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Abstract. White-box cryptography (WBC) seeks to protect secret keys even if the
attacker has full control over the execution environment. One of the techniques to hide
the key is space hardness approach, which conceals the key into a large lookup table
generated from a reliable small block cipher. Despite its provable security, space-hard
WBC also suffers from heavy performance overhead when executed on general purpose
hardware platform, hundreds of magnitude slower than conventional block ciphers.
Specifically, recent studies adopt nested substitution permutation network (NSPN) to
construct dedicated white-box block cipher [BIT16], whose performance is limited by
a massive number of rounds, nested loop dependency and high-dimension dynamic
maximal distance separable (MDS) matrices.
To address these limitations, we put forward UpWB, an uncoupled and efficient
accelerator for NSPN-structure WBC. We propose holistic optimization techniques
across timing schedule, algorithms and operators. For the high-level timing schedule,
we propose a fine-grained task partition (FTP) mechanism to decouple the parameter-
oriented nested loop with different trip counts. The FTP mechanism narrows down
the idle time for synchronization and avoids the extra usage of FIFO, which effi-
ciently increases the computation throughput. For the optimization of arithmetic
operators, we devise a flexible and vectorized modular multiplier (VMM) based on
the complexity-reduced Montgomery algorithm, which can process multi-precision
variable data, multi-size matrix-vector multiplication and different irreducible poly-
nomials. Then, a configurable matrix-vector multiplication (MVM) architecture
with diagonal-major dataflow is presented to handle the dynamic MDS matrix. The
multi-scale (Inv)Mixcolumns are also unified in a compact manner by intensively
sharing the common sub-operations and customizing the constant multiplier.
To verify the proposed methodology, we showcase the unified design implementation
for three recent families of WBCs, including SPNbox-8/16/24/32, Yoroi-16/32 and
WARX-16. Evaluated on FPGA platform, UpWB outperforms the optimized software
counterpart (executed on 3.2 GHz Intel CPU with AES-NI and AVX2 instructions)
by 7× to 30× in terms of computation throughput. Synthesized under TSMC 28nm
technology, 36× to 164× improvement of computation throughput is achieved when
UpWB operates at the maximum frequency of 1.3 GHz and consumes a modest area
0.14 mm2. Besides, the proposed VMM also offers about 30% improvement of area
efficiency without pulling flexibility down when compared to state-of-the-art work.
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1 Introduction
White-box cryptography originates from works [CEJvO02b][CEJvO02a] by Chow, Eisen,
Johson and Oorschot, which are categorized as the CEJO scheme. Through combining
look-up table (LUT) with encoding techniques, CEJO scheme aims to protect the standard
block cipher (i.e., Advanced Encryption Standard) from key extraction attack even under
white-box attack model. This strong security model assumes that the hostile user has full
access and control to the environment, such as manipulating memory addresses, content,
execution flow and so forth. In contrast, the conventional black-box security model
assumes that only the external execution environment of cryptographic algorithm, such
as the chosen plaintext and ciphertext pair, is observed by the attacker. Additionally,
the well-known side-channel attack that examines execution time, power consumption,
etc. leads to the gray-box model of relatively middle-level hypothetical strength. As of
classical application, devices on the server side are usually executed under black-box model,
while the client side commonly corresponds to gray-box or white-box model. Recently,
WBC is in fast-rising demand among many security-critical scenarios, such as digital right
management (DRM), mobile payment, banking and memory-leakage resilient software and
so on [BIT16] [DLPR13][BABM20].

1.1 Space-hard White-box Block Ciphers
Incompressibility. One research line of WBC follows the CEJO framework to provide
white-box implementation for the standard block cipher, such as the white-box version of
Advanced Encryption Standard (AES) [CEJvO02a] and lightweight block cipher [CG22].
Nevertheless, almost all of them are still penetrated by key extraction attack up to now.
The other research line devises new dedicated white-box block ciphers (DWBCs) to achieve
provable security while imposes large computational overheads, which is the focus of
this paper. As mentioned in [DLPR13] [BABM20], the basic aim of white-box programs
includes resisting key extraction attack and leakage of message (one-wayness). Additionally,
the code-lifting attack is also an important security issue under the white-box setting. In
the syntax of code-lifting attack, an attacker could directly copy the code program and
run it on chosen devices without the need to recover the value of secret key. At this point,
the whole extracted program is equivalent to a big key. Incompressibility, as a security
property to mitigate the code-lifting attack, is proposed in [DLPR13], which is popularly
adopted in modern dedicated white-box block ciphers. The purpose of incompressibility is
to increase the difficulty of extracting and transferring code programs by converting the
programs into a significantly larger but functionally equivalent version. Furthermore, the
program only keep functional in their complete form, i.e., the malfunction will occur when
fragments of it are moved. In this way, if the adversary obtains part of the program, he
should not be able to recover the value of secret key or should not be able to derive the
compressed version of equivalent functionality and use it to decrypt arbitrary ciphertexts.
For brevity, this work would like to refer to literatures [BAB+19] [DLPR13] for formal
definition of incompressibility.

When designing the dedicated white-box block cipher, a typical method to achieve
incompressibility is to derive a large and incompressible program from a small-sized
symmetric encryption scheme by implementing the key-related encryption functions with
look-up tables. In this case, security against key extraction attack in the white-box setting
is reduced to the well studied problem of key recovery for block ciphers in the standard
black-box setting. Usually, the table-based incompressible version is referred to as the
white-box implementation (formalized as big key mode in [BBL23]) while the original
small-sized encryption scheme is referred to as the black-box implementation [BIT16] (also
formalized as small key mode in [BBL23]).

Space-hardness. Following the concept of incompressibility, [BI15] also proposes a
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novel notation named as (M,Z)-space hardness, which quantifies the security against code
lifting by the amount of code that needs to be extracted from the implementation by a
white-box attacker to maintain its functionality.

Theorem 1 ((M, Z)-space hardness [BI15]). The implementation of a block cipher is
(M,Z)-space hard if it is infeasible to encrypt (decrypt) any randomly drawn plaintext
(ciphertext) with probability of more than 2Z given any code (table) of size less than M.

It is noted in [BI15] that weak white-box security can be seen as a special case of
(M,Z)-space hardness and corresponds to (M, 0)-space hardness. [FKKM16] also proposes
the notation of weak incompressibility and makes it as essentially a formalization of space
hardness. The first space-hard block cipher named as SPACE [BI15] is designed with
different code sizes, which is applicable to a wide range of environments and use cases.
Without the necessity of the external code, it is of higher portability than the CEJO scheme
as well. However, the security-prioritized design strategy also leads to heavy performance
penalties and restricts its wide application. Since the birth of space-hard cipher, algorithm
designers have been conducting studies to improve its performance. One of the prevailing
techniques is to utilize nested SPN structure, where the S-box is developed by another
small-scale SPN block cipher. [BIT16] presents the first NSPN based white-box block
cipher named as SPNbox, which utilizes AES variants to build the internal S-box and
applies MDS matrix to develop the linear layer. More recently, [KI21] puts forward an
updatable white-box scheme (Yoroi) based on the partial MDS matrix, which could refresh
the LUT without extra re-encryption. WARX [LRH+22] employs addition/rotation/XOR
(ARX) primitive and random MDS matrix to improve the overall performance. However,
contemporary DWBCs still suffer from limited performance due to the enormous round
count, high dimension MDS matrix and nested loop structure (detailed in section 2).

1.2 The Story: Accelerating Black-box Implementation of WBC
Motivations. In general, DWBCs are designed with different security parameters and
table sizes to meet a variety of use cases. The capacity of incompressible LUT under
white-box implementation ranges from several KiloBytes to GigaBytes, allowing us to
seek balance between security strength and resource constraint. Actually, for WBC with
medium-sized parameter (e.g. SPNbox-16), the speed (measured by average cycle per
bye) of black-box implementation is about three times slower than that of the white-box
version when executed on software platform. The main reason for this performance gap is
that the black-box implementation incurs nested loop dependency, which is hard to be
parallelized under software platform and prone to deteriorate the performance. Modern
CPU could resort to specific instruction (e.g. AES NI) or vector instruction (i.e. AVX) to
achieve parallelism in the data level, but the nested loop dependency hinders the further
parallelization in the loop level. Our objective is to show that the performance of space-
hard cipher under black-box implementation can be significantly promoted by utilizing
well-designed hardware accelerator. UpWB could be integrated into the cloud server and
it would capture better area and energy efficiency than software-only platform. The recent
progress on WBC has been nothing short of spectacular, which makes us optimistic that
future advancements will bring the power of WBC to many more applications.

WBC is originally invented for software protection when we are short of the hardware
support. Hence, questions may arise that there is no need to apply WBC if we already
possess the secure hardware resource. The feasibility and profit to adopt hardware
acceleration are summarized as following from three-fold perspectives.

(1) We would like to emphasize that this work aims to accelerate the server-side WBC
under black-box implementation. The aforementioned question only considers the white-box
implementation by default but fails to hold water for black-box implementation. The
execution environment of secure hardware is commonly assumed to be non-white-box
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[SMG16a], which is consistent with the trusted environment of server-side and exactly
explains why we only accelerate the WBC under black-box setting. The client-side WBC
is still implemented with software program under white-box setting as usual.

client side

server side ...
UpWB 

Accelerator
...

c = encrypt (m, k)

+
WBC

program
(C/C++)

m = decrypt

(c, LUT(k))

c

permission
denied

key 
extraction 

attack failed

Figure 1: The application of WBC in cloud-based content distribution. Hardware WBC
with small key is deployed under black-box setting (only the input and output can be
observed). Software WBC with big key is deployed under white-box setting (untrusted
open environment).

(2) Both white-box and black-box implementations are usually deployed in pair to fulfill
the application of DWBC. Compared with the memory-hard white-box implementations of
WBC, the black-box version features the advantages of facilitating fast key switching and
consuming much less storage. Since the server side is assumed to already know the secret
keys, the server-side WBC could be implemented in form of black-box implementation.
Space-hard block ciphers actually resemble the asymmetrically hard functions in terms
of memory hardness as noted in [BP17], which create two classes of users: one party
(like the client side) has to compute the white-box implementation with increased memory
hardness, while the other party (like the server side) who knows the secret can evaluate
the black-box implementation with original memory efficiency. However, as mentioned
before, the performance of black-box implementation on general-purpose processor is
still problematic, which is hard to meet the needs of massive client terminals and the
highly concurrent applications on the server side. Adopting hardware acceleration for
the black-box implementation naturally boosts the throughput of WBC and matches the
black-box security model of the server side, thus compensating the inferiority of space-hard
ciphers to performance.

For example, Figure 1 depicts the application of WBC in cloud-based content dis-
tribution [BIT16]. Cloud server has to encrypt contents in the black-box setting (thus
retain conventional memory efficiency) and distribute them to user devices. Since run-
ning multiple white-box implementations for all users would require a prohibitive amount
of memory, it is unreasonable to replace the server-side black-box implementation with
memory-bound white-box version. The UpWB accelerator is leveraged to improve the
computation throughput for the server side. User devices decrypt the contents in the
white-box setting using the incompressible software program, without needing to rely on
hardware. Additionally, although most private and remote servers could be protected
much better than edge devices, it may still have additional threats, such as cache-timing
attack [GSM15]. This attack utilizes the architectural features of software processor, such
as data dependency and cache memory access time, to extract the secret key, which has
recently received wide attentions. By implementing the black-box implementation with a
specific hardware accelerator, this issue could be addressed at the cipher-implementation
level, in analogy with the profit of AES-NI instruction. Based on the above analysis, we
explicitly summarize the difference between this work and the conventional WBC applied
in DRM, as shown in Table 1.

(3) The server side under black-box implementation always deals with a large number of
user keys simultaneously and demands a relatively higher throughput. In particular, devices



Xiangren Chen et. al. 681

on the server-side inevitably encounter cryptographic algorithms with diverse security
parameters [LWD+18]. It is profitable to devise a configurable hardware architecture
supporting different algorithms and parameters for the server side. Although a few works
have achieved performance improvement for WBC on the general-purpose processing
platform [RFS+19][TGS+22], the final computation throughput is still limited because
CPUs cannot directly explore the parallelism of nested operations well enough. Therefore,
a domain-specific hardware accelerator is more promising to achieve better performance
and energy efficiency. Hardware acceleration of basic primitives tends to exert down-stream
effects. We hope that this acceleration can also motivate more applications of WBC for
developing potentially fancy cryptographic infrastructure [DLS+22].

Table 1: The comparison of deployments for WBC in DRM.

Features Conventional WBC [BIT16] This Work (UpWB)
server side client side server side client side

platform software software hardware software
security model black-box white-box black-box white-box

main attacks KEA
CTA, etc.

KEA
CLA, etc.

KEA
��CTA, etc.

KEA
CLA, etc.

protection mechanism access control
etc.

incompressibility
etc.

access control
+ hardware, etc.

incompressibility
etc.

speed/energy efficiency — — ↑ —
concurrent application — — ! —
fast key-switching — # ! #

storage overhead low (KBs) high (MBs) low (KBs) high (MBs)
NOTES: KEA - key extraction attack. CTA - cache-timing attack [GSM15]. CLA - code-lifting attack.
This table also reflects the difference between black-box and white-box implementation.

Discussions on the security threats and applications. The recent hybrid code-
lifting attack [TI22] supposes that there are white-box and black-box attackers working
together to achieve program recovery. The black-box attacker receives the leakage generated
by the white-box attacker and uses it to perform cryptanalysis under the black-box setting,
which determines whether the attack succeeds or not. In other words, the leakage from
the collaborative white-box attacker enhances the ability of black-box attacker, which is
similar to the attack model of strong incompressibility in terms of motivation. However,
SPNbox and Yoroi themselves are designed under the assumption that the property of
space-hardness is achieved in the presence of only a white-box attacker, i.e., without such
collaboration of the hybrid-code lifting. In the context of hybrid code-lifting attack model,
the 128-bit security strength of SPNbox against key-recovery attacks in the black-box
model is compromised, but not meaning that SPNbox is completely broken. It is also
remarked in [TI22] that increasing the number of rounds in SPNbox by several rounds
(e.g., 12-round SPNbox-16) produces a good candidate to resist such hybrid code-lifting
attack, if the original security strength is still demanded. As for the Yoroi scheme, its
canonical representation and partial MDS matrix are vulnerable to the hybrid code-lifting
attack, which cannot be circumvented by just increasing the number of round. Thus, Yoroi
should be deployed under the very limited use case which supposes the black-box attacker
cannot obtain the leakage, as suggested by [TI22]. Based on the above considerations, the
proposed UpWB hardware accelerator supports configurable parameters, which thereby
is able to efficiently update the algorithmic parameters of SPNbox, Yoroi and WARX,
including the number of rounds and random MDS matrix elements. [MN11] also makes
an intuitive remark that the dynamic generation of MDS matrix causes the prediction of
statistical properties and relationships between plain and cipher texts more difficult, which
helps to avert the linear and differential cryptanalysis.

To mitigate code-lifting attacks is particularly central to the application of white-box
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cryptography besides the security against key extraction, as explicated in [BABM20].
The concept of incompressibility requires the cryptographic programs to be implemented
with a very large program, which seems to be unsuitable for resource-constrained mobile
devices and internet of things. As a consequence, large-sized space-hard ciphers are of
main interests to the typical applications like DRM, but seem not to be the appropriate
solution to mobile payment applications, which favor more lightweight deployments and
demand other security properties including confidentiality, integrity and so on [BABM20].
Therefore, in addition to the property of incompressibility, other notable techniques like
application binding, hardware binding [BBF+20], traceability [DLPR13] and so forth,
should also be carefully considered for a broader applicability.

State-of-the-art. To our best knowledge, hardware designs for DWBCs have not
been reported by now. Although some works focus on the performance improvement
of WBCs under central processing unit (CPU) execution [RFS+19][TGS+22], the final
throughput is still limited and only the white-box implementation is evaluated. Some
works [SMG16b] [Sas18] implement the relatively lightweight white-box AES/Noekeon
version on FPGA rather than the type of DWBCs discussed in this paper. In general, the
nested loop dependency and computation-intensive modular operations are unfriendly to
CPUs, which commonly have a low degree of parallelism. Graphic processing units (GPUs),
on the other side, have rich computation resources but consumes much more energy and
money cost. Nevertheless, hardware design has good scalability and could leverage the
specialized data-flow information to achieve better computation efficiency. As a special
focus, various algorithms for modular multiplication over GF(2m) have been intensively
studied. However, an efficient and vectorized MM algorithm supporting random MDS
matrix is still in lack, which will be further discussed in section 2 and 5.

Contribution. In this work, we focus on the hardware acceleration for multiple
NSPN-based block ciphers under black-box setting. Our main contributions are illustrated
as following:

• We analyze several NSPN-based WBCs to identify the underlying operations and
point out their distinction from conventional block ciphers. We manifest that the
nested loop is prone to deteriorate the performance (Section 2).

• For the first time, we develop UpWB, an uncoupled and efficient hardware architecture
for the server-side WBC under black-box setting, which can accelerate three series of
DWBCs including SPNbox-8/16/24/32, Yoroi-16/32 and WARX-16. We introduce a
fine-grained task partition mechanism to decouple the nested loop dependency, which
can serve as a generic method and efficiently promote the computation throughput
per area (Section 3).

• We propose several optimized hardware modules to achieve decent area-time efficiency,
which encompasses 1) an adaptive and redundancy-free VMM to process multi-
precision data, multi-size vector length and different irreducible polynomials; The
refined VMM achieves almost the lowest area complexity among state-of-the-art
works without pulling performance and flexibility down. 2) a configurable MVM to
deal with multi-size MDS matrices; The proposed MVM architecture adopts diagonal-
major data-flow to circumvent the vast connection cost and reduce memory footprint.
3) unified multi-scale (Inv)MixColumns by intensively sharing sub-operations; A
design generator is developed to customize the constant modular multiplier for
minimal circuit depth and 32% average savings on area cost (Section 4).

• We evaluate UpWB based on FPGA implementation and ASIC synthesis. The
FPGA implementation of UpWB outperforms the optimized software counterpart by
7× to 30× in terms of computation throughput. The synthesis result of TSMC 28nm
technology shows that 36× to 164× speedup is achieved when UpWB works under
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the peak frequency 1.3 GHz (Section 5). Last but not least, our implementation
codes are available on https://github.com/xiang-rc/UpWB_ref.

2 Background
In this section, we firstly introduce the relevant algorithmic background along with the
analysis of main operations. Then, we identify the design challenges that are specific for a
unified and efficient architecture supporting NSPN-based WBCs.

2.1 Notations
Let GF(2m) denote the binary extension Galois field, whose element is in form of bit strings
taken from the set {0, 1}m. Define the quotient ring of polynomials as GF(2)[x]/f(x),
where f(x) is a suitable irreducible polynomial and f(x) ∈ GF(2)[x]. A polynomial
a = a(x) = a0+a1x+...+am−1x

m−1 ∈ GF(2)[x] can be denoted as (a0, a1, ..., am−2, am−1).
Let Ai represent the i-th w-bit chunk of a for 0 ≤ i < dm

w e = W . Let Ai[j] denote the j-th
bit of Ai, where j = 0, 1, ..., w− 1. Constants over GF(2m) are represented in Hexadecimal
form. The addition over GF(2m) is the same as XOR operation ⊕.

2.2 Algorithmic Overview and Operations
The nested SPN-based DWBC takes in n-bit data block and k-bit secret key to perform en-
cryption and decryption. The nested structure is embodied by the ns-bit substitution box,
which is a small-sized SPN-type cipher as well. For WBC-8/16/32 (ns = 8/16/32), n and
k are both determined as 128 bits. For WBC-24 (ns = 24), n and k are both scaled to 120
bits. From the implementation point of perspective, NSPN-based WBCs share common
data-flow structure. Readers could refer to the original paper for more specifications.

Table 2: The summarized parameter sets for DWBCs.

Scheme State size Ri Ro Type Invol. Finite field Elements of the first row

S-8 16×8 64 10 H !
GF(28)/

0x11b
SM8=[8, 16, 8a, 1, 70, 8d, 24, 76,
a8, 91, ad, 48, 5, b5, af, f8 ]

S-16 8×16 32 10 H !
GF(216)/
0x1002b SM16=[1, 3, 4, 5, 6, 8, b, 7 ]

S-24 5×24 20 10 C #
GF(224)/
0x100001b

SM24=[1, 2, 5, 3, 4]
InvSM24=[bb3217, 6f80ec,
37285e, 33c9b4, d05310 ]

S-32 4×32 16 10 H !
GF(232)/

0x10000008c SM32=[1, 2, 4, 6]

Y-16 8×16 32 8 H #
GF(24)/
0x10011

YM8=[5, 4, a, 6, 2, d, 8, 3 ]
InvYM8=[7, 3, e, b, 8, 1, 6, b ]

Y-32 4×32 16 16 C #
GF(24)/
0x10011

YM4=[2, 3, 1, 1]
InvYM4=[e, b, d, 9]

W-16 8×16 24 7 D — GF(216)/
Config.

WM16=[a0, a1, ..., a7]
InvWM16=[a′0, a′1, ..., a′7]

* NOTES: Invol. denotes Involuntary property, which means the inverse version of matrix is
identical to itself. H: Hadamard. C: Circulant. D: Dynamic.

State. The state in SPNbox, Yoroi and WARX is organized in form of row vector
containing t = n/ns elements: X = (X0, X1, ..., Xt−1). Here each ns-bit element can be
further divided into l = ns/8 bytes: Xi = (Xi,0, ..., Xi,l−1).

Data structure: To make full use of the inherent data-level parallelism of block cipher,
the round-based implementation strategy is adopted in our architecture [UHM+20], which
means n = t× ns-bit data block is processed per cycle.

https://github.com/xiang-rc/UpWB_ref
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Key Schedule. The round keys are generated by a key derivation function (KDF),
where a k-bit master key is expanded to (Ri + 1) round keys, namely (k0, k1, ..., kRi

) =
KDF (k, ns · (Ri + 1)). Here Ri denotes the number of rounds for internal SPN cipher.
KDF is specified as the hash function SHAKE-128 [Dwo15]. Table 2 summarizes the
parameter set for related NSPN block ciphers.

Round Function. Since the round function for encryption is exactly opposite to that
of decryption, we just introduce the former one here. As Figure 2 depicts, the overall struc-
ture of round function consists of three components, namely non-linear substitution box γ,
linear layer θ and affine layer σ. The final iterative result is obtained by applying Ro rounds
of round functions to the state: XRo = (©Ro

r=1(σr ◦ θ ◦ γ))(X0) (for SPNbox/WARX). In
this paper, the θ and σ layer are fused as the linear transformation (LT) loop, while γ as the
non-linear transformation (NLT) loop from a computation point of view. (De-)multiplexers
are mainly required to support different execution orders and data transmission. (1) Non-
linear Layer. The γ layer maps t× ns-bit input to the t× ns-bit output using the substi-
tution box: (X0, X1, ..., Xt−1) 7→ (γ0(X0), γ1(X1), ..., γt−1(Xt−1)). As Figure 2 shows, the
instantiations of γ layer for SPNbox/Yoroi and WARX are different from each other. (2)
Linear Layer. The linear diffusion layer is specified as the multiplication between MDS
matrix and state vector: (X0, X1, ..., Xt−1) 7→ (X0, X1, ..., Xt−1)×MDS matrix. Table 2
summarizes the parameter sets for MDS matrices and their inverse versions, which contain
different sizes, finite fields and types. As a special case, WARX adopts random matrices.
(3) Affine Layer. For SPNbox and WARX, the affine layer σr is unified by adding round-
dependent constants to the state: (X0, X1, ..., Xt−1) 7→ (X0⊕Cr

0 , X1⊕Cr
1 , ..., Xt−1⊕Cr

t−1),
where Cr

i = (r − 1) · t+ i+ 1 for 0 ≤ i ≤ t− 1. For Yoroi, the affine layer is defined as:
(X0, X1, ..., Xt−1) 7→ (X0 ⊕ Cr, X1 ⊕ Cr, ..., Xt−1 ⊕ Cr), where Cr = r + 1. Obviously,
vectorized modular multiplication (MM) and addition (MA) over GF(2m) are required to
support the iterative vector operation within the linear and affine layer. The right bottom
of Figure 2 further presents the hierarchical operations for NSPN-structure DWBCs.
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2.3 Design Challenges
1) Nested loop dependency with large trip count. Figure 3 presents the difference
of data dependency graph (DFG) between the conventional block cipher and NSPN-based
WBCs. The conventional block cipher (e.g., AES) consists of the iteration of a round
function, yielding a single loop. To improve the throughput by approximately x times, the
effective method is to duplicate the round function by x times and then insert pipeline
registers among them. Nevertheless, three data loops will be formed in the NSPN-based
WBCs. First, the NLT loop needs to iterate M rounds of internal SPN function (γ
layer). Then, the high-dimension MDS matrix-vector multiplication is usually decomposed
into iterative scalar-vector operations [SKOP15], which leads to the second LT loop.
Finally, the round count of external SPN structure is determined as R, which results in
the third loop nested with the former two sibling loops. Obviously, the inner-and-inter
loop dependency renders the traditional strategy impractical for the NSPN-based WBCs.
Specifically, the inter-loop dependency leads to pipeline stall and incurs extra usage of
FIFO. Since the trip count is hundreds of magnitude and varies with security parameters,
fully unrolling the nested data loop not only entails tremendous resource overhead but
also results in low resource utilization. Prior works aim to improve the mapping efficiency
of nested loop on coarse-grained reconfigurable architectures (CGRA), but most of them
are applicable for inner loops with small trip counts and limited by the fixed size of PE
array [YLLW16][LLM+21] [KTM+18] [LYLW16]. Thus, we further leverage the specific
information of WBC to attain case-oriented design strategies and gained performance.
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Figure 3: The comparison of DFG between conventional block cipher and WBC.

2) High-dimension and dynamic MDS matrices. As a kind of cryptographic
primitive, the linear mapping commonly adopts MDS matrices to achieve diffusion in block
cipher. However, there are four different points existing between conventional block ciphers
and NSPN-based WBCs. (1) The dimension of MDS matrix applied in WBC is always
larger than that of conventional block cipher, which tends to deteriorate the execution
performance. For instance, SPNbox-8 applies 16× 16-sized MDS matrix, whose dimension
is four times as large as AES. (2) The sizes of related MDS matrices are diverse, scaling with
different security levels. For example, SPNbox-family block ciphers contain four different
sizes. (3) The elements of MDS matrix within WARX are dynamically generated rather
than fixed constants. (4) Different types of MDS matrices (e.g., circulant or hadamard) are
involved as Table 2 shows. A plethora of works are carried out to either search lightweight
MDS matrices [AF14, SKOP15, LS16, LSL+19, VKS22] or optimize implementation of
the prescribed matrix for low latency or low area footprint [LWF+22, XZL+20, VKS22].
This optimization can be transformed as the shortest linear program problem, which is
deemed as NP-hard [BMP08]. Nevertheless, a configurable and efficient hardware design
for dynamic MDS matrices with different sizes is still left fewly explored by now.

The value of implementing a configurable MVM architecture supporting random MDS
matrix has been demonstrated in prior works. Besides the reduction of time for re-
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fabrication, devices on the server side are always required to handle several responses
from different client sides, which inevitably encounter cryptographic algorithms with
diverse security parameters [LWD+18]. From a security perspective, some communication
protocols even adopt more security-conservative parameters [WSH+10], which are likely
to be periodically updated. Additionally, benefiting from the usage of random elements,
dynamic matrix makes the statistic property of plaintext-ciphertext pairs hard to be
predicted, which averts the linear and differential analysis to some degree. By randomly
and uniformly distributing the hamming weight of elements, it tends to be more immerse
towards side channel attacks, especially to the power related attacks [MN11].

3) Bit-precision reconfigurability without redundancy. As illustrated in section
2.2, DWBCs involve different bit-widths (4 ∼ 32-bit), parameter sets and execution order,
which easily result in complex routings and imbalanced workloads. As identified in
[CLF+17] [CLK+16], it is challenging to devise a redundancy-free modular multiplier to
support variable bit-width GF operations under different irreducible polynomials. Due to
the polynomial modulo operation, a smaller GF bit-width multiplication cannot directly
use a larger GF bit-width data-path by simply setting the most significant bits to zeros.
In this work, besides the flexibility of precision and f(x), one extra dimension of flexibility,
namely the number of modular multiplier, is further required to handle multi-size MDS
matrices. For example, to process SM8 and SM16 in a round-based manner, we need
#16×8-bit and #8×16-bit modular multipliers, respectively. In a nutshell, a flexible
vectorized modular multiplier has to be designed to support multi-precision data, multi-size
matrices and different irreducible polynomials.

3 Architectural Design Methodology

In this section, we firstly introduce the FTP mechanism, based on which the performance
is profiled. Afterwards, we present the overall architecture of UpWB and describe the task
distribution for each component.

3.1 Proposed FTP Mechanism

Exemplary FTP mechanism. Figure 4 (a) shows that the nested loop dependency
results in low degree of parallelism if both NLT and LT are processed serially. A straight-
forward overlapped processing strategy is presented in Figure 4 (b). However, the gap of
loop count between NLT and LT leads to idle time for synchronization, which lowers the
resource utilization. Being aware that the loop count of NLT is assumed to be two times
as large as that of LT, we could overlap the execution time of two NLT modules with
that of one LT module to eliminate idle time. In other words, we partition NLT function
into two sub-tasks to decouple the nested loop dependency, which avoids the usage of
FIFO for synchronization [WNCY16] and efficiently increases the overall computation
throughput. In this way, the operation throughput (TP) is raised by approximately 3× but
only incurs 1.5× resource overhead (RO), which achieves better area-time efficiency than
other methods like fully unrolling or direct duplication. The FTP mechanism is inspired
by [WNCY16], which implements in-memory AES and faces similar data dependency.

Performance model. Based on the FTP mechanism, we attempt to decompose the
N -round NLT and M -round LT into about x× (N/x)-round NLTi and y× (M/y)-round
LTj , respectively. The uncoupled data-flow graph is shown in the right bottom of Figure
4. In terms of timing schedule, we try to overlap the data processing to hide much more
latency. In the ideal case, all of the function modules are utilized to alternatively process
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x+ y data points. Then, the cycle count for black-box encryption is calculated as below:

CC =
periodical alternation time︷ ︸︸ ︷

(max{Ni,Mj}+ 1) · (x+ y) ·Ro +
x−1∑
i=0

(Ni + 1) +
y−2∑
j=0

(Mj + 1) + δ︸ ︷︷ ︸
warm-up time

(1)

Here, δ = (max{N0, N1}−N1)+...+(max{N0, N1, ..., Nx−1}−Nx−1)+...+(max{N0, N1, ...
, Nx−1,M0,M1, ...,My−2} −My−2), indicating the timing penalty for waiting the func-
tion module with the largest sub-round count. The largest sub-round count, namely
max{Mi, Nj} for 0 ≤ i ≤ x− 1, 0 ≤ j ≤ y − 1, determines the period of alternation. The
warm-up time represents the cycle count required to fill all of function modules with data
points. Consequently, the computation throughput (TP ) is formulated as below:

minimize TP = DW · (x+ y) · fmax

CC
, subject to

x−1∑
i=0

Ni = N,

y−1∑
j=0

Mj = M.

DW denotes the bit-width of data and fmax denotes the peak frequency. Considering that
max{Mi, Nj} ≥ M+N

x+y (pigeonhole principle), the equality holds if and only if M0 = M1 =
. . . = Mx−1 = N0 = N1 = . . . = Ny−1 = M+N

x+y . By plugging the equality condition into
the above equation, the computation throughput will further satisfy the condition:

TP ≤ DW · (x+ y) · fmax

(M +N + x+ y) ·Ro +N +M + x+ y −My−1

Based on the above analysis, a useful design principle is to narrow down the gap between
Mi and Nj , which reduces the amount of idle time for synchronizing the function modules
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with different amortized round counts. Being aware of the round parameters of all involved
block ciphers, we determine x = 4 and y = 2 to develop the NLT and LT cluster.

As a typical example, Figure 5 presents the timing diagram of overlapped processing for
SPNbox-16. The round count for LTj module is about twice as much as the NLTi module.
Thus, we align the operation time of two NLT modules with one LT module. Then, 4 data
points will be alternatively processed and the TP is calculated as: 4·DW ·fmax

688 .
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Figure 5: An example of FTP mechanism for SPNbox-16 black-box encryption.

3.2 Overall Hardware Architecture
Figure 6 presents the overall architecture for UpWB, which mainly consists of a top control
module, KDF module, NLT and LT cluster. Ideally, UpWB will handle 6 data channels
synchronized by 6 sequencers. To execute different types of algorithms, data blocks and
configuration context are sent to the buffer at the initial phase, including the algorithm
type, enc/decryption mode and parameter set. The KDF module is instantiated to the
SHAKE-128 function, which affords to generates round keys for NLT cluster at the second
phase. In our Keccak design, five permutation steps are conducted upon the 1600-bit state
cube sequentially per cycle. At the third phase, the NLT cluster carries out the internal
SPN function in a round-based manner, processing n-bit data block per cycle. The LT
cluster conducts the MVM of different sizes. As the core arithmetic unit, an adaptive
VMM is devised to handle random matrices based on a folded architecture.
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4 Algorithm-hardware Co-design for Operators
4.1 Adaptive VMM
To obtain the precision-reconfigurability without redundancy, the new VMM is devised to
meet two requirements: (1) The VMM should be able to process multi-precision variable
elements under different irreducible polynomials without under-utilization of hardware
resource. (2) A single modular multiplier with large q bit width can be exactly decomposed
(vectorized) into n modular multipliers with small q

n bit width.
Prior work on single MM. A scalable radix-2 Montgomery multiplication algorithm

is proposed in [GTSK02] [KAJ96][JH07], which decomposes operand a(x) into several
chunks, namely a(x) = a =

∑W−1
i=0 Ai(x) · xi·w where Ai(x) =

∑w−1
j=0 ai·w+j · xj , W =

dm+1
w e. b(x) is scanned one bit at a time while a(x) is scanned serially per chunk. [RM13]

modifies this algorithm by scanning multiple bits of b(x) per cycle as shown in algorithm
1. The iterative operation within the third j-loop is divided into two types of computation
blocks. The parity signal and C0 are generated in block α. Based on parity signal, block
β is responsible to compute the most significant bit (MSB) of C0 and the remaining Cj

for 1 ≤ j ≤W − 1.

Algorithm 1 Scalable radix-2 Montgomery multiplication in [RM13]
Input: Let a(x) = a = (A0, A1, ..., AW−1) and b(x) = b = (B0, B1, ..., BW−1) be two polynomials
over GF(2m). Here W = dm+1

w
e and w is the bit-length of chunk. Similarly, f(x) = f =

(F0, F1, ..., FW−1) is the irreducible polynomial.
Output: c(x) = c = (C0, C1, ..., CW−1) = a · b · r−1 mod f . Here f(x) = xm + r(x) and
r(x)−1 · r(x) mod f(x) = 1.
1: c← (0, 0, ..., 0)
2: for i = 0 to W − 1 do . Travel each chunk index of b(x).
3: for k = 0 to w − 1 do . Travel each bit within b(x) chunk.
4: /* The computation task of block α.*/
5: C0 = C0 ⊕ (Bi[k] ·A0)
6: parity = C0[0]
7: C0 = C0 ⊕ (parity · F0)
8: for j = 1 to W − 1 do . Travel each chunk index of a(x) and f(x).
9: /* The computation task of block β.*/
10: Cj = Cj ⊕ (Bi[k] ·Aj)
11: Cj = Cj ⊕ (parity · Fj)
12: Cj−1 = {Cj [0], Cj−1[w − 1 : 1]}
13: end for
14: CW−1 = {0, CW−1[w − 1 : 1]}
15: end for
16: end for
17: return c

Insight on the data-flow of systolic array. Figure 7 depicts the data-flow of
systolic array proposed by [RM13]. The systolic architecture suffers from large pipeline
latency in that block αi+1,j ought to be conducted before block βi,j+1. Taking m = 5,
w = 1 as an example, Figure 7 presents the timing diagram for one-dimension array with
#PE = 3, which takes 16 cycles to obtain the final result. However, the fact that parity
signal of the first row can be broadcasted parallelly (1 cycle) rather than serially (≈ m
cycles) to the rest rows is not explored in prior work. In the following, we show that the
cycle count can be considerably reduced due to this interesting observation.

Proposed VMM Design. Three optimization tricks in terms of area cost and latency
are proposed to generate the adaptive radix-2 VMM shown in algorithm 2. ¬ Eliminating
the redundant operations. Note that the MSB of f(x) is fixed as 1. Indeed, it is sufficient
to decompose the operand into W = dm

w e chunks rather than W = dm+1
w e. As a result,
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Figure 7: Analysis of data flow and timing diagram for systolic array.

the last iteration on index j can be eliminated when m is divisible by w. We make a proof
as following. Let W = dm

w e and Ci,j denote the j-th chunk of C in the i-th iteration. For
j = W , by taking AW = 0 and FW = 1, the last iteration is shown as below:

Ci,W = Ci−1,W ⊕Bi[k] ·AW = Ci−1,W ⊕Bi[k] · 0 = 0
Ci,W = Ci,W ⊕ parity · FW = 0⊕ parity · 1 = parity

Ci,W−1 = {Ci,W [0], Ci,W−1[w − 1 : 1]} = {parity, Ci,W−1[w − 1 : 1]}

Note that the MSB of CW−1 is parity, which can already be obtained in the (j = 0)-th
iteration (Q.E.D.). The elimination of the last iteration will reduce the area cost by m PEs,
which is further quantified by practical implementation in section 5.1. ­ Unrolling the
j-loop and folding the i&k-loop. Note that modular addition over GF(2m) can naturally
avoid the carry chain. Thus, we would like to remark that the pipeline registers used in
[RM13] are actually redundant, i.e., have no impact on the critical path. The data-flow in
the j-loop direction could be unrolled and processed parallelly. In contrast, the data-flow
in the i/k-loop direction should be processed serially. Thus, we replace the systolic array
with loop-based folded structure to avoid the unnecessary pipeline registers and reduce
approximately m× cycles. ® Vectorizing the modular multiplier to achieve adaptivity.
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Prior arts [GTSK02, RM13, SC06] solely focus on the optimization of a single modular
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multiplication for ECC based cryptography, where the value of m is typically up to
hundreds of bits. However, the matrix-vector multiplication in the linear mapping involves
vector (multiple) modular multiplications. We point out that the almost redundancy-free
vectorization can be achieved by configuring the source of the MSB for each output of
PE. As shown in algorithm 2, the iterative computation consists of four types of blocks by
now, which is further extended to support the configuration for the number of modular
multipliers. Besides, bm signal is introduced to change the bit width of block, so that MM
with data width less than w-bit can also be conducted.

Algorithm 2 Proposed vectorized Montgomery multiplication
Input: Let a(x) = a = (A0, A1, ..., AW−1) and b(x) = b = (B0, B1, ..., BW−1) be two polynomials
over GF(2m). Here W = dm

w
e and w is the bit-length of chunk. Differently, f(x) = f =

(F0, F1, ..., FW−1) is the irreducible polynomial, whose most significant bit is fixed to 1 and hence
neglected in the vector. Finally, bm is the bit-width mode of PE cell and bm ≤ w.

Output: c(x) = c = (C0, C1, ..., CW−1) = a · b · r−1 mod f . Here f(x) = xm + r(x) and
r(x)−1 · r(x) mod f(x) = 1.
1: c← (0, 0, ..., 0)
2: for i = 0 to W − 1 do . Travel each chunk index of b(x).
3: for k = 0 to w − 1 do . Travel each bit within b(x) chunk.
4: /* The computation task of block A and B. */
5: C0 = C0 ⊕ (Bi[k] ·A0)
6: parity = C0[0]
7: C0 = C0 ⊕ (parity · F0)
8: /* The computation task of block A. */
9: if W ≤ 1 then
10: C0 = {(w − bm)′b0, parity, C0[bm− 1 : 1]}
11: else
12: for j = 1 to W − 1 do . Travel each chunk index of a(x) and f(x).
13: /* The computation task of block D and C. */
14: Cj = Cj ⊕ (Bi[k] ·Aj)
15: Cj = Cj ⊕ (parity · Fj)
16: Cj−1 = {Cj [0], Cj−1[w − 1 : 1]}
17: /* The computation task of block C. */
18: if j = W − 1 then
19: Cj−1 = {(w − bm)′b0, parity, Cj−1[bm− 1 : 1]}
20: end if
21: end for
22: end if
23: end for
24: end for
25: return c

Exemplary VMM with redundancy-free configuration. Figure 8 presents the
hardware circuit of processing element (PE), which can be configured as five types of blocks
by asserting control signals sel0 ∼ sel2. Figure 9 presents an instantiation of VMM along
with on-the-fly configuration cases. For example, by setting {sel0_rj,sel1_rj,sel2_rj} =
{2′b00, 1′b1, 1′b0}, PEs within each row are all configured as block A. Thus, #4 w-bit
MMs are developed. If we set sel2_rj = 1′b1, the width of modular multiplier can be
further halved, whereby #4 (w/2)-bit MMs are formed. The third case is configured as
#2 2 · w-bit MMs. Block B generates the parity signal and propagates it to block C at
the same column. The MSB of output in block B comes from the LSB of output in block
C, while the MSB of output in block C is set as the parity signal. It is worth mentioning
that the presented VMM consumes constant connection cost (fan-in/outs of Multiplexer)
even if the configuration cases are increased.
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Figure 9: An example of proposed VMM over GF(2m).

4.2 Configurable MVM
Determining the data-flow structure. Figure 10 Ê depicts the mapping strategy
of row-major MVM, which multiplies each row of matrix with the column vector like
the school-book order. A circuit structure for implementing row-major MVM is also
depicted in the right part, which assumes that the critical path consists of an adder and
multiplier (MAC). As a drawback, this circuit structure suffers from extra clock cycles for
pipeline filling and emptying, which requires 2 · n clock cycles to finish the entire MVM.
Figure 10 Ë presents the mapping strategy of column-major MVM, which multiplies an
element of vector with a column of matrix, and then accumulates the vector product.
Each element of vector is broadcasted to all channels through the fully-connected crossbar
for performing parallel MAC operation. Benefiting from the data-level parallelism, it
performs n MACs per cycle and only occupies n clock cycles to complete MVM. Although
it matches well with the round-based implementation, the fully-connected communication
entails cumbersome MUXs, which becomes even more prominent as the number of channel
increases. Figure 10 Ì describes the mapping strategy of diagonal-major MVM, which
multiplies the rotated state vector with each diagonal of matrix and then accumulates
the vector product in sequence. The hardware circuit of diagonal-major MVM consumes
n clock cycles to perform MVM, while the crossbar is replaced by the lightweight shift
register. Considering the comprehensive metrics of area, flexibility and performance, we
employ the diagonal-major strategy to circumvent the ponderous fan-out of broadcast and
achieve data-level parallelism in the meantime.
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Figure 10: Comparison of data-flow structure for MVM.

Determining the size of PE array. As mentioned in section 4.1, the critical path
of VMM is composed of m PEs, which could be further folded to x PEs. Although the
folding mechanism can reduce the area cost and improve the frequency, it also brings the
price of much more consumption of clock cycles. Thus, the overall latency is hard to be

(a) PV. on FPGA (b) RV. on FPGA

(c) PV. on ASIC (d) RV. on ASIC

(L) (L) (R)
(L) (R) (R)(L)

(L) (L) (L) (R) (R)

(L) (L) (R)
(R)(L)

(L) (L) (L) (R) (R)
(R)(L)

Figure 11: The relationship between k and area efficiency. CA: combinational logic area.
NCA: non-combinational logic area. ATP: area time product.

theoretically quantified, which motivates us to make practical experiments. Figure 11 (a)
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presents the performance variation (PV.) on FPGA when increasing the number of PE (k)
in the ck direction. The right coordinate depicts the cycle counts. Figure 11 (b) depicts
the resource variation (RV.) with the increment of k. The right coordinate indicates the
value of LUT and Flip-flop (FF). The left coordinate reflects the variation of ATP with k.
It is observed that the best area-time efficiency on FPGA is obtained by setting k = 4.
Figure 11 (c) (d) also depict how the overall latency and ATP vary with the folding degree
under ASIC evaluation.

Architecture of LT cluster. As shown in Figure 12 (a), operand A is the rotated
state vector coming from the shift buffer while operand B is 64-bit element of MDS matrix
fetched from 4 MDS buffers. As the core computation module of entire MVM, the PE
array can be configured as different number of modular multipliers with variable data
width. Figure 12 (b) shows six configuration cases for PE array. For example, the PE
array is configured as 4 MMs over GF(24) in case I, which affords to perform 4× 4 MVM
for Yoroi-32. Additionally, the diagonal-wise memory layout of Hadmard MDS matrix can
be reduced by 75% through eliminating the repetitive storage.
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Figure 12: The overall hardware architecture for LT cluster.

4.3 United (Inv)MixColumns
For SPNbox and Yoroi, multi-scale (inv)MixColumns are applied to construct AES vari-
ants with different sizes. For the first time, we present a unified design of multi-scale
(inv)MixColumns through sharing sub-expressions and customizing the constant modular
multipliers (CMMs).

Multi-scale MixColumns. Figure 13 presents the implementation scheme for multi-
scale MixColumns (MC16, MC24, MC32). Inspired by [MLH+20], the core idea is to share
as much logic resource as possible to eliminate the redundant operations. Note that MC16
and MC24 are actually 2×2 and 3×3-sized sub-matrices of MC32. As a result, the first
insight is to reuse partial products/sums of MC16 to compute MC32, which can be trivially
achieved due to gcm(2,4) = 4. The second insight is to reuse partial products/sums of
MC16 and MC32 to compute MC24. Since the size of MC24 is prime with those of MC16
and MC32 (gcd (2,3,4) = 1), the calculation of MC24 is relatively non-trivial. However, by
dividing index i into even and odd cases, MC24 can still be obtained just by the re-usage
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Figure 13: The implementation scheme for multi-scale MixColumns.

of immediate results (shown in step3). The final solution is summarized at the bottom of
Figure 13. Ultimately, 49 (60.5%) MMs and 31 (33%) modular adders (MAs) are saved
when compared to the direct method (DM) as shown in Figure 15. The implementation
details are also shown in appendix A.

Multi-scale InvMixColumns. Figure 14 presents the implementation scheme for
multi-scale InvMixColumns (InvMC16, InvMC24, InvMC32). The inverse matrices feature
disjoint matrix elements with large hamming weight, which are not as regular as the
forward ones. Here, we adopt multiplicative decomposition for InvMC32 so that MC32
is reused. For InvMC16 and InvMC24, the additive matrix decomposition technique is
proposed to allow much more sub-expression sharing. Note that the adder performing
68 ·x2i +68 ·x2i+1 can be reused to compute 68 ·x3k +68 ·x3k+1 when 2i = 3k for 0 ≤ i ≤ 7,
0 ≤ k ≤ 4, that is to say i = k = 0 or i = 3, k = 2. The final solution is summarized at the
right part of Figure 14. As shown in Figure 15, we need 69 MAs and 81 MMs to unify the
multi-scale InvMCs. Thus, 52% MAs and 13.8% MMs are saved when compared to DM.
The concrete implementation details are also shown in appendix B.
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Figure 14: The implementation scheme for multi-scale InvMixColumns.

Design generator for CMMs. The rightmost part of Figure 14 presents the frame-
work of design generator for CMM. Since the irreducible polynomial within (inv)MCs is
fixed as x8 +x4 +x3 +x+ 1, the modular multiplications by constants with large hamming
weight are customized as Mastrovito’s multiplier [Mas88] (detailed in appendix C). At the
first step, we generate the binary matrix based on input parameter f(x), GF (2m) and
constant. Then, we leverage a backward search framework [LWF+22] to implement the
binary matrix vector multiplication, which aims to consume as less XORs as possible while
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guaranteeing a minimum circuit depth. We make CMMs about 68 and d1 as case study.
As shown in Figure 15, when computing CMMs about 68 and d1 using DM, 26 and 29
XORs are needed. Based on the backward search framework, the area cost can be reduced
to 18 XORs and 19 XORs with minimum circuit depth 3 XORs.
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Figure 15: Evaluations on united (Inv)MCs and proposed CMMs.

5 Implementation Results and Comparisons
The coprocessor is designed and simulated with Verilog HDL, whose functional correctness
is further verified with Python model. We obtain the implementation results based on
TSMC 28nm ASIC synthesis and Xilinx Zynq UltraScale+ FPGA (xczu7ev-ffvc1156-3-e),
respectively. We use Vivado 2020.2 to synthesize and implement the FPGA design. The
synthesis result is also reported with Design Compiler P-2019.03. Since evaluations on
the FTP mechanism and multi-scale (Inv)MCs modules are already presented in previous
sections, we mainly make both theoretical and experimental performance evaluation on
VMM, MVM and overall coprocessor in this section.

5.1 Alternative Approaches and Comparisons about VMM
Table 3 lists proposed alternative approaches for VMM, based on which we make comparison
about area and time complexity. We assume that one m-bit operand is entirely processed
and the other operand is scanned x-bit per cycle. For radix-2 LSB-first and MSB-first
algorithms, the area cost and cycle count approximately amount to the proposed VMM.
However, one important point to consider is that both LSB-first and MSB-first algorithms
tend to consume proportionally increased fan-ins of MUXs (O(n)) to support configuration,
because the MSB of output inevitably comes from n non-adjacent PEs (detailed in
appendix F). This crucial drawback causes the critical path and area to become larger
when increasing configuration cases. The proposed VMM scheme, by contrast, consumes
constant fan-outs of MUXs (O(1)) which is independent of the configuration case. The
cycle count of radix-2w (x = 2w) Montgomery algorithm [MÖPV04] is on par with the
proposed scheme. Nevertheless, there are two drawbacks to radix-x Mont. algorithm.
First, the area complexity is considerably higher than that of our scheme. Second, extra
precomputation is needed. Similar shortcomings also exist in the radix-x LSB-First
and MSB-First algorithms [KWP06]. Compared with the state-of-the-art radix-2 Mont.
[RM13], our scheme reduces the area cost by 2 · w · x · (A+X) + 2 · x· MUX(2:1) + w·
FFs while still maintaining the same critical path and even less clock cycles. Figure 16
further presents the comparison of practical implementation between this work (TW) and
prior work (PW) [RM13] under the same parameter. It is observed that TW offers 1.2
(1.4) × area-efficiency measured by ATP under FPGA (ASIC) evaluation.
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Table 3: The theoretical comparison of different algorithms about MMs.

Schemes Cycles Critical path Flex.
(n./f./w.)

Pre. Conn.

dm/xe (x+ 1) · (A+X)+
x ·MUX(n : 1)

N/Y/Y N O(n)
radix-2 LSB-First

AC = (2x+ 1) ·m · (A+X) + x ·W ·MUX(n : 1) +m · FF

dm/xe A+ (2 ·W + dlog2 xe) ·X
+MUX(wn : w)

N/Y/Y Y O(n)
radix-x LSB-First

AC = 2 ·m · w · (A+X)−m ·X +W ·MUX(wn : w) +m · FF

dm/xe (2 · x− 1) · (A+X)−X+
(x− 1) ·MUX(n : 1)

N/Y/Y N O(n)
radix-2 MSB-First

AC = m · (2 · x− 3) · (A+X) + (x− 2) ·W ·MUX(n : 1) +m · FF

dm/xe 2 ·A+ (2 ·W + 2 · dlog2 xe) ·X
+MUX(wn : w)

N/Y/Y Y O(n)
radix-x MSB-First

AC = 2 ·m · w · (A+X)−m ·X +W ·MUX(wn : w) +m · FF

dm/xe 3 · (A+ dlog2 xe ·X)
+(W + 4) ·X +MUX(wn : w)

N/Y/Y Y O(1)
radix-x Mont.

AC = 3 · w ·m · (A+X) + 2 ·W · (X +MUX(2w : w))

dm+1
x
e 2 · x ·X + (x+ 1) ·A

+x ·MUX(2 : 1)
N/Y/Y N O(1)

radix-2 Mont.[RM13]
AC = 2 · (m+ w) · x · (A+X) + (2 ·W + 2) · x ·MUX(2 : 1) + (m+ w) · FF

1 A+ (log2 m)X N/N/N Y O(n)Mastrovito’s Mult.
AC = m2 ·A+m · (m− 1) ·X

Karatsuba [PCHS20] N/A N/A N/Y/N Y N/A
Poly. RNS [SSS12] N/A N/A N/Y/N Y N/A

dm/xe 2 · x ·X + (x+ 1) ·A+
x ·MUX(2 : 1)

Y/Y/Y N O(1)
This Work

AC = 2 · x ·m · (A+X) + 2 · x ·W ·MUX(2 : 1) +m · FF
* NOTES: AC: Area cost. Flex.: flexibility. Pre: precomputation. Conn.: connection cost. A: 2-input AND.

X: 2-input XOR. MUX(m:n): m-to-n multiplexer. N: No. Y: Yes. n./f./w.: flexibility in terms of number of
multiplier / irreducible polynomials / data width.

The aforementioned algorithms support MM under arbitrary irreducible polynomials.
However, Mastrovito’s multiplication cannot support the on-the-fly configuration. Some
works leverage Karatsuba [PCHS20] or residue polynomial system [SSS12] to implement a
single MM over large-sized GF(2m). Obviously, their coarse-grained computation patterns
lead to limited flexibility in terms of bit-width precision. On the contrary, the proposed
VMM makes full advantage of the hybrid-grained radix-2 Mont. to achieve multi-dimension
flexibility. Other works aim to further prune the circuit structure by using a special class
of irreducible polynomials [FD05], like trinomials [BSF15], pentanomials [Ima18, XHM13]
and all-one polynomials [SK99], but most of them cannot cater to the adaptivity.
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Figure 16: The practical comparison between TW and SOTA work (PW) [RM13].
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5.2 Evaluations on MVM
Comparison with standalone designs. We implement the first row of MDS matrices
following the method of [SKOP15]. In total, 9 individual implementations consume 2621
XORs. Additionally, [SKOP15][BKL16] ignore the extra overhead of MUXs incurred
by reusing the multipliers of the first row. Indeed, MUXs cause large area overhead
for connections, especially for high-dimension matrix. Moreover, this method [SKOP15]
requires pre-computation and cannot support dynamic configuration for MDS matrices of
different sizes. Fortunately, our configurable method approximately consumes 1024 XORs,
1024 ANDs (AND:XOR=1:2.25 in 28nm process) and enjoys a sound balance between
flexibility and area efficiency.

Sensitivity study on random MDS matrices. To quantify the area variation
for individually implementing random MDS matrices generated by different scalars (1
∼ 20), Figure 17 showcases SM8 ∼ InvSM24 following typical method of [SKOP15]. As
the comparison object, the red broken line denotes the area cost (≈ 2048 XORs) of the
configurable MVM proposed in this work (TW). We make two important observations as
following. First, multiplying each MDS matrix with different scalars yields varying area
consumption, which may be even lower than that of the original one. Second, the area
accumulation of 2 ∼ 9 generated matrices already overtakes that of TW, which reveals the
profit of our configurable design.
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Figure 17: The area distribution and accumulation (ACC) for random MDS matrices
generated by different scalars.

5.3 Evaluations on UpWB
Timing Evaluation. The optimized software counterparts are made as the baseline for
comparison of computation throughput. The highest frequency of UpWB is up to 1.3
GHz under 28nm synthesis and 240 MHz under FPGA implementation with performance-
optimized strategy, respectively. The software implementations of DWBCs are written
in C code and run on a laptop computer equipped with 3.2 GHz Intel i7 CPU. A high-
performance C++ library Givaro is applied to implement the MM over GF(2m). Both
AES-NI and AVX2 instruction sets are utilized to speed up the AES variants. The
software performance is measured by taking the average over 100000 repetitions, each
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time encrypting a random message of 2048 bytes. Table 4 offers the evaluation of TP
for both software and hardware implementation. SW-TP is calculated as: (F × 8) /
CPB (bps) (F denotes the peak frequency, CPB denotes cycle per byte). HW-TP1/2 is
calculated following the equation 1. As can be seen, SPNbox-32 possesses the largest TP
for black-box en/decryption. Since small-scaled MDS matrix is adopted by the Yoroi-family
block ciphers, the obtained TP turns out to be the second largest. As shown in Figure 18,
synthesized under TSMC 28nm technology, the TP of UpWB offers approximately 36×
speed-up versus 164× software implementations. The FPGA design achieves 7× to 30×
speed-up over software counterparts as well.

Table 4: Performance evaluation of UpWB on different platforms.

Schemes DPs Cycles
Latency
(ns)

HW-TP1
(Mbps)

HW-TP2
(Mbps)

SW-
CPB

SW-TP
(Mbps)

S-8(Enc.) 6 1040 800.8 960.0 177.2 2102 12.2
S-8(Dec.) 6 1100 847 907.6 167.6 2105 12.2
S-16(Enc.) 4 688 529.76 967.4 178.6 2012 12.7
S-16(Dec.) 4 731 562.87 910.5 168.1 2010 12.7
S-24(Enc.) 4 255 196.35 2610.2 481.9 1609 15.9
S-24(Dec.) 4 688 529.76 967.4 178.6 2024 12.6
S-32(Enc.) 4 212 163.24 3139.6 579.6 1032 24.8
S-32(Dec.) 4 215 165.55 3095.8 571.5 1125 22.8
Y-16(Enc.) 5 402 309.54 2069.7 382.1 1532 16.7
Y-16(Dec.) 5 410 315.7 2029.3 374.6 1526 16.8
Y-32(Enc.) 5 426 328.02 1953.1 360.6 1021 25.1
Y-32(Dec.) 5 450 346.5 1848.9 341.3 1023 25.0
W-16(Enc.) 4 488 375.76 1363.9 251.8 729 35.1
W-16(Dec.) 4 527 405.79 1263.0 233.2 725 35.3
Avg. Case 5 545 420 1720 318 1470 20

* DPs denote the number of data points processed in every batch. HW-TP1, HW-TP2 and SW-TP
denote the TP evaluated under ASIC synthesis, FPGA implementation and software platform.
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Figure 18: The speed-up ratio of ASIC (FPGA) versus software.

Area cost. Table 5 provides the detailed area breakdown for UpWB. As can be seen,
each LT kernel only consumes 6975.4 µm2, which could serve as a building block to be
further integrated in many other processors. Thanks to the compact implementation,
(inv)MixColumns only consume 895 LUTs (8.6 KGEs) and occupy about 24.8% (29.1%)
within each NLT module. Each combined (Inv)S-box is also optimized with the state-of-
the-art tower field technique to pursue high area efficiency [ME19].

Comparison with advanced works. As mentioned before, works on the hardware
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Table 5: Area breakdown for UpWB under FPGA and ASIC evaluation.

Modules FPGA eval. ASIC eval.
LUTs Per.(%) FFs Per.(%) Area(µm2) KGEs Per.(%)

SHAKE-128 8754 28.5 2537 52.7 31206.2 61.9 22.4
NLT_group 17832 58.1 1152 23.9 84594.7 167.8 60.7
bNLT0 3606 20.2 0 0 14954.2 29.7 17.7
bARK 256 7.1 0 0 386 0.8 2.6
b(inv)MC 895 24.8 0 0 4359.4 8.6 29.1
b(inv)S-box 1280 35.5 0 0 7192 14.3 48.0
b(inv)ARX 232 6.4 0 0 532.2 1.1 3.6
bOther Parts 943 26.2 0 0 2484.6 4.9 16.6
bNLT1 4475 25.1 0 0 26416.8 52.4 31.2
bNLT2 3617 20.3 0 0 15068.9 29.9 17.8
bNLT3 4194 23.5 0 0 18112.2 35.9 21.4
bOther Parts 1940 10.9 1152 100.0 10042.6 19.9 11.9
LT_group 3387 11.0 992 20.6 13950.9 27.7 10.0
bPE array×2 1210 35.7 256 25.8 6067.1 12.0 43.5
bState Buffer×2 514 15.2 256 25.8 1744.3 3.5 12.5
bRDC×2 174 5.1 0 0.0 361.3 0.7 2.6
bOther Parts 1489 44.0 480 48.4 5778.2 11.5 41.4
Top Ctrl. 668 2.2 98 2.0 4988.6 9.9 3.6
Other Parts 30 0.1 36 0.7 4728.3 9.4 3.4
Total Area 30671 100.0 4815 100.0 139468.7 276.7 100.0
Avg. CE. 8.9K (13.1K)*bps/(LUTs+FFs) 6.2K (8.0K)*bps/GEs
* The average throughput per area without consi dering KDF module (SHAKE-128).

architecture for WBC have yet been released. To demonstrate where the efficiency and
flexibility of UpWB locate among similar works, we make comparison with advanced works
targeting conventional block ciphers (BCs), which mainly involve congeneric operations over
binary Galois filed. The key implementation results of both dedicated and configurable
hardware designs are listed in Table 6 after approximate process normalization. The
round count of WBCs is naturally larger than that of the conventional BCs. To make
reasonable comparisons, we also normalize the computation efficiency by multiplying it
with the average round count (denoted as Norm. CE.). [UHM+20] presents a decent
work for dedicated hardware design of AES with high throughput efficiency (measured
by throughput per gate). UpWB has 2.2× lower Norm. CE. than that of [UHM+20]
but supports much more heavy algorithms. Compared with work [WSH+10] about AES
with configurable parameters, UpWB achieves 2.1× improvement of CE. and supports
more algorithms. The possible reason is that [WSH+10] utilizes heavy look-up tables to
achieve configuration for modular multiplication with different precisions and irreducible
polynomials, which introduces redundant resource utilization. As for the designs pursuing
low-power metric, [CLF+17][DLDN20] propose configurable processors for conventional
BCs and asymmetric cryptography over binary Galois field, which are supplied with sound
programmability but have about 2.3× lower CE. than this work. Finally, we highlight that
the proposed MVM architecture can bring three dimensions of flexibility including size,
f(x) and bit-width, which are not completely obtained in other works.

Discussions. Prior works about GF(2m) arithmetic mainly target at the conven-
tional block ciphers, error correcting codes, elliptic curve cryptography (ECC) and recent
post-quantum cryptography. [IG16] [PLM13] present single MM hardware designs for
ECC, which achieve high throughput but have limited flexibility. [SC14] proposes high-
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Table 6: Comparison of implementation efficiency between UpWB and related works.

Work TC’20
[UHM+20]

TVLSI
’10[WSH+10]

ISCA
’17[CLF+17]

TVLSI
’20[DLDN20] This Work

Algorithm AES config. AES block coding
+AES+ECC config. BCs 7 WBCs+AES

+SHAKE-128
Process NanGate 45nm 250nm TSMC 28nm 55nm TSMC 28nm
Freq.(Hz) 694M 66M 100M 110M 1.3G

Avg. Latency 15.84 ns N/A N/A N/A 84 ns
Avg. Round 10 10 10 N/A 286

size/f(x)/width N/N/N N/Y/Y N/Y/Y N/Y/Y Y/Y/Y

Area 16.4KGEs 200.5KGEs 11.7KGEs 1250KGEs/
12.25mm2

276.7KGEs/
0.14mm2

Power 511uW
@100MHz N/A 431uW

@100MHz
34.7mW
@116MHz

20.8mW
@100MHz

Avg. TP (bps) 8G 844.9M 12.2M 265M 1.7G
Avg. CE.
(bps/GEs) 512K 16.8K* 102K 212K 8K

Norm. CE.
(bps×r/GEs) 5.1M 168K* 1M N/A 2.3M

* Considering the process variation.

performance processor for conventional BCs, which obtains configurability mainly based
on LUT. [HFW11] addresses AES and ECC on the same kernel by sharing control units
and memory, but two individual data-paths are still needed. In terms of MVM, [MKAF11]
implements the dynamic MixColumn by using dual-port BRAM on FPGA, which is limited
to fixed size and f(x). [WSH+10][LWD+18] propose highly flexible and efficient processors
capable of processing MixColumns with diverse f(x), but the optimization for large-scale
MDS matrix is out of scope. Owing to the adaptivie method, the proposed VMM can
further support broad schemes based on GF(2m), like ECC with even larger bit-width
(≥ 100bit) operations. Additionally, if we only focus on multiple f(x), the data-path of
VMM can be further pruned by exploiting the sparsity of f(x).

6 Conclusion
The enormous performance overhead is one of the obstacles for the wide application of WBC.
This work takes effort to develop the first hardware accelerator for a series of NSPN-based
WBCs under black-box setting. To improve the resource utilization, we propose an efficient
FTP mechanism to considerably decouple the nested data dependency and hide much
more latency. By adopting algorithm-hardware co-design, we achieve decent area-time
efficiency for several kernels, including an adaptive VMM, a configurable MVM and a
compact (Inv)MCs. The computation throughput of UpWB outperforms the optimized
software counterparts to a large degree under both ASIC synthesis and FPGA platform.
This work mainly serves as an academic project whose principal focus is to demonstrate the
feasibility and profit to adopt hardware acceleration for the black-box implementation of
DWBC. Future works could extend the UpWB to accelerate other feasible non-NSPN white-
box block ciphers like Feistel-structure-based WhiteBlock[FKKM16] and FPL [KLLM20],
since some prior works present the practicability to devise the domain-specific accelerator
supporting different structures of traditional block ciphers.
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Appendix

A Multi-scale MixColumns

Step 1: Observing that the elements in MixColumns are all constants of 3,2,1, we firstly
multiply each byte of the state xi (0 ≤ i ≤ 15) by 3,2 respectively as input for
subsequent additions. As a result, a total of 32 constant modular multipliers are
generated as mi,0 = 2 · xi, mi,1 = 3 · xi, for 0 ≤ i ≤ 15.

Step 2: Based on step 1, the MixColumn about MC16 is calculated as:[
y

(16)
2i

y
(16)
2i+1

]
=
[

2 3
1 2

]
×
[

x2i

x2i+1

]
=
[

2 · x2i + 3 · x2i+1
x2i + 2 · x2i+1

]
=
[
m2i,0 +m2i+1,1
x2i +m2i+1,0

]

Thus, extra 16 modular adders (= 8-bit XORs) will be consumed to generate y(16)
2i ,

y
(16)
2i+1 for 0 ≤ i ≤ 7 at this step.

Step 3: Note that the addition nodes generated in step 2 can be totally reused to construct
the MixColumn about MC32 as below:
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
y

(32)
4i

y
(32)
4i+1
y

(32)
4i+2
y

(32)
4i+3

 =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

×


x4i

x4i+1
x4i+2
x4i+3

 =


2 · x4i + 3 · x4i+1 + x4i+2 + x4i+3
x4i + 2 · x4i+1 + 3 · x4i+2 + x4i+3
x4i + x4i+1 + 2 · x4i+2 + 3 · x4i+3
3 · x4i + x4i+1 + x4i+2 + 2 · x4i+3



=


y

(16)
4i + x4i+2 + x4i+3

y
(16)
4i+1 + 3 · x4i+2 + x4i+3

x4i + x4i+1 + y
(16)
4i+2

3 · x4i + x4i+1 + y
(16)
4i+3

 =


y

(16)
4i + x4i+2 + x4i+3

y
(16)
4i+1 +m4i+2,1 + x4i+3

x4i + x4i+1 + y
(16)
4i+2

m4i,1 + x4i+1 + y
(16)
4i+3

 , 0 ≤ i ≤ 3

Then, we accumulate elements of each row in a tree shape to pursue low circuit
depth. To do this, extra 16 modular adders (= 8-bit XORs) at the second
layer are used to generate a4i, a4i+1, a4i+2 and a4i+3 as: a4i = x4i+2 + x4i+3,
a4i+1 = m4i+2,1 + x4i+3, a4i+2 = x4i + x4i+1 and a4i+3 = m4i,1 + x4i+1. At last,
the final results of MixColumn about MC32 are calculated as: y(32)

4i = y
(16)
4i + a4i,

y
(32)
4i+1 = y

(16)
4i+1 + a4i+1, y(32)

4i+2 = y
(16)
4i+2 + a4i+2 and y(32)

4i+3 = y
(16)
4i+3 + a4i+3. To sum

up, a total of extra 32× 8 = 256 XOR gates are required to generate y(32)
4i , y(32)

4i+1,
y

(32)
4i+2 and y(32)

4i+3 at this step.

Step 4: Since the size of MC24 is prime with those of MC16 and MC32 (gcd (2,3,4) = 1),
the calculation of MixColumn about MC24 is non-trivial compared with the above
two Mixcolumns. However, we will show that the addition nodes generated in step
2 and 3 are still enough to construct MixColumn about MC24 without the need to
yield new addition nodes at the second layer. First, the calculation of MixColumn
about MC24 is directly written as below: y

(24)
3i

y
(24)
3i+1
y

(24)
3i+2

 =

 2 3 1
1 2 3
1 1 2

×
 x3i

x3i+1
x3i+2

 =

 m3i,0 +m3i+1,1 + x3i+2
x3i +m3i+1,0 +m3i+2,1
x3i + x3i+1 +m3i+2,0


Then, when i is even, the first two operands of each row are added together, after
which the outcome is added with the last operand. The opposite is true when i is
odd. Thus, the final results can be computed as below:

y
(24)
3i = y

(16)
2i + x3i+2, i = 2 · k
m3i,0 + a4i+1, i = 2 · k + 1

, y
(24)
3i+1 =

y
(16)
2i+1 +m3i+2,1, i = 2 · k

x3i + y
(16)
2i , i = 2 · k + 1

y
(24)
3i+2 =

a4i+2 +m3i+2,0, i = 2 · k

x3i + y
(16)
2i+1, i = 2 · k + 1

, 0 ≤ i ≤ 4, 0 ≤ k ≤ 1.

In this way, only 15 modular adders of third layer are further needed to obtain
the final results y(24)

3i , y(24)
3i+1 and y(24)

3i+2.

B Multi-scale Inverse MixColumns
For inverse MixColumn about InvMC32, we adopt the technique of multiplicative decompo-
sition to reuse computation resource of forward MixColumn. To be specific, the InvMC32
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matrix is decomposed as below [CG03]:
ex bx dx 9x

9x ex bx dx

dx 9x ex bx

bx dx 9x ex

 =


2x 3x 1x 1x

1x 2x 3x 1x

1x 1x 2x 3x

3x 1x 1x 2x

×


5x 0x 4x 0x

0x 5x 0x 4x

4x 0x 5x 0x

0x 4x 0x 5x


Therefore, the inverse MixColumn about InvMC32 is calculated as: z(32)

4i = 5·y(32)
4i +4·y4i+2,

z
(32)
4i+1 = 5 · y(32)

4i+1 + 4 · y4i+3, z(32)
4i+2 = 4 · y(32)

4i + 5 · y4i+2 and z(32)
4i+3 = 4 · y(32)

4i+1 + 5 · y4i+3.
For matrices InvMC16 and InvMC24, a kind of additive matrix decomposition technique is
proposed to allow much more sub-expression sharing as below:[

b9x 68x

d1x b9x

]
=
[

68x 68x

0 68x

]
+
[
d1x 0x

d1x d1x

]
 8dx 8dx 8dx

e5x 5cx 8dx

34x e5x 8dx

 =

 8dx 8dx 8dx

8dx 8dx 8dx

8dx 8dx 8dx

+

 0x 0x 0x

68x d1x 0x

68x + d1x 68x 0x


Thus, the inverse MixColumn about InvMC16 for 0 ≤ i ≤ 7 can be calculated as:

z
(16)
2i = 68x · x2i + 68x · x2i+1 + d1x · x2i z

(16)
2i+1 = d1x · x2i + d1x · x2i+1 + 68x · x2i+1

The inverse MixColumn about InvMC24 is calculated as:

z
(24)
3i = 8dx · (x3i + x3i+1 + x3i+2) z

(24)
3i+1 = 8dx · (x3i + x3i+1 + x3i+2) + 68x · x3i + d1x · x3i+1

z
(24)
3i+2 = 8dx · (x3i + x3i+1 + x3i+2) + 68x · x3i + 68x · x3i+1 + d1x · x3i, 0 ≤ i ≤ 4

Note that the adder performing 68x · x2i + 68x · x2i+1 can be reused to compute 68 · x3k +
68x · x3k+1 when 2i = 3k for 0 ≤ i ≤ 7, 0 ≤ k ≤ 4, that is to say i = k = 0 or i = 3, k = 2.

C Mastrovito’s Multiplier
The straightforward method to implement modular reduction over GF(2m) is xtime function,
which multiplies a(x) by x based on a left shift and a subsequent conditional bit-wise XOR
with the irreducible polynomial:

c(x) = a(x) · x mod f(x) = (0, a0, a1, . . . , an−2) + (an−1 · f0, an−1 · f1, . . . , an−1 · fn−1)
= (an−1 · f0, a0 + an−1 · f1, . . . , an−2 + an−1 · fn−1)

(2)
The Mastrovito’s multiplier transforms the polynomial-basis based modular multiplication
to the binary matrix-vector multiplication, which actually combines the least-significant-bit
(LSB) first method with xtime function [ZP01]. First, the modular multiplication is written
in an LSB-first way as below:

c(x) = a(x) · b(x) mod f(x)
= (b0 + b1 · x+ ...+ bn−1 · xn−1) · a(x) mod f(x)
= b0 · a(x) + b1 · (a(x) · x mod f(x)) + ...+ bn−1 · (a(x) · xn−1 mod f(x))
= [a(x) mod f(x), a(x) · x mod f(x), ..., a(x) · xn−1 mod f(x)]× [b0, b1, ..., bn−1]T

= [A(0), A(1), . . . , A(n−1)]× [b0, b1, ..., bn−1]T
(3)



Xiangren Chen et. al. 711

Then, based on xtime, A(k) can be computed iteratively as:

A(k) = A(k−1) · x = a
(k−1)
n−1 · xn + a

(k−1)
n−2 · xn−1 + . . . + a

(k−1)
0 · x

= (a(k−1)
n−1 , a

(k−1)
0 + a

(k−1)
n−1 · f1, . . . , a

(k−1)
n−2 + a

(k−1)
n−1 · fn−1) k = 1, 2, ..., n− 1

(4)

Finally, substituting equation 4 into 3, we obtain the bit-parallel multiplication:
cn−1
cn−2
...
c0

 =


a

(0)
n−1 a

(1)
n−1 ... a

(n−1)
n−1

a
(0)
n−2 a

(1)
n−2 ... a

(n−1)
n−2

... ... ... ...

a
(0)
0 a

(1)
0 ... a

(n−1)
0

×


b0
b1
...
bn−1

 (5)

For a certain fixed irreducible polynomial f(x) and operand a(x), the binary matrix A
can be predetermined so that only XORs are required to implement the entire modular
multiplication. It is reported in [SKOP15] that the choices of both f(x) and constant
operand exert an influence on the number of XOR gates. Additionally, the number of
XOR gates and circuit depth for implementing matrix-vector multiplication can be further
minimized through sub-expression sharing. Therefore, Mastrovito’s multiplier is usually
used to customize the constant multiplier with regard to a fixed irreducible polynomial at
the price of losing flexibility and scalability.

Table 7: The detailed implementation of constant modular multipliers.

constant modular multiplier about 68x

y
(1)
7 = y

(1)
1 ⊕ x1 y

(1)
3 = t0 ⊕ y(1)

0 y
(1)
6 = t1 ⊕ y(1)

2 y
(1)
4 = t2 ⊕ x1

y
(1)
1 = t3 ⊕ t2 y

(1)
2 = t4 ⊕ x3 y

(1)
0 = t5 ⊕ t4 y

(1)
5 = t5 ⊕ t6

t1 = t7 ⊕ t6 t0 = t8 ⊕ t9 t8 = x0 ⊕ x4 t6 = x0 ⊕ x5

t7 = x1 ⊕ x4 t5 = x2 ⊕ x3 t2 = x2 ⊕ x4 t4 = x5 ⊕ x6

t3 = x5 ⊕ x7 t9 = x6 ⊕ x7

constant modular multiplier about d1x

y
(2)
3 = y

(2)
1 ⊕ t0 y

(2)
7 = t1 ⊕ y(2)

1 y
(2)
0 = t2 ⊕ y(2)

2 y
(2)
6 = t3 ⊕ t0

t2 = t1 ⊕ x2 y
(2)
4 = t4 ⊕ t1 t3 = t5 ⊕ t1 y

(2)
1 = t4 ⊕ t6

t0 = t7 ⊕ x1 y
(2)
2 = t8 ⊕ x4 y

(2)
5 = t9 ⊕ t10 t1 = x0 ⊕ x1

t9 = x1 ⊕ x2 t7 = x2 ⊕ x3 t4 = x3 ⊕ x4 t10 = x4 ⊕ x5

t5 = x5 ⊕ x6 t8 = x5 ⊕ x7 t6 = x6 ⊕ x7

D Constant Modular Multiplier
For the modular multiplication by constants 8dx, 68x and d1x, we firstly generate three
8× 8 binary matrices by following the equation 4 and 5 respectively.

M0, HW=11︷ ︸︸ ︷

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0



M1, HW=34︷ ︸︸ ︷

0 1 1 0 1 1 0 1
1 1 0 1 1 0 1 0
1 0 1 1 0 1 0 0
0 1 1 0 1 0 0 0
1 0 1 1 1 1 0 1
0 0 0 1 0 1 1 0
0 0 1 0 1 1 0 1
0 0 1 1 0 1 1 0



M2, HW=37︷ ︸︸ ︷

1 1 0 1 1 0 1 1
1 0 1 1 0 1 1 0
0 1 1 0 1 1 0 0
1 1 0 1 1 0 0 0
0 1 1 0 1 0 1 1
0 0 0 0 1 1 0 1
0 0 0 1 1 0 1 1
1 1 1 0 1 1 0 1


It is observed that matrix M0 with respect to 8dx is very sparse, so that only 3 XORs
are required to implement the constant modular multiplier, namely y(0)

0 = x0, y(0)
1 = x7,

y
(0)
2 = x6, y(0)

3 = x5, y(0)
4 = x0 ⊕ x4, y(0)

5 = x0 ⊕ x3, y(0)
6 = x2, y(0)

7 = x0 ⊕ x1. However,
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when directly computing M1 and M2 based matrix vector multiplication, 34−8 = 26 XORs
and 37− 8 = 29 XORs are needed, respectively. Based on the backward search framework,
the area cost of constant modular multiplications about 68x and d1x can be reduced to 18
XORs with minimum circuit depth 3 XORs and 19 XORs with minimum circuit depth 3
XORs, respectively. The concrete implementation is shown in Table 7.

E Backward Search Framework
To customize the constant modular multiplier, we adopt the backward search framework
proposed in [LWF+22]. This heuristic search algorithm is inspired by the optimization
method for constant matrix multiplication proposed in [KHZ17]. Compared with the
forward search framework [BP09], the backward search framework guarantees the circuit
depth to be minimum while still reducing as much area cost as possible. The overall
execution steps of backward search framework are described as below:

Step 1: Transform the constant Cx into binary matrix Am×m based on Mastrovito’s
multiplication under a certain irreducible polynomial f(x). Then, the goal is
turned to calculate the binary matrix vector multiplication: ym×1 = Am×m ·xm×1.

Step 2: Calculate the Hamming weight HWi and logarithmic depth S = log2 HWi for
each row of the matrix, where the maximum depth is determined as Smax for
0 ≤ i ≤ m− 1. Then, node is defined as the bit vector of each row.

Step 3: Initialize the X set as the collection of input unit nodes xi with depth equal to
1, the W set as the collection of nodes wi with depth equal to Smax, and the P
set as the collection of nodes pi with depth less than Smax, where 0 ≤ i ≤ m− 1.
Sort the nodes pi in descending order according to depth.

Step 4: Split the node wi into two nodes until set W is empty, which is based on one of
the following strategies:

1) Construct node wi with one node xj and the other node pk.
2) Construct node wi with one node pj and another generated new node gk. The

depth of gk should be less than Smax. Append the new node to set P .
3) Construct node wi with two generated new nodes gk and gn. The depth of gk

and gn should be less than Smax but at least one of them is equal to Smax − 1.
Append nodes gk and gn to set P .

Note that each splitting operation generates a directed sub-graph with two edges
and three nodes.

Step 5: Update the maximum depth as Smax = Smax−1. Update the sets W and P based
on new Smax. If W ∪X = X, then return the current directed graph. Otherwise,
we go to Step 4 for next iteration.

We add an extra sorting operation for set P at each iteration. The descending order
guarantees that the node with maximum depth among pi is preferentially picked up, which
aims to speed up the convergence for small-dimension matrix. More details about the
backward search framework could refer to the original paper [LWF+22].

F Alternative Methods to VMM
As comparison objects to the proposed radix-2 Montgomery based VMM, Figure 19 presents
two examples of alternative methods to VMM. As shown in Figure 19(a), radix-2 LSB-first
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based VMM consumes proportionally increased fan-ins (3×1-bit inputs marked by the
red broken line) of MUXs to support configuration, because the MSB of output comes
from 3 PEs. Figure 19(b) reveals that high-radix Montgomery based VMM needs extra
pre-computation for T0,0,T1,0,T2,0 and involves multiple w-bit multipliers, which results in
high area overhead.
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(a) Radix-2 LSB-first VMM
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Figure 19: Two typical examples of alternative methods to VMM (setting parameter as
3w-bit A and 3-bit B).
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