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Abstract. Kyber and Dilithium are both lattice-based post-quantum cryptography
(PQC) algorithms that have been selected for standardization by the American Na-
tional Institute of Standards and Technology (NIST). NIST recommends them as
two primary algorithms to be implemented for most use cases. As the applications of
RISC-V processors move from specialized scenarios to general scenarios, efficient im-
plementations of PQC algorithms on general-purpose RISC-V platforms are required.
In this work, we present an optimized hardware-software co-design for Kyber and
Dilithium on the industry’s first RISC-V System-on-Chip (SoC) Field Programmable
Gate Array (FPGA) platform. The performance of both algorithms is enhanced
through the utilization of hardware acceleration and software optimization, while a
certain level of flexibility is still maintained. The polynomial arithmetic operations
in Kyber and Dilithium are accelerated by the customized accelerators. We employ
a unified high-level architecture to depict their shared characteristics and design
dedicated underlying modular multipliers to explore their distinctive features. The
hashing functions are optimized using RISC-V assembly instructions, resulting in
improved performance and reduced code size without additional hardware resources.
For other operations involving matrices and vectors, we present a multi-core acceler-
ation scheme based on the multi-core RISC-V Microprocessor Sub-System (MSS).
Combining these acceleration and optimization methods, experimental results show
that the overall performance of Kyber and Dilithium across different security levels
improves by 3 to 5 times, while the utilized FPGA resources account for less than 5%
of the total resources provided by the platform.
Keywords: Post-quantum cryptography · RISC-V · Kyber · Dilithium · Hardware-
software co-design · FPGA

1 Introduction
The rapid development of quantum computing technology poses serious challenges in
cryptography. If a large-scale quantum computer is constructed in the future, it will be
able to solve the hard mathematical problems used by classical public-key cryptography
(PKC) such as RSA and Elliptic Curve Cryptography (ECC) in polynomial time [Sho94].
To ensure the security of PKC against both quantum and classical computers, the concept
of post-quantum cryptography (PQC) has been raised in recent years. PQC refers to a new
class of cryptographic algorithms that are designed to be resilient to attacks from quantum
computers. Since 2016, the American National Institute of Standards and Technology
(NIST) has been working on a process to solicit, evaluate, and standardize several PQC
algorithms [NIS16]. After the third round of the PQC standardization process, NIST
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announced four candidate algorithms for standardization on July 5th, 2022. For most
use cases, it is recommended to implement Kyber [BDK+18] and Dilithium [DKL+18]
due to their strong security and excellent performance. The initial drafts of three Federal
Information Processing Standards (FIPS) were published by NIST on August 24th, 2023.
Among them, the draft FIPS 203 [oST23b] is derived from Kyber while the draft FIPS
204 [oST23a] is derived from Dilithium. This indicates that both algorithms will be widely
used in the era of quantum computers.

Kyber and Dilithium are two cryptographic primitives included in the Cryptographic
Suite for Algebraic Lattices (CRYSTALS) [Tea17]. Both of them are based on hard
problems over module lattices. Kyber is an IND-CCA2-secure key-encapsulation mechanism
(KEM), while Dilithium is a strongly EUF-CMA-secure digital signature scheme. From
an implementation perspective, the two algorithms share many similarities in terms of
mathematical structure and calculation process. Therefore, we can identify common
software and hardware optimization methods for them. On the other hand, the unique
features of each algorithm can also be explored to improve efficiency. These considerations
make sense when both algorithms are implemented on the same platform.

Kyber and Dilithium can be implemented on various platforms to meet practical
needs. To achieve optimal performance, a hardware design is often necessary, which can
be implemented using an Application Specific Integrated Circuit (ASIC) [ZZZ+22] or a
Field Programmable Gate Array (FPGA) [RMJ+21, XL21, ZZW+22] platform. However,
this solution requires a longer development period and offers less flexibility compared
to software implementation. If performance is not the primary consideration, then the
software solution plays an important role in many cases. In the embedded scenario, ARM
Cortex-M4 microcontrollers have traditionally been the main target platforms for PQC
optimization [ABCG20, GKS21]. The ARM-based System-on-Chip (SoC) design offloads
certain time-consuming operations to hardware, resulting in a significant acceleration effect
[WZCG22, MCL+23]. In recent years, RISC-V processors have been receiving increasing
attention due to their open-source nature and advanced Instruction Set Architecture
(ISA) design concepts. Many works have developed ISA extensions for PQC based on
open-source RISC-V processors [FSS20, AEL+20, FBR+22, ZXXH22, AY22, LMP23],
demonstrating that application-specific instruction set processors (ASIP) can effectively
balance performance and flexibility.

The ASIP is a type of hardware-software co-design that integrates tightly coupled
accelerators with processors. Tightly coupled accelerators offer the advantage of low
communication overhead, but they require modifications to the processor to support the
extended ISA. On the contrary, loosely coupled accelerators are implemented outside
processor cores, which provides convenience for integration and migration. Over the past
few years, numerous mature RISC-V chips have entered the market and been applied in
various scenarios, ranging from specialized to general. If a RISC-V hardcore is not specially
designed for PQC while an efficient implementation of PQC on it is required, a loosely
coupled accelerator is a favorable choice. For this reason, we select the industry’s first
RISC-V SoC FPGA named PolarFire[Mic], which is recommended by RISC-V International
[Int], as the target platform to implement our hardware-software co-design for Kyber and
Dilithium. A concise overview of this platform is provided in Subsection 2.3.

Related Works. Previous studies have presented numerous designs for implementing
Kyber and Dilithium on RISC-V platforms. In [BUC19], a configurable lattice cryptography
processor is presented. It is loosely coupled with a RISC-V microprocessor and supports
the NIST Round-2 versions of Kyber and Dilithium. However, the authors in [FSS20]
indicate that loosely coupled accelerators have disadvantages such as high data transfer
overhead, a large amount of hardware resources, and low flexibility. Therefore, they
propose tightly coupled accelerators with ISA extensions for polynomial operations, based
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on the open-source PULP1 platform. At the same time, the work of [AEL+20] introduces
a custom ISA extension for finite field arithmetic, which is based on the open-source
VexRiscv2 ecosystem. The design of [FSS20] outperforms that of [AEL+20] for Kyber
due to more powerful hardware accelerators and extended instructions. In [XHY+20],
the authors present a domain-specific vector processor integrated with an open-source
32-bit RISC-V MCU, SCR13. The highly parallel hardware architecture significantly
improves the performance of Round-2 Kyber. As Kyber and Dilithium enter the Round-3
competition and finally be standardized by NIST, research on the implementation of these
two algorithms becomes more focused. In [NMZ+21], the authors introduce a dedicated
Post-Quantum Arithmetic Logic Unit, embedded directly in the pipeline of 64-bit CVA64

RISC-V processor to speed up Kyber and Dilithium. A domain-specific processor with
matrix extension of RISC-V for Kyber and Dilithium is presented in [ZXXH22]. This
work achieves extremely high performance based on the Rocket RISC-V Core [AAB+16],
but at a significant cost. The authors of [FBR+22] take the security against Differential
Power Attacks (DPA) for Kyber into consideration, and propose masked accelerators and
ISA extensions based on PULP. Their design combines loosely coupled accelerators for
linear operations and tightly coupled accelerators for non-linear operations, which helps
enhance performance and reduce code size. This design is used for reference by [KSFS22]
to accelerate Dilithium, showing that the cycle counts can be significantly reduced. The
authors of [AY22] provide a base architecture for developing ASIP for PQC. In [LMP23],
the ASIP design for SHA-3 is realized. A loosely coupled SHA-3 accelerator is employed
by [DMMM23] to speed up Kyber.

The related works mentioned above show that the hardware-software co-design based
on RISC-V can efficiently speed up Kyber and Dilithium. However, there is no work
evaluating its design for PQC on commercial general-purpose RISC-V platforms, even
though such platforms have been available on the market for several years. The optimized
implementation based on the general-purpose RISC-V hardcore with loosely coupled
accelerators is meaningful for a wider application of PQC in the RISC-V ecosystem.

Contributions. In this work, we do not further explore ISA extensions for PQC on
RISC-V. Instead, we focus on designing loosely coupled accelerators and doing our best to
mitigate the negative effects that naturally come with them. Moreover, the software code
running on general-purpose RISC-V processors is optimized using the standard ISA. Our
code, both for hardware and software, is open-source and available at https://github.
com/Acccrypto/RISC-V-SoC. We summarize our specific contributions as follows.

• We present customized loosely coupled accelerators for the polynomial arithmetic
operations in Kyber and Dilithium, respectively. A unified high-level architecture is
utilized to depict their shared characteristics. The dedicated modular multiplication
units for the moduli used in Kyber and Dilithium are contained in the accelerators,
optimizing the performance bottleneck of the underlying calculations.

• We design 4× 1 butterfly units to speed up the calculations of Number Theoretic
Transform (NTT) in Kyber and Dilithium. The hardware resources are reused to
implement the polynomial base case multiplications and additions. Customized
Finite State Machines (FSMs) are designed to control the data flow for different
computational requirements of Kyber and Dilithium.

• We present several software optimizations for better use of the hardware accelerators.
The Direct Memory Access (DMA) engine is utilized to improve the speed of data

1https://github.com/pulp-platform
2https://github.com/SpinalHDL/VexRiscv
3https://github.com/syntacore/scr1
4https://github.com/openhwgroup/cva6

https://github.com/Acccrypto/RISC-V-SoC
https://github.com/Acccrypto/RISC-V-SoC
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transfer between the memory and the accelerator. The polynomials in matrices and
vectors are sent to the accelerator in a carefully arranged order, aiming to avoid repet-
itive operations and data transfers. Compared with the baseline implementations,
the accelerators can reduce the clock cycles of polynomial arithmetic operations by
70%-90%.

• We optimized SHA-3 functions employed by Kyber and Dilithium using assembly
instructions based on RV64GC5 ISA, without requiring any additional hardware
resources. For other matrix and vector-related operations such as sampling and
packing, we present a multi-core acceleration scheme based on the multi-core RISC-V
Microprocessor Sub-System (MSS).

• We implement and evaluate our design on the industry’s first multi-core RISC-V SoC
FPGA platform. Experimental results show that our acceleration and optimization
solutions can improve the overall performance of Kyber and Dilithium across different
security levels by 3 to 5 times while utilizing less than 5% FPGA resources provided
by the platform.

2 Preliminaries
2.1 Kyber and Dilithium
Both Kyber and Dilithium are constructed based on module lattices. A common security
assumption of them is the hardness of the module-learning-with-errors (MLWE) [LS15]
problem, which is described as follows.

The MLWE Problem. Let Rq denote a polynomial ring, where q is an integer. For
integers m, k, and a probability distribution D : Rq → [0, 1], we say that the advantage of
algorithm A in solving the decisional MLWEm,k,D problem over the ring Rq is

AdvMLWE
m,k,D = |Pr[b = 1 | A← Rm×kq ; t← Rmq ; b← A(A, t)]

− Pr[b = 1 | A← Rm×kq ; s1 ← Dk; s2 ← Dm; b← A(A,As1 + s2)]|.
(1)

In the MLWE problem, the value of AdvMLWE
m,k,D is negligible for any known algorithm A

with polynomial time complexity. In other words, when the parameters are sufficiently
large, the adversary can’t determine (s1, s2) according to (A,As1 + s2). Taking advantage
of this hardness assumption, Kyber and Dilithium publicly disclose (A,As1 + s2) while
keeping (s1, s2) confidential. The MLWE problem ensures theoretical security against
attacks aimed at recovering the key or message.

Kyber. As an IND-CCA2-secure KEM, Kyber is constructed in two stages. First, an
IND-CPA-secure public-key encryption scheme named Kyber.CPAPKE is introduced,
which encrypts messages of a fixed length of 32 bytes. Second, the IND-CCA2-secure KEM
named Kyber.CCAKEM is constructed by using a slightly tweaked Fujisaki-Okamoto
(FO) transform [FO99]. The Kyber.CPAPKE comprises algorithms for key generation,
encryption, and decryption. Let Rq denote the polynomial ring Zq[X]/(Xn + 1), where
Zq is a finite field containing integers within the range of [0, q).

• Key generation. The public key is generated through the operation t = As + e ∈
Rkq , where the matrix A is sampled uniformly from Rk×kq , and the secret vectors
s, e ∈ Rkq are sampled from binomial distributions.

5RISC-V 64-bit ISA, where G=IMAFD
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• Encryption. To encrypt a message m of 32 bytes, the encryption algorithm
calculates u = AT r + e1 ∈ Rkq and v := tT r + e2 + Decompressq(m, 1) ∈ Rq,
where r, e1 ∈ Rkq , e2 ∈ Rq are sampled from binomial distributions. The function
Decompressq(m, 1) converts m to an element in Rq.

• Decryption. The ciphertext (u, v) can be decrypted using the secret key s. The
decryption operation is m := Compressq(v − sTu, 1), where the function Compressq
is the reverse of the function Decompressq.

The Kyber.CCAKEM comprises algorithms for key generation, encapsulation, and de-
capsulation. It generates a shared key based on Kyber.CPAPKE and ensures that the
procedure is IND-CCA2 secure via a slightly tweaked FO transform. More details can be
found in Kyber’s official documentation [ABD+b].

Kyber defines three parameter sets known as Kyber512, Kyber768, and Kyber1024,
corresponding to different NIST security levels. Some of the parameters are listed in
Table 1. Across the parameter sets, n and q are fixed values that determine the size of Rq.
The module dimension k increases with higher security levels, leading to an expansion in
data size. The remaining parameters are used in the sampling and compress functions.

Table 1: Parameter sets for Kyber

Parameter Set NIST Security Level n q k η1 η2 (du, dv)
Kyber512 1 256 3329 2 3 2 (10,4)
Kyber768 3 256 3329 3 2 2 (10,4)
Kyber1024 5 256 3329 4 2 2 (11,5)

Dilithium. The digital signature scheme Dilithium is designed based on the “Fiat-Shamir
with Aborts” approach [Lyu09]. It comprises algorithms for key generation, signing, and
verification. Similar to Kyber, the major operations of Dilithium are also conducted on the
polynomial ring Zq[X]/(Xn + 1) denoted by Rq. Let Sη denote the subset of Rq where
the elements have small coefficients of size at most η.

• Key generation. The public key is calculated by the operation t = As1 + s2 ∈ Rkq ,
where the matrix A ∈ Rk×lq and the secret vectors (s1, s2) ∈ Slη×Skη are all generated
using uniform sampling.

• Signing. The signing algorithm first generates a masking vector of polynomial
y ∈ Slγ1−1. It then computes Ay and sets w1 to be the “high-order” bits of the
coefficients in this vector. The challenge c is created by hashing the message and w1
and then sampled as a polynomial in Rq with exactly τ ±1’s and the rest 0’s. The
potential signature is computed as z = y + cs1. To avoid the dependency of z on
the secret key, Dilitium uses rejection sampling. A while loop keeps being repeated
until all conditions are satisfied.

• Verification. The verification algorithm computes Az− ct and sets w′1 to be the
high-order bits of the result vector. It accepts if all the coefficients of z are less than
γ1 − β and if c is the hash of the message and w′1.

To improve the efficiency, Dilithium introduces some “hints” as part of the signature. More
details can be found in Dilithium’s official documentation [BDK+].

Dilithium also defines three parameter sets for different NIST security levels. Some of
the parameters are listed in Table 2. Across the parameter sets, n and q are fixed values
that determine the size of Rq. The module dimension (k, l) increases with higher security
levels, leading to an expansion in data size. The remaining parameters are used in the
sampling and decompose functions.
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Table 2: Parameter sets for Dilithium

NIST Security Level n q (k, l) d τ η γ1 γ2 β

2 256 8380417 (4,4) 13 39 2 217 (q − 1)/88 78
3 256 8380417 (6,5) 13 49 4 219 (q − 1)/32 196
5 256 8380417 (8,7) 13 60 2 219 (q − 1)/32 120

2.2 Basic Operations
The basic operations in Kyber and Dilithium have something in common. Some basic
operations that have a great impact on performance are listed below.

Modular Arithmetic. Modular arithmetics on Zq are fundamental operations in Kyber
and Dilithium. They can be performed using ordinary arithmetics followed by modular
reductions. For modular addition and subtraction, the modular reduction is usually
implemented as a conditional subtraction and addition. For modular multiplication, the
straightforward method of modular reduction is rather inefficient. Instead, Montgomery
reduction [MP85] and Barrett reduction [Bar86] are two efficient algorithms commonly
adopted by previous studies. However, both of these algorithms involve additional multi-
plications, which are time-consuming and require lots of hardware resources. Therefore,
modular multiplication remains the performance bottleneck in the underlying calculations.

Number Theoretic Transform. The Number Theoretic Transform (NTT) is a general-
ization of the Fast Fourier Transform (FFT) over a finite field. By applying NTT to
polynomial multiplication in Rq, the computational complexity can be reduced from O(n2)
to O(n log(n)). To calculate the multiplication of a, b ∈ Rq, the first step is to transform
them into the NTT domain. This transformation is represented as â = NTT(a) ∈ Z256

q

and b̂ = NTT(b) ∈ Z256
q . Next, the pointwise multiplication of â and b̂ can be performed.

Finally, the result can be transformed back to the regular domain using inverse NTT
(INTT). The NTT-based polynomial multiplication can be represented as

c = INTT(NTT(a) ◦NTT(b)), (2)

where a, b, c ∈ Rq, and ◦ denote the pointwise multiplication operation.
To apply the NTT on the polynomial ring Rq = Zq[X]/(Xn + 1), it requires that the

primitive 2n-th root of unity in the base field Zq exists. In Dilithium, the parameters are
chosen such that the 2n-th root of unity is r = 1753. The definition of the NTT domain in
Dilithium follows a bit-reversed order. That is,

â = NTT(a) = (a(r0), a(−r0), ..., a(r127), a(−r127)), (3)

where ri = rbr8(128+i) with brj(k) the bitreversal of the j-bit number k.
In Kyber, the condition for NTT is not fully satisfied because Zq contains primitive

n-th roots of unity ζ = 17 but not primitive 2n-th roots. Therefore, Kyber employs an
incomplete NTT to define the NTT domain. That is,

â = NTT(a) = (â0 + â1X, â2 + â3X, ..., â254 + â255X) (4)

with

â2i =
127∑
j=0

a2jζ
(2br7(i)+1)j , (5)

â2i+1 =
127∑
j=0

a2j+1ζ
(2br7(i)+1)j . (6)
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Under this definition, the base case multiplication denoted by ĉ = â ◦ b̂ should not
follow the pointwise manner. Instead, it consists of the 128 products

ĉ2i + ĉ2i+1X = (â2i + â2i+1X)(b̂2i + b̂2i+1X) mod X2 − ζ2br7(i)+1 (7)

of linear polynomials.

Hashing. Kyber and Dilithium employ the SHA-3 [NIS15] family of functions to generate
message digests, derived keys, and pseudorandom bits. The SHA-3 family consists of four
cryptographic hash functions, called SHA3-224, SHA3-256, SHA3-384, and SHA3-512,
and two extendable-output functions (XOFs), called SHAKE128 and SHAKE256. Kyber
instantiates two hash functions with SHA3-256 and SHA3-512, a pseudorandom function
with SHAKE256, an XOF with SHAKE128, and a key-derivation function with SHAKE256.
Dilithium uses SHAKE128 and SHAKE256 to instantiate hash functions and XOFs. The
SHA-3 functions are based on the same underlying permutation KECCAK-f [1600] with
a state size of 1600 bits. The differences among them depend on the parameters of the
sponge structure, including the padding rule, rate, and output length.

Sampling. Kyber and Dilithium use sampling functions to generate random polynomials
from the output strings of XOFs. In Kyber, the polynomial matrix A is generated through
uniform sampling, while the noise is sampled from a centered binomial distribution.
In Dilithium, the polynomial matrix A and vectors s1, s2,y are all generated through
uniform sampling. Due to its uniform random property, the matrix A can be viewed as
a representation in the NTT domain. Therefore, some expensive transformations can be
avoided. Binomial sampling can be performed by calculating the difference in Hamming
weight between two random numbers.

2.3 RISC-V SoC FPGA
The target hardware platform used in this work is the industry’s first RISC-V SoC FPGA
named PolarFire [Mic], which is produced by Microchip. It integrates a powerful 64-bit
5x core RISC-V Microprocessor Sub-System (MSS) with the FPGA fabric in a single
device. The MSS combines a SiFive E51 monitor core and four SiFive U54 application
cores. The RISC-V cores are all implemented as ASICs, offering high performance and
software programmability. The FPGA fabric offers scalable and programmable hardware
features, making it an ideal device for implementing our hardware accelerators.

The E51 monitor core supports RV64IMAC ISA, which includes the base integer
instruction set, as well as the standard extensions for integer multiplication and division,
atomic, and compressed instructions. The U54 application cores support RV64GC ISA,
which means that they add standard extensions for single-precision and double-precision
floating-point instructions. All the cores are executed with a single-issue, in-order, 5-stage
pipeline. They have an exclusive L1 cache and a shared L2 cache. The AXI4 bus interfaces
are provided to enable the microprocessors to access main memory, peripherals, and FPGA
fabric. The DMA transfer with four independent channels is supported.

The FPGA fabric is built on state-of-the-art 28 nm non-volatile process technology. Its
resources can be categorized into three types: logic elements, embedded memory blocks,
and math blocks. The logic element consists of a 4-input Lookup Table (4LUT) and a
D-type flip-flop (DFF). The embedded memory block involves LSRAM (RAM1K20) and
uSRAM (RAM64×12) with different memory sizes. The math block supports multipliers
up to a maximum of 18× 18 bits for signed multiplication and 17× 17 bits for unsigned
multiplication.

The development tools recommended by Microchip include Libero SoC for FPGA
designers and SoftConsole for embedded designers. We use them to implement and
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evaluate our hardware-software co-design for Kyber and Dilithium on the PolarFire SoC
FPGA platform.

3 Design Rationale
The PolarFire SoC FPGA platform provides the conditions for FPGA acceleration, exe-
cution of RISC-V assembly instructions, and multi-core acceleration. Our design takes
advantage of these conditions to speed up the implementations of Kyber and Dilithium.
The architecture of the RISC-V MSS, integrated with the hardware accelerator and other
components, is depicted in Figure 1. It contains five RISC-V microprocessors, including
one E51 monitor core and four U54 application cores. The E51 core is used to boot the
program and monitor user applications on U54 cores. The U54 cores named U54_1 to
U54_4 are used to execute the bare-metal user applications. The TileLink bus provides the
microprocessors with coherent access to L2 Cache. The L2 Cache can also be configured
as Scratchpad Memory to improve the memory access speed. The AXI SWITCH enables
the CPU Core Complex to access the Double Data Rate (DDR) memory, peripherals, and
FPGA fabric. Based on this architecture, we present a hardware-software co-design that
includes hardware acceleration and software optimization to enhance the performance of
Kyber and Dilithium.

E51

RV64IMAC

U54_1

RV64GC

U54_2

RV64GC

U54_3

RV64GC

U54_4

RV64GC

L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache

TileLink, L2 Cache, Scratchpad Memory

RISC-V CPU Core Complex

DMA 

Engine

AXI SWITCH

FPGA FabricDDR MemoryPeripherals

Polynomial Accelerator

Figure 1: RISC-V Microprocessor Sub-System Integrated with Hardware Accelerator

Since polynomial arithmetic operations are relatively independent of other operations
and time-consuming in software implementation, we decided to use FPGA to accelerate
this part of the calculations. As shown in Figure 1, the Polynomial Accelerator module
is designed and implemented on the FPGA Fabric. To mitigate the disadvantages of
loosely coupled accelerators, we make the following design decisions. Firstly, to decrease
the data transfer overhead, the accelerators do not output the results until the entire
process of polynomial matrix-vector multiplication and addition is completed. Secondly,
the hardware resources are optimized by using an efficient architecture for NTT-based
polynomial multiplication. Thirdly, the accelerator does not perform other operations such
as hashing and sampling so that it can be compact and make the overall design maintain
a certain level of flexibility. The NTT functions play a crucial role in efficiently calculating



Tengfei Wang, Chi Zhang�, Xiaolin Zhang, Dawu Gu� and Pei Cao 107

polynomial multiplication for many lattice-based cryptography schemes. According to our
test, the NTT-related operations account for 23%-59% of the computation time in the
software implementation of Kyber and Dilithium. In this work, we focus our main efforts
on improving them through hardware because it is both representative and cost-effective.
In addition, NTT is vulnerable to side-channel analysis (SCA). We also introduce some
typical countermeasures in our design and evaluate their costs.

The software optimization involves three parts. Firstly, when working with the Poly-
nomial Accelerator, the DMA Engine is employed and the data transmission sequence is
carefully arranged. Secondly, the SHA-3 functions running on U54 processors are optimized
using RISC-V assembly instructions. This part of optimization only requires a processor
that supports the ISA standard extensions of “D” and “C”, instead of a specific RISC-V
design. We decided not to use hardware to accelerate SHA-3 because it is less efficient
compared to accelerating NTT-based functions. Thirdly, other computational tasks for
polynomial matrices and vectors such as sampling and packing can be assigned to multiple
cores. Since the E51 core does not support the “D” extension, we only use the four U54
cores to implement the multi-core acceleration. By combining software optimization and
hardware acceleration, an efficient hardware-software co-design for Kyber and Dilithium
can be realized on the PolarFire SoC FPGA platform. More details are provided in
Section 4 and Section 5.

Although our design is specifically proposed for Kyber and Dilithium, it can be extended
to other lattice schemes with certain modifications. Software optimization is more generally
applicable compared to hardware acceleration. For example, the FrodoKEM [ABD+a]
scheme incorporates SHA-3, sampling, and matrix-vector products as its main operations.
Our software optimization for SHA-3 can be directly applied to it. The sampling functions
it uses can also be assigned to multiple cores in a similar way to ours. As the matrix-vector
product utilizes a power-of-two integer modulus and does not need NTT, the modular
multiplier and NTT-related states inside the hardware accelerator should be modified,
while DMA and data transmission sequence can be maintained.

4 Hardware Acceleration

4.1 Modular Multiplier
The modular arithmetic operations are performed by the modular arithmetic units at the
underlying level of the accelerators. The modular arithmetic units consist of modular
adders, modular subtractors, and modular multipliers. The design of modular adders and
subtractors refers to [BUC19]. For modular multipliers, we propose dedicated designs for
Kyber and Dilithium, respectively, based on the features of their moduli.

4.1.1 Dedicated Modular Multiplier for Kyber

In Kyber, the prime q = 13 · 28 + 1 = 3329 is used as the modulus of Zq. Dedicated
modular multipliers for this prime have been designed in several previous studies. The
work of [LN16] presents a fast modular reduction technique named KRED, which is
tailored for moduli with a special form of k · 2m + 1. This technique is adopted and
modified by [BAK21] to design a dedicated modular multiplier for Kyber. In our design,
we present a dedicated Montgomery modular multiplier specifically optimized for q = 3329.
The optimization is based on the fact that if the parameter R of Montgomery modular
multiplication is selected as 212, then the factor w = q−1 mod R equals 29 + 28 + 1 = 769.
We take advantage of the binary representations of q and w to replace the multiplications
in the Montgomery reduction algorithm with shift and addition operations. The modified
Montgomery reduction algorithm is shown in Algorithm 1.
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Algorithm 1 Modified Montgomery Reduction for Modulus q = 3329
Require: q = 3329, R = 212, w = q−1 mod R = 769, m ∈ [0, 2q)
Ensure: z = mR−1 mod q

1: u← ((m� 9) + (m� 8) +m) mod R . u← m · w mod R

2: t← (u� 11) + (u� 10) + (u� 8) + u . t← u · q
3: v ← (m− t)/R
4: if v < 0 then
5: z ← v + q

6: else
7: z ← v

8: end if
9: return z

According to Algorithm 1, the dedicated modular multiplier for Kyber is designed
as depicted in Figure 2. The procedure of modular multiplication is divided into three
pipeline stages. The shift and summation operations in the first two steps of Algorithm 1
are optimized by using bitwise splicing. The summation units do not need to handle the
least significant 8 bits of the operands, making them lightweight and having a short logic
delay. The critical path of this multiplier lies in the last stage of the pipeline. The FPGA
resources utilized by the modular multiplier are listed in Table 3. For comparison, the
synthesis result of our design targeting Artix-7 FPGA is also listed. Unlike Polarfire, the
Artix-7 FPGA employs 6-input LUT (6LUT) as logic elements and digital signal processing
(DSP) slices as multipliers. The result shows that our design utilizes a similar amount of
resources as [BAK21]. However, our design ensures that the output falls within the range
of [0, q), whereas in [BAK21], the output can only be guaranteed to have a 12-bit width.
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Figure 2: Dedicated Modular Multiplier for Kyber

Table 3: FPGA resources utilized by modular multipliers for Kyber

Reduction Algorithm Platform 4LUT DFF Math 6LUT FF DSP

Algorithm 1
PolarFire 112 60 1 - - -
Artix-7 - - - 53 32 1

K2-RED[BAK21]1 Artix-7 - - - 54 30 0
1 This does not include the multiplication before reduction.
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4.1.2 Dedicated Modular Multiplier for Dilithium

Dilithium uses the prime q = 223−213 +1 = 8380417 as the modulus of Zq. Several studies
present dedicated modular multipliers for this prime. In [BUC19], the multiplications in
Barrett reduction for the modulus are converted to bit-shifts, additions, and subtractions,
but it requires long carry chains to perform these operations. The authors of [LSG21]
propose a fast reduction method by recursively exploiting the relationship 223 ≡ 213 − 1
mod q. However, the range of the result is not explained strictly, which has been pointed out
and addressed by [WZCG22]. In this work, we follow the reduction method of [WZCG22]
with some modifications. The modular multiplier in our design is slightly different from
that of the Zynq-7000 FPGA because we are targeting the PolarFire FPGA which employs
18 × 18-bit math blocks for multiplications instead of 25 × 18-bit DSPs. Therefore, we
first divide both 23-bit operands a, b ∈ Zq into their high 11 bits (ah, bh) and low 12 bits
(al, bl). Next, the schoolbook multiplication method is applied, that is,

a · b = 224 · ahbh + 212 · (ahbl + albh) + albl. (8)

Then, we take advantage of the relationship 223 ≡ 213 − 1 mod q to reduce the separate
items in Equation 8. It should be noted that 224 · ahbh + albl can be treated as one item by
concatenating them bitwise. Finally, the reduced items are added up and further reduced.
We use the syntax of Hardware Description Language (HDL) to represent the operations
of splitting and concatenation. The process of the dedicated modular multiplication is
described in Algorithm 2. According to the bit width, the value r3 in step 12 falls within
the range of [−(213 − 1) · 16, 223 + 213 · 15 − 16], which is contained within the interval
(−q, 2q). Therefore, by using a conditional addition or subtraction at the end, it can be
ensured that the final result falls within the range of [0, q).

According to Algorithm 2, the dedicated modular multiplier for Dilithium is designed
as depicted in Figure 3. Similar to Figure 2, this modular multiplier also divides the
procedure into three pipeline stages. The critical path lies in the second stage of the
pipeline. The FPGA resources utilized by this modular multiplier are listed in Table 4.
For comparison with [WZCG22], the synthesis result targeting Zynq-7000 FPGA is also
provided. Since the authors of [BUC19] did not give detailed utilization information, we
re-implement the modular multiplier on the PolarFire FPGA using their method. It can
be observed that our design utilizes fewer LUT and FF resources compared to the design
in [BUC19]. The design of [WZCG22] utilizes fewer DSPs because it is customized for
25× 18-bit DSPs instead of 18× 18-bit Math Blocks.
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Algorithm 2 Dedicated Modular Multiplication for Modulus q = 8380417
Require: q = 8380417, a = 212 · ah + al ∈ [0, q), b = 212 · bh + bl ∈ [0, q), where
0 ≤ ah, bh < 211, 0 ≤ al, bl < 212

Ensure: z = ab mod q

1: m1 ← ahbh, m2 ← albl, m3 ← ahbl, m4 ← albh

2: c← {m1,m2}, d← m3 +m4

3: c3 ← c[45 : 43], c2 ← c[42 : 33], c1 ← c[32 : 23], c0 ← c[22 : 0]
4: d2 ← d[23 : 21], d1 ← d[20 : 11], d0 ← d[10 : 0]
5: x1 ← c3 + c2 + c1, y1 ← c3 + {c3, c2}+ {c3, c2, c1}
6: x2 ← d2 + d1, y2 ← d2 + {d2, d1}
7: r1 ← (x1 � 13)− y1 + c0

8: r2 ← (x2 � 13)− y2 + (d0 � 12)
9: s← r1 + r2

10: s1 ← s[27 : 23], s0 ← s[22 : 0]
11: r3 ← (s1 � 13)− s1 + s0

12: if r3 < 0 then
13: z ← r3 + q

14: else if r3 ≥ q then
15: z ← r3 − q
16: else
17: z ← r3

18: end if
19: return z

4.2 NTT Design
A commonly used method for implementing NTT and INTT is to employ the Cooley-Tukey
(CT) butterfly for NTT and the Gentleman-Sande (GS) butterfly for INTT [LN16]. This
method is efficient because it can avoid the cost of bit reversal operations. For hardware
implementations, multiple butterfly units can be adopted to accelerate the algorithms
through parallel computation. The authors of [CYY+22] propose a framework for the
design of radix-2/4 NTT with various numbers of butterfly units. In this work, we follow
the design rationale of [CYY+22] and present an architecture for radix-2 NTT/INTT with
4× 1 butterfly units. The high-level architecture is unified for both Kyber and Dilithium,
with dedicated underlying modular multipliers. In the following, the same symbols are
used to denote the modular multiplier and other modular arithmetic units for Kyber and
Dilithium since they have the same number of pipeline stages.

Table 4: FPGA resources utilized by modular multipliers for Dilithium

Reduction Algorithm Platform 4LUT DFF Math 6LUT FF DSP

Algorithm 2
PolarFire 463 172 4 - - -
Zynq-7000 - - - 212 28 4

Barrett [BUC19]1 PolarFire 519 240 4 - - -
Dedicated [WZCG22] Zynq-7000 - - - 260 36 2
1 Our estimation by re-implementing this work on the PolarFire FPGA.
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4.2.1 Radix-2 NTT/INTT with 4 × 1 Butterfly Units

The work of [BAK21] implements a 2× 2 butterfly core to merge two layers of NTT/INTT
and perform two butterfly operations in each layer. However, it is not the optimal solution
for Kyber because the NTT/INTT has an odd number of layers. To make full use of
hardware resources, our design employs 4 × 1 butterfly units to perform four butterfly
operations in each layer without merging. The butterfly operations are defined as

BF_CT(a, b, ω) = (a+ bω mod q, a− bω mod q),
BF_GS(a, b, ω) = (2−1(a+ b) mod q, 2−1(a− b)ω mod q),

(9)

where BF_GS is used in NTT and BF_GS is used in INTT. The simple multiplications
with 2−1 are adopted in BF_GS to eliminate the post-processing with n−1 [ZYC+20].
Based on modular arithmetic units, the data paths for the CT butterfly and GS butterfly
are depicted as Figure 4. They are both divided into four pipeline stages. The modular
arithmetic units and registers are shared by both data paths in the actual configurable
butterfly circuit. Four identical butterfly units are instantiated in our design to accelerate
the NTT and INTT operations. The radix-2 NTT algorithms, which are adapted to our
4× 1 butterfly units, are shown in Algorithm 3.
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Figure 4: Data Paths for CT Butterfly (Left) and GS Butterfly (Right)

As can be seen from Algorithm 3, the NTT process is divided into three stages according
to the index of the outer loop (i.e., the layer). The first stage involves layers 1 to log2 n− 2,
where the butterfly units execute operations within a single group. The second stage
involves layer log2 n− 1, where the butterfly units execute operations within two adjacent
groups. The third stage involves the last layer, where the butterfly units execute operations
within four adjacent groups. The last layer will be skipped when the signal sel equals 0,
corresponding to the incomplete NTT in Kyber. The INTT is performed in the opposite
direction, using GS instead of CT butterfly units.

4.2.2 Memory Map

The 4× 1 butterfly units require eight input data (excluding twiddle factors) and produce
eight output data every clock cycle. Therefore, the memory should contain eight banks
to access these data in parallel. In [CYY+22], a conflict-free memory mapping scheme
for NTT is proposed to make the access efficient. This scheme is applied to our design
with a few modifications. Since the data from two consecutive addresses are always sent
together to the 4× 1 butterfly units, we can use a single address to store both of them.
As a result, the number of banks decreases from eight to four. For the polynomial degree
n = 256, the original address space decreases from 256 to 128. Following this modification,
the bank index BI and the inner address of each bank BA, which are mapped by the
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Algorithm 3 Radix-2 NTT with 4× 1 CT Butterfly Units
Require: a vector a = (a[0], a[1], ..., a[n − 1]) ∈ Znq in standard order, a pre-computed
table Ψ ∈ Znq storing twiddle factors in bit-reversed order, a signal sel indicating whether
the last layer needs to be processed
Ensure: a = NTT(a) ∈ Znq in bit-reversed order
1: k ← 0
2: for (l = n/2; l > 0; l = l >> 1) do
3: for (s = 0; s < n; s = s+ 2l) do
4: if (l >= 4) then
5: ω1 ← Ψ[+ + k]
6: for (j = s; j < s+ l; j = j + 4) do
7: (a[j], a[j + l])← BF_CT(a[j], a[j + l], ω1)
8: (a[j + 1], a[j + l + 1])← BF_CT(a[j + 1], a[j + l + 1], ω1)
9: (a[j + 2], a[j + l + 2])← BF_CT(a[j + 2], a[j + l + 2], ω1)
10: (a[j + 3], a[j + l + 3])← BF_CT(a[j + 3], a[j + l + 3], ω1)
11: end for
12: else if (l == 2) then
13: ω1 ← Ψ[+ + k], ω2 ← Ψ[+ + k]
14: (a[s], a[s+ 2])← BF_CT(a[s], a[s+ 2], ω1)
15: (a[s+ 1], a[s+ 3])← BF_CT(a[s+ 1], a[s+ 3], ω1)
16: (a[s+ 4], a[s+ 6])← BF_CT(a[s+ 4], a[s+ 6], ω2)
17: (a[s+ 5], a[s+ 7])← BF_CT(a[s+ 5], a[s+ 7], ω2)
18: s← s+ 2l
19: else if (l == 1)&&(sel == 1) then
20: ω1 ← Ψ[+ + k], ω2 ← Ψ[+ + k], ω3 ← Ψ[+ + k], ω4 ← Ψ[+ + k]
21: (a[s], a[s+ 1])← BF_CT(a[s], a[s+ 1], ω1)
22: (a[s+ 2], a[s+ 3])← BF_CT(a[s+ 2], a[s+ 3], ω2)
23: (a[s+ 4], a[s+ 5])← BF_CT(a[s+ 4], a[s+ 5], ω3)
24: (a[s+ 6], a[s+ 7])← BF_CT(a[s+ 6], a[s+ 7], ω4)
25: s← s+ 6l
26: end if
27: end for
28: end for
29: return a

original address A for radix-2 NTT with 4× 1 butterfly units, are calculated as

BI = (A[1 : 0] + ((A[6] +A[5] +A[4] +A[3] +A[2]) mod 2) · 2) mod 4,
BA = A >> 2.

(10)

Taking 16 points as an example, the memory map and data flow for radix-2 NTT
with 4× 1 butterfly units are illustrated in Figure 5. The 16 points are stored in pairs,
occupying 8 memory addresses. According to Equation 10, the 8 addresses are mapped
to 4 banks. For each clock cycle, the 4 × 1 butterfly units access four addresses, which
are mapped to four separate banks. Each bank is instantiated as a dual-port Random
Access Memory (RAM), with one port for reading and the other for writing. As a result,
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the process of NTT can be fully pipelined. For Dilithium, the NTT process takes about
n/8 × log2 n + 4 = 260 clock cycles. For Kyber, in which the last layer is omitted, the
NTT process takes about n/8× (log2 n− 1) + 4 = 228 clock cycles. The INTT is executed
in the opposite direction, achieving the same performance as the NTT.
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7â
15â
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4.3 NTT-Based Polynomial Arithmetic Operations

4.3.1 Polynomial Multiplication in NTT domain

The polynomial multiplications in the NTT domain for Kyber and Dilithium are different,
as described in Subsection 2.2. For Dilithium, the multiplications are performed in a
pointwise manner. We employ four modular multipliers to process four pairs of coefficients
simultaneously. For Kyber, if we use the schoolbook method to calculate Equation 7, it
requires five modular multipliers. To avoid the need for an extra modular multiplier that is
not required by other operations, such as the 4× 1 butterfly units, we adopt the Karatsuba
algorithm to calculate Equation 7. That is,

ĉ2i = â2ib̂2i + â2i+1b̂2i+1 · ζ2br7(i)+1,

ĉ2i+1 = (â2i + â2i+1)(b̂2i + b̂2i+1)− (â2ib̂2i + â2i+1b̂2i+1).
(11)

According to Equation 11, two pairs of coefficients can be processed by four modular
multipliers, four modular adders, and one modular subtractor simultaneously. These
hardware resources are reused from those constituting the butterfly units. Figure 6 depicts
the data paths for polynomial multiplications in NTT domains of Kyber and Dilithium.

The polynomial multiplications in NTT domains are also executed in a fully pipelined
manner. For Kyber, the data path is divided into seven pipeline stages. It takes about
n/2 + 7 = 135 clock cycles to perform a multiplication. For Dilithium, the data path is
divided into three pipeline stages, and a multiplication takes only about n/4 + 3 = 67
clock cycles. The coefficients are fetched from the memory banks in a continuous sequence,
ensuring conflict-free data access through the memory mapping scheme.

4.3.2 High-Level Architecture

We use a unified block diagram to represent the high-level architecture of the accelerators
for Kyber and Dilithium, despite the differences in implementation details. The block
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diagram is shown in Figure 7. This architecture consists of three main components: a
Polynomial Arithmetic Unit, three 4-bank RAMs, and a Finite State Machine (FSM).
The Polynomial Arithmetic Unit is responsible for executing arithmetic operations on
polynomials. It comprises four modular multipliers, four modular adders, four modular
subtractors, and four modular multipliers by 2−1. The data path can be configured as
mentioned above for various functions, such as NTT, INTT, and multiplication in the NTT
domain. Besides, the pointwise additions can also be performed by this unit. A Controller
in this unit manages the connections between the modular arithmetic units, registers, and
the Read-Only Memory (ROM) storing twiddle factors. It generates a pm_done signal
when the calculation of a function is completed. The TF_Addr unit generates proper
addresses for the Twiddle ROM. The Twiddle ROM is instantiated as two or three separate
ROMs with different data widths. It can meet the requirement of accessing multiple
twiddle factors per clock cycle at different stages of NTT/INTT.
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The 4-bank RAMs, namely RAM0, RAM1, and RAM2, are utilized for storing poly-
nomial coefficients. The RAM0, as well as RAM1, has a capacity of one polynomial.
The polynomial coefficients stored in these two RAMs adhere to the conflict-free memory
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mapping scheme mentioned in Subsubsection 4.2.2. When executing NTT or INTT, the
Polynomial Arithmetic Unit interacts with either RAM0 or RAM1. When executing
polynomial multiplications in NTT domains, the Polynomial Arithmetic Unit fetches data
from both RAMs and writes the result back to RAM0. The RAM2 is designed for storing a
polynomial vector, which is useful in the process of polynomial matrix-vector multiplication.
Compared to the other two RAMs, it does not require merging two consecutive coefficients
into a single address, and the memory map is simpler. In the vector_memory_map, the
least significant two bits of the original address determine the bank index, while the other
bits including the vector index form the inner address of each bank. When executing
polynomial additions, the Polynomial Arithmetic Unit fetches data from RAM0 and RAM2
and writes the result back to RAM2. The Addr_Gen generates the original addresses
for the operations. Furthermore, as a loosely-coupled accelerator mounted on the bus, it
provides the AXI4 Interface that connects the bus with the RAMs. Through the AXI4
Interface, the software can send the original data to the RAMs and receive the processed
result from them according to the AIX4 protocol.

4.3.3 Customized FSMs for Kyber and Dilithium

Our accelerators aim to speed up NTT-based polynomial operations in Kyber and Dilithium,
especially the time-consuming matrix-vector multiplication. Therefore, the basic functions
mentioned above should be performed in a proper sequence. We use the FSM unit to
control the process sequence. As the actual cases of calculations vary in Kyber and
Dilithium, customized FSMs for each of the algorithms can improve efficiency. We define
the states, which are associated with the high-level architecture and commonly used by
both algorithms, as follows.

- IDLE: Do not perform any operations and wait for instructions stored in conf_reg.

- WRITE0: Write a polynomial from AXI4 Interface to RAM0.

- WRITE1: Write a polynomial from AXI4 Interface to RAM1.

- WRITE2: Write a polynomial vector from AXI4 Interface to RAM2.

- NTT0: Perform NTT for the polynomial stored in RAM0.

- NTT1: Perform NTT for the polynomial stored in RAM1.

- PWM: Perform polynomial multiplication in the NTT domain for the polynomials
stored in RAM0 and RAM1, and write the result back to RAM0.

- INTT0: Perform INTT for the polynomial stored in RAM0.

- MACC: Perform polynomial addition for the polynomials stored in RAM0 and
RAM2, and write the result back to RAM2 at a specified vector index.

- READ: Read a polynomial vector from RAM2 to AXI4 Interface.

The transitions of the states for Kyber and Dilithium are carefully designed to meet
actual demands. The state transition diagrams are shown in Figure 8 and Figure 9. The
transition conditions are determined by the values of both the conf_reg and the pm_done
signal. The principles of these state transition diagrams need to be explained in conjunction
with the software component, which can be seen in the following section.
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4.4 Countermeasures against side-channel analysis
Besides efficiency, security against SCA is also an important factor to consider. Previous
studies show that the SCA targeting NTT can access sensitive information in a single trace
[PP19] or multiple traces [HHP+21]. To protect the NTT, Ravi et al. [RPBC20] propose a
range of generic shuffling and masking countermeasures. In this work, the countermeasures
against SCA are reflected in three aspects.

Firstly, the modular arithmetic operations are executed in constant time, preventing
simple power analysis (SPA) based on timing differences. This is an inherent feature of
our modular arithmetic units and does not require any additional cost.

Secondly, the shuffling countermeasure for NTT is implemented to prevent single-trace
template attacks. In our design, each set of four butterflies within any layer of the NTT is
computed independently from the others. Each layer contains 32 independent sets. The
execution order of these sets can be randomly shuffled as a countermeasure against SCA.
Since the NTT is executed in a fully pipelined manner, the completely random orders
in two adjacent layers may cause data hazards. To maintain high performance, a few
limitations should be added to the shuffled orders of the latter layer. The limitations are
that the first 9 sets of the latter layer have no data correlation with the last 9 sets of
the former layer. We implement this countermeasure by modifying the Addr_Gen unit,
as shown in Figure 7. If protection is considered, this unit generates shuffled addresses
instead of in-place ones. The shuffled addresses are precomputed and stored in a read-only
memory (ROM). The countermeasure cost is the additional resources for the ROM, while
the performance is not affected. This countermeasure is sufficient to prevent single-trace
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template attacks. If a more robust countermeasure is required, an update scheme for
the shuffled addresses should be introduced. As computational efficiency is the primary
consideration in this work, we leave it for future research.

Thirdly, the masking countermeasure for polynomial arithmetic operations is imple-
mented to prevent differential power attacks (DPA). It splits a secret polynomial into
multiple parts called shares. These shares are processed individually to hide the power
consumption that is correlated with the original secret. The operation being the same
for each share, we can implement the masking countermeasure by utilizing the hardware
accelerator to process the shares individually. The shares are generated in software, elimi-
nating the need for any modifications to the hardware design. The masking polynomial
arithmetic operations are described in Subsection 5.2.

5 Software Optimization

5.1 Memory Access
To ensure the hardware accelerator works as intended, the software needs to communicate
with it. According to the PolarFire SoC MSS Technical Reference Manual [Mic22], the
FPGA Fabric can be mapped to the address range from 0x60000000 to 0x7FFFFFFF.
We define the starting address of the polynomial RAMs as 0x60010000, and the address
of the conf_reg as 0x6001FFFC. The software can first write a configuration value to
0x6001FFFC, causing the accelerator to transition into a read or write state. Next, the
polynomial coefficients can be transmitted between the main memory and the RAMs
mapped at the starting address 0x60010000. The functions that implement such data
transmissions are given below.

- write_coeffs_0(poly p, int c): Write a polynomial p from main memory to RAM0,
with an integer c determining the subsequent state transitions.

- write_coeffs_1(poly p, int c): Write a polynomial p from main memory to RAM1,
with an integer c determining the subsequent state transitions.

- write_polyvec(polyvec pv, int k): Write a polynomial vector pv from main memory
to RAM2, with an integer k indicating the size of the vector.

- read_polyvec(polyvec pv, int k, int cls): Read a polynomial vector pv from RAM2
to main memory, with an integer k indicating the size of the vector and an integer
cls indicating whether RAM2 should be cleared.

Implementing data transmission in these functions via the processor can be time-
consuming. Fortunately, the PolarFire SoC FPGA is equipped with a DMA Engine that
supports DMA transfers between the main memory and the FPGA Fabric. We employ
two channels of the DMA Engine to accelerate the aforementioned functions. The first
channel is used for write_coeffs_0 and write_coeffs_1 to transfer a single polynomial,
while the second channel is used for write_polyvec and read_polyvec to transfer a
polynomial vector. Additionally, the memory access speed can be further improved by
configuring the L2 cache as a scratchpad. The scratchpad configuration allows for data
stored in the scratchpad to be cached in a master’s L1 data cache, resulting in faster access.
The performance comparisons between processor transmission and DMA transmission in
the context of Kyber and Dilithium are displayed in Figure 10.

In Figure 10, we show that the use of DMA and scratchpad significantly improves the
memory access speed. The improvement becomes more evident as the vector size increases
because the polynomials in a vector are stored in consecutive addresses. This fact implies
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Figure 10: Clock Cycles for Processor Transmission and DMA Transmission

that if the software transfers the polynomials in a matrix or vector all at once, it would be
faster than transferring them one by one. However, this idea requires large RAMs in the
hardware accelerator. We make a trade-off between speed and hardware resources.

5.2 Polynomial Matrix and Vector Operations
The polynomial matrix and vector operations that our accelerators aim to speed up
mainly include matrix-vector, vector-vector, and polynomial-vector multiplications and
additions. Besides, NTT for a polynomial vector can also be performed separately ac-
cording to practical needs. As mentioned above, the accelerator does not provide large
RAMs for a polynomial matrix. Therefore, it requires a reasonable schedule for the
software to calculate these operations. If the masking countermeasure against SCA is
employed, the original sensitive polynomial vectors can be split into multiple shares,
and the same operation can be performed on each share. Taking the typical operation
t = As1 + s2 in Dilithium as an example, the procedure with masking countermeasures
is described in Algorithm 4. This algorithm can be understood by referring to the state
transition diagram shown in Figure 9. The first step is to write s2[u] into RAM2 so
that it can be added to the result of As1[u]. The calculation of As1[u] is implemented
in steps 3-11 with the assistance of the hardware accelerator. In the outer loop, A[0][i]
and s1[u][i] are sent to RAM0 and RAM1, respectively. The state transition corre-
sponding to step 4 is IDLE→WRITE0→IDLE, while the one corresponding to step 5 is
IDLE→WRITE1→NTT1→PWM→INTT0→MACC→IDLE. In this way, the accelerator
calculates the product of A[0][i] and s1[u][i]. It should be noted that the state NTT0 is
skipped because A is sampled in the NTT domain. The function waitforhw() causes the
software to enter a sleep state until it receives the end signal from the accelerator. In the
inner loop, the software only needs to send the polynomials in the i-th column of A to the
accelerator one by one. These polynomials will be multiplied separately by s1[u][i], which
is already stored in RAM1 using an NTT domain representation. The state transition
corresponding to step 7 is IDLE→WRITE0→PWM→INTT0→MACC→IDLE. The result
is stored in the j-th polynomial position of RAM2. In step 12, one share of the result
vector is read from RAM2, while RAM2 is cleared for subsequent operations.

The advantage of Algorithm 4 is that it avoids repetitive data transmissions and
calculations, and keeps all intermediate results in hardware. There are other cases for
polynomial matrix and vector operations in Kyber and Dilithium. The accelerator deals
with them through different state transitions. The main cases are described as follows.

In Kyber, there are three main cases. The first case involves calculating NTT for
a polynomial vector. This operation can be performed by using the write_coeffs_0
function and controlling the state transition as IDLE→WRITE0→NTT0→MACC→IDLE.
The second case involves matrix-vector multiplications where the resulting polynomials
need to remain in the NTT domain. The third case involves matrix-vector and vector-vector
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Algorithm 4 Matrix-Vector Multiplication and Addition Based on Hardware Accelerator
Require: A ∈ Rk×lq , s1 ∈ Rd×lq , s2 ∈ Rd×kq , where k, l, q are parameters in Dilithium, d
is the number of shares
Ensure: t = As1 + s2 ∈ Rd×kq

1: for (u = 0; u < d; u = u+ 1) do
2: write_polyvec(s2[u], k)
3: for (i = 0; i < l; i = i+ 1) do
4: write_coeffs_0(A[0][i], 0)
5: write_coeffs_1(s1[u][i], 0)
6: waitforhw()
7: for (j = 1; j < k; j = j + l) do
8: write_coeffs_0(A[j][i], 2)
9: waitforhw()
10: end for
11: end for
12: read_polyvec(t[u], k, 1)
13: end for
14: return t

multiplications, where the resulting polynomials need to be transformed back to the regular
domain. For the latter two cases, the difference lies in whether the INTT0 state should
be skipped. Since the operands have already been in NTT domain representation, the
accelerator does not need to go through the NTT0 or NTT1 state.

In Dilithium, there are two main cases. The matrix-vector multiplication with a
matrix in the NTT domain and a vector in the regular domain is the first case, which
can be calculated using Algorithm 4. The second case involves the polynomial-vector
multiplications with all operands in the regular domain. For this case, the scalar polynomial
is written to RAM1 after RAM0 has received the first polynomial of the vector, with the
state transition as IDLE→WRITE1→NTT1→NTT0→PWM→INTT0→MACC→IDLE.
Next, the remaining polynomials in the vector are sent to RAM0 one by one, with the
state transition as IDLE→WRITE0→NTT0→PWM→INTT0→MACC→IDLE.

Besides, the functions write_polyvec and read_polyvec are optional in a specific
scenario. For example, when calculating w = Ay in the signing algorithm of Dilithium, the
function write_polyvec should be omitted. The function read_polyvec can be omitted
when a product is an intermediate value. For example, when computing t = As + e in
the key generation algorithm of Kyber, where e should be first transformed into the NTT
domain, it is not necessary to read the NTT result of e from the accelerator. Additionally,
the function read_polyvec has a parameter cls to indicate whether RAM2 should be
cleared after reading. This parameter is set to zero when the intermediate value is used by
both software and hardware. For example, when computing ct0 and w + ct0 in the signing
algorithm of Dilithium, the result of ct0 should be read without being cleared from RAM2
for future use. Otherwise, RAM2 should be overwritten with zeros.

5.3 SHA-3 Functions
The calculation of SHA-3 functions is another time-consuming task in Kyber and Dilithium.
Previous works usually design a tightly coupled accelerator for SHA-3 [FBR+22, KSFS22],
but the hardened processor does not allow us to make any changes to it. Designing a
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loosely coupled accelerator for SHA-3 would not be cost-efficient due to the significant
communication overhead. There has been work using RISC-V assembly language to
optimize the Keccak-p permutation of SHA-3 functions [Kos19]. However, according to our
test, the performance of this work is not superior to that of a well-written C code compiled
with “O3” level optimization. To achieve better efficiency, we make some modifications to
this work. The optimization methods that we have employed are described as follows.

Firstly, as the RISC-V core supports the standard double-precision floating-point
instruction-set extension named “D”, we can use the FPR registers to store the state array.
The state array of each SHA-3 function has a size of 25× 64 bits, which can be held by
25 double-precision floating-point registers. The use of memory storing the state array
is eliminated throughout the entire lifespan of each SHA-3 function. For example, the
function SHAKE128 can be divided into two stages: absorbing and squeezing, which share
f0-f24 registers for intermediate states. The floating-point registers are initialized with
zeros during the absorbing stage and then moved to integer registers using the “fmv. x.d”
instruction when they need to be processed. The values in f0-f20 will not be written to
memory until the squeezing stage begins.

Listing 1: θ Step in [Kos19]

1 .macro CP _o ,_a ,_b ,_c ,_d ,_e
2 fmv.x.d t0 , \_a
3 fmv.x.d t1 , \_b
4 fmv.x.d t2 , \_c
5 fmv.x.d t3 , \_d
6 fmv.x.d t4 , \_e
7 xor t1 , t1 , t0
8 xor t1 , t1 , t2
9 xor t1 , t1 , t3

10 xor t1 , t1 , t4
11 mv \_o , t1
12 .endm
13

14 /* for i = 0 - 4, compute
15 C[i]=A[i]^A[i+5]^A[i+10]
16 ^A[i+15]^A[i+20] */
17

18 CP s1 , 0, 5, 10, 15, 20
19 CP s2 , 1, 6, 11, 16, 21
20 CP s3 , 2, 7, 12, 17, 22
21 CP s4 , 3, 8, 13, 18, 23
22 CP s5 , 4, 9, 14, 19, 24

Listing 2: Optimized θ Step

1 .macro CP _a ,_b ,_c ,_d ,_e
2 fmv.x.d a3 , f\_a
3 fmv.x.d a4 , f\_b
4 fmv.x.d a5 , f\_c
5 fmv.x.d t2 , f\_d
6 fmv.x.d t3 , f\_e
7 c.xor a0 , a3
8 c.xor a1 , a4
9 c.xor a2 , a5

10 xor t0 , t0 , t2
11 xor t1 , t1 , t3
12 .endm
13

14 fmv.x.d a0 , f0
15 fmv.x.d a1 , f1
16 fmv.x.d a2 , f2
17 fmv.x.d t0 , f3
18 fmv.x.d t1 , f4
19 CP 5, 6, 7, 8, 9
20 CP 10, 11, 12, 13, 14
21 CP 15, 16, 17, 18, 19
22 CP 20, 21, 22, 23, 24

Secondly, the execution order of assembly statements in the Keccak-p permutation is
carefully arranged, aiming to fully utilize the pipeline feature of the RISC-V core. The
5-stage pipeline has a peak execution rate of one instruction per clock cycle. However, if
there is a data hazard between adjacent instructions, the pipeline has to introduce a stall,
resulting in performance losses. Taking the θ step as an example, it needs to compute the
parity of each column. The original implementation of this step in [Kos19] is shown in
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Listing 1. It can be observed that there are data hazards among the instructions in lines
7-11. As a contrast, our optimized implementation is shown in Listing 2. In this routine,
the data dependency appears after at least 5 instructions. As a result, the 5-stage pipeline
can be filled, allowing for the execution rate of one instruction per clock cycle. The other
steps of the Keccak-p permutation can be optimized in the same way.

Thirdly, the RISC-V standard compressed instruction-set extension, named “C”, is used
to reduce the code size. The C extension replaces certain 32-bit instructions with 16-bit
instructions without any loss in performance. As can be seen from Listing 2, the “xor”
instructions in lines 7-9 are replaced with “c.xor” instructions. We employ registers a0 to a5
because they are required by the compressed instructions. The usage of registers s0 to s11 is
abandoned to save time on stack operations. The compressed instructions are applied to all
steps of the Keccak-p permutation, on condition that they do not compromise performance.
As a result, the code size of the Keccak-p permutation is reduced by approximately 10%.

5.4 Multi-Core Acceleration
To the best of our knowledge, there is currently no work utilizing multi-core processors
(either ARM or RISC-V) to enhance the implementation speed of Kyber or Dilithium,
even though their mathematical structure is suitable for parallel computation. We have
developed hardware accelerators for performing polynomial arithmetic operations in Kyber
and Dilithium. However, this part of operations accounts for only around half of the total
computation progress. The remaining operations executed by software mainly include hash-
ing, sampling, packing/unpacking, encoding/decoding, and compression/decompression.
The hashing operations are optimized using RISC-V assembly instructions, as described in
Subsection 5.3. The other operations have something in common, that is, they all operate
on polynomial matrices or vectors, and the processes for different polynomials do not have
any data dependency. Based on this feature, we can easily assign computing tasks from a
single core to multiple cores.

Taking the generation of the matrix A as an example, each polynomial in A is sampled
uniformly from a pseudo-random string. The pseudo-random string is extended from a
uniform seed and a nonce using the SHAKE128 function. In the context of single-core
execution, the polynomials are sampled one by one. As the seed and nonce for each
polynomial do not depend on the previous sampling result, it is possible to efficiently assign
the task of sampling these polynomials to multiple cores. For one of the best cases, when
the matrix A has 4× 4 polynomials, each core is responsible for sampling four of them. In
the practical context, several successive functions can be decomposed and distributed as
evenly as possible across multiple cores to achieve a favorable balance.

The U54_1 to U54_4 cores are utilized for implementing the multi-core acceleration.
The U54_1 controls the flow of the application program. It raises a synchronous software
interrupt for each of the other U54 cores when a multi-core task is required. The cores
U54_2 to U54_4 remain in the Wait for Interrupt (WFI) state until they receive the
interrupt signals. The microprocessors communicate with each other through a shared
memory area located in the L2 cache. The shared memory area stores data processed by
multiple cores and variables used for synchronization. Based on this scheme, the target
operations can be performed in parallel by multiple processors.

6 Experimental Results
We evaluate our hardware-software co-design on the PolarFire SoC FPGA Icicle Kit, which
features the MPFS250T-FCVG484EES device. The hardware accelerators are simulated,
synthesized, and implemented using Libero SoC v2022.2, while the software is developed
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and debugged using SoftConsole v2022.2. Kyber and Dilithium are implemented separately
to achieve customized effects.

6.1 Effects of Hardware Acceleration
The synthesized and simulated results of our hardware accelerators for Kyber and Dilithium
are listed in Table 5. There is no distinction between security levels because they share a
common accelerator. The resources are measured by the utilized components available
in Polarfire FPGA, which account for less than 5% of the total. The performance is
measured by the clock cycles consumed by the major operations, which correspond to
different states, as well as the maximum frequency. The accelerator for Dlithium has more
resources and a lower frequency than the one for Kyber due to the disparity in prime fields.
The clock cycles for both algorithms are generally in line with expectations, with a few
additional cycles required for memory access. There are two versions of accelerators for
each algorithm, depending on whether the shuffling countermeasure is implemented. By
comparing the two versions, it can be observed that the countermeasure requires fewer
than 300 additional 4LUT resources, with little impact on performance. This indicates
that the shuffling countermeasures we implemented are cost-effective.

Table 5: Resources and Performance of the Accelerators for Kyber and Dilithium

Algorithm
Resources Clock Cycles Freq.

(MHz)4LUT DFF Math uSRAM NTT/INTT PWM MACC
Kyber1 6,035 1,896 4 38 236 140 76 165
Kyber2 6,325 1,877 4 38 236 140 76 165

Dilithium1 12,428 3,830 16 100 265 73 70 135
Dilithium2 12,673 3,822 16 100 265 73 70 131
1 Without any countermeasure for the NTT/INTT implementation
2 With a shuffling countermeasure for the NTT/INTT implementation

To demonstrate the effects of our hardware accelerators, we test the proportion of
polynomial arithmetic operations that can be accelerated in the baseline implementations
of Kyber and Dilithium. The baseline implementations use the official C code compiled
by the RISC-V GCC toolchain with the “O3” optimization level. The average number
of clock cycles is obtained by running the algorithm 1000 times. In Figure 11, we show
the test results on a single U54 core for Kyber and Dilithium at NIST security level 5.
The polynomial arithmetic operations displayed in blue are the components that would
be accelerated by the accelerators. The test results of these algorithms, in which the
polynomial arithmetic operations are accelerated by the hardware accelerators, are shown
in Figure 12. As can be seen from the comparison of the two figures, the clock cycles of
polynomial arithmetic operations are reduced by about 70%-90% with the assistance of
hardware accelerators. As a result, the overall performance of these algorithms improves
by approximately 20%-50%, depending on the proportion of time spent on polynomial
arithmetic operations. With the performance of other operations remaining unchanged,
the proportion of time spent on polynomial arithmetic operations drops to 7%-23%. The
acceleration effects are similar for Kyber and Dilithium at other security levels.

The overhead of the masking countermeasure implemented in our design is also evalu-
ated, as shown in Table 6. The clock cycles and code size are obtained from the accelerated
implementations with and without first-order masking. It can be seen that the masking
countermeasure has a significant impact on performance compared to code size. The signing
algorithm is the most affected because it contains more sensitive variables than others. The
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Figure 11: Clock Cycles of Baseline Implementations on a Single U51 Core

performance overhead is similar to that of the Generic-Random-Masked countermeasure
presented in [RPBC20]. It achieves a balance between security and efficiency. The security
of operations outside the hardware accelerator has not been considered in this work. It
requires Boolean masking and corresponding secure conversions, which can lead to more
overhead. We leave it for future research.

Table 6: Clock Cycles and Code Size for the Masked and Unmasked Implementations

Algorithm
Kyber1024 Dilithium-5

KeyGen Encaps Decaps Code size KeyGen Sign Code size
Unmasked 1,008,475 1,204,669 1,120,314 32,520 4,028,505 7,295,621 32,120
Masked 1,235,479 1,451,613 1,458,089 33,352 4,749,079 12,884,855 33,240
Overhead 22.5% 20.5% 30.2% 2.6% 17.9% 76.6% 3.5%

6.2 Effects of Code Optimization for SHA-3
The effects of code optimization for SHA-3 functions used in Kyber and Dilithium are
depicted in Figure 13. We evaluate these functions individually. The results before
optimization are obtained by compiling the official C code with the “O3” optimization level.
The results after optimization involve the assembly code described in Subsection 5.3, which
is compiled in the same manner. The performance is measured in terms of clock cycles per
byte. For each function, we test the performance by setting its input to 10,000 random
bytes. The output lengths of SHAKE128 and SHAKE256 are set to one squeezing block,
depending on their rates. As shown in Figure 13, the performance of SHA-3 functions
improves by approximately 15%-20%, while the code size decreases by about 40%-60%.
The optimization of code size is more noticeable than that of performance because the
official implementation adopts loop unrolling to achieve higher speed.

This increase in efficiency does not rely on any dedicated hardware or customized
instruction sets. The flexibility advantage of the software is retained. It only requires
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the standard extensions “D” and “C”, which are supported by most general-purpose
RISC-V processors. The 64-bit registers and instructions are also necessary for storing
and processing the 1600-bit state of SHA-3. Since SHA-3 functions account for a large
proportion of calculations other than polynomial arithmetic operations, the optimization
further improves the overall performance by about 10%-15% following the hardware
acceleration. However, the software still takes 5 to 10 times longer than the hardware does,
significantly impacting overall performance.

6.3 Effects of Multi-Core Acceleration
In Figure 14, we show the test results of different implementations of Kyber and Dilithium
at NIST security level 5. The implementation methods include the baseline implementation,
code optimization on a single core with an accelerator, and code optimization on multiple
cores with an accelerator. As can be seen from the comparisons, the effects of acceleration
and optimization are significant for all algorithms in Kyber and Dilithium. On top of
the hardware acceleration and code optimization, the multi-core acceleration further
enhances the performance by around 40%-60%. For the other security level, the multi-core
acceleration exhibits similar effects.

The polynomial arithmetic operations can also be accelerated by the multiple processors,
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instead of the hardware accelerator. However, the multi-core acceleration can not achieve
the speed-up ratio of 5-10 times as the hardware accelerator does. The operations executed
by the multiple processors can also be accelerated by a more powerful hardware accelerator,
but this comes at the cost of using more FPGA resources and sacrificing flexibility. We
make a tradeoff between the two approaches. The polynomial arithmetic operations are
independent of other operations, making it suitable to offload them to the hardware
accelerator. The multiple processors are adept at handling other discrete operations,
including the optimized SHA-3 functions, thereby ensuring efficient multi-core acceleration.
The test results indicate that the multi-core acceleration and the hardware acceleration
have a similar impact on the overall performance.

6.4 Comparison with Related Works
In Table 7 and Table 8, we present the performance results of our unmasked implementations
for Kyber and Dilithium, respectively. For each algorithm, this work gives three versions
of implementations. All versions are compiled by the RISC-V GCC toolchain with the
“O3” optimization level and tested on U54 cores with a scratchpad memory configuration.
The first version is the baseline software implementation which uses the official code
directly. We provide the test results to demonstrate the performance of a single U54
core for reference. The second version contains the hardware acceleration using FPGA
and the code optimization for SHA-3. The third version further introduces the multi-
core acceleration. The frequency and the cycles listed here are both obtained from the
processor’s clock. The time in microseconds is calculated according to the frequency and
cycles. The comparison of these three versions of implementations demonstrates the effects
of our acceleration and optimization methods across different security levels. The overall
performance can be improved by approximately 3 to 5 times.

Several related works that present outstanding results using hardware-software co-design
are also listed for comparison. The related works published in the earlier years, such as
[BUC19, FSS20, AEL+20, XHY+20], are not listed here. The reason is that they implement
the older versions of Kyber and Dilithium with some parameter differences from ours.
These differences can have an impact on performance. Since there have been enough state-
of-the-art works for comparison, we omit the comparisons with earlier implementations for
simplicity. The works listed here mainly involve solutions for customizing ISA extensions in
open-source RISC-V cores, such as [NMZ+21, FBR+22, KSFS22, ZXXH22]. The designs
of loosely-coupled accelerators can be found in [FBR+22, KSFS22, DMMM23, MCL+23].
The FPGA resources utilized by these works are presented in Table 9. The related works all
evaluate their designs based on Xilinx FPGA, so we re-synthesis our hardware accelerators
on Xilinx FPGA using Vivado 2022.1 to make them comparable. It should be noted that
the data presented in the three tables does not include any countermeasures against SCA.

The performance comparisons are not entirely fair due to the differences in platforms and



126 Hardware-Software Co-Design for Kyber and Dilithium

Table 7: Comparison with Related Hardware-Software Co-Design for Kyber KEM

Work Platform
Freq.
(MHz)

KeyGen Encapsulation Decapsulation

Cycles Time[µs] Cycles Time[µs] Cycles Time[µs]
Kyber512

[NMZ+21] CVA6 100 419,597 4,196 438,280 4,383 100,796 1,008
[FBR+22] PULP 79.74 116,454 1,456 176,034 2,200 186,341 2,329
[ZXXH22] Rocket 540 9,400 17 19,000 35 43,800 81
[DMMM23] PULP - 395,495 - 552,827 - 726,049 -

This1 PolarFire 600 623,342 1,039 834,370 1,391 956,454 1,594
This2 PolarFire 600 326,983 545 415,496 692 394,661 658
This3 PolarFire 600 151,593 253 260,923 435 233,616 389

Kyber768
[NMZ+21] CVA6 100 694,504 6,945 731,597 7,316 130,348 1,303
[FBR+22] PULP 79.74 213,862 2,682 298,048 3,738 313,034 3,926
[ZXXH22] Rocket 540 14,200 26 26,200 49 59,100 109
[DMMM23] PULP - 663,059 - 856,258 - 1,083,818 -

This1 PolarFire 600 1,031,670 1,719 1,329,313 2,216 1,480,350 2,467
This2 PolarFire 600 536,213 894 671,082 1,118 639,024 1,065
This3 PolarFire 600 231,334 386 378,792 631 334,569 558

Kyber1024
[NMZ+21] CVA6 100 1,090,458 10,905 1,126,462 11,265 159,639 1,596
[FBR+22] PULP 79.74 266,209 3,338 368,409 4,620 392,873 4,927
[ZXXH22] Rocket 540 18,500 34 33,700 62 77,500 144
[DMMM23] PULP - 1,001,350 - 1,247,565 - 1,523,411 -

This1 PolarFire 600 1,592,388 2,654 1,936,035 3,227 2,115,579 3,526
This2 PolarFire 600 844,008 1,407 1,015,251 1,692 972,598 1,621
This3 PolarFire 600 339,600 566 530,867 885 473,186 789

1 Baseline software implementation on a single core
2 Hardware-software co-design implementation on a single core
3 Hardware-software co-design implementation on multiple cores

available resources. Several objective factors significantly impact the overall performance.
Firstly, the PolarFire SoC FPGA platform requires us to use an L2 cache to store the
program data, while other RISC-V-based works use on-chip memory like Block RAM
(BRAM). According to our test, it takes about 7-9 clock cycles to read a 32-bit word
from the L2 cache, while the on-chip memory only requires 2-3 clock cycles. Secondly, the
hardened RISC-V processors we use do not allow us to make any changes to them, so the
custom instruction extension solutions are not available in this work. Thirdly, our design
uses separate clocks for software and hardware. The frequency of our FPGA accelerator,
as shown in Table 5, is much lower than that of the RISC-V processor, while other works
using ASIC can achieve a high frequency for their accelerators.

The work of [NMZ+21] requires more clock cycles compared to our accelerated imple-
mentations for both Kyber and Dilithium. The reason is that they employ only a small
accelerator to speed up NTT/INTT. Although it takes fewer FPGA resources than ours,
this accelerator can be rather inefficient if it is loosely coupled with the processor. Their
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Table 8: Comparison with Related Hardware-Software Co-Design for Dilithium

Work Platform
Freq.
(MHz)

KeyGen Sign Verify

Cycles Time[µs] Cycles Time[µs] Cycles Time[µs]
Dilithium-2

[NMZ+21] CVA6 100 1,592,325 15,923 5,884,266 58,843 1,700,679 17,017
[KSFS22] PULP 800 593,403 742 1,905,872 2,382 651,217 814
[ZXXH22] Rocket 540 45,800 85 175,100 324 89,800 166
[MCL+23] Zynq 666 732,600 1,100 3,929,400 5,900 732,600 1,100
This1 PolarFire 600 1,658,593 2,764 6,754,172 11,257 1,862,610 3,104
This2 PolarFire 600 1,135,669 1,893 3,089,124 5,149 1,161,199 1,935
This3 PolarFire 600 438,698 731 1,697,566 2,829 542,212 904

Dilithium-3
[NMZ+21] CVA6 100 2,974,897 29,749 10,211,677 102,117 2,963,936 29,639
[KSFS22] PULP 800 1,067,824 1,335 3,253,378 4,067 1,126,938 1,409
[ZXXH22] Rocket 540 68,400 127 224,600 416 110,300 204
[MCL+23] Zynq 666 999,000 1,500 5,794,200 8,700 1,065,600 1,600
This1 PolarFire 600 2,953,626 4,923 11,168,275 18,614 3,068,320 5,114
This2 PolarFire 600 2,087,190 3,479 5,002,513 8,338 1,986,265 3,310
This3 PolarFire 600 798,111 1,330 2,990,703 4,985 879,854 1,466

Dilithium-5
[NMZ+21] CVA6 100 5,001,302 50,013 13,339,255 133,393 5,132,776 51,328
[KSFS22] PULP 800 1,784,767 2,231 4,357,249 5,447 1,848,324 2,310
[ZXXH22] Rocket 540 94,900 176 313,200 580 160,000 296
[MCL+23] Zynq 666 1,465,200 2,200 6,793,200 10,200 1,531,800 2,300
This1 PolarFire 600 4,845,411 8,076 13,688,816 22,814 5,128,379 8,547
This2 PolarFire 600 3,505,148 5,842 6,608,984 11,015 3,470,890 5,785
This3 PolarFire 600 1,251,278 2,085 3,369,190 5,615 1,378,741 2,298

1 Baseline software implementation on a single core
2 Hardware-software co-design implementation on a single core
3 Hardware-software co-design implementation on multiple cores

tightly coupled accelerator achieves a speedup ratio of 2 to 4 times for NTT/INTT. In
contrast, our loosely coupled accelerator achieves a speedup ratio of 3 to 10 times.

The work of [FBR+22] designs loosely coupled accelerators for NTT-based operations
and tightly coupled accelerators for SHA-3 functions in Kyber. Our hardware-software
co-design has a shorter execution time and uses fewer FPGA resources compared to their
design. The number of clock cycles is not as small as theirs due to the objective factors
explained above. The FPGA resources of their design are 2 to 3 times greater than ours,
most of which are used for SHA-3. Their loosely coupled accelerator requires approximately
4,096 cycles to calculate NTT, which is 16 times longer than ours. The resources used for
it consist of 2,454 LUTs and 1,917 FFs, which are similar to ours.

The work of [KSFS22] uses the same platform and a similar architecture as [FBR+22]
to enhance the speed of Dilithium. Their work requires more clock cycles compared to
the third version of our implementations, while also utilizing more FPGA resources. The
execution time is short because of the high frequency of their ASIC clock. Their design
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Table 9: Comparison of FPGA Resources for Accelerating Kyber and Dilithium

Work FPGA
Kyber Dilithium

LUT FF DSP BRAM LUT FF DSP BRAM
[NMZ+21] Zynq UltraScale+ 3,173 58 5 0.5 3,506 71 10 0.5
[FBR+22] Artix 7 7,687 3,515 7 4.5 - - - -
[KSFS22] Zynq UltraScale+ - - - - 7,219 3,238 7 6
[ZXXH22] Artix 7 25,674 3,137 64 6 25,674 3,137 64 6
[DMMM23] Artix 7 7,128 3,798 - - - - - -
[MCL+23] Zynq 7000 - - - - 9,365 6,811 4 5
This1 Zynq 7000 3,087 1,050 4 4 6,639 1,660 16 3

1 We re-synthesis our hardware accelerators based on Xilinx FPGA using Vivado.

reduces the FPGA resources for NTT-based operations to 1,402 LUTs and 1,192 FFs.
Our accelerator for Dilithium consumes much more LUTs due to the utilization of 1,351
LUTRAMs instead of BRAMs. Nonetheless, we achieve a speed-up ratio of 16 times for
NTT at the cost of no more than 5 times increase in LUT resources.

The work of [ZXXH22] provides the most high-performance implementations for Kyber
and Dilithium among the listed works. However, the high performance comes with a
high cost. As can be seen from Table 9, their accelerator consumes much more FPGA
resources than ours, particularly in terms of LUT and DSP. Their design heavily relies on
the hardware crypto-core for most computing tasks, resulting in performance that is close
to a pure hardware implementation. In contrast, our accelerators handle only about half
of the computing tasks. Therefore, our design maintains a certain level of flexibility and
requires fewer hardware resources.

The work of [DMMM23] proposes a loosely coupled Keccak accelerator to speed up SHA-
3 functions for Kyber. It can be observed that the second version of our implementations
surpasses theirs in terms of both performance and resource utilization. This comparison
indicates that accelerating NTT-based operations is more efficient than accelerating SHA-3
in a loosely coupled hardware module for Kyber. Therefore, our decision to implement
SHA-3 in software is reasonable, as it makes the accelerator more compact and efficient.

The work of [MCL+23] presents a software-hardware co-design for Dilithium. Although
it is not implemented on a RISC-V processor, their work employs the ARM-based Zynq
platform which shares similar features with PolarFire SoC FPGA. When compared to
[MCL+23], our design does not suffer from the drawbacks of memory access, custom
ISA extension, and clock frequencies. Therefore, the comparison is relatively fair. From
Table 8 and Table 9, we can observe that the second version of our implementations has
performance advantages in the signing algorithm, while resources other than DSP are also
saved. The reason is that we put more effort into accelerating NTT-based operations,
which account for a large proportion of the signing algorithm. Their work consumes more
FPGA resources since it involves hardware accelerators for SHA-3 and sampling operations.
The third version of our implementations has performance advantages in all algorithms of
Dilithium, thanks to the utilization of multiple cores.

To be clear, our work is not merely an integration of existing technologies. As described
in the previous sections, several innovative improvements are presented to make the
computations more suitable for Kyber and Dilithium. Compared to related works, the
biggest difference in our design is the collaboration between the customized FSM and
the software scheduling. It enables continuous sequences of operations to be executed
without interruption in the hardware while reducing the overhead of instruction interaction.
This solution is designed based on the actual cases of operation sequences in Kyber and
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Dilithium, ensuring that the computations are suitable for them.

6.5 Power and Energy Consumption

The consumption of power and energy is also an important metric for evaluating our
implementations of Kyber and Dilithium. In Table 10, we present this metric for the three
versions of our implementations. The power consumption is measured using SmartPower,
which is a power-analysis tool that provides a detailed and accurate way to analyze designs
for Microchip SoC FPGAs. We set the operating condition to be “Typical”, which indicates
that the measurement is conducted at a temperature of 25◦C and a core voltage of 1.05V.
Our baseline software implementation involves only a single working RISC-V core while
other cores are on standby, so it has the lowest power consumption. The second version
introduces a hardware accelerator, resulting in a slight increase in power consumption.
The third version involves multiple cores working together, which consumes more power
compared to the other versions that keep some cores in standby mode. The energy
consumption is calculated by multiplying power and time. Since the increase in power
consumption is insignificant compared to the improvement in performance, the energy
consumption saved is similar to the time saved. This indicates that our hardware-software
co-design achieves benefits in terms of energy consumption.

Table 10: Power and Energy Consumption for Implementations of Kyber and Dilithium

Algorithm
Power (mW) Energy (mJ)

Baseline1 Accel.2 Accel.3 Baseline1 Accel.2 Accel.3

Kyber512 1,727 1,833 1,922 1.8/2.5/2.9 1.0/1.3/1.2 0.5/0.8/0.7
Kyber768 1,727 1,833 1,922 3.0/3.8/4.3 1.6/2.0/2.0 0.7/1.2/1.1
Kyber1024 1,727 1,833 1,922 4.6/5.6/6.1 2.6/3.1/3.0 1.1/1.7/1.5
Dilithium-2 1,727 1,847 1,936 4.8/19/5.4 3.5/9.5/3.6 1.4/5.5/1.8
Dilithium-3 1,727 1,847 1,936 8.5/32/8.8 6.4/15/6.1 2.6/9.7/2.8
Dilithium-5 1,727 1,847 1,936 14/39/15 11/20/11 4.0/11/4.4
1 Baseline software implementation on a single core
2 Hardware-software co-design implementation on a single core
3 Hardware-software co-design implementation on multiple cores

For implementations with countermeasures against SCA, the average power consumption
remains relatively unchanged while energy consumption increases due to the additional
time required. However, the characteristic of runtime power consumption is significantly
affected by the countermeasures. To evaluate the power leakage for both unprotected
and protected hardware accelerators, we acquire the runtime power consumption on a
SAKURA-X board that features a Kintex-7 FPGA through a LeCroy oscilloscope at a
sampling frequency of 500MHz. Figure 15 shows a single power trace of the accelerator
for Kyber, where the voltage value is used to represent the runtime power consumption.
It corresponds to the state transition as IDLE→WRITE0→NTT0→MACC→IDLE. The
states NTT0 and MACC can be easily observed from the peaks. We use 100,000 such
traces as an example to evaluate the power leakage. The other calculation patterns exhibit
similar characteristics.

We employ the Test Vector Leakage Assessment (TVLA) [GJJR11, SM15] methodology
to evaluate power leakage from the traces. Given two sets of data with n0 and n1 power
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NTT0 MACC

Figure 15: A Single Power Trace of the Accelerator for Kyber

traces, respectively, the TVLA metric is calculated as

t = µ0 − µ1√
s2

0
n0

+ s2
1
n1

, (12)

where µ0, µ1 are the means of the two sets, while s2
0, s

2
1 are their respective variances. In

literature, a threshold of |t| > 4.5 is usually defined to indicate that it is possible for an
attacker to statistically distinguish between the two sets. In our measurement, the two sets
are divided according to whether the inputs are random. One set contains 50,000 traces
with random inputs while the other set contains 50,000 traces with fixed inputs. The
calculation results of TVLA for power traces of unprotected and protected accelerators
are depicted in Figure 16. It can be observed that there are significant differences between
the two groups of results. The t values for the unprotected accelerator mostly exceed
the threshold, which is marked by two red lines, especially during the first stage of NTT
operation. On the contrary, the t values for the protected accelerator all fall within the
threshold range. This indicates that obvious power leakages exist if the accelerator is not
protected, while the countermeasures we take can mitigate such leakages. As SCA and
countermeasures for Kyber and Dilithium are not the main focus of this paper, we leave
more in-depth research on this field as future work.
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Figure 16: TVLA for Power Traces of Unprotected and Protected Accelerators
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7 Conclusion
As Kyber and Dilithium have been selected for standardization in the third round of
the NIST PQC standardization process, efficient implementations for them on various
platforms become more valuable. In this work, we choose the industry’s first RISC-V-based
SoC FPGA as our experimental platform and present optimized hardware-software co-
design for Kyber and Dilithium. Our design incorporates hardware accelerators to enhance
the speed of polynomial arithmetic operations, optimized RISC-V assembly code for
SHA-3 functions, and multi-core acceleration solutions for other matrix and vector-related
operations. The experimental results show that it achieves a significant improvement in
performance with reasonable resource utilization. The countermeasures against SCA for
the hardware accelerator and a proper evaluation are also considered in this work.

Furthermore, our acceleration and optimization methods for Kyber and Dilithium are
not limited to the platform we choose. The acceleration solutions, whether using FPGA
or multiple cores, are irrelevant to ISA. They can be migrated to other platforms that
contain FPGA or multi-core resources, such as Zynq-7000 SoC. The code optimization for
SHA-3 functions does not need dedicated hardware. It can be implemented on various
general-purpose RISC-V processors supporting the standard extensions “D” and “C”. The
RISC-V processors currently in use may not possess the same level of high performance as
x86/x64 or ARM-based processors, but it is still worthwhile to implement and optimize
the PQC algorithms on such platforms for a wider range of applications.
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