
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 2, pp. 588–629. DOI:10.46586/tches.v2024.i2.588-629

OBSCURE: Versatile Software Obfuscation from
a Lightweight Secure Element

Darius Mercadier1, Viet Sang Nguyen2, Matthieu Rivain3 and Aleksei
Udovenko4

1 Google, Munich, Germany
dmercadier@google.com

2 Université Jean Monnet, Saint-Étienne, France
viet.sang.nguyen@univ-st-etienne.fr

3 CryptoExperts, Paris, France
matthieu.rivain@cryptoexperts.com

4 SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg
aleksei@affine.group

Abstract. Software obfuscation is a powerful tool to protect the intellectual property
or secret keys inside programs. Strong software obfuscation is crucial in the context
of untrusted execution environments (e.g., subject to malware infection) or to face
potentially malicious users trying to reverse-engineer a sensitive program. Unfortu-
nately, the state-of-the-art of pure software-based obfuscation (including white-box
cryptography) is either insecure or infeasible in practice.
This work introduces OBSCURE, a versatile framework for practical and cryptograph-
ically strong software obfuscation relying on a simple stateless secure element (to
be embedded, for example, in a protected hardware chip or a token). Based on the
foundational result by Goyal et al. from TCC 2010, our scheme enjoys provable secu-
rity guarantees, and further focuses on practical aspects, such as efficient execution
of the obfuscated programs, while maintaining simplicity of the secure element. In
particular, we propose a new rectangular universalization technique, which is also of
independent interest. We provide an implementation of OBSCURE taking as input
a program source code written in a subset of the C programming language. This
ensures usability and a broad range of applications of our framework. We benchmark
the obfuscation on simple software programs as well as on cryptographic primitives,
hence highlighting the possible use cases of the framework as an alternative to pure
software-based white-box implementations.
Keywords: Obfuscation · Secure Element · White-Box Cryptography · VBB
Security

1 Introduction
In our modern world, many devices constantly run programs processing sensitive data.
However, most of the time, the underlying execution environment cannot be fully trusted.
Indeed, in modern systems running multiple third-party applications, a malicious software
may be able to infect the environment through numerous security vulnerabilities. Another
threat is the disclosure of intellectual property in a context where a legitimate user turn
to be malicious and try to reverse-engineer the program.

Software obfuscation aims to protect a program by making it unintelligible to a potential
adversary while maintaining its functionality. In the context of a cryptographic program, it
should notably be hard to extract its internal secrets, which is further known as white-box

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-10-15 Accepted: 2023-12-15 Published: 2024-03-12

https://doi.org/10.46586/tches.v2024.i2.588-629
mailto:dmercadier@google.com
mailto:viet.sang.nguyen@univ-st-etienne.fr
mailto:matthieu.rivain@cryptoexperts.com
mailto:aleksei@affine.group
http://creativecommons.org/licenses/by/4.0/

Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain and Aleksei Udovenko 589

C bytecodeCompiler

Interpreter

Secure
Element

Input Output

Figure 1: High-level view of our obfuscation solution.

cryptography. Proposed in seminal works of Chow et al. [CEJv03, CEJvO02], white-box
implementations of cryptographic primitives (such as the standardized AES block cipher)
aim to protect the secret keys from extraction by an adversary with full access to the
implementation. Unfortunately, all initial and consequent academic white-box designs
were broken by practical (and often fully automated) attacks, see e.g. [BGEC04, LRD+14,
BHMT16, BU18, GRW20].

The motivation for this work arises from the need of practical and secure software
obfuscation for numerous applications while state-of-the-art solutions are not fulfilling the
need. On the one hand, current white-box cryptography solutions desperately lack security,
illustrated by the absence of unbroken schemes in academia and, for example, by recent
WhibOx competitions [PCY+17, BGK+19, KGP+21]. On the other hand, theoretical
cryptographic obfuscation [BGI+01], and in particular indistinguishability obfuscation, is
far from being feasible in practice despite recent breakthroughs proposing provably secure
constructions under well-founded hardness assumptions [JLS21].

A direction this work takes is a partial delegation of trust to a tamper-proof secure
element (SE). The underlying idea is to build secure software obfuscation relying on
interaction with a secure embedded chip or a hardware token. Prominent real-world
examples in this direction are the trusted execution environments, such as Intel SGX,
AMD Secure Technology or ARM TrustZone. However, security of these hardware elements
is uncertain due to numerous side-channel attacks [FYDX21] arising from the extremely
high internal complexity of the chips. In fact, much simpler tamper-proof hardware
tokens are sufficient for achieving strong obfuscation, as was shown by Goyal, Ishai, Sahai,
Venkatesan and Wadia at TCC 2010 [GIS+10]. However, the focus of the latter work is
purely theoretical and a straight application of this scheme would be widely inefficient.

In this work, we design and implement OBSCURE, a software obfuscation scheme with a
focus on application features and simplicity of the SE functionality. We build our solution
by reworking and extending the scheme from TCC 2010. OBSCURE takes a C source code
as input and produces an obfuscated program (a bytecode), which can be distributed and
fed into an interpreter evaluating the program on any given input through interaction with
an SE (see Figure 1). The SE is stateless and independent of programs being obfuscated,
thus being fully reusable.

Our contribution. Our contribution can be summarized as the design and implementation
of practical software obfuscation based on a lightweight SE. By lightweight we mean
that, besides basic cryptographic computation (to secure its input-output data), the SE
functionality is only required to perform very simple computation such as a few RISC-
like instructions involving a limited set of registers. Except for a pair of (hardcoded)
cryptographic keys, the SE functionality is stateless: it needs no storage between any two
invocations. Moreover, it only uses a small segment of RAM and does not need to deal with
memory management. We explore the obfuscation of programs without data-dependent

590 OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element

memory accesses. While this reduces the scope of supported programs, it allows us to
obtain a much simpler, efficient, and easier to protect SE functionality than in schemes
supporting RAM programs and relying on e.g. oblivious RAM, an advanced (and rather
inefficient) cryptographic primitive. Our scheme is particularly efficient in protecting
programs in the scenario where only the hardcoded secrets need to be hidden, i.e., where
the program structure is not sensitive (e.g., white-box cryptography, pre-trained neural
networks), but can also be used for general obfuscation. Our main contributions are the
following:

1. Design and optimizations: At its core, OBSCURE relies on the scheme from TCC
2010. We optimize it and work out all practical aspects. First, we generalize it
to address modern programs made of typical CPU instructions instead of Boolean
circuits. A major optimization includes batch evaluation of instructions in terms of
multi-instructions, which are short snippets of instructions processing a fixed number
of values. We develop a clusterization procedure that combines instructions into
multi-instructions. We also simplify the original scheme by reducing the number
of different SE queries down to three (instead of five in the original scheme). For
practical purpose, we remove the need of a shared key between the SE and the
obfuscator by relying on a public key encryption scheme, which is invoked for a
single encryption per obfuscation and for a single decryption per obfuscated program
evaluation.

2. Rectangular universalization: For programs with sensitive structure and data
flow, we develop a tailored universalization method, allowing to serialize an original
program as a hardcoded constant into a universal evaluating program. We thus
reduce the goal of general obfuscation to the basic constant-protecting obfuscation
(a.k.a. white-box obfuscation). Rectangular universalization is based on coercing
the program’s circuit into a rectangular (fixed-width) shape and obfuscating the
wirings using permutation-duplication networks. We design such a network tailored
to our scheme, using the well-known Beneš permutation network as a component.
For the latter scheme, we show how it can be efficiently compressed by using multi-
instructions (in this case, essentially, fixed-size permutation gates). We believe that
this contribution is of independent interest and could be useful to other practical
implementation contexts of universal circuits / programs.

3. Implementation of a C source code obfuscator: Our implementation of OB-
SCURE includes a compiler from a program in C− (a subset of the C language) into
an obfuscated bytecode, a bytecode interpreter interacting with an SE, and a software
library (in C) implementing the SE API. The source code is publicly available at

https://github.com/CryptoExperts/OBSCURE

Direct obfuscation of C programs highlights usability of our solution and a broad
range of applications. Our implementation of OBSCURE is benchmarked on different
programs from small to fairly large size which gives a good illustration of the scaling
of our approach and provides some insights on the possible trade-offs.

Potential applications. We show that our scheme achieves the strongest form of obfusca-
tion (assuming that the underlying SE is tamper resistant), which is known as virtual black
box (VBB) obfuscation [BGI+01]. This implies that the adversary learns nothing more
from the obfuscated program than from an oracle access to a “black box” computing the
program. From this ground, our scheme can be applied to multiple contexts and provide
the highest possible security to a software program. In the context of an encryption or
decryption program, besides protecting its secrets, our obfuscator can make it one-way,

https://github.com/CryptoExperts/OBSCURE

Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain and Aleksei Udovenko 591

incompressible and/or traceable [DLPR14]. We notably report and benchmark the imple-
mentation of a collusion-resistant traceable AES decryption program using OBSCURE.
Another promising application is the protection of the sensitive weights of a pre-trained
neural network (or other machine learning model). This use case is particularly amenable
to our constant-protecting obfuscation (obfuscation in “white-box mode”). We show-case
and benchmark such an application on a multilayer perceptron (MLP) pre-trained on the
MNIST dataset to recognize handwritten digits. OBSCURE thus enables embedded AI
modules provably protected against the disclosure of their trained parameters. We further
discuss how OBSCURE could be an interesting solution for confidential cloud computing. In
this scenario, one compiles and obfuscates a program locally and delegate its computation
to a public cloud without disclosing the program content or internal computation to the
cloud. While we just cited a few, many more applications can benefit strong obfuscation
in practice. The interested reader is referred to [BGI+01, SW14, Bar16, HB15] for further
examples.

Related works. Since current pure software-based obfuscation techniques are either
insecure or infeasible, we focus on related works about software obfuscation using secure
hardware. These related works vary by the nature and complexity of the underlying secure
hardware. Our work is heavily inspired by the work of Goyal et al. [GIS+10]. We improve
this scheme in several ways to make it practical and provide a concrete implementation
featuring a multi-stage compiler from a C source code into an obfuscated bytecode, a
bytecode interpreter and a software proof-of-concept SE implementation.

Towards the other side of the spectrum are obfuscation schemes relying on SEs of
medium complexity. PHANTOM [MLS+13] (CCS 2013), GhostRider [LHM+15] (ASPLOS
2015) and HOP [NFR+17] (NDSS 2017) are variants of secure processors and have a rather
similar architecture. GhostRider only aims to protect the data (inputs, intermediate values
and outputs), somewhat similar to our white-box mode. HOP also aims to protect the code,
and, for this purpose, inserts dummy instructions to prevent timing leakage. GhostRider
and HOP can obfuscate generic programs in the RAM (Random Access Machine) model.
The support of random memory accesses is implemented through oblivious RAM, which
adds significant complexity and performance overhead to the SE (3000 secure CPU cycles
per a memory access, as reported in [NFR+17]). In addition, the GhostRider processor
has more than 64 KB of secure internal memory; the HOP processor has more than 512
KB of secure internal memory. Our SE functionality, on the other side, typically relies on
a few dozens of 32-bit registers (< 1.3 KB state in the largest proposed version, excluding
the decryption/encryption parts). By being much simpler, our SE functionality is easier
to protect against side-channel attacks and can hence lead to higher security assurance.

Let us finally mention other works based on existing generic “trusted execution en-
vironment” such as the Intel SGX (Software Guard Extensions): an obfuscation engine
OBFUSCURO [AJX+19] (NDSS 2019), a functional encryption system IRON [FVBG17]
(ACM CCS 2017). While very efficient and powerful, these schemes rely on a secure
execution environment with extremely high complexity, which, in practice, unavoidably
leads to security vulnerabilities [FYDX21].

Outline. Section 2 formalizes the notion of secure element (SE) -based obfuscation,
describes the OBSCURE design and states its security. Section 3 describes our universal-
ization technique which achieves better efficiency than known universal circuit constructions
by taking advantage of the considered computational model. Section 4 presents the
software architecture of our obfuscator. It details the syntax of input programs, the
compilation pipeline and different intermediate representations of the program along the
obfuscation process. Finally, Section 5 showcases applications of OBSCURE and gives some
benchmarks for the obfuscation of several programs.

592 OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element

2 Strong Obfuscation with Secure Element
2.1 Definitions
For any two distributions D1 and D2, we write D1 ≈(t,ε) D2 to mean that no algorithm
running in time at most t can distinguish the two distributions with probability greater
than 1

2 + ε (or equivalently with advantage greater than ε). Along this paper, the latter
notion of computational closeness shall be used for D1, D2, t and ε being functions of a
security parameter λ (which shall often be implicit in the presentation). In the following,
an adversary (usually denoted A) and a simulator (usually denoted S) both refer to a
probabilistic algorithm.

Let L be a formal programming language. For an algorithm O, we shall denote LO(·)

the programming language obtained by augmenting L with oracle calls to O. For any
two programs P1, P2 ∈ L, we shall denote P1 ≡ P2 to mean that the two programs are
functionally equivalent. For any P ∈ L, we shall further denote P the program obtained by
setting all the constants of P to 0.1 As a particular example, if P is a program computing
a cryptographic algorithm with hardcoded secret key (embedded as instructions’ constants)
then P does not reveal anything about P ’s secret.

SE-based obfuscation. We now formally define the concept of obfuscation based on
a secure element. We consider a context where the SE is associated with a key pair
(pubSE, privSE). The public key pubSE is public information possibly authenticated by the
manufacturer. The private key privSE is stored in the SE as secret information. The SE is
assumed to be tamper resistant and is hence modeled as an oracle to which the obfuscated
program as well as a potential adversary only have a black-box access.

Definition 1 (SE-based Obfuscation). Let L be a formal programming language. An
SE-based obfuscator for L is a triplet of PPT algorithms (KeyGen,SE,Obf) defined as
follows:

• Key generation: on input 1λ, KeyGen outputs a public-secret key pair (pubSE, privSE),

• Secure element: on input a secret key privSE and a request r, SE outputs an answer
a,

• Obfuscator: on input a program P ∈ L and an SE public key pubSE, Obf outputs
an obfuscated program P̂ ∈ LSE(privSE,·).

This triplet of algorithms satisfies the following properties:

• Functional correctness. For any P ∈ L, we have P̂ SE(privSE,·) ≡ P with probability
1 for (pubSE, privSE)← KeyGen() and P̂ ← Obf(P, pubSE).

• VBB obfuscation security. For any adversary A there exists a simulator S of
similar running time, such that for any program P ∈ L of size |P |:

ASE(privSE,·)(pubSE, P̂) ≈(t,ε) SP (·)(|P |)

where (pubSE, privSE)← KeyGen() and P̂ ← Obf(P, pubSE). The obfuscation is said
to be (t, ε)-VBB secure.

We shall further consider a relaxed notion of security in which the program structure
might be revealed to the adversary but the obfuscation is meant to protect the program
data:

1More formally, L is assumed to include instructions which can take constant operands on some constant
domain, e.g. N ∩ [0, 256), and P is similar to P with all constants set to 0. If 0 is outside the constant
domain, any other fixed constant can be used instead for the definition of P .

Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain and Aleksei Udovenko 593

• VBB white-box security. For any adversary A there exists a simulator S of
similar running time, such that for any program P ∈ L:

ASE(privSE,·)(pubSE, P̂ , P) ≈(t,ε) SP (·)(P) ,

where (pubSE, privSE) ← KeyGen() and P̂ ← Obf(P, pubSE), and where P is the
zeroized-constants version of P as defined above. The obfuscation is said to be
(t, ε)-white-box-VBB secure.

Computational model. We shall consider a formal programming language L defining
a set of static single assignment (SSA) straight-line programs. In such programs, each
line computes a few Boolean and/or arithmetic instructions on w-bit words for some
w ∈ N, which we shall then call a multi-instruction. For some input-output length ` ∈ N,
a multi-instruction computes a function from a base

F ⊆
{
f :
(
{0, 1}w

)` → (
{0, 1}w

)`}
.

This multi-instruction base can be thought of as the set of functions generated by sequences
of a few base instructions. The exact definition of F depends on the instruction set, the
maximal number of instructions, and the number of internal registers. We shall specify
the definition of F in Section 4 although we stress that our obfuscator can work for any
definition of F and one might choose another F depending on the context.

Inputs and outputs of multi-instructions are read from and written to a static single
assignment memory m which is a two-dimensional array such that m[i][j] stores the jth

output element of the ith multi-instruction (while m[i] denotes the full output). For a
multi-instruction base F and associated parameters w, `, a program P ∈ L of size s, input
length n and output length m is composed of three following stages:

1. Writing input: the input (x1, . . . , xn) ∈ ({0, 1}w)n is written at the beginning of the
memory

m[1]← (x1, . . .) ; . . . ; m[L]← (. . . , xn)
where L = dn/`e.

2. Computation: the program executes a sequence of multi-instructions

m[ν]← fν(m[iν,1][jν,1], . . . , m[iν,`][jν,`])

for ν ∈ [L+ 1, L+ s], where fν ∈ F , iν,1, . . . , iν,` ∈ [1, ν) and jν,1, . . . , jν,` ∈ [1, `].

3. Reading output: the output (y1, . . . , ym) ∈ ({0, 1}w)m is read from certain memory
cells:

(y1, . . .)← m[µ1] ; . . . ; (. . . , ym)← m[µL′]
where L′ = dm/`e and µ1, . . . , µL′ ∈ [1, L+ s].

In practice, a the function f ∈ F is encoded into a bytecode which is a bit string
uniquely identifying f . The bytecode of the νth multi-instruction shall be denoted fν
as the underlying function by abusing notations. The tuple defining the input indices is
further called the input identity of the multi-instruction and denoted

IDνin := ((iν,1, jν,1), . . . , (iν,`, jν,`)) . (1)

Example 1. Figure 2 depicts an example with two multi-instructions MI1 and MI2,
each contains 2 instructions. The input identity of MI1 is ID1

in = ((1, 1), (1, 2)). This
can be understood as follows: the multi-instruction MI1 takes as input the first and the
second elements of m[1]. In other words, IDνin tells us where MIν ’s input values come from.
Similarly, the input identity of MI2 is ID2

in = ((2, 1), (2, 2)).

594 OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element

Figure 2: Example of computational model.

2.2 Obfuscator Design

OBSCURE follows the same lines as the construction of [GIS+10]. The principle is to
manipulate encrypted intermediate variables (Boolean values in [GIS+10], w-bit words
in our construction) and to call the SE to perform operations on these encrypted values.
Additionally, the design must take into account an adversary tampering with the origin
of encrypted input values (wires in [GIS+10]) and/or swapping multi-instructions (gates
in [GIS+10]). The design must also be able to prevent an adversary from swapping a
specific intermediate value between two different executions (corresponding to different
program inputs). We use a so-called execution identity which is bound to the program input
(in a non-forgeable way) and further to all the intermediate encrypted values. Hereafter,
we present in details the design of our obfuscator.

Cryptographic primitives. To simultaneously ensure the data confidentiality and authen-
ticity, we use authenticated encryption with associated data (AEAD) throughout our
construction. Let N be a nonce, A be associated data, K be a symmetric key, M be a
plaintext, C be a ciphertext and R be the result of validating the message authentication
code (MAC). R can receive the value of either “valid” or “invalid” (also denoted ⊥).
We denote the functions of encryption and decryption by C ← AEncK(N,A,M) and
(M,R) ← ADecK(N,A,C), respectively. The ciphertext obtained from the encryption
function implicitly includes the message authentication code and the decryption function
implicitly includes the verification of the MAC. The plaintext and/or associated data
can be set to the empty string, which is denoted ∅. Our solution also makes use of
public-key encryption (PKE) scheme. For an asymmetric key pair (pub, priv), we denote
C ← Encpub(M) the public-key encryption of a plaintext M under a public key pub, and
M ← Decpriv(C) the PKE decryption of a ciphertext C using the private key priv. Finally,
we shall use a hash function Hash and further denote Hashi(·) := Hash(i ‖ ·) for i ∈ [0, 3]
where the prefix i is encoded on 2 bits, and where ‖ denotes the concatenation operator.

We assume standard security properties for these primitives: authenticity and privacy
of the AEAD scheme, ciphertext indistinguishability (under chosen plaintext attacks) for
the PKE scheme, and collision resistance of the hash function (see e.g. [BR05, RBBK01]).
Their definitions are recalled in Appendix A.

Secure element. In OBSCURE, the key generation produces a PKE key pair (pubSE, privSE)
and an AEAD key KSE. Formally, pubSE is the public key of the SE while its secret key
is composed of the pair (privSE,KSE). The latter is stored in the SE and used to answer
incoming requests. A request received by the SE is composed of a label followed by a

Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain and Aleksei Udovenko 595

Figure 3: Obfuscation process.

sequence of arguments:

SE(〈label〉, 〈argument 1〉, 〈argument 2〉, . . .)

The SE answers three type of requests with labels “Start”, “Input” and “Eval” whose
associated functionalities are described in Algorithm 1, Algorithm 2, Algorithm 3.
Remark 1. In practice, the key pair (pubSE, privSE) is generated by the manufacturer
during a key ceremony and embedded in the device together with a certificate issued by
the manufacturer (or, alternatively, pubSE is distributed among developers of obfuscated
programs). This setup is similar to the best practices of the secure hardware industry (e.g.,
hardware security modules, secure smart cards). In principle, alternative key distribution
schemes are possible and can be applied together with our core design.

Obfuscation process. On an input program P (following the computational model of
Subsection 2.1), the obfuscator produces an authenticated and encrypted bytecode to
which some header is prepended, as depicted in Figure 3. The obfuscated program consists
of this data together with a fixed (public) interpreter program. The latter parses the
encrypted bytecode into a sequence of encrypted multi-instructions and makes requests to
the SE in order to sequentially execute them and finally obtain the output.

First of all, the obfuscator randomly samples a symmetric key KS. This key is used
to encrypt the program bytecode which shall hence be securely shared with the SE (to
enable the bytecode decryption). This key is hence referred to as the shared key.

Secondly, the obfuscator creates a header H which contains the information about
the number of inputs n of the program P and the ciphertext obtained by encrypting the
shared key KS using the public key pubSE of the SE:

H = (n,CH) with CH ← EncpubSE(KS)

Thirdly, the program bytecode is authenticated and encrypted. At evaluation time,
the SE should only accept such an evaluation request if the given input of the current
multi-instruction (MI) comes from the correct previous MIs, namely it should authenticate
the MI of origin of each encrypted input value and verify that it matches the input
identity of the current MI. Thus, the input identity IDνin (i.e. the tuple of indices of the
multi-instruction’s input) must be authenticated. Besides, we use a Boolean flag bνR, that
we call a revelation flag and which is set whenever the current multi-instruction’s output
is part of the program’s output and must hence be returned in plain by the SE. Formally,
an authenticated and encrypted multi-instruction is defined as

MIν = (ν,Aν , Cν) where
{
Aν = (bνR, ID

ν
in)

Cν = AEncKS(ν,Aν , fν)
(2)

596 OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element

where we abuse notations by denoting fν the bytecode of the multi-instruction.
The obfuscated program is composed of the header H, the sequence of authenticated

and encrypted multi-instructions MIL+1, . . . , MIL+s, and a fixed (public) program called
the interpreter which is depicted hereafter.
Remark 2. We stress that, once the obfuscation process completed, the obfuscator should
securely destroy the shared key KS . This way, KS is only kept in encrypted form in the
obfuscated program header which can only be decrypted by the target secure element.

Obfuscated program evaluation. In the evaluation of an obfuscated program, each w-bit
intermediate value (including the program input) is stored in the memory in an encrypted
form and is called an encrypted word. Those encryptions use the secret key KSE stored in
the SE. To execute a multi-instruction fν , its (encrypted) bytecode and the corresponding
encrypted input words are appended to a request sent to the SE. The SE is then able
to decrypt the provided data and execute fν internally. The output elements of the
multi-instruction are encrypted by the SE and stored as new encrypted words in the
program memory (with a special treatment for the program output which must be returned
in plain).

In the design, an execution identity EID prevents an adversary from using an encrypted
intermediate value to modify the corresponding encrypted intermediate value in another
execution. The execution identity is unique for an input of an obfuscated program so
that it is hard to have two different executions with the same execution identity. We give
hereafter a detailed description of the evaluation of an obfuscated program. Specifically,
we depict the different steps of the interpreter. Each time the interpreter calls the SE, we
describe the associated computation.

The input of the interpreter is composed of the obfuscated program header H and
authenticated and encrypted multi-instructions MIL+1, . . . , MIL+s as well as the program
input x1, . . . , xn. It shall return (y1, . . . , ym) = P (x1, . . . , xn).

Step 1 : This step is the preparation for the input writing stage of the computational model
of Subsection 2.1 and for the derivation of the execution identity. The program input words
x1, . . . , xn are grouped into L batches: X1 = (x1, . . . , x`), . . . , XL = (x(L−1)`+1, . . . , xL`)
where L = dn/`e. The last batch XL is padded with 0’s if n is not a multiple of `. We also
use the notation Xi,j to refer to the jth element of the ith batch, as Xi,j = x(i−1)`+j where
1 ≤ i ≤ L and 1 ≤ j ≤ `. The interpreter then computes the chain of hashes H1, . . . ,HL

where
Hi = Hash(Hi−1 ‖Xi)

for 1 ≤ i ≤ L and H0 is the all-zero string of the hash length (see Figure 4).

Step 2 : Given the program header H and HL, the interpreter sends to SE the request
“Start” as shown in Algorithm 1. On such a request, the SE first derives an execution
identity EID by hashing HL and the header H. All the subsequent AEAD ciphertexts are
then bound to the execution identity so that it is hard to replay an encrypted word from
one execution to another (corresponding to a different input of the program).

Next, the ciphertext CH is decrypted to obtain the shared key KS which is encrypted
again using the symmetric key KSE of the SE (lines 2-4). The ciphertext of the shared key
is called the execution key EK. It then computes the final element M in

L of an input chain
MAC (lines 6-8). This input chain MAC is presented in detail in the next step. At the
end of this step, the SE returns the execution key EK, the execution identity EID and the
final input MAC M in

L .

Step 3 : The goal of this step is to obtained authenticated and encrypted versions of the
input words {Xi,j} under the SE secret key KSE while using the execution identity EID and
the indexes (i, j) as associated authenticated data in order to avoid a swapping attack (i.e.

Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain and Aleksei Udovenko 597

X1 X2 . . . XL H

Hash Hash . . . Hash Hash

H0 H1 H2 . . . HL EID

0 1 2 . . . L

AEncKSE AEncKSE AEncKSE
. . . AEncKSE

M in
0 M in

1 M in
2 . . . M in

L

. . .

Figure 4: Hash chain and input chain MAC.

Algorithm 1 SE(“Start”,H, HL)
1: EID ← Hash0(HL ‖ H)
2: (n,CH)← H
3: KS ← DecprivSE(CH)
4: EK ← AEncKSE(Hash1(EID), ∅,KS)
5: L← dn/`e
6: N in

L ← Hash2(EID ‖ L)
7: Ain

L ← (HL ‖ L ‖ EID)
8: M in

L ← AEncKSE(N in
L , A

in
L , ∅)

9: return EK, EID,M
in
L

an attack consisting in swapping intermediate variables within an execution or between
different executions). To enforce the use of the associated data Ai,j = (i ‖ j ‖EID) in the
encryption of Xi,j , we rely on the backward computation and verification of the input
chain MAC M in

0 , . . . ,M
in
L associated to the chain of hashes H0, . . . ,HL (see Figure 4).

For i from L to 1, the interpreter sends an “Input” request to the SE with EID, i, Hi−1,
Xi and M in

i where
M in
i = AEncKSE(N in

i , A
in
i , ∅)

with Ain
i = (Hi ‖ i‖EID) and N in

i = Hash2(EID ‖ i). We notice that the definition of M in
L in

the step 2 matches the above definition ofM in
i when i = L. The computation of the SE when

receiving this request is depicted in Algorithm 2. It recomputes Hi = Hash0(Hi−1 ‖Xi),
then verifies the MAC M in

i with respect to this hash (lines 3-7) and computes M in
i−1

(lines 8-10). Let us stress that in the case a wrong Xi or Hi−1 is inputted to the SE,
the recomputation of Hi shall not match the associated data of M in

i and its verification
(AEAD decryption) shall fail with overwhelming probability.

Next, the SE encrypts the input words grouped in Xi as follows. For j from 1 to `, the
input word Xi,j is encrypted using KSE with the execution identity EID and the origin of
this input word (j-th element of i-th batch) in the associated data Ai,j = (i ‖ j ‖EID) and
the nonce Ni,j = Hash3(EID ‖ i ‖ j) (lines 11-14), we have:

Ci,j = AEncKSE(Ni,j , Ai,j , Xi,j) . (3)

The SE finally returns M in
i−1 and the encrypted words Ci,j , 1 ≤ j ≤ ` to the interpreter.

The encrypted words are stored in memory: m[i]← (Ci,1, . . . , Ci,`). Note that the inter-
preter’s memory is composed of memory cells storing ciphertexts instead of w-bit words as
in the original program.

598 OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element

At the end of Step 3, once the “Input” requests have been made for i from L to 1,
all the encrypted input words are stored at the beginning of the interpreter’s memory in
m[1], . . . , m[L]. This matches the input writing step of the computational model depicted in
Subsection 2.1.

Algorithm 2 SE(“Input”, EID, i,Hi−1, Xi,M
in
i)

1: if i < 1 then return ⊥
2: if i = 1 and Hi−1 6= 0 then return ⊥
3: Hi = Hash0(Hi−1 ‖Xi)
4: Ain

i = (Hi ‖ i ‖ EID)
5: N in

i = Hash2(EID ‖ i)
6: (∅, Rin

i)← ADecKSE(N in
i , A

in
i ,M

in
i)

7: if Rin
i = ⊥ then return ⊥

8: N in
i−1 ← Hash2(EID ‖ i− 1)

9: Ain
i−1 ← (Hi−1 ‖ i− 1 ‖ EID)

10: M in
i−1 = AEncKSE(N in

i−1, A
in
i−1, ∅)

11: for j from 1 to ` do
12: Ni,j ← Hash3(EID ‖ i ‖ j)
13: Ai,j ← (i ‖ j ‖ EID)
14: Ci,j ← AEncKSE(Ni,j , Ai,j , Xi,j)
15: return M in

i−1, (Ci,1, . . . , Ci,`)

Step 4 : The interpreter sends “Eval” requests to the SE to sequentially execute the
multi-instructions MIL+1, . . . , MIL+s. For each multi-instruction MIν = (ν,Aν , Cν), the
interpreter provides the SE with the execution identity EID, the execution key EK and the
encrypted words of input indices extracted from the input identity IDνin (see Equation 1).
We note that these encrypted words are looked up from the interpreter’s memory as follows:

(C∗1 , . . . , C∗`)← (m[iν,1][jν,1], . . . , m[iν,`][jν,`])

(where C∗k is a lighter notation for Ciν,k,jν,k).
Upon such a request, the SE performs the computation depicted in Algorithm 3. In this

algorithm, it first decrypts the shared key KS from EK (lines 1-2). From the shared key, the
SE decrypts the bytecode fν and further verifies the authenticity of the multi-instruction
data which is bνR, ID

ν
in and fν (lines 3-6). It then decrypts the encrypted input words

by deriving the nonce and associated data from the authenticated input identity IDνin
(lines 7-12). If any of these decryptions fail, it stops and returns a failure. Otherwise,
the function fν is evaluated on the obtained plain values (u1, . . . , u`), which gives the
words (v1, . . . , v`) corresponding to the ν-th multi-instruction plain output (line 13). If the
revelation flag bνR is set, these output words are returned in plain (lines 14-15). Otherwise,
they are encrypted into Cν,1, . . . , Cν,` (following Equation 3) before being returned to
the interpreter (lines 17-20). The output (encrypted) words are stored in m[ν] by the
interpreter.

Proceeding this way from MIL+1 to MIL+s, the interpreter evaluates the program with
encrypted words in memory, except for the program output words which are returned in
clear by the SE. Once the last multi-instruction MIL+s has been processed, the interpreter
looks up the plain output in memory and returns it.

Example 2. Figure 5 depicts the evaluation of the program given in Example 1. As we
can see, the intermediate values, the shared key KS and the bytecodes of multi-instructions
are all encrypted outside the SE (Figure 5a). They are decrypted for the executions of
multi-instructions only inside the SE (Figure 5b). We note that we return the output of

Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain and Aleksei Udovenko 599

(a) “Input” and “Eval” requests

(b) Evaluation of MI1 in SE

Figure 5: Example of obfuscated program evaluation.

MI2 (c, d) without encryptions because this is the output of the program. In this case, the
revelation flag b2

R in MI2 is set (see Equation 2).

2.3 Obfuscation Security
OBSCURE comes with two different security modes:

White-box mode. In this mode, the program’s instructions and internal data are ob-
fuscated while the program’s control flow is (partly) revealed. Although the control flow
internal to the multi-instructions is obfuscated (by encryption of their bytecode), the data
dependency between the different multi-instructions is leaked through the input identities
IDνin. The latter must be known to the interpreter to select the encrypted words in input
of the “Eval” requests and hence they cannot be encrypted along with the bytecode. A
typical use case for the white-box mode is the white-box protection of a cryptographic
algorithm embedding hardcoded secrets (a.k.a. white-box cryptography).

Full obfuscation mode. In this mode, one aims at additionally obfuscating the (full)
program control flow. To achieve this, a preliminary step is added to the obfuscation
process which is called universalization. This step refactors the input program P as a
program P ′ which for given width and depth parameters has constant input identities IDνin
independent of the original program P (the width and depth parameters must be chosen
in such a way that the program fits in). Our universalization technique is described in
Section 3. For the purpose of the current section, we simply assume that in full obfuscation
mode, the program P ′ in input of the obfuscation process indeed fulfills the requirement
of constant input identities.

The following theorem states the security of our scheme:

Theorem 1. Let OBSCURE be the SE-based obfuscator depicted in Subsection 2.2. Assume
that

• the used AEAD scheme satisfies (t, εpr)-privacy,
• the used AEAD scheme satisfies (t, εau)-authenticity,

600 OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element

Algorithm 3 SE(“Eval”, EID, EK,MIν , C∗1 , . . . , C∗`)
1: (KS, RS)← ADecKSE(Hash1(EID), ∅, EK)
2: if RS = ⊥ then return ⊥
3: (ν,Aν , Cν)← MIν
4: (bνR ‖ ID

ν
in)← Aν

5: (fν , Rν)← ADecKS(ν,Aν , Cν)
6: if Rν = ⊥ then return ⊥
7: for k from 1 to ` do
8: (i′, j′)← IDνin[k]
9: N ′ ← Hash3(EID ‖ i′ ‖ j′)
10: A′ ← (i′ ‖ j′ ‖ EID)
11: (uk, R′)← ADecKSE(N ′, A′, C∗k)
12: if R′ = ⊥ then return ⊥
13: (v1, . . . , v`)← fν(u1, . . . , u`)
14: if bνR is true then
15: return (v1, . . . , v`)
16: else
17: for j from 1 to ` do
18: Nν,j ← Hash3(EID ‖ ν ‖ j)
19: Aν,j ← (ν ‖ j ‖ EID)
20: Cν,j ← AEncKSE(Nν,j , Aν,j , vj)
21: return (Cν,1, . . . , Cν,`)

• the used PKE scheme satisfies (t, εind)-IND-CPA,
• the used hash function satisfies (t, εcr)-collision resistance.

OBSCURE achieves

• VBB (t, ε)-white-box security in white-box mode,
• VBB (t, ε)-obfuscation security in full obfuscation mode,

with ε ≤ 2εpr + εau + εind + εcr.

The proof is provided in Appendix A where we further recall the formal definitions of
the necessary security notions.
Remark 3. In full obfuscation mode, the width and depth parameters are revealed by
the obfuscated program, so that formally, the achieved VBB obfuscation notion is for a
simulator which is given the width and depth of P as the “size” |P |.

3 Universalization
A universal circuit is a commonly used tool for obfuscation. It takes as input a description
of a circuit and an input to it, and evaluates the circuit on that input, yielding the circuit’s
output. Essentially, it allows to hide the structure of a program being obfuscated and to
reduce the obfuscation goal to hiding only the inputs and the intermediate values of the
universal circuit.

Valiant [Val76] proved a fundamental asymptotic lower bound of Ω(N logN) gates for
a universal circuit computing arbitrary Boolean circuits with N gates, and provided a
construction with 19N logN gates (with 4.75N logN AND gates). This construction was
recently improved in a sequence of works [KS16, ZYZL19, AGKS20, LYZ+21] to finally
achieve 12N logN gates (with 3N logN AND gates) in [LYZ+21].

Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain and Aleksei Udovenko 601

3.1 Rectangular Universal Circuits

In this work, with the goal of lightweight obfuscation in mind, we consider a less generic
but lighter technique of universalization. The idea is to fix (or upper-bound) the maximum
width of a circuit. Then, each computational circuit, up to addition of dummy gates,
can be represented in a rectangular shape: a sequence of layers of computational nodes
(in our framework, multi-instructions), connected by layers of wirings (see Figure 6).
This shall typically be the case for cryptographic primitives (e.g., block ciphers such as
the AES [AES01]), which are typical targets for obfuscation methods. We believe that
rectangular universal circuits may find use beyond our obfuscation framework, i.e., be a
lighter practice-oriented replacement for general universal circuits.

x1 x2 x3 x4 xn−1 xn. . .

. . .

. . .

. . .

MI MI MI

MI MI MI

⋮ ⋮ ⋮

MI MI MI

y1 y2 y3 y4 yn−1 yn
width n

d
ep

th
d

Figure 6: Rectangular-shaped circuit (simplified). “MI” stands for multi-instruction, or
equivalently, an arbitrary programmable gate.

Universalization of rectangular circuits requires to universalize operation(s) performed
in the computational nodes and the wirings, i.e., serialize operations to bitstrings and
describe a universal evaluator circuit taking these descriptions as an extra input. In
OBSCURE, the computational nodes are protected by construction, through the encryption
of the instructions and secure evaluation in the SE. We are thus left with the problem
of protecting the wirings, which we solve by using permutation networks. Rectangular
universalization is slightly weaker than general universalization, because it leaks (upper
bounds on) the width and the depth of supported circuits (the two dimensions of the
rectangle). Note that general universal circuits also leak (an upper bound on) the size of
supported circuits.

Our construction of universal rectangular circuits requires ∼ dn logn gates, where d
is the depth and n is the width of the circuit. For a dense rectangular circuit, i.e., a
circuit of N = Ω(dn) gates, we thus obtain universal circuits of O(N logn) gates, i.e., with
an extra logarithmic factor only in the circuit width. This is asymptotically optimal for
circuits with constant width (which are dense rectangular circuits by definition) for which
our construction achieves a linear scaling. For circuits with sublinear width, this is still
asymptotically better than the size O(N logN) of standard universal circuits.

Furthermore, we show how to practically improve our constructions by using gates
with 2l inputs and outputs. Such a clusterized version allows to reduce the cost by a factor
of l2l/2, yielding the final gate complexity ∼ 2dn logn

l2l as l is constant and n tends to ∞.

602 OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element

3.2 Permutation Networks
In the following, Sn denotes the set of all permutations of the n-element tuple (1, 2, . . . , n).

Definition 2. A permutation network is a computational circuit P that takes as input
n arbitrary elements and a description σπ of a permutation π ∈ Sn, and outputs the n
elements in the order given by π. Symbolically,

P : ((x1, . . . , xn), σπ) 7→ (xπ(1), xπ(2), . . . , xπ(n)).

Common permutation networks consist of controlled swap gates and static wires
interconnecting these gates. The description σπ of a permutation π consists of control bits
for the swap gates. Each such bit determines whether the associated controlled swap gate
should perform the swap or not.

Beneš network [Ben64] is a well-known permutation network based on controlled swaps.
It permutes n = 2m elements using 2m− 1 layers of n/2 controlled swap gates. In the i-th
layer, 1 ≤ i ≤ m, the 2m entries in the list are grouped by their 0-based indexes in pairs
(j, j ⊕ 2i), i.e., pairs of indexes differing only in the i-th least significant bit. A controlled
swap gate is applied “in-place” to each such pair. For example, the first layer applies the
gates to index pairs (0, 1), (2, 3), . . . , (2m − 2, 2m − 1); the second layer applies the gates to
index pairs (0, 2), (1, 3), (4, 6), (5, 7), . . . , (2m − 3, 2m − 1), etc. The other m− 1 layers are
the same as the first m− 1 ones applied in the reverse order. More precisely, the i-th layer
with i > m has the same structure as the (2m− i)-th layer (but the control bits computed
for a concrete permutation may differ). The Beneš network’s data flow is illustrated in
Figure 7.

x1 x2 x3 x4 x5 x6 x7 x8

y1 y2 y3 y4 y5 y6 y7 y8

Figure 7: Beneš network data flow for n = 8.

Given a permutation π ∈ Sn, the respective control bits for the n-sized Beneš network
can be computed efficiently. The variety of algorithms for solving this problem is out
of scope of this paper. In our implementation, we rely on the recent verified code by
Bernstein [Ber20], who also provides an extensive literature review on the topic.

3.3 Copy-Permutation Networks
Pure permutation networks are not natural for typical programs in which a single variable
may be input of many subsequent operations, which means gate fan-out greater than 1

Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain and Aleksei Udovenko 603

or 2 for the underlying circuit. Moreover, a limited program memory size translates to a
limited circuit width provided that a gate (or multi-instruction) in a layer can connect
to any number of gates in the next layer. Therefore, we also consider the problem of
construction copy-permutation networks, i.e., permutation networks with copying. The
difference from simple permutation networks is that the ordering π is allowed to be taken
from the set {1, . . . , n}n rather than only from the set Sn of all n-element permutations.
Constructions of such networks require extending conditional swap gates by allowing them
to copy one of their inputs into both outputs (in the case of 2× 2 swap/copy gates). Such
a gate requires 2 control bits to encode all 4 possible actions: passing through, swapping
the values, copying the first value, copying the second value. In our obfuscation framework,
this is naturally achieved by instructions moving values in a required order.

Unfortunately, it can be shown that Beneš networks with extended 2× 2 swap/copy
gates can not compute arbitrary orderings π ∈ {1, . . . , n}n (see Appendix B). Instead, we
propose a new simple construction based on two permutation networks and a sequential copy
network, which may copy an element at index i only to a contiguous segment i, i+1, . . . , i+t
of output indexes, for some integer t ≥ −1 (t = −1 meaning an empty segment, occurring
when the position i is overwritten with a copy of an element from a smaller index). Our
construction is close to an optimal one in the number of gates (larger by at most a
factor of 2 +O(1/ logn)), since a copy-permutation network can not be smaller than a
pure permutation network, which in turn also has the information-theoretic lower bound
Ω(n logn).

High-level construction. Let π ∈ {1, . . . , n}n be the target ordering. Define s ∈ Sn be
any permutation such that s ◦ π is sorted in a non-decreasing order. We will first compute
s ◦ π and then apply s−1 in a standard permutation network. Let I ⊆ {1, . . . , n} denote
the set of positions i such that i = 1 or (s ◦ π)i > (s ◦ π)i−1. Define π′ ∈ Sn to be any
permutation agreeing with s ◦ π on all positions I (this is possible since the values of
s ◦ π on this restriction are strictly increasing). Observe that for the remaining positions
i ∈ {1, . . . , n} \ I it is (s ◦ π)i = (s ◦ π)i−1. Therefore, the ordering s ◦ π can be obtained
from π′ by sequential copying. Let c denote the respective mapping, equal to (s ◦ π) ◦ π′−1.
Then, the target ordering π can be computed as s−1 ◦ c ◦ π′, which can be implemented
by programming a composition of a permutation network, a sequential copy network and
another permutation network (see Figure 8).

Sequential copy network. A sequential copy network can be implemented by a chain
of n− 1 multiplexer gates, which can be viewed as restricted copy gates. A multiplexer
2× 1 gate mux simply selects one of its inputs depending on the value of the control bit.
Formally, let x = (x1, . . . , xn) be the input of the network and let y = (y1, . . . , yn) be the
output of the network. Observe that y1 = x1. Let the i-th mux gate, 1 ≤ i ≤ n− 1, take
as input yi and xi+1, and return yi+1. This is possible since either yi+1 = yi (copy) or
yi+1 = xi+1 (passthrough). This solution has depth n− 1 since each gate in the sequence
takes the output of the previous gate as one of the inputs. In OBSCURE, the depth of the
circuit has no effect on the final performance, since full program is evaluated on a single
SE, one multi-instruction at a time.

3.4 Native Clusterization of our CP Network
OBSCURE uses multi-instructions, which can be viewed as gates with a larger number
of inputs and outputs. For simplicity, we assume 2l × 2l gates, for an integer l ≥ 2. We
now show how to group the 2× 2 gates from our copy-permutation network into a smaller
amount of larger 2l × 2l gates. We refer to this process as native clusterization (see also
Section 4 for the case of arbitrary circuits). In the following, we assume that the width n

604 OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element

⋯x1 x2 x3 xn−1 xn

Permutation
Network (π′)

. . .
⋮

Sequential Copy
Network (c)

Permutation
Network (s−1)

y1 y2 y3 yn−1 yn⋯

Figure 8: Copy-permutation network, based on a sequential copy network.

is a power of two and denote m = logn. Example illustrations of native clustering in the
Beneš networks and in the sequential copy networks are provided in Figure 9.

Beneš network. Beneš network has high clusterization potential. All the gates in the
middle 2l − 1 layers can be perfectly grouped into parallel n/2l = 2m−l clusters (assuming
l ≤ m). Indeed, the values with 0-based indexes having m − l least significant bits in
common are permuted independently of other values in these layers, by the construction
of the Beneš network. More precisely, for each integer i, 0 ≤ i ≤ 2m−l, the 2l values with
0-based indexes {i+ 2m−lj}0≤j<2l are permuted by the middle 2l− 1 layers independently
of other values. Each such i-based group can be permuted using a single 2l × 2l gate,
leading to 2m−l such gates in total for the middle 2l − 1 layers.

The remaining 2m − 1 − (2l − 1) = 2(m − l) layers split into two symmetric cases
of m − l layers (before and after the middle layers). Similarly to the middle case, each
l consequent layers can be merged into one layer of parallel full-sized clusters, with the
only difference that the fixed bits in 0-based indexes are not the least significant bits.
If m − l is not divisible by l, then l′ consequent layers will remain (on each of the two
sides), with 0 < l′ < l. These layers can also be grouped into one layer of parallel full-sized
clusters. Indeed, while the layers split into 2m−l′ > 2m−l independent groups, these smaller
independent groups may still be combined into full-sized clusters. Formally, the indexes
are grouped into 2m−l clusters by m− l most significant bits. It is easy to verify that each
such cluster permutes values “in-place”, i.e., independently from other clusters. This leads
to an implementation of Beneš network of size n = 2m in 1 + 2

⌈
m−l
l

⌉
= 2

⌈
m
l

⌉
− 1 layers

of 2m−l clusters each (i.e., 2l × 2l gates).

Sequential copy network. In our construction based on a chain of n − 1 multiplexer
gates, clusterization is trivial by grouping consequent multiplexer gates into sub-chains.
Each sub-chain of 2l − 1 gates takes 2l inputs and returns 2l − 1 outputs. Therefore, the
n − 1 gates can be split into chained groups of size at most 2l − 1, leading to

⌈
n−1
2l−1

⌉
clusters. Formally, the i-th cluster takes as inputs values with indexes(

1 + (i− 1)(2l − 1), . . . , min(2l + (i− 1)(2l − 1), n)
)

Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain and Aleksei Udovenko 605

x1 x2 x3 x4 x5 x6 x7 x8 x9

y1 y2 y3 y4 y5 y6 y7 y8 y9

(a) Native clustering of the sequential copy net-
work on n = 9 elements with 3×3 clusters/gates
(each cluster shaded in gray).

x1 x2 x3 x4 x5 x6 x7 x8

y1 y2 y3 y4 y5 y6 y7 y8

(b) Native clustering of the Beneš network with
n = 8 elements using 3 layers of 4 × 4 clusters/-
gates (each cluster shaded in gray).

Figure 9: Examples of native clustering.

and outputs values with output indexes(
2 + (i− 1)(2l − 1), . . . , min(2l + (i− 1)(2l − 1), n)

)
.

Since the first input of each cluster is equal to the respective output of the network, it may
be passed through the cluster (unchanged) to make the cluster have precisely 2l outputs
(instead of actually computed 2l − 1 outputs).

Full complexity. The total complexity of our implementation of a copy-permutation
network of n = 2m elements is equal to

2m−l
(

2
⌈m
l

⌉
− 1
)

+
⌈
n− 1
2l − 1

⌉
gates of type 2l × 2l, if l < m (the case of l ≥ m can be trivially computed using one gate).
Asymptotically, this is equal to ∼ 2m−l+1m

l = 2n logn
l2l when l is constant and n→∞.

Full rectangular universalization requires (d+ 1) permutation layers and dn/2l main
computational gates, totaling to

d

(
2n logn
l2l + n− 1

2l − 1

)
,

ignoring rounding errors. If l is constant and n is increasing, only the first term of the
sum contributes asymptotically. However, in the scenario where the width n is constant
too, the second term contributes to the constant in the O(d) complexity of our scheme.

4 Compiler Software Architecture
Figure 10 presents the overall architecture of our compiler which consists of 6 passes.
Initially, the input C program is transformed into an abstract syntax tree (AST) by a

606 OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element

parser. We next remove high-level constructions such as loops and functions from this AST,
and convert them into a straight-line program (SLP, i.e., a sequence of basic operations
without any branches, loops, conditional statements, or comparisons) in our high-level
intermediate representation (HLIR). We then merge neighboring instructions together
and produce a data-flow graph (DFG) whose nodes are in our mid-level intermediate
representation (MLIR). Then, universalization produces a universal DFG for this program.
The final lowering pass then generates from this DFG an SLP in our low-level intermediate
representation (LLIR), and performs register allocation for each node of the DFG. Finally,
this SLP is serialized into a bytecode, which can then be executed by the interpreter and
the SE.

C AST HLIR SLP

MLIR DFG
(universal)LLIR SLPBytecode

Parsing Normalization Clusterization

LoweringSerialization

MLIR DFG

Universalization

Figure 10: Software architecture of our compiler

Input C program and parsing. Our compiler accepts as input a program written in a
subset of C, which we call C−. The main restrictions of C− programs include: (1) the
control flow must be statically computable, (2) pointers must alias to the same memory
region during their whole lifetime, (3) all variables must be of type either unsigned int
or unsigned int* and (4) we support ternary expressions (?:), comparisons (<, ==), for
loops and do not support if, switch and while loops. A program in C− is a list of
functions. The last function is considered as the main, by convention. Functions can call
each other, but we forbid recursion, in order to be able to inline all function calls. The
body of a function is a list of statements, which can be variable declarations, assignments,
function calls, or for loops. OBSCURE supports the following operations:

• Unary: −, ∼

• Binary: +, −, ∗, /, %, &, |, ^, �, �, <, ==

• Ternary: ? :

Assignments can use either a simple equation (=) or compound assignment operators
(e.g., + =, �=). The stopping condition of a for loops must be a comparison (==, >=,
<=, >, <) between a variable and an expression, and the increment must be an expression
(e.g., a var++ or var–) or an assignment (e.g., var+=2). Both the stopping condition and
the increment must be computable statically (in order to enable us to unroll all loops).

We use pycparser [Ben22], a standard C parser, to convert the input program into an
abstract syntax tree (AST). This data structure is simply a tree that represents the syntax
of the program, and is used in most front-ends of C compilers, such as GCC and Clang.

Normalization. The goal of the normalization is to remove high-level constructions of
C, in order to eventually convert the AST into an assembly-like straight-line program,
which we call high-level intermediate representation (HLIR). A HLIR program under this
representation is a list of inputs, a list of outputs, and a list of high-level instructions
(HLI). A high-level instruction has the following format:

OP dst, src1, src2, src3

Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain and Aleksei Udovenko 607

where OP can be one of {MOV, XOR, OR, AND, LSL, LSR, ADD, SUB, MUL, DIV, MOD,
CMOV}, dst is an integer representing a memory address, src1, src2 and src3 can be
either memory addresses, or immediates. In case of unary (or binary) operations, src2
and src3 (or only src3) are empty. For instance, the following IR program takes two
inputs and returns their sum multiplied by 42 (m[x] is the memory location x and #42 is
the immediate 42):
inputs : m[0], m[1]
outputs : m[3]
instructions :

add m[2], m[0], m[1]
mul m[3], m[2], #42
To transform the AST into a HLIR program, the normalization starts by inlining

function calls and unrolling loops. Then, it removes arrays and pointers by replacing
them with scalar variables: an array of size n is replaced by n variables. Additionally, we
also remove nested expressions during this pass. For instance, a = b + c + d would be
simplified into tmp = b + c; a = tmp + d. Thus, after the normalization, all instructions
are assignments of unary or binary operations between variables/constants.

Clusterization. Recall that a multi-instruction is composed of several instructions. This
pass merges high-level instructions (HLIs) together to produce multi-instructions. The
motivation of performing clusterization is twofold: (1) Some intermediate variables will
be alive only inside a multi-instructions, and will not need to be returned by the SE.
Since inputs and outputs of the SE are encrypted, this directly translates into a reduced
execution time. (2) The width and depth of the program will be reduced, thus reducing
the size of the permutation networks and the number of permutation networks required
(thanks to the smaller width and depth, respectively).

To perform clusterization, we use yet another intermediate representation: the mid-level
intermediate representation (MLIR), which introduces multi-instructions. A mid-level
multi-instruction (MLMI) is represented by a list of inputs, a list of outputs and a list of
HLIs. In turn, an MLIR program consists of a list of inputs, a list of outputs, and a list of
MLMIs. We start clusterization by trivially transforming the HLIR program into an MLIR
program where each MLMI contains a single HLI. This simplifies the implementation of
the clusterizer, which simply merges MLMIs together, without having to perform a change
of representation.

In order to actually perform the clusterization (and the universalization), it is useful to
represent the program as a directed (acyclic) graph, called data-flow graph (DFG), whose
nodes are MLMIs, and whose edges represent assign-use relations: there is a edge from a
node a to a node b if and only if b uses one of the variables that was assigned in a. Our
clusterizer proceeds in three passes: (1) nodes with a single exit edge are merged with the
destination of this edge, (2) nodes with a common parent are merged together and (3)
nodes linked by an edge are merged together. These passes also help to reduce the DFG
size, its width and its depth. Consequently, the number of decryptions/encryptions for
inputs/outputs is reduced. Note that we do clusterization with respect to the maximal
number of HLIs s, the maximal number of inputs/outputs ` and the number of registers
r required to execute for each MLMI (parameters s, ` and r formally define an SE in
Subsection 5.3).

The first and third passes have time a linear complexity in the size of the graph. The
second one has a worst-case quadratic complexity. However, this complexity is only reached
for a flat graph (in case the program simply outputs its inputs). On most (if not all)
non-trivial programs, this second pass will actually have a sub-quadratic time complexity.

Universalization. As explained in Section 3, in order to protect the data-flow whenever
full obfuscation mode is activated, we apply a universalization pass. The main idea is

608 OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element

to represent the program as a list of layers (multi-instructions that can be executed in
parallel), and insert a permutation network between each layer, in order to mask data
dependencies. We call layerization the pass that extracts layers from the DFG. All of the
inputs of a given layer must come from the previous layer, and all of its outputs must flow
into the very next layer. In case some edges go through a given layer, we insert copies
of the source node to that layer to ensure this property. The outputs of the program are
ensured to present at the last layer by the same way. Then, we add a pair of external layers
to hide where inputs are used and where outputs come from. Let us take the following
code as an example:

x = 42;
y = x + a;
z = x + y;

The DFG representing this program would have three nodes (of one instruction each,
assuming that s = 1), all of them in a different layer, but the first one would have an edge
from both the second and the third one (since x is an input of both these nodes):

x = 42

y = x + a

z = x + y

When such a situation arise, we break the edges that go through some layers by inserting
copies. The above snippet would thus be converted into:

x = 42;
y = x + a;
x2 = x;
z = x2 + y;

This new snippet corresponds to the following DFG, which does not have any edges that
go through a layer:

x = 42
y = x + a

x2 = x
z = x2 + y

As in Section 3, the program should be represented in a rectangular shape with its
width and its depth. We insert dummy instructions so that all layers have the same
width. We can specify the width and the depth of a program (through the flags -width
and -depth of the compiler) to strengthen the obfuscation. If not specified, they are the
smallest possible width and depth of the program. We ensure that every MLMI has `
inputs/outputs and s HLIs by adding dummy inputs/outputs and dummy instructions
(with respect to the number of registers r). Finally, we insert a permutation layer in
between each layer following the process presented in Section 3.

Lowering. Our SE does not have access to the global memory of the interpreter, hence
cannot execute the HLIs contained in the MLMIs, since their operands refer to this global
memory. Instead, the SE has its own internal memory (called registers), to which it copies
the inputs of the MLMIs before executing the HLIs. The HLIs must the be “lowered” into
low-level instructions (LLIs), which manipulate the SE’s registers.

Our final intermediate representation is the low-level intermediate representation (LLIR).
Similarly to MLIR, it contains inputs, outputs and low-level multi-instructions (LLMI).
LLMIs are similar to MLMIs, except that they contain low-level instructions (LLI) instead
of HLIs. An LLI is, in turn, similar to a HLI, except that the operands of LLIs are either
immediates or registers (and not memory addresses as HLIs). The lowering pass converts the

Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain and Aleksei Udovenko 609

MLMIs to LLMIs by performing register allocation. In the general case, register allocation
is NP-complete, if there are more variables alive than registers available [CAC+81]: in
that case, some variables must be stored in memory (“spilled”), and reloaded into the
registers right before being used. However, in our case, the SE only has registers, but
no memory, which is why clusterization and universalization make sure that no spilling
will be necessary. This, in turn, makes register allocation fairly trivial using a simplified
version of the Linear Scan algorithm [PS99] (simplified, because the original linear scan
algorithm takes spilling into account). This algorithm computes the live ranges of each
variables, and then iterates all instructions, allocating registers to variables that are born,
and freeing the registers of the variables that die.

Serialization. The serialization converts the LLIR program into bytecode. It iterates
linearly on all LLMIs, encodes their inputs and outputs (represented by memory cells),
and encrypts (with authentication) their LLIs. In other word, the ν-th LLMI corresponds
to the ν-th multi-instruction MIν , which is formally defined in ??. Its input identities are
represented by IDνin and the set of LLIs is represented by fν in the multi-instruction. We
refer to the formal definitions in ?? for the details of how we encode and encrypt in this
pass. While any AEAD cipher and hash function can be used, we selected SPARKLE
suite [BBdS+21] for its lightweightness. Still, changing the AEAD cipher and hash function
in our implementation would come at very little effort.
Remark 4. As described above, OBSCURE only supports a subset of C defining straight-line
programs. In particular, OBSCURE does not support programs containing conditional
branches or loops with dynamic (data-dependent) number of iterations. Adding those
features to the current obfuscation framework of OBSCURE can be done in a “simple way”
which consists in unrolling and executing all the branches, using the condition evaluation
as a selector for the branch to keep. While such an approach is conceptually simple,
it significantly complicates the compilation and might also lead to inefficient unrolled
obfuscated programs. For those reasons, we chose to restrict OBSCURE to straight-line
programs. Although less flexible, this choice further increases the required developer
awareness of the obfuscation process, which is better for the sake of obfuscated programs’
efficiency.

5 Applications & Benchmarks
This section presents applications and benchmarks of OBSCURE for different programs.

To demonstrate the practicability of applying our obfuscator to cryptographic primitives
and thus achieve secure white-box cryptography (with the help of an SE), we first report
the application of OBSCURE to different ciphers. Specifically, we apply OBSCURE to
Ascon [DEMS21], Photon [BCD+19], TinyJAMBU [WH21] - three ciphers submitted to
the NIST lightweight cryptography competition,2 as well as to the AES [AES01]. We use
bitsliced implementations of Photon and AES in order to be able to compute the S-boxes
without lookup tables. We further evaluate OBSCURE on simple array-processing functions,
namely findmax and sum. We explain how the implementation of these functions impacts
our universalization technique and hence the performance of their obfuscation (in full
obfuscation mode).

We consider two further applications: (1) a traceable AES for the digital rights
management use case, (2) the protection of sensitive intellectual property in neural networks.
These two applications are described hereafter (Subsection 5.1 and Subsection 5.2), before
providing benchmarks and discussions in Subsection 5.3.

2https://csrc.nist.gov/Projects/lightweight-cryptography

https://csrc.nist.gov/Projects/lightweight-cryptography

610 OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element

5.1 Traceable AES
To highlight the potential cryptographic applications of OBSCURE beyond protecting
white-boxed ciphers against key extraction, we evaluate an implementation of traceable
AES inspired from [DLPR14] for a digital rights management (DRM) use case. The goal is
to enforce a traceability feature to an AES decryption program by the use of obfuscation:
one want to be able to trace malicious user(s) that would e.g. monetize access to their
decryption programs. As proposed in [DLPR14], a simple transformation can make a
decryption program traceable in the former sense by introducing some hidden perturbations.
By applying a secure VBB obfuscator to such a program, one ensures that these hidden
permutations cannot be recovered and removed from the program.

We defined the traceable AES decryption as depicted in Algorithm 4. In a nutshell,
this traceable AES first decrypts the input ciphertext with the tracing key t. If the
obtained ciphertext, interpreted as a 128-bit integer, is smaller that the index of the
user ind ∈ {1, . . . , u} (where u denotes the total number of users), then a perturbation
test = 1 will be XOR-ed to the right decryption of c under the key k. This algorithm
hence implements an AES decryption under k, with a set of dysfunctional ciphertexts
under the definition of [DLPR14] which is defined as

〈c〉 = {c ∈ {0, 1}128 | AES-Dect(c) ≤ ind}

for the user of index ind ∈ {1, . . . , u}. Defined this way, and applying our (SE-based) VBB
obfuscation on top of it, this algorithm verifies the Perturbation-Value Hiding (PVH) and
Perturbation-Index Hiding (PIH) from [DLPR14] which makes it traceable in a collusion-
resistant way. The interested reader is referred to [DLPR14] for further details and the
proof of traceability.

Algorithm 4 Traceable AES decryption. k ∈ {0, 1}128 is the hardcoded decryption key.
t ∈ {0, 1}128 is the hardcoded tracing key. ind ∈ {1, . . . , u} is the hardcoded user index.
Require: Input ciphertext c ∈ {0, 1}128

Ensure: Output plaintext p ∈ {0, 1}128

1: z ← AES-Dect(c)
2: test← (z < ind) . 1 if (z < ind), 0 otherwise
3: p← AES-Deck(c)
4: Return p⊕ test

5.2 Neural Network
To further illustrate the potential applications of OBSCURE in non-cryptographic contexts,
we consider the obfuscation of sensitive AI models, and specifically neural networks. In such
a context, one wants to protect the sensitive intellectual property residing in the weights
and/or the architecture of a pre-trained neural network. To demonstrate the potential of
OBSCURE, we apply it to a neural network trained on the MNIST dataset [Den12]. This
network takes as input a 28 × 28 image representing a handwritten digit and produces
the recognized digit in {0, 1, . . . , 9} as the output. The network is a multilayer perceptron
(MLP) composed of r layers including an input layer, r − 2 hidden layers, and an output
layer. Denote Ni the number of neurons in the i-th layer (1 ≤ i ≤ r). For MNIST, in
particular, N1 = 784 and Nr = 10 since the network takes 28× 28 images as the input and
produces a predicted digit in {0, 1, . . . , 9} as the output. In our application, we choose
r = 10 and Ni = 100 for 2 ≤ i ≤ 9.

The computation in a neuron of a hidden layer includes a weighted sum and an
activation function. Let xi,k be the output value of the k-th neuron in the i-th layer, w(i)

j,k

Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain and Aleksei Udovenko 611

be the weight associated to the connection from the k-th neuron in layer i to the the j-th
neuron in layer i+ 1, and let bi,j be the bias of the j-th neuron in the layer i. The j-th
neuron of layer i first computes the following weighted sum:

yi,j =
Ni−1∑
k=1

w
(i−1)
j,k xi−1,k + bi,j . (4)

Then it applies the activation function to yi,j to get the neuron output xi,j . For our
network, we use the ReLU function [Aga18], denoted f hereafter. We have:

xi,j = f(yi,j) =
{

0 if yi,j ≤ 0,
yi,j otherwise.

(5)

Unlike in the hidden layers, a softmax function is used in the neurons of the last
layer instead of the activation function. This softmax function returns an array of
probability scores corresponding to the array of possible predicted digits. For the sake of
simplicity, we replace the softmax function with argmax function which does not change
the outcome of the predictions. Denote z the digit predicted by the neural network, we
have z = argmaxj(yr,j).

After training on the MNIST dataset, we obtain a neural network which predicts
the right digit with a 97.22% accuracy. However, in this trained neural network, the
computation of the weighted sum (Equation 4) and the activation function (Equation 5)
takes place on real floating-point numbers while OBSCURE only supports operations
on unsigned 32-bit integers. Therefore, as a second step, we discretize the obtained
network. Namely, we transform the two above functions into new functions which work on
unsigned 32-bit integers while still maintain the functionality of the neural network. This
transformation is composed of 3 passes which are described in Appendix C.

5.3 Benchmarks
Parameter setting. An SE is defined by three parameters: the number of instructions s
of a multi-instruction, the number of inputs/outputs ` and the number of registers r (size
of internal memory) in the SE. Table 1 contains the parameters of four different instances
used for our benchmarks. The number of registers r was fixed to 5`: ` registers to store
the inputs, ` registers to store the outputs, and 3` registers for intermediate variables.

Table 1: SE parameters for our evaluation.

SE name ` s
Estimated performance on

ARM Cortex-M3 (120 MHz)
small 8 32 600 LLMIs/sec

medium 16 64 300 LLMIs/sec
large 32 128 150 LLMIs/sec

extra-large 64 256 75 LLMIs/sec

We also include the estimated performances of the different SE instances on an ARM
Cortex-M3 microcontroller (clocked at 120 MHz) in Table 1. The estimations are based
on the cost of the input decryptions, the output encryptions and the hash computations
in Algorithm 3, which dominate the overall complexity. The computation speed is taken
from the reported benchmarks of the SPARKLE suite [BBdS+21].

White-box mode. We consider a scenario where the data-flow graph does not need to
be protected, and we thus disable universalization. We report in Table 2 the number of

612 OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element

instructions in the initial program (column #HLIs), and the number of multi-instructions
at the end of the compilation (column #LLMIs (final)).

Estimated execution times of the different ciphers range between 0.4 and 1.1 seconds,
except for Photon (which processes 32 blocks at once). In comparison a fast implementation
of AES takes about 13 microseconds on Cortex-M3 clocked at 120MHz [SS17], which is of
course much smaller, but does not provide VBB obfuscation for any cipher or program of
similar size (and advanced features such as traceability). We observe that the clusterizer
is able to efficiently make use of the larger SEs. While doubling ` and s approximately
reduces the number of LLMIs by a factor 2 for the “small” ciphers (which does not change
the estimated execution time), it has a higher impact on larger programs as illustrated
with the fully-bitsliced implementation of Photon for which execution time is halved when
stepping the SE instance. We note that despite of requiring less hardware resources than
AES as their primary design’s goal, the lightweight ciphers (Ascon and TinyJAMBU) have
more instructions and thus worse performance than AES in our evaluation since their
internal round numbers are higher.

The obfuscated neural network results in larger compilation and execution times which
comes from its high number of HLIs, 230k, between one and two order of magnitude higher
than for the ciphers.3 The estimated execution time, 36.7 sec, is pretty high. For practical
application, this should be improved e.g. by using a faster SE and/or a lighter neural
network architecture (e.g. avoiding too many dense layers). We observe that the execution
time does not scale down while increasing the SE instance. This can be explained by
the use of fully connected layers in the neural network which gives a hard time to the
clusterizer. In other words, increasing the number of instructions processed by one request
to the SE (number of instructions in one LLMI) does not enable the clusterization to save
communication with the SE (input-output of LLMIs) because of the high connectivity in
the data-flow graph of the network. This suggests that, for such neural networks with fully
connected layers, a small instance of the SE performs just as well as a larger instance.

Let us stress that OBSCURE makes it possible to amortize the obfuscation time
between several users. Indeed, a program can be obfuscated once with some shared key
KS . Then only the header (i.e., the encryption of KS under the SE public key) shall
change from one user to another.

Full obfuscation mode. In this mode, the data-flow graph is protected by enabling
universalization. We evaluate this mode on the considered ciphers and on two simple
algorithms, namely sum and findmax (for an array of size 1000). We report the results in
Table 3. The reported depth and width are the smallest possible for each program with
each SE configuration. Rectangularization increases the number of MLMIs by a factor
between 4 and 10 depending on the ciphers and the SEs. This is often due to a combination
of two factors: the layers of the initial programs are of unequal sizes, and a lot of values
are used in several layers after their computation, and thus need to be copied in the layers
in between. Universalization increases the number of MLMIs even more significantly. This
is expected, since, as shown in Section 3, universalization requires 2dn logn instructions,
where n is the maximum width of a layer and d is the number of layers.

In the full obfuscation mode, the way that one implements a program can have a
significant impact to the size of its rectangular representation, and thus to the final number
of LLMIs. We illustrate this impact by considering two approaches for the sum and findmax
algorithms (the “naive approach” and the “tree approach”). In the naive approach, a
variable accumulates the values of each array element which means that the instructions
cannot be executed in parallel. This leads to a high program depth and thus a huge impact

3As detailed in Appendix C, the network is made of 8 dense hidden layers each featuring 100 neurons,
making 100 × 100 connections per layer, as well as the initial layer featuring 282 neurons and hence
282 × 100 connections with the second layer.

Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain and Aleksei Udovenko 613

Table 2: General evaluation on several ciphers in white-box mode (without universal-
ization). Estimated execution times are for a Cortex-M3 microcontroller clocked at 120
MHz and using the SPARKLE suite [BBdS+21] for the authenticated encryption and hash
primitives.
∗ The implementation of Photon is fully bitsliced, i.e. computing 32 blocks at once, and it thus has much
more instructions than the others.

Cipher Secure
Element #HLIs #LLMIs

(final)
Compil.
time

Exec. time
(estimated)

AES

small

5.3k

290 3.2 sec 0.5 sec
medium 120 3.1 sec 0.4 sec
large 59 3.1 sec 0.4 sec
xlarge 29 3.2 sec 0.4 sec

Ascon

small

14k

680 6.2 sec 1.1 sec
medium 300 6.4 sec 1.0 sec
large 170 6.5 sec 1.1 sec
xlarge 66 7.0 sec 0.9 sec

Tiny
JAMBU

small

6.3k

350 1.7 sec 0.6 sec
medium 170 1.9 sec 0.6 sec
large 85 1.9 sec 0.6 sec
xlarge 44 2.0 sec 0.6 sec

Photon∗
small

47k

6.7k 180 sec 11.2 sec
medium 3.3k 130 sec 11.0 sec
large 900 130 sec 6.0 sec
xlarge 270 140 sec 3.6 sec

Traceable
AES

small

11k

580 4.8 sec 1.0 sec
medium 240 4.4 sec 0.8 sec
large 120 4.8 sec 0.8 sec
xlarge 59 4.7 sec 0.8 sec

Neural Net

small

230k

22k 220 min 36.7 sec
medium 11k 58 min 36.7 sec
large 5.5k 21 min 36.7 sec
xlarge 2.6k 520 sec 36.7 sec

of rectangularization. In contrary, implementing the algorithm with the tree approach
yields a much lower program depth: 6 compared to 250 for the sum program on a small SE
(Table 3) since the instructions can be parallelized and clusterized to multi-instructions
in the same layer. As a result, the number of final LLMIs is significantly reduced (28k
compared to 520k). We observe a similar behavior for the findmax algorithm.

Clusterizer evaluation. Table 2 allows to clearly see the clusterizer in action, and how it
is able to reduce the number of instructions of the program (and therefore, of requests to
the SE). To analyze the quality of our clusterizer, we can define the ideal clusterization as
the number of LLMIs that would be generated if each LLMI was actually computing s
instructions, and compute the ratio between the actual number of LLMIs generated and
this ideal number. A ratio of 1 means that our clusterizer was optimal, whereas a ratio
close to 0 means that we generated much more LLMIs than needed. We report this metric
in Table 4 for the xlarge SE. The “Actual” column of this table is taken from the “#LLMIs”
column of Table 2.

Overall, we observe actual-ideal ratios between 0.57 and 0.83. To understand those
numbers, we recall that our algorithm locally aggregates MLMIs into larger MLMIs. In the
worst case, all LLMIs would contain s/2 + 1 instructions after clusterization, which would

614 OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element

Table 3: General evaluation on several programs in full obfuscation mode (with universal-
ization).
∗ The implementation of Photon is fully bitsliced, i.e. computing 32 blocks at once, and it thus has much
more instructions than the others.

Cipher Secure
Element #HLIs Depth Width #MLMIs

(clusterized)
#MLMIs

(rectangular)
#LLMIs
(final)

Compilation
time

AES

small

5.3k

190 7 290 1.3k 12k 60 sec
medium 110 3 120 320 3.4k 4.7 sec
large 58 2 59 120 1000 3.9 sec
xlarge 29 1 29 31 120 3.6 sec

Ascon

small

14k

330 21 680 6.9k 120k 22 sec
medium 180 14 300 2.5k 23k 17 sec
large 170 2 170 330 2.8k 9.1 sec
xlarge 64 2 66 130 1.1k 7.8 sec

TinyJAMBU

small

6.3k

350 3 350 1.1k 11k 3.9 sec
medium 170 2 170 350 3k 3.1 sec
large 84 2 85 170 1.4k 3.2 sec
xlarge 43 2 44 88 750 3.5 sec

Photon∗
small

47k

540 60 6.7k 32k 410k 250 sec
medium 340 40 3.3k 13k 250k 230 sec
large 110 16 900 1.8k 15k 150 sec
xlarge 55 8 270 450 3.6k 150 sec

traceable AES

small

11k

190 13 580 2.5k 37k 10 sec
medium 110 5 240 550 6.9k 7.4 sec
large 62 3 120 190 2k 6.7 sec
xlarge 32 2 59 66 560 5.8 sec

sum(naive)

small

1000

250 130 250 31k 520k 83 sec
medium 120 63 120 7.9k 97k 41 sec
large 61 32 61 2k 16k 28 sec
xlarge 30 16 30 500 4k 15 sec

sum(tree)

small

1000

6 190 270 1.2k 28k 6.6 sec
medium 3 63 67 250 3.1k 2.5 sec
large 4 56 62 260 3.8k 6.2 sec
xlarge 3 46 51 160 2k 18 sec

findmax(naive)

small

2k

250 130 250 31k 520k 84 sec
medium 120 63 120 7.9k 97k 42 sec
large 62 32 62 2k 16k 29 sec
xlarge 31 16 31 510 4.1k 16 sec

findmax(tree)

small

2k

5 190 260 1.1k 24k 6.3 sec
medium 3 63 67 250 3.1k 30 sec
large 3 57 62 200 3k 5.6 sec
xlarge 3 47 52 160 2k 18 sec

prevent further merges, and would result in a ratio of 0.5 (meaning that we generated twice
more LLMIs that the ideal number). On top of that, we must account for the constraint
on the number of inputs and outputs of each MLMI (≤ `), which could also prevent some
merges and thus lower the actual-ideal ratio than even an optimal clusterizer would reach
(or, alternatively, lower the ratio of our clusterizer below 0.5). Therefore, our clusterizer
performs significantly better than the worst-case scenario, keeping in mind that optimal
clusterization is NP-hard, and that our clusterization algorithm is sub-quadratic.

Impact of SE’s parameters. To give more insights into the impact of the secure element’s
parameters, we benchmarked TinyJAMBU with various combinations of ` and s. We
forbade s to be less than `, in order to be able to generate nodes that simply copy their
inputs to their outputs. We fix r = 5` as before. Table 5 provides the final numbers of
LLMIs generated. It shows that increasing either ` or s separately does not yield much
improvement (the number of LLMIs is not reduced significantly). For instance, we consider
` = 4, for s ∈ {16, 32, 64, 128, 256} it generates 66-69k LLMIs. Similarly, we consider
s = 128, for ` ∈ {16, 32, 64, 128} it generates the same number of LLMIs (1.4k). Therefore,
to reduce the number of final LLMIs, we should increase both ` and s.

Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain and Aleksei Udovenko 615

Table 4: Analysis of the quality of the clusterizer.

Cipher HLIs LLMIs RatioIdeal Actual
AES 5.3k 20 29 0.69
Ascon 14k 55 66 0.83
Photon 47k 184 270 0.68

TinyJAMBU 6.3k 25 44 0.57

Table 5: Impact of the SE parameters on the number of LLMIs produced by the compilation
for TinyJAMBU.

s
` 4 8 16 32 64 128 256

4 200k - - - - - -
8 100k 35k - - - - -
16 68k 22k 12k - - - -
32 69k 11k 6k 6k - - -
64 68k 5.6k 3k 3k 3k - -
128 67k 2.9k 1.4k 1.4k 1.4k 1.4k -
256 66k 1.6k 750 750 750 750 750

6 Further Discussion
This section provides further discussion on the security of OBSCURE compared against
trusted execution environments (TEE) as well as its use in a cloud computing use case.

6.1 Security of OBSCURE versus TEE
A common way to protect sensitive computation in untrusted environments (such as
multi-applicative smart devices) is to rely on trusted execution environments (TEE) such
as Intel SGX, AMD Secure Technology or ARM TrustZone. While TEE certainly improve
the security of the underlying computation, they still suffer numerous side-channel attacks
arising from their high internal complexity [FYDX21]. In comparison, relying on a simple
secure element (e.g. implementing the OBSCURE functionality) provides more assurance
in practice thanks to its physical isolation and limited functionality.

Physical isolation. A secure element is a separate, dedicated microprocessor or a digital
circuit, which provides physical isolation from the main processor, which is not the case of
TEE. This physical isolation makes it more resistant to attacks that exploit vulnerabilities
in the main processor or its software. In contrast, TEE, although isolated, still share
resources with the main OS, which could potentially lead to vulnerabilities.

Limited functionality. Secure elements are designed for specific tasks like storing cryp-
tographic keys or performing encryption, with a very limited and defined scope. This
simplicity reduces the attack surface compared to a TEE, which is designed to handle a
broader range of more complex tasks. In our context, the proposed SE functionality is
much simpler than what is typically offered by a TEE.

In addition, OBSCURE only requires a stateless secure element, it is thus not vulnerable
to attacks exploiting stateful functional units. An OBSCURE ’s obfuscated program
is deterministic (no branching), so the constant-time property is preserved in terms of
software (hardware design is out of scope of this work).

616 OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element

6.2 OBSCURE for Confidential Could Computing
An potential application of OBSCURE is confidential computing in a public cloud. In
this context, an untrusted cloud service is involved to securely run programs with the
help of trusted secure elements implementing the OBSCURE functionality. Users can then
compile their programs locally and have the cloud execute them without disclosing any
information on the internal computation of the programs (nor on the program structure
in full obfuscation mode). In such a scenario, the public cloud typically relies on many
secure elements. Hence a possible issue is that the local compiler might not know ahead of
time to which SE the obfuscated program will be distributed.

A possible setting could be that the same public-private key pair (privSE, pubSE) is
shared (securely transported) by different SEs of the cloud service. But this is not ideal in
terms of security and administration. In a setting where all the SEs have their own key
pairs (which are generated inside the SE and never go out), the trivial solution would be
to make the obfuscated program compatible with all (or a significant part of) the SEs.
This might be an acceptable solution as the extent of the encrypted material to a target
SE is small (a single symmetric key KS). But this is far from being ideal with respect to
performances, communication and flexibility (e.g. the obfuscator is required to keep a list
of SE public keys which might frequently evolve).

Another solution to avoid sharing the same key among different SEs would be to use
the principle of proxy re-encryption (see, e.g., [AFGH05]). In such a scenario, the shared
key KS would be encrypted with a common public key for which a central proxy has several
re-encryption keys (one per SE). This solution involves an additional trusted party which
owns the private key corresponding to the proxy public key and which has the ability to
produce the re-encryption keys for the SEs.

7 Conclusion
In this work, we present OBSCURE, a versatile framework for practical and cryptographi-
cally strong software obfuscation relying on a simple stateless secure element. By a formal
proof, we show that OBSCURE achieves virtual black-box security, the strongest form of
obfuscation, provided that the secure element is tamper-resistant.

One of the main features of OBSCURE is the simplicity of the functionality that must
be embedded in a secure hardware. It works as a simple and small arithmetic unit with
small internal memory. This way it can be easily included as a small software library in a
secure element or implemented in hardware as a simple circuit. This should be smaller by
order of magnitudes than solutions employing oblivious RAM or solutions relying on SGX.

We describe and benchmark the programs of some potential applications to show
that OBSCURE can be an alternative to pure software-based white-box implementations.
Additionally, we propose a new rectangular universalization technique, which is also
of independent interest. Last but not least, by open-sourcing the implementations of
OBSCURE, we will ease follow-up works and future comparisons.

Acknowledgement
This work was done while the authors were at CryptoExperts. This work was partially
supported by the French ANR-AAPG2019 SWITECH project. The fourth author was
partially supported by the Luxembourg National Research Fund’s (FNR) and the German
Research Foundation’s (DFG) joint project APLICA (C19/IS/13641232). We are very
grateful to Pascal Paillier for generating the discretized neural network used in our
benchmark (as reported in Appendix C). We would also like to thank the anonymous
reviewers of TCHES for their fruitful comments that helped us improve the paper.

Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain and Aleksei Udovenko 617

References
[AES01] Advanced Encryption Standard (AES). National Institute of Standards and

Technology, NIST FIPS PUB 197, U.S. Department of Commerce, November
2001.

[AFGH05] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Im-
proved proxy re-encryption schemes with applications to secure distributed
storage. In NDSS 2005. The Internet Society, February 2005.

[Aga18] Abien Fred Agarap. Deep learning using rectified linear units (ReLU). CoRR,
abs/1803.08375, 2018.

[AGKS20] Masaud Y. Alhassan, Daniel Günther, Ágnes Kiss, and Thomas Schneider.
Efficient and scalable universal circuits. Journal of Cryptology, 33(3):1216–1271,
July 2020.

[AJX+19] Adil Ahmad, Byunggill Joe, Yuan Xiao, Yinqian Zhang, Insik Shin, and
Byoungyoung Lee. OBFUSCURO: A commodity obfuscation engine on intel
SGX. In Proceedings 2019 Network and Distributed System Security Symposium.
Internet Society, 2019.

[Bar16] Boaz Barak. Hopes, fears, and software obfuscation. Commun. ACM,
59(3):88–96, feb 2016.

[BBdS+21] Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann Großschädl,
Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, Qingju Wang, and Alex
Biryukov. Schwaemm and Esch: lightweight authenticated encryption and
hashing using the Sparkle permutation family. version v1.2. NIST Lightweight
Cryptography Finalists, 2021.

[BCD+19] Zhenzhen Bao, Avik Chakraborti, Nilanjan Datta, Jian Guo, Mridul Nandi,
Thomas Peyrin, and Kan Yasuda. PHOTON-beetle authenticated encryption
and hash family. NIST Lightweight Cryptography Finalists, 2019.

[Ben64] V. E. Beneš. Permutation groups, complexes, and rearrangeable connecting
networks. The Bell System Technical Journal, 43(4):1619–1640, 1964.

[Ben22] Eli Bendersky. pycparser v2.21, 2022.

[Ber20] Daniel J. Bernstein. Verified fast formulas for control bits for permutation
networks. Cryptology ePrint Archive, Report 2020/1493, 2020. https://
eprint.iacr.org/2020/1493.

[BGEC04] Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Cryptanalysis of a white
box AES implementation. In Helena Handschuh and Anwar Hasan, editors,
SAC 2004, volume 3357 of LNCS, pages 227–240. Springer, Heidelberg, August
2004.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs.
In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18.
Springer, Heidelberg, August 2001.

[BGK+19] Andrey Bogdanov, Louis Goubin, Stefan Kölbl, Pascal Paillier, Matthieu
Rivain, Elmar Tischhauser, and Junwei Wang. CHES 2019 Capture The Flag
Challenge. The WhibOx Contest, 2nd Edition, 2019. https://whibox.io/
contests/2019/.

https://eprint.iacr.org/2020/1493
https://eprint.iacr.org/2020/1493
https://whibox.io/contests/2019/
https://whibox.io/contests/2019/

618 OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element

[BHMT16] Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen. Differential
computation analysis: Hiding your white-box designs is not enough. In Benedikt
Gierlichs and Axel Y. Poschmann, editors, CHES 2016, volume 9813 of LNCS,
pages 215–236. Springer, Heidelberg, August 2016.

[BR05] Mihir Bellare and Phillip Rogaway. Introduction to modern cryptography,
2005. Course Notes.

[BU18] Alex Biryukov and Aleksei Udovenko. Attacks and countermeasures for
white-box designs. In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part II, volume 11273 of LNCS, pages 373–402. Springer,
Heidelberg, December 2018.

[CAC+81] Gregory J Chaitin, Marc A Auslander, Ashok K Chandra, John Cocke, Mar-
tin E Hopkins, and Peter W Markstein. Register allocation via coloring.
Computer languages, 6(1):47–57, 1981.

[CEJv03] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
White-box cryptography and an AES implementation. In Kaisa Nyberg and
Howard M. Heys, editors, SAC 2002, volume 2595 of LNCS, pages 250–270.
Springer, Heidelberg, August 2003.

[CEJvO02] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
A white-box DES implementation for DRM applications. In Digital Rights
Management Workshop, volume 2696 of Lecture Notes in Computer Science,
pages 1–15. Springer, 2002.

[DEMS21] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2: Lightweight authenticated encryption and hashing. J. Cryptol.,
34(3):33, 2021.

[Den12] Li Deng. The MNIST database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[DLPR14] Cécile Delerablée, Tancrède Lepoint, Pascal Paillier, and Matthieu Rivain.
White-box security notions for symmetric encryption schemes. In Tanja Lange,
Kristin Lauter, and Petr Lisonek, editors, SAC 2013, volume 8282 of LNCS,
pages 247–264. Springer, Heidelberg, August 2014.

[FVBG17] Ben Fisch, Dhinakaran Vinayagamurthy, Dan Boneh, and Sergey Gorbunov.
IRON: Functional encryption using Intel SGX. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS
’17, page 765–782, New York, NY, USA, 2017. Association for Computing
Machinery.

[FYDX21] Shufan Fei, Zheng Yan, Wenxiu Ding, and Haomeng Xie. Security vulnerabili-
ties of SGX and countermeasures: A survey. ACM Comput. Surv., 54(6), jul
2021.

[GIS+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay
Wadia. Founding cryptography on tamper-proof hardware tokens. In Daniele
Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 308–326. Springer,
Heidelberg, February 2010.

[GRW20] Louis Goubin, Matthieu Rivain, and Junwei Wang. Defeating state-of-the-art
white-box countermeasures. IACR TCHES, 2020(3):454–482, 2020. https:
//tches.iacr.org/index.php/TCHES/article/view/8597.

https://tches.iacr.org/index.php/TCHES/article/view/8597
https://tches.iacr.org/index.php/TCHES/article/view/8597

Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain and Aleksei Udovenko 619

[HB15] Máté Horváth and Levente Buttyán. The birth of cryptographic obfuscation –
a survey. Cryptology ePrint Archive, Paper 2015/412, 2015. https://eprint.
iacr.org/2015/412.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability Obfuscation
from Well-Founded Assumptions, page 60–73. Association for Computing
Machinery, New York, NY, USA, 2021.

[KGP+21] Stefan Kölbl, Louis Goubin, Pascal Paillier, Matthieu Rivain, Aleksei Udovenko,
and Junwei Wang. CHES 2021 Capture The Flag Challenge. The WhibOx
Contest, 3nd Edition, 2021. https://whibox.io/contests/2021/.

[KS16] Ágnes Kiss and Thomas Schneider. Valiant’s universal circuit is practical. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I,
volume 9665 of LNCS, pages 699–728. Springer, Heidelberg, May 2016.

[LHM+15] Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari, and
Elaine Shi. Ghostrider: A hardware-software system for memory trace oblivi-
ous computation. In Proceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and Operating Systems, AS-
PLOS ’15, page 87–101, New York, NY, USA, 2015. Association for Computing
Machinery.

[LRD+14] Tancrède Lepoint, Matthieu Rivain, Yoni De Mulder, Peter Roelse, and Bart
Preneel. Two attacks on a white-box AES implementation. In Tanja Lange,
Kristin Lauter, and Petr Lisonek, editors, SAC 2013, volume 8282 of LNCS,
pages 265–285. Springer, Heidelberg, August 2014.

[LYZ+21] Hanlin Liu, Yu Yu, Shuoyao Zhao, Jiang Zhang, Wenling Liu, and Zhenkai Hu.
Pushing the limits of valiant’s universal circuits: Simpler, tighter and more
compact. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part II,
volume 12826 of LNCS, pages 365–394, Virtual Event, August 2021. Springer,
Heidelberg.

[MLS+13] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste
Asanovic, John Kubiatowicz, and Dawn Song. Phantom: Practical oblivious
computation in a secure processor. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, CCS ’13, page 311–324,
New York, NY, USA, 2013. Association for Computing Machinery.

[NFR+17] Kartik Nayak, Christopher W. Fletcher, Ling Ren, Nishanth Chandran,
Satya V. Lokam, Elaine Shi, and Vipul Goyal. HOP: hardware makes obfus-
cation practical. In 24th Annual Network and Distributed System Security
Symposium, NDSS 2017, San Diego, California, USA, February 26 - March 1,
2017. The Internet Society, 2017.

[PCY+17] Emmanuel Prouff, Chen-Mou Cheng, Bo-Yin Yang, Thomas Baignères,
Matthieu Finiasz, Pascal Paillier, and Matthieu Rivain. CHES 2017 Cap-
ture The Flag Challenge. The WhibOx Contest, 2017. https://whibox.io/
contests/2017/.

[PS99] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM
Transactions on Programming Languages and Systems (TOPLAS), 21(5):895–
913, 1999.

https://eprint.iacr.org/2015/412
https://eprint.iacr.org/2015/412
https://whibox.io/contests/2021/
https://whibox.io/contests/2017/
https://whibox.io/contests/2017/

620 OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A block-
cipher mode of operation for efficient authenticated encryption. In Michael K.
Reiter and Pierangela Samarati, editors, ACM CCS 2001, pages 196–205. ACM
Press, November 2001.

[SS17] Peter Schwabe and Ko Stoffelen. All the AES you need on Cortex-M3 and M4.
In Roberto Avanzi and Howard Heys, editors, Selected Areas in Cryptography –
SAC 2016, pages 180–194, Cham, 2017. Springer International Publishing.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, 46th ACM STOC,
pages 475–484. ACM Press, May / June 2014.

[Val76] Leslie G. Valiant. Universal circuits (preliminary report). In Proceedings of
the Eighth Annual ACM Symposium on Theory of Computing, STOC ’76, page
196–203, New York, NY, USA, 1976. Association for Computing Machinery.

[WH21] Hongjun Wu and Tao Huang. TinyJAMBU: A family of lightweight authen-
ticated encryption algorithms (version 2). NIST Lightweight Cryptography
Finalists, 2021.

[ZYZL19] Shuoyao Zhao, Yu Yu, Jiang Zhang, and Hanlin Liu. Valiant’s universal circuits
revisited: An overall improvement and a lower bound. In Steven D. Galbraith
and Shiho Moriai, editors, ASIACRYPT 2019, Part I, volume 11921 of LNCS,
pages 401–425. Springer, Heidelberg, December 2019.

A Security Proof
We assume that the used AEAD scheme satisfies the security notions of privacy and
authenticity as defined in [RBBK01], which we recall hereafter.

An adversary A is nonce-respecting if it never repeats a nonce: if A asks its oracle an
encryption query with nonce N , it will never subsequently ask its oracle a query with same
nonce N , regardless of its randomness (if any) and regardless of oracle responses. In the
above security notions, the adversary is assumed to be nonce-respecting. This means that
for these security notions to hold, the usage of the authenticated encryption scheme must
ensure that nonces are not repeated (which is the case in our context as we shall see in the
proof of Theorem 1). In the following K denotes the key space of the AEAD scheme.

• Privacy: Consider an adversary A that has one of two types of oracles: a “real”
encryption oracle or a “fake” encryption oracle. A real encryption oracle, AEncK(·, ·, ·),
takes as input N , A, M and returns C ← AEncK(N,A,M). A fake encryption oracle,
$(·, ·, ·), takes as input N , A, M and returns C ← {0, 1}γ(A,M) where γ(A,M) is the
bit-length of an encryption of a message M with associated data A. The AEAD
scheme achieves (t, εpr)-privacy if for every adversary A running in time t:∣∣ Pr[K ← K : AAEncK(·,·,·) = 1]

− Pr[K ← K : A$(·,·,·) = 1]
∣∣ ≤ εpr

• Authenticity: Consider an adversary A with an encryption oracle AEncK(·, ·, ·)
for some key K. Adversary A forges if A outputs (N,A,C) such that (M,R) ←
ADecK(N,A,C) with R = “valid” and A made no earlier query (N,A,M) to the or-
acle which resulted in a response C. The AEAD scheme achieves (t, εau)-authenticity
if for every adversary A running in time t:

Pr[K ← K : AAEncK(·,·,·) forges] ≤ εau

Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain and Aleksei Udovenko 621

We further assume the used public-key encryption scheme achieves indistinguishability
under chosen plaintext attacks (IND-CPA) and the used hash functions is sample among a
family of collision resistant hash functions (see e.g. [BR05]):

• Indistinguishability under CPA: Consider an encryption oracle E , which on input
(b,M0,M1) where b ∈ {0, 1} returns an encryption Encpub(Mb). The PKE scheme
achieves (t, εind)-IND-CPA if for every adversary A running in time t:∣∣ Pr[AE(0,·,·)(pub) = 1]− Pr[AE(1,·,·)(pub) = 1]

∣∣ ≤ εind

where the above probabilities are over a random sampling of (pub, priv) on the PKE
key space, the randomness of A and the randomness of E .

• Collision resistance: Consider a hash function randomly sampled from a family
H := {Hash : {0, 1}∗ → {0, 1}2λ}. This hash function (family) is (t, εcr)-collision
resistant if for every adversary A running in time t:

Pr
[

x 6= x′

∩ Hash(x) = Hash(x′)
Hash← H;
(x, x′)← A(Hash)

]
≤ εcr

Proof of Theorem 1. We demonstrate the VBB white-box security of our obfuscator in
the white-box mode. We note that the VBB obfuscation security of our obfuscator (in
full obfuscation mode) directly holds from its VBB white-box security and using an
universalized program.

We assume that the considered program is such that each output batch (i.e. a block
of ` output words revealed in plain by the SE at the end of the program) depends on
all the input batches X1, . . . , XL in the data flow of the program (i.e. looking at the
data flow graph, each output batch has all the input batches as ancestor nodes). Note
that this is always the case for a universalized program (due to the permutation networks
fully connecting nodes between layers) but might not be the case for a non-universalized
program. This assumption which we refer to as the input-output dependency assumption is
only made for the sake of simplicity and we explain how it can be relaxed at the end of
the proof.

Our proof consists of a sequence of experiments where the first experiment corresponds
to the white-box VBB security experiment while an efficient simulator can be extracted
from the last experiment. At each step, we upper bound the computational closeness of
two successive experiments’ outputs.

Experiment 1. This experiment takes as input a program P and an adversary A. It first
runs the key generation KeyGen with input 1λ to get a key pair (pubSE, privSE). Then run
the obfuscator on the program P with SE public key pubSE. Finally it runs the adversary
A on (pubSE, P̂ , P) with oracle SE(privSE, ·) and returns the adversary’s output out1.

Experiment 1 (on input P and A):
(pubSE, privSE)← KeyGen(1λ)
P̂ ← Obf(P, pubSE)
out1 ← ASE(privSE,·)(pubSE, P̂ , P)
Return out1

We shall denote t the total running time of Experiment 1, which we assume dominated
by the adversary computation time A. Without loss of generality, we assume that A never
makes twice the same request to SE.

622 OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element

Through a few experiment transitions, we will show how we can define another exper-
iment working with a different definition of SE and solely taking P as input and which
produces an output computationally close to out1.
Experiment 2 (no hash collisions). This experiment is similar to the previous one,
with the following difference. It keeps a list Q = {(x, y)} of all the hash computation
performed by the secure element. More precisely, Q is initialized to ∅ at the beginning
of the experiment. Whenever a request is sent to the secure element and for each hash
computation in this request, one computes y = Hash(x) where x is the hash function input
and checks whether there exists (x′, y) ∈ Q with x′ 6= x. If so, Experiment 2 fails, namely
it stops and outputs ⊥. Otherwise Experiment 2 adds (x, y) to Q and continues normally
with y as output of the hash function.

Let out2 denotes the output of Experiment 2. By collision resistance of the hash
function, we have

out2 ≈(t,εcr) out1 .

Experiment 3 (no forgeries). This experiment is similar to the previous one, with
the following difference. It keeps a list C = {(C,K)} of all the AEAD ciphertexts C
computed by the secure element for a key K. More precisely, C is initialized to ∅ at the
beginning of the experiment. Whenever a request is sent to the secure element and for each
AEAD encryption C ← AEncK(N,A,M) in this request, the pair (C,K) is added to C.
Moreover, whenever a request is sent to the secure element and for each AEAD decryption
(M,R)← ADecK(N,A,C) in this request for which R 6= ⊥, the experiment checks whether
(C,K) is in C or (K,N,A,C) = (KS, ν, Aν , Cν) for some MIν = (ν,Aν , Cν) part of the
obfuscated program P̂ . If none of these two cases occur, which means that the ciphertext
C is a forgery input by the adversary to the current SE request, then Experiment 3 fails,
namely it stops and outputs ⊥.

Now let us recall that the secure element makes four types of AEAD encryptions:
1. an execution key EK = AEncKSE(Hash1(EID), ∅,KS) with Hash1(EID) as nonce, in a

“Start” request,

2. an input chain MAC M in
i−1 = AEncKSE(N in

i−1, A
in
i−1, ∅) with N in

i−1 = Hash2(EID ‖ i− 1)
as nonce, in an “Input” request,

3. an encrypted word Ci,j = AEncKSE(Ni,j , Ai,j , Xi,j) with Ni,j = Hash3(EID ‖ i ‖ j) as
nonce, in an “Input” request,

4. an encrypted word Cν,j = AEncKSE(Nν,j , Aν,j , vj) with Nν,j = Hash3(EID ‖ ν ‖ j) as
nonce, in an “Eval” request.

The absence of hash collision readily implies the absence of nonce collision between these
different encryptions (either two different item or same item with different indexes ν, i
and/or j). Indeed all the nonces are hash outputs with strictly distinct inputs while EID
cannot collides either for two different executions due to the absence of hash collisions.

Let us now show that the same nonce cannot be used twice with different plaintexts
and/or associated data without a previous forgery.

• For the first type of encryption (execution key), we cannot have twice the same nonce
for different KS because this would imply a hash collision (since for a different KS
we have a different H and hence a different EID).

• For the second type of encryption (which is actually a MAC), obtaining two MACs
M in
i−1 and M in

i−1
′ for same nonce N in

i−1 and different associated data Ain
i−1 = (Hi−1 ‖

i− 1 ‖ EID) and Ain
i
′ can only be achieved through two requests

SE(“Input”, EID, i,Hi−1, Xi,M
in
i)

Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain and Aleksei Udovenko 623

with different Hi−1 and H ′i−1 (the execution identity EID and index i must be
the same to get the same N in

i−1). For these two requests to proceed and output
the two MACs M in

i and M in
i
′, they must be respectively given in input Xi,M

in
i

and X ′i,M in
i
′ where M in

i (resp M in
i
′) is a valid MAC of Ain

i = (Hi ‖ i ‖ EID) with
Hi = Hash0(Hi−1 ‖Xi) (resp. Ain

i
′ defined in the same way). Since, by assumption,

no previous forgery occurred, these two valid MACs have been obtained from two
previous call to SE(“Input”, EID, . . .). Rewinding the chain of calls to the secure
element, we thus get two initial calls to SE(“Start”, . . .) which gives rise to the same
EID with two different chains of hashes (since Hi−1 6= H ′i−1). However this cannot
occur since we have from Experiment 2 that no hash collisions occur.

• For the third type of encryption, the argument is similar to the above. The adversary
should be able to make two “Input” requests with different for the same execution
identity EID and same index i with different input word Xi,j (the associated data
Ai,j = (i ‖ j ‖EID) is necessarily the same to get the same nonce Ni,j = Hash3(EID ‖
i ‖ j)). For such two requests cannot occur in the absence of hash collision and
previous forgery.

• For the fourth type of encryption, the argument is similar. In order to obtain two
valid ciphertexts Cν,j and C ′ν,j with same nonce Nν,j = Hash3(EID ‖ ν ‖ j) and
different plaintext vj , the adversary should be able to make two non-failing calls

SE(“Eval”, EID, EK,MIν , C∗1 , . . . , C∗`)

with same EID and same ν but leading to a different computation of (v1, . . . , v`)←
fν(u1, . . . , u`). If either EK or MIν (or both) is different in these two calls, then a
previous forgery was achieved. If one or several of the C∗k ’s are different then we can
loop the argument and we also get that a previous forgery must have been achieved.

In the absence of hash collision and before a forgery was achieved by the adversary, we
hence have that all the AEAD encryptions computed and returned by the secure element
are nonce-respecting. In this context, Experiment 3 fails due to a forgery if and only if the
adversary breaks the authenticity of the AEAD scheme.

Let out3 denotes the output of Experiment 3. By the authenticity of the AEAD scheme,
we have

out3 ≈(t,εau) out2 .

Experiment 4 (associative array). This experiment is similar to the previous one,
with the following difference. It builds an associative array denoted T with the following
fields:

• T [EID][“L”] keeps the length L corresponding to an execution identity EID,

• T [EID][“EK”] keeps the execution key EK corresponding to an execution identity
EID,

• T [EID][“Xi”] keeps the i-th input batch Xi corresponding to an execution identity
EID, for i ∈ [1, L].

During a call to SE(“Start”, . . .), a new entry to the associative array is created for the
corresponding execution identity EID. The fields T [EID][“L”] and T [EID][“EK”] are set
to the computed length L and execution key EK. During a call SE(“Input”, . . .), the
field T [EID][“Xi”] is set to the input Xi before returning the output, i.e. if and only
if the different checks have passed. Note that, unless the experiment fails, each call to
SE(“Start”,H, HL) gives rise to a different EID = Hash0(HL ‖H) since the adversary does
not make the same call twice and since no hash collision occurs.

624 OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element

The experiment is further modified as follows: for any request of the form SE(“Input”, EID, . . .)
or SE(“Eval”, EID, . . .), the experiment first checks whether an entry in T exists for EID. If
no entry exists for EID (the adversary is bluffing with the input execution ID), the request
is answered by ⊥, otherwise it runs as usual.

Let us remark that any request of the form SE(“Input”, EID, . . .) or SE(“Eval”, EID, . . .)
includes one or several AEAD decryption(s)

• (∅, Rin
i)← ADecKSE(N in

i , A
in
i ,M

in
i), or

• (uk, R′)← ADecKSE(N ′, A′, C∗k)

and returns ⊥ whenever the decryption fails. Therefore in such a request, either the input
MAC M in

i is valid (resp. the input ciphertexts C∗k are valid) or the request returns ⊥. In
the latter case, Experiment 4 behaves like Experiment 2. Now assume the input MAC
(or ciphertexts) is valid. Since we have from Experiment 3 that no forgeries occur, an
entry for EID necessarily exists in the table. Indeed, for each request with valid input
MAC (resp. ciphertexts), there exists a previous request producing this valid MAC (resp.
ciphertexts) which itself takes as input a valid MAC (resp. ciphertexts), until the original
SE(“Start”, . . .) request which creates the entry for EID. Therefore Experiment 4 behaves
like Experiment 2.

Let out4 denotes the output of Experiment 4. We thus have

out4 ≈(t,0) out3 .

Experiment 5 (output revealing requests). This experiment is similar to the previous
one, with the following difference. It adds a field T [EID][“output”] to the associative array.
Whenever a request SE(“Input”, EID, i, . . .) with i = 1 is made by the adversary, the
experiment reconstructs the program input x1, . . . , xn from the batches X1, . . . , XL

stored in T [EID][“X1”], . . . , T [EID][“XL”]. If one of these entries is missing from T then
the experiment fails, namely it stops and returns ⊥. Otherwise, the experiment evaluates
the program on the reconstructed input to get the output (y1, . . . , yn′) = P (x1, . . . , xn)
and stores it in T [EID][“output”].

Now, whenever a request SE(“Eval”, EID, . . .) is made by the adversary with a multi-
instruction MIν for which the revelation flag bνR is set to true, the experiment checks
whether the associative array has an entry T [EID][“output”]. If so, it defines the plain
output (v1, . . . , v`) of the SE request as the corresponding subpart of T [EID][“output”].
Otherwise, the experiment fails, namely it stops and outputs ⊥.

If the experiment does not fail, then we know by definition of Experiment 3 that no
forgeries occur. It means that the requests SE(“Eval”, EID, . . .) are only called with genuine
multi-instructions MIν (and hence genuine revelation flags bνR) from the obfuscated program
P̂ , and with genuine encrypted words (C∗1 , . . . , C∗`) from previous SE requests. Moreover,
according to the input-output dependency assumption (stated at the beginning of the
proof), we know that a genuine request SE(“Eval”, EID, . . .) with revelation flag bνR = true
can only occur if all the SE(“Input”, EID, . . .) requests have been previously executed and
hence the T [EID][“output”] entry well exists (otherwise a forgery would have been achieved
by the adversary). The plain answers (v1, . . . , v`) to the requests SE(“Eval”, EID, . . .) with
bνR = true then always match between Experiment 5 and Experiment 4 by functional
correctness of the obfuscator.

Let out5 denotes the output of Experiment 5. We thus have

out5 ≈(t,0) out4 .

Experiment 6 (random intermediate variables). This experiment is similar to
the previous one, with the following difference. In a call SE(“Eval”, . . .) for which the

Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain and Aleksei Udovenko 625

revelation flag bνR is set to false, instead of computing the multi-instruction output as
(v1, . . . , v`)← fν(u1, . . . , u`), the Experiment 6 samples it uniformly at random:

(v1, . . . , v`)←
(
{0, 1}w

)`
.

By the privacy of the AEAD scheme, the adversary cannot efficiently distinguish
Experiment 5 and Experiment 6 and essentially behaves similarly. Formally, we have

out6 ≈(t,εpr) out5

where out6 denotes the output of Experiment 6.

Experiment 7 (no bytecode decryption). This experiment is similar to the previous
one, with the following difference. In a call SE(“Eval”, . . .), we replace the decryption and
authentication of the multi-instruction MIν = (ν,Aν , Cν), namely the steps

(fν , Rν)← ADecKS(ν,Aν , Cν)
if Rν = ⊥ then return ⊥

by a check that MIν is indeed part of the obfuscated program P̂ . The experiment fails
whenever the check does not pass.

Since fν is no more used from Experiment 6 and since no request is made with a forged
Cν , Experiment 7 behaves as Experiment 6. Formally, we have

out7 ≈(t,0) out6

where out7 denotes the output of Experiment 7.

Experiment 8 (no shared key decryption). This experiment is similar to the previous
one, with the following difference. In a call SE(“Eval”, EID, EK, . . .), we replace the
decryption and authentication of the execution key (resulting in the shared key):

(KS, RS)← ADecKSE(Hash1(EID), ∅, EK)
if RS = ⊥ then return ⊥

by a check that the input execution key EK matches the record T [EID][“EK”] (for the
input execution identity EID). The experiment fails whenever the check does not pass.

Since KS is no more used from Experiment 7 and since no request is made with a
forged EK, Experiment 8 behaves as Experiment 7. Formally, we have

out8 ≈(t,0) out7

where out8 denotes the output of Experiment 8.

Experiment 9 (random shared key). This experiment is similar to the previous one,
with the following difference. In the definition of the obfuscator, two different shared key
KS and K ′S are generated. While the first one, KS, is used to encrypt and authenticate
the multi-instructions as in the previous experiment, the second one is encrypted

CH ← EncpubSE(K ′S)

and embedded in the header H.
The indistinguishability of the PKE scheme under chosen plaintext attacks prevents

the adversary from distinguishing between the previous experiment in which CH is the
encryption of KS (which is used to encrypt the multi-instructions) and the current experi-
ment in which CH is the encryption of a random and independent K ′S. Let out9 denotes
the output of Experiment 9, we thus have

out9 ≈(t,εind) out8 .

626 OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element

Experiment 10 (program switching). This experiment is similar to the previous one,
with the following difference. The obfuscator is given P , the zeroized-constants version of
P , as input in place of P . In other words, the original multi-instructions MI = (ν,Aν , Cν)
with Aν = (bνR, ID

ν
in) and Cν = AEncKS(ν,Aν , fν) are replaced by

MI = (ν,Aν , Cν) with Cν = AEncKS(ν,Aν , fν)

where fν is the zeroized-constants version of fν .
Since from Experiment 7, the calls SE(“Eval”, . . .) do not decrypt the bytecode anymore,

this change has no effect on the SE functionality. Moreover, the privacy of the AEAD
scheme prevents the adversary from distinguishing between the previous experiment in
which P̂ contains encryptions of the fν ’s and the current experiment in which P̂ contains
encryptions of the fν ’s. Let out10 denotes the output of Experiment 10, we thus have

out10 ≈(t,εpr) out9 .

Compiling the upper bounds of the computational closeness of the successive experi-
ments, we finally get that Experiment 1 and Experiment 10 produce (t, ε)-close output
distribution, that is

out1 ≈(t,ε) out10

with
ε ≤ 2εpr + εau + εind + εcr .

We summarize Experiment 10 hereafter with SE′ denoting the secure element oracle
defined throughout the sequence of experiments and with Obf′ defining the obfuscator of
Experiment 9 (in which a random shared key is embedded into the header):

Experiment 10 (on input P and A):
(pubSE, privSE)← KeyGen(1λ)
P̂ ← Obf′(P , pubSE)
out10 ← ASE′(privSE,·)(pubSE, P̂ , P)
Return out10

We note that Experiment 10 only depends on P , the zeroized-constants version of
P , except when it evaluates the program P on a reconstructed input and stores the
corresponding output in T [EID][“output”]. We note that this evaluation can be performed
with an oracle access to P . We can then define our white-box VBB simulator SP (·) as the
procedure of Experiment 10 with an oracle access to evaluate P . We thus obtain

ASE(privSE,·)(pubSE, P̂ , P) ≈(t,ε) SP (·)(P) ,

which concludes the proof.
Relaxing the input-output dependency assumption. This assumption is used in the
proof to ensure that, for any given execution identity EID, an “Input” request with i = 0
must be made before any revealing “Eval” request can be made. Thus, the T [EID][“output”]
field has well been assigned by a call the program evaluation oracle before any part of the
output must be revealed. However, we do not formally need to do this. Namely, without
the input-output dependency assumption, a revealing “Eval” request could be called before
the “Input” request with i = 0. But in this case, by construction, the T [EID][“Xi”] fields
would have been assigned for all the input batches Xi incoming the revealed output. In
that case, the simulator could still answer this request by calling the program evaluation
oracle with the assigned Xi’s and any other values for the non-assigned Xi’s (since the
revealed output is independent of the latter input batches).

Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain and Aleksei Udovenko 627

B Impossibility of Encoding Permutations with Duplicates
using a Single Beneš Network

In this section, we will prove that extending a single swap-based Beneš network with
arbitrary 2× 2 gates is not sufficient for computing arbitrary orderings π ∈ {1, . . . , n}n.

Proposition 1. Let n = 2m where m ≥ 3 is a integer. Consider the Beneš permutation
network for n elements, with the 2× 2 controlled swap gates extended with the possibility
of controlled copying of any of the inputs. Then, there exists an ordering π ∈ {1, . . . , n}n
that this network can not compute.

Proof. Recall that the two outer layers of the Beneš network swap controllably the elements
with 0-based index pairs (j, j⊕1). In the remaining middle layers, the odd- and even-indexed
elements are processed independently. Consider 0-based ordering (0, 1, 0, 2, 1, 2, 2, 3, . . . ,)
(the ending is arbitrary but excludes indexes 0-3). Note that the input layer can not
perform copying of the selected elements (indexed 0-3), since all 4 of them are present in
the output and thus can not be overwritten. Thus, the elements indexed 0 and 1 have to
go into different in-the-middle halves (by oddity), the same is true for 2 and 3. Therefore,
the output layer induces constraint pairs (0, 1), (0, 2), (1, 2), (2, 3), where the first element
in each pair must belong to the other in-the-middle half than the other element (as each
can belong only to one half, even although may be copied inside it). However, the three
constraints (0, 1), (0, 2), (1, 2) form a cycle of odd length: it impossible to distribute the
elements with input indexes 0,1,2 across two in-the-middle oddity halves satisfying the
constraint pairs.

C MNIST Neural Network
In this section, we present the discretization of Equation 4 and Equation 5 in details. The
goal of the discretization is to transform these two equations into new equations working
on unsigned 32-bit integers. This includes three passes described hereafter.

First pass: discretizing weights
In the following, we omit the superscript from the weight w(i−1)

j,k for the sake of simplicity
and since there is no ambiguity on the layer. Let us choose a large enough ratio, denoted
θ. Let w′j,k be the discretized weight, we do w′j,k = bθwj,ke. We also multiply the ratio to
the bias, b′i,j = bθbi,je. This way, we can rewrite Equation 4 as follows:

y′i,j =
∑
k

w′j,kxi−1,k + b′i,j (6)

where y′i,j ≈ θyi,j . The activation function is then replaced by f ′ = f/θ, so that we can
rewrite Equation 5 as:

xi,j := f ′(y′i,j) =
{

0 if y′i,j ≤ 0
y′i,j/θ otherwise

(7)

Second pass: encoding x and y

Let us denote by ŷmin
i the minimal value of min{y′i,1, . . . , y′i,Ni} and ŷ

max
i the maximal value

max{y′i,1, . . . , y′i,Ni}, where both the min and the max are taken over several evaluations of
the neural network (in practice we evaluate the y′i,j for all the images in the dataset). Then,

628 OBSCURE: Versatile Software Obfuscation from a Lightweight Secure Element

we compute the width of the interval [ŷmin
i , ŷmax

i], that is ∆̂i = ŷmax
i − ŷmin

i . To avoid a
possible case y′i,j /∈ [ŷmin

i , ŷmax
i] occurring for an input image outside the dataset, we increase

the interval by a security ratio α to get ∆i = (1+α)∆̂i, then define ymax
i = ŷmax

i +α∗∆i/2
and ymin

i = ŷmin
i − α ∗∆i/2. We shall encode y′i,j on the interval [ymin

i , ymax
i). Namely, we

define the following encoding [y′i,j] for y′i,j :

[y′i,j] =
y′i,j − ymin

i

∆i
=
y′i,j
∆i
− δi where δi = ymin

i

∆i
(8)

so that y′i,j ∈ [ymin
i , ymax

i) ⇔ [y′i,j] ∈ [0, 1). Then xi−1,k is also scaled by 1/∆i and we
simply define the encoding [xi−1,k] as:

[xi−1,k] = xi−1,k

∆i
(9)

This way, we can rewrite Equation 6 as follows:

[y′i,j] =
∑
k

w′j,k[xi−1,k] +
b′i,j
∆i
− δi (10)

For the activation function, we still use Equation 7 with y′i,j = ∆i([y′i,j] + δi) derived
from Equation 8.

Third pass: rescaling to 32-bit integers
We rescale the encodings of xi−1,k (Equation 9) and y′i,j (Equation 8) to 32-bit integers as
follows:

Jxi−1,kK =
⌊
xi−1,k

∆i
× 232

⌉
(mod 232) (11)

Jy′i,jK =
⌊(

y′i,j
∆i
− δi

)
× 232

⌉
(mod 232) (12)

Note that for the above encoding of xi−1,k to be sound, we require [xi−1,k] = xi−1,k/∆i < 1
(otherwise some information is lost by the modular reduction). We checked that this always
occurred in our case. In case this would not occur, one would need to define a different
encoding ensuing [xi−1,k] ∈ [0, 1) with further scaling.

The bias b′i,j is also rescaled:

Jb′i,jK =
⌊(

b′i,j
∆i
− δi

)
× 232

⌉
(mod 232) (13)

The weighted sum (Equation 10) can be now rewritten as:

Jy′i,jK =
∑
k

w′j,kJxi−1,kK + Jb′iK (14)

For the activation function, we consider Equation 7 with y′i,j derived from Equation 12
as follows:

y′i,j = (Jy′i,jK + δi × 232)×
∆i

232 (15)

The comparison y′i,j ≤ 0 in Equation 7 can be replaced with Jy′i,jK ≤ −δi × 232 (from
Equation 15). We notice that if this comparison does not hold, the activation function
should return the rescaled encoding Jxi,jK (for the computation in the neurons of the layer

Darius Mercadier, Viet Sang Nguyen, Matthieu Rivain and Aleksei Udovenko 629

i + 1) which is encoded using ∆i+1. From Equation 12, Equation 5 and the notice of
yi,j = y′i,j × θ, we derive xi,j as follows:

xi,j =
(Jy′i,jK + δi × 232)×∆i

θ × 232 (16)

Similar to Equation 11, we encode and rescale xi,j from Equation 16:

Jxi,jK =
(
Jy′i,jK− (−δi × 232)

)
× ∆i × 232

∆i+1 × θ
× 1

232 (17)

Denote Di =
⌊
−δi × 232⌉ and Ti =

⌊
∆i × 232

∆i+1 × θ

⌉
, we have that Di and Ti are unsigned

32-bit integers (Di > 0 as ymin
i < 0 in practice, see Equation 8) which can be precomputed

for a pre-trained neural network. Now, we can rewrite the activation function (Equation 7)
as

Jxi,jK = f ′′(Jy′i,jK) =
{

0 if Jy′i,jK ≤ Di

msb32
((

Jy′i,jK−Di

)
Ti
)

otherwise
(18)

where msb32(·) denote the function returning the upper 32 bits of a multiplication of two
32-bit integers.

Finally, we use Equation 14 and Equation 18 as the weighted sum and activation
function which are adapted to computations on 32-bit integers.

After this transformation, we obtain a discretized neural network working on unsigned
32-bit integers. On our validation set, the accuracy of the obtained network is similar to
that of the original network, namely of 97.22%. In other words, the discretization of the
neural network to make it compatible with OBSCURE did not imply any loss in terms
of accuracy. Section 5 presents the obtained results while applying OBSCURE to this
discretized neural network.

	Introduction
	Strong Obfuscation with Secure Element
	Definitions
	Obfuscator Design
	Obfuscation Security

	Universalization
	Rectangular Universal Circuits
	Permutation Networks
	Copy-Permutation Networks
	Native Clusterization of our CP Network

	Compiler Software Architecture
	Applications & Benchmarks
	Traceable AES
	Neural Network
	Benchmarks

	Further Discussion
	Security of OBSCURE versus TEE
	OBSCURE for Confidential Could Computing

	Conclusion
	Security Proof
	Impossibility of Encoding Permutations with Duplicates using a Single Beneš Network
	MNIST Neural Network

