
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 3, pp. 174–199. DOI:10.46586/tches.v2024.i3.174-199

Correction Fault Attacks on Randomized
CRYSTALS-Dilithium

Elisabeth Krahmer1,2, Peter Pessl2, Georg Land1 and Tim Güneysu1,3

1 Ruhr-University Bochum, Bochum, Germany,
{elisabeth.krahmer,tim.gueneysu}@rub.de,mail@georg.land

2 Infineon Technologies AG, Munich, Germany, peter.pessl@infineon.com
3 DFKI GmbH, Bremen, Germany

Abstract. After NIST’s selection of Dilithium as the primary future standard for
quantum-secure digital signatures, increased efforts to understand its implementa-
tion security properties are required to enable widespread adoption on embedded
devices. Concretely, there are still many open questions regarding the susceptibility
of Dilithium to fault attacks. This is especially the case for Dilithium’s randomized
(or hedged) signing mode, which, likely due to devastating implementation attacks
on the deterministic mode, was selected as the default by NIST.
This work takes steps towards closing this gap by presenting two new key-recovery
fault attacks on randomized/hedged Dilithium. Both attacks are based on the idea
of correcting faulty signatures after signing. A successful correction yields the value
of a secret intermediate that carries information on the key. After gathering many
faulty signatures and corresponding correction values, it is possible to solve for the
signing key via either simple linear algebra or lattice-reduction techniques. Our first
attack extends a previously published attack based on an instruction-skipping fault
to the randomized setting. Our second attack injects faults in the matrix A, which is
part of the public key. As such, it is not sensitive to side-channel leakage and has,
potentially for this reason, not seen prior analysis regarding faults.
We show that for Dilithium2, the attacks allow key recovery with as little as 1024 and
512 faulty signatures, with each signature generated by injecting a single targeted
fault. We also demonstrate how our attacks can be adapted to circumvent several
popular fault countermeasures with a moderate increase in the computational runtime
and the number of required faulty signatures. These results are verified using both
simulated faults and clock glitches on an ARM-based standard microcontroller.
The presented attacks demonstrate that also randomized Dilithium can be subject to
diverse fault attacks, that certain countermeasures might be easily bypassed, and that
potential fault targets reach beyond side-channel sensitive operations. Still, many
further operations are likely also susceptible, implying the need for increased analysis
efforts in the future.
Keywords: Fault Injection Attack · Dilithium · Post-Quantum Cryptography

1 Introduction
In 2022, NIST announced the first algorithms that will be standardized in the context
of their post-quantum cryptography process [NIS22]. Out of the three selected signa-
ture algorithms, CRYSTALS-Dilithium [BDL+21] (renamed to ML-DSA in the recently
published draft standard FIPS204 [NIS23]) was identified by NIST as the primary algo-
rithm implemented for most use cases and is, compared to the other selected algorithms
Falcon [FHK+20] and SPHINCS+ [ABB+22], arguably the most suitable for computing
quantum-secure signatures on embedded devices.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2024-01-15 Accepted: 2024-03-15 Published: 2024-07-18

https://doi.org/10.46586/tches.v2024.i3.174-199
mailto:elisabeth.krahmer@rub.de, tim.gueneysu@rub.de, mail@georg.land
mailto:peter.pessl@infineon.com
http://creativecommons.org/licenses/by/4.0/

Elisabeth Krahmer, Peter Pessl, Georg Land and Tim Güneysu 175

Exactly such embedded devices are potential targets of physical attacks like side-channel
analysis and fault attacks. As the real-world adoption of the NIST-selected algorithms
might be imminent, gaining an understanding of the attack landscape and subsequently
designing hardened implementations is a high-priority task.

The side-channel aspect of Dilithium has already seen extended analysis and the
general attack landscape is somewhat understood (see, e.g., the 2023 survey by Ravi
et al. [RCDB23] and the sensitivity analysis in [ABC+23]). Also, first works describing
(higher-order) masked implementations are starting to appear [ABC+23, CGTZ23].

For fault attacks, however, the situation is different. In this regard, it is important to
note that the Dilithium submission [BDL+21] designated two signing modes: deterministic
and randomized. The deterministic signing mode prevents nonce reuse attacks due to
poor randomness generation, but is known to be extremely vulnerable to differential fault
attacks [BP18]. Arguably, deterministic signing also provides less favorable side-channel
properties (due to the possibility of, e.g., averaging).

Likely due to these reasons, the so-called hedged mode was introduced and made the
default in the first draft of the Dilitihium standard [NIS23]. Analogously to the previously
mentioned randomized mode, the introduction of fresh randomness in each signing operation
greatly increases robustness against physical attacks. Therefore, deterministic signing
should not be used on platforms where physical attacks are of concern, according to NIST.
This then puts fault analysis of the randomized/hedged mode into focus.1

There do exist some prior works demonstrating fault attacks on randomized Dilithium
(or one of its progenitor schemes), see [RCDB23] for an overview. Ravi et al. [RJH+19],
for instance, induce an instruction skip during an addition, which allows them to perform
recovery after observing many faulty signatures. Whether their attack applies to the
randomized mode depends on implementation details, such as the ordering of the additions
(cf. Section 2.2). Later, Ravi et al. [RYB+23] demonstrated a fault attack that works by
zeroing certain constants during loading. One of the attack variants applies to randomized
Dilithium, but only if it is implemented in a certain manner. Moreover, Islam et al.
[IMS+22] describe a method utilizing bit flips in the secret key injected through Rowhammer.
They perform key recovery by using the signature verification procedure as a correction
oracle. Finally, in a concurrent work, Ulitzsch et al. [UMB+23] show a loop-abort fault
attack that also allows to circumvent shuffling countermeasures, but similar to [RJH+19],
requires certain implementation properties.

These works only target a selected few operations computed during signing, leaving
a large space of yet unexplored sections open. Moreover, some of the attacks only apply
to highly specific implementation variants of Dilithium. Finally, note that all mentioned
methods target operations that more or less directly involve secret information, which makes
them somewhat obvious targets for fault attacks. Also, the side-channel countermeasures
needed to protect these operations might already make fault injections more difficult.

This leaves open the question of how the attacks fare under the consideration of
standard (side-channel) countermeasures and if there are additional and potentially less
obvious faulting targets for randomized Dilithium.

Our contribution. This work addresses the above questions by significantly extending
the applicability of fault attacks on randomized Dilithium. In particular, we

• propose two new fault attacks extracting information of the secret by correcting
faulty values with the help of the verify function.

• present a generalization of the skipping fault attack [RJH+19] capable of attacking
randomized signing regardless of the addition order.

1In the context of this paper, the hedged and randomized mode behave identical, which is why we do
not further distinguish between them in the following.

176 Correction Fault Attacks on Randomized CRYSTALS-Dilithium

• describe a key-recovery fault attack on Dilithium targeting a non-secret computation
(the expansion of the public matrix Â) and adapt lattice-reduction methods that
can be used to reduce the number of required faults.

• show modifications of these attacks that can circumvent certain countermeasures,
such as shuffling or sign-then-verify, under a slight to moderate increase in the number
of required faulty signatures or computational runtime.

• verify the functionality of our attacks using simulated and real faults and show that
as little as 512 faulty signatures can suffice for key recovery.

• provide the source code for the attacks at
https://github.com/Chair-for-Security-Engineering/dilithium-faults

2 Preliminaries
This section presents the necessary background for understanding the new attacks. After
recalling Dilithium, we discuss previously proposed attacks and countermeasures.

2.1 Dilithium
CRYSTALS-Dilithium [BDL+21] is a lattice-based digital signature algorithm and was
selected as the primary future algorithm for quantum-secure signing by NIST [NIS22]. It will
be standardized under the name ML-DSA, a first draft has recently been published [NIS23].

Dilithium operates on vectors of polynomials over the ring Zq ≡ {0, ..., q − 1}, with
q = 8380417 = 223 − 213 + 1 being a (fixed) 23 bit prime. Polynomials with coefficients
in Zq are denoted by lowercase letters: z ∈ Zq[X] =

∑
i z[i]Xi, with ∀i : z[i] ∈ Zq. We

use Rq for the ring of polynomials in Zq[X] reduced by Xn + 1, with n = 256 being fixed
for all Dilithium parameter sets. Further, the subset Sη includes all coefficient-wise small
polynomials: Sη = {z ∈ Rq | ∀i = 0, ..., n− 1 : −η ≤ z[i] ≤ η}. Concretely, Dilithium uses
η ∈ {2, 3} for its secret keys. Elements that are vectors (resp. matrices) of polynomials
are written with lowercase (resp. uppercase) bold letters: z ∈ Rkq , A ∈ Rk×`q .

Interpreting polynomials as (column) vectors of their coefficients allows to write poly-
nomial multiplication as vector-matrix-multiplication: ab mod (Xn + 1) = Ab = Ba with
the entries of A (resp. B) containing the coefficients of a (resp. b), rotated in a nega-cyclic
manner. This specific rotation is used in a later section, and is referred to as rotmult : Znq ×
{0, ..., n−1} → Znq , rotmult(a, t) = (a[t], a[t− 1], ..., a[0],−a[n− 1],−a[n− 2], ...,−a[t+ 1]).
That is, rotmult(a, t) returns the t-th row of the matrix A.

Dilithium prescribes the use of the Number Theoretic Transform (NTT) to implement
polynomial multiplication efficiently. This operation is a generalization of the discrete
Fourier transformation based upon a quotient ring instead of the field of complex num-
bers. Usage of the NTT allows to perform polynomial multiplications via point-wise
multiplications of the transformed operands, thereby speeding up the multiplication op-
eration significantly. We use â = NTT(a) to denote the NTT domain representation of
a polynomial a. For a vector of polynomials v ∈ R`q, the notation v̂ = NTT(v) stands
for the component-wise application of the NTT. Point-wise multiplication of transformed
polynomials is written as â ∗ b̂.

We now give a brief overview of the main algorithms but refer to the specifica-
tion [BDL+21, NIS23] for further details on the parameter sets and auxiliary functions.

Key Generation. The algorithm starts by sampling a random matrix A ∈ Rk×`q and the
main secret (s1, s2) ∈ S`η × Skη . The main operation of keygen is to calculate the value

https://github.com/Chair-for-Security-Engineering/dilithium-faults

Elisabeth Krahmer, Peter Pessl, Georg Land and Tim Güneysu 177

t ∈ Rq by multiplying A · s1 and then adding s2, making t a slightly disturbed version of
As1. The output of keygen is the keypair (pk, sk).

Simply speaking, the public key pk consists of A and t. However, Dilithium uses several
techniques to reduce the size of the public key. The matrix A is generated deterministically
from a seed ρ, so just publishing ρ is sufficient. The vector t is coefficient-wise split into
its high and low-order bits t1 and t0, respectively. Only the high bits t1 are published.
The secret key sk includes ρ, s1, s2, and t0. Additionally, it contains two further values
K and tr. The seed K is used as additional input for (deterministic or hedged) nonce
derivation. The public-key hash tr is just included for efficiency reasons.

Signature Generation (Alg. 2.1). First, a nonce y is sampled and multiplied with the
(public) matrix A. The result w = Ay is split into its high and low bits, and the high
bits w1 = HighBitsq(w) are hashed together with information on the message to form the
challenge c. Then, the signer calculates the second part of the signature, z = y + cs1.
After performing several checks on bounds of the variables and restarting signing if they
are not met (Fiat-Shamir with aborts paradigm [Lyu09]), the hint h (the final signature
component) is computed. The inclusion of the hint is required so that the verification
procedure can compensate the omission of t0 in the public key. The hints describe if this
omission causes an unwanted carry bit in a part of verification, allowing verification to
correct the carry again.

In the context of this work, an important step of the sign algorithm is the generation of
the seed ρ′ that is later used to derive y. In the recently introduced hedged mode [NIS23],
ρ′ is computed through hashing a concatenation of the secret seed K, the message
representative µ, and the random string rnd. This construction provides robustness against
nonce-reuse attacks while introducing fresh randomness in each signature generation and
thus mitigates, e.g., differential fault attacks. For this reason, the hedged mode is now
the default in FIPS204, whereas the optional deterministic mode should not be used on
platforms where side-channel and fault attacks are of concern [NIS23].

Signature Verification (Alg. 2.2). For verification, the verifier recovers the intermediate
value w1 from the signing process. They achieve that by computing Az− ct1 · 2d, the hint
h allows to compensate for the missing term ct0. They then compare the given challenge
to the one derived by their calculation. If they are equal and all prescribed bounds are
met, the signature is accepted as valid.

2.2 Implementation Attacks Targeting Dilithium
We now give an overview over previously proposed implementation attacks on Dilithium,
we focus on signature generation.

Side-Channel Attacks. There exist several previous works presenting side-channel attacks
on Dilithium. These range from DPA on point-wise multiplication with the key polynomials
(s1, s2) [CKA+21] to attacks exploiting single-trace leakage of various operations [MUTS22,
LZS+21, BVC+23]. For a more in-depth overview, we refer to [RCDB23].

The mentioned works only cover a small subset of likely susceptible operations, meaning
that many more attack variations and improvements are to be expected. Still, the leakage
sensitivity analysis in [ABC+23] shows which algorithm parts require protection, thereby
giving a solid baseline for the design of countermeasures.

Fault Attacks. In 2018, Groot Bruinderink and Pessl [BP18] showed that the deterministic
version of Dilithium is highly vulnerable to differential fault attacks. An adversary
is assumed to be able to inject a single random fault during the signature generation to

178 Correction Fault Attacks on Randomized CRYSTALS-Dilithium

Algorithm 2.1: Dilithium sign [BDL+21, NIS23]
Input: Secret key sk, message M

1 A ∈ Rk×`q := ExpandA(ρ); // target Section 5
2 µ ∈ {0, 1}512 := H(tr||M);
3 κ := 0, (z,h) := ⊥;
4 rnd← {0, 1}256 (or rnd := {0}256 for the optional deterministic variant);
5 ρ′ ∈ {0, 1}512 := H(K||rnd||µ) ;
6 while (z,h) = ⊥ do
7 y ∈ S`γ1

:= ExpandMask(ρ′, κ);
8 w := Ay;
9 w1 := HighBitsq(w, 2γ2);

10 c̃ ∈ {0, 1}256 := H(µ||w1);
11 c ∈ Bτ := SampleInBall(c̃);
12 z := y + cs1; // target Section 4
13 r0 := LowBitsq(w− cs2, 2γ2);
14 if ||z||∞ ≥ γ1 − β or ||r0||∞ ≥ γ2 − β then
15 (z,h) := ⊥
16 else
17 h := MakeHintq(−ct0,w− cs2 + ct0, 2γ2);
18 if ||ct0||∞ ≥ γ2 or the # of 1’s in h is > ω then
19 (z,h) := ⊥

20 κ := κ+ `;
21 return Signature σ = (c̃, z,h)

Algorithm 2.2: Dilithium verify [BDL+21, NIS23]
Input: Public key pk, message M , signature σ = (c̃, z,h)

1 A ∈ Rk×`q := ExpandA(ρ);
2 µ ∈ {0, 1}512 := H(H(ρ||t1)||M);
3 c := SampleInBall(c̃);
4 w′1 := UseHintq(h,Az− ct1 · 2d, 2γ2);
5 if c̃ = H(µ||w′1) and ||z||∞ < γ1 − β and # of 1’s in h is ≤ ω then
6 accept

a message m. Then, they let the same message m be signed again, this time without
any intervention. By injecting the fault after the deterministic computation of the nonce
y, a fault-induced nonce-reuse scenario is achieved, allowing trivial key recovery using
a single faulty signature. The analysis of the attack shows that the single random fault
can be injected in up to 65% of the overall signing time. This large timeframe, together
with the relaxed fault requirements (single random fault) and the need to retrieve just
a single faulty signature, make this a strong attack. However, it strictly applies only to
deterministic signing, as it relies on the fact that the same y is generated when signing
the same message twice.

[IMS+22] proposed a fault injection attack that is applicable to both the deterministic
and randomized version. It uses a signature correction approach to recover the secret
key part s1 bit by bit. For the attack, a single bit in s1 is flipped before the operation
z = y + cs1. When a message is signed with the faulty secret key, the resulting signature
does not verify, which gives room for the correction idea. As s1 is used exactly once in
the sign function and the fault consists of a single-bit flip, both the fault position and the

Elisabeth Krahmer, Peter Pessl, Georg Land and Tim Güneysu 179

actual value of the faulted bit have a unique effect on the signature. Both are recovered
by successively adding and subtracting rotations of the challenge c, multiplied by factors
of 2k, k = 0, ..., 31, to different polynomials of the faulty z′, testing each time for signature
validity. When the modified signature verifies, the rotation and vector indices reveal the
position of the faulty coefficient in s1, while the found k corresponds to the fault’s bit
index. The sign of the modification indicates the original bit value. The adversary repeats
this process until all bits in s1 have been flipped at least once, or until enough bits of s1
have been recovered so that finding the remaining ones can be efficiently done with other
techniques. In experiments targeting PCs using Rowhammer as fault injection technique,
the authors achieve a security level decrease from 2141 to 289 against classical attackers
and from 2128 to 281 against quantum adversaries. These still high levels are due to the
fact that they were not able to flip every bit in s1 using a Rowhammer attack. Still, the
key-recovery technique is independent of the fault-injection technique.

Ravi et al. [RYB+23] proposed an attack that works by setting the constants used in
the NTT (twiddle factors) to zero. They achieve that by manipulating the pointer to these
constants such that read accesses return zero. Out of the two attack variants targeting
Dilithium, only one is applicable to randomized signing. In addition, this attack variant
requires that Dilithium is implemented in a specific manner. Concretely, the output z
needs to be computed as z = NTT−1(ŷ + ĉ ∗ ŝ1), i.e., the addition must be computed in
the NTT domain.

The Skipping Fault Attack. The first new attack presented in this work (Section 4) is
an extension of the skipping fault attack by Ravi et al. [RJH+19], we therefore explain
their approach in more detail.2 Their fault attack targets line 11 of the Dilithium sign
routine (Alg. 2.1), where z is set to y + cs1. Concretely, they skip the addition of one
single target coefficient of one target component through, e.g., injecting an instruction
skip or disturbing the loading of an operand. After injecting this fault in ` · n signing
operations, the secret key part s1 can be recovered.

To indicate faulted values, we introduce additional notation: x′ is the disturbed version
of a value x. Let j be the index of the targeted vector component, and i be the index
of the targeted coefficient. Faulting the signature generation in the described manner
returns σ′ = (c̃, z′,h) with z′ = (z0, ..., z

′
j , ..., z`−1) and, depending on the implementation

of the addition, z′j [i] = yj [i] or z′j [i] = (cs1)j [i]. The attack then proceeds according to
this implementation choice.

• Case I: (z′)j [i] = (cs1)j [i]. The returned (z′)j [i] is (cs1)j [i] = 〈rotmult(c, i), (s1)j〉.
The attacker chooses i, j and knows (z′)j [i] and c through the faulty signature. Hence,
they can generate a linear equation with n unknowns – the n coefficients of (s1)j . The
attack generates n such equations by, e.g., faulting the signing of different messages
or targeting different coefficients i. Note that this applies to both probabilistic and
deterministic signing. Then, Gaussian elimination solves the resulting system for the
unknown (s1)j . This process reveals the entire s1 when it is repeated for all ` vector
components.

• Case II: (z′)j [i] = yj [i]. In this scenario, the attack of [RJH+19] relies on properties
of the deterministic signing mode. Namely, in addition to signing a message m with
the faulted sign routine, they also let the device signm correctly. Due to deterministic
generation of y, subtracting z′ from z yields (yj [i] + cs1j [i])− yj [i] = cs1j [i]. Hence,

2The loop-abort attack presented in [EFGT18] can be seen as a variant of the skipping fault, which is
why we do not further discuss it here. Additionally, loop-aborts often do not result in the desired result,
which is the skipped coefficients being zero [RJH+19]. The Skipping the Addition of the Randomness
attack presented in [BBK16] can also be seen as a variant of the skipping fault; it assumes that the addition
of the entire y is skipped.

180 Correction Fault Attacks on Randomized CRYSTALS-Dilithium

they can again set up a linear equation in the coefficients of (s1)j and continue
analogously to case I.

Signature Forgery with Partial Secret Knowledge. Many attacks, including those in-
troduced by this work, recover the secret key part s1 when successful. Although this does
not give the attacker knowledge of the whole secret signing key, it enables them to sign
arbitrary messages, as shown in [BP18, RJH+19].

2.3 Countermeasures
We now give a brief overview of side-channel and fault countermeasures that have either
already been used with or can be easily extended to Dilithium.

Shuffling randomizes the ordering of independent computations (cf. [VMKS12]).
Due to the high level of independent operations–many computations are performed on
individual coefficients–shuffling can be used extensively and with low computational
overhead in a large range of lattice-based schemes. Shuffling is particularly effective against
algebraic side-channel and fault attacks, as it can obscure which exact coefficient has been
measured/faulted.

Masking is arguably the most prominent side-channel countermeasure; the first fully
high-order masked Dilithium implementations have already been presented ([ABC+23,
CGTZ23]). While primarily aimed at obstructing passive attacks, masking can, in certain
scenarios, be a hindrance to fault attacks as well. Some attacks require injecting the same
fault at the same position in the processing of each share. Performing the previously
described skipping fault, for instance, requires skipping over the addition of all individual
shares of a specific value. This can severely complicate fault injection, especially if masking
is combined with share-individual shuffling.

There has been relatively little analysis of specifically fault-related countermeasures for
lattice-based cryptography. Some generic techniques exist, such as double computation
and sign-then-verify, and ad-hoc techniques for protecting against specific attacks have
been proposed. Double computation, i.e., computing the signature twice and checking
the results for equality, can exploit Dilithium’s rejection structure: only the last iteration
needs to be recomputed, pushing the (average) computational overhead below the typical
factor of 2. Sign-then-verify benefits from the fact that verification is less costly than
signing [KPR+], especially for secured implementations, but requires storing the (large)
public key alongside the secret key.

As for a countermeasure more tailored towards the scheme while still providing somewhat
generic protection, [HP23] proposed a method utilizing theChinese remainder theorem.
After lifting all input coefficients to an extension ring (using predetermined constants), one
can perform all (modular) arithmetic operations in said extension ring and finally test if
the result reduced by the extension modulus matches a precomputed value. The evaluation
of the authors shows a computational overhead of 70% when applying the method to the
Kyber NTT.

3 Attack Concept
As shown in the previous section, there are still significant gaps in the landscape of imple-
mentation attacks on Dilithium. First, some attacks require Dilithium to be implemented
in a certain way and might be defeated with relatively simple countermeasures, such as
shuffling. And second, most previously proposed fault attacks target the nonce y or the
computation of z = y + cs1 in one way or the other, leaving large chunks of the algorithm
still to be analyzed.

Elisabeth Krahmer, Peter Pessl, Georg Land and Tim Güneysu 181

We aim to decrease this gap by presenting two new attacks. In this section, we give a
first high-level overview of their workings.

Attacker Model. We assume an adversary has physical access to a device running the
Dilithium signing routine with an unknown secret but known public key. The adversary
can trigger signing and gather the (not necessarily controllable) signed message as well as
the resulting signature. To achieve the goal of secret key recovery, the adversary can inject
a single targeted fault in each call to the signing routine. We specify more concrete details
on the required faults in the following sections.

For the theoretic part of this work, we assume that fault injection always succeeds,
but we discuss methods that could be used to at least detect failed injections in Section 6.
Finally, for our analysis, we assume that the desired fault is always injected in the final
iteration of Dilithium’s rejection loop, if the targeted operation is performed inside this
loop. An equivalent assumption is that the adversary can inject the same fault in every
loop. While this assumption is not realistic (the number of required iterations cannot be
predicted when using randomized signing), and the equivalent one contradicts a previous
statement (single fault per signing call), they make the analysis much more straight forward.
In addition, one can use simple arguments to extrapolate the results to a more general
scenario. For instance, one can always fault the first iteration and only use the result if
signing succeeds in this iteration (detectable through runtime). The number of expected
faults then needs to be divided by the probability that the first iteration succeeds, which
is 0.23, 0.19, and 0.26 for Dilithium2, 3, and 5, respectively. Note that similar arguments
were given for previous fault attacks on Dilithium [EAB+23].

Attack Intuition. The differential fault attack [BP18] as well as main parts of the skipping
fault [RJH+19] compute differences between a faulty and a correctly computed signature,
which in these cases carries easily exploitable information on the secret key. However,
these attacks rely on y being identical in both calls, which is only easy to achieve when
using deterministic signing (by signing the same message twice).

The approach presented in this paper also works with differences between faulty
and valid signatures. However, the two signatures are not generated by running the
signing routine twice; it is called only once, with the fault injected. Due to the injected
fault, the result of this call does not validate. The idea is to now modify – correct –
chosen intermediates until the verification succeeds. Concretely, this correction is done
by enumerating the potential values of the intermediate, computing its effect on the
faulty signature, and then feeding the modified signature to the verification algorithm.
We then use the required modification to gain information on the secret. A challenge
of this approach is to find a faulting target that, under feasible faulting models, allows
efficient correction and provides exploitable information on the secret key. Such a correction
approach was previously used in [IMS+22], however, their target is the secret key part s1
itself (which is known to require well-protected storage). In this work, we show that this
approach is much more versatile and can be applied to two further fault scenarios: the
skipping fault and a fault in the public matrix A.

Recall that the attack of [RJH+19] does not succeed if randomized signing is used
and the fault has the effect that (z′)j [i] = yj [i] instead of (z′)j [i] = yj [i] + (cs1)j [i] (cf.
case II in Section 2.2, also mentioned in [BBK16]). This scenario can now be attacked by
exploiting the correction approach with our first attack, which is illustrated in Fig. 1.
After obtaining a faulty signature (c, z′, h), the attack works by exhaustively enumerating
the potential values of (cs1)j [i] for fixed i, j, adding it to z′j [i], and passing the result
to verification. Only for the correct value of (cs1)j [i] verification will succeed. The
recovered value features a linear dependency in s1, thereby allowing trivial key recovery
after gathering enough faulty signatures and corresponding correction values. We give

182 Correction Fault Attacks on Randomized CRYSTALS-Dilithium

more in-depth explanations in Section 4.

save
linear equation

equation system
solvable?

pick
target component ,

target coefficient

sign
arbitrary message

with fault

correct get faulty
signature

solve for next
failsuccess

no

yes

Figure 1: Illustration of our first proposed attack for the recovery of one s1 component.

The second attack, illustrated in Fig. 2, targets the expansion of the matrix A from
the seed ρ (line 1 of Alg. 2.1). Note that ρ (and thus A) is public. Hence, the expansion
can be computed without side-channel countermeasures in place, whereas the need for
fault countermeasures was not analyzed previously. When using the modified A′ during
the signing process, the resulting signature will most likely not verify, which gives room
to the correction approach. In contrast to the skipping fault scenario, we do not correct
the signature (c′, z′, h′) itself for this attack. Instead, we look at the essential equation of
the Dilithium verification routine. More specifically, we aim at finding a value ? such that
HighBitsq(Az′ − c′t + ?) = w′1 (cf. Alg. 2.2), which corresponds to a verification success.
As it turns out, the value of ? can be expressed as (A −A′)y = ∆Ay. By inducing a
∆A such that the values of ? are practically enumerable, one can find the correct ? and
thereby retrieve information on y (and thus the secret key part s1). This attack approach
is sketched in Figure 2, we discuss further attack details in Section 5.

save recovered

for all ?

pick
target component

,
target coefficient

sign
arbitrary message

with fault

verify withget
faulty signature

and fault value

verification
success?

next
noyes

no

yes

next

Figure 2: Illustration of our second proposed attack for the recovery of one s1 component.

4 Skipping Fault Correction Attack
Our first attack is an extension of [RJH+19] to successfully attack Dilithium independent
of the used signing mode, deterministic or randomized.

4.1 Fault Model and Exploitation
For the attack to work, the attacker must be able to disturb the addition z = y + cs1 in
exactly one targeted coefficient, such that the returned value equals one of the summands.

Elisabeth Krahmer, Peter Pessl, Georg Land and Tim Güneysu 183

This can be achieved through, e.g., skipping the addition instruction or by setting one
summand to zero (or any other known constant value) by disturbing the load operation.

To adapt the concept by [RJH+19] to the scenario where the faulty signature returns
(z′)j [i] = yj [i] (cf. case II in Section 2.2), we apply the correction idea. In general, the
faulty signature is invalid and will not pass the verification. We know, however, that it will
be valid if we correct the single coefficient that was targeted by the fault, (z′)j [i] = yj [i],
to (z′)j [i] = yj [i] + (cs1)j [i]. This correction is done by an adapted exhaustive search. The
probability distribution for the values of the coefficients in (cs1)j can be approximated by
a (discretized) normal distribution with mean 0 and small variance, as shown in Fig. 3.
Hence, the entries of cs1 are likely to be close to zero.

−60 −40 −20 0 20 40 60

x

0.00

0.01

0.02

0.03

0.04

P
[(
cs

1
) j

[i
]

=
x

]

Dilithium2

N (0, 80)

Dilithium3

N (0, 335)

Dilithium5

N (0, 120)

Figure 3: Probability distribution of the coefficients of cs1, simulated with 225 samples.
For comparison, the probability density functions of N (0, 80),N (0, 335),N (0, 120) are
plotted alongside.

For the attack, the single coefficient (z′)j [i] in the faulty signature σ′ is modified by
some α : (z′′)j [i] = (z′)j [i] +α, beginning with small absolute valued α = 1,−1, 2,−2, 3,
After each modification, we run verify (c̃, z′′,h), with h, c̃ coming from the faulty signature.
If the adjusted signature passes the verification, we assume that the tested α is indeed
(cs1)j [i]. This directly allows us to set up a linear equation in the coefficients of (s1)j .
Using this method, one can proceed as in [RJH+19], repeating the process to generate
a solvable equation system. For the flexibility of the attack, we introduce an additional
parameter 0 ≤ b ≤ β, the correction bound, to cap the number of tested values α. A
pseudo-code of the complete attack can be seen in Alg. 4.1.

4.2 Analysis
In the following, we analyze the attack with regards to complexity and fault injection
aspects.

Complexity. The complexity of the attack is dominated by the number of required
faults. For every component of s1, the attack needs to generate n linearly independent
equations. In all our tests, we never encountered the case of generating linearly dependent
equations.3 Thus it appears reasonable to approximate the total number of equations to
be generated and, subsequently, the number of required faults for the key recovery, with
` · n = {1024, 1280, 1792}. Recall, however, that depending on the setup, these numbers
might need to be multiplied with the inverse of the probability that the first iteration

3Using the formula of [Wat87] with the Dilithium parameters, we get that the probability of a random
n × n matrices in Zq being invertible is ≈ 1 − 1/q. The specific distribution of c might slightly alter this
result, however.

184 Correction Fault Attacks on Randomized CRYSTALS-Dilithium

Algorithm 4.1: Skipping fault correction attack
Input: Public key pk, sign-with-fault-oracle Oskip

1 set M to an arbitrary message
2 for j = 0 to `− 1 do
3 S := {};
4 target := (j, 0);
5 while S not solvable do
6 (c̃, z′,h) := Oskip(M, target) ztemp := z′;
7 for α = 0, 1,−1, 2,−2, ... to −b do
8 (ztemp)j [0] := (z′)j [0] + α;
9 if verify ((c̃, ztemp,h)) = accept then

10 eq_sol := α;
11 c :=SampleInBall(c̃);
12 eq := rotmult(c, 0);
13 S.append((eq, eq_sol));
14 break;

15 (s1)j := Solve(S)
16 return Secret key part s1

yields a signature (cf. Section 3). This then yields, on average, 4500, 6600, and 7000
fault injections, respectively. In the (apparently very rare) case of encountering linear
dependencies, one can generate a small number of additional equations or guess a small
number of key coefficients. The exhaustive search space for the correction is bounded by
2β < 400 and has therefore no significant impact on the complexity of the attack.

Fault Injection Aspects. The practicability of the skipping fault injection has been
experimentally validated by [RJH+19]. Nonetheless, the skipping fault targets an operation
that works on side-channel sensitive values. Thus, it is to be expected that the fault target
is protected by countermeasures in real-world implementations, which can increase the
difficulty of the fault injection.

For examining the influence of fault injection failures, we selected some scenarios for
illustration. A failed injection could skip the addition in a coefficient that is different from
the target (while affecting the signature). The failure could hit the target but disturb
it in a way other than just skipping the addition, or it may affect a completely different
operation. These scenarios are, in most cases, easily detectable since the exhaustive search
will (with overwhelming probability) never be successful. Additionally, they highlight the
main use of the correction bound b. If the fault injection was successful, the value to be
found by the exhaustive search is likely to be close to zero. The longer the search takes, the
higher the probability of a failed fault injection. Aborting the search earlier by lowering b
lets the adversary balance the attack in that regard.

On the other hand, the scenario in which the fault injection misses completely is
indistinguishable from a successful but ineffective fault, where the skipped addition was
simply an “add zero” operation. To avoid those situations, the attack can be modified to
exclude those ineffective faults.

4.3 Countermeasures
This section investigates the effects that selected protection methods have on the skipping
fault correction attack and whether they can be circumvented with reasonable expenditure.

Elisabeth Krahmer, Peter Pessl, Georg Land and Tim Güneysu 185

Shuffling. By randomly rearranging the order of the additions, which can be done at
a comparatively low computational overhead, one can aim to hide which coefficient was
processed (and thus faulted) at any time. Still, our attack can be modified to circumvent
the countermeasure at the cost of a moderately increased complexity and a slight increase
in the number of faults by simply extending the exhaustive search. We correct every
possible coefficient, the first test that verifies reveals the true skipped coefficient and the
true missing value. Note that ineffective faults, i.e., skipped additions of zero, give us no
possibility of recovering the actual fault position and therefore need to be discarded. The
complete, shuffling-adapted attack (assuming the finest shuffling granularity) is depicted
in Alg. 4.2, for simplicity with b = β. If a coarser shuffling is chosen and known to the
attacker, the algorithm can be adapted accordingly.

Extending the brute-force search to every possible coefficient leads to an extra runtime
factor of ` · n. Additionally, the number of required faults is increased by two effects.
First, ineffective faults must be discarded. With our approximation of the coefficient
distribution in cs1 (cf. Fig. 3), on average about 4.5% (resp. 2.2% for Dilithium3, 3.6%
for Dilithium5) of all fault injections result in ineffective faults and cannot be used for the
shuffling-adapted attack. Second, when attacking a shuffled addition, the adversary cannot
choose the targeted component. For the attack, however, they need to collect n equations
for each of the ` secret components of s1 to be able to solve the resulting equation systems.
When they cannot control the target, they might need to retrieve more than the (` · n)
faulty signatures to end up with ` solvable systems. Our tests show that both effects
combined lead to fault overhead of around 10% to 14% (compared to the minimal number
of required faults ` · n).

Algorithm 4.2: Skipping fault correction attack, circumventing shuffling
Input: Public key pk, sign-with-fault-oracle OskipShuff

1 for j = 0 to `− 1 do
2 Sj = {};
3 set M to an arbitrary message;
4 while ∃j s.t. Sj not solvable do
5 (c̃, z′,h) := OskipShuff (M, target = (0, 0));
6 if verify((c̃, z′,h)) = accept then
7 continue;
8 for α = 1,−1, 2,−2, ... to β,−β do
9 for j = 0, ..., `− 1 do

10 for i = 0, ..., n− 1 do
11 ztemp := z′;
12 (ztemp)j [i] := (z′)j [i] + α;
13 if verify ((c̃, ztemp,h)) = accept then
14 eqsol := α;
15 c := SampleInBall(c̃);
16 eq := rotmult(c, i);
17 S.append((eq, eqsol));
18 goto next while iteration (Line 4)

19 for j = 0 to `− 1 do
20 (s1)j = Solve(Sj)
21 return s1

186 Correction Fault Attacks on Randomized CRYSTALS-Dilithium

Masking. As mentioned in Section 2.3, the costly masking countermeasure is primarily
aimed at mitigating side-channel attacks, but can still increase the skipping fault correction
attack’s complexity. To make the skipping fault correction attack work on a masked
implementation, the attacker needs to succeed in faulting the addition in all shares. This
can be a non-trivial challenge, especially when combining masking with (share-wise)
shuffling. Note that the attacker is likely to be able to detect whether or not they have
succeeded in faulting the same coefficient in all shares. Any partial addition skip leads to
an effectively randomized z, which has a high chance of being rejected during the signature
generation and hence not being propagated to the output.

Double Computation and Sign-Then-Verify. While double computation detects most
single-fault attacks, sign-then-verify inherently prevents all correction attacks. However,
there is one way to circumvent both measures even in the single-fault model. The attack
can be turned into an ineffective attack by setting the correction bound b = 0, only using
faulted signatures if the fault had no consequence (the skipped addition was an ”add
zero” operation). This effectively voids the correction idea – there is no faulty value to be
corrected. The modification of the attack from Alg. 4.3 is simple. Instead of ending up
with a solvable linear equation system, the attack generates a system where the solution
vector is 0, requiring us to calculate the kernel of the system matrix. The correct element
of the kernel space is then found by trying all possible factors, first filtering out all kernel
elements in Sη and then testing the remaining candidates to find s1. One way to do so is
to sign a random message and see if the result verifies using the original public key.

The main complexity increase of this attack modification comes from the number of
needed faults. The probability for the skipping fault to result in an ineffective fault is the
probability of (cs1)j [i] being zero. According to the simulation in Fig. 3, we can assume
an upper bound for this value of 5% for Dilithium2, which leads to an expectation value
of more than 20 fault injections per ineffective fault. For the parameter sets 3 and 5 this
factor is even larger.

It is worth noting that the modifications of the skipping fault correction attack to counter
shuffling and double computation/sign-then-verify are mutually exclusive. Adapting the
attack to circumvent both countermeasures at the same time is not possible in the described
way. Also, fault injection failures cannot be detected within the ineffective attack.

Fault Protection with Chinese Remainder Theorem [HP23]. When skipping the target
addition in one coefficient in an implementation that is protected by lifting the calculations
to Rq̂ ∼= Rq ×Rq′ , it not only affects the addition result modulo q but also the outcome
modulo q′, making it differ from the pre-computed check values. The integrity checks of the
countermeasure can therefore detect the skipping fault with high probability and discard
any faulted computation, effectively preventing the attack. [HP23] report a computational
overhead of 70%, although their analysis was focused solely on the Kyber NTT and thus
might not match results for Dilithium.

NTT Addition. NTT addition was proposed by [RJH+19] to counteract the skipping
fault on Dilithium specifically. Instead of calculating the addition z = y+cs1 directly, they
suggest to perform the addition in the NTT domain, i.e., as z = NTT−1(ŷ + ĉ ∗ ŝ1). This
change causes the faulted signature to be discarded with very high probability, preventing
the fault from being propagated to the returned signature. Note, however, that this
implementation change can enable other fault attacks [RYB+23].

Elisabeth Krahmer, Peter Pessl, Georg Land and Tim Güneysu 187

Algorithm 4.3: Skipping fault correction attack, with ineffective faults
Input: Public key pk, sign-with-fault-oracle Oskip

1 set M to an arbitrary message;
2 for j = 0 to `− 1 do
3 S := {};
4 factorsj := {};
5 target := (j, 0);
6 while S not solvable do
7 (c̃, z′,h) := Oskip(M, target);
8 if verify((c̃, z′,h)) = reject then
9 continue;

10 c := SampleInBall(c̃);
11 eq := rotmult(c, 0);
12 S.append(eq);
13 (s1)j := s ∈ ker(S);
14 for f = 1 to q−1

2 do
15 if f · (s1)j ∈ Sη then
16 factorsj .append(f,−f)

17 for f = (f0, ...f`−1) ∈
⊗`−1

j=0 factorsj do
18 σ := forge_sig(f · s1, pk,M);
19 if verify (pk,M, σ) = accept then
20 return secret key part f · s1

5 Correction Attack with a Fault in A
In the previous section, the applicability of the correction approach was demonstrated
using a fault equivalent to an instruction skip at one specific point during the signature
calculation. The targeted operation, z = y + cs1, can be perceived as highly vulnerable to
side-channel attacks as it directly involves the secret key s1. As such, it is not far-fetched to
assume that it is secured by countermeasures against side-channel attacks. Hence, looking
at the correction approach in the context of faults in potentially less protected operations
seems enticing.

Fault Model. For our second attack, we require a fault injected in the public key part A.
The function ExpandA samples the matrix A from the seed ρ, directly returning the NTT
domain representation. We assume that we are able to fault this process, resulting in a
slightly disturbed Â′ = Â + ∆Â. More specifically, we only inject one single fault, which
is described by ∆Â being zero everywhere except for exactly one coefficient of one entry
of the matrix: (∆Â)j1,j2 [i] 6= 0. Note that while the attacker does not need the ability to
choose a specific fault value, he needs to know the injected difference (∆Â)j1,j2 [i].

This fault can be realized by, e.g., flipping/setting/resetting individual bits or setting
the entire target coefficient to zero (or any other known value). While individual bit flips
likely require precise fault injection, injecting a known value can be achieved through
multiple paths, e.g., disturbing a load/store operation. These faults can be injected either
in ExpandA, e.g., in the last round of SHAKE (used for extending the seed ρ) or in the
rejection-sampling procedure of ExpandA, in the multiplication Ay, or while A is kept in
memory.

Note that if the attacked implementation generates A once at the beginning of signing

188 Correction Fault Attacks on Randomized CRYSTALS-Dilithium

and then keeps it in memory, i.e., it doesn’t re-generate it in every iteration of the loop,
then a single fault in ExpandA affects all iterations. Thus, in this case there is no need to
filter for signatures that are returned after the first iteration (unlike in the skipping fault).

5.1 Fault Exploitation
To explain the proposed attack, we recall the details of Dilithium’s signature verification
(Alg. 2.2). The main idea of the verify function is to rebuild the intermediate value w1
that is created during the signing process. With w1, the verifier calculates the challenge c̃
and checks for equality to the given signature.

For simplicity, we first allow the attacker to access t (and not just the high bits t1).
Given the faulty signature σ′ and the public key, they compute A, µ, and c′ according to
lines 1-3 of the verification procedure. Note that they reconstruct the correct matrix A
during these steps, since they use ρ from the public key, but they can only recover the
faulty c′, as they only know the faulty c̃′. Consequently, for the next step of verify, the
following calculation is carried out: Az′ − c′t = A(y + c′s1)− c′(As1 + s2) = Ay− c′s2.

To satisfy the main acceptance criterion in verify (c̃ = H(µ||w′1)), we need to find the
value w′ such that HighBitsq(w′) equals the w1

′ calculated during the signature generation.
Exploiting the linearity of the NTT, this w1

′ can be written as

w1
′ = HighBitsq (w′, 2γ2) †= HighBitsq (w′ − c′s2, 2γ2) = HighBitsq (A′y− c′s2)

= HighBitsq
(

NTT−1
(

(Â + ∆Â) ∗ NTT(y)
)
− c′s2

)
= HighBitsq

(
NTT−1

(
Â ∗ ŷ

)
+ NTT−1

(
∆Â ∗ ŷ

)
− c′s2

)
= HighBitsq

(
Ay + NTT−1

(
∆Â ∗ ŷ

)
− c′s2

)
.

The equality † is assured by range checks during the signing routine.
Note that (Ay− c′s2) is exactly the expression computed earlier as part of the verifi-

cation, i.e., (Az′ − c′t). Thus, we require

HighBitsq

 Az′ − c′t︸ ︷︷ ︸
calculation by the verifier

+ NTT−1
(
∆Â ∗ ŷ

)
︸ ︷︷ ︸

?

 = w1
′. (1)

The core idea of the attack is to find ? by modifying – correcting – the value Az′ − c′t
until the main verification condition is satisfied, i.e.,

H(µ||HighBitsq(Az′ − c′t + NTT−1(∆Â ∗ ŷ)) = c̃′.

As the only unknown in ? is ŷ, finding ? is equivalent to finding ŷ. As before, the correction
is done via an exhaustive search. Since the fault is chosen such that ∆Â has exactly one
non-zero entry, the correction value ? can be found by enumerating the possible values of
one single coefficient in ŷ. Let (j1, j2) be the indices of the position in the matrix and i
the coefficient index of the fault injected in Â. Then

? = NTT−1
(
∆Â ∗ ŷ

)
=
(

0, ..., 0, NTT−1
(

(∆Â)j1,j2 ∗ ŷj2

)
, 0, ..., 0

)
with, writing the polynomial as a vector containing its coefficients,

NTT−1
(

(∆Â)j1,j2 ∗ ŷj2

)
= NTT−1

((
0, ..., 0, (∆Â)j1,j2 [i] ∗ ŷj2 [i], 0, ..., 0

))
.

Elisabeth Krahmer, Peter Pessl, Georg Land and Tim Güneysu 189

The attack successively tests all values 0, 1, ..., q − 1 for ŷj2 [i] in ? and evaluates the
left side of Eq. (1). If the result leads to a successful verification, we assume that it was
equal to w1

′ and that we have found the true coefficient ŷj2 [i].
Finally, the knowledge of one coefficient ŷj2 [i], together with the (faulty) signature and

the linearity of the NTT reveals one coefficient of (ŝ1)j2 :

(ŝ1)j2 [i] =
(
ẑ′j2

[i]− ŷj2 [i]
)
· ((ĉ′)[i])−1 (mod q)

Repeating this process for all entries in ŝ1 and applying the inverse NTT reveals s1.

Influence of Key Compression. Up to now, we worked under the assumption that the
attacker knows all of t. However, the public key only contains the high bits t1. The missing
information t0 is not regarded as sensitive information and can be reconstructed from a
small number of signatures [NIS23]. Nonetheless, the attack still works if the adversary
has access to only t1. The actual value for ŷj2 [i] still always passes the verification test.
Following the verify procedure, the attacker tries to correct the value Az′−c′t1 ·2d (instead
of Az′ − c′t) by adding different ∆Ay. Let y∗ be the nonce used during the signature
generation. When the attacker tests the true value ŷ∗j2 [i], they are effectively calculating

Az′ − c′t1 · 2d + ∆Ay∗ = A′y∗ + Ac′s1 − c′t + c′t0 = A′y∗ − c′s2 + c′t0,

which is exactly the value that was used during signing to create the hint (see line 16 in sign
(Alg. 2.1)). Thus, UseHintq

(
h,Az′ − c′t1 · 2d + ∆Ay∗, 2γ2

)
= w1 and the verification

succeeds. This proves that the attacker can always find the true value with the described
brute-force search.

The full attack is summarized in the pseudo-code in Alg. 5.1 and 5.2. For simplicity,
the row index j1 of the targeted entry in Â is set to zero. Note that this choice is arbitrary,
the value of j1 does not matter for the attack and can even vary, it just needs to be known.

Algorithm 5.1: Modified verification verify’
Input: Public key pk, message M , signature σ = (c̃, z,h),

target (j1, j2, i), fault value δ, correction value α
1 A ∈ Rk×`q := ExpandA(ρ);
2 µ ∈ {0, 1}512 := H(H(ρ||t1)||M);
3 c := SampleInBall(c̃);

4 ∆Â ∈ Rk×`q := 0;
5 (∆Â)ij1,j2

= δ;
6 ŷ ∈ Rkq := 0;
7 ŷij2

= α;
8 X := NTT−1(∆Â ∗ ŷ);

9 w′1 := UseHintq(h,Az− ct1 · 2d + X, 2γ2);
10 if c̃ = H(µ||w′1) and ||z||∞ < γ1 − β and # of 1’s in h is ≤ ω then
11 accept

5.2 Reducing the Number of Needed Faults via Lattice Reduction
The method described above recovers exactly one coefficient of ŝ1 per fault injection. This
number can be significantly improved by exploiting the fact that all coefficients of s1 are

190 Correction Fault Attacks on Randomized CRYSTALS-Dilithium

Algorithm 5.2: Correction attack with a fault in A
Input: Public key pk, sign-with-fault-oracle OfA

1 set δ;
2 set M to an arbitrary message;
3 ŝ1 = 0;
4 for j2 = 0 to `− 1 do
5 for i = 0 to n− 1 do
6 target = (0, j2, i);
7 (c̃′, z′,h′) := OfA(M, target, δ);
8 for α = 0, 1, 2, ... to q − 1 do
9 if verify’(pk,M, (c̃′, z′,h′), target, δ, α) = accept then

10 (ŝ1)j2 [i] = (ĉ′i)−1 · ((ẑ′j2
)[i]− α);

11 break;

12 return NTT−1(̂s1)

small, as we will now show. We note that the presented method is similar to one previously
presented in context of an attack on Kyber [HHP+21].

The NTT of a polynomial s can be described as a multiplication of its coefficient vector
s ∈ Znq with the NTT-matrix N ∈ Zn×nq . That is, ŝ = Ns (and s = N−1ŝ), where N
can be trivially generated by the images of the standard basis. This is analogous to the
discrete/fast Fourier transform and a multiplication with the DFT-matrix. When only
recovering a subset of the coefficients of ŝ, then s cannot be computed directly through
the (inverse) NTT. Still, s can be found by exploiting its small coefficients.

W.l.o.g., we say that the first m coefficients in ŝ are known, we denote them as ŝk. The
n−m unknown coefficients are grouped into ŝu, giving us ŝ =

(
ŝTk ||̂sTu

)T . We can then
rewrite the NTT equation as

s = N−1ŝ =
(

N−1
k N−1

u

)(
ŝk
ŝu

)
⇔ −N−1

u ŝu + s = N−1
k ŝk,

where N−1
k and N−1

u contain the columns of N−1 that are multiplied with ŝk and ŝu,
respectively. In this form, finding s can be seen as solving an LWE problem: the missing
part of ŝ corresponds to the secret of the LWE instance, while s corresponds to the small
added error. The NTT matrix part N−1

u defines the lattice for the LWE problem.
If the known part of ŝ is sufficiently large, this LWE instance can be practically solved

through lattice-reduction techniques. We have tested this approach, using the primal
method as explained in [AGVW17], with an embedding factor of t = 1.

5.3 Analysis
Complexity. Recovering one coefficient of ŝ1 requires injecting one fault in Â (at the
corresponding row and coefficient index but in an arbitrary column) and then performing
an exhaustive search over the values of one coefficient in ŷ. The search space is of size q,
which is much larger than the search space for the first correction attack (2β � q).

When not using lattice reduction, i.e., recovering each single coefficient of ŝ1 using a
separate faulted signature, then a total of ` · n = {1024, 1280, 1792} faults are required.
Recall that in many implementations, A is generated before entering the rejection loop,
meaning there is no need to specifically target the last iteration of said loop and to scale
the numbers with the probability of the first iteration returning a signature.

Elisabeth Krahmer, Peter Pessl, Georg Land and Tim Güneysu 191

With the approach described in Section 5.2, these numbers can be reduced drastically.
Concretely, we were able to recover the key s with only half the coefficients of each
polynomial in ŝ known, bringing down the total numbers to {512, 640, 892}. For computing
the actual lattice reduction, we used the BKZ implementation of fplll [dt23] with a block
size of 30. On a laptop equipped with an 13th Gen Intel i5 running at 1.6 GHz, the average
runtime for recovering one key polynomial when half of its NTT coefficients are known
was about 90 minutes. The expected runtime for recovering the entire s1 can be computed
through multiplication with the parameter `.

We ran 40 experiments using these parameters, all of them were successful. Note that
we did not further optimize the parameters of this recovery step, thus even fewer faults
will likely suffice.

Success Rate of the Key Recovery. The attack fails if a false value for ŷj [i] leads to a
verification. However, the properties of the NTT tell us that any wrong value for ŷj [i]
would lead to a deviation from the original A′y− c′s2 + c′t0 in all coefficients. The lemma
in Appendix A, on the other hand, shows that the UseHintq function only allows very
limited disturbances in its second input to not change its output. These two observations
show that the probability of a false positive can reasonably be assumed to be negligible.

Practicability. A hurdle in practically realizing this attack is that the fault position
corresponds to the recovered coefficient of s1 in a one-to-one relation, meaning that up
to ` · n different faulting positions/times are required. This stands in contrast to the
attack from the previous section, where only ` different fault injection points are required.
However, the expansion of A does not operate on any (side-channel) sensitive information
and is, therefore, unlikely to be protected by additional countermeasures.

Fault-injection failures are potentially difficult to detect in this scenario, mainly because
of the larger search space of the exhaustive search. In some fault injection failure cases,
the brute-force search will test every possible value in Zq, ultimately failing every test.
Additionally, our attack can only test for a correct value of ? = ∆Ay. We use this property
to find ŷ, knowing the value of ∆Â. However, any unknown deviation from the injected
difference value or position significantly complicates the successful key recovery. It may be
countered using redundancy similar to what we describe regarding shuffling circumvention.
Regarding complete fault injection failures, i.e. the fault injection having no effect at all,
the fault-A case does not differ from the skipping fault. It cannot be distinguished from
the case in which the coefficient of ŷ that we try to learn is zero but may be circumvented
by discarding all ineffective faults.

5.4 Countermeasures
When designing countermeasures for a fault attack on Â, one has to consider that expanding
Â makes up a significant part of the sign clock cycles. Moreover, for RAM-constrained
devices, it might be required to component-wise re-compute Â for each iteration of the
rejection loop. This induces a further significant slow-down of up to a factor of 6 [GKS21].
Thus, countermeasures should be inexpensive.

Shuffling. Each polynomial in Â is generated by using ρ and the matrix indices of the
to respective polynomial as input for the extendable-output function (XOF) SHAKE-128.
The output of the XOF is then subjected to rejection sampling to derive the individual
coefficients (in increasing order of the indices). Said rejection sampling is an inherently
serial process, which makes shuffling the order in which coefficients are generated difficult.

192 Correction Fault Attacks on Randomized CRYSTALS-Dilithium

Reordering the generation of the (k×`) polynomials within Â, however, is trivial. Therefore,
we limit our analysis to this second scenario.4

First, we note that determining the index of the currently-sampled entry of Â could
be relatively simple when using side-channel leakage. Sampling a polynomial is a lengthy
process (at least 5 calls to the Keccak-f permutation per polynomial), likely features
minimal to no side-channel protection (it operates on public data), and its intermediates
can be fully predicted (due to the public ρ). Thus, side-channel analysis could likely reveal
which of the (k × `) entries is currently generated.

Still, there are techniques to circumvent shuffling without resorting to side-channels,
albeit at increased cost. First, consider the scenario that only the row indices of Â were
shuffled. Analogously to the adaptation done for the skipping fault, one can simply test all
k rows of w1, thereby increasing the computational runtime by this factor. Only applying
a correction to the correct row will yield the correct c̃′.

If both row and column indices are unknown, additional steps are needed. Reconstruct-
ing w′1 (and finding the correct row j1) is as costly as if only row indices are shuffled since
finding the correct additive term ∆ŵ1 is sufficient. We assume that the adversary knows
the potential ∆Âj1,j2 [i] for all j2, i.e., for the entire row; these values might depend on
the actual fault index as is the case if the target coefficient i is faulted to zero. Then,
we can compute ŷj2 [i] = (∆ŵ1) · (∆Âj1,j2 [i])−1 mod q, for all j2. Only one of these `
entries in ŷ is correct. To determine which one is correct, we compute all corresponding
(ŝ1)j2 [i] = (ẑ′j2

[i]− ŷj2 [i]) ·((ĉ′)[i])−1 mod q. These candidates are saved, and the correction
attack is repeated. Whenever we recover the same value for one coefficient in ŝ1 twice,
we can reasonably assume that we have found the correct value. Indeed, assuming an
approximately uniform distribution of the ŝ1 coefficients in Zq, the probability of recovering
a coefficient incorrectly that way can be approximated by the birthday problem to around
2−15.

To perform this attack, each column of Â must be hit at least twice. Using simulations,
we found that this increases the number of required faulty signatures by a factor of 14, 19,
and 29, for Dilithium 2, 3, and 5, respectively. The computational runtime is increased by
an additional factor of k for finding the row index.

Double Computation and Sign-Then-Verify. Both double computation and sign-then-
verify prevent the correction attack in the single fault model but might be ineffective when
multiple faults can be injected precisely. The use of ineffective faults is significantly less
applicable in this scenario, as such faults appear with probability of only 1/q ≈ 2−23,
which is likely too rare to allow a practical attack. However, the previously mentioned
high runtime cost of generating Â might limit the usefulness of the double-computation
approach. The sign-then-verify approach requires storing the public key alongside the
private key, increasing storage requirements.

Fault Protection with Chinese Remainder Theorem. The CRT-based countermeasure
[HP23] can only offer protection after lifting to an extension ring occurred. Thus, the
sampling of A can, in most parts, not be protected using this countermeasure. Still, faults
introduced on the stored (or re-loaded) A can very likely be detected.

6 Practical Evaluation
Both proposed attacks can be split into two parts: An online phase, in which faulty
signatures are collected from the target, and an offline phase, in which these signatures are

4The attack can also be adapted to the first scenario, albeit at higher cost. We did not analyze the
exact overhead for this case.

Elisabeth Krahmer, Peter Pessl, Georg Land and Tim Güneysu 193

Table 1: Recovery of s1 using the skipping fault correction attack with simulated faults.
Average was taken over 1000 (resp. *10) runs for each data point, recovery was successful
in 100%.
Attack modification Dilithium ∅ time ∅ # of faults Ref.

plain attack
2 2.5 sec 1 024

Alg. 4.13 7.9 sec 1 280
5 11.2 sec 1 792

shuffling adapted*
2 28 min 1 162

Alg. 4.23 2 h 22 min 1 414
5 5 h 39 min 2 041

using ineffective faults
2 18 sec 22 952

Alg. 4.33 62 sec 63 672
5 74 sec 49 514

used to calculate the secret key part s1. We tested the key recovery phase for both attacks
with simulated faults, before experimentally verifying the fault injection assumptions of
the attack that faults the matrix A.

6.1 Skipping Fault Correction Attack

To test the skipping fault correction attack (Section 4), we implemented the key re-
covery part of the attack based on the official reference implementation of Dilithium
in C [ABD+]. The faults were simulated by programmatically injecting them into the
crypto_sign_signature function of the reference. The tests were done on a laptop
equipped with an 11th Gen Intel i5 2.6GHz CPU and the results are shown in Table 1.
Note that, with this simulation approach, the instruction skip was triggered in every
iteration of the rejection loop, and we therefore avoided the problem of not faulting the last
iteration for testing the key recovery. As previously stated, the number of needed faults
needs to multiplied by a factor of ∼ 4− 5 when going from simulated to actual faults.

In Section 4.3, we showed that the skipping fault correction attack can be adapted
to an implementation that protects the target operation (z = y + cs1) with shuffling
(Alg. 4.2), or one that uses double computation or sign-then-verify to detect fault injections
(Alg. 4.3). Shuffling was simulated by applying the skipping fault to a randomly chosen
coefficient. In contrast to the plain attack, the number of needed faults is not fixed here.
The randomness in the target coefficient and the exclusion of ineffective faults leads to
an overhead in the number of equations that are required in total for ending up with a
solvable equation system for each component of s1 (cf. Section 4.3). To test the ineffective
fault attack, the implementation sets the correction bound b = 0. The results for all tested
modifications of the skipping fault correction attack can also be found in Table 1.

Additionally, for the skipping fault correction attack, we introduced the correction
bound b as an additional parameter (cf. Section 4.2). It allows to balance the attack by
limiting the search space for the value of (cs1)j [i] to the most probable candidates around
zero. As higher, unlikely values for (cs1)j [i] might tend to correlate with unsuccessful
skipping faults, the attacker can try to avoid those by lowering b. The influence of b on
the number of faults is illustrated in Fig. 4: As expected, lowering b increases this number,
and the increase correlates to the distribution of the coefficients in cs1 (cf. Fig. 3).

For the experimental verification of the online phase resp. the fault injection for this
attack we refer to the practical evaluations in [RJH+19], as the required faulty signatures
are the same in their attack.

194 Correction Fault Attacks on Randomized CRYSTALS-Dilithium

103

2× 103

3× 103

4× 103

6× 103

fa
u

lt
s

n
ee

d
ed

o
n

av
er

ag
e

` · n = 1024

1280

1792

Dilithium2

Dilithium3

Dilithium5

min. number of faults

min. number of faults

min. number of faults

5 10 20 30 40 50 60

correction bound

Figure 4: Average number of needed faults for the recovery of s1 using the skipping fault
correction attack, dependent on the correction bound. Average was taken over 200 runs
for each data point, recovery was successful in 100%.

6.2 Correction Attack with Fault in A: Simulation
For our proposed attack on the matrix A (Section 5), we first tested the key recovery with
simulated faults.

The faulty signatures, analogous to the skipping fault above, were generated by setting
specific coefficients of Â to zero in crypto_sign_signature after it has been expanded
(but before entering the rejection loop of the signature generation). For each parameter
set, we generated ten different key pairs, and for each key pair, we computed ` · n faulty
signatures, one for each coefficient position in the first column of Â.

For the offline part of the attack, we developed a highly parallelized program that
makes use of the AVX2-optimized Dilithium implementation, specifically the verification,
of the Dilithium authors [ABD+]. We ran the attack program on a server that features an
AMD EPYC 7742 CPU clocked at 2.68 GHz and used all available 256 threads. For the
simulated faults, one full key recovery takes on average (over the ten randomly generated
keys)

• 3 minutes and 30 seconds for Dilithium2,

• 5 minutes and 19 seconds for Dilithium3, and

• 9 minutes and 53 seconds for Dilithium5.

6.3 Correction Attack with Fault in A: Practical Experiments
To verify that our assumptions regarding the fault model are valid, we also attacked a
real device running Dilithium. The experiments were conducted using a ChipWhisperer
Lite [Newa] connected to a ChipWhisperer UFO board with an STM32F405 target [Newb].
The device ran the optimized pqm4 implementation of Dilithium [KPR+] with one slight
change: the memory for the matrix A was initialized with 0. The clock frequency was set
to 24 MHz, which is the default for pqm4. Faults were induced through the clock-glitching
capability of the ChipWhisperer board.

The targeted implementation expands the matrix A once at the start of every signature
generation. In line with Dilithium’s specification, it uses rejection sampling on the output
of SHAKE called with the public seed ρ and the matrix indices (i, j). In this process,
dlog2 qe bits are loaded from the SHAKE output, compared to q, and, if smaller, stored to
the next coefficient of A (cf. Alg. 6.1).

To simplify analysis, we added a trigger signal notifying the start of the rejection-
sampling procedure, i.e., after the call to SHAKE, of the currently targeted polynomial of

Elisabeth Krahmer, Peter Pessl, Georg Land and Tim Güneysu 195

Algorithm 6.1: ExpandA
Input: Public key part ρ

1 for every polynomial âi,j in Â do
2 stream = SHAKE(ρ|256 ∗ i+ j);
3 while not every coefficient of âi,j is set do
4 take the next three bytes from stream;
5 set highest bit to 0;
6 if the resulting 23 bit number is smaller than q then
7 use it as the next coefficient

8 return Â = (âi,j)(i,j)∈{0,...,k−1}×{0,...,`−1}

A. We experimentally determined reliable glitch parameters allowing us to target the store
operation of a coefficient and computed the cycle offsets needed to target each individual
index. The injected clock glitch caused the targeted coefficient to be zero for the rest of
the signature generation while leaving all other coefficients undisturbed.

Our experiments showed a successful fault injection in 30 to 90% of all tests. We
discovered a significantly lower success rate for coefficients with an index equal to 1 modulo 4
compared to the other coefficients. The pointer to the SHAKE output is advanced by 3
at a time, meaning that only every fourth load operation is word-aligned, which could
explain this behavior. However, as described in the next section, our attack was successful
with these fault injection probabilities. Hence, we refrained from further investigating the
fault behavior.

Dealing with Failed Fault Injections. As mentioned above, fault injection did not always
have the desired result. We use several steps to deal with this fact. First, we disregard
all signatures that verify without correction, which is the case either when the respective
coefficient of Â was already zero or the fault simply did not work. Second, we discard
signatures where the correction was not successful, i.e., where no value of ∆Ây leads to a
satisfied verification condition. This can happen if the fault has affected more than one
coefficient or the wrong position, which causes the coefficient recovery attempt to fail with
overwhelming probability.

If the fault did in fact influence our intended target coefficient, but in some unintended
manner leading to an unknown faulty value and thus an incorrect ∆Â, the correction
procedure will still return a value for the targeted coefficient of ŷ/ŝ1. However, the
recovered value will be incorrect. Experimentally, we found that such incorrectly recovered
values of ŝ1 take on random values, potentially due to using a randomized y and c in
each signing operation. Consequently, we performed multiple faults per coefficient position
during the online phase and repeated recovery until we obtained the same coefficient
candidate twice for one position of ŝ1. For Dilithium2, this procedure successfully recovered
961 of 1 024 coefficients from 10 240 practically faulted signatures, i.e., 10 faults per key
coefficient.5 With this strategy, gathering all faulty signatures needed about 2 hours of
runtime using the ChipWhisperer setup, while the offline search took 19 minutes of server
time. For the remaining 61 coefficients, no two signatures yielded the same value for the
specific (ŝ1)j2 [i], thus we marked them as unknown.

To handle these unknown coefficients of ŝ1, we applied the lattice-reduction approach
5This number could be drastically reduced by abandoning the strict differentiation between the

online (faulting) and offline (computation) phases. When running computational key-candidate recovery
immediately after each individual fault injection, one could terminate faulting the current position as soon
as the same value is recovered twice. By doing so, most coefficients can likely be recovered using far less
than 10 trials.

196 Correction Fault Attacks on Randomized CRYSTALS-Dilithium

described in Section 5.2 (once per polynomial). Using the BKZ algorithm of the fplll
library [dt23] with block size 5, we successfully recovered the secret s1 in about 20 minutes
on a standard working laptop.

7 Conclusion
This work presented two new key-recovery fault attacks on Dilithium’s signing procedure.
Both methods can be used to attack the, in terms of implementation attacks, more robust
(and now default) randomized signing mode, thereby demonstrating that simply switching
away from deterministic signing does not lead to a sufficient level of fault robustness. In
addition, the attacks can be extended such that some popular countermeasures, such as
shuffling, can be circumvented. Finally, the fault on the public A demonstrates that fault
susceptibility extends far beyond side-channel sensitive operations.

Acknowledgements
The work described in this paper has been supported by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy
- EXC 2092 CASA - 390781972, by the German Federal Ministry of Education and Re-
search BMBF through the project ”MANNHEIM-FlexKI” (01IS22086I) and the project
”Sec4IoMT” (16KIS1689), and by European Commission under the grant agreement number
101070374.

References
[ABB+22] Jean-Philippe Aumasson, Daniel J. Bernstein, Ward Beullen, Christoph Do-

braunig, Maria Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas
Hülsing, Panos Kampanakis, Stefan Kölbl, Tanja Lange, Martin M. Lau-
ridsen, Florian Mendel, Ruben Niederhagen, Christian Rechberge, Joost
Rijneveld, Peter Schwabe, and Bas Westerbaan. SPHINCS+: Submis-
sion to the NIST post-quantum project, v.3.1. Homepage, 2022. https:
//sphincs.org/data/sphincs+-r3.1-specification.pdf.

[ABC+23] Melissa Azouaoui, Olivier Bronchain, Gaëtan Cassiers, Clément Hoffmann,
Yulia Kuzovkova, Joost Renes, Tobias Schneider, Markus Schönauer, François-
Xavier Standaert, and Christine van Vredendaal. Protecting Dilithium against
leakage revisited sensitivity analysis and improved implementations. IACR
TCHES, 2023(4):58–79, 2023.

[ABD+] Avanzi, Bos, Ducas, Kiltz, Lepoint, Lyubashevsky, Schanck, Schwabe, Seiler,
and Stehle. Reference implementation of Dilithium. git repository. https:
//github.com/pq-crystals/dilithium, as of May 3, 2023.

[AGVW17] Martin R. Albrecht, Florian Göpfert, Fernando Virdia, and Thomas Wunderer.
Revisiting the expected cost of solving uSVP and applications to LWE. In
ASIACRYPT (1), volume 10624 of Lecture Notes in Computer Science, pages
297–322. Springer, 2017.

[BBK16] Nina Bindel, Johannes Buchmann, and Juliane Krämer. Lattice-based signa-
ture schemes and their sensitivity to fault attacks. In FDTC, pages 63–77.
IEEE Computer Society, 2016.

https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://github.com/pq-crystals/dilithium
https://github.com/pq-crystals/dilithium

Elisabeth Krahmer, Peter Pessl, Georg Land and Tim Güneysu 197

[BDL+21] Shi Bai, Léo Ducas, Tancrède Lepoint, Vadim Lyubashevsky, Pe-
ter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-
Dilithium: Algorithm specifications and supporting documentation (ver-
sion 3.1). Homepage, 2021. https://pq-crystals.org/dilithium/data/
dilithium-specification-round3-20210208.pdf.

[BP18] Leon Groot Bruinderink and Peter Pessl. Differential fault attacks on deter-
ministic lattice signatures. IACR TCHES, 2018(3):21–43, 2018.

[BVC+23] Alexandre Berzati, Andersson Calle Viera, Maya Chartouny, Steven Madec,
Damien Vergnaud, and David Vigilant. Exploiting intermediate value leakage
in Dilithium: A template-based approach. IACR TCHES, 2023(4):188–210,
2023.

[CGTZ23] Jean-Sébastien Coron, François Gérard, Matthias Trannoy, and Rina Zeitoun.
Improved gadgets for the high-order masking of Dilithium. IACR TCHES,
2023(4):110–145, 2023.

[CKA+21] Zhaohui Chen, Emre Karabulut, Aydin Aysu, Yuan Ma, and Jiwu Jing. An
efficient non-profiled side-channel attack on the CRYSTALS-Dilithium post-
quantum signature. In ICCD, pages 583–590. IEEE, 2021.

[dt23] The FPLLL development team. fplll, a lattice reduction library, Version: 5.4.5.
Available at https://github.com/fplll/fplll, 2023.

[EAB+23] Mohamed ElGhamrawy, Melissa Azouaoui, Olivier Bronchain, Joost Renes,
Tobias Schneider, Markus Schönauer, Okan Seker, and Christine van Vreden-
daal. From MLWE to RLWE: A differential fault attack on randomized &
deterministic Dilithium. IACR TCHES, 2023(4):262–286, 2023.

[EFGT18] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi.
Loop-abort faults on lattice-based signature schemes and key exchange proto-
cols. IEEE Trans. Computers, 67(11):1535–1549, 2018.

[FHK+20] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. Falcon: Fast-fourier lattice-based compact signa-
tures over NTRU. specification v1.2. Homepage, 2020. https://falcon-sign.
info/falcon.pdf.

[GKS21] Denisa O. C. Greconici, Matthias J. Kannwischer, and Amber Sprenkels.
Compact dilithium implementations on cortex-M3 and cortex-M4. IACR
TCHES, 2021(1):1–24, 2021. https://tches.iacr.org/index.php/TCHES/
article/view/8725.

[HHP+21] Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska,
Thomas Schamberger, Silvan Streit, Emanuele Strieder, and Christine van
Vredendaal. Chosen ciphertext k-trace attacks on masked CCA2 secure Kyber.
IACR TCHES, 2021(4):88–113, 2021.

[HP23] Daniel Heinz and Thomas Pöppelmann. Combined fault and DPA protection
for lattice-based cryptography. IEEE Trans. Computers, 72(4):1055–1066,
2023.

[IMS+22] Saad Islam, Koksal Mus, Richa Singh, Patrick Schaumont, and Berk Sunar.
Signature correction attack on Dilithium signature scheme. In EuroS&P, pages
647–663. IEEE, 2022.

https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://github.com/fplll/fplll
https://falcon-sign.info/falcon.pdf
https://falcon-sign.info/falcon.pdf
https://tches.iacr.org/index.php/TCHES/article/view/8725
https://tches.iacr.org/index.php/TCHES/article/view/8725

198 Correction Fault Attacks on Randomized CRYSTALS-Dilithium

[KPR+] Matthias J. Kannwischer, Richard Petri, Joost Rijneveld, Peter Schwabe, and
Ko Stoffelen. PQM4: Post-quantum crypto library for the ARM Cortex-M4.
https://github.com/mupq/pqm4.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures. In ASIACRYPT, volume 5912 of Lecture Notes in
Computer Science, pages 598–616. Springer, 2009.

[LZS+21] Yuejun Liu, Yongbin Zhou, Shuo Sun, Tianyu Wang, Rui Zhang, and Jingdian
Ming. On the security of lattice-based Fiat-Shamir signatures in the presence
of randomness leakage. IEEE TIFS, 16:1868–1879, 2021.

[MUTS22] Soundes Marzougui, Vincent Ulitzsch, Mehdi Tibouchi, and Jean-Pierre Seifert.
Profiling side-channel attacks on Dilithium: A small bit-fiddling leak breaks it
all. IACR Cryptol. ePrint Arch., page 106, 2022.

[Newa] NewAE. CW1173 ChipWhisperer-Lite. https://rtfm.newae.com/Capture/
ChipWhisperer-Lite.html.

[Newb] NewAE. CW308T-STM32F. https://rtfm.newae.com/Targets/UFO%
20Targets/CW308T-STM32F.html.

[NIS22] NIST. Pqc standardization process: Announcing four candidates to be stan-
dardized, plus fourth round candidates. https://csrc.nist.gov/News/2022/
pqc-candidates-to-be-standardized-and-round-4, 2022.

[NIS23] NIST Computer Security Division. FIPS 204 (Draft): Module-Lattice-Based
Digital Signature Standard, 2023. https://csrc.nist.gov/pubs/fips/204/
ipd.

[RCDB23] Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab
Baksi. Side-channel and fault-injection attacks over lattice-based post-quantum
schemes (Kyber, Dilithium): Survey and new results. ACM TECS, June 2023.

[RJH+19] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopad-
hyay, and Shivam Bhasin. Exploiting determinism in lattice-based signatures:
Practical fault attacks on pqm4 implementations of NIST candidates. In
AsiaCCS, pages 427–440. ACM, 2019.

[RYB+23] Prasanna Ravi, Bolin Yang, Shivam Bhasin, Fan Zhang, and Anupam Chat-
topadhyay. Fiddling the twiddle constants - fault injection analysis of the
Number Theoretic Transform. IACR TCHES, 2023(2):447–481, 2023.

[UMB+23] Vincent Quentin Ulitzsch, Soundes Marzougui, Alexis Bagia, Mehdi Tibouchi,
and Jean-Pierre Seifert. Loop aborts strike back: Defeating fault counter-
measures in lattice signatures with ILP. IACR TCHES, 2023(4):367–392,
2023.

[VMKS12] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and François-
Xavier Standaert. Shuffling against side-channel attacks: A comprehensive
study with cautionary note. In ASIACRYPT, volume 7658 of Lecture Notes
in Computer Science, pages 740–757. Springer, 2012.

[Wat87] William C Waterhouse. How often do determinants over finite fields vanish?
Discrete Mathematics, 65(1):103–104, 1987.

https://github.com/mupq/pqm4
https://rtfm.newae.com/Capture/ChipWhisperer-Lite.html
https://rtfm.newae.com/Capture/ChipWhisperer-Lite.html
https://rtfm.newae.com/Targets/UFO%20Targets/CW308T-STM32F.html
https://rtfm.newae.com/Targets/UFO%20Targets/CW308T-STM32F.html
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/pubs/fips/204/ipd
https://csrc.nist.gov/pubs/fips/204/ipd

Elisabeth Krahmer, Peter Pessl, Georg Land and Tim Güneysu 199

A Disturbing the Second Input of UseHintq

Lemma 1. Let q and α be positive integers with q > 2α, q ≡ 1 mod α, α even, let r, z,x
be vectors with coefficients in Rq with ||z||∞ ≤ α/2 and let h be a hint vector created by
the Dilithium sign function. If

UseHintq(MakeHintq(z, r), r, α) = UseHintq(MakeHintq(z, r), r + x, α)

then for all but at most ω coefficients in x holds |xij | < γ2.

Proof. The definition of Dilithium’s helper functions ([BDL+21]) shows that for all entries
where h = 0

UseHintq(MakeHintq(z, r), r, α) = HighBitsq(r, α), and
UseHintq(MakeHintq(z, r), r + x, α) = HighBitsq(r + x, α).

Together with the assumption it implies

HighBitsq(r + x, α) = HighBitsq(r, α),

and that again means that, at those points, x has no influence on the high bits of r + x,
and thus |xij | < γ2. The number of non-zero entries in h is guaranteed to be bounded by
ω by the sign algorithm, which proofs the claim.

	Introduction
	Preliminaries
	Dilithium
	Implementation Attacks Targeting Dilithium
	Countermeasures

	Attack Concept
	Skipping Fault Correction Attack
	Fault Model and Exploitation
	Analysis
	Countermeasures

	Correction Attack with a Fault in A
	Fault Exploitation
	Reducing the Number of Needed Faults via Lattice Reduction
	Analysis
	Countermeasures

	Practical Evaluation
	Skipping Fault Correction Attack
	Correction Attack with Fault in A: Simulation
	Correction Attack with Fault in A: Practical Experiments

	Conclusion
	Disturbing the Second Input of UseHintq

