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Abstract. We present a novel approach to small area and low-latency first-order
masking in hardware. The core idea is to separate the processing of shares in time in
order to achieve non-completeness. Resulting circuits are proven first-order glitch-
extended PINI secure. This means the method can be straightforwardly applied to
mask arbitrary functions without constraints which the designer must take care of.
Furthermore we show that an implementation can benefit from optimization through
EDA tools without sacrificing security. We provide concrete results of several case
studies. Our low-latency implementation of a complete PRINCE core shows a 32%
area improvement (44% with optimization) over the state-of-the-art. Our PRINCE
S-Box passes formal verification with a tool and the complete core on FPGA shows no
first-order leakage in TVLA with 100 million traces. Our low-latency implementation
of the AES S-Box costs roughly one third (one quarter with optimization) of the area
of state-of-the-art implementations. It shows no first-order leakage in TVLA with
250 million traces.
Keywords: Hardware · Masking · Probing Security · Side-Channel Analysis

1 Introduction
Implementing secure cryptographic algorithms in a computer system without compromising
their promised security has always been challenging. Early research demonstrating the
vulnerabilities of cryptographic implementations by Kocher et al. [Koc96] showed that it is
possible to find the secrets that a computer processes by monitoring its execution time and
thereby highlighted the need to build secure implementations. This led to the consolidation
of side-channel analysis as a field of study that attempts to gain information from the
implementation of a chip or computer system by monitoring its physical effects rather than
exploiting a weakness of the implemented algorithm. Along with timing analysis [Koc96],
power analysis [KJJ99] and electromagnetic analysis [GMO01, QS01] represent some of
the best-known side-channel attacks. Power analysis, in particular, is perhaps the most
popular due to its low setup cost, non-invasive nature, and devastating effectiveness.

In the past few decades, there has been a great deal of research on securing cryp-
tographic implementations against side-channel attacks. Chari et al. [CJRR99] as well
as Goubin and Patarin [GP99] independently proposed a generic countermeasure called
masking that splits the data being processed into random shares to thwart power analysis
attacks. The idea behind the countermeasure is to eliminate the correlation between the
secret data and the data being processed, since the device’s power consumption depends
on the latter, which is now random. But processing multiple shares also comes with
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overheads in terms of implementation area, execution time, online randomness, etc. Along
with securing implementations, it has also been important to minimize these overheads.
Masking proved to be quite successful for securing software implementations, but it was
later found that masked hardware implementations still leak information about the se-
crets due to glitches [MPG05]. Several modern masking techniques such as Threshold
Implementations (TI) [NRR06], Consolidating Masking Schemes (CMS) [RBN+15], and
Domain Oriented Masking (DOM) [GMK16] were proposed to securely mask hardware
in the presence of glitches. They were quite successful in creating secure and efficient
hardware implementations with low area and randomness usage. Overhead reductions
are typically achieved by decomposing complex non-linear functions, such as an S-Box,
into smaller sub-circuits with low algebraic degrees that can be masked efficiently. The
composition of the sub-circuits requires careful use of register stages to prevent glitch
propagation and re-masking intermediate values to maintain uniformity.

Due to the recent advent of IoT devices, which are very accessible to an attacker,
there is a need for embedded real-time applications to have fast data processing, such
as memory encryption, to ensure security. As a consequence, there is a new motivation
to design masking schemes suitable for low-latency implementations. One of the first
generic approaches called GLM was proposed by Groß et al. and was used to design
low-latency S-Boxes in [GIB18]. GLM, built upon DOM, reduces latency by eliminating
register stages required for share compression after non-linear operations. Skipping share
compression exponentially increases the share count after every non-linear operation,
drastically increasing the overall area and randomness utilization. This especially makes
the approach impractical for masking large functions such as higher-degree S-Boxes. Other
research into low-latency masking includes LLTI [AZN21] based on TI and other methods
involving asynchronous circuits [MS16, NGPM22].

Although masking techniques are typically proven secure in the t-probing model [ISW03],
most are not generic and are not trivial to compose with other design elements. In other
words, converting any unprotected circuit to a protected one is not straightforward and is
usually laborious. Recently in [CS20], Cassiers et al. introduced a new security notion
called Probe Isolating Non-Interference (PINI), which allows for trivial composition. Any
PINI gadget is directly composable with other (linear and non-linear) PINI gadgets, without
significant overheads. In [CGLS21], the authors propose two small multiplication gadgets
called HPC1 and HPC2 that can be composed in the glitch-extended probing model,
introduced by Faust et al. [FGP+18], to create more complex circuits. Later in [KM22],
Knichel et al. proposed the HPC3 gadget specifically intended for low-latency applications.
Although one can build any circuit with these gadgets, the latency of the circuit grows
with the algebraic degree of the function. To the best of our knowledge, there exists only
one algorithm-level approach (which does not simply compose elementary gadgets) to
generate first-order PINI secure circuits, namely GHPC [KSM22]. Despite being PINI
secure, their low latency version GHPCLL also suffers from the high area and randomness
overheads for larger functions, like GLM. A single-cycle AES S-Box using GHPCLL costs
64.1 kGEs and 2048 bits of randomness, similar to the cost of GLM. But GHPCLL has the
advantage that it is proven to be composable secure while GLM is not.

Contributions. We present a new masking method for low-latency applications that is
first-order PINI composable secure, and - more importantly - brings substantially less
overhead than other composable low-latency masking schemes. Our contributions are the
following:

• We present a masking method that secures any function against first-order attacks
and uses only a single register stage, thus executes in a single clock cycle.

• We provide a formal description and follow up with a proof that shows any circuit
secured by our approach is first-order glitch-extended PINI secure.
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• Compared to previously published algorithm-level approaches such as GLM [GIB18]
and GHPC [KSM22] that implement single-cycle Boolean functions, our method
shows a substantial improvement both in terms of area as well as online randomness
required, for realistically complex circuits.

• We apply our proposed method to produce a masked first-order secure PRINCE
implementation that executes in one cycle per round and show the improvements in
the utilization results. We demonstrate the security of our PRINCE S-Box with a
formal verification tool and show that the complete PRINCE core on FPGA exhibits
no first-order leakage in TVLA with 100 million traces.

• We apply our proposed method to mask a more complex function, i.e. the AES
S-Box, in order to demonstrate its potential for efficient implementations. We show
significant improvements in utilization costs and demonstrate that our method scales
well especially when masking larger functions. Our AES S-Box on FPGA shows no
first-order leakage in TVLA with 250 million traces.

Outline. The remainder of this article is organized as follows. In Section 2, we briefly
introduce the notation and recall relevant background. In Section 3, we start explaining
our idea with a toy example and design a simple masked AND gate. Next, we detail our
method with a formal description which can then be applied to any Boolean function. We
prove that our method is first-order PINI glitch-extended composable secure. In Section 4
we discuss advantages of our approach. In Section 5, we present our first case study by
applying our method to produce a masked, first-order secure, low-latency PRINCE core. In
Section 6, we present our second case study by applying our method to a more complex and
challenging function, the AES S-Box. In Section 7, we verify through leakage assessment
tests that our theoretical proof does indeed translate to practically secure implementations
of a complete PRINCE core and an AES S-Box. Finally, Section 8 presents our conclusions
and avenues for future work.

2 Preliminaries
In this section we briefly introduce the notation and recall relevant background.

2.1 Notation
Boolean masking splits each bit x ∈ F2 into n uniform random shares xi such that
x = x0 ⊕ . . .⊕ xn−1. The storage of a variable in a register is denoted by curly brackets
{ · }.

2.2 Probing Model
In the probing model, introduced by Ishai, Sahai, and Wagner [ISW03], an adversary A is
allowed to observe a set of at most t (predefined) wires of a circuit at each execution of the
masking. The security of a given implementation is proven by showing that a simulator
S can perfectly simulate any set of at most t probes without any knowledge of the input
shares (x0, . . . , xn−1). A circuit ensuring this condition for any set of size t is said to be
t-probing secure.

The probing model provides a way to prove the security of a circuit. However, this
algorithmic circuit does not trivially map to practice where, due to leakage effects, an
adversary can gain more information than what a probe typically captures. The main
leakage effect to be considered is that of glitches. In this work, we model glitches by
bundling groups of wires over which a glitch could carry information from one wire to
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another. Whereas one of the adversary’s probes normally results in the value of a single
wire, a glitch-extended probe allows obtaining the values of all wires in a bundle. This
extension of the probing model has been discussed in the work of Reparaz et al. [RBN+15]
and formalized by Faust et al. [FGP+18]. The formulation of the latter work is as follows:
“For any ε-input circuit gadget G, combinatorial recombinations (aka glitches) can be
modeled with specifically ε-extended probes so that probing any output of the function
allows the adversary to observe all its ε inputs.”

2.3 Related Work
Due to the growing interest in low-latency masking, several masking techniques have
been developed in recent years which are specifically focused on reducing latency. Some
techniques relevant to our work are GLM [GIB18], GHPC [KSM22] and LMDPL [SBHM20].
Among these, the constructions for GHPC and GLM are most comparable to our technique,
while LMDPL employs a distinct dual-rail precharge logic.

GLM is a low-latency masking approach proposed by Groß et al. that can be applied
to protect any security-sensitive circuit [GIB18]. GLM is based on the Domain Oriented-
Masking (DOM) scheme [GMK16], which was introduced to create low-area and low
randomness designs. DOM is a gate-level masking technique that uses masked AND
gates (DOM multipliers) to build and secure more complex circuits. A masked circuit
built with DOM is split into independent circuits called “domains” based on the share
index of variables. Non-linear operations compute on all shares of a variable requiring
communication between domains and are called “cross-domain terms”. For a secure
computation, the cross-domain terms are refreshed and stored in registers before they are
compressed and merged with inner-domain terms to limit the number of shares and to
reduce area.

While DOM optimizes for area and randomness, GLM trades area and randomness
for reduced latency. The register stages in DOM multipliers increase latency in a design.
GLM reduces latency by eliminating these stages. However, constructing a low-latency
circuit by eliminating these register stages introduces complications, leading to increased
area and randomness requirements for the circuit. First, the number of output shares
increases after every non-linear operation as there is no share compression due to the lack
of register stages. The cross-domain terms cannot be merged with the inner-domain terms,
increasing the number of shares. Furthermore, as the non-linear logic depth increases, the
number of shares of the intermediate values in the circuit also increases exponentially,
resulting in a significant increase in area. Second, removing the registers causes the circuit
to be susceptible to variable collisions. GLM requires the inputs to non-linear gates to be
independently shared. If the circuit violates this condition, the colliding variables must be
duplicated with multiple shared instances of the same variable with independent sharings.
To resolve collisions, it might also be necessary to duplicate the entire fan-in circuitry
causing the collision. All of these fixes increase the area and randomness overhead of the
circuit. As a final step, secure share compression is performed by refreshing the shares
with randomness and storing them in registers before the compression, which also increases
the cost of area and randomness since many shares need to be refreshed and stored.

GHPC, introduced by Knichel et al. [KSM22], is a low-latency masking technique that
uses Shannon Decomposition to transform arbitrary Boolean functions into secure PINI
composable gadgets. For simplicity, we will illustrate the technique by applying it to a
4 × 4 function, F (x, y, z, w) : F4

2 → F4
2. The technique is applied independently to each

coordinate function, decomposing it into cofactors by fixing the input shares within a
single share domain. Consider f(x0 + x1, y0 + y1, z0 + z1, w0 +w1) : F4

2 → F2 as the shared
representation of one of the four coordinate functions of F , where the subscript denotes the
share domain of the inputs. The function f is decomposed into 16 cofactors by considering
all combinations of inputs from the second share domain, i.e. {x1, y1, z1, w1} ∈ {0, 1}4.
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For example, if {x1, y1, z1, w1} = {0, 1, 1, 0}, then the corresponding cofactor would be
f(x0, y0, z0, w0). The resulting Shannon cofactors only depend on the inputs from the first
share domain, i.e. {x0, y0, z0, w0}. A secure implementation of F with GHPC necessitates
two register layers. A secure low-latency implementation of F with GHPCLL reduces this
to one register layer at the cost of more randomness. For each coordinate function, in the
first phase, the 16 cofactors are calculated, refreshed, and registered using inputs from the
first share domain. In the second phase, the inputs from the second share domain serve as
selection bits to choose the correct cofactor out of the sixteen for output. In GHPC, the
number of cofactors, registers, and randomness required is determined by the number of
inputs and not the algebraic degree of the function.

3 Time Sharing Masking
We introduce our novel approach to securely first-order mask any (vectorial) Boolean
function in hardware with a single register layer. We will refer to it using the acronym
TSM, short for Time Sharing Masking, in the remainder of the paper. We begin the
explanation with a toy example, applying TSM to a single AND gate, in Section 3.1. In
Section 3.2, we write out TSM formally so it applies to any Boolean function, in particular
also vectorial Boolean functions. Finally, in Section 3.3, we prove that TSM is first-order
glitch-extended PINI composable secure.

3.1 Preliminary Example
Let x and y be the two inputs of the AND gate that computes z = x · y. And let
(x0, x1), (y0, y1) be their sharings such that x = x0 + x1 and y = y0 + y1. A key aspect of
TSM is to separate in time the processing of share0 inputs from the processing of share1
inputs with the help of a register layer, see Figure 1. Before the computation begins, we
refresh the inputs with two random bits r3, r4 for the masked AND gate to be composable
secure (see Section 3.3):

x′0 = x0 + r3 x′1 = x1 + r3

y′0 = y0 + r4 y′1 = y1 + r4

Then, in the first phase, all cross product combinations of share0, i.e., (x′0, y′0, x′0y′0),
are computed, refreshed, and stored in registers. In the second phase, all cross product
combinations of share1, i.e., (x′1, y′1, x′1y′1), are computed. Finally, in order to produce the
output of the AND gate, products of masked combinations of share0 and combinations of
share1 are summed up, see Eq. (1).

z0 =
{
x′0y
′
0 + r0

}
+
{
x′0 + r1

}
·
{
y′1

}
+
{
y′0 + r2

}
·
{
x′1

}
z1 =

{
r0

}
+
{
r1

}
·
{
y′1

}
+
{
r2

}
·
{
x′1

}
+
{
x′1

}
·
{
y′1

} (1)

The computation requires five fresh random bits and eight registers to store the
intermediate shares. The area and randomness utilization for computing a single AND
gate is high, but we use this toy example only for illustration. TSM should be mainly
applied to mask more complex non-linear functions as a whole, and not individual AND
gates. The advantages of this approach will become more apparent in the remainder of
the paper.



254 Time Sharing - A Novel Approach to Low-Latency Masking

x0

y0

r0, r1, r2

r3, r4

x1

y1

⊕

⊕

x′0y
′
0 + r0

x′0 + r1

y′0 + r2

x′1y
′
1

x′1
y′1

∑
×

∑
× z1

z0

Figure 1: Application of TSM to a single AND gate.

3.2 Formal Description
We provide a description of TSM working on an arbitrary (vectorial) Boolean function.
The outline is presented in Figure 2.

Specifically in this section, we change the notation to denote bits in a word by square
brackets (x[0], ..., x[k − 1]) instead of using different letters (e.g., x, y in the previous
section). We denote x ∈ Fk2 a k-bit word where its two-share Boolean masking is denoted
by x̄ = (x0, x1) ∈ F2k

2 such that x0 + x1 = x with x0 = (x0[0], ..., x0[k − 1]) and x1 =
(x1[0], ..., x1[k − 1]) the notation of the share-words in separate bits. This change allows a
simpler, more compact presentation of what follows next.

gi + rx0

r

x1

⊕

r′ ⊕

∑
×

hi
∑
×

Figure 2: Application of TSM to an arbitrary (vectorial) Boolean function described by
the functions gi and hi.

We explain the TSM method in a constructive manner where we first rewrite in Eq. (2)
the algebraic normal form of a shared function as the sum of non-complete terms where
each term is the multiplication between share domain 0 and share domain 1. We then
rewrite this equation to Eq. (3) by adding fresh randomness allowing us to safely form the
two output shares outlined in Eq. (4). Finally, the inputs of the gadget are first re-masked
to ensure composable security.

We start informally, where we first rewrite the equations of a shared monomial. Namely,
note that for the product of the bits x[j] for some set of indices j ∈ J ⊂ {0, ..., k − 1}∏
j∈J

x[j] =
∏
j∈J

(x0[j] + x1[j]) =
∑
i∈Fk

2

∏
j∈J

xi[j][j] =
∑
i∈Fk

2

∏
j∈J s.t. i[j]=0

x0[j]
∏

j∈J s.t. i[j]=1

x1[j] .
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In words, each monomial can be split as the sum of non-complete terms and each of these
terms can be split as the multiplication of shares from domain 0 and shares from domain 1.

Consider an arbitrary Boolean function

f : Fk2 → F2 : x = (x[0], ..., x[k − 1]) 7→ f(x[0], .., x[k − 1]) .

We denote its two-share masking by F̄ : F2k
2 → F2

2 : x̄ 7→ (F0(x̄), F1(x̄)) such that
F0(x̄) + F1(x̄) = f(x0 + x1). The above insight can be applied to each monomial in the
algebraic normal form of f . We thus say that there exist functions gi and hi such that

f(x0 + x1) =
∑
I∈Pk

gπ(I)((x0[i])i∈I)hπ(I)((x1[i])i∈Ω/I) , (2)

where we denote (x0[i])i∈I as the set of all bits x0[i] for i in I. We also denote by Pk the
power set of the indices Ω = {0, ..., k − 1}, namely all possible sets of indices in Ω. It is
clear that |Pk| = 2k. The sets in Pk are numbered and indicated by the function π.

The functions gi, hi in Eq. (2) work only on share domain 0 and 1, respectively. To
go back to the masked AND gate example from Section 3.1, the functions gi, hi are the
following

g0(x0, y0) = x0y0 g1(x0) = x0 g2(y0) = y0 g3(∅) = 1
h0(∅) = 1 h1(y1) = y1 h2(x1) = x1 h3(x1, y1) = x1y1 .

Multiplying and adding the above terms, for P2 = ((0, 1), (0), (1), ∅), we get

xy =
∑
I∈P2

gπ(I)((x0[i])i∈I)hπ(I)((x1[i])i∈Ω/I)

= g0(x0, y0)h0(∅) + g1(x0)h1(y1) + g2(y0)h2(x1) + g3(∅)h3(x1, y1)
= x0y0 + x0y1 + x1y0 + x1y1 .

The above sharing is already correct, however, it misses randomness for its security.
We thus further adapt Eq. (2) by adding randomness. Namely, by adding 2k random

bits r = (r0, ..., r2k−1), we get

f(x0 + x1) =
∑
I∈Pk

(gπ(I)((x0[i])i∈I) + rπ(I))hπ(I)((x1[i])i∈Ω/I) (3)

+
∑
I∈Pk

rπ(I)hπ(I)((x1[i])i∈Ω/I) .

By re-masking, we can split the computation in two parts (read two phases), the com-
putation and refreshing of gi(·) on the first shares, and the computation and recombination
of hi(·) on the second shares. This is also depicted in Figure 2. In this figure, we also
observe that the shares x0, x1 are first refreshed with the randomness r′ ∈ Fk2 . This is
done in order to make TSM composable secure as proven in Section 3.3.

Finally, the two shares F0(x̄), F1(x̄) are composed as follows

F0(x̄) =
∑
I∈Pk

(gπ(I)((x0[i])i∈I) + rπ(I))hπ(I)((x1[i])i∈Ω/I) (4)

F1(x̄) =
∑
I∈Pk

rπ(I)hπ(I)((x1[i])i∈Ω/I) .

Since the functions gi and hi (or their product) consist of all terms up to degree k,
any Boolean function can be made from these gi and hi. This is extended for vectorial
functions (Fk2 → F`2) by re-using the gi and hi functions for each coordinate function.
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While this can make the output shares non-uniform (in the extreme case, two coordinate
functions are equal), the security comes from the register layer being filled with uniquely
re-masked values and from each function working only on one share domain at a time.
This is made formal in the next section where we show that TSM is PINI composable
secure.

3.3 Security
We prove that TSM is first-order probing secure and that it is, moreover, composable
first-order secure in the Probe-Isolating Non-Interference (PINI) framework by Cassiers
et al. [CS20]. Namely, we show that any circuit secured with TSM allows for trivial
composition. Since TSM is designed to work over hardware, we use the glitch-extended
probing model by Faust et al. [FGP+18] to extend the PINI framework into the glitch-
extended PINI framework. This PINI security is particularly important since it allows for
the composition between gadgets without the need to place additional registers between
them. Since all maskings of linear layers (where the linear function is applied share-wise)
are PINI secure, we can trivially secure linear functions without adding additional registers
or additional randomness.

Before starting the proof that the approach delivers PINI secure solutions, we need to
introduce the necessary concepts to introduce PINI security. We start by providing the
notion of simulation.

Definition 1 (Simulatability [CS20]). Let P = {p1, ..., p`} be a set of ` probes of a
gadget C and CP the tuple of values of the probes for an execution of C. Let I =
{(i1, j1), ..., (ik, jk)} ⊂ {0, ..., d − 1} × {0, ...,m − 1} be a set of input wires of C. A
simulator is a randomized function S : Fkq → F`q. The set of probes P can be simulated
with the set of input wires I if there exists a simulator S such that for any inputs x∗,∗,
the distributions CP (x∗,∗) and S(xi1,j1 , ..., xik,jk

) are equal, where the probability is over
the random coins in C and S.

The above definition defines the security game in terms of a simulation game. This
framework is extended to PINI security where we define which information is given to the
simulator.

Definition 2 (PINI [CS20]). Let G be a gadget over d shares and P a set of t0 (glitch-
extended) probes on wires of G (called internal probes). Let A be a set of t1 share indices.
G is t-PINI if for all P and A such that t0 + t1 ≤ t, there exists a set B of at most t1
share indices such that probes on the set of wires P ∪ yA,∗ can be simulated with the wires
xA∪B , with xi,∗ denoting all inputs of share i and yi,∗ denoting all outputs of share i.

Given the above definition of PINI, we show that any circuit secured by the TSM
method from Section 3 is composable secure. Intuitively, the reason TSM is composable
secure is due to each registered value (in the single register stage of the method) being
re-masked by unique randomness.

Theorem 1. Any circuit secured by TSM (Section 3) is first-order glitch-extended PINI.

Proof. Denoting the k-bit input shares xi and the output shares yi. Looking at Definition 2
for t = 1 (considering glitch-extended probes), we find that we need to prove two cases.
Namely,

• for t0 = 0 and t1 = 1, in which case we need to show that the output shares yi can
be simulated using the input shares xi for i ∈ {0, 1}.

• for t0 = 1 and t1 = 0, in which case we need to show that a single intermediate probe
can be simulated using either x0 or x1.
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We begin with the first case, we have to prove that yi can be simulated using xi. We
split up the proof depending on i.

• For y0, the output is calculated from the values gi re-masked by r and by values hi
which operate on the second shares x1 re-masked by r′. Since gi is re-masked by r
and x1 is re-masked by r′, a simulator can sample r and r′ and perfectly simulate
the values y0 as uniform randomness (in particular, the simulator does not need the
values x0).

• For y1, since it is created using only x1 and randomness r′, a simulator can perfectly
simulate y1 given x1 and by uniformly random sampling r′ (in fact, due to r′ the
simulation would also work from scratch in which case the simulator can simulate
the probed values as uniform randomness).

For the proof of the second case where we simulate an intermediate probe, we consider
only probes in the first phase of the circuit, since probes on the second phase were already
considered in the previous case. However, for probes on the first phase, it is clear that
these can be perfectly simulated since the computation is done share-wise (a probe either
only sees values from x0 or from x1) in which case the simulator simply gets either the
zero or the one shares and performs the computation following the algorithm.

Since both cases are proven, the masking is first-order glitch-extended PINI.

As a result, since the TSM circuit is first-order glitch-extended PINI secure, it can be
composed with any other PINI gadget (which includes all linear operations too) without
adding extra register stages or randomness following the proofs of composable security
from the original work [CS20].

4 Advantages of TSM
In this section we mainly outline the general efficiency of TSM and contrast it with the
first-order case of GLM and GHPCLL. In general, we emphasize the advantages of TSM
through a comparison of area, considering both the number of registers and logic, as well
as the randomness required for masking a Fk2 → Fk2 function with an algebraic degree of
k − 1 (which represents the highest algebraic degree for a k-bit permutation).

4.1 Registers and Randomness Cost
In Section 3.2, we described our approach by applying it to an arbitrary Boolean function
f : Fk2 → F2. The Boolean function is computed as a combination of the functions gi
and hi. Importantly, the functions gi and hi solely depend on the k shared inputs. We
emphasize that TSM can be extended to vectorial Boolean functions with multiple outputs
(Fk2 → Fk2) because all coordinate functions share the same k inputs. The intermediate
registers which store the refreshed results of the gi functions, the random bits, and the
second share inputs can be commonly used to calculate the shared outputs of all coordinate
functions without increasing the register and randomness cost. In other words, the number
of intermediate registers and randomness remains constant irrespective of the number of
outputs.

TSM requires at most 2k − 2 registers to store the results of the gi functions since
|Pk| = 2k and there is no degree k term (removing one register) and we do not store a
constant term (removing the second register). TSM then requires at most another 2k − 2
registers to store the random bits r. Finally, TSM requires k registers to store the second
share inputs. This gives a total of at most 2k+1 + k − 4 registers. Similarly, for the
randomness, TSM requires at most 2k − 2 bits to refresh the gi functions and another k
bits for r′ in Figure 2.
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We compare these numbers with GLM and GHPCLL in Table 1. We note that both
TSM and GLM can be more efficient than what is reported in the table, depending on
the function to which the method is applied. Namely, we report the worst case metrics
such that any function of degree k − 1 can be implemented with the given register and
randomness costs.

Table 1: Comparison for a Fk2 → Fk2 function of algebraic degree k − 1.
Name # Registers # Register Layers # Random Bits
TSM 2k+1 + k − 4 1 2k + k − 2

GLM [GIB18] 2kk 1 2kk
GHPCLL [KSM22] 2kk + k 1 2kk

We observe roughly a factor k/2 improvement in the number of registers and a factor k
in random bits over both GLM and GHPCLL. As previously mentioned, this improvement
is a direct result of re-using the registered values for each coordinate function (of the k
outputs).

If we compare TSM with GLM for masking an AES S-Box, we see significant, concrete
savings in registers and random bits when implementing a higher algebraic degree function
with many outputs. Groß et al. [GIB18] report the cost of masking an AES S-Box with a
single register layer to be 16 · 27(= 2048) registers and 16 · 27(= 2048) random bits. To
compare these numbers with TSM, we fill in the value k = 8 in Table 1. TSM requires
only 516 registers and only 262 random bits per AES S-Box.

In Section 6, we discuss the implementation of the AES S-Box with TSM in more detail
and provide concrete numbers for the area cost, including combinational logic.

4.2 Combinational logic
Without loss of generality, let us consider the PRINCE S-box, a 4× 4 function S : F4

2 → F4
2

for illustration. We show the equations for the function S in Algebraic Normal Form
(ANF) in Eq. (5). We denote (a, b, c, d) as the four input bits and f0, f1, f2, f3 as the
coordinate functions which produce the four output bits.

f0 = 1 + dc+ b+ cb+ dcb+ a+ da+ ba

f1 = 1 + db+ cb+ dcb+ ca+ cba

f2 = d+ dc+ a+ da+ ca+ dca+ cba

f3 = 1 + c+ cb+ dcb+ a+ dca+ ba+ dba

(5)

Before delving into the benefit of TSM, let us briefly discuss how the function S would
be masked using GLM. In the first stage, every coordinate f0, f1, f2, f3 is split into eight
share domains. Cubic terms, such as bcd, are split into eight shared multiplication terms,
b0c0d0, b0c0d1, ..., b1c1d1. One multiplication term is assigned to each of the eight shared
domains of the coordinate functions. Quadratic terms, such as bc, are split into four
shared multiplication terms b0c0, b0c1, b1c0, b1c1 and are distributed among four of the
eight shared domains of the coordinate functions. The share domains are then refreshed
with fresh randomness and are registered. In the second stage, share compression is
performed to reduce the number of shares from eight to two. In summary, the first stage
involves expanding the number of shares, followed by the second stage, where the shares
are compressed. On the other hand, to mask the function S, GHPC applies “Shannon
decomposition”, an identity that splits any Boolean function into parts called cofactors,
to each coordinate function f0, f1, f2, f3. The coordinate functions are independently
expanded into 16 cofactors by setting one share of the inputs a,b,c, and d to either 0 or 1.
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A common characteristic between GLM and GHPC, which may be regarded as a potential
drawback, is that every coordinate function is treated as a separate entity even though
they commonly share the same inputs.

Applying TSM to the function S, in the first stage, all inputs are remasked, then all
cross-products of the share0 inputs are computed, i.e., (a0, b0, a0b0, ..., b0c0d0), and finally
those are refreshed and stored in the register layer. In the second stage, the cross-products
of the share1 inputs are computed, and they are then multiplied and summed with the
masked cross-products of the share0 inputs to produce the outputs of the coordinate
functions.

TSM allows to reduce the cost of combinatorial logic by efficient reuse in several ways.
First, we can deduplicate identical terms across coordinate functions, i.e. compute them
only once and then reuse them. For example, dc is needed to compute f0 and f2 but
there is no need to compute dc twice. Overall this allows to reduce the number of distinct
terms to compute from 20 to 14. The decrease in logic becomes more prominent with an
increase of the number of coordinate functions. This also reduces the number of random
bits needed for refreshing in phase 1, and the number of registers.

Second, we can reuse already computed lower degree terms to compute higher degree
terms. For example, we can compute dc and reuse it for computing dcb. Eq. (6) shows
the sharing of the coordinate function f0 and Eq. 7 shows in the first three lines the
straightforward computation for (b)0, (cb)0 and (dcb)0. In the fourth line it shows a more
efficient computation of (dcb)0 by reusing the already computed (cb)0 which results in
a reduction of the number of logic gates, thereby lowering the area. The decrease in
logic gates becomes more prominent with an increase in the algebraic degree of the terms,
particularly when masking higher algebraic degree functions such as the AES S-Box.

f
0
0 = 1 + (dc)0 + (b)0 + (cb)0 + (dcb)0 + (a)0 + (da)0 + (ba)0

f
0
1 = (dc)1 + (b)1 + (cb)1 + (dcb)1 + (a)1 + (da)1 + (ba)1

(6)
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4.2.1 Optimization during Logic Synthesis

Importantly, since the combinational logic in phase 1 (before the register layer) and the
combinational logic in phase 2 (after the register layer) is non-complete, it is safe to
allow (or even, one should enforce) the logic optimization through Electronic Design
Automation (EDA) tools, without the need to carefully place logic in distinct modules.
The only kind of optimization which must not be allowed is register re-timing, as that
may move combinational logic across the register stage which may lead to a violation of
non-completeness. Our case studies in the following sections include the impact of logic
optimization on area, maximum frequency and security.

5 Case Study: Application of TSM to PRINCE
For our first case study, we chose to implement a masked version of the PRINCE block
cipher [BCG+12] with TSM as a proof of concept. PRINCE is one of the few ciphers
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designed primarily for low-latency applications. With the rise of embedded devices with
real-time requirements such as fast encryption or decryption, PRINCE fills the void of
fast, lightweight block ciphers.

PRINCE is a 64-bit block cipher with a 128-bit key and consists of 12 rounds. The key
is split into two 64-bit keys. One half is used to produce whitening keys (k0, k

′
0) and the

other half (k1) is used in PRINCEcore for the round key addition, see Figure 3. Each
round of PRINCE consists of a key addition, a substitution layer (S, S−1), a linear layer
(SR, SR−1,M,M ′,M−1) and the addition of a round constant (RC0, RC1, . . . , RC11). For
more details about the cipher, we refer the reader to the original paper [BCG+12].

R-16 R-17 R-18 R-19 R-110

RC6 RC7 RC8 RC9 RC10

k1 k1 k1 k1 k1

M-1 S-1

k1 RCi

R 5

RC1 RC2 RC3 RC4 RC5

k1 k1 k1 k1 k1

S M

k1RCi

R 4R 3R 2R 1 S M' S-1

k1RC11k1 RC0

PRINCEcore

k0

m

k'0

c

Figure 3: Schematic view of 12 rounds of PRINCE. Regular rounds Ri consist of an S-Box
layer (S) and a linear layer M , and inverse rounds R−1

i consist of an inverse S-Box layer
(S−1) and an inverse linear layer M−1.

5.1 Masked PRINCE S-Box
The difficulty of masking a cipher implementation typically lies with its non-linear elements.
The non-linear substitution layer (S)/inverse substitution layer (S−1) of PRINCE consists
of 4-bit S-Boxes of maximum algebraic degree three. We have already introduced the
PRINCE S-box in Section 4. Our masked S-Box with a latency of one cycle is shown in
Figure 4. Adhering to the guidelines for efficient implementation outlined in Section 4,
we re-use the common degree-2 and degree-3 terms across coordinate functions, thus
reducing the number of terms to compute, refresh and store from 20 to 14. Additionally,
we capitalize on the shared outputs of degree-2 terms to calculate degree-3 terms.

Masking a single PRINCE S-Box with TSM requires 18 fresh random bits (4 for initial
remasking and 14 for refreshing) and 32 intermediate registers (14 + 14 + 4). In Table 2,
we compare the utilization results of our masked PRINCE S-Box with other relevant PINI
secure low-latency designs from the literature.

The synthesis results are gathered using the NanGate 45nm Open Cell Library [NAN].
We use Synopsys DC Compiler v2021.06 for Synthesis and provide results for two different
sets of options. The first set of options (compile -exact_map) aims for a direct mapping
of our design to logic. The second set of options (compile_ultra -no_autoungroup
-no_boundary_optimization) aims for maximum logic optimization while making sure
that no logic is moved across the register layer, see Section 4.2.1.

Although the compile_ultra option should not be carelessly used for masked imple-
mentations, because typically careful placement of logic in distinct modules is required,
it can be safely done with TSM, as long as register retiming is not permitted. Later
in Section 5.4 we demonstrate that TSM indeed remains secure with either set of these
options, without careful placement of logic in distinct modules, and show that it becomes
insecure if register retiming is enabled. The area numbers were gathered by synthesizing
our designs with a target frequency of 100 MHz.
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Figure 4: Architecture of our masked PRINCE S-Box.

Our single-cycle masked PRINCE S-Box has both lower area as well as randomness
cost when compared to the GHPCLL design proposed by Knichel et al. [KM22]. The other
designs need more than one single cycle. The exact sharings of our PRINCE S-Box are
given in the HDL source code1.

Table 2: Utilization results of relevant first-order masked PINI secure PRINCE S-Boxes.
Design Method Area (GE) Rand (bits) Cycles

This work TSM 538a
18 1453b

[KSM22] GHPCLL 987 64 1
[KSM22] GHPCLL-AND 445 24 2
[KSM22] GHPC 1384 4 2

a compile -exact_map
b compile_ultra -no_autoungroup -no_boundary_optimization

5.2 Round-Based Architecture
As this work aims to achieve low latency, the substitution layer consisting of 16 S-Boxes
is implemented in parallel. We looked at the existing literature for efficient round-based
architectures for PRINCE and chose to implement a first-order secure version of the
unprotected architecture presented by Moradi et al. [MS16]. The PRINCE S-Box and
its inverse (S−1) are affine equivalents. By carefully constructing the architecture for
the cipher, it is possible to minimize the additional circuitry needed to implement the
inverse substitution layer. We can use affine transformations and re-use existing S-Box
circuitry to compute S−1. The inverse S-Box can be computed by applying input and
output transformations to the S-Box as follows: S−1 = A ◦ S ◦A. The input and output
transformations applied to the S-Box are identical, A: 5764FDCE1320B98A.

1https://github.com/KULeuven-COSIC/TSM

https://github.com/KULeuven-COSIC/TSM
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Figure 5: Architecture of our masked PRINCE design.

Our construction for the first-order secure PRINCE implementation using TSM is
shown in Figure 5. The optimized single-cycle design requires only one substitution layer
and uses the input/output transformation to calculate the inverse substitution layer. This
reduces the area of our implementation. The matrix M ′ is an involution, and the other
matrices M and M−1 used in the PRINCEcore can be derived from M ′ through nibble
shuffling operations SR and SR−1, i.e. M = SR ◦M ′ and M−1 = M ′ ◦ SR−1. Hence, we
avoid implementing three matrices to save some area. All linear operations are duplicated
for the two shares. Our key and round constants are not shared and are applied to only one
of the two shares. Overall sixteen copies of the shared S-Box, see Figure 4, are implemented
for parallel execution. The register stage is integrated within the shared S-Box. There are
no additional state registers outside the S-Box, making our implementation’s latency one
cycle per round and thus 12 cycles for PRINCE.

5.3 Efficiency and Comparison
The utilization results of our implementation are summarized in Table 3. The maximum
frequency was obtained by synthesizing our designs while iteratively increasing the target
frequency until the slack became negative. We have further included all first-order secure
PRINCE designs with a low latency of one cycle per round available in the literature, to
the best of our knowledge.

From the area results, we can see that our design has the smallest area footprint by
a good margin. With the compile option, it is about 32% smaller than the GLM
design presented by Muller et al. [MMM21], which had the smallest area footprint
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among all existing low-latency designs before this work. With the compile_ultra op-
tion, the area becomes about 44% smaller than GLM. The other low-latency designs
([AZN21], [BNR19], [MMM21]) are all based on Threshold Implementations (TI). As TI
relies on non-completeness for its security, all these designs process data which are split
into more than two shares. The increased share count results in a larger area. The second
smallest design in Table 3, from [MMM21], is based on GLM and requires implementing
both the substitution and the inverse substitution layer. The security of GLM relies upon
the condition that there are no variable collisions, i.e., all the inputs must be independently
shared. We refer the reader to the original GLM paper by Groß et al. [GIB18], where
they discuss variable collisions and why it is necessary for the inputs to the S-Box to have
independent sharings. The authors of [MMM21] argue that the affine transformations,
required to compute the inverse S-Box, cause some of the inputs of the S-Box to be
dependent and to violate non-completeness. This limitation of GLM implies that both
the regular substitution layer consisting of S and its inverse consisting of S−1 must be
implemented to avoid collisions. As a result, the additional circuit for S−1 increases their
design area. However, in contrast, TSM does not require independent sharings of the
inputs, because of the initial remasking with r′ in Figure 2. With our method, affine
transformations can be used to calculate S−1. This advantage helps us achieve the lowest
area compared to all other designs, with a one cycle per round latency. We note that like
in the designs from Muller et al. [MMM21], which we mainly compare our design to, our
design also does not mask the key. This ensures our area comparisons to be fair. The table
also highlights the positive impact of logic optimization on the maximum clock frequency
of our design.

Table 3: Utilization results of relevant first-order masked PRINCE implementations.

Design Method
Area
(GE)

fmax

(Mhz)
Rand
(bpc)* Cycles

This Work TSM
13685a 485a

288 12
10926b 610b

[MMM21] GLM 20046 - 128 12
[AZN21] LLTI 25857 488 48 12
[MMM21] 4-share TI 26158 - 0 12
[BNR19]# TI 41628 335 48 12
[MMM21] 5-share TI 42158 - 0 12

a compile -exact_map
b compile_ultra -no_autoungroup -no_boundary_optimization
* bits per cycle
# Resynthesized with the NANGATE45 standard cell library by the authors of [AZN21]

In terms of randomness usage, our design uses more bits per cycle compared to other
designs. However, we remind the reader of the results from Section 4.1. For masking any
arbitrary function, i.e., when comparing worst case metrics, TSM consumes less randomness
than GLM. But we would like to note that the efficiency can be better depending on the
concrete function that is masked. In the paper by Muller et al. [MMM21], their GLM
based design consumes 256 random bits per cycle, which is comparable to our design’s
requirement of 288 bits per cycle. However, to reduce the costs, they re-use randomness
over S-Boxes, which reduces it to 128 bits per cycle. Such optimizations come at the cost
of losing the composable security of the general approach. Since composable security was
one of the goals of this work, we leave further optimizations specifically for PRINCE, as
well as randomness optimizations of a PINI secure general approach, as future work.
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Our area estimation does not include the area overhead of PRNGs required to generate
randomness, but this is consistent with the literature in general and the other designs
included in Table 3 in particular. We use AES-128 in Output Feedback (OFB) mode to
generate the randomness, which might be inefficient for the high randomness demands
of low-latency applications. But we see random bit generation as a closely related yet
orthogonal problem, and did not try to optimize this part. In the recent work by Cassiers
et al. [CMM+23], the authors investigate several PRNGs and determine unrolled implemen-
tations of stream ciphers Trivium [Can06] and Bivium [Rad06] to be the best candidates
for efficiently generating random bits. To provide an estimate of the PRNG area overhead,
generating 288 random bits per cycle for our design would require approximately 6.5 kGEs
and 10.2 kGEs using unrolled implementations of Bivium and Trivium, respectively.

5.4 Formal Verification
In addition to the general security proof for TSM presented in Section 3.3, we validate the
security of our TSM PRINCE S-box using the formal verification tool SILVER [KSM20].
The tool verifies whether a masked implementation is secure and composable under various
security notions such as probing security, Non-Interference (NI), Strong Non-Interference
(SNI), and Probe-Isolating Non-Interference (PINI). We synthesized our PRINCE S-Box
Verilog code to generate netlists with both the compile and compile_ultra options we
discussed in Section 5.3. As shown in Table 4, the generated netlists for both options
pass all security tests, which guarantees that our PRINCE S-Box is indeed probing and
composable secure.

In order to increase confidence, we generate and verify an additional netlist of our S-Box
after intentionally enabling register retiming, which is a performance optimization technique
that allows combinational elements of our S-Box to be moved forward or backward across
registers. The security of our masking technique relies on separating computations on
shares with a register layer. Any movement of combinational logic across registers would
very likely violate non-completeness. We set the set_optimize_registers condition to
true and generate a netlist with the compile_ultra -retime option. The resulting netlist
fails all robust probing tests. We conclude that our S-Box is secure when compiled with
compile_ultra as long as register retiming remains disabled.

Table 4: Verification of our PRINCE S-Box with SILVER using different compiler options.
Compiler Option Probing NI SNI PINI Uni.std. rob. std. rob. std. rob. std. rob.

compile -exact_map X X X X X X X X X
compile_ultra -no_autoungroup

-no_boundary_optimization
X X X X X X X X X

set_optimize_registers true
compile_ultra -retime

X 7 X 7 X 7 X 7 X

6 Case Study: Application of TSM to the AES S-Box
For our second case study, we examine the AES S-Box, a larger function with a higher
algebraic degree, to demonstrate the efficiency of TSM. As outlined in Section 4, the
main benefit of TSM comes from the ability to consolidate the coordinate functions of an
S-Box and reuse the intermediate registered values among them. As one would expect, for
larger S-Boxes with many coordinate functions, such as AES, the benefits of TSM should
be more evident compared to other low-latency masking techniques that independently
mask each coordinate function with unique sharings. In this section, we use TSM to
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create a low-latency AES S-Box and compare our implementation costs with other relevant
low-latency masking techniques.

An unprotected AES S-Box processes eight input bits and generates eight output bits,
denoted as S : F8

2 → F8
2. We represent the eight input bits as (a, b, c, d, e, f, g, h) and the

eight outputs using individual coordinate functions, each denoted as f : F8
2 → F2. The

coordinate functions written in their Algebraic Normal Form (ANF) include all terms up
to degree 7. In total, there are 254 terms, calculated as the sum of binomial coefficients
for each degree from 1 to 7:

∑7
i=1
(8
i

)
= 254.

6.1 Masked AES S-Box
At the high level, our strategy for masking the AES S-Box closely resembles the general
TSM approach. In the initial phase, we calculate all cross-products of the share0 inputs
up to degree 7, i.e. excluding the degree 8 term a0b0c0d0e0f0g0h0, and refresh them with
254 bits of randomness. In the following phase, we calculate the cross-products of the
share1 inputs and combine them with the masked cross-products of the share0 inputs
to produce the S-Box outputs. When applying TSM to a large S-Box such as AES, the
register cost forms only a small fraction of the total area. The majority of the total
area is attributed to the logic computation of coordinate functions in the second phase.
Consequently, optimizing logic becomes a crucial factor. We therefore apply the ideas
explained in Section 4.2, and in particular extend them to all higher degree (degree-4,-5,-6
and -7) terms. An example with the sharings for the degree-4 term abcd is shown in Eq. (8).
We use the already computed degree-3 and degree-2 terms: acd, bcd, cd to construct the
sharing of abcd. By following a similar strategy, for degree-5 terms, we use the outputs of
the degree-4 and degree-3 terms. For degree-6 terms, we use the outputs of the degree-5,
degree-4, and degree-3 terms. Finally, for degree-7 terms, we use the outputs of the
degree-6, degree-5, and degree-4 terms. For additional details, we provide our HDL source
code2 with the precise sharings of our complete AES S-Box.
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6.2 Efficiency and Comparison
We summarize the utilization results for our masked S-Box in Table 5 and compare them
with other state-of-the-art low-latency masking schemes. We synthesized our design with
the same compiler options and switches we used for PRINCE in Section 5.1. All designs
were synthesized with a target clock frequency of 100 MHz to get the area results. To find
the maximum frequency of our designs, we follow the same strategy of gradually increasing
the frequency until we observe a negative slack.

With compile, our AES S-Box has an area of 20.5 kGEs, which is approximately
one-third of the area of GLM and GHPCLL. We attribute the lower area cost to the
two aspects of TSM we discussed in Section 4. First, the sharings for the 254 terms are
commonly reused among all 8 coordinate functions. Second, reusing already computed
lower degree terms for computing higher degree terms substantially reduces the area for
logic. Using the compile_ultra compiler option further reduces the logic area, resulting
in a much smaller design with just below 14.5 kGEs. Also here we note the positive
impact of logic optimization on the maximum clock frequency. Still our S-Box is larger

2https://github.com/KULeuven-COSIC/TSM

https://github.com/KULeuven-COSIC/TSM
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than the S-Box in LMDPL. But it is noteworthy that the AES S-Box in LMDPL is based
on dual-rail logic, which requires a pre-charge phase between consecutive evaluations. A
comparison of a single AES S-box in TSM and in LMDPL is thus not straightforward.

Table 5: Utilization results of relevant first-order masked AES S-Box implementations.

Design Method Area
(GE)

fmax

(MHz)
Rand
(bits)

Latency
(Cycles)

This Work TSM 20523a 375a
262 1

14352b 535b

[SBHM20] LMDPL 3480 400 36 1
[GIB18] GLM 60730 356 2048 1
[KSM22] GHPCLL 64111 - 2048 1
[LMW14] LMDPL 2830 - 36 2
[GIB18] GLM 6740 584 416 2
[AZN21] 4-share LLTI 25780 277 0 2
[AZN21] 4-share TI 58410 40 0 2
[KSM22] GHPC 77145 - 8 2

a compile -exact_map
b compile_ultra -no_autoungroup -no_boundary_optimization

Comparing randomness usage, our S-Box requires roughly eight times less randomness
when compared to both GLM and GHPCLL. The reduction can be directly linked to the
consolidation of coordinate functions and the reuse of the 254 shared terms. Given that
the AES S-Box produces eight output bits, we observe an eight-fold decrease. LMDPL
requires less randomness but again a comparison of a single S-Box is difficult.

As for the maximum frequency, it is not an easy comparison as most designs use a
different standard cell library. Our design has a maximum frequency similar to GLM and
LMDPL.

6.3 Formal Verification
We were not able to formally verify the netlists of our AES S-Box, primarily due to the
limitations of SILVER, which uses Binary Decision Diagrams (BDD) to represent Boolean
functions and generate probability distributions for verification and statistical independence
checks. Since our masked AES S-Box is significantly larger than the masked PRINCE
S-Box, the tool terminates with a message indicating that the unique table storing BDD
nodes has been filled. As an alternative to formal verification, we experimentally assess
the leakage of our AES S-Box on an FPGA, see the next section.

7 Practical Evaluation
We evaluate our first-order protected designs by implementing and checking for side-channel
leakage on FPGA. We use a SAKURA-G board [Pro13], featuring two Xilinx SPARTAN-6
FPGAs, and Xilinx ISE v14.7. As commonly done, we implement our protected design
(complete PRINCE or AES S-Box) on the target FPGA where it receives pre-shared inputs
from the control FPGA and returns shared outputs to the control FPGA in order to avoid
any IO leakage. We use the control FPGA to interface with a PC and to orchestrate the
sequence of inputs to the target FPGA. We use an (unprotected) AES-128 encryption core
in Output Feedback (OFB) mode as a PRNG on the control FPGA. In case of the complete
PRINCE design, the target FPGA contains a wrapper module that implements PRNGs
to generate online randomness. The seed for these PRNGs is generated on the control
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FPGA and transferred to the target FPGA for every PRINCE encryption/decryption.
The protected PRINCE core receives random bits from the PRNGs in the wrapper as
needed in every clock cycle.

We measure the (on-board amplified) power consumption of the target FPGA on SMA
connector J3 with a Tektronix DPO7254C oscilloscope sampling at 500MS/s. We operate
the board at a very slow clock frequency of 3 MHz to ensure that there is no overlap
between the power patterns of consecutive clock cycles. The clock signal is stable and
provided by an external function generator synchronized with the oscilloscope to enable
synchronous sampling. This is done to ensure the best possible alignment of the traces
to reduce sampling noise. The power measurements cover the entire 12 rounds for the
protected PRINCE, and one S-Box computation for AES. The top rows of Figures 6 and 7
show sample power traces (raw oscilloscope ADC output).

We use the non-specific Test Vector Leakage Assessment (TVLA) methodology as
explained by Bilgin et al. [BGN+14] and originally described in [GJJR11, CDMG+13].
Concretely we use the fast computation method described by Reparaz et al. [RGV17]. We
focus on univariate analysis since we claim no first-order leakage. We perform fixed vs.
random tests where we provide either a fixed or a random input to the masked PRINCE
core resp. to the masked AES S-Box, in a random sequence. The unprotected keys are
fixed for all experiments.
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(a) PRNGs set to OFF with 100k traces.
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(b) PRNGs set to ON with 100 million traces.

Figure 6: TVLA results for masked PRINCE core. Top to bottom: power trace, the first-,
second-, and third-order univariate t-test result. The red lines indicate the ±4.5 threshold.

As a safety check, we first provide a result of the leakage assessment performed with
the PRNGs switched off, which means all random bits used by the masked PRINCE core,
by the masked AES S-Box, and for initial masking, are zero. Figure 6a and Figure 7a show
for 100k traces, from top to bottom: the first-order univariate t-test result, second-order
univariate t-test result, and third-order univariate t-test result. Red lines indicate the
commonly applied threshold at ±4.5. We obtain very significant peaks in the first-order
t-test, which confirms that our setup works well.

Figure 6b and Figure 7b show the TVLA results with the PRNGs switched ON. We
measured and analyzed 100 million traces of the complete PRINCE core and 250 million
traces of the AES S-Box. As we can see from the first-order t-test results in the second
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(a) PRNGs set to OFF with 100k traces.
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(b) PRNGs set to ON with 250 million traces.

Figure 7: TVLA results for AES S-Box. Top to bottom: power trace, the first-, second-,
and third-order univariate t-test result. The red lines indicate the ±4.5 threshold.

rows, the t-test value does not exceed the threshold of ±4.5 at any time sample, therefore,
indicating that our designs do not exhibit first-order leakage. The processing of a non-
linear function must combine information from all shares at some point. TSM uses two
shares and thus we expect to observe second-order leakage, which is indeed evident in the
second-order t-test results. We show this result to increase confidence in the correctness of
our measurement and processing. One can further expect to observe third-order leakage,
because the data in TSM’s register layer is essentially in three shares. However, we do
not observe leakage in the third-order t-test results, one possible explanation is that more
traces would be required.

8 Conclusion
We introduced a novel approach for low-latency masking that ensures security by separating
the processing of the different shares over time with a register layer. TSM is straightforward
to apply to any arbitrary (vectorial) Boolean function and does not come with constraints
that a designer must be careful about to avoid compromising security. We prove first-order
glitch-extended PINI security and demonstrate excellent implementation results in terms
of low overheads when implementing a complete PRINCE core and an AES S-box.

More specifically, the masking method scales in register and randomness cost on the
number of inputs and the algebraic degree of the function, but it amortizes this cost for
each output bit. The overhead reduction of TSM comes from the ability to consolidate
masked component functions and use the intermediate values commonly among them.

We demonstrated the effectiveness of our approach by implementing a first-order secure
low-latency PRINCE that has 32% resp. 44% area improvement over the state-of-the-art.
We formally validated the security of our PRINCE S-Box implementation with SILVER,
and we provide results of practical leakage assessment on the complete PRINCE core
which show no first-order leakage with 100 million traces.

Our masked AES S-box costs roughly one-third resp. one-quarter of the area of state-
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of-the-art implementations, and has much lower randomness cost as well. We deliberately
exclude LMDPL from the comparison because a direct comparison to TSM seems difficult.
The AES S-Box in LMDPL is smaller and requires less random bits, at first sight, but
it requires dual-rail logic and a precharge phase between consecutive executions, which
will become important when building a circuit which executes over more than one clock
cycle. We provide results of practical leakage assessment of our AES S-Box which show no
first-order leakage with 250 million traces.

As a future work, it would be interesting to reduce the randomness cost of TSM without
trading off latency and security. Using an additional register layer (on the output), it is
possible to re-use the random bits r over all gadgets. For our PRINCE implementation,
this would mean 14 random bits can be re-used among all 16 S-Boxes. However, without
such an additional register layer, the reduction of randomness seems less trivial. Another
direction for future work is to extend and generalize TSM to higher-order security. It
would also be interesting to implement more algorithms with TSM in order to compare
the overhead reductions with other existing low-latency designs.
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