
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 2, pp. 819–843. DOI:10.46586/tches.v2024.i2.819-843

SHAPER: A General Architecture for
Privacy-Preserving Primitives in Secure

Machine Learning
Ziyuan Liang1, Qi’ao Jin1, Zhiyong Wang1, Zhaohui Chen2,3,4, Zhen Gu3,4,5,

Yanhheng Lu4,6 and Fan Zhang1

1 Zhejiang University, Hangzhou, China,
liangziyuan,{jin_qi_ao,wangzhiyong,fanzhang}@zju.edu.cn

2 Peking University, Beijing, China
3 DAMO Academy, Alibaba group, Beijing, China,
chenzhaohui.czh,{guzhen.gz}@alibaba-inc.com

4 Hupan Lab, Hangzhou, China
5 Tsinghua University, Beijing, China

6 Alibaba Group, Shanghai, China, yanheng.lyh@alibaba-inc.com

Abstract. Secure multi-party computation and homomorphic encryption are two
primary security primitives in privacy-preserving machine learning, whose wide adop-
tion is, nevertheless, constrained by the computation and network communication
overheads. This paper proposes a hybrid Secret-sharing and Homomorphic encryp-
tion Architecture for Privacy-pERsevering machine learning (SHAPER). SHAPER
protects sensitive data in encrypted or randomly shared domains instead of rely-
ing on a trusted third party. The proposed algorithm-protocol-hardware co-design
methodology explores techniques such as plaintext Single Instruction Multiple Data
(SIMD) and fine-grained scheduling, to minimize end-to-end latency in various net-
work settings. SHAPER also supports secure domain computing acceleration and
the conversion between mainstream privacy-preserving primitives, making it ready
for general and distinctive data characteristics. SHAPER is evaluated by FPGA
prototyping with a comprehensive hyper-parameter exploration, demonstrating a 94×
speed-up over CPU clusters on large-scale logistic regression training tasks.
Keywords: Privacy-Preserving Machine Learning · Multi-Party Computation ·
Additive Homomorphic Encryption · Hardware Accelerator

1 Introduction
Cross-agency data collaboration maximizes the accuracy of Machine learning (ML) models.
Nonetheless, from the perspective of user privacy and business interests, concerns about
data privacy and security arise [ARC19]. In practice, ML cannot be applied directly to
health or financial data for competitive and regulatory reasons. These sensitive data sets
are isolated by different parties, which is also known as the “isolated data island” problem.
To solve this problem, privacy-preserving machine learning (PPML) [XBJ21] allows partic-
ipants to collaborate on training and inference procedures by applying privacy-preserving
computing techniques, e.g. multi-party computation (MPC) [Yao82], homomorphic en-
cryption (HE) [FV12], and trusted execution environment (TEE) [CD16]. These security
primitives prevent the raw data, model weights, and gradient values from being revealed
to any other participants. Since the algorithms and protocols of PPML heavily depend

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-10-15 Accepted: 2023-12-15 Published: 2024-03-12

https://doi.org/10.46586/tches.v2024.i2.819-843
mailto:liangziyuan@zju.edu.cn,jin_qi_ao@zju.edu.cn,wangzhiyong@zju.edu.cn,fanzhang@zju.edu.cn
mailto:chenzhaohui.czh@alibaba-inc.com,guzhen.gz@alibaba-inc.com
mailto:yanheng.lyh@alibaba-inc.com
http://creativecommons.org/licenses/by/4.0/

820 SHAPER

Sample ID Label Features Sample ID Features

Hospital Company

Host HostHW Accelerator HW Accelerator

Third-party
Adversary
Monitoring

PPML Protocols

T
ru

st
 B

ar
ri

er

T
ru

st
 B

ar
ri

er

Trained Model Trained Model

Figure 1: PPML allows two parties to securely train ML models on sensitive data.

on the data characteristics, scale, ownership, and security model, debates on technical
roadmap never stop.

Fig. 1 shows an example of PPML in a healthcare scenario. A hospital and a pharma-
ceutical company collaborate to develop a predictive model for personalized medicine while
protecting patient data. The parties have access to different sensitive patient records (labels
and features). The parties use privacy-computing techniques to jointly train the model.
The computational load is divided between the two parties, with each party performing
local calculations and exchanging encrypted updates. The PPML scheme can prevent
data security from being compromised beyond the trust barriers. On the one hand, the
semi-honest parties act curiously and try to extract data privacy from each other. On
the other hand, third-party adversaries can monitor the communication in the insecure
network. The goal is to create an accurate model while preserving the privacy of individual
patient data.

MPC covers a series of privacy-preserving techniques that support secure computation
protocols on mathematically masked data. Garbled circuit (GC) is a secure two-party
logical computation protocol, where the evaluation of each gate requires the transmission of
a ciphertext look-up table. Secret sharing (SS) guarantees information-theoretic security by
randomly sharing the raw data. However, arithmetic on the SS domain relies on intensive
in-order data interaction. Even though MPC is versatile to different PPML scenarios,
the network overhead always hinders the further development of MPC-based PPML with
complex models in real-time applications.

HE-based schemes support multiple operators on encrypted data. Fully HE (FHE)
schemes can ideally support any multiplication level by refreshing its noise budget with
bootstrapping. Nevertheless, ciphertext evaluation and bootstrapping always require com-
plex modular operations, which introduce tremendous computational overhead. Existing
academic FHE accelerators are still expensive and only feasible on small-scale training
and inference scenes [SFK+22]. On the other hand, additive HE (AHE) provides partial
linear operators except for ciphertext-to-ciphertext multiplication with affordable overhead.
However, purely AHE-based two-party schemes require a trusted party to generate and
manage the secret key [HHIL+17].

There are gaps between research and practice when it comes to PPML applications in
the real world. In the real world, three or more parties usually involve more commercial
interests and regulations, so two-party PPML is the most common use case. In addition, the
features are usually sparse in practice, such as intelligent risk control or wire fraud detection,
because of the feature engineering such as one-hot [CZW+21]. And the performance of

Ziyuan Liang et. al. 821

PPML must also be considered. A task that takes a few minutes in non-private ML takes
several hours when converted to PPML. Recent works show that hybrid SS-AHE solutions
achieve 130× speedup with practical dataset and network bandwidth [CZW+21,FZT+21],
compared with fully MPC-based PPML schemes. The key insight is to prevent the
characteristics of the training set, e.g. sparsity, from being masked in the SS domain
or encrypted in the AHE domain. This is achieved by keeping the samples as plaintext
within their owner and only transferring small-size intermediate values in the HE domain.
Participants can evaluate the layer functions with sparse operations and share the result in
the SS domain other than revealing any sensitive values to one participant or a third party.

However, no existing hybrid PPML work tackles the challenges of co-designing imple-
mentations and optimizations of PPML protocols. New architectural considerations and
methodologies are required when the complex HE algorithm combines SS protocol in the
end-to-end PPML solutions. We observe that the computation and communication com-
plexity, which are the bottlenecks of the two primitives, can complement each other. The
standalone SS and HE approaches present a highly polarized communication-computation
ratio, for which latency hiding between the data transfer and execution units provides
little return. We optimize the hybrid approach based on the intuition that a well-balanced
and parallel communication-computation flow can ideally reduce latency by 50%. This
observation can also make the architecture less sensitive to network bandwidth, which
typically dominates MPC performance. At the algorithmic level, it is helpful to tune hyper-
parameters, such as an overflow-free pack level, to mitigate ciphertext explosion. Since
practical computational settings are also critical for PPML, a ready-to-use architecture
should be suitable for Field Programmable Gate Array (FPGA) platforms.

This paper presents a general architecture that can efficiently execute the SS-AHE
hybrid PPML protocols on the large industrial-level training dataset. The architecture
can generally handle different PPML tasks using hybrid primitives. The proposed design
preserves privacy in either the SS domain or the AHE domain without relying on trusted
hardware manufacturers. Compared with existing software-only hybrid PPML schemes
[CZW+21,FZT+21], the co-designed architecture takes advantage of hardware units, and
has more potential for optimization and acceleration. In summary, this paper makes the
following contributions:

• A hybrid Secret-sharing and Homomorphic encryption Architecture for Privacy-
pERsevering ML (SHAPER) with algorithm-protocol-hardware co-optimization be-
tween CPU, hardware accelerators, and network collaboration. SHAPER’s hardware
design improves throughput, and its software design optimizes data flow through
system scheduling for latency overlap and parallelization.

• Vectorized high-performance modular multiplication (MM) engines to improve the
efficiency of encryption, decryption, and ciphertext domain evaluation. We present
new algorithmic and hardware optimizations for these operations of Paillier, including
new MM algorithm, new hardware engine, pipelined execution, etc.

• SHAPER shows universal performance improvement on micro-operations and reduces
the end-to-end latency by 94× on large-scale logistic regression training tasks,
compared with the software-only benchmarks.

2 Background
Descriptions of backgrounds, threat model, and primitives are discussed in this section
before introducing our SHAPER architecture.

822 SHAPER

2.1 Related Work
Various PPML schemes have been proposed to ensure the security of data and models with
different cryptographic primitives. Actually, MPC-based PPML schemes [KVH+21,Kel20,
ZXWG22] divide ML models into fragments of circuits, and then engage multiple parties
to cooperatively perform circuit computations, including arithmetic and binary circuits,
without additional privacy leakage. Afterwards, the results of these fragments of circuits
are collected by the parties to construct the complete result of complex computational tasks.
Historically, MPC was proposed in [Yao82], which solved the “Millionaire Problem” with GC.
Not long after, SS-based MPC [GMW87] was proposed for better performance. Compared
to GC, SS requires less computation and communication overhead, and outperforms GC
in most scenarios. From a computational point of view, addition and multiplication are
two important operations in SS-based MPC. The additions can be easily handled by both
arithmetic and binary SS with little computation and no communication overhead. However,
due to the data exchange required for each MPC multiplication, the communication
overhead dominates the overall performance of SS-based MPC and grows significantly for
large-scale datasets. Hence performance is still a barrier to practical application, although
these common MPC techniques theoretically provide common solutions to PPML. Another
potential direction of fully-MPC PPML frameworks is extending to multi-server settings,
such as [MR18,WGC19,LX19,PS20,SGA20].

HE-based PPML [GBDL+16,MLS+20] provides the capability to perform operations
on encrypted data to protect privacy. Unlike public-key cryptography, AHE supports not
only key generation, encryption, and decryption, but also addition/multiplication over
ciphertexts without private keys, thus revealing no information about the corresponding
plaintexts. Due to the additions and multiplications that one can perform on the ciphertexts,
HE-based PPML requires less communication than MPC-based PPML, but requires more
computation for expensive HE encryption/decryption.

Fig. 2 describes a typical linear function in PPML, the sparse matrix is kept by its owner,
Alice, and the result is shared between the participants Alice and Bob. Since AHE protects
the confidentiality of the vector y, Alice cannot recover the plaintext from the ciphertext
[y]b. On the other hand, Alice shares [z]b in line 5, which guarantees that Bob can only
learn a masked result 〈z〉b. Recent works on the hybrid SS-AHE PPML [CZW+21,FZT+21]
framework achieve 130× speedup over MPC-based schemes. AHE supports additions
between ciphertexts and multiplications between ciphertexts and plaintexts. However,
most of the existing AHE algorithms, such as Paillier [Pai99], DGK [DGK07], OU [OU98],
depend on large integer modular operations, especially modular multiplications (MM) and
exponentiation (ME), which incur large computational overheads. Therefore, the overall
performance of SS-AHE hybrid PPML is strongly dominated by the efficiency of the basic
modular multiplications. Montgomery modular multiplication [Mon85] is the most classical
method, while new modular algorithms have also been proposed recently [LC21].

2.2 Preliminaries
2.2.1 Paillier Cryptosystem

We choose Paillier as the AHE example in our architecture. The Paillier cryptosystem
consists of the following interfaces.

(1)Key Generation:

• Randomly choose two large primes (p, q) of equal length that satisfy gcd(pq, (p −
1)(q − 1)) = 1.

• Calculate n = pq and λ = lcm(p− 1, q − 1).

• Randomly select g ← Z∗n2 .

Ziyuan Liang et. al. 823

Alice Bob {pk, sk}
A sparse matrix X Vector y

[y]b = Encpk(y)[y]b
[z]b = X•[y]b
Randomly generate share ⟨z⟩a
[⟨z⟩b]b = [z]b - ⟨z⟩a

[⟨z⟩b]b
⟨z⟩b = Decsk()

Return ⟨z⟩a Return ⟨z⟩b

AHE to SS

Protocol: z = ⟨z⟩a+ ⟨z⟩b = X•y

1
2
3
4
5
6
7 [⟨z⟩b]b

Figure 2: SS-AHE-based secure matrix-vector multiplication.

• Define the function L as L(x) = x−1
n . Calculate µ = (L(gλ mod n2))−1 mod n.

• Set (n, g) as the public key and (λ, µ) as the private key.

(2) Encryption:

• Randomly choose a positive integer r that satisfies 0 < r < n.

• Calculate c = gmrn mod n2.

(3)Decryption:

• Compute m = L(cλ mod n2)µ mod n.

Paillier supports ciphertext-ciphertext addition (CCAdd), plaintext-ciphertext addition
(PCAdd), and plaintext-ciphertext multiplication (PCMult):

• c1c2 mod n2 = gm1rn1 × gm2rn2 mod n2 = gm1+m2(r1r2)n mod n2 = cm1+m2 .

• c1 × gm2 mod n2 = gm1rn × gm2 mod n2 = gm1+m2(r)n mod n2 = cm1+m2

• Similarly, we have ca1 mod n2 = cma.

As suggested in [DJ01, CGHGN01], we choose primes (p, q) which satisfy p = q =
3 mod 4 and gcd(p− 1, q − 1) = 2 and set g = n+ 1, so that gm can be simplified as:

gm = (n+ 1)m =
[
m
0

]
nm +

[
m
1

]
nm−1 + ...+

[
m
2

]
n2 +mn+ 1 mod n2

= mn+ 1 mod n2
(1)

And we have µ = λ−1. The key generation randomly selects x ← Z∗n, and adds
hs = −x2n mod n2 into the public key. Then the encryption is modified as c = (mn +
1)has mod n2, where a is randomly chosen in Z

2d |n|
2 e .

The optimization has two advantages. First, the exponentiation gm is simplified as a
multiplication mn. Second, since a is much shorter than n, it is easier to compute hsa
than rn.

2.2.2 Additive Secret Sharing

A value additively shared by two parties refers to [[x]] = (x1, x2), where
∑
xi = x over

field F, and (x1, x2) are random. The addition over additive shares is almost free, as
[[x + y]] = (x1 + y1, x2 + y2). The multiplication over shares is more tricky. A common
approach is to use Beaver triples [Bea92]. The Beaver triple is three shared random values

824 SHAPER

FIFO

Device
Memory

Host On-Chip

On-Board

SS-AHE
Library

Application

Scratchpad
M

em
ory

MM Core
MM CoreMM Core

MM EngineAHE Controller

Pre-computed
Table

CSPRNG MM Core
MM Core

MM Core
Integer Engine

Parser

SS Function Units

AHE Function Units

NIC
Driver

AHE.init …

…

CSR

Data bus Control bus

Figure 3: SHAPER Architecture Overview – The grey and blue boxes represent software
and hardware components, respectively.

[[a]], [[b]], [[c]], constrained by c = ab. When computing [[xy]], the parties compute and reveal
α = x− a, β = y− b, and then the product shares can be constructed with local additions.

[[xy]] = [[c]] + α[[b]] + β[[a]] + αβ (2)

MPC-based PPML schemes require a large number of beaver triples because each
multiplication consumes a triple. Beaver triples can be generated in batch using Paillier
[DSZ15,P+13].

2.3 Threat Model

As a co-designed architecture, the threat model of SHAPER takes into account cross-layer
assumptions.

At the protocol level, the adversary model follows the semi-honest assumption in a
2-party setting, as SHAPER mainly focuses on implementing and accelerating existing
semi-honest schemes [FZT+21, CZW+21]. In the semi-honest model, a probabilistic
polynomial-time adversary with semi-honest behaviors controls one of the parties and the
adversary can corrupt and control one party, and try to learn more information about the
other honest party’s input, such as recovering the secret messages sealed in the ciphertexts
or shares. Meanwhile, the adversary is required to follow the protocol specification honestly.
The semi-honest setting is adopted by most existing PPML models, such as [MZ17,MR18].

At the algorithm level, including SS and AHE, the security is given as a security pa-
rameter, which defines the hardness of the algorithm the adversary attempts to break. The
parameter is positively related to the key lengths. A 2048/3072-bit Paillier cryptosystem
corresponds to a 112/128-bit computational security parameter.

3 Architecture Design
To accelerate the hybrid SS-AHE framework, SHAPER proposes an instruction set and
explores efficient design methodologies of AHE, SS, and conversion functions.

Ziyuan Liang et. al. 825

3.1 Architecture overview

An overview of our proposed SHAPER architecture is shown in Fig. 3, which includes
both software and hardware implementations. The host application controls the start
and convergence conditions of the training tasks, and also consults the hyper-parameters
between the participants, such as the optimal plaintext packing level, the pre-computation
window size, etc. The on-chip hardware modules aim at fast computation on basic
primitives, mainly including AHE and SS function units. Since AHE computation is
still a performance bottleneck of hybrid PPML schemes [CZW+21], we design new MM
algorithms and hardware engines in the AHE units, implement algorithmic optimizations
in hardware, and improve the scheduling modules to achieve better acceleration.

SHAPER focuses on 2-party PPML, which is the most common case in industrial
applications. The application calls the SS-AHE library, which supports execution flows
encapsulated as kernel functions. The kernel functions update algorithm parameters and
architecture flags by setting control and status registers (CSRs), and implement the security
primitives with customized instructions summarized in Table 1. SHAPER analyzes the
control flow dependencies and packs the instructions in VLIW style, ensuring that the
packed instructions in a VLIW instruction can be executed in parallel. SHAPER adopts
the static scheduling scheme. Each VLIW instruction packs RISC instructions which
decode and issue synchronously. Since the instructions are executed sequentially and
deterministically, memory allocation is scheduled in a static manner. To communicate
with other participants, all network interaction is handled by a network interface card
(NIC). The host application always waits for the NIC and SHAPER to interrupt. Since
the runtime and driver layers are common components in HW/SW co-design, we omit
them in Table 1 for brevity.

On the SHAPER hardware, the parser unpacks the instructions and dispatches them
to the appropriate function units. AHE.init reloads data from device memory during
the offline phase when the host updates its key pair. Other AHE instructions consist of
a series of MM operations handled by the AHE controller. SS.gen returns a vector of
random shares sampled from the cryptographic-secure pseudorandom number generator
(CSPRNG). Int.add and Int.mul perform a series of integer arithmetic operations in a
continuous address space. The memory hierarchy consists of the on-board device memory
and the on-chip scratchpad managed by DM.ld/st and SPM.ld/st.

3.2 Algorithm-Protocol Co-Optimization

Fig. 4 describes the methodology for analyzing and exploring the PPML solutions. We
map a task to the coordinate point according to the computational and communication
overhead. The network bandwidth is represented as a dotted guideline, points on which
have the same communication and computation latency. The schemes above the guide-
line (e.g. SecureML [MZ17]) are communication dominated. On the other hand, the
communication-less FHE solutions (e.g. CraterLake [SFK+22]) cost most of the time for
ciphertext evaluation. The position of SS-AHE-based solutions depends on computational
power, especially the performance of cryptographic engines. In our work, the following
optimizations are applied to explore an optimal solution.

3.2.1 Data Characteristic

In real-world scenes, the training dataset is sparse due to incomplete user information
and one-hot encoding [CZW+21]. Since SS-AHE schemes preserve the data sparsity, the
number of instructions is significantly reduced.

826 SHAPER

Table 1: The instruction set supported by SHAPER.

Instruction Arguments* Description
AHE.init len, dm_ptr Initialize the pre-computed table
AHE.enc i_pt_ptr, i_pk_ptr, o_ct_ptr Encrypt a plaintext or secret share

to ciphertext
AHE.dec i_ct_ptr, i_sk_ptr, o_pt_ptr Decrypt a ciphertext to plaintext or

secret share
AHE.ccadd i_cta_ptr, i_ctb_ptr, o_ct_ptr A ciphertext adds another ciphertext
AHE.pcadd i_pt_ptr, i_ct_ptr, o_ct_ptr A plaintext adds a ciphertext
AHE.pcmul i_pt_ptr, i_ct_ptr, o_ct_ptr A plaintext multiplies a ciphertext
SS.gen len, o_pt_ptr Generate fresh secret shares
Int.add len, i_pt_ptr, i_pt_ptr, o_pt_ptr Addition in SS or plaintext domain
Int.mul len, i_pt_ptr, i_pt_ptr, o_pt_ptr Multiplication in SS or plaintext do-

main
DM.ld/st len, dm_ptr, host_ptr Device memory load/store a block of

data from/to the host
SPM.ld/st len, spm_ptr, dm_ptr SPM load/store a block of data

from/to the device memory

* The argument len is the length of input or output data. The arguments _ptr is the
physical base address of a specific data structure.

30597

Legend
Data
Charac.
(Sparsity)

Plaintext
Packing

Computational latency (ms)

Co
m

m
un

ic
at

io
n

ov
er

he
ad

 (M
b)

50Mbps

100

0

50

1000 2000

2048

CraterLake FHE

SecureML

Enc _Perf : 40Mbps

Enc_Perf: 160Mbps

SS-AHE

SS-AHE

Communication
dominates

Computation
dominates

Figure 4: Exploring optimization space on data characteristics and algorithms. The
example network bandwidth is 50Mbps. Applying the optimizations reduces the encryption
overhead for the 40Mbps and 160Mbps throughput configurations.

3.2.2 Plaintext Packing

Packing multiple ciphertexts of short plaintexts into one ciphertext greatly reduces the
number of ciphertexts and allows SIMD-style computation [P+13], as explained in Sec. 3.5.
The packing strategy reduces the communication overhead for transmission and the com-
putational overhead for decryption at the expense of additional homomorphic computation
over ciphertexts. .

Ziyuan Liang et. al. 827

DM.ld
SPM.ld

Host
Rev

Host
Snd

Network
Trans. Delay

AHE.enc

SPM.st

SPM.st
DM.st

DM.ld
SPM.ld

Host
Rev

Host
Snd

Network
Trans. Delay

AHE.enc

SPM.st

SPM.st
DM.st

SPM.ld

SPM.ld

Time
Alice

Bob

AHE.pcmul
AHE.ccadd

AHE.pcmul
AHE.ccadd

Figure 5: The pipeline execution process of SHAPER, corresponding to line 1 to 3 in
Fig. 2. Two successive executions overlap their latency.

3.2.3 Latency Hiding

Since the SS-AHE schemes have balanced overhead, overlapping computation and commu-
nication brings more benefits. Fig. 5 shows the pipeline execution process of SHAPER,
corresponding to line 1 to 3 in Fig. 2. The AHE encryption is the most time-consuming
operation in the example, and can hide other delays. Once the first encryption is complete,
the second encryption and the transmission of the first ciphertext are performed in parallel
in a pipelined flow. In this case, the computation instructions overlap the communication
delay. SHAPER consumes the data as soon as the source data is created with multi-buffer
transfer.

3.3 Efficient AHE Function Units
The AHE unit of SHAPER consists of a Paillier controller and several MM engines. The
controller manipulates MM engines to compute the functions of the Paillier cryptosystem
with key length |n| = 3072 in parallel. Each MM engine implements our proposed fast MM
algorithm, which supports a 5-stage pipeline. To accelerate the modular exponentiation
(ME) in the Paillier encryption, a set of Ultra-RAMs (URAMs) and Block-RAMs (BRAMs)
are deployed to store the public/private keys of the device, as well as some pre-computed
values.

When executing an AHE instruction, the controller divides it into multiple multiplica-
tions and exponentiations based on DJN optimizations of Paillier [CGHGN01]. Several
optimizations suggested in [DSZ15] are considered, including Chinese-Remainder-Theorem
(CRT) optimization and fixed-base pre-computation (see Appendix B), which scales down
both the base size and the exponent size of the ME. The call to a single ME is divided
into multiple multiplications in SHAPER, and the controller then schedules the datapath
between different MM engines to compute the ME collaboratively.

The performance of MM engines has a large impact on the efficiency of various AHE
interfaces and higher-level applications. Therefore, we propose an efficient MM construction
with optimizations in both algorithm and hardware implementation.

3.3.1 The MM Algorithm

Our proposed MM algorithm is inspired by the shift-sub algorithm in [LC21] (see Ap-
pendix A), which has the advantage of dealing with large integers. The algorithm requires
multiple serial full adders, one for each bit of b, which results in long data paths. To
avoid multiple serial additions of large integers, we propose a high-radix shift-sub MM
algorithm as described in Alg. 1. Our high-radix shift-sub deals with k bits of b in a
single iteration, rather than a single bit, where k is the radix width. Single-bit shift sub
in [LC21] deals with a single bit of b in each iteration. Therefore, the strategy does not

828 SHAPER

Algorithm 1 High-radix Shift-sub Modular Multiplication. MM(a, b,m)
Require: Radix width k
Require: a =

∑τ−1
i=0 ai2ki, b =

∑τ−1
i=0 bi2ki, ∀i ∈ [0, τ − 1], ai, bi < 2k. a, b < m < 2kτ , m

mod 2 = 1
Ensure: c = ab mod m

1: c = 0
2: for i = 0 to τ − 2 do
3: c = c+ bia . Multiply-Accumulate Phase (Phase_c)
4: a = QR(a� k,m, k) . Shift-Reduction Phase (Phase_a)
5: end for
6: c = QR(c+ bτ−1a,m, k + dlog τe) . Final Round of Accumulation-Reduction
7: return c.

Algorithm 2 Quick Barrett Reduction with MSBs Approximation. QR(a,m,∆)

Require: Length upper bound ∆, m̂ = m� (l −∆− 2), m′ = b 22∆+2

m̂+1 c
Require: m ∈ [2l−1, 2l), a ∈ [0, 2l+∆), l ≥ ∆ + 2
Ensure: b = a mod m

1: a′ = a� (l −∆− 2) . MSB Shift
2: γ = (a′m′)� (2∆ + 2) . Barrett Reduction
3: b = a− (γ + 1)m
4: if b < 0 then
5: b = b+m . Correction
6: else
7: b = b−m < 0?b : b−m
8: end if
9: return b

work well in hardware design as k grows, since it leads to too many cycles when dealing
with significantly large a and b. A more efficient MM algorithm is needed to speed up
Paillier in hardware.

Our high-radix MM algorithm processes k bits of b in each round, and has τ rounds in
total. Each round consists of a Multiply-Accumulate phase (Phase_c) and a Shift-Reduce
phase (Phase_a). In the i-th round, Phase_c multiplies the i-th piece of b by the current
round’s a and adds the product to the accumulation of previous rounds. In the first τ − 1
rounds, Phase_a updates the next round’s a with the current round’s a. a is modulo
reduced after shifting k bits to the left. In the final round, Phase_a modulo reduces
the accumulation of Phase_c to get the final result. The correctness of the algorithm is
guaranteed:

ab mod m = a×
τ−1∑
i=0

bi2ki mod m =
τ−1∑
i=0

(a2ki × bi) mod m (3)

Note that except for the final round, there is no data dependency between Phase_c and
Phase_a. Therefore, Phase_c and Phase_a can be executed in parallel to reduce latency.
After the latencies of multiplication and addition in Phase_c are hidden by parallelization,
the total execution time of one MM is reduced by more than 30%.

Since the modular reductions of Phase_a have additional length constraints, we propose
a quick modular reduction algorithm QR in Alg. 2. We note that the inputs of the modular
reduction have upper bounds. Each round’s a � k is less than m � k, and the final
round’s c is less than τm � k. Therefore, the QR algorithm limits the length of the
dividend to no more than (l + ∆), where l is the length of the modulus m. The ∆ is set

Ziyuan Liang et. al. 829

to k in the first τ − 1 rounds and to k + dlog τe in the final round. The radix k has a
large impact on the total number of rounds, as well as the efficiency and consumption of
hardware implementations in SHAPER. Different choices of k are discussed in the next
subsection about hardware implementation.

We propose and adopt a new strategy using the Most Significant Bits (MSB) approxi-
mation to simplify the reduction. Unlike the remainder (i.e., the output of the modular
reduction), the quotient in a division is mainly determined by the MSBs of the dividend
and divisor, while the lower bits contribute little to the quotient. Therefore, the algorithm
approximates a quotient γ with the MSBs of a and m, and then computes an approximate
remainder with a−γm, which is then modified to the result with a conditional subtraction.
The error between the approximated and the precise quotients is proven to be within 1 if
we use the most significant ∆ + 2 bits of m for the approximation, as in Eq.(4,5). (Note
that ∀x, y ∈ R, if |x− y| ≤ 1, then |bxc − byc| ≤ 1.) Furthermore, the existing Barrett
approximation [Bar86], which converts the division of a′ by m̂+ 1 into the product of a′
and m′, is further used to simplify the quotient computation, which involves a deviation of
no more than 1, as Eq.(6,7) shows. Therefore, at most two conditional subtractions are
needed in the algorithm.

a

m
≥ a′ × 2l−∆−2

m
= a′

m/2l−∆−2 >
a′

m� (l −∆− 2) + 1 = a′

m̂+ 1
(4)

a

m
− a′

m̂+ 1 <
a′ + 1
m̂

− a′

m̂+ 1 = (a′ + 1) + m̂

m̂(m̂+ 1)

≤ m̂2∆+1 + m̂

m̂(m̂+ 1) = 2∆+1 + 1
m̂+ 1 < 1

(5)

a′

m̂+ 1 −
a′m′

22∆+2 = a′[22∆+2 −m′(m̂+ 1)]
22∆+2(m̂+ 1)

= a′[22∆+2 mod (m̂+ 1)]
22∆+2(m̂+ 1) ≥ 0

(6)

a′

m̂+ 1 −
a′m′

22∆+2 = a′[22∆+2 −m′(m̂+ 1)]
22∆+2(m̂+ 1)

<
a′(m̂+ 1)

(m̂+ 1)22∆+2 = a′

22∆+2 < 1
(7)

In fact, QR computes b = a − (γ + 1)m instead of b = a − γm. A small change is
made to accommodate the hardware implementation. Additions over large integers are
not cheap in hardware. Direct computation of b = a− γm results in two additions in the
worst case. But when switching to (γ + 1)m, the hardware engine determines whether to
compute b−m or b+m based on the sign bit of b. Computing γ + 1 is cheap because γ is
short, and this small cost reduces the additions of large integers here from 2 to 1. The
optimization effectively reduces the consumption of on-board resources in the hardware
implementation.

3.3.2 The MM Engine

The MM engine (shown in Fig. 6) is the fundamental processing element that supports our
MM algorithm. It can be divided into two modules: one for Phase_c and one for quick
reduction in Phase_a respectively. Phase_c contains a block multiplication (BM) module
and an adder module for accumulation, consisting of a carry-save adder and a ripple-carry
adder. Phase_a contains a multiplier to compute γ, a BM module for −(γ + 1)m, an
adder for a− (γ + 1)m, and a Conditional Subtraction (CS) module for correction. A CS

830 SHAPER

r0

r1

bi
a

Multi_78
78

78

78

78... merge

c

+
nxt_c

CSA

Phase_c: nxt_c = c+ bi*a

QR: nxt_a = a mod m

BM

m’

a_top

add
&

cut

Multiplier

t0

t1

a

nxt_a

CS

γ

m_n

γ or γ+1

Multi_78
78

78

78

78... merge

BM

t0

t1

+CSA
> m ? y

n

+ m_n

+ m

Figure 6: The architecture of a single MM engine based on the MM Algorithm.

module contains an adder that performs either −m or +m. Note that the subtraction −m
is replaced by +m_n, where m_n is the complement of m. Phase_a and Phase_c are
updated in parallel to compress the total number of clock cycles. Two phases need no data
exchange except for Phase_c fetching a at the beginning of each round. Also, to run an
integrated MM, a controller is needed to schedule the input/output of the MM engine in
each round.

We implement the BM modules with multiple multipliers on a smaller scale. Specifically,
a k× 3072 multiplication is divided into k× k parts, whose subproducts are combined into
two large integers. The k × k multipliers are implemented using on-board digital signal
processing (DSP) units.

When exploring the design space of on-board resources and hardware clock cycles, we
choose radix k = 72. A single piece of DSP supports 27× 18 multiplication. For example,
implementing 64× 64 multiplication requires 12 DSP units, but the DSP utilization rate
is only about 70%, since 12 DSP units theoretically allow 81 × 72 multiplication. The
utilization rate peaks at 100% when the multiplier width equals 54 or 108. At 54, a
multiplier needs only 6 DSPs, but the round number τ rises to 57 with a 3072×3072
multiplication, leading to more clock cycles of the MM engine. In contrast, in the case of
108, there are only 29 rounds, but one multiplier requires 24 DSPs, making the MM engine
too large. A larger MM engine consumes more resources (especially DSP). Therefore,
fewer MM engines can be placed in the FPGA implementations, which reduces the overall
hardware parallelism. In addition, a larger engine has longer data paths, further reducing
the frequency of the hardware implementation.

Considering the trade-off between time and space, we choose the case of the 78-bit
multiplier, which requires 40 rounds of multiplication and 12-DSP multipliers. Although
the DSP utilization rate cannot reach 100%, it is still higher than 90%. For hardware
compatibility of the final round, the hardware implementation should support k + dlog τe
bit quick reduction, as shown in Fig. 6. Therefore, the radix k is finally fixed to 72.

Another bottleneck in the design of an MM engine is the 3072-bit addition, because it
introduces large logic delays that limit the hardware frequency. In our design, however,
we optimize serial adders with a prediction strategy, along with splitting two addends
into multiple 128-bit chunks. Each such chunk (x, y) uses two 128-bit ripple-carry adders

Ziyuan Liang et. al. 831

to compute two potential sums, x + y and x + y + 1. Using the carry bit propagated
from the lower chunk, a multiplexer selects one of the summations and propagates the
corresponding carry bit to the higher chunk. Since x+ y+ 1 ≤ 2× (2128− 1) + 1 = 2129− 1,
the propagation will not lead to the growth of the carry bit, and there is at most one carry
bit during the propagation, which guarantees the correctness of the strategy.

We set the chunk size to 128, taking into account resource consumption and maximum
frequency. When the chunks are large, the logic delay within each chunk is still large, and
the frequency cannot be improved efficiently. However, when the chunks are particularly
small, although the resource consumption for each chunk is reduced, the logic delay outside
the chunks to merge the subsums into the final output increases. And this also leads to a
decrease in frequency. Therefore, we set the chunk size to 128 to get the peak frequency.

The acceleration of the MM engine over the MM implementation on a standard CPU
is discussed in section 5.3.

3.3.3 Paillier Controller

A 3072-bit Paillier cryptosystem has a 3072-bit message space (|n| = 3072) and a 6144-
bit ciphertext space (|n2| = 6144). Making the hardware compatible with the 6144-bit
modulo operation is a waste of on-board resources. And our Paillier controller uses
Chinese Remainder Theory to convert 6144-bit modulo operations in encryption and
decryption to 3072-bit modulo operations. We follow the dataflow of open-sourced Paillier
implementation of [DSZ15], and transform it into a micro-instruction control flow that takes
more advantage of the MM engines. CRT gives a unique solution to simultaneous linear
congruences with coprime moduli. Since n2 = p2q2, CRT transforms modulo operations
over n2 into modulo operations over p2 and q2.

The prerequisite for CRT optimization is obtaining the private key, since the private key
λ can be computed as λ = (p−1)(q−1)/2. In public key cryptosystems, it is assumed that
the encryptor does not have the private key. However, in HE (including AHE) scenarios,
the encrypting party usually has the private key. HE scenarios in hybrid PPML schemes are
analogous to proxy execution, such as the matrix multiplication in Fig. 2. Both encryption
and decryption are handled locally by the client, and the server only handles execution
over ciphertexts. Therefore, it makes sense to optimize Paillier encryption on the client
side with CRT.
Encryption. Eq.8 shows the DJN-Paillier encryption.

c = (mn+ 1)hsa mod n2 (8)

To optimize hardware computation with CRT, the controller first computes the projec-
tions of c over the modulo field p2 and q2.

cp = c mod p2 = [(mn mod p2) + 1]× ((hs mod p2)a mod p2) mod p2

cq = c mod q2 = [(mn mod q2) + 1]× ((hs mod q2)a mod q2) mod q2 (9)

(hs mod p2)a mod p2 and (hs mod q2)a mod q2 are under fixed bases depending on
the public keys, and can be computed with precomputed tables. The details of computing
ME under fixed bases with precomputation are explained in Sec. 4.2. After computing cp
and cq, the ciphertext c can be recovered.

c = cp + [(cq − cp)(p−2 mod q2) mod q2]× p2 = cp + tc × p2 (10)

(p−2 mod q2) mod q2 also depends on the keys, and will be precomputed during key
generation. The control flow of Paillier encryption at the micro-instruction level is listed
as follows. ME_P refers to modular exponentiation with precomputation. Note that the

832 SHAPER

final step of encryption, cp + tc × p2, necessarily requires 6144-bit computations, so the
hardware sends back cp and tc to the host to obtain the ciphertext.

hsp_table , hsq_table : precomputed exponentiation table
p2 , q2: precomputed p^2, q^2
pq2: precomputed p^{ -2} mod q^2
ME_P hsp_table , a, tmp1
MM m, n, p2 , tmp2
ADDI tmp2 , tmp2 , 1
MM tmp1 , tmp2 , p2 , cp
ME_P hsq_table , a, tmp1
MM m_ptr , n, q2 , tmp2
ADDI tmp2 , tmp2 , 1
MM tmp1 , tmp2 , q2 , cq
SUB cq , cp
MM cq , pq2 , q2 , tc
Sending back cp and tc to the host

Decryption. Decryption can also benefit from CRT. Eq.11 shows the decryption of
DJN-Paillier.

m = L(cλ mod n2)λ−1 mod n = (cλ mod n2)− 1
n

× λ−1 mod n (11)

The controller follows the same CRT strategy to calculate the intermediate d = cλ

mod n2.

dp = d mod p2 = cλ mod p2 = (c mod p2)λ mod p2

dq = d mod q2 = cλ mod q2 = (c mod q2)λ mod q2

d = dp + [(dq − dp)(p−2 mod q2) mod q2]× p2 = dp + td × p2

(12)

To continue the decryption, a naive approach is to send dp and td back to the host,
which recovers d, calculates d−1

n , and returns it to the hardware. However, this approach
obviously lacks efficiency, since it involves a round of communication for each decryption.
Therefore, we expect the controller to compute m directly using dp and td.

m = d− 1
n
× λ−1 mod n = (dp − 1

n
+ td × p2

n
)× λ−1 mod n(dp = 1) (13)

For any legal plaintext-ciphertext pair (m, c), the correctness of Paillier holds as
cλ − 1 = λmn(modn2). Since n = pq, we have d− 1 | p, and of course dp = d mod p2 > 0.
Suppose p is the smaller prime between (p, q), then dp < p2 < n. Therefore eq.14 holds.

bdp − 1
n
c = 0 (14)

Since d− 1 | n, we get m from Eq.15.

m = d td × p
2

n
e × λ−1 mod n (15)

The control flow of the Paillier decryption at the micro-instruction level is listed as
follows. RED modulo reduces a 6144-bit input with a 3072-bit modulus, and MDIV returns
the quotient of the three inputs x× y/z. Both RED and MDIV can be supported by a
slightly modified MM engine. Specifically, Phase_a can independently handle RED in τ
rounds, and MDIV can be implemented by collecting the corrected γ in each round of
Phase_a and merging them into the final quotient.

Ziyuan Liang et. al. 833

RED c, p2 , tmp1
ME tmp1 , lambda , p2 , dp
RED c, q2 , tmp1
ME tmp1 , lambda , q2 , dq
SUB cq , cp
MM cq , pq2 , q2 , td
MDIV td , p2 , n, tmp2
CMP cp , 1
JE s
ADDI tmp2 , tmp2 , 1
s: MM tmp2 , inv_lambda , n, m
Return plaintext m

3.4 Secret Sharing Function Units
Although computation is not the critical overhead in SS-based schemes compared to
communication, we design a dedicated SS unit in SHAPER due to the following latency-
related concern: In hybrid PPML schemes such as [CZW+21,FZT+21], the computation
of AHE and SS is interleaved, which means that the data must be transmitted frequently
between the host and the hardware if the hardware is not capable of computing SS
functions locally. Therefore, each transfer requires reading/writing from device memory,
and introduces non-negligible redundant latency.

The SS unit consists of multiple integer processing engines and a CSPRNG. The
CSPRNG generates the random numbers used in SS schemes. And the integer processing
engines support computation over 64-bit integers, which is a common choice in SS-based
schemes.

For higher random number generation throughput, we have optimized the CSPRNG
in the SS unit with several improvements. Actually, existing CSPRNG constructions in
PPML usually use ECB-mode AES encryption, which benefits a lot from AES-NI hardware
extensions. However, recent works [XHY+20] pointed out that SHA3-based CSPRNG
would outperform AES hardware implementations because SHA-3 takes advantage of
its 1600-bit Keccak structure and fast binary executions, resulting in higher throughput
during each iteration. In addition to the SHA-3 Keccak engine, we also use a first-in-first-
out (FIFO) buffer to cache the generated random numbers. The SHA-3 Keccak engine
dynamically generates random numbers and pushes them into the buffer when it is not
full. And SS units pop random numbers from the buffer as needed.

3.5 Conversions between Primitives with Packing
SHAPER supports an efficient SIMD-style conversion between SS and AHE. We adopt
and improve the conversion protocols in [FZT+21]. Details are shown in Appendix C. The
conversions can be optimized with the packing strategy proposed in [P+13].

The strategy packs different ciphertexts into one. For example, if the server normally
computes x1y1 and x2y2 over ciphertexts, two ciphertexts cx1y1 and cx2y2 are sent back
to the client. And the client decrypts them to get the plaintexts. However, when using
the packing strategy, the server computes the ciphertext of x1y1 + x2y2 × 2i. Then the
client decrypts the ciphertext and truncates the plaintext to get x1y1 and x2y2. This
reduces the number of decryptions from 2 to 1. The packing strategy works if x1y1 < 2i,
otherwise an overflow occurs and the MSBs of x1y1 get mixed with the LSBs of x2y2. Also,
x1y1 + x2y2 × 2i should stay within the message space.

The Paillier message space (3072 bits) is too large for the values in the models (within
64 bits), and decryption in Paillier costs much more than encryption. Therefore, the space

834 SHAPER

BM CSA

Div RC CSA

c

a

next c

next a

BM

Div · · ·

final c

Add

CS CS

· · ·

BM

Div RC

next c

final round

模乘硬件流水线

Add

Add

CSA Add

CSA CSAdd

Figure 7: Pipelined modular multiplication engine. Each round of MM in Alg. 1 is divided
into five stages. In the first τ -1 rounds, the accumulation phase (c) and the QR phase (a)
are executed in parallel, and in the final round the phases run in serial.

can be divided into smaller buckets, with a smaller value in each bucket. The computation
results in each bucket will not interfere with others if the bucket size is large enough to
ensure that there is no overflow in the subsequent computation. Since there are fewer
ciphertexts to send and decrypt, both communication and computation are greatly reduced.

The optimal bucket size depends on the computation under encrypted values in different
protocols. In hybrid schemes, the optimal bucket size is roughly (m+ 1)l + log(a+ 1) + σ
to ensure that there is no overflow in each bucket [P+13], where l is the share length,
usually equal to 64. m and a are the numbers of multiplication with plaintext shares
and addition with other shares. σ is the statistical security parameter of the scheme,
which is 40 by default. For example, AHE handles matrix multiplication in [CZW+21],
where one multiplication and multiple additions are processed with each ciphertext. And
the bucket size can be set to 180 by default, where each ciphertext contains about 17
buckets. The 180-bit bucket size remains valid unless the number of additions in the matrix
multiplication exceeds 212. Then the decryption overhead can be reduced at the expense
of more ciphertext additions and plaintext multiplications for packing.

4 Performance Optimizations and Security Enhancement
Several optimizations are applied to our implementation to improve performance and
FPGA resource efficiency.

4.1 Parallel Modular Operations
We observe that there are a large number of matrix computations in real-world PPML
scenarios [CZW+21,FZT+21], consisting of multiple AHE operations without data de-
pendency. Meanwhile, a single Paillier encryption can also benefit from parallelization,
since fixed-base pre-computation is involved to improve efficiency. Therefore, we provide
support for vectorized modular operations in our design.

The pipeline implementation of the MM engine has five stages for each iteration, as
shown in Fig. 7. Each stage takes 4 execution cycles. Since Phase_a has a longer datapath
than Phase_c, we divide the datapath into five. The division (Div) stage computes the
Barrett division in Alg. 2 to obtain γ. The Reduction Computation (RC) stage multiplies
γ + 1 by −m. The CSA stage includes the carry-save adders to merge c+ bia− km into a

Ziyuan Liang et. al. 835

single addition, and the Add stage includes an optimized ripple-carry adder. The CS stage
performs the conditional subtraction of a. The pipelined datapath of Phase_c consists of
3 stages, BM, CSA, and Add. The block multiplication (BM) stage computes bia in Alg. 1,
and the hardware implementation of the BM stage is identical to the RC stage in Phase_a.
Phase_c and Phase_a in the same round can be executed in parallel, so the latency of
Phase_c can be overlapped by Phase_a except for the final round. Therefore, pipelining
brings almost 5× performance improvement to the MM engine. Besides pipelining, we
also use multiple MM engines on FPGA to improve parallelism.

4.2 Optimal Pre-computation Window
The ME in Paillier encryption is under fixed bases depending on the public keys. An
optimization using this insight is to store all ME of short powers (e.g. window) in the
offline phase. Large integer ME are converted to multiple MM operations in the online
phase [BGMW92]. Enlarging the precomputation window can reduce ME latency. However,
the maximum window size is limited by the on-chip memory size, since a larger window has
a larger enumeration space. The size of the pre-computed table Spre for encryption depends
on the window size w and the key length |n|. Eq.16 shows the theoretical estimation of
Spre based on w and n.

Spre = |n|/2w × (2w − 1)× |n| × 2 = |n|2(2w − 1)/w (16)

The precomputed table sizes for different window sizes in a 3072-bit Paillier cryptosystem
are shown in Table 2. The number of MM operations in a precomputed ME also depends on
the window size. When the window size is 4, the required memory size for the precomputed
table is about 34 MB. If the window size increases to 8, the size increases to about 287 MB.
However, the number of windows is only reduced from 384 to 192, and the cost-effectiveness
of the increased storage and reduced multiplication is significantly lower. Considering the
URAM size of the hardware implementation, SHAPER provides the interface AHE.init
to reload the precomputed table with the default window size of 4.

Table 2: Pre-computed table sizes under different window sizes when |n| = 3072.

Window Size w (bit) 1 2 3 4 5 6 7 8
Window Num 1536 768 512 384 308 256 220 192
Table Size Spre (MB) 9 14 21 34 56 95 164 287

5 Implementation and Evaluation
We implement the prototype of SHAPER on a Xilinx 16nm VU13P FPGA using the Xilinx
Vivado toolchain.

5.1 FPGA Resource Utilization
Table 3 shows the resource usage of SHAPER. The maximum clock frequency is 285
MHz by default. As the most expensive module, 14 MM engines are used considering
performance and LUT consumption. 32 integer engines are used to support vectorized
SS operations, contributing little to the overall consumption. Only one CSPRNG is used
because its throughput is over 2.6 Gbps, which is sufficient for existing hybrid schemes.
The resource consumption, excluding the controllers, is about 40% LUT/FF and 75% DSP

836 SHAPER

in terms of the total FPGA resource. 75% of URAM is used for the precomputed table,
which is a good balance between performance and area.

Table 3: Resource utilization on the Xilinx FPGA.

Module LUT FF BRAM URAM DSP Num
MM Engine 49750 93421 0 0 364 14

Pre-Computed Table 38912 49152 1024 960 0 1
CSPRNG 3447 3234 29 0 0 1
FIFO 228 1924 45 0 0 1

Integer Engine 311 3234 0 0 12 32
ScratchPad 2595 3637 512 0 0 1

Misc. 1613 3880 290 0 0 1
Total* 42% 43% 71% 75% 43% -

* Measured by percentage in terms of Xilinx VU13P FPGA.

5.2 MM Throughput Comparisons

Table 4: Comparison between the Hardware Performance of MM implementation.

Design Length DSP Freq. Cycle Latency Throughput Per DSP
(MHz) (µs) op/s Mbit/s

[YHC20] 1024 9 500 4405 8.81 12612 12.31
[BJ20] 2048 16 122 2005 16.42 3806 7.43

[XYCL22] 1024 131 285 345 1.21 6306 6.15
SHAPER 3072 364 285 172 0.60 4552 13.34

MM engine is important in the hardware implementation of SHAPER, and its through-
put significantly influences the performance of high-level functions and applications. We
evaluate the throughput of the MM engine in Table 4, compared with state-of-art MM
designs in [BJ20,YHC20,XYCL22]. Since it is unfair to discuss throughput without con-
sidering resources, these designs are evaluated based on the average throughput generated
by each piece of DSP. In specific, the throughput is measured as the operations or output
bits executed by the MM engine. Existing MM implementations usually focus on 1024 or
2048-bit MM operations, while the MM in SHAPER needs to fit in the 3072-bit Paillier
cryptosystem. It makes SHAPER handle fewer MM instructions than [XYCL22,YHC20],
as their benchmarks are tested with 1024-bit MM. However, considering the output length,
our MM engine shows advantages compared with other proposals.

It is notable that our MM engine requires more DSP units than other designs. Because
of the pipelining optimization, the DSP units cannot be reused across different stages. So
our design assigns different DSPs for each stage, leading to more DSP utilization.

5.3 Function-Level Comparisons
We evaluate the latency of general functions, including modular operations, Paillier
functions, and several MPC-level functions. The latencies of these micro-benchmarks are
shown in Table 5. The inputs of the MM and ME benchmarks are as long as the key
length, and the length of plaintexts in Paillier is set to 64 bits. We test the performance
of SHAPER with different settings. To fairly compare the latency of our MM engine in
SHAPER with the cryptography processor (CP) in [BJ20], we implement a single MM

Ziyuan Liang et. al. 837

Table 5: Comparison between the Performance of Function-level Micro-benchmarks.

Design Key Length FPGA Freq.(MHz) Function Latency *(µs)
MM ME Enc Dec CCAdd PCAdd PCMult S2H H2S TriGen

[BJ20] 2048 Xilinx Artix-7 122 1.37 4208 15038 15060 4.54 - - - - -
SHAPER(1xMM) 2048 Xilinx Artix-7 125 0.94 2890 487 2895 3.76 1.88 365 - - -

SHAPER(14xMM) 2048 Xilinx UltraScale+ 285 0.03 90.5 15.3 90.7 0.12 0.06 11.4 15.3 16.8 58.9
SHAPER(14xMM) 3072 Xilinx UltraScale+ 285 0.04 200 33.7 201 0.17 0.09 16.9 33.8 28.8 113

Speedup• - - - 46.4× 46.5× 985× 166× 38.5× - - - - -
[DSZ15] 2048 CPU - - - 18000 18000 8.0 8.0 769 - - 1473

[FZT+21] 2048 CPU - - - - - - - - 250 600 -
Speedup• - - - - - 1179× 198× 68.2× 136× 67.3× 16.3× 35.7× 25.0×

* CCAdd - Ciphertext-ciphertext addition;
PCAdd - Plaintext-ciphertext addition;
PCMult - Plaintext(64bit)-ciphertext multiplication;
S2H / H2S - Transformation from SS / HE to HE / SS;
TriGen - Beaver triple generation.
• The speedup is compared between benchmarks with 2048-bit key.

engine on Xilinx Artix-7 FPGA (i.e. the hardware environment in [BJ20]). Our MM
engine has a similar frequency with CP in [BJ20]. However, the results show that our
MM engine has a big advantage in cycles with the 2048-bit key. The MM engine of
SHAPER significantly reduces the cycles, resulting in an order-of-magnitude improvement
in efficiency.

Table 5 shows the speedup of 14xMM SHAPER on Xilinx UltraScale+ with 2048-bit key
compared with multi-core FPGA of [BJ20] (Line 5), and the published CPU benchmarks
in [DSZ15,FZT+21] (Line 8).

The results show that the MM and ME efficiency of SHAPER is improved 46 times
compared to [BJ20]. The MM and ME in SHAPER have similar hardware performance
improvements because SHAPER follows a conventional approach to constructing ME
using MM. Thus, the ME improvement is mainly due to the MM improvements. Paillier
encryption in SHAPER has a significant advantage according to the results. This is
reasonable because our encryption benefits a lot from exclusive optimizations, including
DJN, CRT, and pre-computation, which makes the speedup increase about 6 times higher
than the decryption speedup. Decryption in SHAPER can only benefit from CRT, and
the applied optimizations still contribute a lot to the speedup.

Hardware solutions for higher-level functions are not provided in [BJ20]. So we only
compare them to software solutions. In this case, SHAPER performs 16.3-1179 times better
than the well-optimized software solutions in [DSZ15]. The software speedup of encryption
and decryption is higher than the hardware speedup. We also compare the performance
of the conversion interfaces (S2H/H2S) with the software benchmarks in [FZT+21]. In
the software benchmarks, H2S takes longer than S2H, because it requires AHE decryption
while S2H requires less expensive encryption. However, they have similar latencies in the
SHAPER implementation, because the packing strategy starts to work, and the decryption
overhead can be shared by multiple H2S calls. The triple-generation interface also benefits
from packing.

The MM engines in SHAPER are implemented to support the Paillier cryptosystem
with the 3072-bit key. And the latency of different functions is also shown in Table 5.
Note that the latency of PCMult is lower than the latency of ME. PCMult includes an
ME operation, but the exponent (i.e. the plaintext message) is much shorter than the
exponents in the ME benchmarks (the key length).

5.4 End-to-End PPML Comparisons
In fact, we can hardly find a hardware competitor since most existing accelerators only
consider small datasets, which is far less than real-world business-to-business applications.
We test the latencies of SHAPER when computing the CAESAR scheme [CZW+21],

838 SHAPER

Table 6: Comparison between the Latencies of End-to-end logistic regression training with
different sample sizes. The time unit is in minutes.

Design Platform Security (bit) Sample Size
200K 400K 600K 800K 1M

CAESAR [CZW+21](Paillier) CPU 112 615 1239 1862 2477 3101
CAESAR [CZW+21](OU) CPU 112 66 133 200 266 333

SHAPER FPGA 112 11 17 23 28 33

Table 7: Comparison between the Performance of End-to-end logistic regression training.

Design Platform Primitive Security
(bit)

Latency
(min) Speedup*

SHAPER FPGA Hybrid 128 46 67.4×
SHAPER FPGA Hybrid 112 33 94.0×

CAESAR [CZW+21](Paillier) CPU Hybrid 112 3101 1×
CAESAR [CZW+21](OU) CPU Hybrid 112 333 9.31×
CraterLake [SFK+22] ASIC HE 128 3100 1.00×
SecureML [MZ17] CPU SS 128 14729 0.211×

* Take CAESAR (Paillier) as the baseline.

depending on the RTL simulation on Vivado for FPGA IP system with PCIe 3.0 bandwidth.
We evaluate real-world PPML applications using practical network settings, i.e. 40

Mbps network bandwidth and 40ms latency. In our experiments, we choose logistic
regression (LR) as the benchmark application. On the one hand, although some complex
ML approaches have more application scenarios than LR, and recent work [RCK+21] has
tried to explore HE-based neural networks (NN), LR still has a wider range of real-world
industrial applications that benefit from its simpler structure and interoperability, such
as disease detection in hospitals, and fraud detection in financial companies. On the
other hand, existing SS-AHE hybrid PPML proposals [CZW+21,FZT+21] do not provide
support for complex ML such as NN. Therefore, it is better to compare the performance of
LR tasks for a fair comparison. Note that SHAPER has potential in other ML applications
besides LR, and we will explore SHAPER applications in other scenarios in the future,
such as XGBoost, NN, etc.

We compare the results with the results on the CPU. Table 6 shows the performance on
sparse logistic regression with different samples with 0.02% sparsity. Note that communi-
cation latency is not the largest contributor to total latency, so most of the communication
latency is overlapped by computation latency. It is demonstrated that SHAPER has a
significant performance advantage compared with the software benchmarks in [CZW+21].
Note that SHAPER performs a higher speedup when executing larger sample sizes since
the overhead overlapping is more effective when the size grows.

Besides, we compare with other solutions using pure HE or SS which are also presented
for comparison in Table 7. The result of CraterLake [SFK+22] is estimated based on scaling
their results over small sets, as their scheme has a computational overhead that is linear
in the size of the dataset. CraterLake [SFK+22], which requires expensive bootstrapping,
is designed for non-interactive outsourcing computing scenarios, where communication
latency is ignored. Note that schemes using garbled circuits are out of our scope due to
the huge communication traffic.

Data in Table 7 is tested on sparse logistic regression with 1M samples. One participant
has 30k features and label, and the other has 70k features. Paillier-based CAESAR is

Ziyuan Liang et. al. 839

adopted as the performance baseline, whose latencies are taken from [CZW+21]. SHAPER
performs 94× faster than CAESAR executed on the CPU when both using 2048-bit Paillier
(112-bit security). The acceleration is mainly due to the fast Paillier encryption and
pipeline execution. Even when the key is lengthened for 128-bit security (3072-bit key),
SHAPER still performs 7.2× better than OU-based CAESAR with 112-bit security. In
addition, most solutions of hybrid schemes show significant efficiency gains compared with
SS or HE-based solutions, confirming the performance advantage of hybrid PPML schemes.
SecureML performs the worst among the solutions since SS-based solutions mask sparse
features to dense data shares.

6 Conclusion
In this paper, we propose SHAPER to accelerate hybrid SS-AHE PPML protocols. The
algorithm-protocol-hardware co-design methodology explores the full-stack techniques to
minimize the end-to-end latency in various network settings. SHAPER further supports
secure domain computing acceleration and the conversion between mainstream privacy-
preserving primitives, making it ready for general and distinctive data characteristics.
We provide a prototype of SHAPER on an off-the-shelf FPGA with several hardware
optimizations. Our evaluation shows that SHAPER provides significant speedup over CPU
clusters on a large-scale logistic regression training task.

Acknowledgements

Ziyuan Liang, Qi’ao Jin, Zhiyong Wang, and Fan Zhang were supported in part by National
Natural Science Foundation of China (62227805, 62072398), by the Natural Science Foun-
dation of Jiangsu Province (BK20220075), by the Fok Ying-Tung Education Foundation
for Young Teachers in the Higher Education Institutions of China (No.20193218210004)
and by Alibaba-Zhejiang University Joint Institute of Frontier Technologies.

References
[ARC19] Mohammad Al-Rubaie and J Morris Chang. Privacy-preserving machine

learning: Threats and solutions. IEEE S& P, 17(2):49–58, 2019.

[Bar86] Paul Barrett. Implementing the rivest shamir and adleman public key
encryption algorithm on a standard digital signal processor. In Conference
on the Theory and Application of Cryptographic Techniques, pages 311–323.
Springer, 1986.

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomization.
In Advances in Cryptology—CRYPTO’91: Proceedings 11, pages 420–432.
Springer, 1992.

[BGMW92] Ernest F Brickell, Daniel M Gordon, Kevin S McCurley, and David B
Wilson. Fast exponentiation with precomputation. In Advances in Cryptology-
Eurocrypt’ 92, pages 200–207. Springer, 1992.

[BJ20] Milad Bahadori and Kimmo Järvinen. A programmable soc-based accelerator
for privacy-enhancing technologies and functional encryption. IEEE VLSI,
2020.

[CD16] Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology ePrint
Archive, 2016.

840 SHAPER

[CGHGN01] Dario Catalano, Rosario Gennaro, Nick Howgrave-Graham, and Phong Q
Nguyen. Paillier’s cryptosystem revisited. In ACM CCS, pages 206–214,
2001.

[CZW+21] Chaochao Chen, Jun Zhou, Li Wang, Xibin Wu, Wenjing Fang, Jin Tan,
Lei Wang, Alex X Liu, Hao Wang, and Cheng Hong. When homomorphic
encryption marries secret sharing: Secure large-scale sparse logistic regression
and applications in risk control. In ACM SIGKDD, pages 2652–2662, 2021.

[DGK07] Ivan Damgård, Martin Geisler, and Mikkel Krøigaard. Efficient and secure
comparison for on-line auctions. In ACISP, pages 416–430. Springer, 2007.

[DJ01] Ivan Damgård and Mads Jurik. A generalisation, a simplification and some
applications of paillier’s probabilistic public-key system. In International
workshop on public key cryptography, pages 119–136. Springer, 2001.

[DSZ15] Daniel Demmler, Thomas Schneider, and Michael Zohner. Aby-a framework
for efficient mixed-protocol secure two-party computation. In NDSS, 2015.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomor-
phic encryption. Cryptology ePrint Archive, 2012.

[FZT+21] Wenjing Fang, Derun Zhao, Jin Tan, Chaochao Chen, Chaofan Yu, Li Wang,
Lei Wang, Jun Zhou, and Benyu Zhang. Large-scale secure xgb for vertical
federated learning. In CIKM, pages 443–452, 2021.

[GBDL+16] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael
Naehrig, and John Wernsing. Cryptonets: Applying neural networks to
encrypted data with high throughput and accuracy. In ICML, 2016.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game or A completeness theorem for protocols with honest majority. In
STOC. ACM, 1987.

[HHIL+17] Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard Nock, Giorgio
Patrini, Guillaume Smith, and Brian Thorne. Private federated learning on
vertically partitioned data via entity resolution and additively homomorphic
encryption. arXiv preprint arXiv:1711.10677, 2017.

[Kel20] Marcel Keller. Mp-spdz: A versatile framework for multi-party computation.
In ACM CCS, pages 1575–1590, 2020.

[KVH+21] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark
Ibrahim, and Laurens van der Maaten. Crypten: Secure multi-party compu-
tation meets machine learning. Advances in Neural Information Processing
Systems, 2021.

[LC21] Yamin Li and Wanming Chu. Shift-sub modular multiplication algorithm
and hardware implementation for RSA cryptography. In HIS. Springer, 2021.

[LX19] Yi Li and Wei Xu. Privpy: General and scalable privacy-preserving data
mining. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 1299–1307, 2019.

[MLS+20] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng,
and Raluca Ada Popa. Delphi: A cryptographic inference service for neural
networks. In USENIX, pages 2505–2522, 2020.

Ziyuan Liang et. al. 841

[Mon85] Peter L Montgomery. Modular multiplication without trial division. Mathe-
matics of computation, 44(170):519–521, 1985.

[MR18] Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for
machine learning. In ACM CCS, pages 35–52, 2018.

[MZ17] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable
privacy-preserving machine learning. In IEEE S&P, pages 19–38. IEEE,
2017.

[OU98] Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryptosystem
as secure as factoring. In Eurocrypt, pages 308–318. Springer, 1998.

[P+13] Pille Pullonen et al. Actively secure two-party computation: Efficient beaver
triple generation. Instructor, 2013.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residu-
osity classes. In Eurocrypt, pages 223–238. Springer, 1999.

[PS20] Arpita Patra and Ajith Suresh. Blaze: blazing fast privacy-preserving machine
learning. arXiv preprint arXiv:2005.09042, 2020.

[RCK+21] Brandon Reagen, Woo-Seok Choi, Yeongil Ko, Vincent T Lee, Hsien-Hsin S
Lee, Gu-Yeon Wei, and David Brooks. Cheetah: Optimizing and accelerating
homomorphic encryption for private inference. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages
26–39. IEEE, 2021.

[SFK+22] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan Manohar,
Nicholas Genise, Srinivas Devadas, Karim Eldefrawy, Chris Peikert, and
Daniel Sánchez. Craterlake: a hardware accelerator for efficient unbounded
computation on encrypted data. In ISCA’22. ACM, 2022.

[SGA20] Jinhyun So, Basak Guler, and Salman Avestimehr. A scalable approach
for privacy-preserving collaborative machine learning. Advances in Neural
Information Processing Systems, 33:8054–8066, 2020.

[WGC19] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Securenn: 3-party
secure computation for neural network training. Proc. Priv. Enhancing
Technol., 2019(3):26–49, 2019.

[XBJ21] Runhua Xu, Nathalie Baracaldo, and James Joshi. Privacy-preserving
machine learning: Methods, challenges and directions. arXiv preprint
arXiv:2108.04417, 2021.

[XHY+20] Guozhu Xin, Jun Han, Tianyu Yin, Yuchao Zhou, Jianwei Yang, Xu Cheng,
and Xiaoyang Zeng. Vpqc: A domain-specific vector processor for post-
quantum cryptography based on risc-v architecture. IEEE TCAS-I, 2020.

[XYCL22] Hao Xiao, Sijia Yu, Biqian Cheng, and Guangzhu Liu. Fpga-based high-
throughput montgomery modular multipliers for rsa cryptosystems. IEICE
Electronics Express, 19(9):20220101–20220101, 2022.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract).
In FOCS, pages 160–164. IEEE Computer Society, 1982.

[YHC20] Zhaoxiong Yang, Shuihai Hu, and Kai Chen. Fpga-based hardware accelerator
of homomorphic encryption for efficient federated learning. arXiv preprint
arXiv:2007.10560, 2020.

842 SHAPER

[ZXWG22] Xing Zhou, Zhilei Xu, Cong Wang, and Mingyu Gao. Ppmlac: high perfor-
mance chipset architecture for secure multi-party computation. In ISCA,
pages 87–101, 2022.

A Radix-1 Shift-sub MM
The algorithm of original shift-sub MM published in [LC21] is shown in Alg. A.

Algorithm 3 Shift-sub Modular Multiplication.
Inputs: a =

∑n−1
i=0 ai2i, b =

∑n−1
i=0 bi2i, a, b < m < 2n, m mod 2 = 1.

Outputs: c = ab mod m
Algorithm:
c = 0
for i = 0 to n− 1 do

c = c+ bia
if c ≥ m then

c = c−m
end if
a� 1
if a ≥ m then

a = a−m
end if

end forreturn c

B Fixed-base precomputation of Paillier encrytion
The ME operations in Paillier encryption are executed with a fixed base (hs in the public
key) after the key parameters are determined. Hence the AHE unit can precompute
and store some specific ME results in advance, and the actual ME operation in Paillier
encryption can be converted into multiple MM operations. The core idea is to divide the
exponent into small pieces.

The implementation in [DSZ15] divides the exponents into bit series. It precomputes
{h1<<i

s } : {h0···01
s , h0···10

s , · · · , h1···00
s }, and stores them in the table. Then for each bit

“1” in the actual exponent, the AHE unit multiplies the corresponding precomputed
intermediates. The number of multipliers equals the hamming weight of the exponent.

The above fixed-base precomputation strategy can be further extended to wider
window sizes, and the original is a special case where the window size equals 1. For
the precomputation strategy with window size w, there are total l/w windows, where
each window needs 2w − 1 precomputed values (except for the all-zero case). The larger
the windows are, the less the times of the final multiplications. However, the size of the
precomputed table grows significantly. The implementations need to consider the balance
between latency and storage.

Note that when cooperated with the CRT strategy, the precomputed table stores the
intermediates with bases p and q, instead of hs.

C Conversion Protocols
SHAPER adopts the conversion protocols (including S2H & H2S) in [FZT+21]. The
protocols are shown below. A small modification is applied to the original protocols in

Ziyuan Liang et. al. 843

[FZT+21]. Since Paillier cryptosystem supports addition between plaintext and ciphertext
(PCAdd), SHAPER replaces the “Enc + CCAdd” process in the original protocols with
PCAdd.

Algorithm 4 H2S Protocol
Input: A value [[x]] = (x1, x2) shared by the client C and server S. AHE public key pk.
Protocol:

1. C encrypts x1 with pk, sends cx1 to S.

2. S calculates AHE.PCAdd(x2, cx1), outputs cx.

Algorithm 5 S2H Protocol
Input: Ciphertext cx hold by S. AHE private key sk hold by C. AHE public key pk.
Protocol:

1. S generates random share x2.

2. S calculates cx1 = AHE.PCAdd(−x2, cx), sends cx1 to C.

3. C decrypts cx1 , and obtains x1.

4. Output share [[x]] = (x1, x2).

	Introduction
	Background
	Related Work
	Preliminaries
	Threat Model

	Architecture Design
	Architecture overview
	Algorithm-Protocol Co-Optimization
	Efficient AHE Function Units
	Secret Sharing Function Units
	Conversions between Primitives with Packing

	Performance Optimizations and Security Enhancement
	Parallel Modular Operations
	Optimal Pre-computation Window

	Implementation and Evaluation
	FPGA Resource Utilization
	MM Throughput Comparisons
	Function-Level Comparisons
	End-to-End PPML Comparisons

	Conclusion
	Radix-1 Shift-sub MM
	Fixed-base precomputation of Paillier encrytion
	Conversion Protocols

