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Abstract. Data and instruction dependent power consumption can reveal crypto-
graphic secrets by means of Side-Channel Analysis (SCA). Consequently, manufactur-
ers and evaluation labs perform thorough testing of cryptographic implementations
to confirm their security. Unfortunately, the computation and storage needs for the
resulting measurement data can be substantial and at times, limit the scope of their
analyses. Therefore, it is surprising that only few publications study the efficient
computation and storage of side-channel analysis related data.
To address this gap, we discuss high-performance design patterns and how they
align with characteristics of different file formats. More specifically, we perform an
in-depth analysis of common side-channel analysis algorithms and how they can be
implemented for maximum performance. At the same time, we focus on storage
requirements and how to reduce them, by applying compression and chunking.
In addition, we investigate and benchmark popular SCA frameworks. Moreover,
we propose SCARR, a proof of concept SCA framework based on the file format
Zarr, that outperforms all considered frameworks in several common algorithms
(SNR, TVLA, CPA, MIA) by a factor of about two compared to the thus far fastest
framework for a given profile. Most notably, in all tested scenarios, we are faster even
with file compression, than other frameworks without compression. We are convinced
that the presented design patterns and comparative study will benefit the greater
side-channel community, help practitioners to improve their own frameworks, and
reduce data storage requirements, associated costs, and lower computation/energy
demands of SCA, as required to perform more testing at scale.
Keywords: Side-Channel Analysis · High-Performance Computing · file format ·
HDF5 · Zarr · SCARED · LASCAR · ChipWhisperer

1 Introduction
Secure communication and data storage for a wide range of purposes relies on electronic
systems that guarantee integrity and confidentiality of their data. This is governed
by security standards such as Common Criteria (CC) [The06], FIPS [Nat02], or PSA
Certified Security Assessment [PSA22]. Compliant devices are required to implement
mechanisms [ABB+20] to prevent extraction of cryptographic secrets. This includes
countermeasures to thwart Differential Power Analysis (DPA) [KJJ99] and Electro-Magnetic
Analysis (EMA) [QS01; AAR+03; PSQ07; HMH+12; HMH+13]. There are many examples
where insufficient protection against these techniques enabled real-world attacks, e.g.,
[RLM+21; SW12; OP11; ORP13; PEK+09; MS16]. While it should not be used exclusively,
Measurements-to-Disclosure (MTD) and the corresponding data complexity is a popular
metric to assess the practical difficulty of these attacks [MOP07; PGA+23].

Testing plays an important role during the development and subsequent security
evaluation of countermeasures. Typically, a wide range of measurements must be performed
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under varying physical conditions such as type of measurement, Region of Interest (ROI) on
a chip, equipment used, and different logical inputs (data acquisition patterns) as stimuli.
This can result in vast amounts of data in the lower terabyte range with substantial
differences in the assessed security levels of different data sets, despite observing the same
implementation [MM12; MM13; UHD+17; ISU18; SIU+18; BUS22]. Because of this,
some industry practitioners have previously rejected the practicality of some SCA-related
developments in academia. These concerns were presented at COSADE 2013 in the talk
“Academic vs. industrial perspective on SCA” [KW13] and support our argument that
practical aspects must not be neglected.

The data processing complexity is further increased based on required pre-processing
techniques (e.g., digital filters) and the multitude of analyses that need to be performed.
Leakage detection techniques such as Signal-to-Noise Ratio (SNR) [MOP07] or Test
Vector Leakage Assessment (TVLA) [GJJ+11] have become popular due to their much
lower processing complexity compared to key extraction techniques such as Correlation
Power Analysis (CPA) [KJJ99; BCO04; CKN01; May00] or Mutual Information Analysis
(MIA) [GBT+08; SMY09]. In addition, some algorithms can be performed in a non-
profiled and profiled scenario with templates [CRR03; APS+06; GLP06; MOP07; SMS+17],
further amplifying data storage requirements for different analyses and corresponding data
acquisition patterns.

While leakage detection techniques may help avoid subsequent measurements by
identifying leakage early, they are typically considered to be weak(er) distinguishers
compared to key extraction techniques, i.e., actual leakage might be missed that a stronger
statistical tool is able to extract [PGA+23]. Therefore, the best level of security is achieved
by performing as many rigorous tests as possible, which however is limited by the available
storage and processing time (and therefore, money).

In our work, we focus on these particular topics, to make SCA faster, while at the
same time lowering storage requirements. Note how we avoid the term “computing”
(implying a CPU-bound problem) and instead use the term “processing complexity”. As
backed by our experiments and perhaps contrary to commonly assumed wisdom in the
side-channel community [BB17; RGV17], once properly optimized, many of the side-
channel analysis problems are limited by file I/O and memory-bandwidth, as opposed to
computational resources. We are unaware of previous works that view the implementation
of SCA algorithms as a High-Performance Computing (HPC) optimization problem, where
corresponding bottlenecks are identified and then resolved. For example, the Top-down
Microarchitecture Analysis (TMA) method [Yas14; Int23] determines the utilization of
pipeline slots in percent for the following categories: retiring instructions (more are better),
slots affected by bad speculation (fewer are better), and slots that are front-end or back-
end bound (fewer are better). Purely conceptual algorithm optimization that neglects
microarchitecture properties of modern computing platforms may not unleash their full
potential. Substantial fewer resources needed to perform a real-world side-channel analysis
successfully can dramatically change the overall calculus of how secure an implementation
is.

Based on our insight, we present our proof of concept implementation SCARR that is
able to perform 1.7 − 2.3× faster (Profile 1, Figure 5a) over uncompressed data compared
to the thus far fastest framework, while performing 2× to 15× faster compared to the
only other framework officially supporting file compression, while lowering the file size
by up to 48%. Since the processing complexity is significantly bounded by I/O and also
memory bandwidth on Intel platforms, using compressed data is beneficial, despite the
computational burden of decompression prior to performing any computation. As a result,
we are faster over compressed data than all other tested frameworks over uncompressed
data (tested on Intel and Apple Silicon). In fact, on tested Intel platforms, processing
compressed data is the fastest overall, while benefiting from reduced storage requirements!



Jonah Bosland, Stefan Ene , Peter Baumgartner and Vincent Immler 771

1.1 Additional Motivation and Practical Relevance
SCA developed into a mature topic, with commercial offerings such as Inspector (Riscure),
DPAWS (Rambus), Analyzr (Secure-IC), or esDynamic (eShard). There are also several
frameworks (cf. Table 2) that are open-source but professionally developed out of semi-
commercial interests, such as SCARED (eShard) [eSh19], LASCAR (Ledger) [LED18],
and ChipWhisperer (NewAE) [OC14]. In our work, we focus on these robust frameworks
only, as they have been actively maintained for more than 5 years, while acknowledging
that other open-source frameworks exist (e.g., Daredevil [BB16; BB17], Jlsca [BK16],
FOBOS [VK12], SCALib [CB23], SCA Toolbox [BKM+20], RamDPA [FHM+19]), some of
which either have already been shown to be slower than SCARED1 [Tim19; Bet23], or do
not implement at least 3 out of 4 of our tested SCA algorithms2 (SNR, TVLA, CPA, MIA),
or do not support both int/float as input data (raw oscilloscope data or output from a
digital filter), or do not support out-of-core processing (processed data larger than system
memory), or lack advanced indexing for customized trace/point of interest selections to
reflect more complex real-world attack scenarios.

We also want to emphasize the positive impact of the ChipWhisperer [OC14] ecosystem
in the hardware security community, while pointing out (referencing their own docu-
mentation [DTO20]) that their toolchain is not optimized for speed, but instead, geared
towards a good educational experience, which is why they recommend LASCAR and
SCARED for performance-oriented analyses. While commending other framework authors
for their professionalism, we would still like to discuss high-performance design patterns
and how existing frameworks could be improved further. Moreover, we want to promote
the adoption of Zarr as a file format for side-channel analysis. Zarr is a community-driven
project aiming at efficient I/O for (distributed) parallel computing applications.

In terms of programming language and file formats, we note that other SCA frameworks
and researchers predominantly use Python [eSh19; LED18; OC14] and HDF5 [HDF], also
for popular datasets [BPS+20]. HDF5 (or .h5) is a fully-featured file format that enables
combined storage of side-channel measurements and their metadata. HDF5 has several
advantages over proprietary file formats such as TRS, for example, support for on-the-fly
compression to reduce file size. At the same time, Python’s HDF5 implementation h5py
appears to suffer from several shortcomings (see Section 4) which further motivate our work.
Considering the widespread adoption of HDF5 in a side-channel context, it is unsatisfying
that the choice for HDF5 or any other file format was never analyzed or substantiated.
Therefore, studying specifics of this file format and others, and their proper configuration,
is warranted.

1.2 Contributions
• Study different file formats, their characteristics, and how they relate to side-channel

analysis, with a strong focus on HDF5 and Zarr, but also covering NPY.

• Application-level analysis of high-performance patterns and file-handling techniques
that align with one-pass statistical algorithms, out-of-core computations, and how
performance changes based on I/O-oriented operations such as advanced indexing,
batch-wise processing, chunking, compression, etc.

1Based on announcements from 2019 and 2023 with renewed claim that SCARED is “best-in-
class” [Tim19; Bet23]. More in particular, in 2019 SCARED’s CPA was shown to be faster than
Daredevil, Jlsca, ChipWhisperer, LASCAR, and Riscure Inspector. We note that SCARED’s performance
is identical to its commercial variant esDynamic.

2Our brief inspection of these additional open-source frameworks did not indicate architectural or file
format properties that would have warranted additional benchmarking within the scope of this work. We
especially tested SCALib in combination with HDF5 files and could not reproduce previously claimed
performance results that were based on synthetic, in-memory benchmarking.
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• Microarchitecture-level performance analysis (Top-Down [Yas14; Int23] analysis) of
side-channel analysis processing in different frameworks and corresponding tuning.

• Proposing SCARR, a Proof of Concept (PoC) side-channel analysis framework
based on the Zarr [Zar15] file format that is able to outperform all other considered
frameworks in our tests. SCARR is available on GITHUB (https://github.com/hsrlab/
scarr) under open-source license and was submitted as CHES artifact.

• Comprehensive comparison of SCARED, LASCAR, and SCARR, showcasing that it
can be beneficial performance-wise to use compressed data sets (Intel).

1.3 Outline
An overview of related work is provided in Section 2. Afterwards, in Section 3, we
briefly introduce the necessary background of how modern computers work and their CPU
microarchitecture. We continue by discussing different file formats and their conceptual
differences in Section 4. The basic structure of SCARR and its configuration is then
described in Section 5. This is followed by a Top-Down assessment in terms of utilization
of the CPU microarchitecture, in addition to the benchmark-based comparison of the
selected side-channel analysis frameworks in Section 6. Lessons learned and preferred
design HPC patterns are summarized in Section 7. Afterwards, in Section 8, we briefly
discuss limitations and bonuses of our proposed framework SCARR. Finally, conclusions
are drawn in Section 9 based on the obtained results.

2 Related Work and Scope
Performance-oriented optimization of the side-channel analysis process can relate to
improving the speed of the acquisition process or quality of the measurement data,
e.g., as explained in [SM15; RWM19; BUS22], preference of leakage detection methods
over key extraction methods [GJJ+11], selection of more optimal distinguishers that
converge faster [HRG14; SMS+17; VS09], or optimizations of the algorithmic approach
and minimizing arithmetic operations [LPR13; RGV17; BB17], while typically preferring
one-pass algorithms that require file access only once [LPR13; SM15; SMG16; SMK+17].
Peak extraction and other pre-processing for Points-of-Interest (POI) selection are yet
another option to possibly speed up the side-channel analysis, at the expense of increasing
I/O complexity. Note, this concept is also called “trace compression” by some authors
[BDG+14] and should not be confused with lossless file compression to reduce storage needs.
In addition, our findings clearly show that Traces-of-Interest (TOI) and POI selection can
incur a significant performance penalty due to increased I/O complexity.

It is interesting that the inter-dependency of Measurements-to-Disclosure and practical
attack difficulty due to actual processing complexity was rarely discussed beforehand.
Similarly, other metrics – while attempting proper theoretical modeling of the leakage –
are not scaled based on, e.g., the time/energy resources to compute the desired metric.
Consequently, a stronger theoretical attack might be outperformed by seemingly trivial
practical efforts that are simply faster and require less time/energy, which is in essence
the criticism captured in [KW13], which is why our work is geared towards practitioners.

Based on our findings given in Table 1, it is important to identify the processing-bounds,
and the related foundational problem(s), as this can be a more effective way to boost
evaluation performance (more traces processed in shorter amount of time), and therefore
more accurately reflect the security of the assessed Device Under Test (DUT) in a real-
world scenario. Consequently, we need to briefly discuss the technical scope, selection of
algorithms, and the availability of the tested solutions (and their components).

https://github.com/hsrlab/scarr
https://github.com/hsrlab/scarr
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Table 1: List of implemented side-channel analysis algorithms in SCARR, how they
are bounded based on our experiments for one byte position using one-pass algorithms,
including their foundational processing problem.

Algorithm Processing Bounded Foundational Problem

SNR by file I/O; memory bandwidth data partitioning
CPA mainly by memory bandwidth matrix multiplication
MIA by compute (cores) histogram building
TVLA mainly by file I/O basic statistics

Technical Scope. To enable a tailored discussion of high-performance design patterns,
we need to address limitations of the Python programming language and corresponding
packages, too. While our proposed concepts are generic in nature and could be implemented
in any language, we discuss them within the context of Python only. Additionally, we
focus on a “full-stack” benchmark considering real-world scenarios including TOI/POI
selection (requiring advanced indexing, cf. Table 5), for data that is read from a disk.
This is in contrast to similar efforts that exclusively focus on in-memory benchmarks
over sequential data [Bet22; Cas22], therefore neglecting the complexities of I/O-oriented
operations that can substantially diminish performance. Unless noted otherwise, we use the
default configurations of the operating system and corresponding frameworks. Moreover,
our work solely focuses on CPUs. GPU-implementations are considered i) out of scope
and ii) are not included in the other tested frameworks either.

Selection of Algorithms. Our case study considers algorithms primarily designed
for analyzing symmetric ciphers. We selected two leakage detection algorithms (SNR,
TVLA) and two techniques for profiling and key extraction (CPA, MIA) as we consider
them representative for a wide range of evaluation workloads. Each algorithm has its own
foundational problem for processing, as listed in Table 1. To the best of our knowledge,
there is no other work discussing the actual implementation of these algorithms under HPC
considerations, and no previous attempt in making a determination of the bottlenecks
that limit the processing of these algorithms (see Section 6). More specifically, whether
they will be bound by the CPU Front-End (e.g., fetch and decode of instructions not fast
enough), bound by bad speculation (e.g., branch mispredict), or bound by the Back-End
(e.g., lack of memory bandwidth or compute cores). In other words: this approach can be
applied to any other SCA algorithm and is not limited to the ones we selected.

Availability. We exclusively cover open-source frameworks and file formats as we
cannot assess the performance of commercial solutions. We invite the respective companies
to compare their software against SCARR using our representative benchmark-profiles
(see Table 5). In addition, proprietary data formats such as ironArray were excluded (due
to cost), despite claiming superior performance over HDF5 [HDF] and Zarr [Zar15]. The
same is true for proprietary extensions such as ZIPVFS for SQLite.

3 Computer Architecture System Model
In the following, we briefly recall basic properties of modern computer architectures [Dre07;
Yas14; Int23]. As illustrated in Figure 1a, a representative system comprises a disk, main
memory, cache, and multiple cores. In terms of disk performance, Operating Systems (OS)
are designed to leverage various mechanisms such as read-ahead, and the buffer cache
(residing in main memory) to optimize performance. Note that several resources are shared
between the cores, and in terms of data throughput, they can outperform caches and any
slower resource by orders of magnitude [Alt10], which is amplified by the shared resource
problem.

Especially file retrieval from disk (or remote storage) is still considered slow, despite
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advancements such as NVMe and SSDs. This starvation of input data in the cores because
of limited input data bandwidth can quickly lead to problems in the microarchitecture (cf.
Figure 1b), as they can stall the pipeline. For optimum performance within a HPC-context,
it is therefore necessary to actively use caches, and avoid other penalties such as branch
mispredicts, that otherwise result in bad speculation [Int23] and diminished performance.

CPU
CPU

Cachefast

slower

Used Buffer Cache

Main Memory

slowest
Bus

Disk

CPU
multiple cores (fastest)

(a) Representative system architecture. (b) Modern Intel microarchitecture [Int23].

Figure 1: System architecture model and Intel microarchitecture, illustrating various
properties of modern systems, e.g., slow file retrieval, fast compute capabilities, multiple-
dispatch of uOps (micro-ops) per cycle, and separation into front-end and back-end.

The microarchitecture of a modern Intel CPU can allocate four uOps (micro-ops) in
its Front-End, while the Back-End can retire four uOps per cycle. This is used to derive
the concept of a pipeline slot. Each slot represents the hardware resources needed to
process one uOp. For a Top-Down analysis, the characterization assumes that for each
CPU core, during each clock cycle, there are four pipeline slots available. A Performance-
Measurement-Unit (PMU) then measures how well these pipeline slots were utilized.
Through this process of classifying pipeline slots, it is possible to determine if a uOp was
retired (completed successfully), or if it was mistakenly executed (bad speculation), or if
the Back-End stalled it, due to being core- or memory-bound [Int23].

These four categories are also called a Level 1 Top-Down analysis. To read the PMU,
we use Intel VTune. Note, the PMU offers more detailed counters to identify potential
bottlenecks. As an important example, back-end bound can be further divided into
core-bound (simplified: “not enough compute resources”) or memory-bound (simplified:
“not enough memory bandwidth or too high latency”). For a tailored implementation of
SCA algorithms, we consider it important to make such a determination to make targeted
improvements. Note that this process is highly engineering-oriented due to the complexity
of code, the OS, and the microarchitecture. Guidelines exist such as [Int23] to aid this
iterative process but it is a problem that is difficult to solve fully analytically.

4 File Format Comparison
The choice of file format may appear as a seemingly trivial choice. Yet, different file
formats exist and Table 3 lists various types that are used in the SCA community. Each
format has been originally designed with a range of use cases in mind, with TRS being
the only one specifically designed for SCA purposes. Even though literature exists on the
topic of scientific data management [Rot09] including a synthetic comparison of Zarr and
HDF5 [AB23], there is no specific comparison within the context of SCA. In the following,
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Table 2: Overview of different side-channel analysis frameworks and some of their properties. At the time of testing, all frameworks were installed
from GIT directly (approx. August 2023). The version number is therefore only a coarse-grained approximation of their code revision.

File Handling Parallel Processing Dataset Type
Framework Version Format Compression Reader I/O Compute Parallelism Process/Thread Single Tiled

ChipWhisperer 5.7.0 NPY not explicitly synchronous no yes (numpy) no / yes yes no
LASCAR 1.1 HDF5 not explicitly synchronous no yes (numpy) no / yes yes no
SCARED 1.1.0 HDF5 optional synchronous no yes (numpy, numba) no / yes yes no
SCARR PoC Zarr optional asynchronous yes yes (mp.pool, numpy, numba) yes / yes yes yes

Table 3: Comparison of file formats commonly used in the side-channel analysis domain.
Format Example Compression Chunked Parallel Read NumPy Types Indexing N-dimensional Code Overhead

HDF5 [eSh19; LED18] optional optionala not natively b yes yes yes none
TRS [Ris18] no no unknown yes yes (?) no (?) low
NPY [OC14] limitedc no no yes yes yes none
SQLite commercial proprietary no yes not natively limitedd yes substantial
Zarr this paper optional yese yesf yes yes yes low

aUncompressed datasets are contiguous by default. Compressed datasets are internally chunked (still appear as one file towards the OS).
bSee h5py release notes for version 3.0: “HDF5 has its own global lock, [releasing the GIL] won’t speed up parallel data access using multithreading.” Multi-processing

is needed to work around this limitation while according to the documentation: “avoid opening the file and then forking”.
cSee text. Since no chunking is available, this is not an option for out-of-core computations.
dTrace indexing is fully supported by making appropriate SQL selections. Indexing of samples is natively supported for fields of type BLOB which is an array of uint8,

but arrays of other numeric data types (e.g., int16) do not appear to be supported but we might be mistaken.
eChunked files are stored as multi-file (sparse) storage when using the default Zarr DirectoryStore.
fFrom the Zarr documentation: “Zarr will generally not block other Python threads from running”.



776 High-Performance Design Patterns and File Formats for Side-Channel Analysis

we provide a brief overview of file formats, their basic properties, and how they relate to
SCA.

Initial Overview and TOI/POI Indexing. Each file format has specific charac-
teristics that make it a better fit for a particular use case, and this makes choosing an
appropriate file format an important task. As an example for very limited amounts of
data, storing values in a Comma Separate Value (CSV) file might be acceptable. However,
this creates a large storage overhead and performance penalty, as values are encoded as
text, as opposed to binary. In addition, addressing (indexing) a specific value in a CSV
becomes a challenge, as the length of the text-encoded values preceding it changes its
position. Consequently, this file format is not used by side-channel practitioners.

Alternatively, storing time series data, such as recorded traces of a side-channel mea-
surement campaign, by means of a contiguous binary concatenation is possible. Creating
a mmap() (memory-map) of the file is then a convenient and fast way to read the data,
which also benefits from OS-level optimizations through madvise() policies. This is the
approach taken in Riscure’s TRS file format, and NumPy’s native NPY file format can also
be memory-mapped. Due to its simplicity and high speed for sequentially read data, this
is an intriguing choice.

At the same time, there are also disadvantages. Note that two-dimensional data sets
(or higher dimensions) are stored as flattened arrays. As a result, accessing slices of
N-dimensional arrays is only fast if the slices line up with the default structure of how
they are stored. This can be a problem when indexing is needed, such as when selecting a
time-range (slice, cf. Figure 2) within the measurement data and therefore, not reading the
whole data set sequentially. Making such orthogonal selections over larger data sets directly
will create many seek operations that can drastically diminish the read performance.

Potential alternatives are reading the data set in full and slicing it in memory, which
is not possible for out-of-core computations where the data set size exceeds the available
memory, and it creates a substantial read overhead if the needed slice is small relative
to the whole data set. For complex real-world scenarios, the SCA analyst cannot know
in advance which selection of points or traces may ultimately succeed. As a worst-case,
multiple time-ranges need to be selected for testing, some traces need to be excluded if
their alignment fails in the presence of countermeasures (TOI selection), etc. which turns
this into a random access pattern that makes the reading slow if not counteracted at the
file format level. Note how values are stored and processed in memory (C or Fortran
order) will also greatly impact the performance based on the in-memory access pattern.
Consequently, indexing is fully considered in our analysis profiles in Table 5.

Compression and Chunking. Another desirable feature is compression. Considering
the widespread use of 12 bit ADCs in oscilloscopes and their benefit for power analysis, it
is evident that when stored as int16, effectively 1/4 of the bits are overhead, independent
of the potential compression ratio of the measurement data itself (which arguably may
vary a lot). Still, the expected baseline for compressing the file size of such a data set is
already 25%. A straight forward approach could be to manually compress the data set, to
then decompress when needed to perform the side-channel analysis. This is a cumbersome
process, possibly resulting in twice the needed amount of storage to temporarily store both
data sets, and creates an unacceptable overhead when only requiring slices of the data.
NumPy can automate this process for NPY files by storing/loading from NPZ – a zipped
NumPy archive – into memory. However, this requires decompression in full to access any
of the data, making this approach impractical. In addition, this again contradicts the idea
of out-of-core computations with data sets exceeding available memory. Based on publicly
available information, TRS does not appear to offer any type of built-in compression.

To overcome the inherent limitations of per-file compression of the whole data set, it
is possible for some file formats to store data in smaller blocks called chunks. Chunks
can be specified in an N-dimensional shape that reflect the most dominant access pattern.
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The chunks themselves are again flattened, written to disk, and each chunk is indexed
separately, e.g., by a B-tree in HDF5. When using compression with chunks, the chunks
are self-contained blocks that can be accessed independently from others. Therefore, when
dealing with larger data sets where only slices are needed, decompression is limited to the
chunks actually required. This on-the-fly decompression when reading is supported by
HDF5 and Zarr, but neither NPY nor TRS. Consequently, we focus our efforts on toolchains
that support file formats that do support chunking (again excludes ChipWhisperer).

Determining the shape (and therefore the size) of a chunk must follow different consid-
erations. For example, if chunking is based on a B-tree, then larger chunks for a given
dataset reduce the size of the B-tree, making it faster to find and load chunks. At the same
time, larger chunks can result in more overhead when only a small fraction of their data is
needed. In addition, many small chunks may counteract the idea of using chunks, resulting
in an excessive amount of seek and read operations, whereas too large chunks will exceed
the L2/L3 cache of the CPU, making optimized decompression algorithms less efficient.
For SCARR, the determination of the chunking configuration is presented in Section 5.

Aside from chunking, an optimized compressor must be selected, such as Blosc [The09]
combined with lz4 [LZ411]. Blosc’s stated goal is to provide faster transmission of data
to the processor cache than the traditional, non-compressed, direct memory fetch. A
standard fetch uses memcpy() to copy from memory. In contrast, by using the blocking
technique [Alt10] in Blosc, the much higher speed of the CPU cache can be leveraged. By
benefiting from shorter transfer times of compressed data, in-place decompression using
memmove(), very high transfer speeds can be achieved that offset the additional compute
load of the decompression. Note that lz4 and lz4hc (high compression), including their
different compression levels (clevels), require the same time to decompress, making them
an ideal choice for read-oriented applications. We consider side-channel analysis as a
read-oriented application where data is recorded just once, and then analyzed many times
over. Our benchmarks in Section 6 indeed confirm these benefits of using compression.

Parallel Reading. For some analyses, multiple byte positions may need to be studied
at the same time. In addition, for EM side-channel campaigns, storing a tiled data set
with all its XY-positions in a file is desirable to have it self-contained. This can result
in situations where a time vs. memory trade-off in the corresponding SCA framework
needs to be implemented. Either, more time is spent to (again) read from the same file
when processing the next attacked byte position, or, more accumulators for a one-pass
processing need to be available. Consequently, it may be desired to read from the same
data set concurrently from different threads/processes to improve read throughput over
time, and to scale more easily based on available core and memory resources.

Unfortunately, the standard HDF5 implementation has its own locking mechanism,
which serializes a concurrent read access to a file. In contrast, e.g., using mmap and fork
on Linux, it is possible to efficiently share a memory-mapped file in a Copy-On-Write
(COW) fashion across multiple processes, with a minimum of resource overhead in read-only
applications. As additional benefit, processes accessing the same data approx. at the same
time, can retrieve the data from the buffer cache (as opposed to reading from disk again).
Therefore, concurrent reads from the same file, or even parallel reads of the same data,
can behave differently based on the chosen file format, and the internal process/thread
structure of an SCA framework. See Table 3 for how different formats compare.

HDF5: Highlighted Properties. The Hierarchical Data Format (HDF) 5 [HDF]
is designed to store large numerical arrays of homogeneous type, possibly organized in
groups. This results in a file-system-like structure such as file.h5/X/Y/traces to store
trace data recorded at various XY-positions of an EM campaign. Within the context of
Python, h5py is the dominant library to access HDF5 files. As explained beforehand,
indexing is routinely needed for TOI or POI selection, or to reduce compute and memory
requirements. Unfortunately, the h5py documentation states [Dev23]: “A subset of the
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NumPy fancy-indexing syntax is supported. Use this with caution, as the underlying HDF5
mechanisms may have different performance than you expect.” in addition to: “Very long
lists [...] may produce poor performance”. Therefore, we were interested to test if there
is any practical impact for side-channel analysts, which is why we investigate different
indexing profiles (cf. Table 5), when comparing the different frameworks. Indeed, our
results confirm unexpected behavior when indexing in HDF5-based frameworks is used (cf.
Section 6).

Zarr: Highlighted Properties. Also aiming at the storage of large N-dimensional
arrays, Zarr [Zar15] offers implementation details and features that are noticeably different
compared to HDF5. As default, a so called DirectoryStore is used, that stores chunks of
data as multi-file (sparse) storage in a directory. This can be used to implement a structure
such as directory.zarr/X/Y/traces (cf. Figure 2). Since OS-level mechanisms are used
for reading/writing, Zarr benefits from OS-level mechanisms which is in contrast to HDF5
where the library handles such aspects. Unlike HDF5, Zarr allows concurrent read or write
access. Compared to default HDF5, a wider range of compression and filter mechanisms is
supported, that can be more easily extended, too.

5 SCARR Overview and Configuration
In the following, we present a high-level overview of SCARR, our proof of concept SCA
framework primarily written in Python. This section will only briefly outline the software
architecture. A more complete documentation will be made available online. The same
approach was taken, e.g., by the authors of ChipWhisperer [OC14].

SCARR uses Zarr as file format and aims at high-speed SCA processing over compressed
data. As such, we need to focus on two aspects: i) how data is handled and ii) how results
are computed. For a simplified view of the data handling, please see Figure 2. We follow a
structure with EM tiles being groups, that hold traces and needed metadata as 2D arrays.
Both uncompressed and compressed workflows are supported.

The framework is currently structured into a container class for computing, file handling,
models, and engines to implement the needed base functionality for this work. Engines
contain the implemented analysis algorithms with limited use of Numba and NumPy
otherwise. The cryptographic algorithm, leakage model, etc. are modular and easy to
extend, making SCARR comparable to other frameworks. All data processing follows
the out-of-core computing principle and one-pass concept. Basic statistics needed use
Welford’s algorithm [Knu81] while the SCA algorithms themselves follow their respective
publications. We refrain from presenting equations here, as later observed performance
differences in SCARR were primarily achieved through basic microarchitecture analysis,
corresponding optimizations as discussed in Section 6, and more efficient data handling
and processing by means of tailored software architecture, as described in the following.

For processing a tile or multiple byte positions, separate processes are forked that may
read concurrently from the data set. However, if the same data is read, we note that this
would result in a buffered read through the buffer cache. To minimize run-time memory
requirements and optimize read access, we retrieve multiple chunks in sequence to avoid
excessive read operations. This unit is called a batch and ideally, a batch is asynchronously
pre-fetched in parallel to the computation over the previous batch.

The optimum size of a batch depends on the type of the computation and platform
parameters. Similarly, finding the best chunk parameters might not only depend on the
intended access pattern, but also platform parameters. The Zarr documentation recom-
mends that chunks should not be smaller than 1 MiB. While not specifically mentioned,
when using compression, we assume that chunks should not be chosen too large to not
exceed the size of the L2/L3 cache. In addition, too large chunks increase overhead when
only requiring limited amounts of data from them.
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Figure 2: File and data processing structure in SCARR. Starting on the left: for each EM
tile and byte position to be analyzed, a separate process is started. The data of each tile is
then read in batches to extract the indexed slice. Each batch is fetched asynchronously to
the parallel processing of columns of the batch that was fetched before. Each batch results
in the update of internal accumulators to compute the desired result in a one-pass fashion.

We chose to empirically test a range of chunking configurations as illustrated in
Figure 3a. For simplicity reasons, the batch size was tied to the first dimension of the
chunking (equal to the number of traces being selected). From the results, it can be
seen that (5000,1000) is a close-to-optimum choice on system Laptop (cf. Table 6), while
avoiding too extreme parameters that might diminish performance on other platforms.
We use the same chunking for both uncompressed and compressed data sets, i.e., unlike
HDF5, our uncompressed data sets are also chunked.

We want to emphasize that we are fully aware of benchmark challenges related to
inadvertent buffering and caching, which is why we specifically tested the difference for all
frameworks in Figure 3b. As expected, reads through the buffer cache are much faster
than unbuffered reads from disk. Control over the buffer cache is possible, e.g., by using
vmtouch to evict buffered pages. Since we assume one-pass processing, we specifically
want to avoid benchmarking in the buffered scenario. Consequently, all other results
presented in this work are unbuffered. In addition, we do not consider the CPU cache to
be a problem, as the total amount of data processed exceeds the size of the CPU cache
many times over. Our results in Figure 3b show that for limited-compute workloads such
as SNR and TVLA, data fetching even from a fast SSD can still consume more than 50%
of the processing time, with the actual computation being the other half.

When operating over int data, LASCAR’s CPA does not offer a competitive run-time9.
Therefore its corresponding data point was omitted in subsequent plots. Please be aware
that these results are based on Profile 1 which is a sequential read over the data, an
operation otherwise considered to be fast for storage systems.

6 Full Case Study and Benchmarks
Prior to performing a Top-Down Level 1 analysis in Section 6.1, and presenting the full
range of benchmarks in Section 6.2, we want to briefly discuss selected properties of our
selected Profiles (Table 5) and the parameters of the analysis algorithms used. For creating
the profiles, we followed practically relevant questions such as: are slices even worth
selecting? Are strides worth it? In short: contiguous slices substantially reduce memory
and compute requirements and the benefit is more significant the larger the discrepancy
between trace and slice length. We caution against the use of non-contiguous lists as
POI, as this might change the I/O behavior negatively with an increase in I/O effort

9The otherwise time-consuming step of a typecast to float is not done, preventing a more efficient use
of OpenBLAS. Please note, LASCAR’s batch size was manually set to 5000 for better results overall.
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Figure 3: Determination of SCARR batch sizes and chunking, in addition to studying
the impact of the buffer cache. Please note, all other benchmark results refer to the
non-buffered scenario with data being read from disk. All results obtained on system
Laptop (cf. Table 6). MIA is not implemented in LASCAR. See text for details.

that outweighs the benefit of computing over less data. The same is true for strides that
are equivalent to performing the same measurement but with lower sampling rate. For
instance, for a 5 GS/s sampling rate, a stride of 5 will result in an effective sampling rate
of 1 GS/s. Based on preliminary testing, the more complex indexing almost equalizes the
gain of doing less computations, which is why we chose not to include it in any profile.

Regarding the analysis parameters: for SNR, we used 256 partitions, while for CPA, we
perform a regular first-order attack using a Hamming Weight model targeting SubBytes.
For MIA, we use the same and 9 bins, since targeting an 8-bit microcontroller (Medium
data set). For TVLA, the combined data set has the dimensions as listed in Table 4.

6.1 Top-Down Level 1 Analysis of LASCAR, SCARED, and SCARR
A priority in software optimization is the identification of bottlenecks and resolving the
dominating hotspots [Int23]. Therefore, we performed a Top-Down analysis of the three
frameworks, for SNR, CPA, and MIA. The results of our analysis are shown in Figure 4.
TVLA is excluded here for reasons of brevity. While no general statement can be made
when a software is fully optimized, we refer to Intel’s guideline that suggests a breakdown
of pipeline slots as follows: 30-70% retiring, 20-40% backend-bound, 5-10% frontend-bound,
1-5% bad speculation (for optimized HPC applications) [Int23]. In addition, we emphasize
that the percentage of pipeline slots, while indicative of the level of optimization, does not
represent the absolute number of clockticks (CPU time), and therefore may not directly
lead to a shorter run-time. All percentages given refer to overall pipeline slots available.

As can be seen for SNR in Figure 4a, the percentage of retiring instructions gradually
increases from LASCAR (24.1%), over to SCARED (38.8%), and SCARR (40.6%), while
being back-end bound gradually decreases from 65.9% (LASCAR) to 43% (SCARR).
Looking further into the details of the back-end bound category, we reveal that, e.g.,
SCARED is primarily core-bound with 38%, with only 11% being memory-bound. In
contrast, SCARR is much less core-bound with only 25.7%, while increasing the memory-
bound to 16.6%. LASCAR shows the lowest core-bound of 23.3% and is 42.6% memory-
bound that is architecturally attributed to lack of memory bandwidth, and code-wise
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Figure 4: Results of the Top-down Microarchitecture Analysis (TMA) method of the
three frameworks LASCAR, SCARED, and SCARR. Unfortunately, a Level 1 Top-Down
analysis could not be performed for LASCAR’s CPA due to excessive runtime. MIA is
not implemented in LASCAR. As later seen in Section 6, a higher percentage of retiring
instructions is indicative of a better performance.

likely stem from unneeded memory copies. Especially for SNR, we consider the results
of all frameworks as quite unoptimized but our priority was CPA and MIA, as they
are more demanding workloads. Note that the effective physical core utilization for
LASCAR (15.4%), and SCARR (19.1%) are quite low, clearly indicating that SNR is not
a “compute” problem, while SCARED shows a utilization of 55.4%. We want to point
out that the implementation of the SNR partitioning is challenging, as it cannot be easily
vectorized in a Single Instruction Multiple Data (SIMD) manner. Processors would need
to perform a costly gather from memory and perform a scatter store, all of which are
expensive operations. Since memory locations are only accessed once, applying blocking
is of practically no use. Due to these inefficiencies when implementing SNR, we do not
consider it a particular good choice in terms of return on energy investment.

Moving on to CPA in Figure 4b we note that a Top-Down analysis could not be
performed for LASCAR due to excessive run-time. For SCARED, it is striking that half
of the pipeline slots are wasted due to bad speculation (50.9%), of which 35.4% are branch
mispredicts and 15.5% machine clears. Mispredicts are typically the result of un-optimized
if/else branching that are especially costly with load/store operations from/to memory.
In contrast, SCARR has a negligible amount of bad speculation (0.7%). Since CPA is
in essence the implementation of a matrix multiplication which is an inherently memory-
bound problem, seeing a 39.6% back-end bound in SCARR is not surprising, with an
almost equal split between memory-bound (19.4%) and core-bound (20.2%). SCARED is
only 5.9% backend-bound, due to the substantial losses as a result from bad speculation,
indicating needed optimizations. In this case, CPU utilization between the frameworks is
comparable at 47.5% (SCARR) and 42.9% (SCARED).

We want to conclude this Top-Down analysis by inspecting MIA, as shown in Figure 4c.
MIA is not implemented in LASCAR and was excluded from this analysis. Again, we
observe high bad speculation (50.8%) in SCARED that is the result of branch mispredicts
(48.0%) which can be traced down to their histogram implementation. In contrast, there
is negligible bad speculation in SCARR, resulting in many more retiring (67.6%) pipeline
slots compared to SCARED (42%). SCARED shows an effective core utilization of 54.1%
vs. 83.8% in SCARR. We consider SCARR’s MIA quite optimized and in-line with
the HPC guidance from Intel, despite using “just” Python with a limited amount of
Numba-generated code. As can be seen in the next section, indeed, better results from the
Top-Down analysis tend to translate into less run-time overall.
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6.2 Benchmark Comparison of LASCAR, SCARED, and SCARR
After the initial Top-Down analysis, we put all frameworks to a test by analyzing data set
Medium (Table 4) and applying the analysis profiles of Table 5. These profiles were chosen
to emulate different real-world scenarios. This data set for the bulk of our benchmarks is
the result of a power analysis using the ChipWhisperer Husky, recording all rounds of a
software AES-128 running on an XMEGA target.

For compressed data sets for SCARED, we used their compress_ets() to convert to
compressed HDF5. Please note, the implementation of this function performs unneeded
compression of all data, including plaintext (chosen at random), ciphertext (random),
and key. In contrast, such metadata remains uncompressed in SCARR. We rounded all
run-times of more than 10s, while results with less than 10s include the first decimal
position. All benchmark results from Figure 5 are discussed hereafter.
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Figure 5: Benchmarking of side-channel analysis frameworks on a Laptop (cf. Table 6),
based on the Profiles in Table 5, over data set Medium (cf. Table 4).

Profile 1 This profile represents the standard attack scenario of analyzing one byte
position of the desired algorithm (SNR, CPA, MIA), or distinguishing two sets of traces
(TVLA), while reading the whole data set. To somewhat align the results in our plots and
avoid excessive run-times for benchmarking, we chose to limit MIA to 5000 sample points.
The resulting plot in Figure 5a shows the performance of all three frameworks, including
the analysis over compressed data. SCARR outperforms all other frameworks by approx.
a factor of two which is true even when comparing compressed data sets against other
frameworks operating over uncompressed data. LASCAR provides decent performance
for SNR and TVLA, but was excluded from CPA due to excessive run-time of approx. 30
minutes which would have prevented a reasonable illustration in our plots. SCARED offers
an average performance for uncompressed data, but is affected by a dramatic increase in
processing time when working over compressed data. Possibly, this is the result of a less
than optimal choice of compression parameters, or otherwise performance-limiting aspects
in their file reader. Please note that for MIA, only 5000 samples points are processed,
therefore, minimizing the compression penalty otherwise observed in SCARED.

Profile 2 This profile represents the scenario when the recipe for extraction is already
known, and the extraction of all 16 byte positions is needed, while again using all of the
available data for the analysis, resulting in a comfortable sequential read over the data.
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Note that we excluded TVLA from this profile as it is not applicable within this profile.

For operating on many byte positions, LASCAR is able to outperform SCARED
for SNR, presumably due to the much lower CPU utilization observed during Top-Down
analysis. Here, the advantage of SCARR is again comfortably outside any misinterpretation.
Aside from SNR, compression again only has insignificant impact in SCARR (if at all). For
SCARED, presumably due to how I/O is handled and cached, relative loss in performance
for compressed data is not as significant as for Profile 1 but still noticeable.

Profile 3 In this profile, we demonstrate the negative performance impact TOI indexing
can have. In particular SCARED is affected by TOI indexing, while LASCAR and SCARR
show performance that is similar to Profile 1. SCARED shows a performance that is much
worse compared to Profile 1, despite computing only over half of the traces. This can
only be explained by a much worse I/O behavior of their file handling, as LASCAR uses
HDF5, too. LASCAR performs similarly to SCARR, while compressed data in SCARR is
still marginally faster than LASCAR. Again, we see a massive drop in performance over
compressed data in SCARED (SNR, CPA), while again pointing out the restricted number
of samples for MIA which limits this effect.

Profile 4 As recorded traces can be overly long, analysts typically choose a range for
their SCA evaluation of the data. For this scenario, we chose to use all traces available,
while limiting the sample range to the same length for all algorithms (SNR, CPA, MIA),
offering a fair comparison in terms of run-times. Since the range is approx. 1/8th of the
overall sample range, a reduction of processing time by a factor of 8 might be expected.
Unfortunately, this is not the case for any of the studied frameworks, as the increased
complexity of indexing does not result in a linear decrease of the processing time. As can
be seen from the results, all frameworks handle the selection of time ranges fairly well
relative to their results of Profile 1.

Profile 5 and 6 In the presence of strong countermeasures for complex targets, one of
the pre-processing steps prior to the actual analysis may include the alignment or selection
of traces of interest. Consequently, not all traces can be used, either because certain
patterns are not found, or their alignment fails. As result of the pre-processing, we assume
that a virtual index is created over the original data set, which then is used in subsequent
attempts to analyze the data or to store it separately. To emulate creation of such a virtual
index, we randomly generated an ordered index of traces (based on the same seed for
repeatability) to then select traces of interest from the data set. For Profile 5, we assume
that 60% of the traces can be used, while for Profile 6 this number is 80%.

This advanced index was then passed to the frameworks. In case of LASCAR, this
causes data to be read in full prior to any computation, as passing an advanced index to
HDF5 causes it to return values (as opposed to providing a view), which is a known h5py
limitation, thereby violating the out-of-core requirement. SCARED does work over such a
virtual index and achieves reasonable performance over uncompressed data. However, the
same index over compressed data causes SCARED to show an excessive run-time (>1h)
which is why we terminated its process.

Summary. In all cases, SCARR performs similar to Profile 1, while showing somewhat
of a performance degradation for SNR, as data cannot be fetched quickly enough by the
asynchronous file reader. Neglecting this minor deficiency, this confirms our overall design
rationale for SCARR and its formidable performance over compressed data. For the sake of
completeness and to check behavior under less favorable conditions, we did limited testing
over data set Large to confirm the observed behavior also for this simulated data set.
While the results were fully consistent for the uncompressed scenario, we lost the benefits
of compression due to fully using 16-bit with high levels of simulated noise, resulting in a
much lower compression ratio, while still performing faster than the other frameworks.
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Table 4: Different data sets for benchmarking and comparison of compression levels. Due to the vast amount of processing, we focus on the data
set Medium for benchmarking. Small data set is ASCAD [BPS+20]. Tiled data set was not converted to HDF5, as none of the other frameworks
support it. Medium and Tiled will be made available under https://github.com/hsrlab/scarr and also be part of our artifact submission.
Dataset SCA Properties Data Set Properties Size in GiB Compressed in GiB [reduced by %] (chunking)
Name Algorithm Measurement #tiles #traces #samples type uncompressed HDF5a Zarrb

Small (SW)AES Power (8-bit) 1 60k 100k int8 5.6 2.9 [-48.2%] (235,782) 3.2 [-42.9%] (5000,1000)
Medium (SW)AES Power (12-bit) 1 100k 70k int16 14.0 9.6 [-31.4%] (391,547) 7.2 [-48.6] (5000,1000)
Large AES Simulated (16-bit) 1 10M 5k int16 96 not assessed 92 [-4.1%] (5000,1000)
Tiled (HW)AES EM (8-bit) 15,8 20k 20k uint8 46 not assessed 33 [-28.3%] (5000,1000)

aCompression parameters: DEFLATE/ZIP is the default in HDF5 and also SCARED (with compression level 9). Metadata is compressed/chunked, too.
bCompression parameters: lz4hc with compression level 9 and Blosc.shuffle. Metadata remains uncompressed and is chunked as (5000,16).

Table 5: Benchmark profiles for different analysis scenarios (see text), covering varying number of byte positions to attack, Trace-of-Interest (TOI)
selection, and sample Points-of-Interest (POI) index. Due to excessive run-time, we chose to run MIA over a shorter range of samples only.

Samples Index (POI)
Profile Byte Positions Trace Index (TOI)a SNR/TVLA/CPA MIA Note

P1 1 [::1] (all) [::1] (all) [0:5000:1] Sequential read of all traces (use whole data set).
P2 16 [::1] (all) [::1] (all) [0:5000:1] Attacking all byte positions while using whole data set.
P3 1 [::2] (every 2nd) [::1] (all) [0:5000:1] Only working on every 2nd trace (structured TOI selection).
P4 1 [::1] (all) [48739:57413:1] [0:8674:1] Same POI length for direct run-time comparison.
P5 1 random (60% of traces) [::1] (all) [0:5000:1] Randomness from seeded pseudo random number generator.
P6 1 random (80% of traces) [::1] (all) [0:5000:1] Randomness from seeded pseudo random number generator.

aThe index notation follows NumPy’s syntax of [start:stop:stepsize].

Table 6: System configurations for benchmarks. Laptop and Server running Ubuntu 22 LTS with Kernel 6.2, Python 3.10.12, and NumPy 1.23.5.
Apple with MacOS Ventura, Python 3.11.4, and NumPy 1.24.4. Apple and Intel both with OpenBLAS as NumPy backend. Intel platforms are
with Hyperthreading. The given memory bandwidth is the theoretical system bandwidth when using all channels. Linux storage formatted as ext4.

System CPU (Base Frequency) Node #CPUs /#Cores /#Threads Memory (Type, Bandwidth) PCIe SSD Storage (Type)
Laptop Core i7-11700H (2.3 GHz) 14 nm 1 /8 / 16 (16 total) 64 GB (DDR4-3200, 2 · 25.6 GB/s) 4.0 NVMe (Samsung 980 Pro)
Server Xeon 8276M (2.2 GHz) 14 nm 4 / 4 · 28 / 4 · 56 (224 total) 6.5 TB (DDR4-2666, 6 · 21.3 GB/s) 3.0 NVMe (Samsung 980 Pro)
Apple M1 Pro (3.2 GHz) 5 nm 1 / 8P + 2E / 8P + 2E (10 total) 16 GB (DDR5-6400, 4 · 51.2 GB/s) 4.0 NVMe (Apple)

https://github.com/hsrlab/scarr
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6.3 Comparison Across System Architectures
In the following, we focus on the performance of three systems with different platform
architectures, as listed in Table 6. The purpose of this comparison is to illustrate the behav-
ior when offering different number of cores (compute-capability) and memory-bandwidth
and latency (memory-capability). We are comparing three systems: Laptop, Server, and
Apple. Laptop and Server are the same technology node with similar microarchitecture
and AVX512. In addition, they almost have the same base frequency. However, their
number of cores is fundamentally different, as Server is a multi-socket system with a
total of 224 threads, while Laptop only has 16 threads. Compared to Server, the memory
bandwidth per channel is higher on Laptop due to higher frequency, while Server has more
channels. Laptop uses low-latency memory. File I/O throughput is limited by PCIe3 on
Server compared to PCIe4 on Laptop. At first sight, Server offers much higher compute
capabilities while being limited in terms of I/O and memory throughput.

In contrast, system Apple contains an M1 Pro with the least number of threads total
(and limited overall memory of 16 GiB), while offering by far the highest memory bandwidth
per channel and overall system bandwidth. Practical I/O speeds over PCIe4 are assumed
to be similar to system Laptop but were not assessed in a stand-alone benchmark.

Running SCARR with Profile 1 and Profile 2 (cf. Table 5) over the Medium data set
results in Figure 6. Looking at Figure 6a, we can see that for SNR, system Apple performs
similarly to Laptop. Server is by far the slowest which appears surprising but can be
explained as follows: SNR is a memory-bound problem (both bandwidth and latency),
and file I/O on the server is slower due to PCIe3, resulting in cores to be starved of
data. To make this situation worse, neither SCARR nor any of the other frameworks
are optimized for a Non-Uniform Memory Architecture (NUMA). Server is a four-socket
crossbar NUMA architecture and we are creating Numba-generated compute threads
without specific CPU affinity, resulting in remote memory access, dramatically increasing
memory latency. Indeed, Intel VTune reports 100% remote memory access utilization
through one CPU, while the core utilization in any other CPU remains close to 0.1% –
despite “computing” the SNR. In short: this problem severely amplifies the already limited
memory bandwidth and latency situation in Server.
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Figure 6: SCARR processing of data set Medium (cf. Table 4) on different systems, using
Profile 1 and 2 (cf. Table 5). See text for explanations.

Note, even if the software were rewritten to follow a cluster-oriented processing-style of
map-reduce, with parallel readers for each NUMA node, thereby avoiding remote memory
access, it is still likely to be limited by PCIe3 for I/O. Alternatively, compressed data
can be used to relieve pressure on the memory bus. As a result, Server shows the most
substantial gain by using compressed data, as the disparity of compute-power relative to
data-throughput is the most significant among the compared systems.
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For TVLA in Figure 6a, we again see that Server is the slowest, which again is
explained by lower I/O speed and memory. Just as before, using compression helps to
improve performance. Laptop and Apple perform in a similar way, with minor differences
presumably attributed to different SSD models, as the core utilization remains low.

For CPA in Figure 6a, again, Server is the slowest but this time, the reasons are slightly
different. Due to the fact that Server is a NUMA architecture, and Python is a single
process constrained by the Global Interpreter Lock (GIL), threads created by the NumPy
backend OpenBLAS are confined to one CPU. Therefore, the performance of Server is that
of one of its CPUs while all other CPUs remain unused. Since CPA is essentially a matrix
multiplication problem for computing the correlation, it is inherently memory-bound.
Furthermore, the processed data chunks are rather small, thereby likely preventing any
gains from multiple memory channels. As a result, the server performance is negatively
impacted by the lack of memory-bandwidth and high latency. Note that these limitations
exist in the other frameworks and also commercial software such as esDynamic, too.

Unlike the problems before, MIA in Figure 6a represents a core-bound problem. In
addition, Profile 1 operates only over a limited amount of data, drastically minimizing the
I/O burden. As can be seen, Server is the fastest by a small margin, ultimately benefiting
from its many cores. Due to the limited amount of data being processed, compression only
has a negligible effect on the overall processing time.

For Figure 6b, we are considering Profile 2. It is striking that Server performs much
better across all benchmarks compared to Profile 1. Since the analysis over different byte
positions relies on the same data, which is then buffered (and possibly cached) when
accessed multiple times, Server is no longer limited by I/O or memory bandwidth and
latency, such that all available cores can be leveraged. The increase in processing time is
especially minor for SNR and MIA, while more noticeable for CPA. Note, for CPA, we
experimented also with NUMA optimized code, reducing the processing time by about
15s, but we chose to not include this to ensure consistency of the code being used.

Other systems show a mostly balanced increase in processing time that showcase
the complex interaction between microarchitecture utilization, number of cores, memory-
bandwidth and latency, and I/O. While in most cases, compression still is beneficial, on
Laptop, we observe a little bit of a slow-down for SNR. Unfortunately, we could not
determine the root cause of this. Looking at the MIA results of Server, it is impressive
how the processing time of 40s is about 12.6x less than that of Laptop, which resembles
the factor by which their number of cores differ (224 threads vs. 16 thread = 14x), while
accounting for some overhead and slower memory. Based on these results, it is evident
that substantial differences across different system architectures exist. While the overall
behavior did not change for the limited set of systems we tested (SCARR was fastest),
clearly, different scaling effects are observed in the different frameworks. Due to the limited
added value of these results and lack of space, we chose to not include them.

7 Lessons Learned – High-Performance Design Patterns
Maximizing the performance of existing hardware, or planning ahead for the next purchase
of computer hardware can greatly impact evaluation performance. This is only possible if
informed decisions can be made. Therefore, we present our lessons learned throughout the
process of writing an optimized SCA framework.

DP1 – Identify bottlenecks. Our Top-Down analysis revealed unexpected deficien-
cies in other frameworks that indeed do affect performance. Awareness and moderate
tuning of the code can already greatly improve performance. Knowing about current
software bottlenecks and microarchitecture resource utilization can help ensure to purchase
more capable hardware to mitigate previously existing architectural limits.

DP2 – Avoid conditional branching especially with memory write-backs.
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Computation of SCA algorithms may require conditional branching, which causes the CPU
to speculate about the outcome of the condition. Just like in GPUs should branching be
avoided if possible. For example, nested if/else conditions in a for-loop will cause massive
bad speculation, which is what we observed in other code.

DP3 – Increase variable locality. To benefit from compiler optimizations and avoid
direct memory write-backs, improving variable locality can help to benefit from caching.
While this technique may appear contrary to initial optimization goals, as it results in
more code and variables, the benefits clearly outweigh solely code-oriented quality criteria.

DP4 – Do not make one-pass processing a dogma. While one-pass processing
has become the de-facto standard for processing side-channel data, we do not consider it a
strict principle, for as long as a multiple-access pattern is restricted to the same chunks
that can be buffered, such that multiple reads can be retrieved from the buffer cache or
CPU cache. This can help to more easily scale parts of the software architecture.

DP5 – Avoid unneeded memory copies. In Python, it can be tricky to avoid
unneeded memory copies. Especially for algorithms that tend to be memory-bound already,
such as SNR, or CPA, creating such memory copies will create additional back-pressure on
the memory bus. Taking into account that memory is slower than the CPU (or its cache),
this can cause an additional undesirable penalty for effective pipeline utilization.

DP6 – Hide disk latency by asyncing. Once computation is sufficiently demanding
and is more burdening than I/O, data should be asynchronously prefetched, especially when
performing compression or more complex indexing. Otherwise, fetching data serializes the
processing due to data not arriving in the CPU fast enough, or due to the GIL preventing
other threads from being executed in the meantime.

DP7 – Use caching and compression where appropriate. Data throughput into
the CPU can be quite limited. Loop blocking and tiling are standard techniques to benefit
from caching, which helps to overcome memory bandwidth limits. Additional gains are
possible by compressing the data, for as long as this is offset by sufficient compute power.
This is also a desirable option for offloading data onto a GPU.

8 Limitations and Bonuses of SCARR
Limitation: Limited range of algorithms. Our proof of concept was a time- and

resource-limited effort (cf. Acknowledgements) to make the case for compressed data sets
and raise awareness for potential improvements in some of the other frameworks. As such,
the overall range of (pre-) processing algorithms, analysis options, etc. is limited and
SCARR is currently not a drop-in replacement for commercial frameworks.

Limitation: Zarr still being quite slow. Additionally, since Zarr-Python was
mainly developed for file retrieval from remote storage, some internals are not fully
optimized for our use-case. As backed by our experiments, Zarr (and HDF5) slow down the
processing substantially. For example, the TVLA ratio of CPU time is approx. 1:2 between
I/O and compute, but with substantial gaps between computations as this CPU time is
unevenly split between 2 threads for reading and many threads for the computation. This
also makes our asynchronous pre-fetch fail. We are currently in touch with Zarr developers
to optimize this behavior for our low-latency, one-pass, out-of-core oriented processing,
possibly aiming at a Zarr implementation leveraging io_uring in a native language.

Limitation: Numerical accuracy not assessed. Furthermore, we optimized for
speed while trying to avoid algorithms and functions that could possibly result in numerical
instability. We did not specifically assess the numerical accuracy in our framework, or any
other. For example, based on our opinion, the SNR computation of the noise component
in SCARED is based on a naive, one-pass variance approach that is prone to catastrophic
cancellation. Data type precision and more intricate problems of, e.g., differing precision
along different axes when using, e.g., np.sum, were not the primary focus of this work.
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Limitation: Uniform configuration. We tried to make this a fair comparison by
selecting only one set of uniform parameters that is static across all systems, despite
knowing that per-system tweaking of SCARR would give better results. In contrast,
SCARED does internal and automatic tuning of, e.g., the batch sizes based on data set
dimensions. In the future, we may consider such optimizations, too.

Bonus: Tiled data sets. As evident from our description, we are the only framework
to directly support EM tiles in a way that is also very R&D-friendly. For example,
once suitable EM tiles are identified for a more detailed analysis, other sub-directories
(corresponding to unneeded tiles) can be removed from the data set simply by removing
the directories with OS-level mechanisms, thereby avoiding 3rd party tools or scripting.

Bonus: Unlimited storage on Box.com (possibly others). Bulk data storage
providers such as Box.com only theoretically offer unlimited storage. Quite often, the size
of single files is limited to, e.g., 50 GiB (enterprise account), while the overall storage indeed
can be up to 5 PiB. File formats without sparse storage cannot be used in combination
with such services. In contrast, Zarr’s DirectoryStore with properly sized chunks enables a
convenient way to work around the per-file limitations of these services.

Bonus: Cloud-native format. Zarr was developed with cloud-native capabilities
in mind. As such, it can be used in combination with cloud-storage systems such as
S3 [Ama06] or N5 [Saa17] easily. Please note that the high-latency of file retrieval may
require a different configuration compared to what we presented in this paper.

9 Conclusion
By following high-performance design patterns and selecting Zarr as file format, we could
demonstrate that side-channel leakage detection metrics are a substantially I/O-bound
problem (SNR, TVLA), while the computation of a cache-optimized MIA becomes primarily
core-bound, with moderate I/O improvements by asynchronously pre-fetching data. CPA
is in between these workloads and benefits significantly from increased memory-bandwidth,
as otherwise the cores are starved of data too quickly (Intel). This problem may get worse
in the future with new CPU instructions being released to the market by both Apple and
Intel (the latter currently not supporting float32/64 though), specifically aiming at faster
matrix multiplication (AMX). To maximize performance within a Python framework, we
also showed how different parameters such as chunking and batch size are chosen.

By way of example, we then demonstrated that it is possible to achieve noticeable
performance gains over more mature frameworks. Our proposed software architecture is
vastly superior and creates a win-win situation: compressed data sets are likely to take
up less space on disk, while at the same time, they can speed up the processing, as the
I/O burden gets less since fewer data must be read (Intel). While only tested on a limited
number of platforms, we are convinced that the selection of systems is representative for a
wider range of platforms. We could also demonstrate that if memory-capabilities are not
limiting but instead cores (Apple), indeed decompression results in a marginal performance
loss, while pointing out that Apple was not the platform for which we tuned our code.

Due to the diversity in compute platforms (including NUMA systems), and the need
for proper configuration, it would be unreasonable to make claims towards having the
fastest framework without more thorough testing. Also, there will be artificial corner
cases where our static configuration will deliver sub-optimal results. In addition, due
to how we support tiled data sets (through mp.pool) incurs a set up cost which cannot
be avoided when operating over few points only. Implementations with more simplistic
(contiguous) file formats and access patterns, and higher degree of native code may perform
faster over sequentially read data. Therefore, we only claim to (temporarily) have the
fastest framework over compressed data within the technical scope described in Section 2.
However, we are fully confident that SCARR performs very well for all real-world scenarios.
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While Zarr performed in a more respectable way than HDF5, we emphasize that both
file formats slow down limited-compute workloads such as SNR and TVLA, especially
when performing any type of indexing. In the future, we expect further performance
improvements by Zarr Version 3, as it introduces new features such as “Shards” that could
benefit SCA-oriented workloads. Further gains also could be achieved by implementing a
custom bit-packing shuffle filter for compression, that takes the specifics of unused bits in
an integer value more directly into account by masking them out.

Exciting new hardware currently being released includes PCIe5, Intel Xeon Max CPUs
with HBM2 memory, and Apple Pro/Max/Ultra CPUs with a memory bandwidth up to
800 GB/s! These developments may further change the overall calculus of performing
side-channel analysis at scale, and how algorithms should be implemented for optimum
performance. We hope by providing many pointers for potential optimizations, industry
practitioners are inspired to improve their frameworks to more accurately reflect the needed
effort to attack real-world cryptographic implementations.
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