
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 3, pp. 273–301. DOI:10.46586/tches.v2024.i3.273-301

Efficient Table-Based Masking with
Pre-processing

Juelin Zhang1,2,3, Taoyun Wang1,3, Yiteng Sun1,3, Fanjie Ji1,3,
Bohan Wang1,3, Lu Li1,3, Yu Yu4,5,6 and Weijia Wang1,2,3(Q)

1 School of Cyber Science and Technology, Shandong University, Qingdao, China
wjwang@sdu.edu.cn

2 Quan Cheng Laboratory, Jinan, China
3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,

Shandong University, Qingdao, China
4 Shanghai Jiao Tong University, Shanghai, China

5 Shanghai Qi Zhi Institute, Shanghai, China
6 Shanghai Key Laboratory of Privacy-Preserving Computation, Shanghai, China.

Abstract. Masking is one of the most investigated countermeasures against side-
channel attacks. In a nutshell, it randomly encodes each sensitive variable into a
number of shares, and compiles the cryptographic implementation into a masked
one that operates over the shares instead of the original sensitive variables. Despite
its provable security benefits, masking inevitably introduces additional overhead.
Particularly, the software implementation of masking largely slows down the cryp-
tographic implementations and requires a large number of random bits that need
to be produced by a true random number generator. In this respect, reducing the
overhead of masking is still an essential and challenging task. Among various known
schemes, Table-Based Masking (TBM) stands out as a promising line of work enjoying
the advantages of generality to any lookup tables. It also allows the pre-processing
paradigm, wherein a pre-processing phase is executed independently of the inputs,
and a much more efficient online (using the precomputed tables) phase takes place to
calculate the result. Obviously, practicality of pre-processing paradigm relies heavily
on the efficiency of online phase and the size of precomputed tables.
In this paper, we investigate the TBM scheme that offers a combination of linear
complexity (in terms of the security order, denoted as d) during the online phase
and small precomputed tables. We then apply our new scheme to the AES-128, and
provide an implementation on the ARM Cortex architecture. Particularly, for a
security order d = 8, the online phase outperforms the current state-of-the-art AES
implementations on embedded processors that are vulnerable to the side-channel
attacks. The security order of our scheme is proven in theory and verified by the
T-test in practice. Moreover, we investigate the speed overhead associated with the
random bit generation in our masking technique. Our findings indicate that the speed
overhead can be effectively balanced. This is mainly because that the true random
number generator operates in parallel with the processor’s execution, ensuring a
constant supply of fresh random bits for the masked computation at regular intervals.

Keywords: Side-Channel Attack · Table-Based Masking · Pre-processing · AES

1 Introduction
Side-channel attacks have posed an important threat to cryptographic implementations.
They exploit the extra information (a.k.a., side-channel leakage) such as timing, power con-

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-01-15 Accepted: 2024-03-15 Published: 2024-07-18

https://doi.org/10.46586/tches.v2024.i3.273-301
mailto:wjwang@sdu.edu.cn
http://creativecommons.org/licenses/by/4.0/

274 Efficient Table-Based Masking with Pre-processing

sumption and electromagnetic radiation obtained from the cryptographic device. Masking
is one of the most investigated countermeasures against side-channel attacks. Its principle
is to randomly encode each secret dependent variable into a number of shares such that
the distribution of any d shares are independent of the secret input, where d is usually
called the security order. The key advantages of masking include provable security and
configurability. Informally speaking, the difficulty of any side-channel attacks against a
masked cryptographic implementation grows exponentially with the security order d.

Despite the seemingly straightforward principle, designing a scheme that can transform
any cryptographic algorithm into an efficient masked implementation is nontrivial. Masking
views a cryptographic algorithm as a circuit that is a composition of elemental operations,
and transforms each elemental operation into the masked implementation known as a
gadget. The transformation of nonlinear operations, such as multiplication or S-boxes used
in many ciphers, is the most challenging part. Methods for addressing this challenge can
be divided into two main categories. The first one follows the well-known scheme by Ishai
et al. [ISW03], who proposed a multiplication gadget with complexity O(d2). The other
approach, called table-based masking, aims to directly provide the masked implementation
of lookup tables (e.g., the S-box). The method follows Chari et al.’s work [CJRR99] that
is based on the table recomputations. For input shares x̂[0], . . . , x̂[d] (In our notation,
x̂ represents a vector and x̂[i] denotes the ith element for any integer i.), the method
starts with the original lookup table (say S), and recomputes the table successively using
x̂[0], . . . , x̂[d − 1], resulting in a masked table Ŝ, and finally, the output shares can be
achieved by Ŝ(x̂[d]). Both approaches bring large overhead and usually require a large
number of random bits, making the employment of masking countermeasures challenging
in software, particularly when speed is critical.

Recently, several works [VV21, WGY+22] on the pre-processing of masking have
emerged. These works introduce a paradigm in which the computation can be divided into
two distinct phases: pre-processing and online phase. The pre-processing is independent
of the input variables, and produces some precomputed variables to be temporarily stored
in, e.g., the RAM. It can be performed in device’s idle time, such as when the IoT
device is waiting for the data of authentication or response. The subsequent online
phase combines all the input and precomputed variables to calculate the outputs more
efficiently. This two-phase approach has been successfully applied in the field of secure
multi-party computation, as demonstrated in [BDOZ11, DPSZ12]. Wang et al. [WGY+22]
further highlighted the significant performance improvements that can be achieved by
leveraging precomputation compatibility in various scenarios, such as challenge-response
authentication protocols. They also provided a new multiplication gadget that was
compatible with pre-processing. In the recent study conducted by Wang et al. [WJZY23],
the research extends the exploration of circuit-based masking with precomputation. It
presents an efficient bitsliced implementation suitable for software deployments.

Superficially, TBM is perfectly compatible with the pre-processing paradigm: the
masked table can be generated in pre-processing, and the online phase is simply accessing
the masked tables. However, adapting TBMs for the pre-processing still poses significant
challenges, primarily due to the constraint that each masked table can only be utilized once.
That is, for a cryptographic algorithm involving ` calls of lookup tables, the pre-processing
needs to generate ` masked tables. For example, for AES-128 involving 160 calls of S-boxes,
the pre-processing needs to generate 160 masked tables, and as a result, the scheme
necessitates a relatively large amount of RAM. The above situation caused a demand of
small size of the masked table.

The first higher-order TBM was proposed by Schramm and Paar in [SP06] who extend
the work of Chari et al. [CJRR99]. In the scheme, each entry of a masked table is a masked
variable whose masks are the same across different entries. This scheme was broken in
2007 [CPR07], and, as a result, it is only secure with d = 1. Coron then fixed the security

Juelin Zhang et al 275

issue and proposed a higher-order secure TBM [Cor14], in which the size of the masked
table linearly increases with d. In the scheme, each entry of a masked table is composed
of d + 1 shares, in order to guarantee the probing security. Then, an improved scheme
was proposed at CHES 2018 [CRZ18], where computation cost and size of random bits are
saved by 50% (while still linear increasing with d).

1.1 Our Contributions
In this paper, we continue investigating the TBM, and our contributions are threefold.

A new construction. We provide a pre-processing compatible TBM offering two key
features:

1. A small number of precomputed variables: This allows for wider deployment of the
scheme on devices with limited RAM capacity.

2. Linear complexity (pertaining to the security order d) of the online phase: This
results in a highly efficient scheme in terms of speed.

In a nutshell, our scheme is to encode all entries of the (unmasked) lookup table and d
random variables by a Maximum Distance Separable (MDS) encoder, and the codeword
comprises the masked table, which is smaller than that in Coron’s work. Thanks to the
MDS encoder, the probing security is guaranteed, ensuring that any d elements in the
codeword are distributed independently of the unmasked entries. For a lookup table with
m-bit input and m-bit output, we summarize the performance of our scheme and other
known designs of TBM in Table 1, where m̃ def= dlog2(2m + d)e is very close to m. Our
scheme is to encode all entries of the (unmasked) lookup table and d random variables by
an MDS encoder, and the codeword is the masked table such that any d elements in the
codeword are distributed independently of the unmasked entries. Our scheme is tailored
for deployment on devices with limited RAM, achieved through reduced precomputed bits
complexity. However, the two phases of preprocessing and online processing are slightly
inferior to [Cor14, CRZ18]. But our random bits’ complexity is better than theirs.

A discussion on the overhead of the random bits generation. A masked implementation
usually requires the generation of random bits, which is often regarded as a significant
timing overhead in software. However, we found that this consideration may not always be
true in practice, particularly in the case of microprocessors equipped with a True Random
Number Generator (TRNG). This is because, in such systems, the generation of random
bits and the execution of the program can occur in parallel. Concretely, when the masked
implementation requires random bits at regular intervals, the timing overhead can be
significantly minimized by employing a buffering mechanism. By continuously generating
random bits and storing them in a buffer, the masked implementation can efficiently
retrieve the required random bits from the buffer, thereby reducing the impact on overall
execution time.

Application, implementation, and practical verification. We apply the masking to
protect the AES-128. We instantiate our masking to the lookup table F28 → F28 , and
implement the masked AES on the ARM Cortex architecture. For a security order of
d = 8, the online phase of our implementation runs in 47.81 Kcycles. The pre-processing
takes 622.77 Mcycles to produce 43.76 Kbytes of precomputed variables. The result also
confirms the discussion on the overhead of random number generation. At last, we collect
the power traces of the masked AES, and perform the T-test to verify the security order
in practice.

1.2 Related Works
There also exist some TBM schemes that aim at reducing the size of the masked table.
At CHES 2021, Valiveti et al. proposed a new scheme with an almost constant size

276 Efficient Table-Based Masking with Pre-processing

Table 1: Asymptotic complexities of various TBMs regarding any m-bit to m-bit lookup
table.

Pre-processing Precomputed bits Online phase Random bits
[Cor14, CRZ18]* O

(
2mmd2) O(2mmd) O(md) O(2mmd2)

[VV21] O(2mm3d3) O(2mm+m2d2) O(m3d2) O(m2d2)
Ours O(2mm̃2d3) O(2mm̃+ m̃d) O(m̃2d) O(m̃d3)

* Although the latter approach demonstrates improved performance in practical applica-
tions, it is important to note that the asymptotic complexities of the schemes proposed
in [Cor14] and [CRZ18] remain the same.

(independent of d) of the masked table [VV21]. They applied the technique of masking with
pseudorandom random number generators (PRGs). However, the online computation of this
approach is quadratic in d, due to the running of PRGs. Alexander et al. recently proposed
a very efficient TBM scheme that also supports the pre-processing functionality [AVV23].

1.3 Organization
In the rest of the paper, we first present notations and backgrounds in Section 2, and
present the technical overview of our new scheme in Section 3. We formally describe the
new masking scheme and provide security proof in Section 4. Section 5 gives the discussion
regarding the random bit generation. Section 6 presents the applications to AES, gives
the performance results, and validates the security in practice using T-test evaluations.
Finally, Section 7 concludes the paper.

2 Preliminaries
2.1 Notations
In the rest of this paper, we use Fq to denote a finite field with q = pm, where p is a
prime and m is a positive integer. We denote elements in Fq by lowercase letters. Let
calligraphies (e.g., I) be sets, and |I| denote the cardinality of the set I. Let bold lower
cases (e.g., x) be the vectors over F|x|q , where |x| denotes the length of the vector, x[i]
denotes the ith element of the vector x, and x[i :j] denotes the vector made up of ith to jth

elements of vector x. Unless otherwise noted, we assume the vectors are row vectors, and
the column vectors are denoted as xT. Let bold capital letters (e.g., A) be the matrices in
Fr×cq (or r × c matrix), for row and column counts being r and c respectively. Let A[i, ∗]
(resp., A[∗, j]) be the ith row (resp., jth column) of A.

We use ⊕ and 	 to denote addition and subtraction over Fq, and use · to denote the
multiplication. Particularly, for x, y ∈ Fq we usually abbreviate x ·y as xy. Moreover, these
operations ⊕ and 	 extend naturally to element-wise addition and subtraction for vectors
and matrices. We use � to denote element-wise multiplication for vectors or matrices.
When performing multiplication between a matrix (say, A) and a column vector (say,
aT), we denote it as A · aT, which can also be expressed concisely as AaT. We use

∑
x

to denote the summation of all the elements of vector x. As the symbol encompasses
all the elements, we omit writing explicit bounds for the sake of brevity. We also have∑j
k=i x[k] =

∑
x[i :j] = x[i]⊕ . . .⊕ x[j] for any integers i < j. Similarly, we use

∑
A to

denote the summation of all the rows of matrix A, resulting in a vector.
We define the integer representation of a field element e = αm−1x

m−1 + αm−2x
m−2 +

. . .+α0 as the integer αm−1p
m−1 +αm−2p

m−2 + . . .+α0. For a field Fq, we also define the
field representation of an integer i = αm−1p

m−1 +αm−2p
m−2 + . . .+α0 as the field element

Juelin Zhang et al 277

e = αm−1x
m−1 + αm−2x

m−2 + . . .+ α0. For a vector v (resp., a matrix M) and any field
element e ∈ Fq, we define v[e] def= v[i] with i the integer representation of e. This definition
can be generalized for the index of the matrix. For example, for an element e ∈ Fq and
a matrix M , M [e, ∗] def= M [i, ∗] with i the integer representation of e. Moreover, for an
integer i and a field element e, we define i⊕ e def= e′ ⊕ e with e′ the field representation of i.

For two fields Fq1 and Fq2 sharing the same characteristic p with q1 = pm1 , q2 =
pm2 and m1 ≥ m2, a function FieldMap

q̃→qo

: Fpm1 → Fpm2 is defined as follows: for any

e = αm1−1p
m1−1 + αm1−2p

m1−2 + . . .+ α0, fieldMap
q1→q2

(e) = αm2−1p
m2−1 + αm2−2p

m2−2 +

. . .+ α0. We can see that fieldMap
q1→q2

is an additive-homomorphic function: for any e, e′ ∈

Fq1 , fieldMap
q1→q2

(e ⊕ e′) = fieldMap
q1→q2

(e) ⊕ fieldMap
q1→q2

(e′) and fieldMap
q1→q2

(e 	 e′) = fieldMap
q1→q2

(e) 	

fieldMap
q1→q2

(e′). For example, for e ∈ F29 , fieldMap
29→28

(e) returns the element in F28 by simply

removing the highest significant bit of e. Additionally, fieldMap
q1→q2

can be generalized for

the case of a vector: FieldMap
q1→q2

: F`pm1 → F`pm2 as follows: for any e ∈ F`q1
, FieldMap

q1→q2
(e) =(

fieldMap
q1→q2

(e[0]), . . . , fieldMap
q1→q2

(e[`−1])
)
.

2.2 Maximum Distance Separable (MDS) Matrix.
Our construction uses the MDS matrix with some diffusion properties. We provide its
definition along with a crucial property as follows.

Definition 1 (MDS matrix). A matrix A is MDS, if and only if all the sub-determinants
of A are non-zero.

Lemma 1. Consider an `× d MDS matrix denoted as A and an d× d′ matrix represented
by R. Specifically, let the first n rows of R be uniformly distributed. We then have any n
rows of AR are uniformly distributed.

Proof. Without loss of generality, we assume that R[I, ∗] is uniformly distributed with
|I| = n and I ⊆ {0, . . . , d−1}. Let Ī def= {0, . . . , d−1} \ I. Then, we can express
AR = A[∗, I]R[I, ∗]⊕A[∗, Ī]R[Ī, ∗]. As A is an MDS matrix, for any I ′ ⊆ {0, . . . , d−1}
with |I ′| = n, A[I ′, I] is nonsingular. This property ensures that both A[I ′, I]R[I, ∗]
and A[I ′, ∗]R are uniformly distributed. Therefore, any n rows of AR are uniformly
distributed.

An MDS matrix can be constructed using the Vandermonde matrix built from a0, . . . , an−1 ∈
Fq, . . . ,Fq as follows:

A′ = vand(a0, . . . , an) =


1 a0 a2

0 . . . ad−1
0

1 a1 a2
1 . . . ad−1

1
1 a2 a2

2 . . . ad−1
2

...
...

...
1 an−1 a2

n−1 . . . ad−1
n−1

 with n > d .

A′ is the generating matrix of the linear code that achieves the singleton bound, if q ≥ n.
Then, the (n−d) × d matrix A = A′[d : n−1, ∗]A′[0 : d−1, ∗]−1 is MDS. We can thus
construct an `× d MDS matrix over Fq if q ≥ d+ `. On the other hand, this is also known
as the MDS conjecture [Seg55] postulating that there exists no d× ` MDS matrix over Fq
if q < d+ `.

278 Efficient Table-Based Masking with Pre-processing

2.3 The Concept of Masking
A cryptographic algorithm manipulates sensitive internal variables through a sequence of
operations, which can be represented as a directed acyclic graph where sensitive variables
and operations are vertices and edges respectively, and usually called a circuit. The general
goal of the masking scheme is to randomly split every sensitive variable of a cryptographic
algorithm into d+ 1 shares such that the joint distribution of any d variables in the masked
implementation is independent of all sensitive variables. We call the security of such
a masked implementation as d-private security (a.k.a., d-probing security) [ISW03], as
defined in Definition 2. To achieve this, a masking scheme first randomly splits input
variables into d+ 1 shares, then complies every operation into its masked correspondence
named gadget. Usually, we group the d+ 1 shares corresponding to one sensitive variable
as a sharing. Then, the input and output of a gadget are sharings corresponding to the
input and output of the operation.

Definition 2 (d-probing security [ISW03]). A gadget is d-probing security if any t internal
probes with t ≤ d can be simulated without any secrets.

In this paper, we consider the additive sharing. For a variable x, the additive sharing x̂ of
x ∈ Fq is a set of d+1 shares {x̂[0], . . . , x̂[d]} ∈ Fd+1

q , such that x =
∑

x̂ = x̂[0]⊕ . . .⊕x̂[d].

2.4 Composable Security Notions
Although the definition of private security nicely includes side-channel attacks, it is not
trivial to directly prove large circuits (such as the AES block cipher) to be private secure.
The difficulty arises from the need to enumerate the probes within the circuit, a task that
becomes increasingly intricate as the circuit size grows. The natural solution is to use
the composition method. By doing so, the focus can be directed towards each individual
gadget, and the overall d-private security is then ensured through composition. It is Barthe
et al. that were the first to introduce composable security notions [BBD+16] for (small)
gadgets that are sufficient to result in provable probing security. We first describe the
definition of simulatability introduced in [BBP+16]:

Definition 3 (Simulatability [BBP+16]). Let P be a set of probes of a circuit C with
input shares X . Let S ⊆ X be a subset of input shares. A simulator is a randomized
function Sim: F|S|q → F|P|q . Probes P can be simulated with input shares S if and only if
there exists a simulator Sim such that for any input shares X , the distributions of CP(X)
and Sim(S) are identical, where CP(X) returns the values of probes in P by feeding the
input X .

Based on the definition of simulatability, we can recall the composable security notions
called Non-Inference (NI) and Strong Non-Inference (SNI) as follows. Here, the internal
probes to a circuit refer to the probes directed at variables other than the outputs, and
the output probes are defined as the probes directed at the outputs.

Definition 4 (NI/SNI [BBD+16]). A gadget is NI (resp., SNI), if any tint internal probes
and tout output probes with tint + tout ≤ d can be simulated with tint + tout (resp., tint)
shares of each input sharing.

As the goal of the composable security notions is to establish probing security, Lemma 2
serves as a bridge between SNI/NI and probing security.

Lemma 2 (SNI ⇒ NI ⇒ d-probing security [BBP+16]). An SNI gadget is NI, and an NI
gadget is d-probing secure if any d input shares needed for the simulation are independently
distributed of the secrets.

The following lemma illustrates the composability of NI and SNI gadgets.

Juelin Zhang et al 279

Lemma 3 (Composability of NI and SNI gadgets [BBP+16]). A composition of gadgets
is NI if all gadgets are NI or SNI, based on the following composition rule: each sharing is
used at most once as input of a non-SNI gadget. Moreover, a composition of gadgets is
SNI if it is NI and the output sharings are from SNI gadgets.

2.5 Linear Gadget
We briefly introduce the linear gadget that is designed to implement the additive-
homomorphic function in the masked domain. An additive-homomorphic function is
a function L : F`q1

→ F`′

q2
taking ` input and `′ output variables. It possesses the property

that for any (x1, . . . , x`) ∈ F`q1
and (y1, . . . , y`) ∈ F`q2

, it holds that L(x1⊕y1, . . . , x`⊕y`) =
L(x1, . . . , x`)⊕ L(y1, . . . , y`). In the masked domain, the input and output variables are en-
coded into sharings (x̂1, . . . , x̂`), and the output should likewise be sharings (ŷ1, . . . , ŷ`′)
such that (

∑
ŷ1, . . . ,

∑
ŷ`′) = L(

∑
x̂1, . . . ,

∑
x̂`). Particularly, we have

L(
∑

x̂1, . . . ,
∑

x̂`) =
d∑
i=0

(
L(x̂1[i], . . . , x̂`[i])

)
.

It conveys that the masked linear operation is evaluated by (ŷ1[i], . . . , ŷ`′ [i])← L(x̂1[i], . . . , x̂`[i])
for i ∈ {0 . . . d}. That is, linear operations can be executed separately over the shares with
distinct indices, leading to the following conclusions:

1. It is NI.

2. Each output share corresponding to index i is exclusively determined by the input
shares bearing the same index, allowing pre-processing.

We present the linear gadget in Gadget 1, which is separated into two phases: pre-processing
and online. The pre-processing (resp., online phase) manipulates the shares with indices
in {0 . . . d−1} (resp., index d).

Gadget 1 MaskedLinL
Input: sharings x̂1, . . . , x̂`
Output: sharings ŷ1, . . . , ŷ`′ such that (

∑
ŷ1, . . . ,

∑
ŷ`′) = L(

∑
x̂1, . . . ,

∑
x̂`).

——————Pre-processing————————–
1: (ŷ1[i], . . . , ŷ`′ [i])← L(x̂1[i], . . . , x̂`[i]), for i ∈ {0, . . . , d− 1}

——————Online-computation——————
2: (ŷ1[d], . . . , ŷ`′ [d])← L(x̂1[d], . . . , x̂`[d])

2.6 On the Precomputation Paradigm of Masking
We describe the conditions under which the pre-processing can be adopted for masking.
The pre-processing is a computationally intensive stage of the masked implementation,
outputting some precomputed variables/tables. Then, the online phase is performed
efficiently using the precomputed variables/tables. To achieve this optimization, we
consider the precomputation paradigm introduced by Wang et al. [WGY+22] in which for
each internal sharing (say, x̂), shares x̂[0 :d−1] are calculated in pre-processing, while only
x̂[d] is calculated in the online phase. To illustrate this concept more concretely:

• In pre-processing, the gadgets are evaluated sequentially in a specific order. For
each gadget, the output shares with indices in [0 :d−1] are calculated. Besides, the
precomputed variables/tables required for online phase are also calculated.

280 Efficient Table-Based Masking with Pre-processing

• In online phase, the gadgets are also evaluated in a sequential order. For each gadget,
the output shares with index d are calculated by precomputed variables/tables and
input shares with index d.

To implement the aforementioned design, any gadget with input sharing x̂1, . . . , x̂n
and output sharing ŷ1, . . . , ŷn′ should satisfy one of the following two conditions.

1. Condition 1: ŷ1[0 :d−1], . . . , ŷn′ [0 :d−1] should be calculated by x̂1[0 :d−1], . . . , x̂n[0 :
d−1] and randomness within the gadget.

2. Condition 2: ŷ1[0 :d−1], . . . , ŷn′ [0 :d−1] should be calculated only by the randomness
within the gadget.

We can see that Condition 2 is stronger than Condition 1, i.e., a gadget satisfying Condition
2 should also satisfy Condition 1, but not vice versa. The linear gadget presented in
Section 2.5 satisfies Condition 1. Our new gadget for lookup table (will be formally
introduced in Section 4) satisfies Condition 2.In a masked implementation, the input
gadgets should satisfy Condition 2, and the other gadgets should satisfy Condition 1.

Gadget 2 presents a refreshing gadget satisfying Condition 2. This gadget originated
from the work in [IKL+13]. Coron et al. [CGZ20] proved that this gadget is secure in the
security notion called Probing-Isolating Non-Inference (PINI) [CS20]. Besides, Cassiers et
al. have proven that PINI is strictly stronger than NI [CS20], i.e., a gadget is NI if it is
PINI. Therefore, this gadget is also NI.

Gadget 2 Refresh satisfying Condition 2
Input: sharing x̂.
Output: sharing ŷ such that

∑
x̂ =

∑
ŷ

——————Pre-processing————————–
1: Generate random elements r0, . . . , rd−1
2: ŷ[0], . . . , ŷ[d−1]← r0, . . . , rd−1

——————Online-computation——————
3: ŷ[d]← x̂[d]⊕ (x̂[0]	 r0)⊕ (x̂[1]	 r1)⊕ . . .⊕ (x̂[d− 1]	 rd−1)

3 Technical Overview of the New Scheme
In this section, we first revisit two typical TBMs (Schramm and Paar’s scheme and Coron’s
scheme) that inspire our scheme, showing their design concepts and limitations. Then, a
technical overview of our scheme is illustrated. Our description in this section specifically
focuses on the m-bit to mo-bit lookup table S(·) with d-order security. For the sake of
simplicity, we will set m = 2 and d = 2 to facilitate comprehension. In this context, we
have input shares x̂[0], x̂[1], x̂[2] over F2m , and the output shares are ŷ[0], ŷ[1], ŷ[2] over
F2mo , such that S

(∑
x̂
)

=
∑

ŷ.
It is important to note that the descriptions provided can be easily extended to

accommodate any values of m and d. For a more detailed understanding of the two
typical TBMs, readers can refer to Appendices A and B, respectively. Moreover, Section 4
will formally present our scheme for any lookup table. Our descriptions use the static
single-assignment (SSA) form, where each variable is assigned exactly once, simplifying
the properties of variables.

3.1 Schramm and Paar’s scheme
The origins of TBM can be traced back to the work of Chari et al. [CJRR99] that provided
a scheme with two shares, and was extended by Schramm and Paar in [SP06] to the

Juelin Zhang et al 281

case with multiple shares. We briefly recall Schramm and Paar’s scheme in Figure 1.
It first generates d random values s[0], . . . , s[d−1] that serve as d output shares (i.e.,
ŷ[0], . . . , ŷ[d− 1]), and constructs a vector t0 of size 2m (i.e., the number of possible inputs
of S(·)) such that t0[i] ⊕

∑
s = S(i) for any i ∈ {0, . . . , 2m−1}. Then, the elements in

vector t0 are shifted for d rounds. In the kth round, the elements are shifted by x̂[k], i.e.,
for any i ∈ {0 . . . 2m−1}, tk[i] ← tk−1[i ⊕ x̂[k]], ensuring S

(
i ⊕

∑
x̂[0 :k]

)
= tk[i] ⊕

∑
s.

Finally, the last share of the output should be ŷ[d] = td[x̂[d]].
Although this method circumvents the direct summing of input shares, Coron et al.

demonstrated that it remains insecure with d > 1 [CPR07]. For instance, consider the
scenario in Figure 1, assuming that x̂[2] 6= 0, it can be readily observed that the joint leakage
of ŷ[2] and t0[0] depends on all input shares x̂[0], . . . , x̂[d], since ŷ[2]⊕t0[0]⊕S(0) = S

(∑
x̂
)
.

Moreover, for the case of d > 2 (as demonstrated in Appendix A), the joint leakage of td[0],
td[1] and x̂[d] depends on all input shares, since td[0]⊕td[1] = S

(∑
x̂[0 :d−1]

)
⊕S
(
1⊕
∑

x̂[0 :
d−1]

)
. Those security flaws stem from the fact that the procedure employs the same masks

s[0], . . . , s[d−1].

x̂[0]

x̂[1]

x̂[2]

s[0], s[1],

t0[0]
t0[1]
t0[2]
t0[3]

, such that

S(0) = s[0]⊕ s[1]⊕ t0[0]
S(1) = s[0]⊕ s[1]⊕ t0[1]
S(2) = s[0]⊕ s[1]⊕ t0[2]
S(3) = s[0]⊕ s[1]⊕ t0[3]

t1[0]← t0[0⊕x̂[0]]
t1[1]← t0[1⊕x̂[0]]
t1[2]← t0[2⊕x̂[0]]
t1[3]← t0[3⊕x̂[0]]

s[0], s[1],

t1[0]
t1[1]
t1[2]
t1[3]

, such that

S(0⊕ x̂[0]) = s[0]⊕ s[1]⊕ t1[0]
S(1⊕ x̂[0]) = s[0]⊕ s[1]⊕ t1[1]
S(2⊕ x̂[0]) = s[0]⊕ s[1]⊕ t1[2]
S(3⊕ x̂[0]) = s[0]⊕ s[1]⊕ t1[3]

t2[0]← t1[0⊕x̂[1]]
t2[1]← t1[1⊕x̂[1]]
t2[2]← t1[2⊕x̂[1]]
t2[3]← t1[3⊕x̂[1]]

s[0], s[1],

t2[0]
t2[1]
t2[2]
t2[3]

, such that

S(0⊕ x̂[0]⊕ x̂[1]) = t2[0]⊕ s[0]⊕ s[1]
S(1⊕ x̂[0]⊕ x̂[1]) = t2[1]⊕ s[0]⊕ s[1]
S(2⊕ x̂[0]⊕ x̂[1]) = t2[2]⊕ s[0]⊕ s[1]
S(3⊕ x̂[0]⊕ x̂[1]) = t2[3]⊕ s[0]⊕ s[1]

ŷ[0], ŷ[1], ŷ[2], such that S(x̂[2]⊕ x̂[0]⊕ x̂[1]) = ŷ[0]⊕ ŷ[1]⊕ ŷ[2]

ŷ[0], ŷ[1], ŷ[2]← s[0], s[1], t2[x̂[2]],

Figure 1: Schramm and Paar’s scheme [SP06] with m = 2 and d = 2.

282 Efficient Table-Based Masking with Pre-processing

3.2 Coron’s Scheme
Coron addressed the above security flaws by replacing each element in t with d+ 1 shares
and refreshing the shares after each shifting operation [Cor14]. As depicted in Figure 2,
Coron’s approach replaces the vector t by a 2m × (d+1) matrix T , such that the ith row
T [i, ∗] consists of the shares of S(i⊕ x̂[0]⊕ . . .⊕ x̂[k]). The refreshing first generates d+ 1
random variables (say, r0, . . . , rd) such that r0 ⊕ . . . ⊕ rd = 0, and element-wisely adds
them to the input vector. The refreshing enhances security as the same masks are no
longer shared among different rows of the matrix.

The refreshing runs in O(d) and requires O(d) random variables. In total, Coron’s
method runs in O(2md2mo) and O(dmo) for pre-processing and online phase respectively,
and demands O(2md2) random variables. Although this adaption results in a probing
secure scheme, it imposes a significant requirement of the RAM to the precomputation
paradigm. The precomputed table T contains 2m(d+1) entries, which is (d+1) times larger
than the vector t used in Schramm and Paar’s method. Consequently, the pre-processing
produces d times more variables (to be stored in the RAM). For instance, in the case of
AES-128, which includes 10 × 16 = 160 8-bit to 8-bit Sboxes, Coron’s scheme requires
approximately 40(d + 1) KBytes of memory to store all the precomputed tables. This
renders the pre-processing phase impractical in many real-world applications.

x̂[0]

x̂[1]

x̂[2]

T0[0, 0] T0[0, 1] T0[0, 2]
T0[1, 0] T0[1, 1] T0[1, 2]
T0[2, 0] T0[2, 1] T0[2, 2]
T0[3, 0] T0[3, 1] T0[3, 2]

, such that

S(0) = T0[0, 0]⊕ T0[0, 1]⊕ T0[0, 2]
S(1) = T0[1, 0]⊕ T0[1, 1]⊕ T0[1, 2]
S(2) = T0[2, 0]⊕ T0[2, 1]⊕ T0[2, 2]
S(3) = T0[3, 0]⊕ T0[3, 1]⊕ T0[3, 2](

T1[0, 0], T1[0, 1], T1[0, 2]
)
← Refresh

(
T0[0⊕x̂[0], 0], T0[0⊕x̂[0], 1], T0[0⊕x̂[0], 2]

)(
T1[1, 0], T1[1, 1], T1[1, 2]

)
← Refresh

(
T0[1⊕x̂[0], 0], T0[1⊕x̂[0], 1], T0[1⊕x̂[0], 2]

)(
T1[0, 0], T1[0, 1], T1[0, 2]

)
← Refresh

(
T0[2⊕x̂[0], 0], T0[2⊕x̂[0], 1], T0[2⊕x̂[0], 2]

)(
T1[0, 0], T1[0, 1], T1[0, 2]

)
← Refresh

(
T0[3⊕x̂[0], 0], T0[3⊕x̂[0], 1], T0[3⊕x̂[0], 2]

)
T1[0, 0] T1[0, 1] T1[0, 2]
T1[1, 0] T1[1, 1] T1[1, 2]
T1[2, 0] T1[2, 1] T1[2, 2]
T1[3, 0] T1[3, 1] T1[3, 2]

, such that

S(0⊕ x̂[0]) = T1[0, 0]⊕ T1[0, 1]⊕ T1[0, 2]
S(1⊕ x̂[0]) = T1[1, 0]⊕ T1[1, 1]⊕ T1[1, 2]
S(2⊕ x̂[0]) = T1[2, 0]⊕ T1[2, 1]⊕ T1[2, 2]
S(3⊕ x̂[0]) = T1[3, 0]⊕ T1[3, 1]⊕ T1[3, 2](

T2[0, 0], T2[0, 1], T2[0, 2]
)
← Refresh

(
T1[0⊕x̂[1], 0], T1[0⊕x̂[1], 1], T1[0⊕x̂[1], 2]

)(
T2[1, 0], T2[1, 1], T2[1, 2]

)
← Refresh

(
T1[1⊕x̂[1], 0], T1[1⊕x̂[1], 1], T1[1⊕x̂[1], 2]

)(
T2[0, 0], T2[0, 1], T2[0, 2]

)
← Refresh

(
T1[2⊕x̂[1], 0], T1[2⊕x̂[1], 1], T1[2⊕x̂[1], 2]

)(
T2[0, 0], T2[0, 1], T2[0, 2]

)
← Refresh

(
T1[3⊕x̂[1], 0], T1[3⊕x̂[1], 1], T1[3⊕x̂[1], 2]

)
T2[0, 0] T2[0, 1] T2[0, 2]
T2[1, 0] T2[1, 1] T2[1, 2]
T2[2, 0] T2[2, 1] T2[2, 2]
T2[3, 0] T2[3, 1] T2[3, 2]

, such that

S(0⊕ x̂[0]⊕ x̂[1]) = T2[0, 0]⊕ T2[0, 1]⊕ T2[0, 2]
S(1⊕ x̂[0]⊕ x̂[1]) = T2[1, 0]⊕ T2[1, 1]⊕ T2[1, 2]
S(2⊕ x̂[0]⊕ x̂[1]) = T2[2, 0]⊕ T2[2, 1]⊕ T2[2, 2]
S(3⊕ x̂[0]⊕ x̂[1]) = T2[3, 0]⊕ T2[3, 1]⊕ T2[3, 2]

ŷ[0], ŷ[1], ŷ[2], such that S(x̂[0]⊕ x̂[1]⊕ x̂[2]) = ŷ[0]⊕ ŷ[1]⊕ ŷ[2]

ŷ[0], ŷ[1], ŷ[2]← T2[x̂[2], 0], T2[x̂[2], 1], T2[x̂[2], 2],

Figure 2: Coron’s scheme [Cor14] with d = 2 and m = 2.

3.3 A Birdeye on Our Scheme
Our scheme is briefly described in Figure 3. It begins with vectors t0 of size 2m and s0
of size d, designed to satisfy the relationship

(
S(0), . . . ,S(2m−1)

)
= t0 ⊕AsT

0 , with the

Juelin Zhang et al 283

constant matrix A =
[
2 4 6 2
3 5 7 4

]T
for the case of m = 2 and d = 2. The dimensions of

A vary depending on the values of m and d. We omit the precise description with respect
to the field elements in A for the sake of brevity, and deter the formal description to the
next section.

In the kth iteration, (sk, tk) undergoes a shift by x̂[k] and is refreshed. This operation
ensures that(

S(0⊕
∑

x̂[0 :k−1]), (1⊕
∑

x̂[0 :k−1]), . . . ,S(2m−1⊕
∑

x̂[0 :k−1])
)

= tk ⊕AsT
k .

After d iterations, we obtain(
S(0⊕

∑
x̂[0 :d−1]),S(1⊕

∑
x̂[0 :d−1]), . . . ,S(2m−1⊕

∑
x̂[0 :d−1])

)
= td ⊕AsT

d .

It conveys that we can calculate the output shares from (s, t[x̂[d]]) (via the ToShares
operation). The precomputed table (s, t) contains 2m + d variables, significantly smaller
than the T in Coron’s method. As a result, this new scheme is much more practical for
pre-processing compared to previous TBM designs. It should be noted that (and will be
proved in the next section), our scheme is secure if the matrix A is MDS.

We will provide a detailed formal description in the next section. In the following, we
introduce the additional considerations and details in the formal presentation.

1. For any k ∈ {0, . . . , d}, the matrix A and vector sk should be over the same field (say,
F2m̃). By the MDS conjecture [Seg55], a d× 2m MDS matrix over F2m̃ must satisfy
the condition d+2m ≤ 2m̃. It conveys that there does not exist a d×2m MDS matrix
over F2m̃ if m̃ ≤ m. Thus, the scheme requires m̃ > m. In the case of Figure 3,
the bit-length of the elements in A and sk should surpass 2. Considering an m-bit
to mo-bit lookup table S, the vector tk should be over F2mo for any k ∈ {0, . . . , d}.
This is not a big issue if mo > m since we can simply set m̃ = mo. For the case that
mo ≤ m, we additionally need an function FieldMap

2m̃→2mo

defined in Section 2.1 to map

the elements in F2m̃ to F2mo , such that for any k ∈ {0, . . . , d},(
S(0⊕

∑
x̂[0 :k−1]), . . . ,S(2m−1⊕

∑
x̂[0 :k−1])

)
= tk ⊕ FieldMap

2m̃→2mo

(AsT
k) .

2. Furthermore, we extend our consideration to encompass a more general lookup
table, mapping each element in the field Fq to an element in Fqo , where q = pm and
qo = pmo

o with p, po any primes (rather than only 2).

4 New Table-based Masking Scheme
In this section, we formally present and analyze our new TBM that is compatible with the
precomputation-based paradigm.

4.1 Construction
We consider the lookup table S(·) mapping each element in the field Fq to an element
in Fqo such that q = pm, qo = pmo

o and p, po are primes. The new gadget MaskedTable
is equipped with the lookup table S(·), a new field Fq̃ such that q̃ = pm̄o , m̄ ≥ mo and
q̃ ≥ q + d 1, and an MDS matrix A ∈ Fq×dq̃ . It takes a sharing x̂, and produces the output
sharing ŷ such that

∑
ŷ = S(

∑
x̂).

1The conditions can also be presented as q̃ ≥ qo, q̃ ≥ q +d and the field Fq̃ shares the same characteristic
as Fqo .

284 Efficient Table-Based Masking with Pre-processing

x̂[0]

x̂[1]

x̂[2]

s0[0], s0[1],

t0[0]
t0[1]
t0[2]
t0[3]

, such that

S(0) = 2 · s0[0]⊕ 3 · s0[1]⊕ t0[0]
S(1) = 4 · s0[0]⊕ 5 · s0[1]⊕ t0[1]
S(2) = 6 · s0[0]⊕ 7 · s0[1]⊕ t0[2]
S(3) = 2 · s0[0]⊕ 4 · s0[1]⊕ t0[3]

(
s1[0], s1[1],

t1[0]
t1[1]
t1[2]
t1[3]

)
← PackedShiftRefresh

(
x̂[0], s0[0], s0[1],

t0[0]
t0[1]
t0[2]
t0[3]

)

s1[0], s1[1],

t1[0]
t1[1]
t1[2]
t1[3]

, such that

S(0⊕ x̂[0]) = 2 · s1[0]⊕ 3 · s1[1]⊕ t1[0]
S(1⊕ x̂[0]) = 4 · s1[0]⊕ 5 · s1[1]⊕ t1[1]
S(2⊕ x̂[0]) = 6 · s1[0]⊕ 7 · s1[1]⊕ t1[2]
S(3⊕ x̂[0]) = 2 · s1[0]⊕ 4 · s1[1]⊕ t1[3]

(
s2[0], s2[1],

t2[0]
t2[1]
t2[2]
t2[3]

)
← PackedShiftRefresh

(
x̂[1], s1[0], s1[1],

t1[0]
t1[1]
t1[2]
t1[3]

)

s2[0], s2[1],

t2[0]
t2[1]
t2[2]
t2[3]

, such that

S(0⊕ x̂[0]⊕ x̂[1]) = 2 · s2[0]⊕ 3 · s2[1]⊕ t2[0]
S(1⊕ x̂[0]⊕ x̂[1]) = 4 · s2[0]⊕ 5 · s2[1]⊕ t2[1]
S(2⊕ x̂[0]⊕ x̂[1]) = 6 · s2[0]⊕ 7 · s2[1]⊕ t2[2]
S(3⊕ x̂[0]⊕ x̂[1]) = 2 · s2[0]⊕ 4 · s2[1]⊕ t2[3]

ŷ[0], ŷ[1], ŷ[2] such that S(x̂[0]⊕ x̂[1]⊕ x̂[2]) = ŷ[0]⊕ ŷ[1]⊕ ŷ[2]

(ŷ[0], ŷ[1], ŷ[2])← ToShares
(
s2[0], s2[1], t2[x̂[2]]

)

Figure 3: Our scheme with d = 2 and m = 2

Juelin Zhang et al 285

MaskedTable first constructs a tuple (s0, t0) ∈ (Fdq̃ ,Fqqo
). Note that, the function

FieldMap
q̃→qo

: Fq̃ → Fqo
defined in Section 2.1 is required to map the elements in Fq̃ to

elements in Fqo while keeping the homomorphism over addition. The tuple (s0, t0) satisfies
that S(e) = FieldMap

q̃→qo

(
A[e, ∗]sT

0
)
⊕ t0[e] for any e ∈ Fq, i.e., S(e) is determined by s0, t0[e]

and the constant vector A[e, ∗]. The MaskedTable refreshes and shifts (by elements in x̂)
the tuple by calling PackedShiftRefresh. The input/output of the refreshing is written in
single static assignment (SSA) form, where each input/output tuple is defined exactly
once. After d refreshings, the tuple (sd, td[x̂[d]]) is transformed into the output sharing.
The transformation circuit, called ToShares, is separated into two parts: the pre-processing
phase and the online phase.

Gadget 3 MaskedTable
Input: sharing x̂ ∈ Fd+1

q .
Output: sharing ŷ ∈ Fd+1

qo

The gadget is equipped with a lookup table S : Fq → Fqo
and an MDS matrix A ∈ Fq×dq̃ ,

where q̃ ≥ qo, q̃ ≥ q + d and the field Fq̃ shares the same characteristic as Fqo
.

The gadget ensures that: S(
∑

x̂) =
∑

ŷ.
——————Pre-processing————————–

1: s0 = (0, . . . , 0) ∈ Fdq̃
2: t0 ∈ Fqqo

is a vector such that S(e) = t0[e] for any e ∈ Fq
3: for k = 0; k ≤ d− 1; k++ do
4: (sk+1, tk+1)← PackedShiftRefresh((sk, tk), x̂[k])
5: end for
6: (ŷ[0 :d−1],w)← ToShares−part1()

. Precomputed variables: w, (sd, td) and ŷ[0 :d−1]
——————Online-computation——————

7: ŷ[d]← ToShares−part2
(
w, (sd, td), x̂[d]

)
PackedShiftRefresh takes (s, t) ∈ (Fdq̃ ,Fqqo

) and x ∈ Fq, and returns (s′, t′) ∈ (Fdq̃ ,Fqqo
).

The process begins by generating a random matrix R, and calculating the summation of
its columns, resulting in s′. Then, it calculates W ← AR, where a linear operation is
performed on each column of R. We can see that

∑
W [i, ∗] = A[i, ∗]s′T. After that, we

calculate t′[e] by A[e⊕ x, ∗], s,W [e, ∗] and t[e⊕ x] for each e ∈ Fq, such that

t′[e]⊕ FieldMap
q̃→qo

(
A[e, ∗]s′T

)
= t[e⊕ x]⊕ FieldMap

q̃→qo

(
A[e⊕ x, ∗]sT) .

ToShares takes (s, t) ∈ (Fdq̃ ,Fqqo
) and x ∈ Fq, and returns (s′, t′) ∈ (Fdq̃ ,Fqqo

). The
process begins by generating a random matrix R, and calculating the summation of the
columns, resulting in the first d shares of ŷ. The summation of the rows of R produces
a vector w. After that, we can calculate ŷ[d] by A[x, ∗], s,W [e, ∗] and w such that
FieldMap

q̃→qo

(
A[x, ∗]sT)⊕ t[x] =

∑
ŷ .

Let m̃ def= log2 q̃, the complexities of the multiplication and addition over Fq̃ are O(m̃2)
and O(m̃), respectively. Thus, the complexity of PackedShiftRefresh is O(m̃2qd2), and the
complexities of ToShares for pre-processing and online phases are O(m̃d2) and O(m̃2d),
respectively. As MaskedTable consists of d PackedShiftRefresh and one ToShares, its com-
plexities for pre-processing and online phases are O(m̃2qd3) and O(m̃2qd), respectively.

4.2 Correctness
First of all, we provide the correctness of PackedShiftRefresh and ToShares.

286 Efficient Table-Based Masking with Pre-processing

Circuit 1 PackedShiftRefresh
Input: A share x ∈ Fq and (s, t) ∈

(
Fdq̃ ,Fqqo

)
.

Output: (s′, t′) ∈
(
Fdq̃ ,Fqqo

)
It ensures: t′[e]⊕ FieldMap

q̃→qo

(
A[e, ∗]s′T

)
= t[e⊕ x]⊕ FieldMap

q̃→qo

(
A[e⊕ x, ∗]sT), for any

e ∈ Fq.
1: Generate a random matrix R ∈ Fd×dq̃

2: s′ ←
∑

(RT)
3: W ← AR
4: for each e ∈ Fq do
5: V [e, ∗]← (A[e⊕ x, ∗]� s)	W [e, ∗]
6: t′[e]← FieldMap

q̃→qo

(
∑

V [e, ∗])⊕ t[e⊕ x]

7: end for

Circuit 2 ToShares
Input: (s, t) ∈ (Fdq̃ ,Fqqo

) and x ∈ Fq
Output: sharing ŷ ∈ Fd+1

qo

The gadget ensures that: FieldMap
q̃→qo

(
A[x, ∗]sT)⊕ t[x] =

∑
ŷ.

ToShares−part1 (pre-processing)
Output: ŷ[0 :d−1] ∈ Fdqo

,w ∈ Fdqo

1: Generate a random matrix R ∈ Fd×dqo

2: ŷ[0 :d−1]←
∑

(RT)
3: w ←

∑
R

ToShares−part2 (online phase)
Input: w ∈ Fdqo

, (s, t) ∈ (Fdq̃ ,Fqqo
) and x ∈ Fq

Output: ŷ[d]
1: v ← FieldMap

q̃→qo

(A[x, ∗]� s)	w

2: ŷ[d]← t[x]⊕
∑

v

Lemma 4. PackedShiftRefresh is correct. That is, for any e ∈ Fq,

t′[e]⊕ FieldMap
q̃→qo

(A[e, ∗]s′T) = t[e⊕ x]⊕ FieldMap
q̃→qo

(A[e⊕ x, ∗]sT) .

Proof. By the instruction, we have

∑
W [e, ∗] =

∑
A[e, ∗]R

=
d−1∑
i=0

A[e, i]
d−1∑
j=0

R[i, j]

= A[e, ∗](
∑

RT)T

= A[e, ∗]s′T .

Juelin Zhang et al 287

Then, we have

t′[e] = FieldMap
q̃→qo

(
∑

V [e, ∗])⊕ t[e⊕ x]

= FieldMap
q̃→qo

(∑(
(A[e⊕ x, ∗]� s)

)
	
∑(

W [e, ∗]
))
⊕ t[e⊕ x]

= FieldMap
q̃→qo

(A[e⊕ x, ∗]sT)	 FieldMap
q̃→qo

(A[e, ∗]s′T)⊕ t[e⊕ x] .

Thus, we have t′[e]⊕ FieldMap
q̃→qo

(
A[e, ∗]sT) = FieldMap

q̃→qo

(
A[e⊕ x, ∗]sT)⊕ t[e⊕ x].

Lemma 5. ToShares is correct. That is, FieldMap
q̃→qo

(
A[x, ∗]sT)⊕ t[x] =

∑
ŷ.

Proof. By the instruction, we have
∑

ŷ[0 :d−1] =
∑

w, and thus:

ŷ[d] = t[x]⊕
∑

v

= t[x]⊕
∑

FieldMap
q̃→qo

(
A[x, ∗]� s

)
	
∑

w

= t[x]⊕ FieldMap
q̃→qo

(∑
(A[x, 0]s[0], . . . ,A[x, d−1]s[d−1])

)
	
∑

w

= t[x]⊕ FieldMap
q̃→qo

(
A[x, ∗]sT)	∑w

= t[x]⊕ FieldMap
q̃→qo

(
A[x, ∗]sT)	∑ ŷ[0 :d−1] .

Thus, we have ŷ[d]⊕
∑

ŷ[0 :d−1] =
∑

ŷ = t[x]⊕ FieldMap
q̃→qo

(
A[x, ∗]sT).

Theorem 1. MaskedTable is correct. That is, S(
∑

x̂) =
∑

ŷ.
Proof. By the instruction, we can see that t0[e] ⊕ FieldMap

q̃→qo

(
A[e, ∗]sT

0
)

= S(e) for any

e ∈ Fq. Then, by Lemma 4, after kth iterations, we haves for any e ∈ Fq,

FieldMap
q̃→qo

(
A[e, ∗]sT

k+1

)
⊕ tk+1[e]

=FieldMap
q̃→qo

(
A
[
e⊕ x̂[k], ∗

]
sT
k

)
⊕ tk

[
e⊕ x̂[k]

]
=FieldMap

q̃→qo

(
A
[
e⊕ x̂[k−1], ∗

]
sT
k−1

)
⊕ tk−1

[
e⊕ x̂[k−1]

]
=FieldMap

q̃→qo

(
A
[
e⊕ x̂[k−1]⊕ x̂[k−2], ∗

]
sT
k−2

)
⊕ tk−2

[
e⊕ x̂[k−1]⊕ x̂[k−2]

]
... by deduction

=FieldMap
q̃→qo

(
A
[
e⊕

k−1∑
i=0

x̂[i], ∗
]
sT

0

)
⊕ t0

[
e⊕

k−1∑
i=0

x̂[i]
]

=S
(
e⊕

k−1∑
i=0

x̂[i]
)
.

By setting k+ 1 = d, we have FieldMap
q̃→qo

(
A[e, ∗]sT

d

)
⊕ td[e] = S

(
e⊕

∑d−1
i=0 x̂[i]

)
. At last, By

setting e = x̂[d] and by Lemma 5, we have

S
(∑

x̂
)

= S
(
x̂[d]⊕

d−1∑
i=0

x̂[i]
)

= FieldMap
q̃→qo

(
A[x̂[d], ∗]sT

d

)
⊕ td[x̂[d]] =

∑
ŷ.

288 Efficient Table-Based Masking with Pre-processing

4.3 Security
Prior to presenting the security analysis of MaskedTable, we initially establish the security
properties of PackedShiftRefresh and ToShares in Lemmas 6 and 7, respectively. It’s worth
noting that both PackedShiftRefresh and ToShares share similarities with SNI. However,
it’s essential to highlight that NI/SNI are typically defined as properties of gadgets with
input and output sharings, whereas neither PackedShiftRefresh nor ToShares precisely fit
this definition, as their inputs do not exclusively consist of sharings. Furthermore, despite
the resemblance between Lemmas 6 and 7, they are presented separately due to the distinct
proofs required for each.

Lemma 6. Given PackedShiftRefresh with input variables {x} and (s, t), along with
internal and output probes denoted as Pint and Pout respectively, satisfying the condition
|Pint|+ |Pout| ≤ d, we have Pint ∪Pout can be simulated with |Pint| variables in (s, t) and
min(1, |Pint|) variable in {x}.

Proof of Lemma 6. We divide the probes Pint ∪ Pout as follows:

• Internal probes Pint:

– Probes in the input variables: Pinput
– Probes in the calculation of s′ ←

∑
(RT): PRT . For each probe p in PRT ,

there exists a function g : Fdq → Fq and an index i ∈ [0 : d−1], such that
p = g(R[i, 0], . . . ,R[i, d−1]). Note that, the probes to the vector s′ are excluded
from PRT since they are output probes.

– Probes in the calculation of W ← AR: PAR. For each probe p in PAR,
there exists a function g and an index j ∈ {0, . . . ,d− 1} such that p =
g(R[0, j], . . . ,R[d−1, j]).

– Probes in the calculation of t′[e]← FieldMap
q̃→qo

(
∑

V [e, ∗])⊕t[e⊕x] for any e ∈ Fq:

Psum. Note that the probes to the vectors t and t′ are excluded from Psum.

• Output probes Pout:

– The probes in s′: Ps′ .
– The probes in t′: Pt′ .

We build sets S(s,t), Sx, Isum and J and run a simulator as following steps.

1. Initiate sets S(s,t), Isum and J to be empty. If Pint 6= ∅, let Sx = x, otherwise let

Sx = ∅. After this step, we have Sx =
{
x if |Pint| ≥ 1
∅ if |Pint| = 0

.

2. For the probes in Pinput, put them (excluding x, since it should be in Sx) into
S(s,t), and thus they can be simulated with S(s,t) and Sx. After this step, we have
|S(s,t)| ≤ |Pinput|.

3. For each probe in PRT or Ps′ , it can be simulated by sampling the corresponding
row R[i, ∗] from a uniform distribution. In this step, |PRT | + |Ps′ | rows of R are
simulated, and the rest d− |PRT |+ |Ps′ | rows are still uniformly distributed. After
this step, we have |S(s,t)| ≤ |Pinput|.

Juelin Zhang et al 289

4. For each probe in PAR, it can be simulated by sampling the corresponding column
R[∗, j] from a uniform distribution, and we put j into J and s[j] into S(s,t). Let
J̄ def= {0, . . . , d−1} \ J . As A is MDS, by Lemma 1, any d − |PRT | − |Ps′ | rows
of W [∗, J̄] are uniformly distributed after this step. Besides, we have |S(s,t)| ≤
|Pinput|+ |PAR|.

5. For each probe in Psum, if the corresponding index i is not in Isum, put i into
Isum, and simulate the elements in V [i, J̄] from a uniform distribution. This
can be done since |Isum| ≤ d − |PRT | − |Ps′ |. we then put t[i ⊕ x] into S(s,t).
This probe is determined by V [i, J̄], t[i ⊕ x], s[J], W [i,J] and x, where V [i, J̄]
and W [i,J] have been simulated, and we also have {t[i ⊕ x]} ∪ s[J] ⊆ S(s,t).
Thus, this probe can be simulated with S(s,t) and Sx. After this step, we have
|S(s,t)| ≤ |Pinput|+ |PAR|+ |Psum|.

6. Finally, we consider the probes in Pt′ . For each probe in Pt′ (say, t[i]), we separate
the analysis as follows.

• If i /∈ Isum, since |Isum|+ |Pt′ |+ |PRT |+ |Ps′ | ≤ d, we can simulate the probe
from a uniform distributions.

• If i ∈ Isum, the probe is determined by V [i, J̄], t[i⊕ x], s[J], W [i,J] and x,
where V [i, J̄] and W [i,J] have been simulated, and t[i′] ∪ s[J] ⊆ S. Thus, it
can be simulated with S(s,t).

After all steps, we have |S(s,t)| ≤ |Pinput| + |PAR| + |Psum| ≤ |Pint| and Sx ={
x if |Pint| ≥ 1
∅ if |Pint| = 0

.

Now, all the probes are simulated with S(s,t) and Sx. Therefore, for any internal probes
Pint and output probes Pout such that |Pint|+ |Pout| ≤ d, Pint ∪ Pout can be simulated
with |Pint| variables in (s, t) and min(1, |Pint|) variable in {x}.

Lemma 7. Given ToShares with input variables {x} and (s, t), along with internal and
output probes denoted as Pint and Pout respectively, satisfying the condition |Pint|+|Pout| ≤
d, we have Pint ∪ Pout can be simulated with |Pint| variables in (s, t) and min(1, |Pint|)
variable in {x}.

Proof of Lemma 7. We divide the probes Pint ∪ Pout as follows:

• Internal probes Pint:

– Probes in the input variables: Pinput.
– Probes in the calculation of ŷ[0 :d−1] ←

∑
(RT): PRT . For each probe p in

PRT , there exists a function g : Fdq → Fq and an index i ∈ [1 : d], such that
p = g(R[i, 0], . . . ,R[i, d−1]). Note that, the probes to the vector ŷ[0 :d−1] are
excluded from PRT since they are output probes.

– Probes in the calculation of w ←
∑

R: PR. For each probe p in PR, there
exists a function g : Fdq → Fq and an index j ∈ {0, . . . , d−1}, such that
p = g(R[0, j], . . . ,R[d−1, j]).

– Probes in the calculation of ŷ[d]← t[x]⊕
∑

v: Psum. Note that the probe to
the variable ŷ[d] is excluded from Psum since it is an output share.

• Output probes Pout:

– Probes to ŷ[0 :d−1]: Pŷ[0:d−1].

290 Efficient Table-Based Masking with Pre-processing

– Probes to ŷ[d]: Pŷ[d].

We build sets S(s,t), Sx and a temporary set J and run a simulator as following steps.

1. Initiate sets S(s,t) and J to be empty. If |Pint| > 0, let Sx = x, otherwise let Sx = ∅.

After this step, we have Sx =
{
x if |Pint| ≥ 1
∅ if |Pint| = 0

.

2. For the probes of Pinput, put them (excluding x, since it should be in Sx) into
S(s,t), and thus they can be simulated with S(s,t) and Sx. After this step, we have
|S(s,t)| ≤ |Pinput|.

3. For each probe in PRT or Pŷ[0:d−1], it can be simulated by sampling the corresponding
row R[i, ∗] from a uniform distribution. In this step, at most |PRT |+ |Pŷ[0:d−1]| rows
of R are simulated.

4. For each probe in PR, it can be simulated by sampling the corresponding column
R[∗, j] from a uniform distribution, and we put j into J and s[j] into S(s,t). Now,
we have |S(s,t)| ≤ |Pint|. After this step, we have |S(s,t)| ≤ |Pinput|+ |Pw|.

5. The probes in Psum are determined by v and t[x]. We put t[x] into S(s,t) and simulate
the elements in v[J̄] from a uniform distribution. Probes in Psum are determined
by v[J̄], t[i], s[J], w[J] and x, where v[J̄] and w[J] have been simulated, and
t[K′1] ∪ s[J] ⊆ S. Thus, probes in Psum can be simulated with S(s,t) and Sx. After
this step, we have |S(s,t)| ≤ |Pinput|+ |Pw|+ |Psum|.

6. Finally, we consider Pŷ[d]. We have ŷ[d] = v[J̄]⊕ s[J]⊕w[J]⊕ t[k]. We separate
our analysis into two cases:

• If Psum = ∅, we can simulate ŷ[d] from a uniform distribution.
• If Psum 6= ∅, then x ∈ Sx. We also have ŷ[d] is determined by v[J̄], t[x], s[J],

w[J] and x, where v[J̄] and w[J] have been simulated, and t[x]∪s[J] ⊆ S(s,t).
Thus, it can be simulated with S(s,t) and Sx.

After all steps, we have |S(s,t)| ≤ |Pinput| + |PAR| + |Psum| ≤ |Pint| and Sx ={
x if |Pint| ≥ 1
∅ if |Pint| = 0

.

Now, all the probes are simulated with S(s,t) and Sx. Therefore, for any internal probes
Pint and output probes Pout such that |Pint|+ |Pout| ≤ d, Pint ∪ Pout can be simulated
with |Pint| variables in (s, t) and min(1, |Pint|) variable in {x}.

Theorem 2. MaskedTable is SNI.

Proof. Let
Refresh0

def= PackedShiftRefresh((s0, t0), x̂[0])

Refresh1
def= PackedShiftRefresh((s1, t1), x̂[1])

...

Refreshd−1
def= PackedShiftRefresh((sd−1, td−1), x̂[d−1])

Refreshd
def= ToShares((sd, td), x̂[d])

,

Juelin Zhang et al 291

and let
C0

def= PackedShiftRefresh
(
(s0, t0), x̂0

)
C1

def= PackedShiftRefresh
(

C0
(
(s0, t0), x̂0

)
, x̂1

)
...

Cd−1
def= PackedShiftRefresh

(
Cd−2

(
(s0, t0), x̂d−2

)
, x̂d−2

)
Cd

def= ToShares
(

Cd−1
(
(s0, t0), x̂d−1

)
, x̂d−1

)
.

Let Pintk and Poutk be the internal and output probes of Ck, and let P ′intk and P ′outk be the
internal and output probes of Refreshk. Without loss of generality, for any k ∈ {1, . . . , d},
we count the probes in (sk, tk) as the internal probes of Refreshk or Ck rather than the
output probes of Refreshk−1 or Ck−1. It means that, for any k = {0, . . . , d−1}, Poutk = ∅
and P ′outk = ∅. Besides, we have Cd = MaskedTable, and thus internal and output probes
of MaskedTable are Pintd and Poutd , respectively. We illustrate the above partition in
Figure 4.

Assuming Pintk∪Poutk can be simulated by |Pintk | shares in (s0, t0) and min
(
|Pintk |, k+

1) shares in x̂, we aims at proving that Pintk+1 ∪ Poutk+1 can be simulated by |Pintk+1 |
shares in (s0, t0) and min

(
|Pintk+1 |, k + 2) shares in x̂. First of all, we have Pintk+1 =

Pintk ∪ Poutk ∪ P ′intk+1
and Poutk+1 = P ′outk+1

. By Lemma 6, P ′intk+1
and P ′outk+1

can
be simulated with |P ′intk+1

| variables in (sk+1, tk+1) and min(1, |P ′intk+1
|) variable in

{x̂[k+1]}. Further, as |P ′inti+1
|+ |Poutk |+ |Pintk | ≤ d, Pintk ∪Poutk and |P ′intk+1

| variables
in (sk+1, tk+1) can be simulated with |Pintk | shares in (s0, t0) and min

(
|Pintk |, k + 1)

shares in x̂. Thus, Pintk+1 ∪ Poutk+1 can be simulated by |Pintk+1 | shares in (s0, t0) and
min

(
|Pintk+1 |, k + 2) shares in x̂.

As last, by deduction, we have Pintd ∪ Poutd can be simulated with |Pintd | shares
in (s0, t0) and min

(
|Pintd |, d + 1

)
= |Pintd | shares in x̂, indicating that MaskedTable is

SNI.

5 A Discussion on the Overhead of Random Bits Genera-
tion

As most masking schemes (including ours) require true random bits, the deployment should
naturally target the microprocessors that contain a True Random Number Generator
(TRNG). In this respect, we investigate how the commonly used TRNG meets the require-
ment of our masking scheme. Usually, the TRNG is composed of a live entropy source
(analog) and an internal conditioning component, and it has the following features:

1. It can provide full entropy outputs periodically.

2. The random bits generation process is independent of (and in parallel with) the
running of the program.

Figure 5 illustrates the platform for the software implementation of the masking. The
TRNG independently generates a batch of random bits, and then requests an interrupt
(indicating that the random bits are ready) to the processor. Subsequently, an interrupt
handler stores the random bits in the RAM buffer.

An ideal strategy to execute a masked program is to make TRNG run in parallel.
Concretely, one can perform the program with the TRNG enabled. Once a batch of
random bits (e.g., a 32-bit true random number) is ready, the program is interrupted, and
an interrupt handler stores the random bits in a buffer. The program directly accesses

292 Efficient Table-Based Masking with Pre-processing

(s0, t0)

(s1, t1)

PackedShiftRefreshx̂[0]

x̂[k]

x̂[k + 1]

PackedShiftRefresh

(sk+1, tk+1)

x̂[d] ToShares

ŷ

(sk+2, tk+2)

Ck

(sk, tk)

Refreshk:
internal probes (P ′intk) include probes to (sk, tk)

PackedShiftRefresh

output probes: Poutk = ∅

output probes: P ′outk = ∅

Refreshd:
internal probes (P ′intd) include probes to (sd, td)
output probes are output probes of the MaskedTable

Ck:
internal probes (Pintk) include probes to (s0, t0)
output probes: Poutk = ∅

Cd = MaskedTable

Refreshk+1:
internal probes (P ′intk+1

) include probes to (sk+1, tk+1)
output probes: P ′outk+1

= ∅

x̂[d−1] PackedShiftRefresh

Refreshd−1:
internal probes (P ′intd−1

) include probes to (sd−1, td−1)
output probes: P ′outd−1

= ∅

(sd, td)

Figure 4: The partition of probes in MaskedTable.

ALURegister File

TRNG
RAM

Buffer

Controller

Peripherals

Bus
Ready?Random bits

Processor

Figure 5: Illustration of the platform for the software implementation of the masking.

Juelin Zhang et al 293

the buffer when it requires random bits. Therefore, the storing of the random bits (to the
buffer) dominates the overhead running time of the random number generation is only the
storing of the random bits (to the buffer), as long as the buffer always provides sufficient
random bits (i.e., the program does not need to wait for the TRNG).

We consider the case that the masked implementation requires c-bit of randomness
every h cycles, and the TRNG can provide c′-bit of randomness every h′ cycles. We can
see that, the buffer always provides sufficient random bits, if c′

h′ ≥ c
h .

We then investigate the performance of known TRNGs. From the academic side, we
refer to the recent work [KHL21] that provided comparisons of 8 TRNGs in FPGA and
17 ones in ASIC. Based on the comparison, there exist multiple candidates (with quite
a small footprint) whose performances are faster than 4 Mbps. Assuming the running
frequency of the microprocessor is up to 100 MHz, we have c′

h′ ≥ 0.4. From the industry
side, the TRNG peripheral embedded in STM32 can provide 128-bit random samples every
200 ∼ 400 cycles, and thus c′ = 128 2. For a very conservative evaluation, we consider
h′ = 400, and thus c′

h′ = 0.32.
The pre-processing of MaskedTable requires c = dlog2 q̃e d2 random bits for each call of

PackedShiftRefresh. There exist qd2 field multiplications in PackedShiftRefresh. Supposing
each field multiplication takes τ cycles, we have h ≥ qd2τ , and c

h ≤
dlog2 q̃ed

2

qd2τ = dlog2 q̃e
qτ . In

the following, we consider two different sizes of lookup tables.

• We consider the case of q = qo = 28 and q̃ = 29 that can be instantiated as the 8-bit to
8-bit AES S-box shown later in Section 6.1. Then, we have c

h ≤
0.0352
τ ≤ 0.0352 < c′

h′ .

• We also consider the case of a smaller lookup table, where q = qo = 24 and q̃ = 25.
Then, we have c

h ≤
0.3125
τ ≤ 0.3125 < c′

h′ .

The above conveys that the overhead running time corresponding to the random number
generation can be quite small (only the storing of the random bits to the buffer).

It should be noted that the above discussion only considers the speed of the pre-
processing. At the same time, the generation of random bits also impacts other aspects
such as the power consumption.

6 Applications to AES and Security Analysis in Practice
6.1 Applications to AES-128
AES is a block cipher that is performed on 16 variables in F28 called state. The block size
of AES is 128 bits, but it has three different key lengths: 128, 192 and 256 bits. In this
paper, we consider AES-128 that is the variant with 128 bits of key length. The round
function of AES comprises four transformations over the state: AddRoundKey, SubBytes,
ShiftRows and MixColumns, where AddRoundKey, ShiftRows and MixColumns are linear
and can be implemented using Gadget 1. We then focus on the masked implementation of
SubBytes, which is made up of 16 S-boxes (that can be regarded as 16 lookup tables) in
parallel. More details of AES block cipher can be found in e.g., [DR02].

AES S-box is a function S : F28 → F28 . To adapt our new gadget, we set q1 = q2 = 28,
and set q̃ = 29. We store each 9-bit variable using a 16-bit RAM unit. Thus, it requires
d×2+d+256 = 256+3d Bytes of RAM for pre-computed variables (e.g., (s, t) ∈ (Fd29 ,F256

28)
and w ∈ Fd28) of one S-box. Considering that AES-128 consists of 160 calls of S-box,
it requires (256 + 3d) × 160 Bytes = 40 + 0.47d KBytes of RAM for all pre-computed
variables.

2See, e.g., the programming manual provided in https://www.st.com/resource/en/reference_manual/
rm0432-stm32l4-series-advanced-armbased-32bit-mcus-stmicroelectronics.pdf

https://www.st.com/resource/en/reference_manual/rm0432-stm32l4-series-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0432-stm32l4-series-advanced-armbased-32bit-mcus-stmicroelectronics.pdf

294 Efficient Table-Based Masking with Pre-processing

MaskedTable is made up of d − 1 calls of PackedShiftRefresh and 1 call of ToShares.
Each call of PackedShiftRefresh or ToShares takes dlog2 q̃e d2 random bits. Thus, each call
of MaskedTable takes dlog2 q̃e d3 random bits. For AES Sbox, it takes 9d3 random bits.
Considering that AES-128 consists of 160 calls of S-box, it requires 160 · 9d3 random bits.

We implement the masked AES-128 on the ARM Cortex M architecture. The field
multiplication is performed using the log-exp method [GR17]. That is, for multipliers
x and y and a primitive element a, we first map the multipliers to x′ and y′ such that
ax

′ = x and ay′ = y, and then we calculate z′ = x′ + y′ and finally map the z′ to z such
that z = az

′ = ax
′+y′ = xy. The above two mappings are performed by using lookup

tables, and we also need to additionally handle the case when x = 0 or y = 0.
The round keys are pre-extended and stored in a masked form, which is a common

practice in masked implementation and helps improve the performance. The matrix A
remains constant across all implementations, allowing us to embed a predetermined MDS
matrix derived from the Vandermonde matrix. The selection of A does not impact the
performance outcomes, due to our utilization of the log-exp table for field multiplication.

Our results and state-of-the-art implementations are shown in Table 2. We consider the
schemes proposed in [VV21, WGY+22, WJZY23, AVV23, GR17] as the benchmarks for
comparison. We provide the implementation results regarding running cycles, random bits,
RAM size for precomputed variables, and code size. For the line work of TBM schemes, the
work [VV21] provides the first TBM suitable to the precomputation paradigm. [AVV23]
is confined to the third masking order, thus we specifically provided the performance of
our scheme with d = 3. We omitted the results of [Cor14, CRZ18] because the focus
of our paper is primarily on a TBM scheme designed for deployment on devices with
limited RAM capacity (RAM capacity < 100KB). As we recall, [Cor14, CRZ18] requires
approximately 40(d + 1) KBytes of RAM. For example, when d = 2, the required RAM
capacity would be 120KB (which is higher than we expected), and when d = 10, it would
be 440KB. Consequently, those works do not align with the purpose of our paper. As
the other line work of circuit-based schemes, Wang et al. proposed a scheme [WGY+22]
for the cost amortization, with a byproduct that most intermediates can be precomputed
before the input shares are accessed. This work shows that the masking schemes without
lookup tables can also be compatible with the precomputation paradigm. Recently, a
more efficient scheme has been provided in [WJZY23]. Besides, we add the performance
of masking without pre-processing [GR17].

Compared with the state-of-the-art schemes, we believe ours has quite valuable signifi-
cance in practice for resource-constrained scenarios such as the IoT. Software implementa-
tions tailored for IoT devices operate on embedded processors characterized by features of
low power consumption, constrained RAM/ROM capacities, and low clock frequencies,
where the power consumption is closely related to the number of cycles. Therefore, we place
particular emphasis on evaluating the number of cycles, as well as the RAM requirements
and code size for an implementation in ARM Cortex M architecture.

For security order d = 8, the online phase of our implementation runs in 47.81 Kcycles,
and the pre-processing takes 622.77 Mcycles to produce 43.76 Kbytes of precomputed
variables. In spite of the fact that our scheme required much more RAM space (for
precomputed tables) than the related works, we believe it has quite valuable significance
in practice, especially for resource-constrained scenarios such as the IoT. For example,
more than 30% STM32 Mainstream microcontrollers provide at least 64 KBytes of RAM3,
which is sufficient for deploying our scheme with security orders d = 1 to 16. Besides, the
RAM will be free after the running of AES. At last, the (speed) impact of the random bits
generation of our masking can be balanced out, as we have discussed in Section 5 that
all random bits can be generated in parallel with the running of the masked AES for any

3See, e.g., the descriptions of STM32 mainstream MCUs in https://www.st.com/en/
microcontrollers-microprocessors/stm32-mainstream-mcus.html#products

https://www.st.com/en/microcontrollers-microprocessors/stm32-mainstream-mcus.html#products
https://www.st.com/en/microcontrollers-microprocessors/stm32-mainstream-mcus.html#products

Juelin Zhang et al 295

security orders.
Regarding the randomness generation in our scheme, we consider the case that it is

executed with a TRNG running in parallel, ensuring a constant supply of fresh random
bits for the masked computation at regular intervals. As elucidated in Section 5, the
additional time overhead of random number generation in our scheme only encompasses
the process of moving the generated random bits to a buffer. Considering the ARM Cortex
M4 architecture, the loading of a 32-bit number requires 2 cycles, followed by an additional
2 cycles for storage (into the buffer). The overhead running time can thus be calculated
as 4n/32, where n is the number of required random bits. For instance, in the case of
AES-128 with d = 2, the calculated overhead running time is 0.18 Mcycles, which is far
lower than 1% of the overall precomputation time.

Last but not least, we make the source codes of our AES-128 available on github.com/
wjwangcrypto/TBMwithPreprocessing.

6.2 Practical Evaluations

Our masked implementation has been proven to achieve d-probing security, ensuring that
any d intermediate variables remain independent of the secret. However, in practical
threat scenarios, the measured side-channel information may expose all the intermediate
variables, albeit with a certain level of noise. Existing research (e.g., [DDF14, DFS15])
has demonstrated that if an implementation is d-probing secure, its security in a practical
threat model increases exponentially with d, under the assumption of two critical conditions
that should hold in practice.

The first assumption is noisy leakage, indicating that the side-channel information
must contain a certain level of noise. The second assumption involves independent leakage,
assuming independence between the leakages corresponding to different intermediates.
As the noise level is usually directly related to the characteristics of the target platform,
our focus is on validating the assumption of independent leakage, along with assessing
the security order. A commonly employed approach for this purpose is the Test Vector
Leakage Assessment (TVLA) [Sta18].

To validate the security order of the masked AES in practice, we conducted experiments
using a ChipWhisperer STM32F303 UFO target board (with the frequency of 8Mhz)
connecting to a PC with 12th Gen Intel(R) Core(TM) i7-127002.10 Ghz. We target
the AES-128 with security order of d = 1. The MDS matrix A can be built from the
Vandermonde matrix (see, Section 2.2). The round keys are pre-extended and stored in a
masked form. The power traces of the full round AES are collected using Picoscope 5244D
at a sampling rate of 31.25 MS/s. We utilize traces for each fixed vs. random Welch’s
T-test.

In terms of the pre-processing phase, it is important to note that all variables involved
are independent of the secure input. Consequently, the pre-processing does not disclose any
information about the secret, and thus has no leakage. Figure 6(a) depicts the first-order
T-test results of the online phase with 0.5 million traces. In contrast, Figure 6(b) shows
the result for the implementation with 10 000 traces when the randomness source (TRNG)
is disabled (meaning that the random bits are all zeros). The comparison between these
two figures reveals that our implementation with a security order of d = 1 exhibits no
detectable first-order leakage.

We also conduct a second-order t-test on the implementation as shown in Figure 6(c),
with a specific focus on the first round of AES with 0.5 million traces. This strategy stems
from the substantial time required for the t-test evaluation, with the first round alone
demanding 12 hours. Extrapolating from this, the evaluation of the entire round would
take 100 times that duration.

github.com/wjwangcrypto/TBMwithPreprocessing
github.com/wjwangcrypto/TBMwithPreprocessing

296 Efficient Table-Based Masking with Pre-processing

Table 2: Summary of masked AES implementations.

d Scheme Mcycles for
precomp.

Random
bits

RAM for
precomp.

Kcycles for
online-comp. Code Size

1 TBM, our work 6.37 0.176 KB 40.47 KB 28.77 23.98 KB

2

No pre-proc.,
[GR17] − 3.75 KB − 83.9 7.5 KB

Mult. gadget,
[WGY+22] 0.705 0.094 KB 5.63 KB 60 unreported

Mult. gadget,
[WJZY23] 0.068 2.22 KB 2.91 KB 50.3 unreported

TBM, [VV21] 72.59 0.011 KB 40.1 KB 423 unreported
TBM, our work 22.35 1.406 KB 40.94 KB 31.49 24.23 KB

3 TBM, [AVV23] 3.80 40.62 KB 87.22 KB 100 26.5 KB
TBM, our work 54.65 4.86 KB 41.41 KB 37.58 24.51 KB

8

No pre-proc.,
[GR17] − 45 KB − 404.5 unreported

Mult. gadget,
[WGY+22] 3.66 1.5 KB 11 KB 137 unreported

Mult. gadget,
[WJZY23] 0.45 23.88 KB 11.66 KB 92.27 unreported

TBM, [VV21] 3 265.3 0.56 KB 40.8 KB 2 873 unreported
TBM, our work 622.77 90 KB 43.76 KB 47.81 26.46 KB

10
No pre-proc.,

[GR17] − 68.75KB − 563.9 unreported

TBM, our work 1 140 175.78 KB 44.7 KB 53.25 27.48 KB

12
No pre-proc.,

[GR17] − 97.5KB − 749.5 unreported

TBM, our work 1 888.5 303.75 KB 45.64 KB 58.69 28.68 KB

14
No pre-proc.,

[GR17] − 131.25KB − 961.3 unreported

TBM, our work 2 899.7 482.34 KB 46.58 KB 64.13 29.96 KB

16

No pre-proc.,
[GR17] − 170KB − 1199.4 unreported

Mult. gadget,
[WGY+22] 12.23 6KB 18.2KB 239 unreported

TBM, our work 4 225.5 720 KB 47.52 KB 69.57 31.41 KB

(a) TRNG is on, first order (b) TRNG is off, first order (c) TRNG is on, second order

Figure 6: First-order T-test results of AES-128 with d = 1.

Juelin Zhang et al 297

7 Conclusion and Future Works
In this paper, we introduce a new TBM that is compatible with the pre-processing paradigm.
Our scheme is designed to address the challenges of available RAM size for precomputed
variables and the speed of the online phase. Both the theoretical asymptotic analysis and
application to AES in practice show that the scheme is specifically tailored to optimize
the utilization of RAM resources for precomputed variables while maintaining efficient
execution during the online phase. The security of our scheme is proved rigorously and
validated by performing T-test evaluation in practice. We believe a promising future
work is to investigate the masking schemes in the precomputation-based paradigm for
the protection of other crypto-systems such as post-quantum cryptography. Moreover, all
TBM schemes remain vulnerable to some dedicated side-channel attacks exploiting the
repeated use of shares, for instance, in TBM scheme, including our own, every input share
is utilized O(2m) times. In scenarios where leakage noise is low, adversaries can exploit the
repetition of input shares to effectively nullify the masking with high probability. A notable
instance of such attacks is the horizontal attack [BCPZ16]. Other techniques like soft
analytical side-channel attacks [BCS21], side-channel countermeasure dissection [BS20],
and deep learning-based SCA [PWP22, PPM+23] demonstrated considerable effectiveness
in executing such dedicated attacks. Additionally, various studies have highlighted concerns
regarding TBM schemes [TWO13, BGNT18]. On the other hand, it should be noted that
those attacks only succeed in low-noise scenarios and do not contradict the concept of
the probing model, where the security increases exponentially with the security order d in
high-noise conditions. The random probing model [ISW03] effectively captures repeated
leakage of shares. Given the recent advancements [BCP+20, BRT21, BRTV21] of the
masking schemes in the random probing model, we believe proposing secure TBM schemes
under the random probing model in the future is of great importance.

Acknowledgments
The authors would like to thank the reviewers for their helpful comments and suggestions.
This work was supported by the National Key Research and Development Program of
China (Nos. 2021YFA1000600), the National Natural Science Foundation of China (Grant
Nos. 62372273, 62125204 and 61872236), the Program of Taishan Young Scholars of the
Shandong Province, the Program of Qilu Young Scholars (No 61580082063088) of Shandong
University, Department of Science & Technology of Shandong Province (SYS202201) and
Quan Cheng Laboratory (QCLZD202306). Yu Yu also acknowledges the support from the
XPLORER PRIZE.

References
[AVV23] Anju Alexander, Annapurna Valiveti, and Srinivas Vivek. A faster third-

order masking of lookup tables. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2023(1):538–556, 2023.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016, pages
116–129. ACM, 2016.

298 Efficient Table-Based Masking with Pre-processing

[BBP+16] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Randomness complexity of private
circuits for multiplication. In Advances in Cryptology - EUROCRYPT 2016
- 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part
II, pages 616–648, 2016.

[BCP+20] Sonia Belaïd, Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and
Abdul Rahman Taleb. Random probing security: Verification, composition, ex-
pansion and new constructions. In Daniele Micciancio and Thomas Ristenpart,
editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual International
Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August
17-21, 2020, Proceedings, Part I, volume 12170 of Lecture Notes in Computer
Science, pages 339–368. Springer, 2020.

[BCPZ16] Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina Zeitoun.
Horizontal side-channel attacks and countermeasures on the ISW masking
scheme. In CHES 2016, pages 23–39, 2016.

[BCS21] Olivier Bronchain, Gaëtan Cassiers, and François-Xavier Standaert. Give me
5 minutes: Attacking ASCAD with a single side-channel trace. IACR Cryptol.
ePrint Arch., page 817, 2021.

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Kenneth G. Paterson,
editor, Advances in Cryptology - EUROCRYPT 2011 - 30th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Tallinn, Estonia, May 15-19, 2011. Proceedings, volume 6632 of Lecture Notes
in Computer Science, pages 169–188. Springer, 2011.

[BGNT18] Nicolas Bruneau, Sylvain Guilley, Zakaria Najm, and Yannick Teglia. Mul-
tivariate high-order attacks of shuffled tables recomputation. J. Cryptol.,
31(2):351–393, 2018.

[BRT21] Sonia Belaïd, Matthieu Rivain, and Abdul Rahman Taleb. On the power of
expansion: More efficient constructions in the random probing model. In Anne
Canteaut and François-Xavier Standaert, editors, Advances in Cryptology -
EUROCRYPT 2021 - 40th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21,
2021, Proceedings, Part II, volume 12697 of Lecture Notes in Computer Science,
pages 313–343. Springer, 2021.

[BRTV21] Sonia Belaïd, Matthieu Rivain, Abdul Rahman Taleb, and Damien Vergnaud.
Dynamic random probing expansion with quasi linear asymptotic complexity.
In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptology
- ASIACRYPT 2021 - 27th International Conference on the Theory and
Application of Cryptology and Information Security, Singapore, December
6-10, 2021, Proceedings, Part II, volume 13091 of Lecture Notes in Computer
Science, pages 157–188. Springer, 2021.

[BS20] Olivier Bronchain and François-Xavier Standaert. Side-channel countermea-
sures’ dissection and the limits of closed source security evaluations. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2020(2):1–25, 2020.

[CGZ20] Jean-Sébastien Coron, Aurélien Greuet, and Rina Zeitoun. Side-channel mask-
ing with pseudo-random generator. In Anne Canteaut and Yuval Ishai, editors,

Juelin Zhang et al 299

Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Za-
greb, Croatia, May 10-14, 2020, Proceedings, Part III, volume 12107 of Lecture
Notes in Computer Science, pages 342–375. Springer, 2020.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Michael J. Wiener,
editor, Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999,
Proceedings, volume 1666 of Lecture Notes in Computer Science, pages 398–412.
Springer, 1999.

[Cor14] Jean-Sébastien Coron. Higher order masking of look-up tables. In Phong Q.
Nguyen and Elisabeth Oswald, editors, Advances in Cryptology - EURO-
CRYPT 2014 - 33rd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15,
2014. Proceedings, volume 8441 of Lecture Notes in Computer Science, pages
441–458. Springer, 2014.

[CPR07] Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side channel
cryptanalysis of a higher order masking scheme. In Pascal Paillier and Ingrid
Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES
2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007,
Proceedings, volume 4727 of Lecture Notes in Computer Science, pages 28–44.
Springer, 2007.

[CRZ18] Jean-Sébastien Coron, Franck Rondepierre, and Rina Zeitoun. High order
masking of look-up tables with common shares. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(1):40–72, 2018.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently
composing masked gadgets with probe isolating non-interference. IEEE Trans.
Inf. Forensics Secur., 15:2542–2555, 2020.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage
models: From probing attacks to noisy leakage. In EUROCRYPT 2014, pages
423–440, 2014.

[DFS15] Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making
masking security proofs concrete - or how to evaluate the security of any
leaking device. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, pages
401–429, 2015.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Reihaneh Safavi-
Naini and Ran Canetti, editors, Advances in Cryptology - CRYPTO 2012 -
32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2012. Proceedings, volume 7417 of Lecture Notes in Computer Science, pages
643–662. Springer, 2012.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography. Springer,
2002.

300 Efficient Table-Based Masking with Pre-processing

[GR17] Dahmun Goudarzi and Matthieu Rivain. How fast can higher-order masking
be in software? In EUROCRYPT 2017(1), pages 567–597, 2017.

[IKL+13] Yuval Ishai, Eyal Kushilevitz, Xin Li, Rafail Ostrovsky, Manoj Prabhakaran,
Amit Sahai, and David Zuckerman. Robust pseudorandom generators. In
ICALP 2013(1), pages 576–588, 2013.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In CRYPTO 2003, pages 463–481, 2003.

[KHL21] Netanel Klein, Eyal Harel, and Itamar Levi. The cost of a true random bit - on
the electronic cost gain of ASIC time-domain-based trngs. Cryptogr., 5(3):25,
2021.

[PPM+23] Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla Batina.
Sok: Deep learning-based physical side-channel analysis. ACM Comput. Surv.,
55(11):227:1–227:35, 2023.

[PWP22] Guilherme Perin, Lichao Wu, and Stjepan Picek. Exploring feature selection
scenarios for deep learning-based side-channel analysis. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2022(4):828–861, 2022.

[Seg55] Beniamino Segre. Curve razionali normali ek-archi negli spazi finiti. Annali di
Matematica Pura ed Applicata, 39:357–379, 1955.

[SP06] Kai Schramm and Christof Paar. Higher order masking of the AES. In David
Pointcheval, editor, Topics in Cryptology - CT-RSA 2006, The Cryptographers’
Track at the RSA Conference 2006, San Jose, CA, USA, February 13-17, 2006,
Proceedings, volume 3860 of Lecture Notes in Computer Science, pages 208–225.
Springer, 2006.

[Sta18] François-Xavier Standaert. How (not) to use welch’s t-test in side-channel
security evaluations. In Begül Bilgin and Jean-Bernard Fischer, editors, Smart
Card Research and Advanced Applications, 17th International Conference,
CARDIS 2018, Montpellier, France, November 12-14, 2018, Revised Selected
Papers, volume 11389 of Lecture Notes in Computer Science, pages 65–79.
Springer, 2018.

[TWO13] Michael Tunstall, Carolyn Whitnall, and Elisabeth Oswald. Masking tables
- an underestimated security risk. In Shiho Moriai, editor, Fast Software
Encryption - 20th International Workshop, FSE 2013, Singapore, March 11-13,
2013. Revised Selected Papers, volume 8424 of Lecture Notes in Computer
Science, pages 425–444. Springer, 2013.

[VV21] Annapurna Valiveti and Srinivas Vivek. Higher-order lookup table masking
in essentially constant memory. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2021(4):546–586, 2021.

[WGY+22] Weijia Wang, Chun Guo, Yu Yu, Fanjie Ji, and Yang Su. Side-channel
masking with common shares. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2022(3):290–329, 2022.

[WJZY23] Weijia Wang, Fanjie Ji, Juelin Zhang, and Yu Yu. Efficient private circuits with
precomputation. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(2):286–
309, 2023.

Juelin Zhang et al 301

A Schramm and Paar’s scheme
Gadget 6 presents Schramm and Paar’s TBM scheme considering m-bit to mo-bit lookup
table with any values of m, mo and d. It takes shares x̂[0], . . . , x̂[d] ∈ F2m as inputs and
computes the output shares ŷ[0], . . . , ŷ[d] ∈ F2mo , such that S(

∑
x̂) =

∑
ŷ.

Gadget 6 Schramm and Paar’s scheme [SP06] (only secure with d = 1)
Input: Shares x̂[0], . . . , x̂[d] ∈ F2m , . . . ,F2m .
Output: Shares ŷ[0], . . . , ŷ[d] ∈ F2mo , . . . ,F2mo .

It ensures:
∑

ŷ = S(
∑

x̂) with S an m-bit to mo-bit lookup table.
——————Pre-processing————————–

1: Generate a vector of random variables s ∈ Fd−1
2mo

2: t[i]← S(i)⊕
∑

s for i ∈ {0, . . . , 2m−1}
3: for k = 0; k < d; i++ do
4: t[i]← t[i⊕ x̂[k]] for any i ∈ {0, . . . , 2m−1}

. It ensures S(i⊕
∑

x̂[0 :k]) = t[k]⊕
∑

s
5: end for

——————Online-computation——————
6: ŷ[0], . . . , ŷ[d−1]← s[0], . . . , s[d−1]
7: ŷ[d]← t[x̂[d]]

B Coron’s scheme
Gadget 6 presents Coron’s TBM scheme considering m-bit to mo-bit lookup table with
any values of m, mo and d.

Gadget 7 Coron’s scheme (not quite compatible with pre-processing)
Input: Shares x̂[0], . . . , x̂[d] ∈ F2m , . . . ,F2m .
Output: Shares ŷ[0], . . . , ŷ[d] ∈ F2mo , . . . ,F2mo .

It ensures:
∑

ŷ = S(
∑

x̂) with S an m-bit to mo-bit lookup table.
——————Pre-processing————————–

1: T [i, ∗]← (S(i), 0, . . . , 0︸ ︷︷ ︸
d

) for i ∈ {0, . . . , 2m−1}

. It ensures S(i) =
∑

T [i, :] for k ∈ {0, . . . , 2m−1}
2: for k = 0; k < d; k++ do
3: T [i, ∗]← Refresh

(
T [i⊕ x̂[k], ∗]

)
for any i ∈ {0, . . . , 2m−1}

. It ensures S(i⊕
∑

x̂[0 :k]) =
∑

T [i, ∗]
4: end for

——————Online-computation——————
5: ŷ[0], . . . , ŷ[d]← Refresh(T [x̂[d], ∗])

	Introduction
	Our Contributions
	Related Works
	Organization

	Preliminaries
	Notations
	Maximum Distance Separable (MDS) Matrix.
	The Concept of Masking
	Composable Security Notions
	Linear Gadget
	On the Precomputation Paradigm of Masking

	Technical Overview of the New Scheme
	Schramm and Paar's scheme
	Coron's Scheme
	A Birdeye on Our Scheme

	New Table-based Masking Scheme
	Construction
	Correctness
	Security

	A Discussion on the Overhead of Random Bits Generation
	Applications to AES and Security Analysis in Practice
	Applications to AES-128
	Practical Evaluations

	Conclusion and Future Works
	Schramm and Paar's scheme
	Coron's scheme

