They also demonstrated that even random 8-bit encodings are
insufficient to protect a MixColumns output with overwhelming probability. With these
success rates being neither 0 nor 1, the question that arose from their work was the one of
the existence of a particular class of encodings capable of thwarting DCA.

In this work, we studied the relevance of the strategy consisting in carefully crafting
encodings with specific properties instead of drawing them at random. We initially delved
into the protection brought by 4-bit encodings to the S-box output. We showed that as
long as the Walsh spectrum of the encodings contains a non-zero value, the S-box output
remains vulnerable to DCA. We then emphasised that opting for encodings with a Walsh
spectrum exclusively consisting of 0 actually ensures that the correct key hypothesis will
never attain the top ranking. However, we demonstrated that in such cases, the adversary
could still differentiate the correct key hypothesis by identifying the one with the least
correlation. Consequently, the use of 8-bit encodings becomes imperative for safeguarding
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the S-box output. We argued that these encodings must be randomly selected, as this
leads to complete decorrelation between the trace points and the sensitive value.

Protecting the MixColumns output is more difficult. Indeed, while using random
32-bit encodings would effectively protect this sensitive value, such an approach would be
impractical due to the extensive memory space requirements. We thus got interested in
8-bit encodings. In contrast to the S-box output scenario, we demonstrated that selecting
encodings with a null Walsh spectrum does not allow the attacker to distinguish the correct
key hypothesis based on minimal correlation. However, we also illustrated how to adapt
the attack and exploit the correlation traces in order to defeat even this specific class of
encodings. We showed that this method can also be used to break any other encoding more
efficiently than classical DCA. Consequently, we did rule out the existence of a particular
class of 8-bit encodings capable of protecting the MixColumns output, and thereby an
entire AES implementation, against side-channel attacks. Carefully crafting encodings is
thus as pointless as drawing them at random.

Beyond this result, our work highlights the challenge of establishing a general result
regarding the effectiveness of encodings against DCA. Indeed, while there exist encodings
that prevent DCA under some conditions – met for example by the first round’s S-box
output, our attack on the MixColumns output shows that when these conditions are not
satisfied, the effect of the encodings heavily depends on the operation they are supposed to
protect. An interesting future work would thus be to analyse other cryptographic algorithms.
Specifically, finding – or building – a cryptosystem exclusively employing operations that
can be provably secured against side-channel attacks through the application of encodings
would be a significant breakthrough in white-box cryptography.
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