
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 2, pp. 735–768. DOI:10.46586/tches.v2024.i2.735-768

Quantum Circuit Reconstruction from Power
Side-Channel Attacks on Quantum Computer

Controllers
Ferhat Erata, Chuanqi Xu, Ruzica Piskac and Jakub Szefer

Yale University, New Haven, CT, US
{firstname.lastname}@yale.edu

Abstract.
The interest in quantum computing has grown rapidly in recent years, and with
it grows the importance of securing quantum circuits. A novel type of threat to
quantum circuits that dedicated attackers could launch are power trace attacks. To
address this threat, this paper presents first formalization and demonstration of using
power traces to unlock and steal quantum circuit secrets. With access to power traces,
attackers can recover information about the control pulses sent to quantum computers.
From the control pulses, the gate level description of the circuits, and eventually
the secret algorithms can be reverse engineered. This work demonstrates how and
what information could be recovered. This work uses algebraic reconstruction from
power traces to realize two new types of single trace attacks: per-channel and total
power attacks. The former attack relies on per-channel measurements to perform a
brute-force attack to reconstruct the quantum circuits. The latter attack performs a
single-trace attack using Mixed-Integer Linear Programming optimization. Through
the use of algebraic reconstruction, this work demonstrates that quantum circuit
secrets can be stolen with high accuracy. Evaluation on 32 real benchmark quantum
circuits shows that our technique is highly effective at reconstructing quantum circuits.
The findings not only show the veracity of the potential attacks, but also the need to
develop new means to protect quantum circuits from power trace attacks. Throughout
this work real control pulse information from real quantum computers is used to
demonstrate potential attacks based on simulation of collection of power traces.
Keywords: Quantum Circuits · Quantum Computers · Side Channel Attacks ·
Power Trace Attack · Automated Reasoning · Mixed Integer Linear Programming

1 Introduction
The interest in quantum computing is growing rapidly and already a large numbers of
quantum computers are easily accessible over the internet to researchers and everyday
users. Due to the expensive nature of the quantum computing equipment, these computers
are currently available as cloud-based systems. For example, IBM Quantum [IBM23],
Amazon Braket [Ama23], and Microsoft Azure [Mic23] already provide access to various
types of Noisy Intermediate-Scale Quantum (NISQ) devices from different vendors. Remote
access makes it easy for different users and companies to run algorithms on real quantum
computers without the need to purchase or maintain them. On the other hand, the users
have no control over the physical space where the quantum computers are. While the
cloud providers may not be themselves malicious, the threat of malicious insiders within
data centers or cloud computing facilities is well-known in classical security [SJPBL14].
These malicious insiders may have physical access to the equipment of quantum computers.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-10-15 Accepted: 2023-12-15 Published: 2024-03-12

https://doi.org/10.46586/tches.v2024.i2.735-768
mailto:ferhat.erata@yale.edu,chuanqi.xu@yale.edu,ruzica.piskac@yale.edu,jakub.szefer@yale.edu
http://creativecommons.org/licenses/by/4.0/

736 Quantum Circuit Reconstruction from Power Side-Channel Attacks

Quantum
Computer
Backend

Job
Management

Server

Microwave
Electronics and

Controllers

Recover Control
Pulses

Obtain Transpiled
Quantum Circuit

Retrieve User’s
Quantum Program

Power Side-Channel
Attacker

Proprietary
Quantum

Circuit

circ=QuantumCircuit(2,2)
circ.x(0)
circ.sx(1)
circ.cx(0,1)
circ.measure_all()

Leaks

circ=QuantumCircuit(2,2)
circ.x(0)
circ.sx(1)
circ.cx(0,1)

Figure 1: Typical operation of a cloud-based quantum computer. Red arrows highlight
potential power trace threats.

With access to the quantum computers and the microwave controllers, malicious insiders
could leverage physically collected information to steal or leak the quantum circuit secrets.

For classical computers, side-channel attacks of different types are a well-known
threat [Sze18]. Two widely studied and analyzed side-channels are timing- and power-
based channels. There are also thermal, EM, acoustic, and a variety of other categories of
side-channels. In timing side-channel attacks the attacker is trying to learn some secret
properties about the circuit by measuring the execution times. Timing attacks are powerful
enough in classical computers to break the implementation of standard cryptographic
primitives, such as DSA, RSA or Diffie-Hellman [Koc96]. Timing side-channels are easier
to exploit as they only require doing timing measurement of the victim. Power side-channel
attacks are more convoluted attacks, where the attacker tries to establish a correlation
between the power consumption and the operations and data that the circuit executes.
Kocher et al. [KJJ99] showed how to reconstruct the encryption keys in the Data Encryp-
tion Standard (DES) using a power consumption analysis. Power attacks require physical
access to monitor the execution of the target computer.

Power side channels are well studied for classical computers [EPMS23, PR13, WSRW21,
ABB+21, BDM+20, ABP19, WSW19, BCHC18, BYT17, BRN+13, EW14, MOPT12].
There are even platforms [OC14] for analyzing power side channels. However, understanding
power side channels for quantum computers has not been explored yet, which this work
aims to address. We show how a malicious attacker can reconstruct a secret quantum
circuit that is being executed, by simply measuring the power consumption.

There is very limited research on understanding power side-channel attacks on quantum
computers [XES23b]. One insight about quantum computers is that if the attacker is to
perform physical measurements on the qubits during the computation, these measurements
would interact with the qubits and destroy their state. However, we observe that each
quantum computer is controlled by external hardware such as microwave electronics and
controllers. Quantum computers, such as superconducting qubit machines from IBM,
Rigetti, or others, use microwave pulses to execute gate operations on qubits. The control
pulses are fully classical and could be spied on – which is the target of this work.

This paper shows how by measuring the power consumption of the controller devices
sending microwave pulses to a quantum computer, we can recover a potentially secret
quantum circuit that the quantum computer executed. We show that anybody with access
to power traces of the control pulse generation devices can capture and recover the control
information. While this work explores power-based side-channels, the same or similar ideas

Ferhat Erata, Chuanqi Xu, Ruzica Piskac and Jakub Szefer 737

could apply to electromagnetic (EM) or other types of physical side-channels. This is left
as orthogonal work.

1.1 Power Side-Channel Threats to Quantum Computers
Figure 1 shows the operation of today’s cloud-based quantum computers. Remote users
submit jobs to the cloud provider, where the job management or similar server dispatches
the jobs to particular quantum computers, also called backends on IBM Quantum. Typically
the digital instructions are sent to controller logic, such as microwave electronics, which
generate the actual analog control signals sent to the quantum computer.

We assume that the classical computer components, e.g., the job management server,
are protected from side-channels. Meanwhile, controller electronics of quantum computers,
such as arbitrary waveform generators (AWGs) have not been analyzed for potential
side-channels before this work. Consequently, we focus on and demonstrate potential new,
power side-channel attacks that could be used to extract information about users’ quantum
circuits (quantum gates and qubits). Rather than targeting the superconducting qubits
themselves (which are isolated in a cryogenic refrigerator), we focus on the controller
electronics shown in the middle of Figure 1.

The vulnerabilities in quantum computer controllers encompass more than just gate
recovery. An attacker might discern the number of qubits used in a quantum program,
a significant concern for algorithms like Quantum Approximate Optimization Algorithm
(QAOA) [CK19]. Variational quantum algorithms [CAB+21] are notably sensitive to qubit
count and circuit depth. Extracting such hyperparameters can reveal crucial information
about the algorithm. Moreover, given the current state of quantum computing where
inputs are hard-coded, an attacker could potentially extract sensitive input data from
the circuit.

Our primary focus is to protect the intellectual property embedded in quantum programs.
Quantum circuits encapsulate both the algorithm and its inputs. An attacker capable of
recovering parts of the quantum circuit can misappropriate this intellectual property or
sensitive data. This concern amplifies when quantum programs run on external quantum
computers. A recent workshop by The National Quantum Coordination Office underscored
this issue, emphasizing the role of formal methods in enhancing quantum computing
security [Off22]. Our research aligns with this perspective, pioneering the use of formal
methods for quantum circuit recovery.

1.2 Lessons from Historical Technological Threats
The significance of vulnerabilities in quantum computer controllers cannot be overstated,
considering the ongoing evolution of technological advancements and their inherent risks.
For perspective, speculative execution attacks in classical computers were not recognized
as threats until 2018 [LSG+20, KHF+20], despite having been operational since the
commercialization of the technology by IBM and Intel in the 1990s. This delay between
innovation and the identification of vulnerabilities underscores the necessity for proactive
security measures.

In the context of quantum computers, addressing vulnerabilities in their infancy is
crucial, even as the field continues to develop. Our research delves into these potential
risks, emphasizing the importance of safeguarding quantum computing systems.

Drawing from past lessons, unchecked technological vulnerabilities can culminate in
substantial security breaches. As cache attacks emerged long after caches were invented, a
similar oversight with quantum computers could be costly. It’s imperative to address these
challenges proactively, ensuring quantum computing’s advancement aligns with rigorous
security protocols.

738 Quantum Circuit Reconstruction from Power Side-Channel Attacks

I

Q
LO RF

AW
G

LO

Quantum
Computer

Collect Power
Traces

Reconstruct
User Circuit

Microwave Pulses

Figure 2: Schematic of a typical qubit drive setup. The local oscillator (LO) generates a
low phase-noise microwave carrier signal, and then the wave is modulated in the IQ mixer
by I and Q components generated by the arbitrary wave generator (AWG). The pulse is
then sent to drive the qubits in the quantum computer. The red line shows the process to
collect power traces, which can be exploited by attackers to retrieve information.

1.3 Contributions
Compared to the work by Xu et al. [XES23b], our work provides a formalization of the
power side channel attack. Additionally, we also present a novel algebraic reconstruction
method for recovery of quantum circuits. There are two reconstruction methods that we
introduce; those methods depend on the attackers’ abilities. In the per-channel method we
assume that the attacker collects power traces from individual qubit channels. Meanwhile,
in our total power single trace method we assume the attacker can only measure the total
power trace of all channels.

We have empirically evaluated our approach for 32 benchmark quantum circuits. The
evaluation shows that our technique is highly effective at reconstructing quantum circuits.
In summary, the paper contributes the following:

• The first formalization of power side channel attacks on complete reconstruction of
quantum circuits from power traces, which is given in Section 4.

• Demonstration of circuit reconstruction using our new per-channel single trace attack:
this attack relies on single-shot per-channel measurements to perform a brute-force
attack to reconstruct the quantum circuits, which is given in Section 5.1.

• Demonstration of circuit reconstruction using our new single-shot total power side-
channel attack: this attack relies on a single power side-channel measurement
and performs attack using Linear Mixed Integer Real Arithmetic (LIRA) solving
and Mixed-Integer Linear Programming (MILP) optimization, which is given in
Section 5.2.

• Details of the evaluation of the attacks on 32 real quantum circuits in the QASM-
Bench1 benchmark suite [LSKA22], using control pulse information from real IBM
quantum computers, which is given in Section 6.

2 Background
This section provides background on quantum computers and typical quantum com-
puter workflow.

2.1 Qubits and Quantum States
The most essential component of quantum computing is the quantum bit, or qubit for
short. It is theoretically comparable to the bit used in current classical computing. Like a
bit, a qubit has two basis states, which are represented by the bra-ket notation as |0〉 and

1https://github.com/pnnl/QASMBench/

https://github.com/pnnl/QASMBench/

Ferhat Erata, Chuanqi Xu, Ruzica Piskac and Jakub Szefer 739

|1〉. Whereas a classical bit can only be either 0 or 1, a qubit can be any linear combination
of |0〉 and |1〉 with norm 1. With this notation, a qubit |ψ〉 is typically represented as:
|ψ〉 = α |0〉+ β |1〉, where α and β are complex numbers satisfying |α|2 + |β|2 = 1. Qubits
are frequently represented using vectors. For example, |0〉 = [1, 0]T and |1〉 = [0, 1]T are
two-dimensional vectors that can be used to represent the basis states of a single qubit.
The above state |ψ〉 can therefore be expressed as |ψ〉 = α |0〉 + β |1〉 = [α, β]T . There
are representations that are equivalent for multi-qubit states. For instance, the two-qubit
states’ space is made up of the four basis states |00〉, |01〉, |10〉, and |11〉. In the space of
n-qubit states, there are 2n basis states that range from |0 . . . 0〉 to |1 . . . 1〉, and a n-qubit
state |φ〉 can be expressed as follows:

|φ〉 =
2n−1∑
i=0

ai |i〉 where
2n−1∑
i=0
|ai|2 = 1.

2.2 Quantum Gates
The fundamental quantum operations at the logic-level are quantum gates, which are
comparable to classical computing. Quantum algorithms are made up of a series of
quantum gates that can convert input qubits into different quantum states. Quantum
gates are unitary operations that modify the input qubits, i.e., for a quantum gate U
that is applied to a quantum state |ψ〉, the quantum state is evolved to |ψ〉 → U |ψ〉, and
UU† = U†U = I. With the vector-matrix representation, 2n × 2n matrices can be utilized
to express n-qubit quantum gates.

One classical example is the gate that is analogous to the NOT gate in classical
computing, the Pauli-X gate, that exchanges the components of |0〉 and |1〉. Another
significant example is the two-qubit CNOT gate, also known as the CX gate, which, if the
control qubit is in the state |1〉, applies a Pauli-X gate to the target qubit; otherwise,
nothing happens. There are some more matrices of quantum gates along with their matrix
representations. One thing to keep in mind is that our qubit order is consistent with that
in Qiskit [Qis23], where the leftmost qubit is the most important and the rightmost qubit
is the least important. As a result, if a different qubit order is used in other studies, the
CX gate may have a different matrix representation. Below we show several matrices of
quantum gates:

I =
[

1 0
0 1

]
, X =

[
0 1
1 0

]
, CX =

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 , RZ(θ) =
[
e−i θ2 0

0 ei θ2

]
, SX = 1

2

[
1 + i 1 − i
1 − i 1 + i

]

A small number of quantum gates can be used to approximate any unitary quantum gate
within a small error, as shown in the study [DBE95]. One of the crucial configurations of
quantum computers is the basis gates, also known as native gates. Different manufacturers
or even various versions of quantum computers from same manufacturer may have different
native gates. Choice of supporting different types of basis gates is a trade-off between
numerous attributes like error rate and efficiency. Our experiments in this study were done
on IBM Quantum, and typically, the basis gates are provided by IBM quantum computers
are: I, RZ, SX, X, and CX. Prior to being executed on physical quantum computing hardware,
quantum gates such as the commonly utilized Hadamard gate need to be broken down
into these basis gates.

2.3 Control Pulses
Microwave pulses are typically used to control superconducting qubits. The right control
pulses corresponding to each basis gate must be generated and supplied to the quantum

740 Quantum Circuit Reconstruction from Power Side-Channel Attacks

0 544 1089 1633 2177 2722
System cycle time (dt)

VZ(/2)

Y() X()
D0

no freq.

X(/2) CR(/4) CR(/4)
D1

no freq.

CR(/4) CR(/4)
U0

no freq.

Name: CX, Duration: 2592.0 dt

(a) CX pulse

0 34 67 101 134 168
System cycle time (dt)

X()
D0

no freq.

Name: X, Duration: 160.0 dt

(b) X pulse

0 34 67 101 134 168
System cycle time (dt)

X(/2)
D0

no freq.

Name: SX, Duration: 160.0 dt

(c) SX pulse

Figure 3: Example SX, X, and CX gate control pulses. Figure from [XES23b].

computer in order for it to execute each basis gate. Figure 3 displays examples of control
pulses for the SX, X, and CX gates. The I gate on IBM Quantum has no effect and is
effectively just a delay between pulses. In addition, the RZ gate is a virtual gate without
an actual pulse.

Typically, the envelope, frequency, and phase together characterize a pulse. In the case
of the superconducting qubit control, the frequency and phase specify the carrier signal
that is to be modulated by the lower-frequency envelope signal. The local oscillator (LO)
generates the low phase-noise microwave carrier signal. The envelope specifies the shape of
the signal that is created by the arbitrary waveform generator (AWG). The envelop signal
is mixed with the carrier signal and that is transmitted to the qubit or couplings to drive
operation of the quantum computer. Figure 2 displays the standard devices for driving
the qubits.

Despite the fact that envelopes can have any design, they are often parameterized by
a few preset forms, requiring a minimal number of parameters to specify the envelope.
These factors often include duration, which indicates how long the pulse is, amplitude,
which indicates how strong the pulse is, and other parameters, which determine the pulse’s
structure. For instance, the Derivative Removal by Adiabatic Gate (DRAG) pulse, which is
defined by sigma, which specifies how wide or narrow the Gaussian peak is, and beta, which
specifies the correction amplitude, as well as the duration and amplitude, is a standard
Gaussian pulse with an additional Gaussian derivative component and lifting applied.
Another illustration is the Gaussian square pulse, which is a square pulse with a rise-fall
in the shape of a Gaussian on each side that has been raised such that its initial sample is
zero. It is parameterized by sigma, which determines the width of the Gaussian rise-fall,
the width of the embedded square pulse, and the ratio of the duration of each rise-fall to
sigma, in addition to the duration and amplitude.

All native gates on IBM Quantum have predetermined pulses, and calibrations are
used periodically to adjust their parameters so they can continue to operate with high
fidelity over time.

2.4 Pulse-Level Circuit Description

To completely define a quantum circuit, all necessary pulses must be specified, together
with their timing in relation to the circuits’ beginning point and the qubits to which they
will be applied. A sequence of pulses (each defined by envelope, frequency, and phase) and
the qubits or couplings they operate on effectively defines a so-called pulse-level circuit
description. The superconducting quantum computer control equipment generates and
delivers the pulses through RF cables to the cryogenic fridge wherein the qubits and
couplings are located.

Ferhat Erata, Chuanqi Xu, Ruzica Piskac and Jakub Szefer 741

Build Circuit

Gate-Level Circuit Transpiled Circuit Pulse-Level Circuit

Program Results

Transpile

Quantum Computer

Qiskit Quantum Program

circ=QuantumCircuit(2,2)
circ.h(0)
circ.cx(0,1)
circ.measure_all()

Schedule Execute

Get Results

Open QASM Program

qreg q[2]; creg c[2];
h q[0];
cx q[0],q[1];
measure q[0] -> c[0];
measure q[1] -> c[1];

Convert

User

Figure 4: Example of process for running quantum circuits on superconducting quantum
computers in Qiskit.

2.5 Running Circuits on Quantum Computers

In Figure 4, we demonstrate a typical Qiskit example on IBM Quantum for running
quantum circuits. The quantum circuits are typically represented as code, as shown by
QASM Circuit Specification or Qiskit Circuit Specification in Figure 4. Similar to classical
computing, quantum circuits typically consist of complex instructions. The preparation,
compilation, and assembly processes used for classical computing programs are analogous
to the activities needed to convert quantum circuits into low-level and hardware-specific
instructions before they can actually be executed on quantum computers. To be more
precise, while there can be infinite ways to describe a quantum circuit with the same goal,
ultimately only the native gates that are supported by the quantum computer need to
be used.

As a result, typically the input circuit specification is translated into a “Gate-Level
Circuit", as shown in Figure 4. Gate-level circuits can be visualized as shown in the figure,
where the gate operations are represented by the symbols on the lines and qubits are
represented by the lines that go from left to right. Without more information, it is usually
assumed that qubits are in the |0〉 state at the beginning of the quantum circuit. Qubits
then evolve through left-to-right sequential processes and are controlled by quantum or
classical operations specified in the circuit plot. In order to measure, collect, and store
qubit data in classical memory for upcoming analyses, measurements are often carried out
at the conclusion of the quantum circuit.

The gate-level circuits are then transpiled, which is a Qiskit term that refers to the
operations and transformations that are similar to preprocessing and compilation in classical
programs. Transpiling is a multi-step process that involves breaking down non-native
quantum gates into groups of native gates, grouping and removing quantum gates to reduce
the number of gates, mapping the logic qubits in the original circuits to the physical qubits
on the specified quantum computers, routing the circuit under constrained topologies,
potentially optimizing circuits to lower error, and more. Following transpilation, circuits
are altered in accordance with the knowledge of particular hardware and provide the same
logical outcomes as the original circuits. All of the circuits up to this point are gate-level
circuits, which employ a more broad description so that they can be executed in many
quantum computers. Figure 5 shows one example quantum circuit, and Figure 6 shows
one output circuit after transpilation. All the gates are transformed into native gates, and
some operations are added to satisfy the topology of the quantum device.

After transpilation, a lower-level procedure occurs, which is known as the schedule in
Qiskit. Microwave pulses, which are the final physical processes needed to regulate and
control qubits, are further mapped via scheduling to quantum circuits. Due to scheduling,

742 Quantum Circuit Reconstruction from Power Side-Channel Attacks

q0 : X T • • T† •
q1 : X T • T†

q2 : • T • • T† •
q3 : H T† • T S • H

c : /
4

1

��
2

��
0

��
3

��

Figure 5: A quantum adder circuit with width=4 (4 qubits) followed by measurement.

q3 7→ 1 : RZ
√
X RZ RZ • • • RZ •

q2 7→ 3 : • RZ • • • RZ RZ •
√
X RZ

q0 7→ 4 : X RZ • • RZ

q1 7→ 5 : X RZ • • • • RZ •

c : /
4

0

��
1

��
2

��
3

��

Figure 6: Adder circuit with width=4 transpiled with optimization level 3.

gate-level circuits are converted into pulse-level circuits. The characteristics that define
each microwave pulse—such as amplitude, frequency, and others—were previously covered
in Section 2.3. Scheduling generates microwave pulse sequences based on calibrated data
for each basis gate on each qubit or qubit pair and quantum device. The data includes
wave envelopes, frequencies, amplitudes, durations, and other characteristics of microwave
pulses. All the information that quantum computers require to run the circuit is contained
in the final data. This data will be used to alter the qubits of quantum computers once the
quantum circuit has begun, and the qubits themselves are controlled by the equipment.

Using the procedures described above, a set of instructions that may be utilized to
carry out the required quantum circuits is created from the original quantum circuits. IBM
Quantum offers Qiskit as a tool for users to construct circuits, carry out these actions, and
submit quantum circuits to the cloud. The cloud will then carry out the users’ circuits
and execute them before returning the results to users.

3 Attack Scenario and Threat Model
The operation of modern cloud-based quantum computers allows remote users to submit
jobs to the cloud provider. These jobs are dispatched to specific quantum computers, also
known as backends. While classical computer components, such as the job management
server, are considered protected from side-channels, the controller electronics of quantum
computers have not been thoroughly analyzed for potential side-channels. The focus of
this work is on potential power trace attacks that could extract information about users’
quantum circuits from the controllers.

3.1 Assumptions of Attacker Measurement
We assume the attacker can sample power traces from shots of a circuit, or they can
measure a number of shots and it is easy to divide this into individual shots, since all shots
perform the same operations. Recall that each quantum program, i.e. quantum circuit, is
executed multiple times, and each execution is called a shot.

We assume the attacker knows when the victim circuits will be executed so the attacker
can capture the side-channel information. Precise knowledge of the execution time is not
needed as long as the attacker can capture the trace of one shot. Since the victim often
executes thousands of shots, the attacker has multiple chances to capture at least one
trace. Each shot is identical without considering the noise.

Ferhat Erata, Chuanqi Xu, Ruzica Piskac and Jakub Szefer 743

q0 : X T • • T
† •

q1 : X T • T
†

q2 : • T • • T
† •

q3 : H T
† • T S • H

c : /4
1

↵◆
2

↵◆
0

↵◆
3

↵◆

Per-Channel
Power Side-Channel

Attack

Single-Shot Total
Power Side-Channel

Attack

Figure 7: Attack scenarios based on the attacker’s measurement capabilities.

Single-Shot Per-Channel Power Side-Channel Measurement. A stronger attacker is
able to collect per-channel power traces (see Figure 7). The attacker knows directly
which pulses are applied to which qubit as each channel controls different qubits and
different two-qubit pairs. Such attackers can attempt Circuit Reconstruction attack from
per-channel power traces by collecting a single per-channel power trace for each channel.

Single-Shot Total Power Side-Channel Measurement. A weaker attacker could collect
a single total power trace over all channels, but not distinguish the power traces of each
channel. Such attackers can attempt Circuit Reconstruction attack by collecting a single
total power trace (see Figure 7). In particular, there is a trend to have multiple AWGs being
part of same physical device. For example, in QICK [STW+22] framework, FPGAs are
used for waveform generation and one FPGA can generate many control pulses. We believe
that going forward total power side-channel attacks may be most realistic as attacker may
not easily get power traces for individual channel generated by the FPGA, but can easily
measure total power consumption of the FPGA, and thus get total power trace of all the
channels. Nevertheless, we explore both per-channel and total power side-channel attacks
to understand their potential threats.

3.2 Assumptions of Attacker’s Knowledge
We note that in this work the attacker is assumed to know at all times the information
about the target quantum computer (number of qubits it contains, the topology and
connections of the qubits) and its basis pulse library. This assumption is reasonable if
users have the right to fine-grained control of transpilation and scheduling, because this
information is needed in both processes. If this information is not provided, users may
easily reverse-engineer it, such as by iteratively increasing the number of qubits to check
how many qubits are supported, inserting a two-qubit gate in each qubit pair to check qubit
connections, and performing experiments such as frequency sweep and Rabi experiment to
acquire the information about the basis pulse library [XES23b].

We assume custom gates are not used by users, and all victim circuits are composed
only of the basic gates supported by the quantum computer, typically including ID, RZ, SX,
X, and CX for IBM Quantum devices. Among the basic gates, we assume the RZ gates are
virtual, as is common today. For an attacker who has only access to collect total power
traces, we assume he or she knows the in-channel and cross-channel functions that define
how the per-channel and total power traces correspond to the pulse information [XES23b].

3.3 Attacker’s Objective
The attacker aims to uncover quantum circuit details from captured power traces. With
access to the basis pulse library, which specifies the pulses for all native gates on a specific
quantum device, and the measured power traces of the user’s circuit, the attacker’s goal is
to reconstruct the user’s circuit. This means retrieving all necessary information about the

744 Quantum Circuit Reconstruction from Power Side-Channel Attacks

user’s circuit to reproduce it. The attacker seeks to learn the transpiled circuit, which is
functionally equivalent to the user’s input circuit, even if it may differ in terms of quantum
gates used.

3.4 Impact of Attacks
Intellectual property, such as quantum algorithm design, is what many users seek to protect.
For instance, proprietary quantum machine learning algorithms are being developed by
startups who do not own quantum computers; they are worried about the leakage of their
proprietary information. Furthermore, different from classical computing, data in quantum
computing is encoded as parts of circuits, such as oracles or ansatzes. Besides, input data
such as initial states can also be provided eternally to the execution circuits, but it requires
quantum memories and quantum networking, which is not available today. As a result, for
example, the circuits used sensitive fields, such as medical-related algorithms, may encode
private information, and it needs to be protected.

3.5 The Realism of the Threat Model
Our work focuses on physical side-channel attacks, such as been widely studied in classical
computers. As in classical setting, we assume physical access, which is a standard
assumption in any physical side-channel attack. The practicality of these attacks is on
the same level as for classical computer power side-channel attacks where attackers can
probe the power supply network or power supply of the target (signal generator in our
case). Note that attackers can purchase signal generators from science equipment vendors
to study their power consumption profile and fine-tune attacks ahead of time.

3.6 Difference from Classical Setting of Power Side-Channel Attacks
The major difference of our research is that in classical computers there are no analog
control pulses; in classical settings the instructions to the processing unit are digital data
read from digital instruction memory, in quantum computers these are analog pulses sent
by the signal generators. Our work and threat model assumes any classical and digital
information is already protected, and there is a large body of research on the protection
of classical computers from power side-channels. Meanwhile, we focus on analog control
pulses and signal generators which are not well understood from a security perspective so
far.

4 Formalization of Circuit Reconstruction
4.1 Quantum Device
For a superconducting quantum device, sometimes called a quantum processor, the most
important features of the topology are the number of qubits and how they are placed and
connected with each other. In addition, each quantum device also has its own native gates.
In this paper, for a quantum device D, we used n to represent its number of qubits, and
m to represent its number of qubit connections. The set of basis gates of D is denoted by
BG. On most of the current quantum devices on IBM Quantum, the basis gates are:

BG = {I, RZ, X, SX, CX}. (1)

4.2 Channel
Channels refer to which part of the hardware the pulses will be sent to control the
qubits. Pulses are applied on one channel for single-qubit gates and several channels for

Ferhat Erata, Chuanqi Xu, Ruzica Piskac and Jakub Szefer 745

multiple-qubit gates, as described in Section 2.3 on quantum computer controls. The four
main categories of channels are drive channels, which send signals to qubits to perform
gate operations, control channels, which supplement the drive channel’s control over
the qubit, measure channels, which send measurement stimulus pulses for readout, and
acquire channels, which are used to gather data. Without considering the measurement
operations, quantum circuits only trigger drive and control channels. Drive channels
typically correspond to qubits, whereas control channels typically correspond to the
connections between qubits and are used for two-qubit gates. The architecture of the
quantum computer determines how many channels of each type there are.

For a quantum device D we can define a set C to represent the set of channels on D. To
be more specific, if only considering drive and control channels, C can be represented as:

C = {drive0, drive1, . . . , driven−1, control0, control1, · · · , controlm−1} (2)

where drive refers to the drive channel and control refers to the control channel of D, and
n and m is the number of qubits and connections of the device D.

4.3 Basis Pulse
Every quantum circuit must be translated into a quantum circuit that only includes the
target quantum device’s basis gates. The group of pulses that follow the scheduling of
a basis gate are referred to as its basis pulses. Because the quantum gate is an abstract
notion, pulse parameters for the same type of gate on various channels vary because pulse
parameters are highly reliant on qubit physical features. For instance, the pulse parameters
of the X gate on qubit 0 are often different from those of the X gate on qubits other than 0.
Basis gates and their associated pulse waveform are predetermined, thus they typically do
not change over different qubits. Thus, to define the basis pulse, the gate type as well as
the channels need to be specified. We refer this information to labels, and define the set of
labels for all the basis gates and possible channels to be:

L = {(gate, C ′)|gate ∈ BG,C ′ ⊂ C} (3)

where BG is the set of basis gates and C is the set of channels. L represents all basis gates
with their channel information, which can uniquely specify a basis pulse. One basis pulse
on the channel c can then be defined as:

pl,c(x)
{
Not always 0 if x ∈ [0, dl]
= 0 if x 6∈ [0, dl]

(4)

where c ∈ l[C ′], l ∈ L is the label for the basis pulse and dl refers to the duration of the
pulse, in discrete time steps. The values of pl,c(x) represent the amplitude of the basis
pulse with label l at the channel c on time step x. All the time steps are in the unit of
the system’s time resolution, which is denoted as dt in Qiskit for IBM Quantum, so the
variable x ∈ N.

Since I, RZ, X, and SX are all single-qubit gates, their basis pulses are made up of only
one channel. Whereas, CNOT gate is a two-qubit gate, so it consists of several channels.
For most of the quantum devices on IBM Quantum, the duration of single-qubit gates
is chosen to be 160 dt, while the duration of two-qubit gates over different channels is
typically different and much longer than the single-qubit gates. For example, dci,X = 160,
and dcj ,CX > 1000 and is often different with different cj .

Because one basis pulse may include pulses on several channels, such as CX gate, for
each basis gate, its pulses form a set:

pl(x) = {pl,c(x)|c ∈ l[C ′]}. (5)

746 Quantum Circuit Reconstruction from Power Side-Channel Attacks

4.4 Basis Pulse Library

For all of their quantum devices, IBM Quantum provides the information about basis pulses.
We call the collection of basis pulses the basis pulse library. The so-called custom pulse
gates, which let users produce their own arbitrary pulses, are another feature supported by
IBM Quantum, but are left as future work. Consequently, we assume that there are no
custom pulse gates present in the victim circuits. In the end, the basis pulse library can
be defined as a set PL which contains all basis pulses.

PL = {pl(x)|l ∈ L}. (6)

4.5 Pulse-Level Circuit

In Section 2, we mentioned a series of instructions describing how to control the qubits
with pulses, making reference to the pulse-level circuit. The circuit’s pulse specifications,
as well as the start time steps for the instructions, are all contained in the instruction list.
One pulse circuit can be formalized as:

APL = {al,t · pl(x− t)|l ∈ L, al,t ∈ {0, 1}, pl(x) ∈ PL} (7)

where its item al,t = 1 means that there is a basis pulse of label l ∈ L being applied which
starts from the time step t, while al,t = 0 means the opposite. As mentioned above, the
power traces are discretized in the unit dt, and all the time steps are integers, so t ∈ N.
According to Equation (7), APL defines all the pulses and where and when they are applied,
and thus defines a pulse-level circuit.

4.6 Power Trace

The pulses are generated by classical equipment and thus consume energy. The function
of the power value with time is what we refer to as the power trace. The term per-channel
power trace refers to the power trace on a single channel, whereas total power trace refers
to the function of the summation of power over all channels in a time period. Assume that
the ability to monitor power consumption on some or all of the channels exists, and that
the measured power trace will be made up of and reliant upon a variety of channels. As it
reduces multidimensional data to a single dimension, we refer to the function that creates
the total power trace from separate power traces as the summation function or reduction
function since it reduces multidimensional data to one-dimensional data.

To formalize the power traces, the per-channel power trace and total power trace
functions are needed. The per-channel function Powerc[pl(x)], where c ⊆ C, specifies how
the per-channel power traces are computed. The total power trace function Total[fc(x)],
where c ⊆ C, specifies how the total power traces are summed up from all per-channel
power traces. In the experiment, we assume that the per-channel power traces are the
square of the norm of the amplitude:

Powerc[APL](x) =
∑
APL

Re2[al,t · pl,c(x− t)] + Im2[al,t · pl,c(x− t)] (8)

and the total power traces are directly the summation of per-channel power traces:

Total[APL](x) =
∑
c∈C

Powerc[APL](x) (9)

Ferhat Erata, Chuanqi Xu, Ruzica Piskac and Jakub Szefer 747

4.7 Domain-Specific Constraint
In the circuit, we exploit the following constraint (channel constraint): there can only be
at most one pulse on each channel at a given time step, which means:

{c1 = c2 ∧ [t1, t1 + 1, ..., t1 + dgate1,c1] ∩ [t2, t2 + 1, ..., t2 + dgate2,c2] = ∅} ∨ c1 6= c2

=⇒ ∀t1 and t2 ∈ [t1, t1 + 1, ..., t1 + dgate1,c1], ac,gate1,t1 + ac,gate2,t2 ∈ {0, 1}
(10)

i.e., if the first pulse with duration dgate1,c1 has the component on channel c1 starting from
time step t1, and the second pulse with duration dgate2,c2 has the component on channel c2
starting from time step t2, then these two components cannot be mixed with each other.

4.8 Attacker’s Goal
For the per-channel single trace attack, the attacker measures vc(x),∀c ∈ C, the per-
channel power traces of the victim circuit. For the total power single trace attack, the
attacker measures v(x), the total power traces of the victim circuit. The goal of the
attacker is to reconstruct the victim circuit, i.e., find a circuit APL that is corresponding
to the victim circuit. To determine which is better to choose among many circuits, we
choose the circuit that minimizes the distance between the power traces with the measured
power traces. In addition, the domain-specific constraints discussed in Section 4.7 need to
be observed.

For the per-channel single trace attack, the goal is:

APL = arg min
A′
PL

∑
c∈C

(
d
{
Powerc[A′PL](x), vc(x)

})
(11)

where
∑

c∈C(dc) is the function to sum up the distances over all channels to get a total
distance. This goal is to find the circuit APL from the set of all circuits {A′PL} that
minimizes the distance between the total power traces of this circuit and the measured
per-channel power traces.

For the total power single trace attack, the goal is:

APL = arg min
A′
PL

d
{
Total[A′PL](x), v(x)

}
(12)

i.e., finding the circuit APL from the set of all circuits {A′PL} that minimizes the distance
between the total power traces of this circuit and the measured total power traces.

5 Power Side-Channel Attacks
In this section, we present two methods that we have developed for stealing quantum
program secrets. The first method is based on per-channel single trace information, where
the attacker uses per-channel measurements to perform a brute-force attack with the goal
of reconstructing the quantum program. The second attack is more challenging, as it
restricts the attacker to using only a single total power trace to reconstruct the quantum
program. Brute-force methods are not scalable in this case, as the sample pulses at each
time step are mixed up, as formulated in Equation 12. Therefore, we employ Mixed-Integer
Linear Programming optimization to find the set of best pulse-level instructions that
decompose the quantum program and their corresponding starting time steps.

In Figure 8, the left part shows a victim circuit (which is a randomly generated for
demonstration purposes) that is transpiled on 5-qubit IBM Lima machine (Figure 11a).
The goal is to recover the circuit from its power trace(s) by finding the set of most suitable
pulse-level instructions that make up the circuit with minimum error. The table on the

748 Quantum Circuit Reconstruction from Power Side-Channel Attacks

q0 7→ 0 :
√
X • •

q1 7→ 1 :
√
X

√
X •

dtstart Instruction circ = QuantumCircuit(2)

0 SX: d1 circ.sx(1)
160 SX: d0 circ.sx(0)
160 SX: d1 circ.sx(1)
320 CX: d0-d1 circ.cnot(0, 1)
1696 CX: d1-d0 circ.cnot(1, 0)
3232 CX: d0-d1 circ.cnot(0, 1)

Figure 8: A randomly generated circuit on the left is transpiled on a 5-qubit IBM Lima
machine (Figure 11a). The table on the right shows the starting index of each pulse-level
instruction. We aim to recover this table from the measured waveform from each drive
channel for the per-channel attacker, or from the total power trace for the total-power
side-channel attacker.

right in Figure 8 shows the starting time step (dtstart) of each pulse-level instruction. If
the attacker obtains this information, they can reconstruct the circuit, as the order of
the instructions is enough to compile the same circuit again. The third column shows
a complete quantum program in Python that is used to generate the circuit on the left.
While the per-channel attacker aims to recover this table from the measured waveform from
each drive channel, the total power attacker employs only a single mixed, superimposed
amplitude samples due the the fact that the attacker does not have access to the individual
drive channels.

5.1 Single-shot Per-Channel Power Side-Channel Attack
The process of reconstructing a quantum circuit in the per-channel single trace attack
involves measuring the output of each qubit channel and obtaining the waveform of the
pulse sequence from each channel. These waveforms are then compared with a set of pulse
sequences that include instructions SX, X, and CX, which are obtained from the pulse library
of the quantum computer and are unique to each qubit channel. These pulse sequences can
be thought of as profiles in classical side-channel analysis, and the most likely instruction
profile needs to be identified. To do that, we compare the measured waveform with each
candidate profile and calculate the distance between them. However, measurement errors
due to noise, or miscalibration of the measuring device can affect the accuracy of the
results. Therefore, it is important to have a reliable means of quantifying the similarity
between the measured and candidate waveforms.

In Equation 11, the objective function is defined as the minimum distance between the
measured waveform and the candidate pulse sequences. The distance function d can be
naturally defined as the Euclidean distance between two power traces:

d2 : {v(x), T otal[APL](x)} 7→ ‖v(x), T otal[APL](x)‖2 =

√√√√ n∑
i=1

(vi(x), T otal[APL](x))2

(13)
where vi(x) and TotalAP (x)i are the i-th elements of v(x) and TotalAP (x) respectively.
However, we evaluated various distances and metrics on randomly generated circuits
including Euclidean distance and found that the Jensen-Shannon distance is the most
suitable one for quantifying the candidate instructions against the measurements. This
distance metric is commonly used to measure the dissimilarity between probability distri-
butions and is well-suited for the task of comparing the probability distributions of pulse
sequences. It has been applied to genome comparison[SJWK09, IHS10] in protein surface
comparison [OR03], in machine learning [GPAM+20] and particularly in the analysis of the

Ferhat Erata, Chuanqi Xu, Ruzica Piskac and Jakub Szefer 749

similarity between two quantum states [OBL22]. To compute the Jensen-Shannon distance,
we first convert the trace and pulse data of a candidate instruction to two probability
vectors P and Q by normalizing the amplitudes to turn them into discrete probability
distributions. We then calculate the distance between the two probability vectors by
computing the Jensen-Shannon distance (metric) between two probability arrays. This is
the square root of the Jensen-Shannon divergence (

√
JSD) [ES03].

Jensen-Shannon divergence (JSD) is a symmetric, smooth, and bounded measure
of dissimilarity between probability distributions that is a well-behaved version of the
Kullback-Leibler divergence (KLD) DKL(P ‖ Q). It is widely used in information theory
and statistics to measure the distinguishablity between probability distributions. Let M
be 1

2 (P +Q), then the Jensen-Shannon divergence is defined as:

DJS(P ‖ Q) = 1
2DKL(P ‖M) + 1

2DKL(Q ‖M), (14)

For discrete probability distributions P and Q defined on the same sample space, X ,
the relative entropy from Q to P is defined [Mac03] to be:

DKL(P ‖ Q) =
∑
x∈X

P (x) log
(
P (x)
Q(x)

)
. (15)

Over two probability vectors x and y, we compute relative entropy, DKL(P ‖ Q), as
an elementwise operation as follows:

DKL(x, y) =


x log(x/y) x > 0, y > 0
0 x = 0, y ≥ 0
∞ otherwise

(16)

In per-channel single trace attacks, we use the Kullback-Leibler divergence (KLD)
and the Jensen-Shannon divergence (JSD) and its distance (

√
JSD) to distinguish two

probability distributions. Therefore, here we provide a brief introduction to divergences,
distances and metrics. For more details, we refer the reader to [DDDD09, HIK+14]. A
metric d on a set χ is a function d : χ×χ→ R≥0 such that for any x, y, z ∈ χ the following
properties are satisfied:

d(x, y) ≥ 0 (non-negativity)
d(x, y) = 0 if and only if x = y (identity of indiscernibles)
d(x, y) = d(y, x) (symmetry)
d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

χ represents the set of probability distributions and x or y represent an entire probability
distribution such as P = {p1, p2, . . . , pn} where pi ≥ 0 and ∀i,

∑n
i=1 pi = 1. Often, if a

distance measure d only satisfies the property non-negativity, is called a divergence. If, in
addition, d satisfies the properties identity of indiscernibles, and symmetry, it is called a
distance. Thus, KLD is a divergence, JSD is a distance, and

√
JSD is a metric [OBL22].

Figure 8 is a randomly generated circuit using SX, X, and CX gates. It is transpiled
without optimization over IBM Lima machine in order to keep the layout of the circuit
intact for the sake of the presentation. After transpilation, q0 maps to Drive Channel 0
and q1 maps to Drive Channel 1. The measurement is performed on q0 and q1.

In Table 1, we also show the result of other distance/metrics for comparison and how
they perform on the same data. We can see that the Jensen-Shannon distance is the most
suitable one for our task. For instance, it is the only one that can distinguish between
the three candidate instructions at 320 dt. The other metrics (RMSE and d2) are not

750 Quantum Circuit Reconstruction from Power Side-Channel Attacks

Table 1: Different distance measures for each candidate pulse-level instruction against
the measured waveform whose error rate is 0.1% while running the circuit in Figure 8 on
Drive Channel(1) on IBM Lima machine (Figure 11a). Total duration of the circuit is 4608
dt. RMSE: Root Mean Squared Error, d2: Euclidean distance,

√
JSD: Jensen-Shannon

Divergence distance. For starting indices 160, 320, and 4448 dt, all instructions that can
be fit in the time window are considered. While at 160 dt and 320 dt, SX, X and all CX
instructions are considered, at 448 dt, only SX and X are considered. ? shows the chosen
instruction at a dtstart whereas ◦ indicates a candidate that is considered but not selected.
At dt = 4448, SX instruction is not selected due to high

√
JSD.

dtstart qubit1 X RMSE d2
√

JSD

.

160 CX: d0-d1 0.00001647 0.0128035 0.402693706
160 CX: d1-d0 0.00001653 0.0147163 0.414806197
160 CX: d1-d2 0.00001648 0.0157793 0.420431628
160 CX: d1-d3 0.00002547 0.0190306 0.433682782
160 CX: d2-d1 0.00001827 0.0146580 0.428686046
160 CX: d3-d1 0.00002844 0.0172899 0.391024599
160 SX: d1 ? 0.00000004 0.0000906 0.000000003
160 X : d1 0.00087999 0.0273263 0.000014711

.

320 CX: d0-d1 ? 0.00000029 † 0.0014418 ‡ 0.018015119 §
320 CX: d1-d0 ◦ 0.00000016 † 0.0014530 ‡ 0.020663924 §
320 CX: d1-d2 0.00000404 0.0078170 0.166908652
320 CX: d1-d3 0.00002301 0.0180839 0.464903649
320 CX: d2-d1 0.00000105 0.0035068 0.084267418
320 CX: d3-d1 0.00002377 0.0158058 0.396308179
320 SX: d1 ◦ 0.00000008 0.0001265 0.000000003
320 X : d1 0.00086605 0.0271090 0.000014711

.

4448 SX: d2 0.00025480 0.00726239 0.450676207
4448 X : d1 0.00133674 0.03367971 0.450681387

able to distinguish between the two candidate instructions shown with † and ‡ in the first
two rows at 320dt. However,

√
JSD is able to distinguish them. Based on low

√
JSD, SX

gate also looks a good candidate, but we don’t select it since as discussed in Figure 9, its
first waveform on the drive channel d1 of CX is always exactly the same pulse as in SX.
Therefore, in these cases, CX gates always have the priority in selection. At 160 dt, SX is
chosen since

√
JSD is considerably smaller than the other two candidates (0.000000003).

At 4448 dt, no instruction is selected since SX and X have very high
√

JSD values.
We evaluated this metric over the real quantum circuits shown in Table 2 and recovered

the correct instruction in all cases under different additive Gaussian noise levels where
N (x, σ), that is x is the sample amplitude obtained from power trace and σ is the standard
deviation varies from 0 (no noise) to 0.1.

5.2 Single-shot Total Power Side-Channel Attack
During the development and testing of the single-shot total power side-channel attack, we
leveraged SMT (Satisfiability Modulo Theories) solvers and the theory of Linear Mixed
Integer Real Arithmetic (LIRA). This allowed us to effectively combine the capabilities of
SMT solvers with the expressive power of LIRA to analyze and verify the attack’s behavior
and to check the correctness of the attack’s results obtained from optimization solver.

To implement the attack, we ultimately encoded the problem using MILP (Mixed Integer
Linear Programming) solvers due to their efficiency in handling large-scale optimization

Ferhat Erata, Chuanqi Xu, Ruzica Piskac and Jakub Szefer 751

0 289 578 867 1156 1445
System cycle time (dt)

X(/2)

0.07

D1
no freq.

Name: SX(D1), Duration: 160.0 dt

0 289 578 867 1156 1445
System cycle time (dt)

1.57
0.0

Y() X()

0.12 0.12

D0
no freq.

X(/2) CR(/4) CR(/4)

0.07

0.05

-0.05

D1
no freq.

Name: CX(D0, D1), Duration: 1376.0 dt

Figure 9: Example pulse schedules of SX: d1 (?) and CX: d0-d1 (◦), whose durations are
160dt and 1376dt respectively. As seen from the figure, the first waveform on the drive
channel d1 of CX is exactly the same pulse as in SX.

problems. However, we encountered a challenge in bridging the expressiveness gap between
LIRA and MILP, which is discussed in detail in the following sections. We used various
encoding tricks to convert LIRA constraints to MILP constraints, as well as encoding of
logical conditions, pseudo-boolean constraints, and disjunctive constraints. These efforts
allowed us to successfully apply MILP solvers to our attack and achieve accurate and
reliable results.

5.2.1 Linear Mixed Integer Real Arithmetic (LIRA)

In this section, we provide a brief introduction to SMT solvers and LIRA, and we discuss
the disadvantages of using LIRA in the context of our attack.

LIRA is a theory of linear arithmetic with real and integer variables. Modern SMT
solvers such as Z3 [DMB08], CVC5 [BBB+22], and MathSAT5 [CGSS13] support LIRA
constraints and are equipped with decision procedures for arbitrary boolean combinations
(e.g. disjunction and conjunction) of linear constraints.

LIRA considers the reals and integers as domains for the types of identifiers and
constants. For the former domain the problem is polynomial, and for the latter the
problem is NP-complete [KS16]. As an example, the following is a formula in linear
arithmetic: 3x1 + 2x2 ≤ 5x3 ∨ 2x1 − 2x2 = 0.

5.2.2 Mixed Integer Linear Programming (MILP)

LIRA is a potent formalism that combines linear equalities or inequalities with arbitrary
boolean connectors, and allows for mixing integer and real variables. This makes it highly
convenient for modeling complex reconstruction problems. However, current SMT solvers
lack support for optimization problems, as will be elaborated on in Section 5.2.3. In
our formalization of the total power single trace attack, we utilize both integer and real
variables, and encode the optimization model as Mixed Integer Linear Programming
(MILP) problem to address this limitation.

In this section, we briefly introduce MILP. A mathematical optimization problem, or

752 Quantum Circuit Reconstruction from Power Side-Channel Attacks

just optimization problem, has the form

min f0(x)
s.t. fi(x) ≤ bi, i = 1, . . . ,m (17)

Here the vector x = (x1, . . . , xn) is the optimization variable of the problem, the function
f0 : Rn → R is the objective function, the functions f1, . . . , fm : Rn → R, i = 1, . . . ,m,
are the (inequality) constraint functions, and the constants b1, . . . , bm are the limits, or
bounds, for the constraints. A vector x? is called optimal, or a solution of the problem, if
it has the smallest objective value among all vectors that satisfy the constraints: for any z
with f1(z) ≤ b1, . . . , fm(z) ≤ bm, we have f0(z) ≥ f0 (x?)

The optimization problem in Equation (17) is called a Linear Program (LP) if the
objective and constraint functions f1, . . . , fm are linear, i.e., satisfy

fi(αx+ βy) = αfi(x) + βfi(y) (18)

for all x, y ∈ Rn and all α, β ∈ R. If the optimization problem is not linear, it is called a
nonlinear program.

Integer Linear Programming (ILP) is an extension of Linear Programming (LP) which
allows for variables to take on only integer values, rather than continuous values. This
makes ILP useful for solving problems in which the decision variables must be integers,
such as scheduling, resource allocation, and network design. ILP is particularly useful for
linearizing nonlinear programs, which can be difficult or impossible to solve directly. By
introducing additional variables and constraints, nonlinear programs can be transformed
into a linear form, making them amenable to solution by LP techniques.

Mixed Integer Linear Programming (MILP) is a more general form of ILP, where some
variables are restricted to be integers while others can be continuous. The result is a model
that can represent a wider range of real-world optimization problems, making it a powerful
technique for solving complex optimization problems. In Mixed Integer Normal Form,
every atomic formula is of the form: a1x1 + a2x2 + . . .+ anxn ./ c where ./∈ {=,≤,≥}
where xi can be integer or continuous.

ILP and MILP are widely used in many areas such as operations research, computer
science, engineering and management science. They are implemented in various commercial
optimization software such as CPLEX [Cor23], Gurobi [GO23], and Xpress [FIC23].

In addition to these use cases, we apply Mixed Integer Linear Programming (MILP)
to the reconstruction of quantum circuits from their power traces. The objective is to
reconstruct the original quantum circuit as accurately and correctly as possible from
power traces obtained by an attacker. The optimization aims to minimize the discrepancy
between the total power consumption of the candidate quantum circuits within the search
space and the power trace of the original quantum circuit. This optimization challenge
is framed as a MILP problem. The MILP formulation allows for the inclusion of both
continuous and integer decision variables (e.g., a binary decision variable to determine
whether a CX gate exists on drive channels 0 and 1), making it a suitable tool for this
problem, which involves both continuous and discrete variables.

Our solution to the MILP problem is obtained by using a commercial solver, Gurobi [GO23]
with a free academic license. It is known for its high performance and ability to handle
large-scale MILP problems. However, the resulting encoding can be serialized as an .lp
file in MILP normal form and can be solved by any MILP solver such as open-source
PuLP [MOD11].

5.2.3 From LIRA to MILP

To effectively solve the problem using MILP solvers, we needed to convert the Linear Mixed
Integer Real Arithmetic (LIRA) constraints into the MILP form. It is worth noting that

Ferhat Erata, Chuanqi Xu, Ruzica Piskac and Jakub Szefer 753

while SMT solvers can solve the decision variant of the MILP problem, their performance
may not be as competitive as dedicated MILP solvers. To illustrate this, we conducted an
experiment using the 4-bit adder example from Figure 6. After an hour of computation,
the Z3 SMT solver was still unable to find a satisfiable solution, whereas the same problem
was solved in less than 10 seconds using the Gurobi MILP solver. Although there have
been efforts to extend SMT solvers to improve their efficiency in solving both decision and
optimization variants of the MILP problem [DGN21, KBT14], their performance is still
relatively limited. There are also Optimization Modulo Theory (OMT) solvers, such as
Z3Opt [BPF15] and OptiMathSat [CGSS13], but these are specialized for finite domains
like bitvector theory and are not suitable for our problem due to the fact that encoding
continuous variables as fixed point representation would lead to significant numeric errors in
solving real-valued optimization function. In a recent work on classical power side-channel
attacks, these solvers were used to detect vulnerabilities in post-quantum cryptographic
primitives [EPMS23]. However, their performance was also found to be suboptimal, leading
the authors to resort to sampling-based methods for vulnerability identification using
bitvector theory in SMT solvers.

The main idea behind MILP solvers is to relax the integer constraints, i.e., treating
integer variables as continuous variables initially, and solve the corresponding linear
programming (LP) problem. When the integer constraints are relaxed and integer variables
are treated as continuous variables, the solver may encounter rounding errors, precision
limitations, or approximation errors in the calculations involving the continuous relaxation
of the integer variables. These numerical errors can potentially affect the accuracy
and precision of the solution obtained by the solver. Therefore, over the course of the
development of our method, we checked that the optimum configurations returned by the
MILP solver are satisfiable by encoding them as decision problems over micro benchmarks
(random circuits with a small number of gates) and verifying the satisfiability of the
solution using the SMT solver.

In order to encode LIRA constraints into the MILP normal form, thereby to perform the
side-channel attack, we employed various linearization techniques. These techniques involve
introducing additional binary variables and bounding them with so-called Big-M [Bal79,
CG12] values to convexify non-convex problems that exhibit suitable patterns [CF21].
Overall, we utilized various following linearization techniques from operations research
field. In the following sections, we describe these techniques in detail.

5.2.4 Linearization of Absolute Valued Objective Function

In order to optimize Equation (12) for a total power single trace attack, we chose to utilize
a distance function that can be linearized. This is one of the most crucial technical insights
of our work, paving the way for a complete reconstruction from a single-shot power trace.
For this purpose, we selected the Sum of Absolute Differences (SAD) as our distance
function.

d1 : (v(x), T otalAP (x)) 7→ ‖v(x), T otalAP (x)‖1 =
n∑

i=1
|vi(x)− TotalAP (x)i| (19)

The abs function is not linear, therefore, it does not allow this metric to directly deal with
in the optimization problems, but it can be linearized [SW71, LP 23]. An absolute value
of a real number can be described as its distance away from zero, or the non-negative

magnitude of the number. Thus, |x| =
{
−x, if x < 0
x, if x ≥ 0

. In our formulation, coefficient

signs of the absolute terms are all positive for our minimization problem. Aiming to bound
the solution space for the absolute value term with a new variable, Z, an equivalent feasible
solution can be described by splitting the constraint into two. If |X| is the absolute value

754 Quantum Circuit Reconstruction from Power Side-Channel Attacks

term in our objective function, two additional constraints are added to the linear program:
X ≤ Z ∧ −X ≤ Z. The |X| term in the objective function is then replaced by Z, relaxing
the original function into a collection of linear constraints.

5.2.5 Linearization of Logical Conditions over Binary variables

In MILP lingo, binary variables means decision variables that must take either the value 0
or the value 1, sometimes called 0/1 variables.

The logical conditions on binary variables and equality relations among binary variables
can be converted to binary variables. For instance, we can derive y = x1 ∨ x2 as y ≤
x1 ∧ y ≤ x2 ∧ y ≥ x1 + x2 − 1 knowing that ¬x1 can be translated into 1− x1 and x1 ∨ x2
into x1 + x2 ≥ 1.

5.2.6 Encoding Pseudoboolean constraints

A pseudo-Boolean constraint is an axiom of the form
∑

i wixi ≥ k, where each wi and k
is a positive integer and each of the xi is required to have value 0 or 1. In our encoding,
we require all weights wi to be 1, so at least k of x1, x2, · · · , xn are 1, and at most k of
x1, x2, · · · , xn are 1, and the sum of x1, x2, · · · , xn is k, are all pseudoboolean constraints
and can be encoded in MILP form as x1+x2+· · ·+xi ./ k where ./∈ {≤,≥,=} respectively.

5.2.7 Linearization of Disjunctive Constraints

In order to encode the domain specific constraints given in Equation (10), we need to
linearize the disjunctive constraints.

The condition that at least one of the constraints must hold cannot be formulated
in a linear programming model, because in a linear program all constraints must hold
(conjunction of constraints). In order to solve a disjunctive, the constraints have to be
converted into MILP constraints. There are two common methods for disjunction: the
Big-M Reformulation and the Convex-Hull Reformulation [Bal79, CG12]. Here we will
only discuss the Big-M Reformulation. Consider the following disjunctive constraint, where
ak

i and bk are constants, and xi are variables:∑
i

a1
ixi ≤ b1 ∨

∑
i

a2
ixi ≤ b2 ∨

∑
i

a3
ixi ≤ b3 ∨ · · · ∨

∑
i

ak
i xi ≤ bk (20)

For the Big-M reformulation, a sufficiently large number, M , is used to nullify one set
of constraints. This is accomplished by adding or subtracting the term Mk ∗ (1− yk) to
the upper bound and lower bound constraints, respectively. The bounds are chosen such
that they are as tight as possible, while still guaranteeing that the left-hand side of the
constraint is always smaller than bi +Mi.∑

i

a1
ixi ≤ b1 +M1

(
1− y1) ∧∑

i

a2
ixi ≤ b2 +M2

(
1− y2) ∧ · · ·

y1 + y2 + y3 + · · ·+ yk ≥ 1 ∧ y1, y2, y3, · · · , yk ∈ {0, 1}
(21)

We are able to statically over-approximate M values in our problem since the decision
variables xi are binary variables that can take maximum 1; therefore, for each constraint
we basically sum up all the coefficients of the left-hand side of the inequalities, e.g., for the
first constraint: M1 >

∑
i a

j
i . To set binary variables yj to be mutually exclusive, the sum

of the variables can be set to 1.

Ferhat Erata, Chuanqi Xu, Ruzica Piskac and Jakub Szefer 755

a0 a0 a0

a1 a1 a1

a2 a2 a2

a3 a3 a3

b0 b0 b0

b1 b1 b1

b2 b2 b2

c0 c0

c1

c2 c2

c3 c3

c2

c4 c4

b2

b1

b0

⋯

⋯
v(0)

dt0 dt1 dt2 dt3 dt4 dt5

time steps (samples)

v(1) v(2) v(3) v(4) v(5)

pX,C1
(0) pX,C1

(1) pX,C1
(2)

x

p

qubit1

(C1)

a0 + a1 + a2 + a3 ≤ 1

b0 + b1 + b2 ≤ 1

c0 + c1 + c2 + c3 + c4 ≤ 1

Gaussian
Waveform

Gaussian Square
Waveform

Gaussian
Waveform

pX,C2
(0) pX,C2

(1)
x

p

𝚇𝟷

𝚂𝚇𝟷

𝚇𝟸

pSX,C1
(0) pSX,C1

(1) pSX,C1
(2)

x

p

c3 + c4 ≤ 1
a2 + a3 + b1 + b2 ≤ 1

pSX,C1
(3)

Decision Variables
Binary

Trace
Victim′￼s

VariablesContinousmin |ϵ0 | + |ϵ1 | + |ϵ2 | + |ϵ3 | + |ϵ4 | + |ϵ5 |

v(5) ≈ c4 ⋅ p𝚇,C2
(1) + b2 ⋅ p𝚂𝚇,C1

(3) + a3 ⋅ p𝚇,C1
(2) + ϵ5

drive channel

qubit2

(C2)
drive channel

Error

Figure 10: MILP encoding method over an pulse information.

5.2.8 Encoding Decision Variables, Channel Constraints and Objective Function

Here we explain an important part of our MILP encoding over an example victim trace
sketched in Figure 10. The duration of the trace is 5 dt. The victim runs their circuit on a
hypothetical 2-qubit quantum device, D, having only two basis gates BGD = {X, SX} (see
Equation (1)) and two channels CD = {〈C1, drive0〉, 〈C2 : drive1〉} (see Equation (2)). We
simplify the notion of label here since X and SX gates have only one label and waveform: X
gate on C1, SX gate on C1, and X gate on C2 are named as X1, SX1, and X2 respectively.
The associated pulse waveforem for Gate SX1 is Gaussian parameterized by dSX1 = 4 and
therefore we have 4 sampling points: pSX,C1(x) where x ∈ [0, 3] (see pl,t in Equation (5)).
Gate X1 and gate X2 can be similarly defined and we sketched their waveforms in the figure.

Binary decision variables encircled by blue rounded rectangles in the figure indicates
all cases where a candidate gate is applied on the channel. For example, at time step
dt0, a candidate, gate X1, is applied on channel C1, its pulse contributes to dt1 and
dt2 since its pulse waveform has a duration of dX1 = 3. The other possible cases where
the gate can start are dt1, dt2, and dt3. However, its pulse cannot start at dt4 and
dt5 since the pulse waveform has a duration of dX1 = 3 and the trace has a duration
of 5 dt. We create one binary decision variable to represent each possible case where
the gate can start (a0, a1, a2, and a3) (see al,t in Equation (7)). Its pulse can either
start at dt0, dt1, dt2, or dt3 or not at all. Therefore, we can encode the binary decision
variables as follows: a0 + a1 + a2 + a3 ≤ 1. If we follow a similar approach for the
other gates, we will have 12 binary decision variables and they are encoded as follows:
a0 + a1 + a2 + a3 ≤ 1 ∧ b0 + b1 + b2 ≤ 1 ∧ c0 + c1 + c2 + c3 + c4 ≤ 1.

Some decision variables at time step dt = 4 are encircled by black rounded rectangles.
It captures the channel constraints on C1 and C2 (see Equation (10)), i.e., there can only

756 Quantum Circuit Reconstruction from Power Side-Channel Attacks

be at most one pulse on each channel at a given time step. This can simply be encoded as
follows: a2 + a3 + b1 + b2 ≤ 1 ∧ c3 + c4 ≤ 1.

The objective function is encoded in such a way that it minimizes the error between
victim’s power sample v(i) and the power trace of the pulse waveform pX,C2(1), pSX,C1(3),
and pX,C1(2) at time step i:

min |ε0|+ |ε1|+ |ε2|+ |ε3|+ |ε4|+ |ε5| (22)

The linearization of this type of objective functions is explained in Section 5.2.4. The
following formula states that the power trace of candidate pulses should be equal to the
victim’s power trace at time step dt = 5 with an error of ε5 and some tolerance:

v(5) ≈ c4 · pX,C2(1) + b2 · pSX,C1(3) + a3 · pX,C1(2) + ε5. (23)

6 Evaluation Setup
The information about the quantum computer pulses is taken from real quantum computers
from IBM Quantum’s basic pulse information. For example, we use 7-qubit H-shape
superconducting quantum computer, ibm_lagos, (coupling map is shown in Figure 11b)
for transpilation and scheduling for all benchmarks. The ibm_lagos is the largest computer
we have access to, still, due to the limitation of the number of qubits of even this computer,
we chose all algorithms whose numbers of qubits are less or equal to 7. Since pulse
parameters for the same type of gate on different machines vary (see Section 4.3) due to
device topology, for quantum circuit benchmarks up to 5-qubit, we performed additional
evaluation on the 5-qubit T-shape ibm_lima and L-shape ibm_manilla machines (their
coupling maps are shown in Figure 11a and Figure 11c respectively).

For the quantum circuits tested, we use well-known benchmarks, listed in Table 2.
In particular, we used QASMBench Benchmark Suite version 1.42 [LSKA22] for NISQ
evaluation. QASMBench is a low-level benchmark suite based on the OpenQASM assembly-
level intermediate representation (IR) [CBSG17]. It collects commonly used quantum
algorithms and routines (e.g., the adder circuit in Figure 5) from a variety of distinct
domains, including quantum chemistry, simulation, linear algebra, searching, optimization,
arithmetic, machine learning, fault tolerance, cryptography, and so on. The benchmark
suite covers a wide range of quantum circuits with varying circuit depth and width (i.e.,
number of qubits).

We removed benchmarks “ipea” (iterative phase estimation algorithm) and “shor”
(Shor’s algorithm) for evaluation because they have Reset and middle measurement that
cannot be scheduled on ibm_lagos due to lack of basis pulses. Unless otherwise specified,
we used seed_transpiler = 0 to control the randomness and other default parameters for
transpilation. We ran the experiments (power side channel attack using MILP encoding)
on an Apple M1 Pro machine with 32 GB of RAM. The Gurobi solver used up to 10 cores.

7 Evaluation Results
The results of our evaluation on benchmark quantum circuits provide compelling evidence
of the high accuracy and effectiveness of our techniques in reconstructing quantum circuits.
Table 3 shows that we are able to recover all the X, SX, and CX gates from all the
benchmarks tested. It is important to note that while our techniques demonstrate high
accuracy in reconstructing quantum circuits from power traces, the resulting circuits may
not be an exact replica of the original circuit, but rather a semantically equal circuit. This

2https://github.com/pnnl/QASMBench/commit/0ae7a5ad97fcc1384230df2b11b8b0ef65ada256

https://github.com/pnnl/QASMBench/commit/0ae7a5ad97fcc1384230df2b11b8b0ef65ada256

Ferhat Erata, Chuanqi Xu, Ruzica Piskac and Jakub Szefer 757

0 1 2

3

4

(a) ibmq_lima (Falcon r4T)
{CX, ID, RZ, SX, X}

0 1 2

3

4 5 6

(b) ibm_lagos (Falcon
r5.11H)

{CX, ID, RZ, SX, X}

0 1 2 3 4

(c) ibmq_manila (Falcon r5.11L)
{CX, ID, RZ, SX, X}

Figure 11: IBM Quantum computers used in the evaluation. Figure shows the device
coupling maps. The color of nodes implies frequency (GHz, darker color means lower
frequency) of the qubit. The connection color implies the gate time in nanoseconds for
2-qubit gates such as CX (darker color means shorter time).

Table 2: QASMBench benchmark suite version 1.4 [LSKA22].

Benchmark Algorithm Reference Benchmark Algorithm Reference

deutsch Hidden Subgroup [CBSG17] hs4 Hidden Subgroup [JPK+14]
iswap Logical Operation [CBSG17] bell Logic Operation [Dev22]
quantumwalks Quantum Walk [Micnd] qft Hidden Subgroup [CBSG17]
grover Search [Age19] variational Quantum Sim. [MRS+20]
ipea Hidden Subgroup [CBSG17] vqe Linear Equation [JPK+14]
dnn Machine Learn. [SLM+21] vqe_uccsd Linear Equation [JPK+14]
teleportation Quantum Comm. [Fed16] basis_trotter Quantum Sim. [MRS+20]
qaoa_n3 Optimization [Iosnd] qec_sm Error Correction [CBSG17]
toffoli Logical Operation [JPK+14] lpn Machine Learn. [Sam17]
linearsolver Linear Equation [BGKS05] qec_en Error Correction [Sam17]
fredkin Logical Operation [JPK+14] shor Hidden Subgroup [IBMnda]
wstate Logical Operation [CBSG17] pea Hidden Subgroup [CBSG17]
basis_change Quantum Sim. [MRS+20] error_cd3 Error Correction [MNW+17]
qrng Quantum Arith. [TS21] simons Hidden Subgroup [Age19]
cat_state Logical Operation [JPK+14] qaoa_n6 Optimization [Dev22]
inverseqft Hidden Subgroup [CBSG17] vqe_uccsd Linear Equation [JPK+14]
adder Quantum Arith. [JPK+14] hhl Linear Equation [IBMndb]

is analogous to classical compiler optimizations where reverse engineering from binary
code to the original C code may not yield an exact reconstruction.

Furthermore, our evaluation on benchmark quantum circuits serves as a strong vali-
dation of our methods for handling mixed discrete and continuous variables, as well as
overcoming challenges associated with leakage occurring over different qubit and control
channels. As evident from Table 4, our evaluation shows that the complexity of MILP
encoding increases as the number of qubits in our benchmarks increases. This is reflected in
the higher number of real and integer variables, as well as the total number of constraints.
This is primarily due to the fact that a larger number of qubits in a quantum circuit results
in a higher number of gates and operations, which in turn leads to a larger number of
variables and constraints in the MILP encoding. Additionally, we found that the duration
of the quantum circuit, which represents the length of time over which the power traces are
captured, has an impact on the MILP encoding complexity. Specifically, the duration of
the quantum circuit affects the length of the real-valued objective constraint in the MILP
encoding, as well as the total number of integer variables. These observations highlight the
dependence of the MILP encoding complexity on the size of the quantum circuit, including
the number of qubits and the duration of the circuit.

Table 4 shows that out total power attack is able to recover small depth quantum
circuits in less than about 10 seconds for a moderate size benchmark with 5 and 6 qubits,

758 Quantum Circuit Reconstruction from Power Side-Channel Attacks

it takes at most 50 seconds. For larger benchmarks such as hhl it takes about 10 minutes.

Table 3: Number of Gates, number of RZ gates, number of X, SX, CX gates, and
indication which gates were recovered (labeled Rec.) for each quantum program. The
circuits are transpiled with seed_transpiler = 0, optimization_level = 3, and other
default arguments on ibm_lagos.

Quantum Total RZ X, SX, X, SX,
Circuit Gates Gates CX CX

deutsch 10 6 4 X
dnn 306 164 142 X
grover 15 9 6 X
iswap 14 8 6 X
quantumwalks 38 20 18 X
basis_change 85 43 42 X
fredkin 31 10 21 X
linearsolver 26 13 13 X
qaoa_n3 35 17 18 X
teleportation 12 6 6 X
toffoli 24 11 13 X
wstate 47 17 30 X
adder 33 13 20 X
basis_trotter 2353 1219 1134 X
bell 53 29 24 X
cat_state 6 2 4 X
hs4 28 16 12 X
inverseqft 30 22 8 X
qft 50 26 24 X
qrng 12 8 4 X
variational 58 32 26 X
vqe 73 32 41 X
vqe_uccsd 238 104 134 X
error_cd3 249 126 123 X
lpn 17 10 7 X
pea 126 61 65 X
qec_en 52 24 28 X
qec_sm 8 0 8 X
qaoa_n6 408 196 212 X
simon 65 29 36 X
vqe_uccsd 2289 769 1520 X
hhl 1092 461 631 X

The results of the evaluation on benchmark quantum circuits demonstrate the high
accuracy and effectiveness of our techniques in reconstructing quantum circuits, although
it should be noted that we used noiseless traces for the evaluation in total power attack.
However, the optimization method employed in our approach is known to be robust to
noise since we are searching for the best configuration that minimizes the error, which
presents an interesting avenue for future work to investigate the impact of noise in power
traces on the accuracy of our technique.

8 Discussion and Future Work

In this section, we discuss future research direction and the main problems that this work
leaves open. We also discuss the portability of the general approach to other quantum
computer architectures.

Ferhat Erata, Chuanqi Xu, Ruzica Piskac and Jakub Szefer 759

Table 4: MILP encoding complexities of the benchmarks and pulse-level recovery results.

Quantum Total Total Circ. Total Real Integer Total Solver
Circuit Qubits Gates Depth dt Vars Vars Constrs. Time

deutsch 2 10 7 28432 58 6032 336 0.13s
dnn 2 306 17 31696 159 19080 756 0.51s
grover 2 15 12 30000 106 11872 536 0.30s
iswap 2 14 9 30096 111 12432 556 0.37s
quantumwalks 2 38 17 31600 156 39000 874 0.51s

basis_change 3 85 45 43440 526 117824 2328 4.58s
fredkin 3 31 32 48720 691 136818 2962 6.72s
linearsolver 3 26 14 32688 190 23370 883 0.99s
qaoa_n3 3 35 20 14464 412 64272 1804 4.40s
teleportation 3 12 9 29648 95 10545 491 0.24s
toffoli 3 24 20 39312 397 61535 1743 3.15s
wstate 3 47 34 50896 759 157872 3244 6.73s

adder 4 33 28 57808 975 282750 4190 13.3s
basis_trotter 4 2353 469 221248 1361 1503905 2722 150.2s
bell 4 53 18 33680 221 39780 1064 2.27s
cat_state 4 6 7 32688 190 32870 933 1.12s
hs4 4 28 12 31600 156 26520 794 2.0s
inverseqft 4 30 22 26928 10 200 60 0.04s
qft 4 50 40 57072 952 273224 4095 17.97s
qrng 4 12 4 26768 5 50 30 0.01s
variational 4 58 30 41200 456 97128 2037 3.92s
vqe 4 78 24 14624 346 161928 1852 5.47s
vqe_uccsd 4 238 198 104128 1876 1130000 3752 53.91

error_cd3 5 249 161 96672 4017 584577 6042 98.43
lpn 5 17 9 30352 117 23634 670 0.36s
pea 5 126 64 73744 1473 720297 6381 40.34s
qec_en 5 52 23 49072 702 262548 3182 12.08s
qec_sm 5 8 19 60000 600 189600 2716 19.11s

qaoa_n6 6 408 109 70464 2202 1212456 4404 162.27
simon 6 65 54 62976 1186 849176 5460 40.95s
vqe_uccsd 6 3865 2883 2009248 62800 32872200 125600 254s

hhl 7 565 380 265088 8288 5216264 16576 136.1s

8.1 Application to Future Quantum Computers

Though this study mainly focuses on superconducting quantum computers, and the evalu-
ations are done on specific IBM machines, the study can be extended to superconducting
quantum computers provided by other companies, as well as quantum computers with other
qubit technologies. Most of the superconducting quantum computers use the same settings
as IBM quantum computers, i.e. the qubits are controlled by microwave pulses generated
by quantum computer controllers. Though different superconducting quantum computers
typically have different pulses, if the pulse information is available, this work can be applied
to them. For example, superconducting quantum computers provided by Rigetti [Rig23]
and Oxford Quantum Circuits [Oxf23] through Amazon Braket could be analyzed in same
way as IBM’s machine. However, for other types of qubit technologies, this study needs
to be altered to different types of control signals they use. For example, trapper-ion
quantum computers are controlled by both control signals and opto-electronics as shown
in [PDF+21]. While control signals are electromagnetic waves similar to superconducting
quantum computer control pulses, there may be other operations that are not existent in
superconducting quantum computers, and thus the analysis needs to be changed based on
the architecture of such quantum computers.

760 Quantum Circuit Reconstruction from Power Side-Channel Attacks

8.2 Scalability of the Attack for Future Quantum Computers
During our experimentation phase, we were constrained by the availability of quantum
machines with a maximum of 7 qubits. We expect, however, that with a refined trace
cutting strategy, it is feasible to handle much larger quantum circuits encompassing more
qubits. In parallel, there is active research on circuit cutting where larger circuits are
decomposed into smaller circuits, and our approach naturally can be used against the
smaller circuits used in circuit cutting.

8.3 Challenges in Current Threat Model
Our current threat model makes certain assumptions, such as the negligible power con-
sumption or timing differences in the AWG or FPGA during the computation of the
virtual RZ gate. If RZ gates or their angles can be discerned from the power traces, it could
empower even stronger attackers. Additionally, the unique features of different quantum
circuits, like the relative locations and operating qubits of CX gates, could be exploited to
identify RZ gates. Developing heuristics to aid attackers in this endeavor is left an area for
future exploration.

8.4 Potentials in Future Threat Model
The current landscape does not provide power-related data of control equipment through
cloud providers. However, if such data becomes accessible in the future, it could open
the door to remote attacks. These attacks could leverage our analysis and pulse recovery
techniques without necessitating physical access. Furthermore, other side channels, such
as EM or acoustic, might be exploitable from a distance, eliminating the need for direct
physical contact.

Our research into power side-channel attacks on quantum computer controllers aims to
shed light on potential vulnerabilities that could compromise intellectual property or data
security. As quantum computers become more ubiquitous, their susceptibility to physical
attacks will likely increase. Drawing from classical security paradigms, we can anticipate
a plethora of attack vectors, from EM to optical, especially in quantum computers not
based on superconducting qubit technology. Our threat model and explorations serve as a
compass, guiding future research in this nascent yet critical domain.

8.5 Potential Defenses
High-level ideas of existing side-channel protection techniques can be applied. For example,
ideas of randomization could be used to randomly consume power and confuse the attackers.
Or the signal generator could operate in constant power mode to consume the same power
regardless of pulses begin generated. The specific implementation of these defense ideas
would be new, as, e.g., means to randomly consume power in a signal generator have not
been studied or implemented before from a security perspective. Novely of our work is to
point out the threats, so that defenses can be developed.

9 Related Work
Algebraic cryptanalysis in classical computers involves solving a system of (non-linear)
equations over a finite field to recover the secret key of a cryptographic primitive, using
inputs and outputs along with known plaintext/ciphertext pairs. One approach is to
translate the system of equations into an equivalent satisfiability (SAT) problem instance,
which can be solved using a SAT solver such as CryptoMiniSat [Soo16]. However, the
resulting algebraic system and its equivalent SAT problem may not contain enough

Ferhat Erata, Chuanqi Xu, Ruzica Piskac and Jakub Szefer 761

information for efficient solving of most cryptographic primitives. Additional information,
such as side-channel information related to the key, plaintext, or ciphertext, can be used to
aid in solving the system, such as physical leakage of intermediate states during encryption
or key scheduling. Algebraic side-channel attacks are a type of side-channel analysis which
can recover the secret information with a small number of samples [RS10, MBZ+12]. SMT
and optimizing pseudo-boolean solvers and other constraint solving techniques are also
used in algebraic attacks in classical computers [KDB+22, OW12, SHS+14]. However, in
our work, we demonstrated that MILP solvers are considerably faster than SMT solvers
for solving systems of linear equations with errors.

In a recent study, Baksi et al. [BKS21] presented an automated analysis of side-channel
leakage from software and hardware for stream ciphers using SMT solvers. However,
the authors encountered a challenge in using MILP solvers, as their attack required
arithmetic operations in addition to Boolean operations. Similarly, in our research against
superconducting quantum computers, we also faced a similar challenge and investigated
various encoding techniques to overcome this limitation.

Our algebraic side-channel attack against superconducting quantum computers dis-
tinguishes itself from previous attacks in several key ways. First, our attack targets the
quantum programs themselves, rather than the classical cryptographic primitives. This
introduces unique challenges as the leakage occurs over different channels, akin to parallel
computation in classical computers. The signals involved are of mixed (total) amplitudes
across all channels; any two amplitudes at any time step might be distributed across any
two channels based on the coupling map of the quantum hardware when CNOT gates are
used in the circuit. Consequently, formalizing the problem and encoding it into a solvable
form requires careful consideration of the qubit and control channels involved, making it a
non-trivial task. Second, our attack is specifically designed to handle real-valued mixed
amplitudes, further adding to the complexity of the problem.

For superconducting quantum computers, [ASAG20] shows that the crosstalk errors
could be used in fault injection attacks with malicious circuits, and [DXT+23] detects such
circuits in quantum programs by expressing both input circuits and malicious circuits as
graphs and formulating the their detection as a sub-graph isomorphism finding problem.

Xu et al. [XES23b, XES23a] have proposed a set of physical attacks on quantum
computers. However, unlike our work, they have not provided a formalization of total and
per-channel power side-channel attacks and which left the question of reverse engineering
of quantum circuits from total power traces is open. Our work focuses on a harder problem
that aims to recover quantum gates from a single total power-side channel trace where
the problem is NP-hard, however, they attempted to solve a simpler problem that aims to
recover the quantum gates from multiple traces considering a powerful attacker, and that
can be simply solved with a polynomial time method.

Bell and Trügler [BT22] have investigated reconstructing quantum circuits on cloud-
based superconducting quantum computers. However, the authors did not perform a
power side-channel attack. The attack runs a probing circuit before and after a victim
circuit and analyzes changes in error rates to make a guess about the victim circuit. This
method is applicable in more challenging remote settings, but its capability is limited to
distinguishing between only two pre-defined circuits, which must already be known to the
attacker.

10 Conclusion
As the interest in quantum computing grows rapidly, securing quantum programs becomes
increasingly important, necessitating thorough analysis of security threats. This paper has
presented a novel threat to quantum programs in the form of power side-channel attacks,
showcasing the formalization and demonstration of using power traces to reconstruct

762 Quantum Circuit Reconstruction from Power Side-Channel Attacks

quantum circuits. Through Jensen-Shannon Divergence distance metric and algebraic
reconstruction from power traces, two new types of single-trace attacks, per-channel
and total power side-channel attacks, have been realized. The evaluation on benchmark
quantum programs has shown the high accuracy of our techniques in reconstructing
quantum circuits. Our algebraic side-channel attack distinguishes itself from previous
attacks on classical computers in its focus on quantum programs, handling of mixed discrete
and continuous variables, and challenges associated with information leakage over different
qubit and control channels through a total power trace. This work underscores the need for
further advancements in mitigating such side-channel vulnerabilities in quantum systems
to ensure the security of quantum programs in quantum computing environments. Future
research and development efforts should aim to investigate defense techniques in order
to enhance the security of quantum programs in quantum computing environments. We
also envision further research on the impact of noise on power traces and exploration of
strategies to recover Rz gates.

Acknowledgments
This work was supported in part by National Science Foundation grants 2312754 and 2245344.

References
[ABB+21] Arnold Abromeit, Florian Bache, Leon A Becker, Marc Gourjon, Tim

Güneysu, Sabrina Jorn, Amir Moradi, Maximilian Orlt, and Falk Schel-
lenberg. Automated masking of software implementations on industrial
microcontrollers. In 2021 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 1006–1011. IEEE, 2021.

[ABP19] Giovanni Agosta, Alessandro Barenghi, and Gerardo Pelosi. Compiler-based
techniques to secure cryptographic embedded software against side-channel
attacks. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 39(8):1550–1554, 2019.

[Age19] AgentANAKIN. Grover’s Algorithm. https://github.com/AgentANAKIN/
Grover-s-Algorithm, 2019.

[Ama23] Amazon Web Services. Amazon Braket, 2023.

[ASAG20] Abdullah Ash-Saki, Mahabubul Alam, and Swaroop Ghosh. Analysis of
crosstalk in nisq devices and security implications in multi-programming
regime. In Proceedings of the ACM/IEEE International Symposium on Low
Power Electronics and Design, pages 25–30, 2020.

[Bal79] Egon Balas. Disjunctive programming. Annals of discrete mathematics,
5:3–51, 1979.

[BBB+22] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna
Lachnitt, Makai Mann, Abdalrhman Mohamed, Mudathir Mohamed, Aina
Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds,
Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A versatile and industrial-
strength SMT solver. In Dana Fisman and Grigore Rosu, editors, Tools and
Algorithms for the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022, volume 13243 of Lecture Notes in Computer
Science, pages 415–442. Springer, 2022.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2312754
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2245344
https://github.com/AgentANAKIN/Grover-s-Algorithm
https://github.com/AgentANAKIN/Grover-s-Algorithm

Ferhat Erata, Chuanqi Xu, Ruzica Piskac and Jakub Szefer 763

[BCHC18] Nicolas Belleville, Damien Couroussé, Karine Heydemann, and Henri-Pierre
Charles. Automated software protection for the masses against side-channel
attacks. ACM Transactions on Architecture and Code Optimization (TACO),
15(4):1–27, 2018.

[BDM+20] Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier, Matthieu Rivain,
and Raphaël Wintersdorff. Tornado: Automatic generation of probing-secure
masked bitsliced implementations. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 311–341.
Springer, 2020.

[BGKS05] Cyril Branciard, Nicolas Gisin, Barbara Kraus, and Valerio Scarani. Security
of two quantum cryptography protocols using the same four qubit states.
Physical Review A, 72(3):032301, 2005.

[BKS21] Anubhab Baksi, Satyam Kumar, and Santanu Sarkar. A new approach for
side channel analysis on stream ciphers and related constructions. IEEE
Transactions on Computers, 71(10):2527–2537, 2021.

[BPF15] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. νz-an optimizing
smt solver. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 194–199. Springer, 2015.

[BRN+13] Ali Galip Bayrak, Francesco Regazzoni, David Novo, Philip Brisk, François-
Xavier Standaert, and Paolo Ienne. Automatic application of power analysis
countermeasures. IEEE Transactions on Computers, 64(2):329–341, 2013.

[BT22] Brennan Bell and Andreas Trügler. Reconstructing quantum circuits through
side-channel information on cloud-based superconducting quantum comput-
ers. In 2022 IEEE International Conference on Quantum Computing and
Engineering (QCE), pages 259–264. IEEE, 2022.

[BYT17] Arthur Blot, Masaki Yamamoto, and Tachio Terauchi. Compositional synthe-
sis of leakage resilient programs. In International Conference on Principles
of Security and Trust, pages 277–297. Springer, 2017.

[CAB+21] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru
Endo, Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz
Cincio, et al. Variational quantum algorithms. Nature Reviews Physics,
3(9):625–644, 2021.

[CBSG17] Andrew W Cross, Lev S Bishop, John A Smolin, and Jay M Gambetta. Open
quantum assembly language. arXiv preprint arXiv:1707.03429, 2017.

[CF21] Marco Cococcioni and Lorenzo Fiaschi. The big-m method with the numerical
infinite m. Optimization Letters, 15(7):2455–2468, 2021.

[CG12] Pedro M Castro and Ignacio E Grossmann. Generalized disjunctive program-
ming as a systematic modeling framework to derive scheduling formulations.
Industrial & Engineering Chemistry Research, 51(16):5781–5792, 2012.

[CGSS13] Alessandro Cimatti, Alberto Griggio, Bastiaan Schaafsma, and Roberto
Sebastiani. The MathSAT5 SMT Solver. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pages
93–107. Springer, 2013.

764 Quantum Circuit Reconstruction from Power Side-Channel Attacks

[CK19] Jaeho Choi and Joongheon Kim. A tutorial on quantum approximate optimiza-
tion algorithm (qaoa): Fundamentals and applications. In 2019 International
Conference on Information and Communication Technology Convergence
(ICTC), pages 138–142. IEEE, 2019.

[Cor23] IBM Corporation. Ibm ilog cplex optimization studio, 2023.

[DBE95] David Elieser Deutsch, Adriano Barenco, and Artur Ekert. Universality in
quantum computation. Proceedings of the Royal Society of London. Series A:
Mathematical and Physical Sciences, 449(1937):669–677, 1995.

[DDDD09] Elena Deza, Michel Marie Deza, Michel Marie Deza, and Elena Deza. Ency-
clopedia of distances. Springer, 2009.

[Dev22] Cirq Developers. Cirq, December 2022. See full list of authors on Github:
https://github .com/quantumlib/Cirq/graphs/contributors.

[DGN21] Jo Devriendt, Ambros Gleixner, and Jakob Nordström. Learn to relax:
Integrating 0-1 integer linear programming with pseudo-boolean conflict-
driven search. Constraints, 26(1-4):26–55, 2021.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337–340. Springer, 2008.

[DXT+23] Sanjay Deshpande, Chuanqi Xu, Theodoros Trochatos, Hanrui Wang, Ferhat
Erata, Song Han, Yongshan Ding, and Jakub Szefer. Design of quantum
computer antivirus. In 2023 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pages 260–270. IEEE, 2023.

[EPMS23] Ferhat Erata, Ruzica Piskac, Victor Mateu, and Jakub Szefer. Towards
automated detection of single-trace side-channel vulnerabilities in constant-
time cryptographic code, 2023.

[ES03] Dominik Maria Endres and Johannes E Schindelin. A new metric for probabil-
ity distributions. IEEE Transactions on Information theory, 49(7):1858–1860,
2003.

[EW14] Hassan Eldib and Chao Wang. Synthesis of masking countermeasures against
side channel attacks. In International Conference on Computer Aided Verifi-
cation, pages 114–130. Springer, 2014.

[Fed16] Sergueï Fedortchenko. A quantum teleportation experiment for undergraduate
students, 2016.

[FIC23] FICO. Xpress optimization suite, 2023.

[GO23] LLC Gurobi Optimization. Gurobi optimizer, 2023.

[GPAM+20] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
adversarial networks. Communications of the ACM, 63(11):139–144, 2020.

[HIK+14] Masahito Hayashi, Satoshi Ishizaka, Akinori Kawachi, Gen Kimura, and
Tomohiro Ogawa. Introduction to quantum information science. Springer,
2014.

[IBM23] IBM Quantum, 2023. https://quantum-computing.ibm.com/.

https://quantum-computing.ibm.com/

Ferhat Erata, Chuanqi Xu, Ruzica Piskac and Jakub Szefer 765

[IBMnda] IBM. Qiskit: Elements for building a quantum future. https://github.
com/Qiskit/qiskit, [n.d.].

[IBMndb] IBM. Qiskit: Solving linear systems of equations using hhl. https://qiskit.
org/textbook/ch-applications/hhl_tutorial.html, [n.d.].

[IHS10] Shalev Itzkovitz, Eran Hodis, and Eran Segal. Overlapping codes within
protein-coding sequences. Genome research, 20(11):1582–1589, 2010.

[Iosnd] Joseph T. Iosue. QAOAPython: The quantum approximate optimization
algorithm implemented on cirq, projectq, and qiskit. https://github.com/
jtiosue/QAOAPython, [n.d.].

[JPK+14] Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov,
Frederic T Chong, and Margaret Martonosi. Scaffcc: A framework for
compilation and analysis of quantum computing programs. In Proceedings of
the 11th ACM Conference on Computing Frontiers, pages 1–10, 2014.

[KBT14] Tim King, Clark Barrett, and Cesare Tinelli. Leveraging linear and mixed
integer programming for smt. In 2014 Formal Methods in Computer-Aided
Design (FMCAD), pages 139–146. IEEE, 2014.

[KDB+22] Satyam Kumar, Vishnu Asutosh Dasu, Anubhab Baksi, Santanu Sarkar,
Dirmanto Jap, Jakub Breier, and Shivam Bhasin. Side channel attack
on stream ciphers: A three-step approach to state/key recovery. IACR
Transactions on Cryptographic Hardware and Embedded Systems, pages 166–
191, 2022.

[KHF+20] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al.
Spectre attacks: Exploiting speculative execution. Communications of the
ACM, 63(7):93–101, 2020.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Neal Koblitz, editor, Advances in Cryptology
- CRYPTO ’96, 16th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of
Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

[KS16] Daniel Kroening and Ofer Strichman. Decision procedures. Springer, 2016.

[LP 23] LP Solve. Absolute values. http://lpsolve.sourceforge.net/, 2023. Ac-
cessed 22 Fe b. 2023.

[LSG+20] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, et al.
Meltdown: Reading kernel memory from user space. Communications of the
ACM, 63(6):46–56, 2020.

[LSKA22] Ang Li, Samuel Stein, Sriram Krishnamoorthy, and James Ang. Qasmbench:
A low-level quantum benchmark suite for nisq evaluation and simulation.
ACM Transactions on Quantum Computing, 2022.

https://github.com/Qiskit/qiskit
https://github.com/Qiskit/qiskit
https://qiskit.org/textbook/ch-applications/hhl_tutorial.html
https://qiskit.org/textbook/ch-applications/hhl_tutorial.html
https://github.com/jtiosue/QAOAPython
https://github.com/jtiosue/QAOAPython
http://lpsolve.sourceforge.net/

766 Quantum Circuit Reconstruction from Power Side-Channel Attacks

[Mac03] David JC MacKay. Information theory, inference and learning algorithms.
Cambridge university press, 2003.

[MBZ+12] Mohamed Saied EmamMohamed, Stanislav Bulygin, Michael Zohner, Annelie
Heuser, Michael Walter, and Johannes Buchmann. Improved algebraic side-
channel attack on aes. In 2012 IEEE International Symposium on Hardware-
Oriented Security and Trust, pages 146–151. IEEE, 2012.

[Mic23] Microsoft Azure. Azure Quantum, 2023.

[Micnd] Rafaele Miceli. Quantum_Walks: Qiskit code to simulate quantum walks
on graphs with up to 4 nodes. https://github.com/rafmiceli/Quantum_
Walks, [n.d.].

[MNW+17] Kristel Michielsen, Madita Nocon, Dennis Willsch, Fengping Jin, Thomas
Lippert, and Hans De Raedt. Benchmarking gate-based quantum computers.
Computer Physics Communications, 220:44–55, 2017.

[MOD11] Stuart Mitchell, Michael OSullivan, and Iain Dunning. Pulp: a linear pro-
gramming toolkit for python. The University of Auckland, Auckland, New
Zealand, 2011.

[MOPT12] Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. Compiler
assisted masking. In International Workshop on Cryptographic Hardware and
Embedded Systems, pages 58–75. Springer, 2012.

[MRS+20] Jarrod R McClean, Nicholas C Rubin, Kevin J Sung, Ian D Kivlichan, Xavier
Bonet-Monroig, Yudong Cao, Chengyu Dai, E Schuyler Fried, Craig Gidney,
Brendan Gimby, et al. Openfermion: the electronic structure package for
quantum computers. Quantum Science and Technology, 5(3):034014, 2020.

[OBL22] TM Osán, DG Bussandri, and PW Lamberti. Quantum metrics based upon
classical jensen–shannon divergence. Physica A: Statistical Mechanics and
its Applications, 594:127001, 2022.

[OC14] Colin O’Flynn and Zhizhang (David) Chen. Chipwhisperer: An open-source
platform for hardware embedded security research. Cryptology ePrint Archive,
Report 2014/204, 2014. https://ia.cr/2014/204.

[Off22] The National Quantum Coordination Office. Workshop on cybersecurity of
quantum computing, 2022.

[OR03] Yanay Ofran and Burkhard Rost. Analysing six types of protein–protein
interfaces. Journal of molecular biology, 325(2):377–387, 2003.

[OW12] Yossef Oren and Avishai Wool. Tolerant algebraic side-channel analysis of
{AES}. Cryptology ePrint Archive, 2012.

[Oxf23] Oxford Quantum Circuits. Oxford Quantum Circuits, 2023.

[PDF+21] Juan M Pino, Jennifer M Dreiling, Caroline Figgatt, John P Gaebler, Steven A
Moses, MS Allman, CH Baldwin, Michael Foss-Feig, D Hayes, K Mayer, et al.
Demonstration of the trapped-ion quantum ccd computer architecture. Nature,
592(7853):209–213, 2021.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 142–159. Springer, 2013.

https://github.com/rafmiceli/Quantum_Walks
https://github.com/rafmiceli/Quantum_Walks
https://ia.cr/2014/204

Ferhat Erata, Chuanqi Xu, Ruzica Piskac and Jakub Szefer 767

[Qis23] Qiskit contributors. Qiskit: An open-source framework for quantum comput-
ing, 2023.

[Rig23] Rigetti. Rigetti, 2023.

[RS10] Mathieu Renauld and François-Xavier Standaert. Algebraic side-channel
attacks. In Information Security and Cryptology: 5th International Confer-
ence, Inscrypt 2009, Beijing, China, December 12-15, 2009. Revised Selected
Papers 5, pages 393–410. Springer, 2010.

[Sam17] Gonçalo Sampaio. Code in qasm for quantum circuits and algorithms. https:
//github.com/sampaio96/Quantum-Computing, 2017.

[SHS+14] Ling Song, Lei Hu, Siwei Sun, Zhang Zhang, Danping Shi, and Ronglin Hao.
Error-tolerant algebraic side-channel attacks using bee. Cryptology ePrint
Archive, Paper 2014/683, 2014. https://eprint.iacr.org/2014/683.

[SJPBL14] Jakub Szefer, Pramod Jamkhedkar, Diego Perez-Botero, and Ruby B. Lee.
Cyber defenses for physical attacks and insider threats in cloud computing.
In Proceedings of the 9th ACM Symposium on Information, Computer and
Communications Security, AsiaCCS, June 2014.

[SJWK09] Gregory E Sims, Se-Ran Jun, Guohong A Wu, and Sung-Hou Kim. Alignment-
free genome comparison with feature frequency profiles (ffp) and optimal
resolutions. Proceedings of the National Academy of Sciences, 106(8):2677–
2682, 2009.

[SLM+21] Samuel A Stein, Ryan L’Abbate, Wenrui Mu, Yue Liu, Betis Baheri, Ying
Mao, Guan Qiang, Ang Li, and Bo Fang. A hybrid system for learning
classical data in quantum states. In 2021 IEEE International Performance,
Computing, and Communications Conference (IPCCC), pages 1–7. IEEE,
2021.

[Soo16] Mate Soos. The cryptominisat 5 set of solvers at sat competition 2016.
Proceedings of SAT Competition, page 28, 2016.

[STW+22] Leandro Stefanazzi, Kenneth Treptow, Neal Wilcer, Chris Stoughton, Collin
Bradford, Sho Uemura, Silvia Zorzetti, Salvatore Montella, Gustavo Cancelo,
Sara Sussman, et al. The qick (quantum instrumentation control kit): Readout
and control for qubits and detectors. Review of Scientific Instruments, 93(4),
2022.

[SW71] David F Shanno and Roman L Weil. “linear” programming with absolute-
value functionals. Operations Research, 19(1):120–124, 1971.

[Sze18] Jakub Szefer. Principles of secure processor architecture design. Synthesis
Lectures on Computer Architecture, 13(3):1–173, 2018.

[TS21] Kentaro Tamura and Yutaka Shikano. Quantum random numbers generated
by a cloud superconducting quantum computer. In International Symposium
on Mathematics, Quantum Theory, and Cryptography: Proceedings of MQC
2019, pages 17–37. Springer Singapore, 2021.

[WSRW21] Jingbo Wang, Chungha Sung, Mukund Raghothaman, and Chao Wang.
Data-driven synthesis of provably sound side channel analyses. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE),
pages 810–822. IEEE, 2021.

https://github.com/sampaio96/Quantum-Computing
https://github.com/sampaio96/Quantum-Computing
https://eprint.iacr.org/2014/683

768 Quantum Circuit Reconstruction from Power Side-Channel Attacks

[WSW19] Jingbo Wang, Chungha Sung, and Chao Wang. Mitigating power side
channels during compilation. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pages 590–601, 2019.

[XES23a] Chuanqi Xu, Ferhat Erata, and Jakub Szefer. Classification of quantum
computer fault injection attacks. arXiv preprint arXiv:2309.05478, 2023.

[XES23b] Chuanqi Xu, Ferhat Erata, and Jakub Szefer. Exploration of power side-
channel vulnerabilities in quantum computer controllers. In Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communications Security
(CCS’23), pages 1–15, Copenhagen, Denmark, November 26–30 2023. ACM,
New York, NY, USA. Available at arXiv: https://arxiv.org/abs/2304.
03315.

https://arxiv.org/abs/2304.03315
https://arxiv.org/abs/2304.03315

	Introduction
	Power Side-Channel Threats to Quantum Computers
	Lessons from Historical Technological Threats
	Contributions

	Background
	Qubits and Quantum States
	Quantum Gates
	Control Pulses
	Pulse-Level Circuit Description
	Running Circuits on Quantum Computers

	Attack Scenario and Threat Model
	Assumptions of Attacker Measurement
	Assumptions of Attacker's Knowledge
	Attacker's Objective
	Impact of Attacks
	The Realism of the Threat Model
	Difference from Classical Setting of Power Side-Channel Attacks

	Formalization of Circuit Reconstruction
	Quantum Device
	Channel
	Basis Pulse
	Basis Pulse Library
	Pulse-Level Circuit
	Power Trace
	Domain-Specific Constraint
	Attacker's Goal

	Power Side-Channel Attacks
	Single-shot Per-Channel Power Side-Channel Attack
	Single-shot Total Power Side-Channel Attack

	Evaluation Setup
	Evaluation Results
	Discussion and Future Work
	Application to Future Quantum Computers
	Scalability of the Attack for Future Quantum Computers
	Challenges in Current Threat Model
	Potentials in Future Threat Model
	Potential Defenses

	Related Work
	Conclusion

