
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 3, pp. 418–451. DOI:10.46586/tches.v2024.i3.418-451

Faster NTRU-based Bootstrapping in less
than 4 ms

Zhihao Li1,2 , Xianhui Lu1,2(Q) , Zhiwei Wang1,2 , Ruida Wang1,2 ,
Ying Liu1,2 , Yinhang Zheng1,2 , Lutan Zhao1,2 , Kunpeng Wang1,2

and Rui Hou1,2

1 Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, Chinese
Academy of Sciences, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
luxianhui@iie.ac.cn

Abstract. Bootstrapping is a critical technique in constructing fully homomorphic
encryption (FHE), which serves to refresh the noise in FHE ciphertexts, enabling an
arbitrary number of homomorphic operations. Among published results, the TFHE-rs
library [Zam22] offers the fastest bootstrapping implementation on CPU platforms
by taking advantage of AVX-512 instructions.
In this paper, we improve the efficiency of the bootstrapping algorithm based on the
NTRU problem. First, we introduce the approximate gadget decomposition method
tailored for NTRU ciphertext, reducing the number of NTT operations required for
external products. Second, by integrating the approximate decomposition and key
unrolling techniques, we improve the performance of CMux-based blind rotation.
Third, for the automorphism-based blind rotation method, we present a hybrid
window size technique that reduces the number of automorphisms by 34% compared
to recent work [XZD+23](in Crypto23).
Subsequently, we implement the proposed bootstrapping algorithm on the CPU
platform with AVX instructions. Experimental results demonstrate that our method
only takes 3.8ms, which achieves a 1.8× speedup compared to the TFHE-rs library.
Finally, we propose an efficient FPGA accelerator based on the CMux method, which
not only achieves the best performance but also exhibits high throughput advantages.
Our accelerator can improve performance by 2× compared to state-of-the-art FPGA
implementations (e.g., FPT).
Keywords: Fully Homomorphic Encryption · Bootstrapping · NTRU · Key Un-
rolling · Hybrid Window Size · AVX Instruction · FPGA Accelerator

1 Introduction
Fully homomorphic encryption (FHE) is a powerful cryptographic technology for privacy-
preserving computation, allowing arbitrary computations on encrypted data without the
need for decryption. In 2009, Gentry [Gen09] introduced the first FHE scheme based on
ideal lattices. Specifically, the scheme proposed a specialized bootstrapping procedure
capable of transforming a scheme with limited homomorphic properties into a fully
homomorphic one by evaluating the decryption circuit. Bootstrapping is considered more
intricate both in theory and practice when compared to other homomorphic operations.
Thus, it has emerged as the primary efficiency bottleneck in FHE.

At present, existing FHE schemes are primarily based on three assumptions: Ring
Learning With Errors (LWE/RLWE), NTRU, and Approximate Greatest Common Divisor
(AGCD). Among these, AGCD-based schemes necessitate extensive parameters, rendering

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-01-15 Accepted: 2024-03-15 Published: 2024-07-18

https://doi.org/10.46586/tches.v2024.i3.418-451
https://orcid.org/0000-0002-4569-5921
https://orcid.org/0000-0001-7091-5810
https://orcid.org/0000-0002-8150-1792
https://orcid.org/0009-0002-1276-1299
https://orcid.org/0009-0007-3960-3588
https://orcid.org/0009-0001-4575-3079
https://orcid.org/0000-0003-3672-6463
https://orcid.org/0000-0002-3848-6419
https://orcid.org/0000-0002-9215-7632
mailto:luxianhui@iie.ac.cn
http://creativecommons.org/licenses/by/4.0/

Zhihao Li et al. 419

them impractical for real-world applications. Conversely, (R)LWE and NTRU-based
schemes showcase significant promise due to their robust algebraic structure and efficient
polynomial evaluation employing the Fast Fourier Transform (FFT) and Number Theoretic
Transform (NTT). Broadly, these FHE schemes can be categorized into three classes
based on their data type. The first class facilitates modular arithmetic within a finite
field by employing techniques like Single Instruction Multiple Data (SIMD) mode for
packing multiple data into a single ciphertext. Noteworthy examples include the RLWE-
based BGV [Bra12], BFV [FV12] schemes, and NTRU-based [BLLN13, LATV12] schemes.
The second class, exemplified by the CKKS scheme [CKKS17], supports approximate
homomorphic encryption and enables packing operations over complex vectors. However,
bootstrapping for both classes often entails extremely computationally expensive techniques
like homomorphic bit extraction or homomorphic modular reduction.

The last class focuses on evaluating boolean circuits, which are well-suited for tasks
like comparison and decision diagram computation. This class includes (R)LWE-based
schemes such as FHEW schemes [DM15, MP21, LMK+23] and TFHE scheme [CGGI20],
as well as NTRU-based schemes [BIP+22, XZD+23], which offer faster bootstrapping for
an LWE ciphertext. In more detail, given an LWE ciphertext ct = (a, b), the bootstrapping
process can be divided into two steps. First, it homomorphically evaluates the RLWE or
NTRU ciphertext of Xb+

∑n−1
i=0 aisi mod q through a procedure known as blind rotation.

Next, a refreshed LWE ciphertext can be extracted using a predefined test polynomial.
The two steps can be integrated during the implementation of algorithm. Currently, there
are three strategies employed for performing the blind rotation procedure.

• The first one is the AP method [DM15] that uses ai as a selector to pick all the
evaluation keys that encrypt E(a · si). It can support arbitrary key distributions,
and requires large blind rotation keys to store multiple encryptions E(a · si) for every
secret key element si. These keys are accumulated through external products to
generate the final result.

• The second one is to design a special CMux gate proposed by [CGGI16] that can
use E(si) as a selector between the original accumulator acc and a modified one
acc · Xai . This approach requires n iterations and is more suitable for binary or
ternary secret key distributions.

• Recently, Lee et al. [LMK+23] proposed the third method by utilizing the ring auto-
morphism technique, which can also support arbitrary key distribution. Compared
to the AP method, this alternative is more efficient and has smaller key sizes.

The comparisons of different schemes in terms of assumptions, key distributions, and blind
rotation strategies are listed in Table 1.

When it comes to computational efficiency, the TFHE-rs library [Zam22] stands as the
state-of-the-art CPU implementation, relying on the binary CMux gate approach. This
implementation stands out by integrating techniques like approximate gadget decomposition
and advanced vector extensions (AVX) instructions, which prove instrumental in improving
the efficiency of blind rotation. It’s important to note that real-world applications often
involve thousands of gates, leading to significant performance overhead in the TFHE-
based mode. As a result, hardware acceleration has garnered widespread attention as a
promising solution for performance enhancement. Extensive efforts have been devoted
to exploring hardware-accelerated bootstrapping across various platforms, encompassing
GPUs [MAAM20], FPGAs [GNT+21], and ASICs [JLJ22].

420 Faster NTRU-based Bootstrapping in less than 4 ms

Table 1: Comparisons of bootstrapping schemes.
Schemes Assumption Key distribution Methods

[DM15] RLWE Gaussian AP

[Per21] AGCD Gaussian AP

[CGGI16] RLWE Binary CMux

[BMMP18] RLWE Binary CMux

[MP21] RLWE Ternary CMux

[BIP+22] NTRU Ternary CMux.

[LMK+23] RLWE Gaussian Auto.

[XZD+23] NTRU Gaussian Auto.

1.1 Our Techniques and Contributions
Our main contribution lies in the efficient implementation of two NTRU-based gate
bootstrapping schemes, achieved through algorithmic-level and implementation-level opti-
mizations. At the algorithmic level, we significantly improve the efficiency of blind rotation
by incorporating some advanced techniques as follows.

• Approximate gadget decomposition with NTRU ciphertext. We utilize the
approximate gadget decomposition to accelerate the external product and reduce the
key sizes of blind rotation for the NTRU accumulator. Compared to the exact gadget
decomposition, approximate decomposition can reduce the decomposition length and
the number of polynomial multiplications by introducing an approximation factor.

• Key unrolling for NTRU-based CMux gate bootstrapping. We apply the
key unrolling technique [BMMP18] to NTRU-based CMux gate bootstrapping, which
can further improve the efficiency of blind rotation. The new CMux gate can
get the accumulator as NTRUf,Q(Xa2is2i+a2i+1s2i+1) instead of NTRUf,Q(Xaisi),
and the entire blind rotation process only need to performs n/2 such CMux gates.
Consequently, we can reduce the number of NTTs by almost half in blind rotation.

• Improved automorphism-based blind rotation. We propose a new automorphism-
based blind rotation algorithm with NTRU accumulator by merging the consecutive
empty sets and symmetric sets. This approach enables us to effectively reduce the
number of required automorphisms to approximately 3

5n.

As demonstrated in Table 9, our methods outperform existing schemes in terms of
computational complexity, regardless of whether CMux or automorphism methods are
employed. In addition, for automorphism-based blind rotation, our scheme also outperforms
other schemes in terms of key size. At the implementation level, we provide the state-of-
the-art CPU and FPGA implementations by optimizing the underlying operators and data
flow.

• CPU implementation with AVX instructions. We use AVX instructions to
improve building blocks of blind rotation, such as the approximate decomposition,
NTT, and Hadamard multiplications, enabling them to be computed in parallel. In
particular, NTT can obtain 16 parallelisms within 32bit word length under AVX-512
instruction, and the running time of the proposed CMux method is only 3.8 ms,
which is 1.8 times faster than the state-of-the-art TFHE-rs [Zam22] library.

Zhihao Li et al. 421

• FPGA implementation. We introduce a pioneering FPGA accelerator tailored
for CMux-based bootstrapping to fully exploit the inherent parallelism in FHE
computations. This accelerator incorporates a high-throughput (I)NTT design,
schedule-optimized vector chaining, and a carefully designed memory architecture. To
ensure a fair comparison with state-of-the-art FPGA implementation FPT [VBDV22],
we meticulously fine-tuned the scheme’s parameters. The experimental results
demonstrate that, under the same decryption failure rate, our implementation
outperforms FPT with a 2× speedup.

In this paper, we focus on the gate bootstrapping mode of the FHEW and TFHE
framework. It first performs homomorphic addition on the LWE ciphertext, and then
refreshes the ciphertext through the bootstrapping procedure. The bootstrapping procedure
involves a large number of NTT and Hadamard multiplication, whereas the first step is the
addition of vector, whose computational cost is negligible compared to bootstrapping, as
shown in the FHEW [DM15] and TFHE [CGGI16] schemes. Thus, we significantly improve
the gate bootstrapping mode, which is 1.8 times faster than TFHE-rs implementation.

1.2 Related Work
The NTRU problem and the corresponding cryptosystem date back to the work by
Hoffstein, Pipher, and Silverman [HPS98]. One of the earliest FHE schemes is [LATV12],
and its scale-invariant version YASHE [BLLN13]. However, the security of NTRU-based
cryptography has been controversial in recent years. Typically, Ducas et al. [DvW21]
provide a tighter prediction for fatigue point asQ ∈ O(N2.484). Consequently, the sublattice
attack has rendered NTRU-based FHE schemes vulnerable, since these schemes require an
exponentially large modulus Q relative to the polynomial parameter N .

Afterward, Bonte et al. [BIP+22] and independently Kluczniak et al. [Klu22] presented
a similar gate bootstrapping algorithm in the FHEW/TFHE framework based on NTRU
and LWE assumptions. Since the blind rotation incurs only polynomial error growth, the
modulus of these schemes satisfies the safety bounds. Additionally, their results show
that the NTRU-based bootstrapping is more effective and uses smaller key sizes than the
original TFHE scheme, which directly benefits from a single polynomial as opposed to
a pair of polynomials in RLWE-based schemes. In recent work, Xiang et al. [XZD+23]
proposed a bootstrapping method based on NTRU that utilizes ring automorphisms and
extends the sample extraction technique to NTRU ciphertext, thereby improving upon the
NTRU-to-LWE key switching method presented in [BIP+22].

The key unrolling technique, introduced in [BMMP18], aims to reduce the number of
iterations required for the CMux gate in the TFHE scheme. Given an unrolling factor m,
the technique is to compute m dimensions of the secret key s simultaneously, which can
reduce the number of iterations from n to n/m. The original BKU technique in [BMMP18]
works with m = 2, while Joye et al. [JP22a] extends it to generalized unrolling factors, as
well as arbitrary secret key distributions. It is important to note that while this technique
can improve efficiency, it also leads to increased noise growth and larger blind rotation
key sizes. Thus, there exists a trade-off between achieving practical scheme efficiency and
considering factors like noise and key sizes.

Strong data dependency of blind rotation and high memory overloads is challenging in
hardware implementation. Morshed et al. [MAAM20] ports the blind rotation to GPU
and leverages the parallel processing capabilities of GPU with their multitude of cores
for boolean and arithmetic circuits. This enables efficient execution of the bootstrapping
process and improves overall performance. Gener et al. [GNT+21] introduces the first
FPGA-based programmable vector engine for bootstrapping. However, the engine was
developed without algorithmic optimization and thus exhibits high computing latency.
Moreover, [VBDV22] develops the pipelined FFTs method on FPGA that naturally

422 Faster NTRU-based Bootstrapping in less than 4 ms

supports a streaming architecture and reduces the latency. However, this work sacrifices
the decryption failure rate for the algorithm level. Jiang et al. proposed MATCHA [JLJ22],
the first customized ASIC accelerator for bootstrapping. The accelerator adopts and
extends the bootstrapping unrolling scheme proposed by [BMMP18].

1.3 Paper Organization
The rest of the paper is organized as follows. We provide the necessary background
knowledge and some general tools in FHE schemes in Section 2. In Section 3, we show
the NTRU-based approximate decomposition and improved CMux-based bootstrapping
algorithm. In Section 4, we demonstrate some optimization techniques for improving the
automorphism-based bootstrapping algorithm. In Section 5, we present some details of
the algorithm parameters and implementation, as well as some experimental results. In
Section 6, we provide an FPGA implementation based on the improved CMux gate method.
Finally, we conclude the paper in Section 8.

2 Background

2.1 Notation
The lower-case bold letters indicate vectors, e.g., a, and upper-case bold letters indicate
matrices like A. The inner product between two vectors is denoted by 〈a,b〉. For a real
number r, we write the floor, ceiling, and round functions as brc dre bre, respectively. We
denote the infinity norm ||u|| for a vector u and Zq the integer ring Z/qZ and the scope
is [−q/2, q/2) ∩ Z, and sometimes [x]Q is used to denote x mod Q. We use ← to denote
randomly choosing an element from uniform and Gaussian distributions.

Let N be a power of 2, we denote the 2N -th cyclotomic ring by Z[X]/(XN + 1), and
the quotient ring is RQ = ZQ[X]/(XN + 1) with coefficients in ZQ. For a polynomial
s, we denote φ(s) = (s0, ..., sN−1) ∈ ZNq as the vector of coefficient. Furthermore, for
a random variable a ∈ Zq, we denote Var(a) as the variance of a. Similarly, for a ring
element a = a0 + a1X · · ·+ aN−1X

N−1 ∈ R, we define Var(a) = Var(φ(a)) as the variance
among the coefficients of the polynomial a. Finally, the function min(x, y) is defined to
return the value of the smaller number.

2.2 Gaussian Distribution
Gaussian Distribution. Given the Gaussian function ρσ,c(x) = exp

(
− |x−c|

2

2·σ2

)
, where

σ, c ∈ R ≥ 0, the Gaussian distribution is defined over Z as ρσ,c(Z) =
∑∞
i=−∞ ρσ,c(i). Here

each element in Z is sampled with probability proportional to its probability mass function
value under a Gaussian distribution over R.

Discrete Gaussian Distribution. The discrete Gaussian distribution with standard
deviation σ and mean c is a distribution on Z with the probability of x ∈ Z given by
Dδ,c = ρσ,c(x)/ρσ,c(Z). If c is omitted, then it is implicitly set to 0.

Subgaussian Distribution. The α-subgaussian for distribution V over R if the moment
generating function satisfies E[exp(tV)] ≤ 1

2 exp(α2t2) for all t ∈ R, where E is the
expectation function. It is easy to see that the variance of V satisfies Var(V) ≤ α2.
Subgaussian random variables have an important property, i.e., Pythagorean additivity.
For two random variables, α-subgaussian X and β-subgaussian Y , let a and b ∈ Z, the
random variable a ·X + b · Y satisfies a2 · α2 + b2 · β2-subgaussian.

Zhihao Li et al. 423

2.3 Digit Decomposition
For a fixed modulus Q and the decomposition base B, we define the decomposition length
as d = dlogB Qe and the gadget vector as g =

(
B0, B, · · · , Bd−1). Given a polynomial

a ∈ RQ, we define the signed decomposition in base B as

g−1(a) =
(

[a]B ,
[⌊ a
B

⌉]
B
, · · · ,

[⌊ a

Bd−1

⌉]
B

)
∈ RdB ,

where each term belongs to [−B/2, B/2]. It is easy to see that
〈
g−1(a), g

〉
≡ a mod Q.

2.4 Hard Problems and Message Encoding
We recall the learning with errors (LWE) [Reg09], Ring learning with errors (RLWE)
[LPR13], and NTRU [HPS98] problems, which are instantiated in FHE schemes.

Definition 1. (Decisional LWE Problem [Reg09]). For positive integers q and n,
and a noise distribution χ over Z, the Decision− LWEq,n,χ problem is to distinguish the
distribution between (a, 〈a, s〉 + e) ∈ Znq × Zq and a pair uniformly chosen at random
from Znq × Zq, where a← Znq is chosen uniformly at random, e← χδ is chosen from the
Gaussian distribution, and s is the secret key that is chosen from Zn.

Definition 2. (Decisional RLWE Problem [LPR13]). For positive integers Q and N ,
and a noise distribution χ over R, the Decision−RLWEQ,N,χ problem is to distinguish
the distribution between (a, as+ e) ∈ RQ ×RQ and a pair uniformly chosen at random
from RQ × RQ, where a is uniformly random in RQ, the error e ← χNδ , and s is the
polynomial secret key that is chosen from R.

Definition 3. (Decisional NTRU Problem [HPS98]). For positive integers Q and
N , and a noise distribution χ over R, the Decision−NTRUQ,N,χ problem is to distinguish
the distribution between g/f ∈ RQ and a uniform chosen at random from RQ, where
g ← χNδ is the noise polynomial, and the secret key f is invertible in RQ.

In the homomorphic encryption scheme, there are two forms of encoding messages,
known as least significant bit (LSB) encoding, and most significant bit (MSB) encoding.
In this paper, we use MSB encoding by default, and its encoding and decoding functions
are described as follows

Encode : ϕ =
⌊q
t

⌋
·m+ e, Decode :

⌊
t

q
· ϕ
⌉

mod t,

where m is the message, t is the plaintext modulus, and q is the ciphertext modulus. Note
that we sometimes omit the encoding forms in ciphertexts for simplicity.

2.5 NTRU Ciphertext and Homomorphic Operation
In this subsection, we recall the NTRU encryption, and some homomorphic building blocks
such as external products, key-switching and ring automorphisms.

2.5.1 NTRU Encryption

Definition 4. The NTRU ciphertext can be defined as

NTRUf,Q(µ) = (g + µ)/f ∈ RQ,

where the error polynomial g is taken from a Subgaussian Distribution, the secret key f is
from {−1, 0, 1}N with the variance Var(f) = 1/

√
2.

424 Faster NTRU-based Bootstrapping in less than 4 ms

The structure of NTRU ciphertext allows for homomorphic addition and scalar multiplica-
tion operations. Given the NTRU samples ct1 and ct2 with the same secret key f , their
terms can be added together to obtain:

ct1 + ct2 = (g1 + g2 + (µ1 + µ2))/f ∈ RQ.

Moreover, the multiplication between a ciphertext and a scalar z can be obtained directly
from multiplying polynomials.

2.5.2 NTRU-based External Product

Bonte et al. [BIP+22] proposed a GSW-like NTRU ciphertext encryption, called NGS, in
definition 5.

Definition 5. Given the gadget decomposition vector g = (1, B, · · · , Bd−1), the NGS
ciphertext is defined as

NGSf,Q(m) = g/f + g ·m ∈ RdQ,

where d = dlogB Qe, g = (g0, . . . , gd−1), and g0, ..., gd−1 are the error polynomials.

Lemma 1 (External Product). Input an NTRU ciphertext ct = (g+µ)/f ∈ NTRUf,Q(µ)
with error variance Var(err(ct)), and an NGS ciphertext CT ∈ NGSf,Q(m) with er-
ror variance Var(err(CT)), the external product � outputs a new NTRU ciphertext
ct′ ∈ NTRUf ′,Q(µm), and its variance satisfies Var(err(ct′)) ≤ NdB

2

12 · Var(err(CT)) +
Var(err(ct)).

Proof.
ct′ = ct�CT

=
〈
g−1(ct),CT

〉
= (
〈
g−1(ct),g

〉
)/f + ct ·m

= (
〈
g−1(ct),g

〉
+ g ·m+ µm)/f ∈ RQ,

where the noise term is g′ =
〈
g−1(ct),g

〉
+ g ·m. Let gadget decomposition be g−1(ct) =

(c0, ..., cd−1), where each term ci is viewed as uniformly distributed over [−B/2, B/2].
Thus, the variance of the noise is Var(g′) ≤ NdB2

12 · Var(err(CT)) + Var(err(ct)).

2.5.3 NTRU-based Key-switching and Automorphism

The key-switching technique can change secret keys in homomorphic encryption schemes.
Lemma 2 shows the key-switching algorithm of NTRU ciphertext.

Lemma 2 (NTRU Key Switching). Input an NTRU ciphertext ct = (g + µ)/f ′ ∈
NTRUf,Q(µ) with error variance Var(err(ct)), and the switching key KSK ∈ NGSf,Q(f ′/f)
with error variance Var(err(KSK)), the NTRU key-switching algorithm computes the
external product

NTRU.KeySwitch(ct) = ct�KSK,

which outputs a new NTRU ciphertext ct′ ∈ NTRUf,Q(µ), and its variance satisfies
Var(err(ct′)) ≤ NdB2

12 · Var(err(KSK)) + Var(err(ct)).

The proof of the lemma and the noise analysis can be referred to Appendix B.

For the polynomial ring RQ = ZQ[X]/(XN + 1), where N is a power of two, there are
N automorphisms as

ψj : R → R, c(X)→ c(Xj)

Zhihao Li et al. 425

for j ∈ Z∗2N . The automorphism operation can be applied to RLWE and NTRU ciphertexts.
Formally, given an NTRU sample ct = (g + µ)/f ∈ RQ, and a switching key KSKj ∈
NGSf(X),Q(f(X)/f(Xj)), we define the automorphism HomAutoj(ct,KSKj) based on
NTRU ciphertexts as follows:

• Let ψj(ct(X)) = (g(Xj) + µ(Xj))/f(Xj) ∈ RQ.

• Apply the NTRU key switching from the secret key f(Xj) to f(X).

The first step outputs an NTRU encryption of m(Xj) under the secret key f(Xj). In the
second step, NTRU key-switching is used to switch the secret key from f(Xj) to f(X).
Note that the automorphism ψj is a permutation on the coefficients of the elements of
R and does not introduce an additional error, since the automorphism is a canonical
preserving mapping. Furthermore, compared to key switching, the time required for the
permutation is negligible.

Finally, we introduce the associated operations of LWE ciphertexts in Appendix A,
including sample extraction, key switching, and modulus switching, which are necessary
modules for the construction of the bootstrapping algorithm.

2.6 Number Theoretic Transform (NTT)
The Number Theoretic Transform (NTT) is a mathematical algorithm utilized in the
domains of number theory. It can convert a polynomial from its coefficient representation
to the NTT representation, facilitating efficient polynomial multiplication and convolution
operations. Typically, NTT is a special case of the Fast Fourier Transform on finite
fields [Pol71]. In lattice-based cryptography, such as RLWE and NTRU, the NTT plays a
crucial role as a fundamental computational tool, reducing the computation complexity of
polynomial multiplication from O(N2) to O(N logN).

In details, for the 2N -th cyclotomic ring RQ = ZQ[X]/(XN + 1), where Q is a prime
number satisfying Q ≡ 1 (mod 2N), there exists a 2N -th primitive root of unity ζ ∈ ZQ
that satisfies XN + 1 = XN − ζN (mod Q). By using the Chinese Remainder Theorem
(CRT), the polynomial XN + 1 can be split into N polynomials

ZQ[X]/(XN + 1)→ ZQ[X]/(X − ζ)× ZQ[X]/(X − ζ3)× · · · × ZQ[X]/(X − ζ2N−1).

Thus, for the polynomial a(X) ∈ RQ, one can get a new vector as,

(a(X) mod (X − ζ), a(X) mod (X − ζ3), · · · , a(X) mod (X − ζ2N−1)).

Then, we define the NTT representation of the polynomial a(X) as

NTT(a) =
(
a(ζ1), a(ζ3), · · · , a(ζ2N−1)

)
∈ ZNQ .

On the other hand, the INTT step computes the inverse isomorphism by using the negative
powers of primitive roots, and we can define the INTT operation as

INTT(a) = 1
N

(
a(ζ−1), a(ζ−3), · · · , a(ζ−(2N−1))

)
∈ ZNQ .

In this way, given two polynomials a(x) and b(x), we can efficiently compute INTT(NTT(a)·
NTT(b)), and the computation complexity is O(N · log2 N). The detailed NTT algorithm
is described in Appendix C.

426 Faster NTRU-based Bootstrapping in less than 4 ms

3 Improved CMux-based Bootstrapping
The FHEW/TFHE-like bootstrapping includes functional bootstrapping (FBS), multi-
valued bootstrapping (MVBS), circuit bootstrapping (CBS), etc. Here, the functional
bootstrapping can be used to evaluate a NAND gate [DM15, DvW21], which is known as
gate bootstrapping (GBS). Input two LWE ciphertexts, the NAND gate bootstrapping
first adds them together and performs the blind rotation and extraction procedures. After
that, one can utilize the modulus switchings and key switching to obtain the refreshed
NAND result, as shown in Figure 1.

Figure 1: Bootstrapping for evaluating NAND gate with LWE and NTRU ciphertexts

In this section, we introduce some optimization techniques to improve the CMux-
based blind rotation with NTRU accumulator, including NTRU-based approximate gadget
decomposition and key unrolling techniques. In addition, we also present a comparative
analysis with existing methods to demonstrate the advantages of the proposed scheme.

3.1 Approximate Gadget Decomposition
The approximate gadget decomposition was originally introduced for RLWE ciphertext
in the TFHE scheme [CGGI20]. Compared to exact decomposition, approximate decom-
position can improve the efficiency of the external product in blind rotation. Note that
existing NTRU-based bootstrapping schemes [BIP+22, Klu22, XZD+23] employ exact
decomposition to reduce noise growth, and do not explore the integration of the approxi-
mate decomposition technique with the NTRU accumulator. We develop the approximate
gadget decomposition for NTRU ciphertext to improve the efficiency of blind rotation.
Notably, the approximate gadget decomposition and approximate external product for
NTRU ciphertext are formally given in Definition 6 and Lemma 3.

Definition 6. Given the decomposition base B and a auxiliary modulus P , the approxi-
mate gadget decomposition for a polynomial c is defined by g−1

A (c) = (c0, ..., cd′−1), such
that c =

∑d′

i=0ci · PBj , where ci ∈ [−B/2, B/2]. Thus, for the approximate gadget vector
g′ = (P, P · B, · · · , P · Bd′−1), we have

〈
g−1
A (c), g′

〉
= c+ ε, where ε ≤ P/2. Then, for a

Zhihao Li et al. 427

ternary message m ∈ ±Xk, we define the new NGS ciphertext as

NGS′f,Q(m) = (g0/f + P ·m, . . . , gd′−1/f + P ·Bd
′−1m) ∈ Rd

′

Q .

Lemma 3 (Approximate External Product). Input an NTRU ciphertext ct = (g +
µ)/f with error variance Var(err(ct)), and an NGS′ ciphertext CT = NGS′f,Q(m) with error
variance Var(err(CT)), the approximate external product �A outputs a new NTRU cipher-
text , and its variance satisfies Var(err(ct′)) ≤ NdB2

12 · Var(err(CT)) + NP 2

24 + Var(err(ct)).

Proof. Let approximate external product be

ct�A CT =
〈
g−1
A (ct),CT

〉
= (
〈
g−1
A (ct),g

〉
)/f + (ct + ε) ·m

= (
〈
g−1(ct),g

〉
+ g ·m+ µm)/f + εm,

= (
〈
g−1(ct),g

〉
+ g ·m+ εmf + µm)/f,

(1)

where the error term is g′ =
〈
g−1(ct),g

〉
+ g ·m+ εmf . Since Var(f) = 1/2 and ‖m‖2

2 ≤ 1,
the variance of the noise satisfies

Var(g′) ≤ NdB
2

12 · Var(err(CT)) + NP 2

24 + Var(err(ct)). (2)

Remark . Note that we do not use the approximate gadget decomposition technique for
NTRU ciphertext in key-switching procedure, as it would lead to significant noise growth.
Specifically, the key-switching key discussed in Section 2.5 encrypts the polynomial f

f ′

instead of the ternary message ±Xk. If approximate decomposition were utilized, the noise
term for εmf in Equation 2 would expand by a factor of N , i.e., N2P 2

24 compared with the
original external product.

3.2 Improved CMux-based Bootstrapping with Binary Secret Key
In this subsection, we present the improved CMux-based blind rotation algorithm with
NTRU accumulator. We recall that the blind rotation procedure can homomorphically
evaluate the encryption of X

2N
q (b+

∑n−1
i=0

aisi), where q is the LWE ciphertext modulus. For
the binary secret key distribution, [BMMP18] introduces the unrolling factor m = 2. Let
Y = X

2N
q that has an order of exactly q, the accumulation process can be rewritten as:

Y
∑n−1

i=0
aisi = Y

∑(n−1)/2
i=0

a2is2i+a2i+1s2i+1 .

Furthermore, since the secret key satisfies si ∈ {0, 1}, we have the following facts

Y a2is2i+a2i+1s2i+1

=Y a2i+a2i+1 · s2is2i+1 + Y a2i · s2i(1− s2i+1) + Y a2i+1 · s2i+1(1− s2i) + (1− s2i)(1− s2i+1)
=(Y a2i+a2i+1 − 1) · s2is2i+1 + (Y a2i − 1) · s2i(1− s2i+1) + (Y a2i+1 − 1) · s2i+1(1− s2i) + 1.

Then, we generate the bootstrapping key BRK as follows.


BRKi,0 = NGS′(1), BRKi,1 = NGS′(0), BRKi,2 = NGS′(0), if (s2i = 1, s2i+1 = 1);
BRKi,0 = NGS′(0), BRKi,1 = NGS′(1), BRKi,2 = NGS′(0), if (s2i = 1, s2i+1 = 0);
BRKi,0 = NGS′(0), BRKi,1 = NGS′(0), BRKi,2 = NGS′(1), if (s2i = 0, s2i+1 = 1);
BRKi,0 = NGS′(0), BRKi,1 = NGS′(0), BRKi,2 = NGS′(0), if (s2i = 0, s2i+1 = 0),

428 Faster NTRU-based Bootstrapping in less than 4 ms

for i ∈ [0, n/2]. After that, the CMux gate with key unrolling can be expressed as

acc←(Y a2i+a2i+1 − 1) ·BSKi,0 �A acc + (Y a2i − 1) ·BSKi,1 �A acc
+ (Y a2i+1 − 1) ·BSKi,2 �A acc + acc.

(3)

For the details of implementation, we first use the approximate decomposition for the
input acc, and then apply d′ NTT transformations to these polynomials. To minimize the
number of INTT operations in the blind rotation, we precompute a table that contains
all the NTT transformations of Y i − 1, where 0 ≤ i ≤ q − 1. Then, we utilize the LWE
ciphertext to retrieve the corresponding NTT representations for Y a2i+a2i+1 − 1, Y a2i − 1,
and Y a2i+1 − 1, which can be used for Hadamard multiplication with the bootstrapping
keys in the NTT domain. Afterward, only an INTT transformation is performed on the
accumulated acc. Algorithm 1 presents the detailed bootstrapping process.

Algorithm 1 Improved CMux-based Bootstrapping with NTRU and LWE Ciphertexts
Input:

An LWE sample ct = (a, b = −〈a, s〉 −
⌊
q
t

⌋
·m+ e) ∈ LWEns,q(m).

The bootstrapping key BRK.
A special bootstrapping key BRK′ = NGS′f,Q(1/f).
An LWE key switching key ksks(φ(f)) as shown in Section A.

Output:
An LWE sample ct′ ∈ LWEns,q(f(m)).

1: Set TestP(X) =
∑N−1
i=0

Q
t · f(b tq · ie) ·Xi, and Y = X

2N
q .

2: Let acc = (TestP(X) · Y b)�A BSK′
3: for (i = 0; i < (n− 1)/2; i = i+ 1) do
4:

acc =(Y a2i+a2i+1 − 1) ·BSKi,0 �A acc + (Y a2i − 1) ·BSKi,1 �A acc
+ (Y a2i+1 − 1) ·BSKi,2 �A acc + acc

5: end for
6: ct′ = SampleExtract(acc)
7: ct′ = ModSwitchQ→Qk

(ct′)
8: ct′ = LWE.KeySwitch(ct′)
9: ct′ = ModSwitchQk→q(ct′)

10: return ct′

Theorem 1. Input an LWE ciphertext ct with error variance Var(err(ct)), Algorithm 1
outputs a refreshed LWE ciphertexts as ct′ ∈ LWEns,q(f(m)), and its variance satisfies
Var(err(ct′)) ≤ q2

Q2
k

· [Q
2
k

Q2 · Var(err(BR)) + 2+N
24 +Ndk · Var(err(ksk))] + 2+n

24 .

Proof. Let’s first focus on the correctness of the algorithm. Let the special bootstrapping
key be BSK′ = g+g′

f , where g is the noise term from Gaussian distribution, we can
compute the initial acc as

acc = (TestP(X) · Y b)�A BSK′

=
〈
g−1
A (TestP(X) · Y b), g + g′

f

〉
=
〈
g−1
A (TestP(X) · Y b),g

〉
+ εf + TestP(X) · Y b

f
,

which can be regarded as a ciphertext NTRUf,Q(TestP(X)·Y b). After that, line 4 performs
the binary CMux gate with key unrolling operation. It is easy to see that this step yields

Zhihao Li et al. 429

the ciphertext acc = NTRUf,Q(Y a2is2i+a2i+1s2i+1) as shown in Equation 3.2. Further, this
process is iterated n/2 times, which results in a ciphertext as

acc = NTRUf,Q

(
TestP(X) · Y b+

∑n−1
i=0 aisi

)
= NTRUf,Q

(
TestP(X) · Y −(b q

t c·m+e)
)
.

Note that the test polynomial TestP(X) =
∑N−1
i=0

Q
t · f(b tq · ie) ·Xi can refresh the noise

of the LWE ciphertext while evaluating a lookup table f : Zt → Zt. Thus, the ciphertext
LWENf,Q(f(m)) is obtained by the NTRU-based sample extraction under the secret key
f in line 6 of the algorithm. Then, the LWE key switching is performed to switch the
dimension from N to n, and the modulus switching can convert the modulus to the original
modulus q. Finally, the algorithm outputs the ciphertext ct′ = LWEns,q(f(m)) ∈ Zn+1

q .

Noise analysis. Now, let’s analyze the noise growth in the bootstrapping process.
Firstly, after performing the external product with the key BRK′, the noise term is〈
g−1
A (TestP(X) · Y b),g

〉
+ εf , and the variance of noise for the initial accumulator acc is

Var(acc) ≤ Nd′B
2

12 · Var(err(BRK′)) + NP 2

24 .

Due to the fact that ||Xi− 1||22 ·Var(err(BRK)) ≤ 2 ·Var(err(BRK)), the variance of noise
for the binary CMux gate with key unrolling is

Var(err(acc)) ≤ Nd′B2

2 · Var(err(BRK)) + NP 2

8 + Var(err(acc)).

Note that this step is performed n/2 times in blind rotation, thus the variance of noise in
blind rotation satisfies

Var(err(BR)) ≤ nNd′B2

4 · Var(err(BRK)) + nNP 2

16 + Nd′B2

12 · Var(err(BRK)) + NP 2

24

≤ (3n+ 1)Nd′B2

12 · Var(err(BRK)) + (3n+ 2)NP 2

48 .

After that, we need to perform the modulus switching from Q to Qk, and the variance of
the error is

Var(err(ct′)) ≤ Q2
k

Q2 · Var(err(BR)) + 2 +N

24 .

In addition, after the key-switching for LWE ciphertext, we have

Var(err(ct′)) ≤ Ndk · Var(err(ksk)) + Var(err(ct′)).

Finally, by performing modulus switching form Qk to q, we can conclude that the variance
of the error generated by the bootstrapping process is

Var(err(ct′)) ≤ q2

Q2
k

· [Q
2
k

Q2 · Var(err(BR)) + 2 +N

24 +Ndk · Var(err(ksk))] + 2 + n

24 . (4)

Finally, we present the comparisons of computational cost among different schemes
based on the CMux method in Table 3. It is easy to see that the proposed scheme
involves the least number of NTTs compared to other schemes under the binary secret
key distribution. In addition, our techniques can be extended to the ternary secret key
distributions, as demonstrated in [JP22b]. We omit the details and comparisons related to
ternary distribution as they are similar to those presented in Table 3.

430 Faster NTRU-based Bootstrapping in less than 4 ms

Table 2: Comparison of noise variance of CMux-based blind rotation for different schemes.
Here, KU is the key unrolling method, σ2

BR is the variance of blind rotation key, and d′ < d.
Schemes Assumption Method Noise variance

[CGGI16] RLWE CMux nNd′B2

3 · σ2
BR + nNP 2

12

[BMMP18] RLWE CMux & KU nNd′B2

2 · σ2
BR + nNP 2

8

[MP21] RLWE CMux nNdB2

3 · σ2
BR

[BIP+22] NTRU CMux nNd′B2

6 · σ2
BR

Algorithm 1 NTRU CMux & KU (3n+1)NdB2

12 · σ2
BR + (3n+2)NP 2

48

Table 3: Comparison of computational cost of CMux-based blind rotation for different
schemes, where HMs is the Hadamard multiplications, and d′ < d.

Schemes # NTTs/FFTs # HMs

[CGGI16] 2n(d′ + 1) 2n(2d′ + 1)

[BMMP18] n(d′ + 1) 3n(2d′ + 1)

[MP21] 2n(d+ 1) 2n(2d+ 1)

[BIP+22] n(d+ 1) n(d+ 1)

Algorithm 1 n/2(d′ + 1) + d′ (3/2n+ 1)d′ + 3
2n

4 Improved Automorphism-based Bootstrapping
In this section, we focus on the automorphism-based blind rotation and improve the
efficiency of the algorithm. Currently, there are two blind rotation algorithms based on
automorphisms technique. One is the LMK scheme [LMK+23], which is based on the
RLWE assumption, and the other is the XZD scheme [XZD+23], which is based on the
NTRU assumption. We introduce two improvements for the external product and the
automorphism evaluation, respectively, as summarized as follows:

1. External Product: In automorphism-based bootstrapping algorithm, we use the
NTRU-based accumulator, while utilizing the approximate gadget decomposition to
accelerate the external product. For more details, please refer to Section 3.1.

2. Automorphism: We optimize the window size technique proposed by [LMK+23].
By using w pre-stored automorphism keys, we can reduce the number of NTRU
automorphisms from n, as mentioned in [XZD+23], to ω−1

ω κ + N
ω , where κ =

N(1− e−n/N) in the average case. Furthermore, we can merge the symmetric sets
by introducing auxiliary bootstrapping keys, which can further reduce the number of
NTRU automorphisms to ω−1

ω κ+ N
2ω . We detail these two techniques in this Section.

4.1 Optimization for Automorphisms
Firstly, let us recall the idea of the automorphism-based blind rotation algorithm [LMK+23].
Given an LWE ciphertext with all-odd terms with the modulus q = 2N , each term can
map to ±gk by applying the isomorphism Z∗2N ∼= ZN/2 ⊗Z2. In this setting, we can define
N set I+

l = {j : aj = gl} and I−l = {k : ak = −gl}, for l ∈ [0, N/2− 1]. Then, the blind

Zhihao Li et al. 431

rotation can be expressed as through the decomposition

∑
i

aisi =

∑
j∈I+

0

sj + · · · + g

 ∑
j∈I+

N/2−1

sj − g

∑
k∈I−0

sk + · · · + g

 ∑
k∈I−

N/2−1

sk




 (mod 2N).

(5)

In this equation, one need to perform N automorphisms operations. Here, we introduce
two approaches to reduce the number of automorphisms based on NTRU ciphertext.

Approach 1. Merge the empty sets for NTRU ciphertext. We note that the
scheme [XZD+23] does not utilize the set partitioning strategy and window size techniques
mentioned above. Instead, the scheme iterates over each aisi individually as shown
in Algorithm 4 of Appendix D. Our approach 1 is to directly substitute the RLWE
accumulator in [LMK+23] with the NTRU accumulator in blind rotation and use the
window size technique to reduce the number of automorphism.

In detail, when an empty set Il exists, only the automorphism HomAutog needs to be
performed without the external products for sj . Thus, we can merge it into the neigh-
boring set and evaluate a single automorphism HomAutog2 for NTRU-based accumulator.
Similarly, the window size technique was introduced to handle the case of consecutive
empty sets. It actually provides a trade-off between reducing the number of automorphism
computations by adding additional storage for KSKg, ...,KSKgω . Thus, given the window
size ω, our NTRU-based method need to perform ω−1

ω κ+ N
ω automorphisms compared to

n in [XZD+23], where n = N/2. Please see Section 4.1 of [LMK+23] for more details.

Approach 2. Merge the symmetric sets. We note that for a fixed l, the two sets
I+
l = {j : aj = gl} and I−l = {k : ak = −gl} are symmetric. We can merge these two sets
and perform single automorphism operation by introducing the auxiliary bootstrapping

key BSK− = NGS′f,Q(X−si)i∈[0,n−1]. Specifically, we evaluate X

∑
j∈I

+
l

sj−
∑

k∈I
−
l

sk

using NGS′f,Q(Xsj)j∈I+
l

and NGS′f,Q(X−sk)k∈I−
l

when performing external products, and
followed by an automorphism HomAutog operation. Thus, the new blind rotation process
can be expressed as:

∑
i

aisi =

∑
j∈I

+
0

sj −
∑

k∈I
−
0

sk + g

∑
j∈I

+
1

sj −
∑

k∈I
−
1

sk + · · · + g

 ∑
j∈I

+
N/2−1

sj −
∑

k∈I
−
N/2−1

sk



 (mod2N),

(6)

where the number of automorphism can be reduced from N for Equation 5 to N
2 . In

addition, we can also combine the window size technique to build the hybrid approach
that further reduce the number of automorphism to ω−1

ω κ+ N
2ω . Then, we can determine

the specific number of automorphism based on the chosen value of ω.

Monte Carlo Simulation. To gain a more intuitive understanding of the effect of
window size on the number of automorphisms, we employ the Monte Carlo method [Jam80]
to determine the optimal window size. Specifically, we consider the gate bootstrapping
parameters N = 1024 and n = 465, as described in Section 5. The simulation can be
simplified as a stochastic process, where we randomly place n balls into N (Approach 1)
and N/2 (Hybrid Approach) bins. Since the LWE ciphertext ai are uniformly distributed,
each bin has an equal probability of receiving a ball. The simulation results, as shown in
Figure 2, demonstrate that the number of automorphisms naut monotonically decreases
concerning the window size, but there exists an asymptotic lower bound. Given that
enlarging the window size only slightly increases the key size, we choose a sufficiently large

432 Faster NTRU-based Bootstrapping in less than 4 ms

(a) Approach 1 (b) Hybrid Approach

Figure 2: The window size and corresponding number of automorphisms for approach 1
and hybrid approach.

ω to minimize the number of automorphisms. The test data indicates that Approach 1
allows us to reduce naut from 465 to 373 on average case, by using a window size of ω = 20.
In the case of the hybrid approach, we can further reduce naut to 305 with a window size
of ω = 8.

To summarize, our hybrid approach yields a 34% reduction in the number of automor-
phisms compared to the original method proposed in [XZD+23]. Compared to [LMK+23],
which utilizes a window size of ω = 10, our hybrid approach achieves an 18% reduction in
automorphisms. The complete algorithm for the hybrid approach can be found in Section
4.2.

4.2 The Construction
In this subsection, we present the proposed hybrid approach as follows:

• BRKGen(s, f). Given an LWE secret key s = (s0, ..., sn−1) ∈ χn, and an NTRU
secret key f ∈ RQ. For all i ∈ [0, n− 1], the blind rotation keys are generated as
follows:

BRK+
i = NGS′f,Q(Xsi), BRK−i = NGS′f,Q(X−si),BRK′ = NGS′f,Q(1/f).

Then, it generates a set of key-switching keys for automorphism as follows:

KSKgv = NGSf,Q
(
f(Xgv)
f(X)

)
, v ∈ [1, ω]

The algorithm outputs EVK = (BRK+
i ,BRK−i ,BRK′,KSKgv) as the evaluation

key for blind rotation.

• BootStrap(ct,EVK). Takes as input an LWE ciphertext ct = (a, b), and the evalua-
tion key EVK, Algorithm 2 outputs a refreshed LWE ciphertext ct′.

Correctness. Firstly, we need to perform the modulus switching operation that yields
an LWE ciphertext (a′, b′) with all odd terms as shown in Appendix A.3. Then, we can
obtain an NTRU ciphertext that

NTRUf,Q(TestP(X−g) ·X−gb
′
)

Zhihao Li et al. 433

Algorithm 2 Efficient automorphism-based Bootstrapping with NTRU and LWE
Input:

An LWE ciphertext ct = (a, b = −〈a, s〉 −
⌊
q
t

⌋
·m + e) ∈ LWEns,2N (m) with an odd

number of all entries.
An evaluation key EVK.
An LWE key switching key ksks(φ(f)) as shown in Section A.

Output:
An LWE sample ct′ ∈ LWEns,q(f(m)).

1: (a′, b′) = ModSwitchq→2N,odd(ct).
2: Set TestP(X) =

∑N−1
i=0

Q
t ·f(b tq · ie) ·Xi, and let acc = (TestP(X−g) ·X−gb′)�ABRK′

3: v ← 0
4: for (l = N/2− 1; l > 0; l = l − 1) do
5: for all j ∈ I+

l and k ∈ I−l do
6: if a′j = gl, let acc = acc�A BRK+

j . end if
7: if a′k = −gl, let acc = acc�A BRK−k . end if
8: end for
9: v ← v + 1

10: if (I`−1 6= ∅ or v = w or l = 1)
11: acc = HomAutogv (acc,KSKgv)
12: v ← 0
13: end if
14: end for
15: for all j ∈ I+

0 and k ∈ I−0 do
16: if a′j = 1, let acc = acc�A BRK+

j . end if
17: if a′k = −1, let acc = acc�A BRK−k . end if
18: end for
19: ct′ = SampleExtract(acc)
20: ct′ = ModSwitchQ→Qk

(ct′)
21: ct′ = LWE.KeySwitch(ct′)
22: ct′ = ModSwitchQk→q(ct′)
23: return ct′

by using external product with BRK′. For l = 2N − 1, we perform the external product
for all the terms a′j and a′k that satisfy the a′j = gl and a′k = −gl together with BRK+

j

and BRK−k . Then, by homomorphically evaluating HomAutog : X → Xg in line 7, we
have

acc = NTRUf,Q

TestP(X) ·Xb′ ·X
g

(∑
j∈I

+
N/2−1

sj−
∑

k∈I
−
N/2−1

sk

) ,

By repeating the above process and combining the window size technique, we can get the
following result according to Equation 6.

acc = NTRUf,Q

(
TestP(X) ·Xb′ ·X

∑n−1
i=0

a′isi

)
= NTRUf,Q

(
testP(X) ·Xb′+

∑n−1
i=0

a′isi

)
= NTRUf,Q

(
TestP(X) ·X−(b q

t c·m+e)
)
.

After performing the sample extraction, key-switching, and modulus switching, we can
obtain the LWE ciphertext ct′ = LWEns,q(f(m)) ∈ Zn+1

q as described in Theorem 1.

434 Faster NTRU-based Bootstrapping in less than 4 ms

Noise analysis. Firstly, by performing the approximate gadget decomposition acc =
TestP(X)�A BRK′, and the noise variance of the noise is

Var(g′) ≤ Nd′B
2

12 · Var(err(BRK)) + NP 2

24 .

For each loop, there are l external products with approximate gadget decompositions �A
and one key-switching with exact gadget decomposition �. Thus, we have:

Var(err(acc)) ≤ lNd′B
2

12 · Var(err(BRK)) + lNP 2

24 +Nd
B2

12 · Var(err(KSK))

≤ (ld′ + d)NB2

12 · Var(err(BRK)) + lNP 2

24 .

As previously analyzed, the blind rotation process involves n external products and
ω−1
ω κ+ N

2ω automorphisms. Thus, we can get the variance of the noise during the blind
rotation as

Var(err(BR)) ≤
(
nd′ + d

(
ω − 1
ω

κ+ N

2ω

))
N
B2

12 · Var(err(BRK)) + nNP 2

24 .

Furthermore, after modulus switching and key-switching, the variance of the error in
bootstrapping process is

Var(err(ct′)) ≤ q2

Q2
k

· [Q
2
k

Q2 · Var(err(BR)) + 2 +N

24 +Ndk · Var(err(ksk))] + 2 + n

24 .

Finally, we give a detailed comparison among different automorphism-based blind
rotation methods in Table 5. The result demonstrates that our hybrid method involves
the smaller number of NTTs and Hadamard multiplications compared to other schemes.

Table 4: Comparison of noise varianceof automorphism-based blind rotation among
different schemes. Here, σ2

BR is the variance of blind rotation key, and d′ < d.
Schemes Methods Noise variance

[LMK+23] Auto. & Window Size d(n+ (ω−1
ω κ+ N

ω))N B2

6 · σ
2
BR

[XZD+23] Auto. d(2n+ 1)N B2

12 · σ
2
BR

Approach 1 Auto. & Window Size (nd′ + d(ω−1
ω κ+ N

ω))N B2

12 · σ
2
BR + nNP 2

24

Hybrid Approach Auto. & Window Size (nd′ + d(ω−1
ω κ+ N

2ω))N B2

12 · σ
2
BR + nNP 2

24

Table 5: Comparison of computational cost of automorphism-based blind rotation among
different schemes, where HMs is the Hadamard multiplications, and d′ < d.

Schemes # NTTs # HMs

[LMK+23] (2n+ 424)(d+ 1) d(4n+ 848)

[XZD+23] (n+ 465)(d+ 1) d(n+ 465)

Approach 1 n(d′ + 1) + 375(d+ 1) d′n+ 375d

Hybrid Approach n(d′ + 1) + 305(d+ 1) d′n+ 305d

Zhihao Li et al. 435

5 Parameters, Implementations, and Comparisons
In this section, we start by presenting the parameter settings, error growth, and decryption
failure rates, providing a comprehensive understanding of the experimental setup. Building
upon this parameter setting, we describe the implementation details of the algorithm.
Finally, we present the experimental results that demonstrate the efficiency and performance
improvements achieved by our approach.

5.1 Parameters
Firstly, we give the symbolic notations for the parameters in Appendix D, which includes
dimension, modulus, distribution, security parameters, etc. Then, we use the parameters
128B and 128G to indicate the binary and Gaussian distributions that are used in
Algorithm 1 and 2, respectively. In Table 6 lists the detailed bootstrapping parameters
for the NTRU and NGS ciphertexts. Specifically, we generate the secret key for NTRU
from the ternary distribution on {−1, 0, 1}, where 0 occurs with probability 1/2, 1 and −1
occur with probability 1/4. As [BIP+22] mentioned, the ternary distribution approximates
a discrete Gaussian with standard deviation σ = 1/

√
2.

In addition, the modulus of NTRU ciphertext satisfies Q < N2.484, which is smaller
than the fatigue point in [DvW21] to avoid sublattice attacks on NTRU problems. The
approximation factor P , gadget decomposition base B, and length d′ are used in NTRU-
based external products. Then, we also present the LWE parameters in Table 7. It is
worth noting that different key distributions correspond to different LWE dimensions at
the same security level.

Table 6: Bootstrapping parameters for NTRU/NGS ciphertext.
Parameters Key distrib. λ N σ P Q B d′

128B Ternary 128 1024 1/
√

2 25 ≈ 219.9 23 5
128G Ternary 128 1024 1/

√
2 24 ≈ 219.9 24 4

Table 7: Bootstrapping parameters for LWE ciphertext.
Parameters Key distrib. λ n σ q Qk Bk dk

128B Binary 128 512 3.19 512 214 27 2
128G Gaussian 128 465 3.19 2048 214 27 2

Table 8: Bootstrapping parameters for other schemes.
Scheme Key distrib. λ n N σ Q B d d′

[MP21] Binary 128 512 1024 3.19 ≈ 225 27 4 −
[BMMP18, CGGI20] Binary 128 636 1024 27 232 26 − 3

[LMK+23] Gaussian 128 458 1024 3.19 ≈ 225 27 4 −
[XZD+23] Gaussian 128 465 1024 3.19 ≈ 219.9 24 5 −

To evaluate the security of NTRU ciphertext, we use the NTRU estimator offered by
Ducas and van Woerden [DvW21] to find the BKZ block size β for the Dense Sublattice
Discovery (DSD) attack. In detail, we use the cost model T (d, β) := 20.292·β+16.4+log2(8·2N)

to estimate the concrete security of NTRU. On the other hand, we use the LWE estimator
[APS15] to estimate the security level for the LWE sample, which calculates the complexity

436 Faster NTRU-based Bootstrapping in less than 4 ms

of primal attacks via the shortest vector problem, decoding, and dual-lattice attacks. In
particular, we can get the fact that the parameters of NTRU and LWE provide at least
a 128-bit security level. Finally, to facilitate comparisons, we provide the parameters for
other schemes under 128-bit security level in Table 8. Note that the parameters not listed
in the table are the same as those provided by our scheme.
Noise Growth and Failure Probability of Decryption. In previous sections, we
present a theoretical analysis of noise growth. Recall that during blind rotation, modulus
switching, and key-switching operations, the noise growth causes the final error that follows
a Gaussian distribution with a standard deviation of

σ =

√
q2

Q2
k

·
(
Q2
k

Q2 · σ
2
acc + σ2

ks

)
+ σ2

ms.

Among these operations, σ2
acc is the primary source of noise growth during bootstrapping.

By using the approximate decomposition technique mentioned in Section 3.1, we can
reduce the length of the gadget decomposition under the same magnitude of noise growth.
For instance, for the NTRU/NGS parameters of the [XZD+23] scheme, we can use the
approximate decomposition technique to reduce the decomposition length from d = 5 to
d′ = 4, as shown in parameter 128G.

Furthermore, the NAND gate bootstrapping is instantiated in the functional bootstrap-
ping of our experiments, as shown in Figure 1, which requires the plaintext modulus to be
set to t = 4. In this way, the probability of decryption failure can be calculated using the
following formula:

1− erf
(
q/8
2σ

)
, (7)

where erf is the Gaussian function. According to the analysis of the noise growth and the
setting of the parameters, we can get the failure probability of decryption for parameters
128B and 128G are 2−31 and 2−35, respectively, which are close to the result of [XZD+23].

5.2 Performance Analysis and Comparison
5.2.1 C Implementation

We implemented the gate bootstrapping in the OpenFHE library v1.0.4 [BBB+22]. The
evaluation environment was a commodity desktop computer system with an Intel(R)
Core(TM) i5-11500 CPU 2.70 GHz and 32 GB of RAM, running Ubuntu 22.04.2 LTS with
a single thread at a single CPU core. The compiler was clang 11.3.0. Table 9 summarizes
the runtimes for these similar schemes, and each result is an average of 5,000 executions.
Our CMux-based algorithm only takes 39ms to evaluate a gate bootstrapping, which is
about 2.7 times faster than the FHEW [MP21] scheme and 1.4 times faster than the
FINAL [BIP+22] scheme. On the other hand, for the automorphisms-based algorithm, our
approach also achieves 2.4× and 1.3× speedups compared to the [LMK+23] and [XZD+23]
schemes, respectively.

Additionally, we also provide a comparison of key sizes in Table 9. Notably, the
utilization of NTRU-based accumulator and approximate decomposition techniques helps
reduce the key sizes compared to RLWE-based accumulator and exact decomposition.
However, due to using the key unrolling technique in Algorithm 1, our result is 1.5×
larger than the traditional method, i.e. 3d′nN

2 logQ bits. In Algorithm 2, we requires
some additional blind rotation keys and automorphism keys in hybrid method, totaling
(2nd′+ωd)N logQ bits. Finally, the bootstrapping procedure also requires ndkBkN logQk
bits for LWE key-switching keys, which can be performed with the same strategy. Thus,
we omit this comparison in this Table.

Zhihao Li et al. 437

Table 9: Comparison of key sizes and running times, where the CMux-based methods use
the binary secret key, and the NTT is used to accelerate polynomial multiplication in all
schemes.

Schemes Assumption Key sizes (MB) Times (ms)

FHEW [MP21] RLWE 13.5 106

FINAL [BIP+22] NTRU 6.5 57

Our work I NTRU 9.3 39

LMK [LMK+23] RLWE 12.7 112

XZD [XZD+23] NTRU 17.9 62

Our work II NTRU 9.2 46

5.2.2 Implementation with AVX Instructions

It should be noted that some advanced implementations introduce AVX instructions to
improve performance: Examples of this include TFHE-pp [MBM+21] works with AVX-512,
and TFHE-rs [Zam22] with AVX-2 and AVX-512. The AVX instructions can be used
to effectively vectorize NTT, Hadamard multiplication, and gadget decomposition for
efficient parallel computation. Since the OpenFHE library does not yet fully support these
accelerated instructions, we developed a new library that incorporates the Intel AVX-2
and AVX-512 instructions [Int21] for our CMux-based method.

The computational efficiency with the AVX instruction is significantly impacted by the
size of the modulus and registers. The standard method for performing the modular reduc-
tion operation in NTT requires twice the width for each coefficient in the vector registers
to accommodate intermediate full products. We use Montgomery’s algorithm[Mon85] to
efficiently perform the modular reduction, where the high and low parts of the product
are computed individually. These results only need to be stored in single precision within
32 bits, reducing the register space of coefficients and achieving 16× parallelism in the
NTT with the AVX-512 instruction.

Our algorithms also benefit from vectorized operations. In TFHEpp and TFHE-rs
implementations, the modulus Q is typically chosen as either Q = 232 or Q = 264, whereas
our scheme chooses a NTT-friendly modulus Q ≈ 219.9, as shown in Section 2.6. In addition,
TFHE-like schemes use FFT to perform polynomial multiplication, where intermediate
computation only requires floating-point addition and multiplication without any modulo
operations. However, since the intermediate results of the FFT need to be stored in double
precision in the registers, the parallelism of the FFT is not as efficient as the NTT utilized
by AVX-512 and AVX2 instructions. In Table 10, we show the parallelisms of NTT and
FFT using the AVX instruction.

Table 10: Number of coefficients processed per Intel AVX instruction with different size
moduli for NTT and FFT, where N = 1024, and subscript indicates the modulus.

Transformation Type NTT16 NTT32 NTT64 FFT32

AVX2 16 8 4 4

AVX-512 32 16 8 8

Finally, Table 11 shows the experimental results using AVX instructions. From the
table, we can see that the proposed CMux-based bootstrapping algorithm takes only 5.5

438 Faster NTRU-based Bootstrapping in less than 4 ms

Table 11: Comparison of bootstrapping runtimes with AVX instructions.
Implementation Instruction Poly. multiplication Times (ms)

TFHE-rs [Zam22] AVX-2 FFT 10.2

Our work AVX-2 NTT 5.5

TFHEpp [MBM+21] AVX-512 FFT 9

TFHE-rs [Zam22] AVX-512 FFT 6.8

Our work AVX-512 NTT 3.8

ms for the AVX-2 instruction and 3.8 ms for the AVX-512 instruction. Compared to the
C implementation, the AVX2 and AVX-512 instructions achieve 7.1× and 10.2× speedups,
respectively, by vectorizing NTT, Hadamard multiplication, and gadget decomposition
operations. In comparison to the TFHE-like implementation, our CMux-based approach is
1.9 times faster than the AVX2 implementation. When compared to the state-of-the-art
CPU implementation in TFHE-rs [Zam22] with AVX-512 instructions, we can also achieve
around 1.8× speedup. The remarkable performance improvement can be attributed to the
optimization of algorithm and the inherent parallelism advantage of NTT over FFT.

6 FPGA Implementation
To improve FHE and bootstrapping performance, a widely adopted strategy is to offload
computationally intensive FHE computations to acceleration platforms equipped with
substantial hardware resources. This plays a crucial role in overcoming the computational
bottlenecks that hinder the practical adoption of FHE. In this context, we seamlessly
incorporate the methodology presented in this paper into the field-programmable gate array
(FPGA) platform to design an efficient hardware accelerator. This integration demonstrates
remarkable performance boost over previous endeavors, making the bootstrapping scheme
a significant advancement towards practical applications.

Since the CMux-based blind rotation involves less computational cost compared to
automorphisms-based method, we implement Algorithm 1 on the FPGA and conduct
a detailed breakdown of the execution path for the blind rotation procedure. Figure 3
illustrates the typical workflow of blind rotation. It commences with the accumulator of
the NTRU ciphertext and proceeds through a sequence of operations, such as approximate
gadget decomposition, NTT, Hadamard multiplication and accumulation (MAC), and
INTT, and finally generates a new NTRU ciphertext. It’s noteworthy that the entire blind
rotation process needs to perform n/2 iterations. Subsequently, we provide a comprehensive
description of the FPGA implementation in accordance with this workflow.

6.1 Overall Architecture
Figure 4 illustrates the overall architecture of the FPGA accelerator, called NFP, which
consists of four key components:

• HOST CPU: The HOST CPU plays a crucial role in dispatching data and tasks
to the FPGA. As the central control unit of the entire accelerator system, it can
allocate computing tasks and data with high efficiency.

• High Bandwidth Memory (HBM): HBM has high bandwidth characteristics to ensure
rapid data transmission to the computing module. Specifically, our accelerator design

Zhihao Li et al. 439

⋯
NTRU Cipher

Gadget
Decompose NTT MAC

⋯
INTT

Coeff Rep.

Coeff Rep. NTT Rep.

⋯
Coeff Rep.

BRK

n/2 iterations

NTT Rep. NTT Rep.

⋯

⋯

⋯
n/2 n/2

NTRU Cipher
⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

⋯

Figure 3: The typical workflow of blind rotation

MODMult core MODMult core MODMult core MODMult core

MODAdd core MODAdd core MODAdd core MODAdd core

...

...

Hadamard Multipication module

MAC module

Address generation Controller Twisting BRAM

Butterfly core Butterfly core Butterfly core Butterfly core...

(I)NTT module

DATA BRAM

Shifting core AND core Shifting core AND core...

Gadget Decompose module

C
o

n
tro

ller
C

o
n
tro

ller

URAM

URAM

URAM

URAM

BRAM

BRAM

BRAM

BRAM

RegFile

H
B

M
H

B
M

H
B

M
H

B
M

H
O

S
T

 C
P

U
H

O
S

T
 C

P
U

FPGA

AXI4

PCIe

Figure 4: Overall architecture of NFP

utilizes HBM to store auxiliary data (e.g., NTT table for Y i − 1) which are used in
the blind rotation process.

• On-chip Register File: The on-chip register file acts as a bridge connecting the HBM
and the computing module, facilitating seamless data exchange during the calculation
process. Additionally, it provides sufficient memory space for storing blind rotation
keys (BRK).

• Computing Modules: The computing modules execute key operators according to the
tasks scheduled by the host CPU, mainly including gadget decomposition, (I)NTT
and MAC modules.

Next, we provide an in-depth explanation of the key functional units, vector chaining,
and memory design.

6.2 Functional Units
Our accelerator design focuses on decomposing coarse-grained gate bootstrapping into
fine-grained operation-level computational units. This design maximizes parallelism and

440 Faster NTRU-based Bootstrapping in less than 4 ms

Shifting core
 AND core
 Shifting core
 AND core

Shifting core

Coefficient
input

Decomposed
Coefficient 0

Gadget Decompose
module

Decomposed
Coefficient 1

Decomposed
Coefficient 2

Figure 5: DSP-friendly Gadget decomposition implementation

enhances the flexibility of the acceleration scheme. The core operations primarily include
modular multiplication, modular addition (subtraction), (I)NTT, etc. By integrating and
scheduling these core operators, we can achieve efficient execution of bootstrapping on
FPGA.

DSP-friendly Gadget Decomposition. The gadget decomposition involves inten-
sive division operations, which not only leads to a significant increase in computation
time, but also consumes additional DSP resources. To tackle this challenge, we employ
computationally efficient shift and bitwise AND operations, as depicted in Figure 5. Given
a polynomial with coefficient representation, the gadget decomposition module generates
three output coefficients through a combination of shifting and AND operations. This
approach ensures computational accuracy while significantly reducing the computational
load on the FPGA’s computing cores.

High-throughput NTT/INTT Modules. The NTT plays a crucial role in enhanc-
ing the efficiency of polynomial arithmetic operations in FHE. The overall performance of
the accelerator is greatly impacted by the efficiency of NTT operations. Thus, we prioritize
the design of a high-throughput NTT module to ensure the efficient execution of NTT
calculations.

A typical NTT implementation consists of a series of interconnected butterfly units,
encompassing fundamental operations such as modular multiplication and modular addition
(subtraction). The greater the number of butterfly units, the higher the throughput, and
the lower the computational latency for NTT calculations. It’s essential to emphasize that
these modular operations are associated with relatively high computational costs.

As illustrated in Figure 6, to fully utilize the finite resources of the FPGA and optimize
computational latency, we introduce dedicated computing cores for modular multiplication
and addition (subtraction) within the NTT module. Consequently, the NTT module does
not share these cores with other modules, eliminating any competition for these cores when
NTT and other modules operate concurrently. Additionally, to enhance the throughput
of NTT calculations, we optimize the butterfly units and minimize resource usage (e.g.,
LUTs, DSPs) as much as possible for this implementation. In our case, the optimized NTT
module can instantiate 256 processing elements (PEs).

6.3 Vector Chaining

To enhance the execution efficiency of accelerator for blind rotation procedure, we introduce
a schedule-optimized vector chaining mechanism. By interconnecting these computation
units as shown in Figure 7, the intermediate results of each key operation within the blind
rotation process can flow seamlessly to the subsequent computation unit. This eliminates
the need for frequent read and write operations on the on-chip memory. As a result, we
reduce memory access time and alleviate the read-write pressure on the register file.

Zhihao Li et al. 441

Butterfly core

Butterfly core

Butterfly core

Butterfly core

Butterfly core

Butterfly core

...

Twiddle
Factor
BRAM

Data
BRAM
A

ddress generation

Controller

(I)NTT module

URAM

URAM

URAM

BRAM

BRAM

BRAM

BRAM

RegFile

C
rossbar

GS Butterfly core in INTT module

data_in0

data_in1

ModAdd

ModSub
 ModMult

Twiddle factor (tf)

data_out0

data_out1

CT Butterfly core in NTT module

data_in0

data_in1

ModAdd

ModMult
 ModSub

Twiddle factor (tf)

data_out0

data_out1

Figure 6: Architecture of high-throughput (I)NTT module

URAM

URAM

URAM

URAM

BRAM

BRAM

BRAM

BRAM

RegFile Gadget

Decompose module

(I)NTT module

MAC module

Hadamard

multipication module

①

②

③

④

⑤

⑥

⑦

⑧

URAM

URAM

URAM

URAM

BRAM

BRAM

BRAM

BRAM

RegFile Gadget

Decompose module

(I)NTT module

MAC module

Hadamard

multipication module

①

⑤

②

③

④

Figure 7: Schedule-optimized vector chaining design

6.4 Memory Design
Our accelerator is a vector processor equipped with specialized computational and storage
modules tailored for FHE operations. Within the computational module, we instantiate 256
computing units, each capable of handling 512 operands per cycle. Both data processing and
storage operate at a rate of 512 data/cycle. The accelerator features multiple register files,
designed to match the bandwidth of the computing cores. One end of these register files is
directly connected to the High-Bandwidth Memory (HBM), with data being organized
within the register files and then supplied to the designated computing cores. Due to the
pipelined nature of the computing cores, the theoretical throughput can potentially reach
up to 512 data/cycle. However, despite the high throughput capabilities of the accelerator,
the storage of FHE ciphertext and key sizes remains a significant challenge.

To address this issue, we utilize HBM as off-chip storage, which provides a generous
storage capacity of up to 8GB and features a rapid transfer rate of 16GB/s, perfectly
aligning with the storage requirements of our accelerator. Specifically, the HBM is
connected to the host CPU through a PCIe interface, which enables efficient read and

442 Faster NTRU-based Bootstrapping in less than 4 ms

write operations in the expanded HBM memory space. This approach proves especially
beneficial when handling substantial data volumes like ciphertext and keys. For smaller
parameters, the host CPU utilizes the AXI4-Lite interface to access the cache space within
the on-chip register file. This facilitates the transmission of computational tasks and
system parameters such as Montgomery reduction. In essence, the host CPU establishes
crucial connections to the FPGA through the PCIe and AXI4-Lite interfaces, enabling
efficient data access and transfer.

Although high-bandwidth memory (HBM) provides ample storage capacity, its memory
access time is both random and relatively long, typically around 30 cycles. We introduce a
register file between the HBM and the computing cores. The register file acts as a cache
and proactively accesses the HBM to fetch the required data for calculations. By doing
so, the compute module can efficiently access the register file, retrieving the necessary
source operands in just a single cycle. This approach minimizes the impact of HBM’s
access latency on overall computation performance.
Analysis. During the blind rotation process, two types of auxiliary data are required:
blind rotation keys BRK and the NTT table for Y i − 1. It’s important to note that not
all of this precomputed data is used in one iteration; instead, three or nine of them are
utilized per iteration. Therefore, we store precomputed data on the HBM and employ
a data prefetching technique to mitigate the delay in transferring data from the HBM
to on-chip memory. Specifically, during the execution of the NTT operation for acc, we
proactively read the corresponding NTT representation of Y i − 1 into the register file. As
a result, the computation for MAC can be performed directly, without waiting for data
retrieval.

6.5 Evaluation
6.5.1 Methodology

Software and hardware configuration. We build a real-world experimental environ-
ment based on an x86 CPU system. On the host side, we integrate Xilinx’s extensive
developing toolkit. The Verilog RTL code is compiled into bit files utilizing Xilinx Vivado
(version 2022.1) and subsequently loaded onto the Xilinx Alveo U280 FPGA. The host
system is equipped with a C++-coded runtime environment, which works in close collab-
oration with the FPGA. Furthermore, communication between the host and the Alveo
U280 takes place via the PCIe interface.
Benchmarks. We focus on evaluating the performance of FPGA accelerator under
different metrics, such as hardware resource consumption and execution time. To emphasize
its superiority, we also conduct a thorough comparison with existing ASIC accelerators
like MATCHA [JLJ22] and STRIX [PCK+23], as well as typical FPGA designs such as
XHEC [NOMP22], YKP [YKP22], and FPT [VBDV22].

6.5.2 Performance Results

In terms of FPGA acceleration performance, NFP achieves remarkable efficiency in
blind rotation operations. With the 128B parameter setting, our experimental results
demonstrate a latency of only 0.92ms, which brings around 4.1× performance improvement
compared to the CPU implementation. In contrast to FPGA accelerators like YKP
[YKP22], NFP not only utilizes fewer resources but also achieves a speedup of up to 2×
(1.88ms vs. 0.92ms).

It’s worth mentioning that FPT[VBDV22] introduces a rapid FPGA implementation
that achieves a runtime of just 0.58ms through the use of the pipelined FFT technique.
However, this technique comes at the cost of increased approximation error, resulting
in a decryption failure rate of approximately 2−15. To ensure a fair comparison with

Zhihao Li et al. 443

[VBDV22], we adjust the bootstrapping parameters to align the decryption failure rates
and security levels as closely as possible, as explained in Appendix E. While maintaining a
similar decryption failure rate to FPT, NFP utilizes almost identical hardware resources
but achieves up to 2× performance improvement (0.58ms vs. 0.29ms).

Besides, we can see that NFP exhibits a performance level that is roughly half that
of MATCHA and STRIX. Nevertheless, it’s worth noting that current ASIC accelerator
implementations still face significant hurdles, particularly in terms of development expenses
and cycle duration. In conclusion, the notable enhancements in performance achieved
by NFP stem from a combination of algorithmic refinements and the incorporation of
numerous computational and memory enhancements within our accelerator design.

Table 12: Comparison bootstrapping of hardware implementations, where FR is the
decryption failure rate, throughput is calculated by number of bootstrapping operations
per second.

Works FR Resource
LUT / FF / DSP / SRAM

Latency
ms

Thr.†
GBS/s

Thr./DSP
GBS/s

MATCHA [JLJ22] - 36.96 mm2 16nm PTM [SYC+12] 0.20 5000 -

STRIX [PCK+23] - 141.37 mm2 28nm TSMC 0.16 6250 -

XHEC [NOMP22] - 520K / 659K / 4096 / 167Mb - - 0.63

YKP [YKP22]
- 842K / 662K / 7202 / 338Mb 3.76 265 0.036

- 442K / 342K / 6910 / 409Mb 1.88 531 0.076

FPT [VBDV22] 2−15 595K / 1024K / 5980 / 14Mb 0.58 1724 0.288

NFP
2−31 891K / 217K / 4508 / 34 Mb 0.92 1087 0.241

2−15 891K / 217K / 4508 /33 Mb 0.29 3448 0.765

7 Application

In this section, we briefly discuss practical applications of the proposed NTRU-based
bootstrapping. Our bootstrapping can be utilized to instantiate logical gates such as AND,
XOR, and OR gates, which in turn can be used to construct adders and multipliers. For
example, a full adder takes two binary inputs, Ai and Bi, along with a carry bit Ci−1 from
the previous stage. It produces two outputs: the sum bit Si and the carry bit Ci for the
next stage as follows.

Si = Ai ⊕Bi ⊕ Ci−1,

Ci = AiBi + Ci−1(Ai ⊕Bi).

This functionality can be achieved using 5 gate bootstrappings, and the TFHE-rs library
requires 5× 6.8 = 34ms to achieve this task. However, our technique significantly improves
this time to just 5× 3.8 = 19ms with CPU implementation and 5× 0.29 = 1.45ms with
FPGA implementation.

In addition, we focus on a hybrid homomorphic encryption framework. It sends
data from the client to the server using symmetric ciphertexts and lets the server ho-
momorphically decrypt the symmetric ciphertexts to obtain the FHE ciphertext, which
has the advantage of reducing the size of transmitted ciphertexts and supporting ho-
momorphic computations. In the schemes [TCBS23] and [WWL+23], the homomorphic
evaluation of AES-128 ciphertexts was performed using the FBS and CBS modes of
the FHEW/TFHE-like scheme. In contrast, we can use the GBS evaluation mode with
NTRU-based bootstrapping. As mentioned in [MG20], AES circuits can consist of 33616

444 Faster NTRU-based Bootstrapping in less than 4 ms

binary gates. Consequently, we can convert an AES-128 ciphertext into an NTRU-based
FHEW/TFHE-like ciphertext in 2.1 minutes with a CPU implementation.

8 Conclusion
In this paper, we present two improved bootstrapping schemes based on GSW-like NTRU
ciphertexts, aiming to elevate the performance of FHE. The first scheme employs a
CMux-based blind rotation method, leveraging techniques such as approximate gadget
decomposition and key unrolling to improve the efficiency of blind rotation. The second
scheme involves automorphism-based blind rotation, utilizing a hybrid window size method,
which significantly reduces the number of required automorphisms.

To further boost performance, we introduce an advanced implementation utilizing
AVX-512 instructions on CPUs. Experimental results demonstrate that our method can
execute a NAND gate bootstrapping operation in just 3.8ms, achieving approximately
1.8× performance gain compared to the state-of-the-art TFHE-rs implementation. Finally,
we propose a more efficient FPGA accelerator that accelerates the entire blind rotation
process from both computational and memory design perspectives. We conclude that the
proposed technique can improve the efficiency of applications with the gate bootstrapping
mode.

Acknowledgments
We are grateful for the helpful comments from the anonymous reviewers. This work was
supported by the Huawei Technologies Co., Ltd and CAS Project for Young Scientists in
Basic Research (Grant No. YSBR-035).

References
[APS15] Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness

of learning with errors. Journal of Mathematical Cryptology, 9(3):169–203,
2015.

[BBB+22] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins,
Saroja Erabelli, Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey Kim,
Yongwoo Lee, Zeyu Liu, Daniele Micciancio, Ian Quah, Yuriy Polyakov,
Saraswathy R.V., Kurt Rohloff, Jonathan Saylor, Dmitriy Suponitsky,
Matthew Triplett, Vinod Vaikuntanathan, and Vincent Zucca. Openfhe:
Open-source fully homomorphic encryption library. Cryptology ePrint Archive,
Paper 2022/915, 2022. https://eprint.iacr.org/2022/915.

[BIP+22] Charlotte Bonte, Ilia Iliashenko, Jeongeun Park, Hilder VL Pereira, and
Nigel P Smart. Final: Faster fhe instantiated with ntru and lwe. Cryptology
ePrint Archive, 2022.

[BLLN13] Joppe W Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved
security for a ring-based fully homomorphic encryption scheme. In Cryptogra-
phy and Coding: 14th IMA International Conference, IMACC 2013, Oxford,
UK, December 17-19, 2013. Proceedings 14, pages 45–64. Springer, 2013.

[BMMP18] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. Fast
homomorphic evaluation of deep discretized neural networks. In Advances in
Cryptology–CRYPTO 2018: 38th Annual International Cryptology Conference,

https://eprint.iacr.org/2022/915

Zhihao Li et al. 445

Santa Barbara, CA, USA, August 19–23, 2018, Proceedings, Part III 38, pages
483–512. Springer, 2018.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical gapsvp. In Annual Cryptology Conference, pages 868–886.
Springer, 2012.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryp-
tion from ring-lwe and security for key dependent messages. In Advances in
Cryptology–CRYPTO 2011: 31st Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 14-18, 2011. Proceedings 31, pages 505–524. Springer,
2011.

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene.
Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds.
In international conference on the theory and application of cryptology and
information security, pages 3–33. Springer, 2016.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Tfhe: fast fully homomorphic encryption over the torus. Journal of Cryptology,
33(1):34–91, 2020.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic
encryption for arithmetic of approximate numbers. In International conference
on the theory and application of cryptology and information security, pages
409–437. Springer, 2017.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic en-
cryption in less than a second. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes
in Computer Science, pages 617–640. Springer, 2015.

[DvW21] Léo Ducas and Wessel van Woerden. Ntru fatigue: how stretched is over-
stretched? In Advances in Cryptology–ASIACRYPT 2021: 27th International
Conference on the Theory and Application of Cryptology and Information
Security, Singapore, December 6–10, 2021, Proceedings, Part IV 27, pages
3–32. Springer, 2021.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. Cryptology ePrint Archive, 2012.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceed-
ings of the forty-first annual ACM symposium on Theory of computing, pages
169–178, 2009.

[GNT+21] Serhan Gener, Parker Newton, Daniel Tan, Silas Richelson, Guy Lemieux,
and Philip Brisk. An fpga-based programmable vector engine for fast fully
homomorphic encryption over the torus. In SPSL: Secure and Private Systems
for Machine Learning (ISCA Workshop), 2021.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Ntru: A ring-based
public key cryptosystem. In Algorithmic Number Theory: Third International
Symposiun, ANTS-III Portland, Oregon, USA, June 21–25, 1998 Proceedings,
pages 267–288. Springer, 1998.

446 Faster NTRU-based Bootstrapping in less than 4 ms

[Int21] Intel Corporation. Intel® Architecture Instruction Set Extensions Programming
Reference, 2021.

[Jam80] Frederick James. Monte carlo theory and practice. Reports on progress in
Physics, 43(9):1145, 1980.

[JLJ22] Lei Jiang, Qian Lou, and Nrushad Joshi. Matcha: A fast and energy-efficient
accelerator for fully homomorphic encryption over the torus. In Proceedings
of the 59th ACM/IEEE Design Automation Conference, pages 235–240, 2022.

[JP22a] Marc Joye and Pascal Paillier. Blind rotation in fully homomorphic encryption
with extended keys. In International Symposium on Cyber Security, Cryptology,
and Machine Learning, pages 1–18. Springer, 2022.

[JP22b] Marc Joye and Pascal Paillier. Blind rotation in fully homomorphic encryption
with extended keys. In Cyber Security, Cryptology, and Machine Learning: 6th
International Symposium, CSCML 2022, Be’er Sheva, Israel, June 30–July 1,
2022, Proceedings, pages 1–18. Springer, 2022.

[Klu22] Kamil Kluczniak. Ntru-v-um: Secure fully homomorphic encryption from ntru
with small modulus. Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, 2022.

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly
multiparty computation on the cloud via multikey fully homomorphic encryp-
tion. In Proceedings of the forty-fourth annual ACM symposium on Theory of
computing, pages 1219–1234, 2012.

[LMK+23] Yongwoo Lee, Daniele Micciancio, Andrey Kim, Rakyong Choi, Maxim
Deryabin, Jieun Eom, and Donghoon Yoo. Efficient fhew bootstrapping
with small evaluation keys, and applications to threshold homomorphic en-
cryption. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 227–256. Springer, 2023.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. Journal of the ACM (JACM), 60(6):1–35,
2013.

[MAAM20] Toufique Morshed, Md Momin Al Aziz, and Noman Mohammed. Cpu and
gpu accelerated fully homomorphic encryption. In 2020 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages 142–153.
IEEE, 2020.

[MBM+21] Kotaro Matsuoka, Ryotaro Banno, Naoki Matsumoto, Takashi Sato, and Song
Bian. Virtual secure platform: A five-stage pipeline processor over tfhe. In
USENIX Security Symposium, pages 4007–4024, 2021.

[MG20] Kalikinkar Mandal and Guang Gong. Can lwc and pec be friends?: Evaluating
lightweight ciphers in privacy-enhancing cryptography. In Fourth Lightweight
Cryptography Workshop. NIST, 2020.

[Mon85] Peter L Montgomery. Modular multiplication without trial division. Mathe-
matics of computation, 44(170):519–521, 1985.

[MP21] Daniele Micciancio and Yuriy Polyakov. Bootstrapping in fhew-like cryptosys-
tems. In Proceedings of the 9th on Workshop on Encrypted Computing &
Applied Homomorphic Cryptography, pages 17–28, 2021.

Zhihao Li et al. 447

[NOMP22] Kevin Nam, Hyunyoung Oh, Hyungon Moon, and Yunheung Paek. Accelerat-
ing n-bit operations over tfhe on commodity cpu-fpga. In Proceedings of the
41st IEEE/ACM International Conference on Computer-Aided Design, pages
1–9, 2022.

[PCK+23] Adiwena Putra, Yi Chen, John Kim, Joo-Young Kim, et al. Strix: An end-
to-end streaming architecture with two-level ciphertext batching for fully
homomorphic encryption with programmable bootstrapping. arXiv preprint
arXiv:2305.11423, 2023.

[Per21] Hilder Vitor Lima Pereira. Bootstrapping fully homomorphic encryption over
the integers in less than one second. 2021.

[Pol71] John M Pollard. The fast fourier transform in a finite field. Mathematics of
computation, 25(114):365–374, 1971.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM (JACM), 56(6):1–40, 2009.

[SYC+12] Saurabh Sinha, Greg Yeric, Vikas Chandra, Brian Cline, and Yu Cao. Explor-
ing sub-20nm finfet design with predictive technology models. In Proceedings
of the 49th Annual Design Automation Conference, pages 283–288, 2012.

[TCBS23] Daphné Trama, Pierre-Emmanuel Clet, Aymen Boudguiga, and Renaud Sirdey.
A homomorphic aes evaluation in less than 30 seconds by means of tfhe.
In Proceedings of the 11th Workshop on Encrypted Computing & Applied
Homomorphic Cryptography, pages 79–90, 2023.

[VBDV22] Michiel Van Beirendonck, Jan-Pieter D’Anvers, and Ingrid Verbauwhede.
Fpt: a fixed-point accelerator for torus fully homomorphic encryption. arXiv
preprint arXiv:2211.13696, 2022.

[WWL+23] Benqiang Wei, Ruida Wang, Zhihao Li, Qinju Liu, and Xianhui Lu. Fregata:
Faster homomorphic evaluation of aes via tfhe. In International Conference
on Information Security, pages 392–412. Springer, 2023.

[XZD+23] Binwu Xiang, Jiang Zhang, Yi Deng, Yiran Dai, and Dengguo Feng. Fast
blind rotation for bootstrapping fhes. Springer-Verlag, 2023.

[YKP22] Tian Ye, Rajgopal Kannan, and Viktor K Prasanna. Fpga acceleration of fully
homomorphic encryption over the torus. In 2022 IEEE High Performance
Extreme Computing Conference (HPEC), pages 1–7. IEEE, 2022.

[Zam22] Zama. TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for
Boolean and Integer Arithmetics Over Encrypted Data, 2022. https://
github.com/zama-ai/tfhe-rs.

A Useful Algorithms for LWE ciphertext
In this section, we present the sample extract, key-switching, modulus switching for LWE
ciphertext.

https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/tfhe-rs

448 Faster NTRU-based Bootstrapping in less than 4 ms

A.1 Sample Extraction
The original sample extraction algorithm can extract some LWE samples from an RLWE
ciphertext in the TFHE scheme [CGGI20]. Recently, Xiang et al. [XZD+23] extend this
technique to the NTRU ciphertext. In particular, the NTRU ciphertext ct = (g +m)/f ∈
RQ can be viewed an RLWE ciphertext (ct, 0) ∈ R2

Q, and the decryption process is written
as

0− ct · f = (g +m)/f · f = g +m,

by using the secret key f . We define the sample extraction as

SampleExtraction(ct) = (a0,−aN−1,−aN−2, ...,−a1, 0) ∈ LWENφ(f),Q(m0),

where the noise does not increase in the process.

A.2 Key Switching for LWE ciphertext
We show the key-switching algorithm for LWE ciphertext in Lemma 4.

Lemma 4 (LWE Key Switching). Input an LWE ciphertext ct = (a, b) ∈ LWENz,Q(m)
with error variance Var(err(ct)), and the switching keys kski,j,v ∈ LWEns,Q

(
vziB

j
k

)
, where

v ∈ {0, . . . , Bk − 1}, for all 0 ≤ i ≤ N − 1, 0 ≤ j ≤ dk − 1, and let dk =
⌈
logBk

Qk
⌉
with

error variance Var(err(ksk)), the LWE key switching algorithm computes

LWE.KeySwitch(ct) = (0, b)−
∑
i,j

kski,j,ai,j ,

which outputs a new LWE ciphertext ct′ ∈ LWEns,Q(m), and its variance satisfies Var(err(ct′)) ≤
Var(err(ct)) +Ndk · Var(err(ksk)), where dk =

⌈
logBk

Q
⌉
.

Proof. Let kski,j,v = (a′i,j,v,a′i,j,v · s + vziB
j
k + ei,j,v) for some a′i,j,v ∈ Znq and ei,j,v ∈ χδ,

the output ciphertext is

ct′ = LWE.KeySwitch(ct)

= (0, b)−
∑
i,j

kski,j,ai,j
mod Q

= (a′, b′) mod Q ∈ LWEns,Q(m).

It outputs a new LWE ciphertext under the secret key s, where a′ = −
∑
i,j a′i,j,ai,j

and
b′ = b− a · z + a′ · s−

∑
i,j ei,j,ai,j . Thus, the variance of the noise satisfies Var(err(ct′)) ≤

Var(err(ct)) +Ndk · Var(err(ksk)).

A.3 Modulus Switching
The modulus switching technique can change the modulus of LWE ciphertext [BV11]
without affecting the message as shown in Lemma 5.

Lemma 5 (LWE Modulus Switching). Input an LWE ciphertext ct = (a, b) ∈
LWEs,Q(m) with error variance Var(err(ct)), the modulus switching algorithm computes

LWE.KeySwitch(ct) = (b q
Q
· ae, b q

Q
· be),

which outputs the LWE ciphertext ct′ under modulus q, and its variance satisfies Var(err(ct′)) ≤
(qQ)2 · Var(err(ct)) + n+2

24 .

Zhihao Li et al. 449

Proof. Let the integers Q > q > t, the output ciphertext is

ct′ = ModSwitchQ→q(ct) = (b q
Q
· ae, b q

Q
· be).

By checking the decryption function, we can get

b q
Q
· be −

〈
b q
Q
· ae, s

〉
mod q

= q

Q
· b−

〈
q

Q
· a, s

〉
+ 〈r, s〉+ r + kq

= t

q
·m+ q

Q
· e+ 〈r, s〉+ r + kq.

According to the central limit heuristic, the error is close to a Gaussian distribution, and its
variance is Var(err(ct′)) ≤ (qQ)2 · Var(err(ct)) + ||s||22+1

12 , where the factor 1
12 is the standard

deviation of a uniform distribution in [−1/2, 1/2]. Due to ||s||2 <
√
n/2 for binary secret

key, we have Var(err(ct′)) ≤ (qQ)2 · Var(err(ct)) + n+2
24 .

Round-to-Odd Modulus Switching. Lee et al. [LMK+23] proposed a special modulus
switching method to generate LWE ciphertexts with all entries odd as follows

ct′ = ModSwitchodd(ct) = (b q
Q
· aeodd, b

q

Q
· beodd),

where b·eodd outputs the nearest odd integer for the input value. The correctness of this step
can be obtained directly from Lemma 5. For the noise growth, since the error introduced
by rounding at this point follows the standard deviation of a uniform distribution in [−1, 1],
we can get variance is Var(err(ct′)) ≤ (qQ)2 · Var(err(ct)) + ||s||22+1

6 .

B Correctness of Key Switching for NTRU Ciphertext
We show the proof of Lemma 2.

Proof. Let KSK = (g/f + g · f/f ′) ∈ RdQ, we have

ct′ = NTRU.KeySwitch(ct)
=
〈
g−1(ct),KSK

〉
=
〈
g−1(ct),g

〉
)

f
+ g + µ

f
· f
f ′

=
〈
g−1(ct),g

〉
) + g + µ

f ′

As mentioned before the external product, the new ciphertext satisfies ct′ ∈ NTRUf,Q(µ),
and the variance of the noise is Var(g′) ≤ NdB2

12 · Var(err(KSK)) + Var(err(ct)).

C NTT Algorithm
The NTT is shown in Algorithm 3. We omit the INTT algorithm since it is symmetric.

450 Faster NTRU-based Bootstrapping in less than 4 ms

Algorithm 3 Algorithm for Number Theoretic Transform
Input:

A coefficient vector a = (a0, a1, ..., aN−1) for a(X) ∈ RQ.
A table ζrev computed by powers of ζ and stored in bit-reversed order, where ζrev[i] =
ζbit-reverse(i) mod Q.

Output:
A NTT vector of a ∈ ZNQ in bit-reversed order.

1: t = N
2: for (m = 1;m < 2N ;m = 2m) do
3: t = t/2
4: for (i = 0; i < m; i+ +) do
5: j1 = 2 · i · t
6: j2 = j1 + t− 1
7: for (j = j1; j ≤ j2; j + +) do
8: U = aj
9: V = aj+t · ζ[m+ i] (mod Q)

10: aj = U + V (mod Q)
11: aj+t = U − V (mod Q)
12: end for
13: end for
14: end for
15: return NTT(a).

D Automorphism-based Blind Rotation in [XZD+23]
In this Section, we describe the NTRU-based blind rotation that was proposed in [XZD+23]
scheme, which output an NTRU ciphertext NTRU(Xb+

∑n−1
i=0

ai·si). Note that, the exact
gadget decomposition is used during the external products.

E Parameters for Bootstrapping
We give some symbolic and parameters as follows

• λ, Security level;

• t, Plaintext modulus for the LWE sample;

• n, Lattice dimension for the LWE sample;

• q, Ciphertext modulus for the LWE sample;

• N , Ring dimension for NTRU/NGS;

• σ, Standard deviation of Gaussian distribution;

• Q, Ciphertext modulus for the NTRU/NGS sample;

• P , Auxiliary modulus used in the approximate gadget decomposition;

• B, Gadget base for modulus Q used in the external product;

• d, Exact gadget decomposition length for modulus Q;

• d′, Approximate gadget decomposition length for modulus Q;

• Qk, Ciphertext modulus used in LWE key-switching;

Zhihao Li et al. 451

Algorithm 4 Automorphism-based blind rotation with NTRU and LWE in [XZD+23]
Input: An LWE ciphertext ct = (a, b = −〈a, s〉 −

⌊
q
t

⌋
·m + e) ∈ LWEns,q(m), where

q < 2N . An evaluation key EVK = (BRK+
i ,KSKj), where i ∈ [0, n] and j ∈ [0, n−1].

Output: An LWE sample ct′ ∈ LWEns,q(f(m)).
1: for (i = 0; i < n; i = i+ 1) do
2: wi = 2N

q ai + 1
3: w′i = w−1

i mod 2N
4: end for
5: Let w′n = 1 and acc = X

2N
q w′0 ·X−

2N
q bw′0

6: for (i = 0; i < n; i = i+ 1) do
7: acc = acc�BRK+

i

8: if wiw′i+1 6= 1
9: acc = HomAutowiw′i+1

(acc,KSKwiw′i+1
)

10: acc = acc�BRK+
n

11: end for
12: return ct′.

• Bk, Gadget base used in LWE key-switching;

• dk, Exact gadget decomposition length for modulus Q digits;

• ω, Window size used in automorphism-based blind rotation.

F FPGA Parameter and Decryption Failure Rate
To compare with the scheme [YKP22] for FPGA implementation, we adjust the parameters
as follows. In order to achieve the same security level as [YKP22] and [VBDV22], we
set the value of n to 500. In addition, we set the unrolling factor m to 4 and the length
of the approximate gadget decomposition d′ to 2. As a result, the number of iterations
in the blind rotation using CMux gates is reduced to 500/4 = 125, while the number of
external product executions in each CMux gate is increased to 15. This adjustment for the
number of iterations and the length of the approximate gadget decomposition effectively
reduces the number of NTTs required in blind rotation, which contributes to improved
performance in the FPGA implementation.

Then, we compute the decryption failure rate for this parameter set. For the parameter
n = 500, m = 4, and d′ = 2, the variance of noise in new CMux gate is

Var(err(acc)) ≤ 5Nd′B2

2 · Var(err(BRK)) + 5NP 2

8 + Var(err(acc)),

where B = 26, and P = 28. The step is performed n/4 = 125 times in blind rotation, thus
the variance of noise in blind rotation satisfies

Var(err(acc)) ≤ 5nNd′B2

8 · Var(err(BRK)) + 5nNP 2

32 + Nd′B2

12 · Var(err(BRK)) + NP 2

24

≤ (15n+ 2)Nd′B2

24 · Var(err(BRK)) + (15n+ 4)NP 2

96 .

By incorporating the variance Var(err(acc)) into Equation 4, we can calculate the variance of
noise for bootstrapping. Finally, we can obtain the final decryption failure rate by evaluating
the formula for the decryption failure rate with Equation 7, which is approximately 2−15.3.

	Introduction
	Our Techniques and Contributions
	Related Work
	Paper Organization

	Background
	Notation
	Gaussian Distribution
	Digit Decomposition
	Hard Problems and Message Encoding
	NTRU Ciphertext and Homomorphic Operation
	Number Theoretic Transform (NTT)

	Improved CMux-based Bootstrapping
	Approximate Gadget Decomposition
	Improved CMux-based Bootstrapping with Binary Secret Key

	Improved Automorphism-based Bootstrapping
	Optimization for Automorphisms
	The Construction

	Parameters, Implementations, and Comparisons
	Parameters
	Performance Analysis and Comparison

	FPGA Implementation
	Overall Architecture
	Functional Units
	Vector Chaining
	Memory Design
	Evaluation

	Application
	Conclusion
	Useful Algorithms for LWE ciphertext
	Sample Extraction
	Key Switching for LWE ciphertext
	Modulus Switching

	Correctness of Key Switching for NTRU Ciphertext
	NTT Algorithm
	Automorphism-based Blind Rotation in XZD23
	Parameters for Bootstrapping
	FPGA Parameter and Decryption Failure Rate

