
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 3, pp. 200–223. DOI:10.46586/tches.v2024.i3.200-223

Hints from Hertz: Dynamic Frequency Scaling
Side-Channel Analysis of Number Theoretic

Transform in Lattice-Based KEMs

Tianrun Yu1,2, Chi Cheng1,2�, Zilong Yang1,2, Yingchen Wang3, Yanbin Pan4

and Jian Weng5

1 Hubei Key Laboratory of Intelligent Geo-Information Processing, School of Computer Science,
China University of Geosciences, Wuhan, China {chengchi,yutianrun}@cug.edu.cn,

2 State Key Laboratory of Integrated Services Networks, Xidian University, Xian, China
3 The University of Texas at Austin, Austin, TX, USA yingchen@cs.utexas.edu

4 Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing, China panyanbin@amss.ac.cn

5 College of Information Science and Technology, Jinan University, Guangzhou, China

Abstract. Number Theoretic Transform (NTT) has been widely used in accelerating
computations in lattice-based cryptography. However, attackers can potentially launch
power analysis targeting the NTT because it is one of the most time-consuming parts
of the implementation. This extended time frame provides a natural window of
opportunity for attackers. In this paper, we investigate the first CPU frequency
leakage (Hertzbleed-like) attacks against NTT in lattice-based KEMs. Our key
observation is that different inputs to NTT incur different Hamming weights in
its output and intermediate layers. By measuring the CPU frequency during the
execution of NTT, we propose a simple yet effective attack idea to find the input to
NTT that triggers NTT processing data with significantly low Hamming weight. We
further apply our attack idea to real-world applications that are built upon NTT: CPA-
secure Kyber without Compression and Decompression functions, and CCA-secure
NTTRU. This leads us to extract information or frequency hints about the secret key.
Integrating these hints into the LWE-estimator framework, we estimate a minimum of
35% security loss caused by the leakage. The frequency and timing measurements on
the Reference and AVX2 implementations of NTT in both Kyber and NTTRU align
well with our theoretical analysis, confirming the existence of frequency side-channel
leakage in NTT. It is important to emphasize that our observation is not limited to a
specific implementation but rather the algorithm on which NTT is based. Therefore,
our results call for more attention to the analysis of power leakage against NTT in
lattice-based cryptography.
Keywords: Lattice-based cryptography · Side-channel attacks · Hertzbleed attack
· Post-Quantum cryptography · Kyber · Number Theoretic Transform

1 Introduction
In the face of threats from quantum computers, lattice-based cryptography has emerged
as a promising alternative for traditional cryptographic schemes such as RSA and ECC.
Lattice-based schemes lead the way in the selection of quantum-safe public key encryption
or key encapsulation mechanism (KEM) since Kyber has been selected as the KEM
standard by NIST. Some other schemes, like NTRU and NTRU Prime, although not on
the standards list of NIST, have been put into practice in applications like wolfSSL [Wol]
and [Ope22].

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-01-15 Accepted: 2024-03-15 Published: 2024-07-18

https://doi.org/10.46586/tches.v2024.i3.200-223
mailto:chengchi@cug.edu.cn,yutianrun@cug.edu.cn,yangzilong@cug.edu.cn
mailto:yingchen@cs.utexas.edu
mailto:panyanbin@amss.ac.cn
http://creativecommons.org/licenses/by/4.0/


Tianrun Yu, Chi Cheng, Zilong Yang, Yingchen Wang, Yanbin Pan and Jian Weng 201

As a variant of the Fast Fourier Transform, the Number-Theoretic Transform (NTT)
that operates on modular arithmetic has been widely used in accelerating computations
in lattice-based cryptography. In the case of lattice-based KEMs, two design approaches
can be distinguished. One is an NTT-friendly design, such as Kyber [ABD+19], where
the underlying ring and parameters are carefully selected to leverage NTT for efficient
polynomial multiplication and computation. In the other case, the original design may not
be friendly to NTT, and examples of such KEMs include NTRU and Saber. But as shown
by Lyubashevsky and Seiler in their design called NTTRU [LS19], NTT can still be used by
choosing different underlying rings. Another elegant example is given in [CHK+21], which
makes NTT applicable to NTRU and Saber, achieving better performance. Furthermore,
NTT is extensively utilized in lattice-based fully homomorphic encryption (FHE) schemes,
enabling secure computation over encrypted data [DÖSS15, PS22].

The security analysis of lattice-based cryptographic schemes in real-world applications
is a crucial aspect of their practical deployment. Dynamic voltage and frequency scaling
(DVFS) [Int20] is a commonly used mechanism to save power consumption in modern
CPUs, which adjusts the clock frequency of a processor to enable a dynamic voltage supply.
However, this mechanism can also make the processor vulnerable to certain side-channel
attacks such as Hertzbleed [WPH+22]. By measuring the precise timings of fluctuations
in the power supply, a Hertzbleed attack is able to deduce secret keys from a now-broken
cryptosystem Supersingular Isogeny Key Encapsulation (SIKE) [JAC+20]. A similar
Frequency Throttling Side-Channel is given in [LCCR22], which explores different attack
methodologies and threat models through experiments against AES. Further improvements
include a software-based DVFS side channel attack in [DG22] and a framework capable of
exposing arbitrary timing leakage to coarse-grained timing sources [PBPV23].

Therefore, an intriguing question arises whether similar Hertzbleed attacks can be
applied to lattice-based schemes, such as KEMs. Since Hertzbleed attacks typically exploit
time or computation-consuming operations, it is reasonable to investigate the possibility
of targeting a computation-intensive component, e.g., NTT, in lattice-based schemes.

In this paper, we investigate the potential leakages of NTT in lattice-based KEMs
through DVFS-based side channels. Our key observation is that, when processing polyno-
mial inputs with only one non-zero coefficient or more than one non-zero coefficient, NTT
processes data with low and random Hamming weights, respectively. This causes the CPU
power consumption or frequency to be input-dependent under DVFS. We can distinguish
the two cases via the frequency side channel by transforming power leakages into frequency
leakage, and data-dependent Hamming weight is known to be a source of power leakage.

To summarize, we list the main contributions of this paper as follows:

• We propose a simple yet effective attack idea to analyze the NTT frequency leakage:
Measuring the frequencies during the execution of NTT to find the parameters that
can incur the low Hamming weight case, which corresponds to a higher frequency.
The frequency and timing measurements align well with our theoretical analysis.

• We analyze the frequency leakage of NTT in a simplified version of CPA-secure Kyber
without Compression and Decompression functions, as well as in the CCA-secure
NTTRU. To extract information or hints about the secret key, we elaborate on the
parameters that trigger the low Hamming weight case through DVFS-based Side
Channel. Integrating these hints into the framework proposed in [DSDGR20], we
estimate a minimum of 35% security loss caused by the leakage.

• We extensively conduct experiments on the Reference and AVX2 implementations
of NTT in both Kyber and NTTRU. The results confirm that we can observe the
Hamming weight difference stated in our analysis.

• We have open-sourced our code of all the experiments of this paper at https:
//github.com/Yutianrun/Hint_from_Hertz.

https://github.com/Yutianrun/Hint_from_Hertz
https://github.com/Yutianrun/Hint_from_Hertz


202 DVFS-based Side-Channel Attacks against NTT in lattice-based KEMs

2 Preliminaries

2.1 Hertzbleed
2.1.1 Dynamic Voltage and Frequency Scaling

Dynamic Voltage and Frequency Scaling is a feature deployed on most modern processors
to balance performance and power consumption. On Intel processors, this is achieved by
dynamically adjusting the processor frequency between discrete P-States with 100 MHz
granularity1. Following the Linux naming convention, higher P-states correspond to higher
frequencies, while lower P-states correspond to lower frequencies [Wys].

During low CPU workload, DVFS schedules the CPU frequency to low P-States, which
reduces power consumption. However, during high CPU workload, the thermal design
point (TDP) limits the CPU’s performance, as it is the maximum amount of power that
the cooling system can dissipate without causing the CPU to overheat [Int22]. To stay
within the safe thermal limits, DVFS adjusts the CPU frequency to oscillate between
multiple P-States.

2.1.2 Hertzbleed: Dynamic Frequency Scaling Side-Channel

Hertzbleed attack exploits the data-dependent DVFS-induced frequency variation during
high CPU workload [WPH+22]. Under the TDP limit, DVFS adjusts the CPU frequency
based on power consumption, which is well known to be data-dependent. Transitively,
CPU frequency adjustments are also data-dependent, as they reflect differences in power
consumption. Such feature forms a Dynamic Frequency Scaling Side-Channel, which is also
referred to as Frequency Throttling Side-Channel by adding workloads which is “throttled”
by the thermal limit [LCCR22].

Hertzbleed enables side-channel attacks without privileges by decoupling time from the
cycle. This is because the difference in CPU frequency variations translates directly to
the program execution time. For example, consider a function func that is designed to be
constant-cycle such that the number of CPU cycles of func is independent of secret. If func
consumes more power when operating on input1 compared to input2, during high CPU
workload, DVFS would schedule the CPU to oscillate between lower P-States when running
func with input1. As a result, func executes slower with input1. If input1 and input2
correspond to secret information, such a behavior can be exploited as a timing side channel.
Therefore, func is no longer constant-time despite the fact that it is constant-cycle.

In the following, we use the DVFS-based Side-Channel to denote the Dynamic Frequency
Scaling Side-Channel for short and use them interchangeably.

2.2 Threat model
In our proof-of-concept experiments, we assume a chosen ciphertext attacker. The attacker
submits malformed ciphertexts to a decryption oracle. The attacker’s goal is to demonstrate
that the malformed ciphertext can induce secret-dependent CPU frequency variations,
thereby deducing information about the secret key based on CPU frequency leakages.

To this end, the attacker either collects the execution time of the target decryption
oracle or samples the CPU frequency while the CPU executes the decryption. As CPU
frequency is inversely proportional to program execution time, our experiments below
interchangeably depict CPU frequency sampling and the execution time of the decryption
oracle. Speficially, we use the MSR_IA32_MPERF and MSR_IA32_APERF registers in the Linux
kernel to monitor CPU frequency.

1DVFS also dynamically adjusts the CPU supply voltage, which is out of the scope of this paper.



Tianrun Yu, Chi Cheng, Zilong Yang, Yingchen Wang, Yanbin Pan and Jian Weng 203

2.3 Number Theoretic Transform
2.3.1 Notations.

Let q ∈ Z be a prime, and Zq be the ring of residue classes modulo q. The polynomial
ring over Zq is denoted by Zq[x]. We further denote by Rq the quotient ring Zq[x]/(φ(x)),
where φ(x) is some polynomial with degree n. We represent every element in Rq as a
polynomial f(x) = f0 +f1x+ · · ·+fn−1x

n−1, where each coefficient fi ∈ Zq (0 ≤ i ≤ n−1).
Hereafter, we use both f ∈ Rq and its vector form (f0, · · · , fn−1) interchangeably to refer to
a polynomial. The function dxc denotes the rounding function, which returns the nearest
integer to x.

2.3.2 NTT from the Perspective of Chinese Remainder Theorem.

From an algebraic perspective, NTT can be expressed using the following Chinese Remain-
der Theorem (CRT).

Theorem 1 (CRT in the ring form [Ber01]). If R is a commutative ring with multiplicative
identity and I1, I2, · · · , Im are its pair-wisely co-prime ideals. Set I the intersection of
I1, I2, · · · , Im, then there exists a ring isomorphism Φ as follows:

Φ : R/I ∼= R/I1 ×R/I2 × · · · ×R/Im. (1)

Applying Theorem 1 to the ring Rq, if the modulus polynomial φ(x) in Rq can
be factored as φ(x) =

∏
i(φi(x)), where each φi(x) is irreducible, then the following

isomorphism holds:
Zq[x]/(φ(x)) ∼=

∏
i

Zq[x]/(φi(x)). (2)

NTT refers to the process of computing the isomorphic image of polynomials in Rq =
Zq[x]/(φ(x)), whereas the inverse NTT transform computes the preimage of elements in∏
i Zq[x]/(φi(x)). Denote by f̂ = NTT(f) the forward NTT transform for polynomial f

and by f = invNTT(f̂) the inverse transform.

Full NTT. The most commonly used modulus polynomial in lattice-based cryptography
is φ(x) = xn+ 1, where n is a power of 2. In addition, the modulus q satisfies that 2n|q−1,
which implies that there exists a primitive 2n-th root ζ of unity in Rq. This leads to a full
factorization of φ(x), which means each φi(x) in (2) becomes a degree-one polynomial.

Now, we can define the forward NTT transform f̂ = NTT(f) as f̂i =
∑n−1
j=0 ζ

(2i+1)∗jfj mod
q. For the inverse transform f = invNTT(f̂), we have fi = n−1∑n−1

j=0 ζ
−i(2j+1)f̂j mod q.

We refer to this type of NTT as full NTT. Full NTT has been widely used in various
lattice-based cryptographic schemes such as NewHope [ADPS16], Falcon [FHK+18], and
Dilithium [DKL+18].

Incomplete NTT. The strict constraint on parameter choices imposed by the requirement
2n|q − 1 for full NTT can lead to increased computation and communication costs for
lattice-based cryptosystems. To reduce these costs, an extension of NTT can be used when
n = d ∗ 2k where d and k are some positive integers. In this case, the modulus polynomial
φ(x) cannot be completely factored into linear polynomials but into degree-d irreducible
polynomials. This type of NTT is referred to as incomplete NTT.

A typical example of incomplete NTT can be found in Kyber [ABD+19]. The security
of Kyber relies on the Module Learning with Errors (MLWE) problem in dimension k
over Rq = Z3329[x]/(x256 + 1). Since 256|q − 1 but (2 ∗ 256) - q − 1, Kyber does not have



204 DVFS-based Side-Channel Attacks against NTT in lattice-based KEMs

a 512-th primitive root of unity, only a 256-th root of unity in Rq. To implement the
incomplete NTT, Kyber utilizes the following isomorphism:

Z3329[x]/(x256 + 1) ∼=
127∏
i=0

(
Z3329[x]/(x2 − ζ2i+1)

)
. (3)

Recent research has shown that even schemes designed with NTT-unfriendly rings,
such as Saber, NTRU [CHK+21], NTRU Prime [ACC+20], can also benefit from NTT.
NTTRU [LS19] is such an example, which is based on the NTRU cryptosystem but with
NTT accelerations. NTTRU adopts Z7681[x]/(x768 − x384 + 1) with n = 768 = 28 ∗ 3.
Thus, there exists a primitive 768-th root η of unity, and the following isomorphism

Z7681[x]/
(
x768 − x384 + 1

) ∼= ∏
(i,768)=1

(
Z7681[x]/(x3 − ηi)

)
, (4)

is used to design the incomplete NTT.

2.3.3 Gentleman-Sande Butterfly.

Both NTT and invNTT can be efficiently implemented using a chain of butterflies. There
are two kinds of butterflies used in NTT: The Cooley-Tukey (CT) butterfly and the
Gentleman-Sande (GS) butterfly. Generally, we use the CT butterfly in forward NTT and
the GS butterfly in invNTT.

The CT butterfly transforms f(x) ∈ Zq[x]/(xn − c2) into two polynomials in smaller
ring for even n. To be specific,

Zq[x]/
(
xn − c2) ∼= Zq[x]/(xn/2 − c) × Zq[x]/(xn/2 + c) (5)

CT : f(x) =
n−1∑
i=0

fix
i ↔

n/2−1∑
i=0

(
fi + cfi+n/2

)
xi,

n/2−1∑
i=0

(
fi − cfi+n/2

)
xi

 (6)

Algorithm 1 Inverse NTT based on the GS butterfly.
Input: Polynomial r̂ = (r̂[0], r̂[1], · · · , r̂[n− 1]) , ζ as the corresponding primitive root
Output: Polynomial r = (r[0], r[1], · · · , r[n− 1])

1: for len = d→ d ∗ 2k−1 do
2: for i = 0→ d ∗ 2k − 2 ∗ 1en do
3: for j = i→ i+ len do
4: GS-Butterfly unit
5: j = j + 1
6: end for
7: i = j + len
8: end for
9: len = len ∗ 2

10: end for
11: for i = 0→ n− 1 do
12: r[i] = r̂[i]/2k
13: end for

/* Kyber: d=2; NTTRU: d=3 */

. GS-Butterfly unit
1: t = r̂[j]
2: r̂[j] = r̂[j] + r̂[j + len]
3: r̂[j + len] = ζ−1 ∗ (t− r̂[j + len])

For n = 2k ∗ d, by recursively calculating the CRT mapping for k layers, the last layer
usually corresponds to some ring Zq[X]/(xd − ωi). For example, there are 7 layers of
butterflies in Kyber’s NTT with k = 7, d = 2, and the last layer works on Z3329[x]/(x2−ζ).
In NTTRU, a nice trick is that the modulus polynomial can be factored as (x768−x384+1) =



Tianrun Yu, Chi Cheng, Zilong Yang, Yingchen Wang, Yanbin Pan and Jian Weng 205

(x384 + 684)(x384 − 685) since −684 = η
768

6 and 685 = η5· 768
6 . Similarly, there are 7 layers

of butterflies and the last layer represents polynomials of the form Z7681[x]/(x3 − η).
Similarly, the following GS butterfly is usually employed in invNTT:

GS : f(x) =
n−1∑
i=0

fix
i ↔

n/2−1∑
i=0

c−1(fi + fi+n/2
)
xi,

n/2−1∑
i=0

c−1(fi − fi+n/2
)
xi

 (7)

Since we mainly deal with invNTT in this paper, we summarize the GS butterfly used
in Kyber and NTTRU in Algorithm 1.

Algorithm 2 Basemul between f̂i and ĝi

Input: f̂i = [̂fi[0], f̂i[1], · · · , f̂i[d− 1]] and ĝi = [ĝi[0], ĝi[1], · · · , ĝi[d− 1]], ωi
Output: r̂i = [̂ri[0], r̂i[1], · · · , r̂i[d− 1]], the i-th component of r̂.

1: for j = 0→ d− 1 do

2: r̂i[j] = (
j∑

u=0
f̂i[u]ĝi[j− u] +

d−1∑
u=j+1

f̂i[u]ĝi[j + d− u]ωi) mod q

3: end for

2.3.4 Point-Wise Multiplication

In fact, NTT maps the coefficient representation of polynomials in Rq to the NTT domain,
in which the multiplication between f̂ and ĝ, denoted by f̂ ◦ ĝ, is done point-wisely.

Moreover, when the symbol ◦ is used with matrices or vectors, it denotes the usual
matrix multiplication, with the individual products of entries computed accordingly.
Notice that in an incomplete NTT, the basic components of f̂ and ĝ are usually over
Zq[x]/(xd − ωi) for some d ≥ 2. Hence, we need an algorithm to multiply f̂i and ĝi,
the i-th component of f̂ and ĝ, respectively, in Zq[x]/(xd − ωi). In the implementation
of Kyber and NTTRU, a schoolbook multiplication is employed, which is described as
Basemul in Algorithm 2. Thus, NTT-based multiplication of f and g can be represented
as: fg = invNTT(f̂ ◦ ĝ) = invNTT(NTT(f) ◦ NTT(g)).

3 NTT Frequency Leakage Analysis
3.1 Attack idea
Our attack approach is based on the observation that when various crafted inputs are
applied to the NTT function, they yield outputs with different Hamming weights. Our
objective is to leak the Hamming weight of ŝ = NTT(s) via the frequency side-channel.

Figure 1 provides a visual representation of our idea when d = 2. A key observation
is that when the input to invNTT contains either one non-zero value or two non-zero
values , both the output of invNTT and the intermediate layer results involved during
its execution demonstrate distinct Hamming weights. Here ŝ is a secret key in the NTT
domain. We configure the function f in such a way that, when transformed into the
NTT domain, its NTT representation contains only the last two coefficients as non-zero
values: f̂ = (f̂0, f̂1, 0, . . . , 0). By feeding different controllable f̂ into the multiplication
f̂ ◦ ŝ, which is then sent to invNTT as input, we observe two cases. In the first case, when
the last two coefficients of f̂ ◦ ŝ consist of a non-zero constant C followed by a 0, at least
half of the coefficients in the output of invNTT are 0. Consequently, both the resulting
output of invNTT and the intermediate layer results involved during its execution have
low Hamming weight. In the second case, when the last two coefficients are two non-zero



206 DVFS-based Side-Channel Attacks against NTT in lattice-based KEMs

constants C∗ and C, most coefficients in the output of invNTT are non-zero. As a result,
both the output of invNTT and the intermediate layer result involved during its execution
have random Hamming weight. To summarize, invNTT amplifies even a minor difference
in Hamming weights within its input, resulting in a significant difference in Hamming
weights in both its output and the intermediate layer result.

We can distinguish the above two cases via the frequency side-channel because
Hertzbleed transforms power leakages into a frequency leakage, and data-dependent
Hamming weight is known to be a source of power leakage [WPH+22]. Specifically, when
the input f̂◦ŝ has only one non-zero coefficient, it would trigger invNTT to process data with
a lower Hamming weight, resulting in reduced CPU power consumption and an increase in
CPU frequency. On the other hand, when the input f̂ ◦ ŝ has two non-zero coefficients, the
CPU runs at a lower frequency. When running invNTT with an unknown input which is
either case one or case two, we can collect its frequency profile and compare the mean value
of frequency to conclude either the unknown input contains only one non-zero coefficient or
two non-zero coefficients. We refer to the collected frequency profile as “side information”
or “hints”. Lattice reduction tools such as the one from Dachman-Soled et al., can integrate
these hints into the LWE problem and estimate security reduction [DSDGR20].

Even index

Odd index0 0

1

Controllable

C Non-zero
Constant

2Low Hamming
Weight Case

Random Hamming
Weight Case

secret vector in NTT domain

Side Channel

 Frequency ① Frequency ②

Hamming Weight

Difference

0 0

0 0

InvNTT InvNTT

C C* 0 0 0 00 0C 0

000

Side Information
(Hints)

Lattice Reduction

Figure 1: Basic attack idea

3.2 Frequency and power measurements of invNTT
In this subsection, we present the frequency and power measurements of invNTT processing
data with low and random hamming weights under the DVFS side-channel. We show that
invNTT exhibits a power leakage which translates to a frequency leakage under Hertzbleed.

3.2.1 Experiment Setup

We run our experiments on an Intel i7-9700 processor with a 3.0 GHz base frequency and
4.7 GHz Turbo boost frequency. Our machine runs Ubuntu 20.04 with Linux kernel 5.15.



Tianrun Yu, Chi Cheng, Zilong Yang, Yingchen Wang, Yanbin Pan and Jian Weng 207

To measure the CPU frequency and power consumption, we follow the same methodology as
Wang et al. [WPH+22]. We use the default system setup for CPU frequency measurement.

When measuring the CPU power consumption, we fix the CPU frequency to the base
frequency to monitor power consumption. During each experiment, we sample the CPU
frequency or power consumption every 1 ms.

When targeting the implementation of a specific cryptographic primitive, we configure
the target implementation in a multi-threaded setting. We allocate a number of threads
equivalent to the number of logical cores. For each thread, we run the target implementation
in an infinite loop. When plotting data distributions or reporting the mean of sampled
data points, we exclude outliers due to system noise from the unfiltered data. We remove
data points that deviate by more than four or two standard deviations from the mean,
respectively.

3.2.2 Measurement Results.

Our experiment uses the Kyber Reference implementation [ABD+b] and AVX2 implemen-
tation [ABD+a]. The AVX2 implementation leverages the Advanced Vector Extensions
(AVX2) instructions to accelerate both NTT and invNTT. The input to invNTT is denoted
as r̂. To trigger the two cases in Section 3.1 that result in invNTT processing data with dif-
ferent Hamming weight, we generate two polynomials, r̂0 and r̂1 with r̂0 = [C0, C1, 0, · · · , 0]
and r̂1 = [C2, 0, 0, · · · , 0]. We randomly sample C0, C1, C2 from [1, q − 1].

3.2 3.3
Frequency (GHz)

0

2

4

6

8

Pr
ob

ab
ilit

y 
de

ns
ity

45.81%
54.19%

23.57%

76.43%r0 : [C0, C1, ]
r1 : [C2, 0, ]

55 60 65 70 75
Power consumption (W)

0.0

0.1

0.2

Pr
ob

ab
ilit

y 
de

ns
ity r0 : [C0, C1, ]

r1 : [C2, 0, ]

(a) AVX2 implementation

3.8 3.9
Frequency (GHz)

0.0

2.5

5.0

7.5

10.0

Pr
ob

ab
ilit

y 
de

ns
ity

8.74%

91.26%

0.75%

99.25%r0 : [C0, C1, ]
r1 : [C2, 0, ]

55 60 65 70 75
Power consumption (W)

0.0

0.1

0.2

Pr
ob

ab
ilit

y 
de

ns
ity r0 : [C0, C1, ]

r1 : [C2, 0, ]

(b) Reference implementation

Figure 2: Distribution of CPU frequency and power consumption of executing invNTT
followed by NTT in a loop. The results are measured over 10 pairs of randomly generated
r̂0 and r̂1 on an Intel i7-9600k CPU. For each pair of r̂0 and r̂1, we collect 200, 000 data
points.

To measure the CPU frequency and power consumption of invNTT, we execute invNTT
and NTT back to back in a loop. In our target implementations, invNTT directly overwrites
the input variable r̂ with the output, which means that we need to re-assign r̂ with r̂0 or r̂1



208 DVFS-based Side-Channel Attacks against NTT in lattice-based KEMs

repeatedly to execute invNTT (r̂) in a loop. To eliminate the side effect due to repeatedly
overwriting r̂, we run NTT after invNTT to restore the invNTT (r̂) back to its original
value r̂. To ensure reliability, we randomly select 10 pairs of r̂0 and r̂1. While running the
target program, invNTT followed by NTT, in a while loop, we collect 200, 000 data points
for each pair of r̂0 and r̂1.

Figure 2 illustrates the results obtained from our target NTT implementations. Both
the AVX2 and Reference implementations display noticeable and consistent frequency
differences. Compared to the Reference implementation, the AVX2 implementation exhibits
a more significant frequency difference because the AVX2 workload is heavier, making it
more vulnerable to frequency side-channels. The frequency difference is around 22% for
the AVX2 implementation and around 8% for the Reference implementation. Specifically,
in the random Hamming weight case (blue bar) of the AVX2 implementation shown in
Figure 2a, the probability density of higher frequency (3.3 GHz) is 54.19%, which is lower
than the 76.44% observed in the low Hamming weight case (yellow bar).

61 62 63 64 65
Time(ms)

0

500

1000

1500

2000

2500

3000

Co
un

ts

r0 : [C0, C1, ]
r1 : [C2, 0, ]

Figure 3: Histograms of timing measurements of 300 concurrent threads with each running
a For loops of 10,000 iterations of invNTT followed by NTT. The target implementation is
the AVX2 NTT implementation. The inputs to invNTT are 10 pairs of randomly generated
r̂0 and r̂1. We collect 50, 000 data points for each experiment. The curves are the Kernel
Density Estimate over the raw measurements.

We also perform CPU power consumption measurements and present the results in
Figure 2. The power consumption measurements align with our frequency ones, providing
further support to our observations. To be specific, in the AVX2 and Reference imple-
mentations, the low Hamming weight case (yellow curve) consumes less power than the
random Hamming weight case (blue curve).

Due to the significant frequency difference observed in the AVX2 implementation,
we can convert the frequency side-channel into a timing side-channel. To measure the
timing signals, we modify the while(1) loop in the previous experiments into a For loop
with 10, 000 iterations. We start 300 concurrent threads and measure the total running
time for 300 concurrent threads, each completing 10, 000 iterations of invNTT followed
by NTT. We randomly generate 10 pairs of r̂0 and r̂1, and collect 50, 000 data points for
each experiment. The results are presented in Figure 3. It takes 62.4 ms on average to
process r̂1, and 63.9 ms to process r̂0. The distinct timing distributions demonstrate that
the timing side-channel leaks the number of non-zero coefficients in the invNTT input.

In conclusion, our experiment highlights that NTT is vulnerable to the frequency
side-channel. It demonstrates that when processing polynomial inputs with non-zero
coefficients, invNTT processes data with distinct Hamming weights, which causes the CPU



Tianrun Yu, Chi Cheng, Zilong Yang, Yingchen Wang, Yanbin Pan and Jian Weng 209

power consumption to be input-dependent and the CPU frequency to be input-dependent
too under DVFS. For lattice-based constructions that rely on NTT, our observation implies
the need for these constructions to examine whether the input to invNTT ever depends on
the secret key. If it does, the frequency side-channel can potentially leak the secret key.
We target two different implementations but our observation is not limited to a specific
implementation but rather the algorithm on which NTT is based.

4 Leakage Analysis against CPA-secure Kyber
In the previous section, we demonstrate that the number of non-zero coefficients in NTT
input leaks via the frequency side-channel. In this section, we discuss the NTT frequency
leakage in a broader setting, where we attempt to study the frequency leakage in real
world applications that utilizes NTT. We focus on the CPA-secure decryption function in
Kyber as a case study.

4.1 Kyber KEM
Algorithm 3 CPA-secure Kyber without Comp and Decomp

� CPAKEM.Keygen
Output: Public Key pk, secret key sk.

1: ρ, σ ← {0, 1}256

2: Â ρ←− Rα×αq , s, e σ←− Bαη1
3: ŝ = NTT(s), ê = NTT(e)
4: p̂ = Â ◦ ŝ + ê

return (pk = (p̂, ρ), sk = ŝ)
� CPA.Encryption

Input: Public Key pk = (p̂, ρ)
Output: ct = (c1, c2)

1: m, r ←− {0, 1}256, Â ρ←− Rk×kq

2: r r←− Bαη1
, e1, e2

r←− Bη2 , r̂ = NTT(r)

3: u = InvNTT(ÂT ◦ r̂) + e1
4: v = InvNTT(p̂T ◦ r̂) + e2 +m
5: c1 = u, c2 = v

return ct = (c1, c2)
� CPA.Decryption

Input: ct = (c1, c2), secret key ŝ
Output: Message m′

1: u′ = c1,v′ = c2
2: û′ = NTT(u′)
3: r̂ = ŝ ◦ û′
4: m′ = v′ − invNTT(r̂)

return m′

Generally, a KEM consists of three parts: a key generation function Keygen, a key
encapsulation function Encaps, and a key decapsulation function Decaps. The CCA-
secure Kyber uses a CPA-secure encryption algorithm CPA.Encryption in both the
encapsulation and decapsulation processes. To achieve CCA security, Kyber adopts the
Fujisaki-Okamoto (FO) transform [FO99], which involves re-encrypting the decrypted
message to verify the validity of the encapsulation process.

Our analysis against Kyber specifically targets the CPA-secure decryption function
in Kyber decapsulation without the Comp and Decomp functions. The two functions,
designed to reduce the size of ciphertext and message, present a substantial obstacle
in executing our attack. The primary challenge arises from the fact that the Decomp
function is not the exact inverse of the Comp function, making it difficult to find suitable
inputs for our attack.

Algorithm 3 provides the details, where we use x ρ←− D to represent generating a random
sample x according to distribution D with seed ρ and T to represent the transpose of a
matrix or a vector.

In Keygen, p̂ is calculated as p̂ = Â · ŝ + ê, where ŝ and ê are generated from a
centered binomial distribution Bη with parameter η.

In the Encryption process of Kyber, a message m is randomly sampled from {0, 1}256,
and a matrix A is sampled from Rk×kq . The process then involves sampling r, e1, and
e2 from corresponding binomial distributions, followed by calculations of u and v using



210 DVFS-based Side-Channel Attacks against NTT in lattice-based KEMs

the input p̂. Eventually, the Encryption returns the ciphertext ct = (u, v). In the
Decryption, Kyber unpacks the input ciphertext, ct, as (u′, v′), then it calculates
m′ = v′ − invNTT(̂s ◦ û) and returns m′ as the decrypted message.

4.2 The analysis against CPA-secure Kyber
There are three parameter sets of Kyber, namely Kyber-512, Kyber-768, and Kyber-1024,
each offering different levels of security. Taking Kyber-1024 as an example, note that
the secret key of Kyber-1024 consists of 4 polynomials: s = [s0, s1, s2, s3]. We proceed
to extract hints for the secret polynomials individually. Let us illustrate the process by
considering the extraction of hints for s0 as an example. It is worth noting that similar
steps can be followed to recover hints for the remaining polynomials.

Algorithm 4 Analysis against Kyber
� DVFS-based Side-Channel Oracle O

Input: Polynomial u
Output: FrequencyHints

1: Query CPA.Decryption with c1 =
u, c2 = 0.

2: CPA.Decryption computes invNTT
(NTT(u) ◦ NTT(s)), with s being the
secret key.

3: The Oracle O monitors the CPU fre-
quency during CPA.Decryption exe-
cution and stores the CPU frequency as
FrequencyHints.
return FrequencyHints
� Our analysis

Output: Hints about s0
1: for z in [1, q − 1] do

2: Choose u with û′0 = (1, z, 0, · · · , 0).
3: FrequencyHints= O(u′)
4: Append the mean of FrequencyHints

to MeasuredMeans.
5: end for
6: Select one largest means from the Mea-

suredMeans, and find the corresponding
z0, which must satisfy ŝ0,0 + ŝ0,1z0ζ = 0
or ŝ0,1 + ŝ0,0z0 = 0.

7: for i in [1, n/2− 1] do
8: Repeat process 1 to 6 to obtain zi

except that for process 2 choose u with
û′0 = (1, z0, 0, · · · , 0, 1, z, 0 · · · , 0) with
the additional 1 and z at index 2i and
2i+ 1 respectively.

9: end for
10: return Hints={z0, z1, · · · , zn/2−1}.

We summarize our analysis against the CPA-secure Kyber in Algorithm 4, in which
we learn hints about s0 via a DVFS-based Side-Channel Oracle O. There are mainly two
steps in Algorithm 4:

1. Find z0 ∈ Zq such that

ŝ0,0 + ŝ0,1z0ζ = 0 mod q or ŝ0,1 + ŝ0,0z0 = 0 mod q;

2. Find z1, z2, · · · , zn/2−1 ∈ Zq such that it holds that

ŝ0,2i+1 + ŝ0,2izi = 0 mod q for i = 0, 1, · · · , n/2− 1,

or
ŝ0,2i + ŝ0,2i+1ziζ = 0 mod q for i = 0, 1, · · · , n/2− 1.

Although we can not exactly tell which case happens in Step 2 by the side channel
information, it is enough for us to employ the lattice reduction tools, such as [DSDGR20],
to estimate how much the security is affected.



Tianrun Yu, Chi Cheng, Zilong Yang, Yingchen Wang, Yanbin Pan and Jian Weng 211

4.2.1 How to find z0

Remember that the attacker targets the first polynomial s0. He sets the input to
CPA.Decryption as c1 = u′ = (u′0,0,0,0) to target s0, because whenCPA.Decryption
multiplies s with u′ (Line 3 in Algorithm 3), the result would involve ŝ0◦û′0. More precisely,
we have r̂ = (̂s0 ◦ û′0, 0, · · · , 0).

The attacker next sets u′0 such that û′0 is (1, z, 0, 0, · · · , 0) with z ∈ [1, q − 1]. Note
that the multiplication ŝ0 ◦ û′0 is a point-wise multiplication that parses ŝ0 and û′0 at block
level with block size d = 2, and performs a Basemul operation between each pair of blocks.
Since û′0 only has the first two elements as non-zero, ŝ0 ◦ û′0 essentially involves with only
one Basemul:

(r̂0,0 + r̂0,1x) = (̂s0,0 + ŝ0,1x) · (1 + zx) mod (x2 − ζ) (8)
= (̂s0,0 + (̂s0,1+ŝ0,0z)x+ŝ0,1zx

2) mod (x2 − ζ) (9)
= (̂s0,0 + ŝ0,1zζ) + (̂s0,1 + ŝ0,0z)x. (10)

Hence we have:

r̂ = (̂s0 ◦ û′0, 0, · · · , 0) = (̂s0,0 + ŝ0,1zζ, ŝ0,1 + ŝ0,0z, 0, · · · , 0). (11)

CPA.Decryption then computes invNTT on r̂. If r̂ contains only one non-zero
coefficient (̂s0,0 + ŝ0,1zζ = 0 or ŝ0,1 + ŝ0,0z = 0), CPA.Decryption would process data
with low Hamming weight, and as a result, the CPU runs faster. Otherwise, if r̂ contains
more than one non-zero coefficients, CPA.Decryption would process data with random
Hamming weight, and as a result, the CPU runs slower.

By this observation, we can enumerate z from 1 to q − 1 as in the attack and obtain
FrequencyHints returned by oracle O for each z. We know there exists exactly two values
of z, −(̂s0,1ζ)−1ŝ0,0 and −ŝ−1

0,0ŝ0,1, such that they trigger r̂ to contain only one non-zero
coefficient. Therefore, we sort all collected FrequencyHints and conclude that the two values
correspond to the highest two CPU frequencies. Picking any one of the two values as z0,
we know it is either −(̂s0,1ζ)−1ŝ0,0 or −ŝ−1

0,0ŝ0,1. Or equivalently, it holds either

ŝ0,0 + ŝ0,1z0ζ = 0 mod q, (12)

which implies the resulting r̂ equals to (0, C1, 0, · · · , 0), or

ŝ0,1 + ŝ0,0z0 = 0 mod q, (13)

which implies the resulting r̂ equals to (C0, 0, 0, · · · , 0).
We explain this observation in Lemma 1.

Lemma 1. In the calculation of r = invNTT(r̂) = invNTT(̂s ◦ û′) in Kyber with Algo-
rithm 1, if r̂ = (C, 0, . . . , 0) or (0, C, · · · , 0, 0), where C is a non-zero constant, then for
the m-th layer (or equivalently, at the end of the m-th loop between Step 2 and Step 9)
where 1 ≤ m ≤ k − 1, there are 2m non-zero components in the intermediate variable r̂.
Specially, in the final output, there are only 2k non-zero components r, and r contains
only even or odd coefficients, i.e. r is of the form C0 + C2x

2 + C4x
4 + · · ·+ Cn−2x

n−2 or
x(C0 + C2x

2 + C4x
4 + · · ·+ Cn−2x

n−2).
If r̂ = (C + C ′x, 0, . . . , 0), where C and C ′ are non-zero constants, then for the m-th

layer, there are only 2m+1 non-zero components in the intermediate variable r̂. Specially,
there are 2k+1 non-zero components in the final output r.

It can be easily seen that for every loop between Step 2 and Step 9 in Algorithm 1,
the current r̂[j] and r̂[j + len] will only used to update the new r̂[j] and r̂[j + len] and
conversely the new r̂[j] and r̂[j + len] will be determined by the current r̂[j] and r̂[j + len]



212 DVFS-based Side-Channel Attacks against NTT in lattice-based KEMs

completely. Then Lemma 1 follows immediately by induction, that is, by the GS-Butterfly
unit, in the first loop, a non-zero constant will yield 2 non-zero constants, and in the second
loop, 2 non-zero constants will yield 4 non-zero constants and so on. Figure 4 provides an
illustrative example of Lemma 1, demonstrating a simplified case with 8 coefficients.

L
ow

 H
am

m
in

g 
W

ei
gh

t C
as

e
R

an
do

m
 H

am
m

in
g 

W
ei

gh
t C

as
e

C

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

C

0

0

0

0

0

0

0

0

0

0

Figure 4: An example for Lemma 1 (A Simplified version with 8 coefficients. )

4.2.2 How to find z1, z2, · · · , zn/2−1

A direct attempt to find z1 is to set u′0 such that û′0 is (0, 0, 1, z, · · · , 0) with z ∈ [1, q− 1],
and then employ a similar process as in Section 4.2.1. However, note that we always have
two possible equations similar to Equations (12) and (13) for z1, and we cannot tell which
one holds exactly. Hence, for z0 and z1, there are a total of four candidate systems of
equations they may satisfy. For z0, z1, z2, · · · , zn/2−1, it becomes much worse since the
number of candidates increases to 2n/2. Luckily, we have a neat observation to solve this
dilemma.

To elaborate, suppose the Basemul between the first block of ŝ0 and û′0 is (C0, 0), that
is, ŝ0,1 + ŝ0,0z0 = 0. When we target block i, we set u′0 such that û′0 is (1, z0, 0, 0, · · · , 1, z,
· · · , 0) with the additional 1 and z at index 2i and 2i+ 1 respectively. Similar to Equation
(11), we have that

r̂ = (̂s0 ◦ û′0, 0, · · · , 0) = (C0, 0, · · · , 0, ŝ0,2i + ŝ0,2i+1ziζ, ŝ0,2i+1 + ŝ0,2izi, 0, · · · , 0). (14)

The ŝ0 ◦ û′0 would trigger the oracle O to return high FrequencyHints if and only if the
Basemul between the i-th block of ŝ0 and û′0 results in (C2i, 0) but not (0, C2i+1) or
(C2i, C2i+1). We explain this observation in Lemma 2:

Lemma 2. In the calculation of r = invNTT(r̂) = invNTT(̂s◦û′) in Kyber with Algorithm 1,
if r̂ = (C0, 0, . . . , 0, C2i, 0, . . . , 0) where C0 and C2i are non-zero constants and 1 ≤ i <
n/2, then there are at least 2k non-zero components in the final output of r. However,
if r̂ = (C0, 0, . . . , 0, C2i, C2i+1, 0, . . . , 0) or r̂ = (C0, 0, . . . , 0, C2i+1, 0, . . . , 0) where C0
and C2i, C2i+1 are non-zero constants and 1 ≤ i < n/2, then there are 2k+1 non-zero
components in the final output r.



Tianrun Yu, Chi Cheng, Zilong Yang, Yingchen Wang, Yanbin Pan and Jian Weng 213

Similarly, if r̂ = (0, C1, 0, . . . , 0, C2i+1, 0, . . . , 0) where C1 and C2i+1 are non-zero
constants and 1 ≤ i < n/2, there are 2k non-zero components in the final output r.
However, if r̂ = (0, C1, 0, . . . , 0, C2i, 0, . . . , 0) =(0, C1, . . . , 0, C2i, C2i+1, 0, . . . , 0) where
C1, C2i and C2i+1 are non-zero constants and 1 ≤ i < n/2, then there are 2k+1 non-zero
components in the final output r.

As a result, when O return a zi that corresponds to a FrequencyHints, zi must be
−ŝ−1

0,2iŝ0,2i+1. In other words, zi is enforced to have the same style of linear relationship
as z0: ŝ0,1 + ŝ0,0z0 = 0 and ŝ0,2i+1 + ŝ0,2izi = 0.

Applying the same methodology to all the other blocks, we obtain a set {z0, z1, · · · , zn/2−1}
which yields the linear relationships of the secret key for every block i:

ŝ0,2i+1 + ŝ0,2izi = 0 mod q. (15)

In the case that the Basemul between the first block of ŝ0 and û′0 is (0, C1), that is,
ŝ0,0 + ŝ0,1z0ζ = 0, a similar analysis shows that the set {z0, z1, · · · , zn/2−1} returned by
the attack yields the linear relationships of the secret key for every block i:

ŝ0,2i + ŝ0,2i+1ziζ = 0 mod q. (16)

4.3 Frequency Measurement in Kyber CPA.Decryption
To validate the effectiveness of our analysis, we select the CPA.Decryption in the
Kyber AVX2 implementation [ABD+a] as our target. Following the setup described in
Section 3.2.1, we execute a multi-threaded Kyber CPA.Decryption process on an Intel
i7-9600 CPU with the default system configuration. Each thread in the process performs
decryption of a ciphertext ct = (u, v) in a loop until the maximum time limit is reached.

4.3.1 Searching for z0 that triggers a low Hamming weight case

We target Kyber-1024 with s = [s0, s1, s2, s3]. We demonstrate Lemma 1 in Section 4.2 by
targeting the first NTT block of the first secret key polynomial s0. As discussed above, we
set u′ = (u′0,0,0,0) with the NTT representation of u′0 as û′0 = (1, z0, 0, 0, · · · , 0). We
show that while enumerating all z0 ∈ [1, q − 1], it is possible to identify the two z0 that
trigger the low Hamming weight case in CPA.Decryption via the DVFS-based oracle O.

0 500 1000 1500 2000 2500 3000
3.37

3.372

3.374

3.376

3.378

3.38

Fr
eq

ue
nc

y 
M

ea
ns

 (G
H

z)

Figure 5: Frequency means of the AVX2 Kyber CPA.Decryption. We fix one ran-
domly generated sk and sampled 100 z0 in total. We sample 98 random z0 that trigger
CPA.Decryption processing data with random Hamming weight (r̂ to be the form of
(C0, C1, 0, · · · , 0)) and compute two special z0 that trigger CPA.Decryption processing
data with low Hamming weight (r̂ to be the form of (C2, 0, 0, · · · , 0) or (0, C3, 0, · · · , 0)).
The two special z0 are marked in red to reflect the fact that the DVFS-based oracle O
returns high FrequencyHints with them as inputs.



214 DVFS-based Side-Channel Attacks against NTT in lattice-based KEMs

In Figure 5, we present the CPU frequency means of Kyber CPA.Decryption with
different z0 as input. We prepare 100 different z0, including two special z0 that trigger
the DVFS-based oracle O to return high FrequencyHints. For each z0, we collect 100, 000
frequency data points and calculate the mean of the measured frequency. Among them,
we can identify two points with higher frequency (the red points). To be specific, the
mean of the red points is 3.379 GHz, while the mean of the blue points is 3.373 GHz.
From Lemma 1, the two red z0 correspond to −(̂s0,1ζ)−1ŝ0,0 and −ŝ−1

0,0ŝ0,1. They trigger
r̂ = ŝ0 ◦ û′0 = (C2, 0, 0, · · · , 0) or (0, C3, 0, · · · , 0). As a result, when computing invNTT(r̂,
CPA.Decryption processes data with a lower Hamming weight, and the CPU runs faster.

To further verify our result, we randomly select 10 secret keys. In Figure 6, we use
a violin plot to depict the CPU frequency means distribution of z0 triggering the low
Hamming weight case versus z0 triggering the random Hamming weight case. For each
secret key, we choose two z0 that trigger lower Hamming weight and two z0 that trigger
random Hamming weight. Each point in Figure 6 is a CPU frequency mean. Inside each
violin plot, we give an additional box plot to provide details of the two distributions. The
edge of the box represents the lower and upper quartiles of the distribution, while the
distribution median and mean are marked by a solid line and a dotted line inside the box,
respectively. We can clearly distinguish the two distributions.

3.269 3.27 3.271 3.272 3.273 3.274 3.275

 

Frequency Means (GHz)

Figure 6: Distribution of measured CPU frequency means with 10 different secret keys.
For each secret key, we choose two z0 that trigger CPA.Decryption processing data with
lower Hamming weight (r̂ to be the form of (C2, 0, 0, · · · , 0) or (0, C3, 0, · · · , 0)) and two
z0 that trigger CPA.Decryption processing data with random Hamming weight (r̂ to be
the form of (C0, C1, 0, · · · , 0)

4.3.2 Searching for z1, z2, · · · , zn/2−1

We go on to demonstrate Lemma 2 in Section 4.2. We randomly assign z0 to be one of
the two red points, and û′0 is (1, z0, 0, 0, · · · ). r̂ = ŝ0 ◦ û′0 can be either (C0, 0, 0, · · · , 0) or
(0, C ′0, 0, · · · , 0). When targeting the i-th NTT block of ŝ0, we set û′0 as (1, z0, 0, 0, · · · ,
1, zi, 0, · · · ) with the index of zi to be 2i+ 1 and enumerating zi ∈ [1, q − 1]. The DVFS-
based oracle O would return high FrequencyHints if and only if the Basemul between (1, zi)
and the i-th block of ŝ0 results in a block that echos the first block of r̂. If the first block
is (C0, 0), the i-th block has to be (Ci, 0). If the first block is (0, C ′0), the i-th block has to
be (0, C ′i). We provide experimental results to support this Lemma.

Suppose the first block of r̂ is (C0, 0). For a block at index i, we set the 2i + 1
index of û′0 as zi or z′i. The Basemul between (1, zi) and the i-th block of ŝ0 results in
(Ci, 0) (zi = −ŝ−1

i,0 ŝi,1) and the Basemul between (1, z′i) and the i-th block of ŝ0 results
in (0, C ′i)(zi = −(̂si,1ζ)−1ŝi,0). When û′0 is set with zi, we trigger the i-th block of r̂ to
be (Ci, 0). CPA.Decryption computing invNTT(r̂) with r̂ = (C0, 0, · · · Ci, 0, · · · ) would
process data with lower Hamming weight and the CPU runs faster. On the other hand,
When û′0 is set with z′i, we trigger the i-th block of r̂ to be (0, C ′i). CPA.Decryption



Tianrun Yu, Chi Cheng, Zilong Yang, Yingchen Wang, Yanbin Pan and Jian Weng 215

computing invNTT(r̂) with r̂ = (C0, 0, · · · 0, C ′i, · · · ) would process data with random
Hamming weight and the CPU runs slower.

We target 10 different blocks of the secret key. For each zi, we collect 500, 000 CPU
frequency data points and calculate the mean of the measured frequency. We group the 10
CPU frequency means of zi that triggers (Ci, 0) and the 10 CPU frequency means of z′i
that triggers (0, C ′i). In Figure 7, we plot a violin plot that encloses a box plot for CPU
frequency means that correspond to zi and z′i. As we can observe in the figure, the CPU
frequency means of the low Hamming weight case caused by (C0, 0, · · · Ci, 0, · · · , 0) are
distinctively higher than the CPU frequency means of the random Hamming weight case
caused by (C0, 0, · · · 0, C ′i, · · · , 0). The experimental result confirms that we can observe
the Hamming weight difference stated in Lemma 2 through the DVFS-based oracle O.

3.38 3.382 3.384 3.386 3.388 3.39

 

Frequency Means (GHz)

Figure 7: Distribution of measured CPU frequency means targeting 10 random blocks
of the secret key. For each block i, we configure û′0 with zi and z′i such that
zi triggers CPA.Decryption to compute on (C0, 0, · · · Ci, 0, · · · , 0) and z′i triggers
CPA.Decryption to compute on (C0, 0, · · · 0, C ′i, · · · , 0).

4.3.3 Comparison of number of queries

There has been a long line of research in attacks against the CPA.decryption of Kyber,
which is called the key mismatch attack or plaintext checking (PC) oracle-based side
channel attack [RRCB20, QCZ+21, UXT+22]. In fact, in the work of [QCZ+21], only a few
thousand queries are needed. Moreover, with the help of information from electromagnetic
(EM) or frequency leakages, side-channel attacks (SCAs) can also be launched against
CCA.decaps of Kyber [RRCB20, SCZ+23]. The reported queries needed in the work of
[RRD+23] and [TUX+23] can be lowered to less than a thousand queries.

To compare the needed number of queries with the state-of-the-art, we define one
query as access to the DVFS-based Side-Channel oracle in Algorithm 4. Therefore, for
each zi ∈ [1, q], we need q queries to find zi where i ∈ [0, n/2− 1]. In total, we need qn/2
queries, that is 425, 984 for Kyber-512, 851, 968 for Kyber-768, and 1, 277, 952 queries for
Kyber-1024. We need to emphasize that, in our oracle, one query may correspond to a
certain number of CPA.decryption, while in previous PC oracle, generally one query
corresponds to one CPA.decryption. The reason is that in a DVFS-based side-channel
attack, we have to repeatedly execute CPA.decryption in a fixed time interval to trigger
the leakage. In our experiment, the time interval is set as 100 s, which collects 100,000
frequency points. In total, we can find z0 in approximately 138 hours. In terms of query
numbers, our attack performs worse than the PC oracle-based ones that are against the full
version of Kyber. However, compared to traditional EM-based side-channel attacks, which
demand fine-grained traces, our attack exploits the CPU’s dynamic frequency feature
and relies only on coarse-grained CPU frequency leakages. A potential advantage of our
approach is the new attacking surface, which may enable remote attacks without requiring
physical access.



216 DVFS-based Side-Channel Attacks against NTT in lattice-based KEMs

4.4 Reevaluating the security of Kyber with hints
4.4.1 Converting the relationship in the NTT domain to polynomial domain

In this Subsection, we show how to leverage the above hints. Taking ŝ0 for example, after
getting the corresponding hints {z0, z1, · · · , zn/2−1}, we know that either Equation 15 or
Equation 16 holds. Without loss of generality, we assume that Equation 15 holds, that is,
for i = 0, 1, · · · , n/2− 1, we have

ŝ0,2i+1 + ŝ0,2izi = 0 mod q. (17)

We next convert the linear relationship in the NTT domain to the linear combination
of the coefficients of s0, which facilitates the lattice analysis. By the NTT transformation,
it is well known that there exists a matrix N such that

ŝ0 = N · s0 mod q, (18)

which means that every ŝ0,i can be written as the linear combination of the coefficients of s0.
Substituting ŝ0,2j+1 and ŝ0,2j in Equation 17 with the corresponding linear combinations,
we can easily find linear relations for the coefficients of s0. As a result, we can obtain n/2
linear equations for each polynomial in total.

An interesting problem is whether we can solve the corresponding LWE problem to
recover s by using the primal attack with these new simultaneous equations. However, it
is a challenging task since the dimension of the lattice is still too high to solve its SVP.
Fortunately, [DSDGR20] presents a framework to evaluate the concrete hardness in this
case.

4.4.2 Integrating hints to Framework in [DSDGR20] and [MN23]

In [DSDGR20], the authors present a lattice framework that quantifies the security loss of
lattice-based schemes, specifically the LWE problem, when there is side information leakage.
They introduce the concept of “hints” to capture this leakage and analyze the impact on
the security of the schemes. The work of [MN23] extends the work of [DSDGR20] by using
the Lattice LLL algorithm to estimate the security loss and secret recovery in lattice-based
schemes with side information leakage. However, their approach requires a large number
of perfect hints, nearly n/2 for LWE dimension n, which may not apply to our work.

In [DSDGR20], the authors defines modular Hints as the inner product of v and u
modular q, satisfying: 〈v, s〉 = 0 mod q. We can observe that the hints we have in our
analysis can indeed be considered as modular Hints. We execute the script provided by
[DSDGR20] in Sage 9.6 and incorporate the linear equations as “modular hints” into
the framework. The resulting estimation is summarized in Table 1. The security loss is
estimated to be 49 bits, 65 bits, and 87 bits, respectively. The corresponding percentages
of loss are 41.52%, 37.91%, and 36.30%.

Table 1: Estimation of security loss in our analysis against modified implementations of
CPA-Kyber without the Compression and Decompression functions

#Hints original security with hints security loss

Kyber-512 256 118 69 49 (–41.52% )
Kyber-768 384 182 113 69 (–37.91% )
Kyber-1024 512 256 163 87 (–36.30%)

An interesting problem here is that if we have more possible partial leakage information,
can we extract the secret key directly? In [MN23], the authors propose a new approach to



Tianrun Yu, Chi Cheng, Zilong Yang, Yingchen Wang, Yanbin Pan and Jian Weng 217

determine the number of hints that are sufficient to efficiently break LWE-based lattice
schemes. The approach in [MN23] demands a large number of hints to run lattice reduction,
while in our analysis, the number of hints is enough. To fill such a gap, we can combine
our analysis with possible partial leakage to achieve an end-to-end key recovery attack.
We simulate the partial leakage from the other helpful side-channel techniques. We then
integrate the partial leakage as hints and execute the script provided by [MN23] in Sage
9.6. In our experiments, if we can have 150 more hints for Kyber-512, 230 for Kyber-768,
and 300 for Kyber-1024, respectively, then together with our existing frequency hints, we
are able to achieve a full key recovery.

4.4.3 End-to-End Attacks against a Toy Example

We demonstrate an end-to-end attack against a toy example of Kyber, namely Kyber-
256, where Rq is set as Z3329[x]/(x128 + 1) and k = 2. An incomplete NTT compris-
ing 6 layers is employed. The isomorphism can be expressed as Z3329[x]/(x128 + 1) ∼=∏63
i=0
(
Z3329[x]/(x2 − ζ2i+1)

)
with ζ = 172.

We conduct a similar experiment on our AVX2 implementation of Kyber-256 to measure
the frequency leakage. The experimental results indicate a leakage pattern similar to that
of Kyber1024. In total, we can extract 128 hints from these measurements. By simply
regarding these hints as “mod-q hints”, we employ the script provided in [MN23] and
succeed in fully recovering the secret key. In the experiment, a (progressive) BKZ with
block size 21 is used. More details can be found in Appendix A.

5 Security analysis against NTTRU
In this section, we extend our analysis to NTTRU, an NTRU-based KEM that employs
NTT. One significant difference in NTTRU is the absence of Compression and Decompres-
sion functions, which simplifies the process of selecting specific ciphertexts for our analysis.
As a result, we can more easily target and examine the desired ciphertexts in NTTRU.

5.1 NTTRU

Algorithm 5 CCA-secure NTTRU
� NTTRU.Keygen

Output: Public Key ĥ, secret key f̂
1: f ′

$←− B2
2: f = 3f ′ + 1
3: f̂ = NTT(f)
4: g

$←− B2
5: 3̂g = NTT(3g)
6: If f is not invertible : Restart
7: ĥ = 3̂g ◦ f̂−1

8: return ĥ, f̂
� CCAKEM.Encaps

Input: Public Key ĥ
Output: Ciphertext ct, Shared Key K

1: m← R
2: r ← Sampler(H(m))
3: . CPA.Enc(ĥ,m, r)
4: r̂ = NTT(r)

5: m̂ = NTT(m)
6: v̂ = r̂ ◦ ĥ
7: ĉ = v̂ + m̂
8: return ĉ
� CCAKEM.Decaps

Input: Ciphertext ĉ, Secret Key f̂
Public Key ĥ

Output: Shared Key K
1: . CPA.Dec(s, ct)
2: m= invNTT(m̂)= invNTT(ĉ ◦ f̂)
3: r ← Sampler(H(m))
4: c′ = CPA.ENC(ĥ,m, r)
5: if c′ = c then
6: K = H(m))
7: else
8: K = 0
9: end if



218 DVFS-based Side-Channel Attacks against NTT in lattice-based KEMs

First, we introduce NTTRU in Algorithm 5. Recall that NTTRU adopts Z7681[x]
/(x768 − x384 + 1) with n = 768 = 28 ∗ 3 and q = 7681.

In the NTTRU.Keygen, the secret key f ′ (or g) is sampled from the binomial
distribution B2, which produces coefficients from the set {−1, 0, 1}. The key generation
process then computes the secret key f as f = 3f ′ + 1. Additionally, it computes the
element-wise multiplication of the NTT(3g) with the inverse of NTT(f), denoted as
ĥ = 3̂g ◦ f̂−1. These resulting values, f̂ and ĥ, are then used as the secret and public keys,
respectively.

5.2 Analysis against NTTRU
Similar to our analysis of Kyber, we perform a DVFS-based side-channel analysis against
NTTRU. Due to the simple design of NTTRU, we directly analyze theCCAKEM.Decaps
scheme to identify potential side-channel vulnerabilities.

Attack Methods. To infer information about f , we set the ciphertext polynomial ĉ
as (1 + x + zx2, 0, 0 · · · , 0) with z ∈ [1, q − 1] and send it to CCAKEM.Decaps in
Algorithm 5. With ĉ, CCAKEM.Decaps first calculates the Basemul with d = 3 (Line 2
in Algorithm 5) over the NTT domain. That is, the first component of m̂ is:

m̂[0] = (1 + x+ zx2) · (f̂0 + f̂1x+ f̂2x
2) mod (x3 − ζ) (19)

= (f̂0 + ζ(zf̂1 + f̂2) + (f̂0 + f̂1 + zf̂2ζ)x+ (zf̂0 + f̂1 + f̂2)x2. (20)

Then, we have:

• If m̂[0] = (C0, C1, 0)/(C2, 0, C3)/(0, C4, C5), which further lead to at least 1/3 of the
coefficients in m as zero, we say this triggers a low hamming weight case.

• Otherwise, we say a random hamming weight case is triggered.

Therefore, similar to our analysis against Kyber, we need first to enumerate z ∈ [1, q−1],
measure the frequency, and select three special z with higher frequency through the DVFS-
based side channel. Next, set ĉ = (1 + x + zx2, 0, · · · , 0, 1 + x + z′x2, 0, · · · , 0), and
enumerate z′ ∈ [1, q − 1] to further find z′ with higher frequency.

0 1000 2000 3000 4000 5000 6000 7000

3.8565

3.857

3.8575

3.858

3.8585

3.859

3.8595 random hamming weight
low hamming weight

Fr
eq

ue
nc

y 
M

ea
ns

 (G
H

z)

Figure 8: Frequency means of the AVX2 NTTRUCCA.Decryption. We fix one randomly
generated sk and show 100 randomly selected z for simplicity. Specifically, we sample 97
random z that trigger CCA.Decryption processing data with random Hamming weight.
We compute three special z that trigger CCA.Decryption processing data with low
Hamming weight.



Tianrun Yu, Chi Cheng, Zilong Yang, Yingchen Wang, Yanbin Pan and Jian Weng 219

Frequency Measurement. We choose the AVX2-implementation of NTTRU from [LS].
In NTTRU, q = 7681, which makes the measurement on frequencies of z ∈ [1, q− 1] a hard
task. To simplify the analysis, we select three specific z that triggers the low Hamming
weight case and compare its frequency with frequencies corresponding to randomly selected
z values from the range [1, q − 1].

In Figure 8, we present the CPU frequency means of NTTRU CCA.Decryption
with different z as input. Similar to the analysis of Kyber, we prepared 100 different z,
including three special z that trigger the low hamming weight. For each z, we collect
200, 000 frequency data points and calculate the mean of the measured frequency. we can
identify three points with higher frequency (the red points). The result aligns well with
our anlysis.

We show the frequency measurements in Figure 8 based on the two hamming weight
cases. In Figure 8, we show 100 different z0 including three special z0 that trigger the data
in NTTRU to return high Frequency.

Security Loss. Similarly, by performing a matrix-vector multiplication using the appro-
priate NTT matrix in NTTRU, we can derive the linear relationship, or “Hints” concerning
the secret key f . We then integrate the Hints about f in the framework provided by
[DSDGR20] and estimate the security loss.

Table 2: Estimation of security loss against NTTRU

#Hints original Security with hints security Loss

NTTRU 256 154 114 40 (–35.08% )

We estimate the hardness of NTTRU by regarding it as an LWE instance (f, f̂ ĥ− 3̂g).
Then we initiate the LWE instance with n = 768 and q = 7681 and treat our Hints as
the Modular Hint in the [DSDGR20] framework. With one hint in each Basemul block, in
total, we obtain n/3 = 256 hints. The estimation result is summarized in Table 2. With
256 hints, the estimated bit security drops from 154 bit to 114 bit, with a security loss of
35.08%.

6 Countermeasures and Conclusion
To defend against the frequency side-channel attacks presented in this paper, we recommend
two different approaches. The first is to cut off the frequency channel as discussed by
Wang et al. [WPH+22]. Disabling Turbo Boost from the BIOS can fix the CPU frequency
to the base CPU frequency. In such a way, any data-dependent power consumption of a
given cryptography implementation will not be observable via the frequency side-channel.
However, this approach reduces the overall system performance.

The second approach is to examine the application of NTT in a cryptographic imple-
mentation and ensure that potential security risks associated with malicious user inputs
are mitigated. That is, a cryptographic implementation utilizing NTT can check the input
of invNTT, discarding abnormal ones with low-hamming weight as discussed in Section 3.
Akin to Kyber’s approach, a cryptographic implementation utilizing NTT can reduce its
input space, ensuring that any malicious user cannot trigger the abnormal low-hamming
weight computation as discussed in Section 3.

In this paper, we have highlighted the importance of addressing leakages in DVFS-
based side channels when using NTT in lattice-based KEMs. Through our analysis and
experiments, we have provided substantial evidence of leakages in pure NTT and NTT-
based lattice-based KEMs such as Kyber and NTTRU. We have identified that the distinct



220 DVFS-based Side-Channel Attacks against NTT in lattice-based KEMs

Hamming weights of the polynomial inputs processed by invNTT result in input-dependent
CPU power consumption or frequency under DVFS. It is important to emphasize that our
analysis only works against a simplified CPA version of Kyber, which removes Compression
and Decompression functions. So, determing whether this kind of attack applies to the
complete CPA version and CCA-secure Kyber requires further study.

Acknowledgment
We thank Dr. Patrick Longa for shepherding this paper. This work was partly funded
by the National Natural Science Foundation of China under Grant No. 62172374. Yan-
bin Pan was supported in part by National Key Research and Development Project
(No. 2018YFA0704705), National Natural Science Foundation of China (No. 62372445,
62032009, 12226006) and Innovation Program for Quantum Science and Technology under
Grant 2021ZD0302902. Jian Weng is supported by Major Program of Guangdong Ba-
sic and Applied Research Project under Grant No. 2019B030302008, National Natural
Science Foundation of China under Grant Nos. 62332007 and U22B2028, Science and
Technology Major Project of Tibetan Autonomous Region of China under Grant No.
XZ202201ZD0006G, Guangdong Provincial Science and Technology Project under Grant
No. 2021A0505030033, National Joint Engineering Research Center of Network Security
Detection and Protection Technology, Guangdong Key Laboratory of Data Security and
Privacy Preserving, Guangdong Hong Kong Joint Laboratory for Data Security and Privacy
Protection, and Engineering Research Center of Trustworthy AI, Ministry of Education.

References
[ABD+a] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim

Lyubashevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. Kyber AVX2 implementation. https://github.com/pq-crystals/
kyber/tree/main/avx2. Accessed: 2023-05-06.

[ABD+b] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and
Damien Stehlé. Kyber Reference implementation. https://github.com/
pq-crystals/kyber/tree/main/ref. Accessed: 2023-05-06.

[ABD+19] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS-Kyber: Algorithm specification and supporting documen-
tation (version 2.0). In Submission to the NIST post-quantum project (2019),
2019. https://pq-crystals.org/kyber.

[ACC+20] Erdem Alkim, Dean Yun-Li Cheng, Chi-Ming Marvin Chung, Hülya Evkan,
Leo Wei-Lun Huang, Vincent Hwang, Ching-Lin Trista Li, Ruben Niederhagen,
Cheng-Jhih Shih, Julian Wälde, et al. Polynomial multiplication in NTRU
Prime: Comparison of optimization strategies on Cortex-M4. Cryptology
ePrint Archive, 2020.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange-a new hope. In USENIX security symposium, volume
2016, 2016.

[Ber01] Daniel J Bernstein. Multidigit multiplication for mathematicians. Advances
in Applied Mathematics, pages 1–19, 2001.

https://github.com/pq-crystals/kyber/tree/main/avx2
https://github.com/pq-crystals/kyber/tree/main/avx2
https://github.com/pq-crystals/kyber/tree/main/ref
https://github.com/pq-crystals/kyber/tree/main/ref
https://pq-crystals.org/kyber


Tianrun Yu, Chi Cheng, Zilong Yang, Yingchen Wang, Yanbin Pan and Jian Weng 221

[CHK+21] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor
Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. NTT multiplication for NTT-
unfriendly rings: New speed records for Saber and NTRU on Cortex-M4
and AVX2. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2021(2):159–188, Feb. 2021.

[DG22] Debopriya Roy Dipta and Berk Gulmezoglu. Df-sca: Dynamic frequency side
channel attacks are practical. In Proceedings of the 38th Annual Computer
Security Applications Conference, pages 841–853, 2022.

[DKL+18] Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-Dilithium: A lattice-
based digital signature scheme. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pages 238–268, 2018.

[DÖSS15] Yarkın Doröz, Erdinç Öztürk, Erkay Savaş, and Berk Sunar. Accelerating
LTV based homomorphic encryption in reconfigurable hardware. In Tim
Güneysu and Helena Handschuh, editors, Cryptographic Hardware and Embed-
ded Systems – CHES 2015, pages 185–204, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg.

[DSDGR20] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE
with side information: Attacks and concrete security estimation. In Annual
International Cryptology Conference, pages 329–358. Springer, 2020.

[FHK+18] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William
Whyte, Zhenfei Zhang, et al. Falcon: Fast-Fourier lattice-based compact
signatures over NTRU. Submission to the NIST’s post-quantum cryptography
standardization process, 36(5), 2018.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. In Annual International Cryptology
Conference, pages 537–554. Springer, 1999.

[Int20] Intel. Intel 64 and IA-32 architectures software developer manu-
als. https://www.intel.com/content/www/us/en/developer/articles/
technical/intel-sdm.html, 2020. Accessed: 2023-03-15.

[Int22] Intel. Thermal design power (TDP) in Intel processors. https:
//www.intel.com/content/www/us/en/support/articles/000055611/
processors.html, 2022. Accessed: 2023-03-15.

[JAC+20] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca
De Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick
Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev, David Urbanik,
Geovandro Pereira, Koray Karabina, and Aaron Hutchinson. SIKE. Technical
report, National Institute of Standards and Technology, 2020.

[LCCR22] Chen Liu, Abhishek Chakraborty, Nikhil Chawla, and Neer Roggel. Frequency
throttling side-channel attack. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, pages 1977–1991,
2022.

[LS] Vadim Lyubashevsky and Gregor Seiler. NTTRU AVX2 Implementation.
https://github.com/gregorseiler/NTTRU/tree/master/avx2. Accessed:
2023-07-06.

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/support/articles/000055611/processors.html
https://www.intel.com/content/www/us/en/support/articles/000055611/processors.html
https://www.intel.com/content/www/us/en/support/articles/000055611/processors.html
https://github.com/gregorseiler/NTTRU/tree/master/avx2


222 DVFS-based Side-Channel Attacks against NTT in lattice-based KEMs

[LS19] Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly fast NTRU using
NTT. IACR Transactions on Cryptographic Hardware and Embedded Systems,
pages 180–201, 2019.

[MN23] Alexander May and Julian Nowakowski. Too many hints-when LLL breaks
LWE. In Advances in Cryptology–ASIACRYPT 2023: 29th International
Conference on the Theory and Application of Cryptology and Information
Security. Springer, 2023.

[Ope22] OpenSSH 9.0. https://www.openssh.com/txt/release-9.0, 2022. Ac-
cessed: 2023-03-16.

[PBPV23] Antoon Purnal, Marton Bognar, Frank Piessens, and Ingrid Verbauwhede.
Showtime: Amplifying arbitrary CPU timing side channels. In ACM SIGSAC
Asia Conference on Computer and Communications Security (AsiaCCS),
2023.

[PS22] Rogério Paludo and Leonel Sousa. NTT architecture for a linux-ready RISC-V
fully-homomorphic encryption accelerator. IEEE Transactions on Circuits
and Systems I: Regular Papers, 69(7):2669–2682, 2022.

[QCZ+21] Yue Qin, Chi Cheng, Xiaohan Zhang, Yanbin Pan, Lei Hu, and Jintai Ding.
A systematic approach and analysis of key mismatch attacks on lattice-based
NIST candidate KEMs. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 92–121. Springer,
2021.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin.
Generic side-channel attacks on CCA-secure lattice-based PKE and KEMs.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):307–335, 2020.

[RRD+23] Gokulnath Rajendran, Ravi Ravi, Jan-Pieter D’Anvers, Shivam Bhasin,
and Anupam Chattopadhyay. Pushing the limits of generic side-channel
attacks on LWE-based KEMs-parallel PC oracle attacks on Kyber KEM
and beyond. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2023(2):418–446, 2023.

[SCZ+23] Muyan Shen, Chi Cheng, Xiaohan Zhang, Qian Guo, and Tao Jiang. Find
the bad apples: An efficient method for perfect key recovery under imperfect
SCA oracles–a case study of Kyber. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 89–112, 2023.

[TUX+23] Yutaro Tanaka, Rei Ueno, Keita Xagawa, Akira Ito, Junko Takahashi, and
Naofumi Homma. Multiple-valued plaintext-checking side-channel attacks on
post-quantum KEMs. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 473–503, 2023.

[UXT+22] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and
Naofumi Homma. Curse of re-encryption: A generic power/EM analysis on
post-quantum KEMs. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 296–322, 2022.

[Wol] WolfSSL. Cyassl+ntru - high-performance ssl. https://www.wolfssl.com/
documentation/flyers/cyassl_ntru.pdf. Accessed: 2023-03-16.

https://www.openssh.com/txt/release-9.0
https://www.wolfssl.com/documentation/flyers/cyassl_ntru.pdf
https://www.wolfssl.com/documentation/flyers/cyassl_ntru.pdf


Tianrun Yu, Chi Cheng, Zilong Yang, Yingchen Wang, Yanbin Pan and Jian Weng 223

[WPH+22] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav Shacham,
Christopher W. Fletcher, and David Kohlbrenner. Hertzbleed: Turning power
side-channel attacks into remote timing attacks on x86. In 31st USENIX
Security Symposium (USENIX Security 22), pages 679–697, Boston, MA,
August 2022. USENIX Association.

[Wys] Rafael J. Wysocki. Intel pstate CPU performance scaling driver. https://www.
kernel.org/doc/html/v4.19/admin-guide/pm/intel_pstate.html. Ac-
cessed on Jun 7, 2022.

A Frequency Measurement against Toy Example
Figure 9 depicts the experimental results in Section 4.4.3, where we extract hints by
distinguishing between two different Hamming weight cases in frequency measurement.

0 500 1000 1500 2000 2500 3000

3.958

3.96

3.962

3.964

3.966

3.968
random hamming weight
low hamming weight

Fr
eq

ue
nc

y 
M

ea
ns

 (G
H

z)

Figure 9: We fix one randomly generated sk and sample a total of 100 z. Similar to
Figure 5, we sample 98 random z that trigger CPA.Decryption processing data with
random Hamming weights and two special z that trigger CPA.Decryption processing
data with low Hamming weights.

We adopt the same experimental setup as given in Section 3.2.1 for our i7-9700 CPU.
We collect 200, 000 frequency data points and calculate the mean of the measured frequency
for each z. We exhaustively enumerate all z values in [1, 3328]. For simplicity of illustration,
we only show 100 randomly selected points. Among them, we can identify the low Hamming
weight case with higher frequency (the red points). This indicates the frequency leakage
in the implementation of the Toy Example, which enables us to extract hints.

Then, we run a script based on [MN23] in Sage 10.2, which constructs a 256-dimensional
LWE instance. By integrating 128 hints as mod-q hints into this instance, we could observe
a reduction of the 513-dimensional Distorted Bounded Distance Decoding (DBDD) problem
to dimension 385. After running for approximately 2 hours, the script successfully solves
the LWE instance and fully recovers the secret key with a blocksize of around 21.

https://www.kernel.org/doc/html/v4.19/admin-guide/pm/intel_pstate.html
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/intel_pstate.html

	Introduction
	Preliminaries
	Hertzbleed
	Threat model
	Number Theoretic Transform

	NTT Frequency Leakage Analysis
	Attack idea
	Frequency and power measurements of invNTT

	Leakage Analysis against CPA-secure Kyber
	Kyber KEM
	The analysis against CPA-secure Kyber
	Frequency Measurement in Kyber CPA.Decryption
	Reevaluating the security of Kyber with hints

	Security analysis against NTTRU
	NTTRU
	Analysis against NTTRU

	Countermeasures and Conclusion
	Frequency Measurement against Toy Example

