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Abstract. Multi-scalar multiplication (MSM) is an important building block in most
of elliptic-curve-based zero-knowledge proof systems, such as Groth16 and PLONK.
Recently, Lu et al. proposed cuZK, a new parallel MSM algorithm on GPUs. In
this paper, we revisit this scheme and present a new GPU-based implementation
to further improve the performance of MSM algorithm. First, we propose a novel
method for mapping scalars into Pippenger’s bucket indices, largely reducing the
number of buckets compared to the original Pippenger algorithm. Second, in the case
that memory is sufficient, we develop a new efficient algorithm based on homogeneous
coordinates in the bucket accumulation phase. Moreover, our accumulation phase
is load-balanced, which means the parallel speedup ratio is almost linear growth as
the number of device threads increases. Finally, we also propose a parallel layered
reduction algorithm for the bucket aggregation phase, whose time complexity remains
at the logarithmic level of the number of buckets. The implementation results over
the BLS12-381 curve on the V100 graphics card show that our proposed algorithm
achieves up to 1.998×, 1.821× and 1.818× speedup compared to cuZK at scales of
221, 222, and 223, respectively.
Keywords: Multi-scalar Multiplication · Zero-knowledge Proof · Parallel Implemen-
tation

1 Introduction
In recent years, there has been a growing emphasis on privacy concerns within the industrial
sector. Zero-knowledge Succinct Non-interactive ARgument of Knowledge (zk-SNARK),
an excellent cryptographic primitive, not only provides robust privacy protection but also
allows for essential audits. It has been widely used in industrial-grade solutions such
as anonymous transactions in Zerocash [BSCG+14] and flexible anonymous credentials
zk-cred [RWGM23]. It allows the prover to generate a proof π for any (small) non-
deterministic polynomial (NP) relation R = {(x;w) : P (x,w)}. Unfortunately, most of
elliptic-curve-based zk-SNARKs like Groth16 [Gro16] and PLONK [GWC19] still suffer
from performance bottlenecks. Various acceleration solutions have already been published.
For instance, Ni et al. [NZ23] took advantage of GPU to enhance the efficiency of zkSNARK
by accelerating the Number-Theoretic Transform (NTT) and Inverse Number-Theoretic
Transform (INTT). We notice that the computational cost of the Setup or Prove phase is
significantly influenced by the number of circuit multiplication gates, resulting in a much
longer time duration compared to the Verify phase. Furthermore, large-scale Multi-scalar
multiplication (MSM) operations occupy the majority of the computational cost during the
proof generation phase. Thus, the practical deployment of zk-SNARKs urgently requires
fast MSM computational algorithms.

In scenarios involving zk-SNARKs or large-scale BLS signature aggregation [BGLS03],
the state-of-the-art serial algorithms for MSM are the Pippenger algorithm and its vari-
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ants [Pip76, BDLO12]. These algorithms partition the λ-bit scalar into multiple c-bit
windows. Subsequently, all points are sorted out into buckets with respect to sub-scalar
values, and finally the values within buckets are aggregated to derive the final result.
Recently, a series of works were proposed to further improve the performance of the
Pippenger algorithm and its variants. Botrel and Housni [BEH23] optimized the arithmetic
of finite fields by improving on the Coarsely Integrated Operand Scanning (CIOS) modular
multiplication and proposed a new coordinate system for twisted Edwards curves tailored
for the Pippenger algorithm. Luo, Fu and Gong [LFG23] proposed a bucket set construction
to speed up MSM over fixed points with the help of large precomputation tables.

Owing to the thriving development of modern GPU architectures, researchers have
proposed several GPU-accelerated implementations based on the Pippenger algorithm.
MatterLab and Yrrid [Mat22,Yrr22] are the winners of the Zprize competition [Zpr22], a
competition which focuses on accelerating MSM using GPUs. Both MatterLab and Yrrid
utilized radix sort to process the scalars used in MSM. Recently, Lu et al. [LWY+23]
proposed cuZK: a new GPU-accelerated implementation. In particular, the authors pointed
out the possibility of load imbalance for the implementations in Matterlab and Yrrid.
For this reason, they also converted the major operations used in the Pippenger algorithm
to a series of basic sparse matrix operations, including sparse matrix transpose and
sparse matrix-vector multiplication. In fact, cuZK is well-suit for the high parallelism in
GPU-based implementation and has nearly perfect linear speedup over the Pippenger
algorithm.

1.1 Our contributions
In this paper, we propose a high-speed GPU-based implementation for MSM in scenarios
with different memory sizes. The proposed implementations are applicable to most of
curve-based zk-SNARKs and achieve high performance on modern GPU architectures.
Our contributions are summarized as follows:

• In Section 3.1, we propose a new method for mapping scalars into Pippenger’s
bucket indices, reducing the number of buckets to 1

4 of that in the original Pippenger
algorithm. To be specific, we fix the Pippenger’s window size at c-bit and convert
each ki,j ∈ [0, 2c] into 0 or a unique odd bucket index k̄i,j ∈ [1, 2c−1]. We recode the
bucket indices along with the mapped additional information for point operations
during the bucket accumulation phase. This custom encoding format does not
increase the sorting cost when we use the radix sort algorithm [Pow90].

• In Section 3.2, we focus on the fundamental operations of point addition during
the bucket accumulation phase. We employ the mixed point addition formulas in
cached Jacobian coordinates [CC86] when the GPU memory is of typical size and
switch to a more efficient algorithm based on homogeneous coordinates when the
memory is sufficient. Compared to the former, for every two points added to the
same bucket, the accumulation algorithm based on homogeneous coordinates saves
one finite field multiplication cost (−5%). In addition, we also apply the technique
of lazy reduction [AKL+11,Sco07] to all point addition and doubling operations and
employ certain CUDA assembly tricks to further enhance speed, etc.

• In Section 3.3, we present our load-balanced bucket accumulation method, which
means the parallel speedup ratio is almost linear growth as the number of device
threads increases. Differing from cuZK, our approach abstains from the use of data
structures like vectors (libstl-cuda/vector), which could potentially involve dynamic
memory allocation. Instead, we design a compact static buffer and employ binary
sieving to accumulate results from different threads.

https://github.com/speakspeak/cuZK/blob/88e3295cada379abe06240df23ec6c9fc0f648b2/depends/libff-cuda/depends/libstl-cuda/vector.cu
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• In Section 3.4, we provide a parallel layered reduction algorithm for the serially
executed bucket aggregation phase. The time complexity of our algorithm remains
at the logarithmic level of the number of buckets.

• In Section 3.5, we discuss the computational cost for each phase within each thread.
In addition, we analyze why our implementation is not constant-time, and illustrate
a new algorithm for bucket accumulation to remedy this shortcoming in Section 5.

• In Section 4, we evaluate our implementation on two SNARK-friendly curves, BLS12-
381 and BLS24-315 [EHG22].

- In particular, the evaluation results show that our MSM achieves 1.998×, 1.821×,
and 1.818× speedup on cuZK at scales of 221, 222, and 223, respectively (on
NVIDIA V100-SXM2 GPU card with BLS12-381). On higher-powered GPU
cards like RTX 4090, our speedup ratio is also nearly linear growth as the
number of device threads increases (1.81×, 1.49×, and 1.42× speedup on cuZK
at scales of 221, 222, and 223, respectively).

- On the BLS24-315 curve, our implementation based on homogeneous coordinates
achieves 90.35ms (on RTX 4090 with 223 points MSM). Furthermore, since the
bucket accumulation algorithm in previous work assigns non-overlapping bucket
indices to each thread, we implement this previous method to demonstrate the
superiority of our proposed load-balanced algorithm. The comparison reveals
up to 1.853× speedup.

2 Preliminaries

Notation. Let [n] denote the set of integers {1, 2, · · · , n} for n ∈ N. For a λ-bit integer
σ, we write that σ =

∑λ−1
i=0 σ[i] · 2i, where σ[i] is the i-th bit of σ. And, we write

σ[s : e] =
∑e
i=s σ[i] · 2i−s where 0 ≤ s ≤ e < λ.

2.1 Elliptic point groups and coordinates
Let Fp denote the finite field of the prime order p. |Fp| denotes the byte length of elements
in Fp. The group G is a subgroup of the elliptic points group E(Fp) over Fp with the order
r. In the group G, the identity element O refers to the point at infinity. The group law
PADD and PDBL refer to the point addition for unequal points and point doubling for
equal points, respectively. |G| denotes the byte length of elements in G. Let λ = dlog2 re
denote the bits of the order r.
Different coordinates. To reduce storage overhead, elliptic curve points are commonly
represented in affine coordinates, i.e., only two field elements {X,Y } are required to
represent one point. To speed up computations, diverse coordinate systems and addition
formulas have emerged 1, such as Jacobian coordinates {X,Y, Z} (x = X/Z2, y = Y/Z3),
modified Jacobian coordinates {X,Y, Z, T} (x = X/Z2, y = Y/Z3, T = aZ4), homo-
geneous coordinates {X,Y, Z} (x = X/Z, y = Y/Z), and cached Jacobian coordinates
{X,Y, ZZ,ZZZ} (x = X/ZZ, y = Y/ZZZ,ZZ3 = ZZZ2). For subsequent optimisation
work, we review computational overhead under several coordinate systems in Table 1.
Traditionally, the single-scalar multiplication approach is said to use mixed point addition
between affine and Jacobian coordinates and point double under Jacobian coordinates.

1Detailed information can be found in https://hyperelliptic.org/EFD/index.html

https://hyperelliptic.org/EFD/index.html
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Table 1: Costs of point addition in different coordinate systems. The notations M and S
represent the costs of multiplication and squaring in Fp, respectively (M ≈ S).

Coordinate systems Mixed addition
(one in affine)

Addition
(both in affine)

Addition
(both in projective)

Jacobian 7M + 4S 4M + 2S 11M + 5S
Modified Jacobian 7M + 6S 3M + 4S 11M + 7S
Cached Jacobian 8M + 2S 4M + 2S 12M + 2S
Homogeneous 9M + 2S 5M + 2S 12M

2.2 Multi-Scalar Multiplication
Given n scalars ki and n points Pi ∈ G for i ∈ [n], Multi-Scalar Multiplication (MSM)
computation process is to compute Q =

∑n
i=1 kiPi, where 0 ≤ ki < r. As shown in Alg. 1,

the double-and-add method can be used as a straightforward approach to compute MSM,
which needs to perform nλ PADD and λ− 1 PDBL in the worst case. This would be
prohibitively slow and thus unacceptable for real-world applications in zk-SNARKs.

Algorithm 1 The double-and-add algorithm for computing MSM
Input: The scalars {ki}i∈[n] and the points {Pi}i∈[n] ∈ G
Output: The output point Q =

∑n
i=1 kiPi

1: Q = O
2: for j = λ− 1 to 0 by 1 do
3: Q =PDBL(Q)
4: for i = 1 to n by 1 do
5: if ki[j] = 1 then
6: Q =PADD(Q,Pi)
7: end if
8: end for
9: end for

10: return Q

2.3 The Pippenger Algorithm
For the large-scale MSM, the Pippenger algorithm and its variants [Pip76,BDLO12] are
the most popular serial algorithms. Our proposed GPU-accelerated MSM algorithm is
also built on this foundation algorithm. The Pippenger algorithm is described as follows:
Step-1: Decompose the main task into multiple subtasks. The Pippenger algo-
rithm first chooses an integer c ∈ [λ] as the window size, and decomposes each λ-bit scalar
ki into multiple c-bit scalar slices ki,j = ki[j · c : j · c+ c− 1] such that ki =

∑λc

j=0 ki,j2jc.
Thus, the main task can be considered as computing dλc e subtasks, called the smaller-scale
MSM, i.e., Qj =

∑n
i=1 ki,jPi where 0 ≤ ki,j < 2c and λc = dλc e − 1.

Q =
n∑
i=1

kiPi =
n∑
i=1

λc∑
j=0

ki,j2jcPi =
λc∑
j=0

2jcQj .

Step-2: Compute the bucket points in each subtask. To complete each subtask,
the Pippenger algorithm introduces a buffer point called "bucket" and divides the subtask
into two phases. In the first phase for each subtask Qj , called bucket accumulation, it
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computes 2c − 1 "bucket" points {Bt}1≤t≤2c−1, which is the sum of all points with the
small scalar equaled to t, i.e., Bt = SUM{Pi|ki,j = t} as shown in Figure 1. Note that
B0 = O since it is the sum of all points with zero scalars. In the second phase for each
subtask Qj , called bucket aggregation, the Pippenger algorithm sequentially computes
Gt−1 = Gt +Bt−1 for G2c−1 = B2c−1 to G1 as shown in Figure 2. So, we have

Qj =
n∑
i=1

ki,jPi =
2c−1∑
t=1

tBt =
2c−1∑
t=1

Gt. (1)

After calculating all points {Gt}1≤t≤2c−1, it can accumulate them to obtain Qj .

Figure 1: An example of the bucket accumulation phase.

Figure 2: The original bucket aggregation phase (excluding the final summation).

Step-3: Aggregate all subtask results into the main task result. Finally, the
Pippenger algorithm sets Q = Qλc

as the initial status and computes Q = 2cQ+Qi from
i = λc to 0. After dλc e rounds, it can get the final result Q.
Computational cost. It can be observed that the Pippenger algorithm converts all scalar
multiplications into PADD and PDBL computations. The computational costs of scalar
segmentation and sorting in the preceding steps are relatively small, with the primary time
consumption occurring in the subsequent point operations. For each subtask, the bucket
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accumulation phase requires at most n PADDs to add base points to the buckets, and
the bucket aggregation phase requires (2c+1 − 4) PADDs to add buckets to subtask sum.
Finally, the subtask aggregation requires c(dλc e − 1) PDBLs and dλc e PADDs. Thus, the
Pippenger algorithm needs to perform dλc e(n+ 2c+1− 3) PADDs and c(dλc e− 1) PDBLs.

2.4 Challenges in parallel implementations

CUDA programming model. Modern GPU architecture is characterized by its highly
parallel and massively multithreaded design, making it well-suited for computationally
intensive tasks. It consists of thousands of small processing cores organized into Streaming
Multiprocessors (SMs). These cores are designed for Single Instruction, Multiple Thread
(SIMT) execution, which means they can execute multiple threads simultaneously. GPU
memory is divided into global memory, shared memory, and local memory, each with
its own characteristics and access patterns. Efficient memory management is crucial for
optimizing GPU performance.

The CUDA programming model is a parallel computing platform and API developed
by NVIDIA for GPUs. It allows developers to harness the computational power of GPUs
for a wide range of tasks. In this model, programmers write kernels, which are parallel
functions that can be executed by thousands of GPU threads. These kernels are launched
from the CPU and executed on the GPU.
For bucket accumulation. As shown in Figure 1, each subtask requires a buffer size
of 2c − 1 elliptic curve points, which is entirely acceptable in any mode. However, for
GPU-accelerated mode, there still exists a critical influencing factor in the accumulation
phase. Assuming the total number of threads that the GPU card can provide is N , the
fundamental idea of the parallel implementation is that each thread processes a consecutive
set of d nN e sub-scalars along with their associated points. But when different threads
process buckets stored at the same storage in the buffer, write conflicts are inevitably
encountered. Previous works like [6bl22,Mat22] either employs performance-degrading
atomic functions or utilizes Alg. 2. Before Alg. 2, they initialize an array of tuple pairs
consisting of sub-scalars and point indices {(ki,j , i)} and perform radix sorting based on the
keys ki,j to obtain a new sorted array of tuple pairs {(ai, pi)} (in ascending order). Then,
each thread no longer simply processes data with indices ∈ [s, e) = [d nN e·tid, d

n
N e·(tid+1)),

but instead adjusts the left edge to min{s′ | s′ ≥ s∧as′ 6= as′−1} (excluding the case where
s = 0), and similarly adjusts the right edge (exclusive) to min{e′ | e′ ≥ e ∧ ae′ 6= ae′−1}.
This ensures that write operations of buckets between threads do not conflict. However,
this approach brings about the issue of load imbalance and may even result in threads
idling, leading to a certain degree of computing power waste.
For bucket aggregation. The bucket aggregation phase can be divided into two stages:
the bucket updates and the final summation. The final summation can be accomplished
using the well-known parallel reduction algorithms. However, it is evident that the bucket
updating part (in Figure 2) is a serial computational process, for which no practical parallel
algorithms have been proposed at present (In prior works, the parallel methods used for
this part always involved small-scale scalar multiplication, which resulted in a performance
impact).

3 Our GPU-Accelerated MSM Algorithm
In this section, we describe our specific implementation of an individual Pippenger subtask
on GPU platforms. We use N to denote the maximum thread number supported by the
current GPU device.
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Algorithm 2 Previous parallel bucket accumualtion algorithm
Input: Sorted array (ascending) of tuple pairs {(ai, pi)}i∈[n], points {Pi}i∈[n]
Output: Buckets {Bt} (0 ≤ t < 2c), which is initialized as {O} beforehand

1: s = d nN e · tid
2: e = d nN e · (tid+ 1) . tid ∈ [0, N) is the index of thread
3: if s ≥ n then return
4: if e ≥ n then e = n
5: while s 6= 0 and s < n and as = as−1 do
6: s = s+ 1
7: end while
8: while e < n and ae = ae−1 do
9: e = e+ 1

10: end while
11: for i = s to e− 1 by 1 do
12: Bai

=PADD(Bai
, Ppi

)
13: end for

3.1 Scalar processing and point precomputation
The first optimization is to reduce the number of buckets from 2c−1 to 2c−2−1 by processing
all scalars slices {ki,j}1≤i≤n,0≤j≤λc

for each subtask. This could make the number of buckets
a quarter of the number in the original Pippenger algorithm. Mathematically, the scalar
slices are transformed according to the following sequence:

ki,jPi → k̃i,j · (−1)si,jPi → k̄i,j · (−1)si,j 2hi,jPi → k̄i,j · (−1)si,jP ′i,hi,j

where k̄i,j is an odd number of at most c− 1 bits and P ′i,hi,j
is a precomputed point.

Algorithm 3 Scalar conversion to the float representation
Input: The bit-length λ, n integers {ki}i∈[n] and the window size c ∈ [λ]
Output: The integer tuples {k̄i,j , hi,j , si,j}

1: si,−1 = 0, t[0] = 0, t[2] = 2c
2: for j = 0 to λc by 1 do
3: ki,j = ki[jc : jc+ c− 1]
4: t[1] = ki,j + si,j−1 . k′i,j = t[1]
5: si,j = (t[1] >> c)|(t[1] >> (c− 1))
6: k̃i,j = t[si,j + 1]− t[si,j ] . k̃i,j = (si,j) ? (2c − k′i,j) : k′i,j
7: hi,j = max{η : 2η | k̃i,j}, k̄i,j = k̃i,j >> η . factor k̃i,j
8: end for

• Convert scalars to the signed representation. Commonly, we can convert
ki ∈ [0, r) from its unsigned 2c-ary representation into the signed representation with
each digit in the range of [−2c−1, 2c−1], that is ki =

∑λc

j=0 ki,j =
∑λc

j=0 k̃i,j · (−1)si,j .
Let si,−1 = 0. From j = 0 to λc, one can compute k′i,j = ki,j + si,j−1 and set si,j = 1,
k̃i,j = 2c − k′i,j if k′i,j ≥ 2c−1 or si,j = 0, k̃i,j = k′i,j otherwise. As long as the curve
parameters are appropriate, here si,λc

= 0 2. Then, the sign bit si,j can be stored
for each scalar ki,j . Note that if k′i,j = 2c−1, we have si,j = 1 and k̃i,j = 2c−1.

2If c is a factor of λ, there is an extreme case such that k̃i,λc = 2c−1. This causes the number of buckets
in the λc-th subtask to be increased by 1. But, for most SNARK-friendly curves, including BLS12-377,
BLS12-381, and BLS24-315 [EHG22], it is not going to happen.
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Figure 3: Example of the 32-bit integer k̂i,j .

• Convert scalars to the float representation. Inspired by the floating-point
format, we can compute an odd number k̄i,j ∈ [0, 2c−1) and a small exponent
hi,j ∈ [0, c − 1] such that k̃i,j = k̄i,j2hi,j . Then, we can reorganize an integer k̂i,j
with the higher c− 1 bits to store k̄i,j , the middle dlog2(c− 1)e bits to store hi,j and
the least significant bit to store si,j . We provide an example of the format of k̂i,j in
Figure 3. At maximum, a 32-bit integer can store k̂i,j for any window size c ≤ 26.
Note that we set k̂i,j = 0 if k̃i,j = 0. For simplicity, we write k̂i,j .ODD, k̂i,j .EXP
and k̂i,j .SIGN to denote the odd number, exponent and sign bit of k̂i,j , respectively.

• Create a scalar mapping table. Typically, we can compute the integer tuples
{k̄i,j , hi,j , si,j} by Alg. 3 and reorganize them into k̂i,j . If c is not particularly large
(e.g. no more than 16), we can create a table with the input ki,j and output k̂i,j .
This table costs 2c+2 bytes of storage but can improve scalar processing performance.

Change the way to add points into the bucket. After scalar processing, we should
add the point (−1)si,jP ′i,hi,j

= (−1)si,j 2hi,jPi to the bucket Bk̄i,j
with the index k̄i,j . The

point −P ′i,hi,j
is easy to compute by the negation of y-coordinate. But, calculating from Pi

to the point 2hi,jPi requires hi,j timesPDBLs. For efficiency, points {21Pi, 22Pi, · · · , 2τPi}
are precomputed with a threshold parameter τ ∈ [1, c− 1] and stored in the GPU memory
with τ · n points. Obviously, different hi,j can be greater or less than the threshold τ . So,

• If hi,j ≤ τ , P ′i,hi,j
can be looked up directly in precomputed point table.

• If hi,j > τ , 2τPi can be looked up directly in precomputed point table. Then, it
is also necessary to recalculate P ′i,hi,j

= 2hi,j−τ · 2τPi with hi,j − τ times PDBLs.
Statistically, the values of k̃i,j that satisfy {2τ - k̃i,j ∧ 2τ+1 | k̃i,j} constitute only a
fraction of approximately 1/2τ+1 of the total, which is absolutely acceptable in the
parallel program.

Totally, in this optimization phase, we need 2c+2 bytes memory for scalar processing,
τ ·n|G| bytes memory for precomputed points with τ ·n times PDBL operations. When τ
equals to the maximum value c− 1, this process will consist of only one table lookup and
one negative operation in Fp. Thus, it is constant-time for any tuple (ki,j , Pi) processing.

3.2 Single-point and double-point addition optimization
The second optimization is to reduce the number of multiplications in the process of adding
one or two original points into one bucket. The basic idea is still to represent buckets in a
specific coordinate system, and then accumulate the points in affine coordinates into the
bucket. We mainly design two approaches:

• Cached Jacobian coordinates. Similar to prior works [Mat22,LWY+23], we can
add a single point to buckets in cached Jacobian coordinates, which only needs 10
M per one point. As shown in Table 1, this coordinate system is the optimum.
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Figure 4: Two methods of adding affine points to the bucket.

• Homogeneous coordinates. Fortuitously, we find that adding two points to the
same bucket per round further reduces the number of multiplications. For instance,
we choose homogeneous coordinates in Table 1, add two affine points (Pj , Pj+1) to a
buffer point PPj/2 (cost 5 M + 2 S) [CMO98], then add PPj/2 with the bucket via
point addition formula in homogeneous coordinates (cost 12 M).

Remark that this double-point point approach only costs 17M + 2S (≈ 19M), making
it approximately 5% faster than the single-point approach (16M + 4S ≈ 20M) per two
points. However, the double-point point approach is non-constant time since the number
of multiplications per point depends on the parity of the number of points added to the
same bucket.

We also employ the lazy reduction technique [AKL+11,Sco07] in our point addition
and point doubling operations. More specifically, we reduce the number of Montgomery
reductions [Mon85,KKAK96] required for point addition (both points are in projective),
mixed addition (one point is in affine), and doubling in the cached Jacobian coordinate
system by one. Similarly, for point addition (both points are in projective), addition (both
points are in affine), and doubling in the homogeneous coordinate system, we reduce the
number of Montgomery reductions by 3, 1, and 1, respectively.

3.3 Load-balanced accumulation from original points to buckets
The third optimization is to accumulate all original points into buckets using parallel
threads. Let tid denote each thread’s index. For the maximum thread number N , we
assign each thread to process d nN e points with indices ∈ [s, e) = [d nN e · tid, d

n
N e · (tid+ 1)).

However, unordered and random scalars can lead to a conflict where different threads write
to the same bucket. Alg. 2 aims to adjust the left and right boundaries (s, e) such that
buckets processed by each thread do not overlap. However, such a solution may lead to an
imbalanced thread workload, resulting in a waste of computational resources. Therefore,
we pre-allocating non-conflicting point buffers to solve this problem.

Instead of writing to buckets directly, we write to non-conflicting static buffers assigned
to each thread. Intuitively, each thread handles data corresponding to at most d nN e buckets.
We can allocate a buffer of n points for each thread. However, this approach would incur
a memory penalty. Moreover, if we further parallelize with dλc e subtasks, a memory size of
dλc e · n points, which is sparse, becomes unacceptable. Therefore, we preallocate a static
buffer for each of the dλc e subtasks, but we set the starting offset within the respective
buffer where each thread writes to as:

offsettid = tid+min

{⌊
âi.ODD + 1

2

⌋}
i∈[s,e)

, (2)
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where b âi.ODD+1
2 c is the bucket offset corresponding to âi. The correctness of offsettid

is evident because the previous thread indices ∈ [0, tid) correspond to at least tid points.
Additionally, whenever the boundary between different bucket offsets falls within a thread
rather than between different threads, it results in an extra point. For clarity, we denote such
boundaries within threads as "inner-boundary" and between threads as "inter-boundary",
as shown in Figure 5. Since {âi} are in ascending order, the minimum bucket offset
from the current threads is exactly b âs.ODD+1

2 c, which is also the maximum number of
inner-boundaries existing in previous threads within the same Pippenger subtask. It
ensures that the starting offset never exceeds offsettid.

Figure 5: Example of "inner-boundary" and "inter-boundary" between different bucket
offsets.

In summary, we deduce that the total size of the secure static buffer is dλc e · (N + 2c−2),
and the points within it are compact (with unused memory occurring only as a low
probability event when the boundaries happen to fall between threads). In large-scale
MSM computations, such a buffer size is significantly smaller than dλc e · n and does not
increase with the growth of n. It is solely dependent on the characteristics of the device.

In addition to allocating the buffer containing elliptic curve points, we also need
to allocate three auxiliary arrays: buffer_offset, buffer_index, and buffer_used. These
arrays are respectively used to store the starting positions where each thread writes to the
buffer (as shown in Eq. (2)), the bucket offsets corresponding to the points being written,
and the actual buffer size utilized by each thread. Clearly, the sizes of these three auxiliary
arrays are dλc e ·N , dλc e · (N + 2c−2), and dλc e ·N , respectively. They store simple integer
elements that are much smaller in size compared to the curve points.

Then we can use a three-step process to complete the bucket accumulation phase:
1) Sorting the processed scalars. For each subtask, we initialize an array consisting

of converted scalars and point indices in the form of tuples {(k̂i,j , i)} before bucket
accumulation, and sort them in ascending order based on the key k̂i,j .ODD. For simplicity,
we collectively refer to the ordered arrays obtained from j subtasks as {(âi, pi)}.

2) Accumulating parts of the buckets into buffers. With the non-conflicting
static buffers, we accumulate parts of the buckets into buffer in each thread and record the
corresponding values in three auxiliary arrays buffer_offset, buffer_index , and buffer_used.
Furthermore, we utilize the shared memory, denoted as smem[2 · NTHREADS] (or
smem[3 ·NTHREADS]), to speed up read and write operations on original/bucket points.
Here, NTHREADS is the (CUDA) block size. As shown in Alg. 4, each thread writes
smem[2 · tidinner + 1] back to global memory after processing each bucket in the cached
Jacobian coordinates, while smem[3 · tid + 2] is written back to the global memory in
homogeneous coordinate systems.

3) Aggregating buffered points into buckets. After writing to the buffers, we
need to aggregate the buffered points back into their respective unique buckets. It’s worth
noting that the bucket offsets corresponding to the points stored in the buffer are also
sorted in ascending order. Therefore, we can utilize a variation of the binary search [Wil76]



532 Load-Balanced Parallel Implementation on GPUs for MSM Algorithm

Algorithm 4 Accumulation of bucket parts into buffers using the shared memory
Input: Sorted array (ascending) of tuple pairs {(âi, pi)}i∈[n], points {Pi}i∈[n],

thread index tid, intra-block thread index tidinner
Output: buffer ,buffer_offset,buffer_index,buffer_used

1: Obtain the boundaries (s, e)
2: pre_bucket_idx = 0x8000 . 0x8000: non-existent bucket index
3: buffer_offset[tid] = offset = tid+ b âs.ODD+1

2 c
4: num = 0
� Cached Jacobian-based:

5: smem[2 · tidinner + 1] = O
6: for i = s to e− 1 by 1 do
7: if âi.ODD 6= pre_bucket_idx ∧ i 6= s then
8: buffer [offset + num] = smem[2 · tidinner + 1]
9: buffer_index[offset + num] = bpre_bucket_idx+1

2 c
10: smem[2 · tidinner + 1] = O, num = num+ 1
11: end if
12: pre_bucket_idx = âi.ODD
13: smem[2 · tid] = 2MIN(τ,âi.EXP )Ppi . precomputed
14: for j = 1 to âi.EXP − τ by 1 do
15: smem[2 · tidinner] =PDBL(smem[2 · tidinner])
16: end for
17: if âi.SIGN = 1 then
18: smem[2 · tidinner] = −smem[2 · tidinner]
19: end if
20: smem[2 · tidinner + 1] =PADD(smem[2 · tidinner + 1], smem[2 · tidinner])
21: end for
22: buffer [offset + num] = smem[2 · tidinner + 1])
23: buffer_index[offset + num] = bpre_bucket_idx+1

2 c
24: buffer_used[tid] = num+ 1
� Homogeneous-based:

25: smem[3 · tidinner + 2] = O, parity = 0
26: for i = s to e− 1 by 1 do
27: if âi.ODD 6= pre_bucket_idx ∧ i 6= s then
28: if parity 6= 0 then
29: smem[3 · tidinner + 2] =PADD(smem[3 · tidinner + 2], smem[3 · tidinner])
30: end if
31: buffer [offset + num] = smem[3 · tidinner + 2])
32: buffer_index[offset + num] = bpre_bucket_idx+1

2 c
33: smem[3 · tidinner + 2] = O, num = num+ 1, parity = 0
34: end if
35: pre_bucket_idx = âi.ODD
36: smem[3 · tidinner + parity] = 2âi.EXPPpi

37: if âi.SIGN = 1 then
38: smem[3 · tidinner + parity] = −smem[3 · tidinner + parity]
39: end if
40: parity = parity ⊕ 1
41: if parity = 0 then
42: smem[3 · tidinner + 1] =PADD(smem[3 · tidinner + 1], smem[3 · tidinner])
43: smem[3 · tidinner + 2] =PADD(smem[3 · tidinner + 2], smem[3 · tidinner + 1])
44: end if
45: end for
46: if parity 6= 0 then
47: smem[3 · tidinner + 2] =PADD(smem[3 · tidinner + 2], smem[3 · tidinner])
48: end if
49: buffer [offset + num] = smem[3 · tidinner + 2])
50: buffer_index[offset + num] = bpre_bucket_idx+1

2 c
51: buffer_used[tid] = num+ 1
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shown in Alg. 5 to complete the entire bucket accumulation phase.
For each subtask, we allocate 2c−2 threads, where the thread with index tid is used

to search for all buffered points corresponding to bucket B2·tid+1. The accumulation of
these points is done through the shared memory smem[NTHREADS]. The worst-case
complexity of binary search for the corresponding buffered point is O(logN), and all
subtasks can concurrently run with dλc e · 2c−2 threads.

3.4 A layered parallel reduction algorithm for the bucket aggregation
After obtaining the values of {Bt} where 1 ≤ t < 2c−1 and t is an odd integer, we need
to calculate the result of bucket aggregation phase. Since the number of buckets in our
proposed algorithm has been reduced to 1

4 of that in the original Pippenger algorithm, we
no longer calculate the result of Eq. (1). Instead, we compute

Qj =
2c−2−1∑
i=0

(2 · i+ 1)B2·i+1 (j = 0, 1, · · · , c− 1)

for each subtask. But it is still necessary to update all the buckets {B2·i+1} to {B̂2·i+1 =∑2c−2−1
j=i B2·j+1}. For this reason, we propose a parallel layered reduction algorithm for

this process that was originally performed sequentially. For clarity, Figure 6 provides an
example with only four buckets, which is divided into two rounds: In the first round, we
concurrently update the bucket B5 to B′5 = B5 +B7 and the bucket B1 to B′1 = B1 +B3.
In the second round, we concurrently update the bucket B′1 to B̂1 = B′1 +B′5 and B′3 to
B̂3 = B′3 +B′5. When the number of buckets expands to 2c−2 in our scheme, the rounds
will also expand to c − 2 rounds, i.e., log2(2c−2). In the best case, we can assign 2c−3

threads to each subtask with thread indices tid ∈ [0, 2c−3). Then in the i-th round, each
thread computes baseline = 2i · b tid2i−1 c+ 2i−1 and offset = (tid%2i−1) + 1, and performs a
single addition operation:

B2c−1+1−2·(baseline+offset) = PADD(B2c−1+1−2·(baseline+offset), B2c−1+1−2·baseline).

It means that we update the (baseline + offset)-th-to-last bucket to be the sum of
itself and the (baseline)-th-to-last bucket. Even if the total number of threads is not
large enough, we can evenly distribute these small tasks that involve only one addition
among these threads, ensuring that the computational cost for each thread remains quite
low. Moreover, it is not necessary to launch a new kernel for each round but directly
use CUDA’s cooperative groups to achieve thread synchronization across the entire grid.
Therefore, the time complexity of our layered parallel reduction scheme remains at the
logarithmic level of the number of buckets.

Figure 6: Example of the layered reduction algorithm (scale=4).
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Algorithm 5 Aggregation of buffered points into buckets
Input: Four static arrays: buffer [N + 2c−2], buffer_offset[N ], buffer_index[N + 2c−2],

buffer_used[N ] (for a single subtask), and tid ∈ [0, 2c−2)
Output: Buckets {Bt} (1 ≤ t < 2c−1 ∧ t%2 = 1)

1: left = 0
2: right = N − 1
3: notInf = false
4: while left ≤ right do
5: mid = left+ ((right− left)� 1)
6: used = buffer_used[mid]
7: if used = 0 then
8: right = mid− 1
9: else

10: offset = buffer_offset[mid]
11: idxmin = buffer_index[offset]
12: idxmax = buffer_index[offset + used − 1]
13: if idxmin = tid+ 1 then
14: startPos = mid
15: notInf = true
16: right = mid− 1
17: else if idxmin > tid+ 1 then
18: right = mid− 1
19: else if idxmax < tid+ 1 then
20: left = mid+ 1
21: else
22: for i = offset + 1 to offset + used − 1 by 1 do
23: if buffer_index[i] = tid+ 1 then
24: startPos = mid
25: notInf = true
26: break
27: end if
28: end for
29: end if
30: end if
31: end while
32: smem[tidinner] = O . tidinner: intra-block thread index
33: while notInf = true do
34: notInf = false
35: used = buffer_used[startPos]
36: offset = buffer_offset[startPos]
37: for i = offset to offset + used − 1 by 1 do
38: if buffer_index[i] = tid+ 1 then
39: notInf = true
40: smem[tidinner] =PADD(smem[tidinner], buffer [i])
41: break
42: end if
43: end for
44: startPos + +
45: end while
46: B2·tid+1 = smem[tidinner]
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After updating all the buckets using the above method, with B̂2·i+1 =
∑2c−2−1
j=i B2·j+1,

we only need to accumulate all these new bucket points to obtain Qj =
∑2c−2−1
i=0 B̂2·i+1 =∑2c−2−1

i=0 (i + 1)B2·i+1. This part already has mature CUDA parallel implementations.
Before the accumulation, we need to record the original B̂1 (i.e.,

∑2c−2−1
j=0 B2·j+1), which is

used to compute the final result of the subtask: Qj = 2Qj − B̂1. Finally we can aggregate
the results of dλc e subtasks {Qj} into the result of the total MSM task.

3.5 Cost analysis
In this subsection, we discuss the computational cost for each phase within each thread.

• Relying on the precomputation tables, the scalar preprocessing requires n/N table
lookups. Radix sort is also a stable sorting algorithm, and we use the state-of-the-art
implementation from the CUB library.

• The bottleneck of the GPU implementation based on the Pippenger algorithm lies in
the bucket accumulation phase. As mentioned in Section 3.3, we divide the bucket
accumulation phase into the following two phases:

(1) Accumulate all points into non-conflicting buffers assigned to each thread.
(2) Then aggregate the buffered points back into their respective unique buckets.

Due to the large size of n and the random sampling of scalars, the probability
of performing doubling operations in phase(1) can be directly viewed as 1/2τ+1.
Therefore, the phase(1) requires n/N point additions and a relatively small number
of doublings (related to the parameter τ), making the cost quite stable. It should be
noted that the above discussion is specific to the algorithm based on cached Jacobian
coordinates. When τ = c−1, no doubling operations are needed, although it requires
more GPU memory.
For phase(2), due to hardware constraints, N must be less than the number of
buckets. It means that the occurrence of multiple consecutive threads processing
the same bucket index in phase(1) is extremely low, i.e., there are very few buffered
points that correspond to the same bucket. Thus, each thread in phase(2) requires a
negligible number of point additions (usually only once).

• The bucket aggregation phase requires log2(2c−2) point additions.

However, in the most extreme input scenarios, our bucket accumulation phase is not
"constant-time", where "constant-time" means the running-time is independent from the
input. For instance, if all scalars are identical, different scalar values are likely to result
in different numbers of doubling operations in phase(1), although the "load-balanced"
property can still be guaranteed. In addition, all buffered points correspond to the same
bucket, requiring the execution of up to N point additions in phase(2). For this, we design
a new algorithm to ensure the constant-time property of the bucket accumulation phase.
The details of the new algorithm and experimental results are presented in Section 5.
Although it is well known that there will be a slowdown when patching the constant time,
our experimental results show that the slowdown caused by the new algorithm is entirely
within an acceptable range.

4 Implementation Results
In this section, we present the implementation results of our GPU-accelerated MSM algo-
rithm, and compare it with the most recent GPU implementation, namely cuZK [LWY+23].
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We perform the experiments on three different GPUs: 1) V100, 2) RTX3090, and 3)
RTX4090. Detailed hardware information including the CPU configuration on the host
side is listed in Table 2. Since the main body of our MSM implementation is done on the
GPU, the CPU’s performance only affects the scalar transfer time between the host and
the device. To address this, we employ multi-stream techniques to overlap data transfers
with device computations, further reducing the latency overhead caused by transfers.

Table 2: Hardware configuration of testing environments
Environment V100 RTX3090 RTX4090

Device V100-SXM2-32GB GeForce RTX3090 GeForce RTX4090
SM Count 80 82 128
Core Count 5120 10496 16384

Host(CPU) Xeon(R) Platinum 8255C Xeon(R) Platinum 8358P Xeon(R) Platinum 8352V
CPU Cores 12 15 12
CPU Freq. 2.50GHz 2.60GHz 2.10GHz
OS Ubuntu 20.04 Ubuntu 20.04 Ubuntu 20.04
CUDA Version 11.3 11.3 11.8

The BLS12-377, BLS12-381, and BLS24-315 curves that we employ are defined over
prime fields Fp1 , Fp2 , and Fp3 , respectively. The primes are 377-bit, 381-bit and 315-bit,
respectively. Since we store elements from Fp1 (or Fp2) in multiple 32-bit unsigned integers,
a single finite field element on both BLS12-377 and BLS12-381 is represented using 384
bits. Similarly, a single finite field element on BLS24-315 can be stored with fewer 320 bits.

In terms of parameter selection, we set the window size c as 16, which can avoid
explicit sub-scalar segmentation by the pointer of type uint16_t. We set the τ as 6 for
the cached Jacobian coordinate-based method and evaluate it on the BLS12-377 and
BLS12-381 curves. For example, considering our tested MSM upper limit size of 224,
this requires a memory space of 10.5GB to store 7 · n affine points (including the base
points themselves), which is well within the capabilities of mainstream GPU devices. This
parameter selection also ensures that the cases where doubling operations are required
during the bucket accumulation phase account for only about 1

128 of the overall workload,
effectively leveraging the precomputation table. For the method based on the homogeneous
coordinate system, we generate a complete precomputation table (i.e., τ = 15) and also
evaluate it on the SNARK-Friendly BLS24-315 curve. When the MSM size reaches 223, it
requires 10GB of memory space to store 16 · n affine points (each point occupying 320 · 2
bits), which is still within an acceptable range.

The shared memory limit is 48KB, and it is at the block level for CUDA. It only launches
a block when there is enough free memory to accommodate the entire size required by that
block. We set the block size NTHREAD to 64, then the method based on cached Jacobian
coordinates occupies 24KB of shared memory per block on the BLS12-381 curve, achieving
full occupancy (2 · 24KB). The method based on homogeneous coordinates occupies
15KB per block on the BLS24-315 curve, achieving a 93.75% occupancy (3 · 15KB). In
addition, we determine the maximum number of threads allocated based on the current
maximum number of Streaming Multiprocessors (SMs) in the GPU, specifically, it is
(256 · SM_Count).

ZPrize [Zpr22] is an annual competition with a primary focus on promoting the
utilization and advancement of zero-knowledge cryptography. One of the tracks it
establishes focuses on accelerating MSM computations using GPUs, and our imple-
mentation is based on their testing framework. The source code is available at
https://github.com/dunkirkturbo/wlc_msm.

Since the number of uint32_t used for element storage on both BLS12-377 and BLS12-
381 curves is the same, the computational cost for operations like point addition is nearly

https://github.com/dunkirkturbo/wlc_msm
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identical (as confirmed in our practical testing). Table 3 presents our benchmark results of
MSM on the BLS12-381 curve evaluated on different GPUs.

Table 3: Execution times (millisecond) of BLS12-381 MSM on different GPUs
(V100/RTX3090/RTX4090) and speedup ratios compared to the recent implementation.

Size V100 RTX3090 RTX4090
cuZK ours cuZK ours cuZK ours

219 115.39 44.97
(2.566×) 69.17 29.89

(2.314×) 51.18 17.95
(2.85×)

220 195.94 84.28
(2.325×) 112.37 56.91

(1.974×) 77.43 32.86
(2.36×)

221 321.92 161.08
(1.998×) 183.02 110.82

(1.652×) 113.94 62.92
(1.81×)

222 574.47 315.51
(1.821×) 326.13 214.94

(1.517×) 185.33 124.21
(1.49×)

223 1128.36 620.74
(1.818×) 645.15 425.78

(1.515×) 355.22 250.68
(1.42×)

224 2022.47 1233.87
(1.639×) 1181.98 843.18

(1.402×) 1385.76 500.07
(2.77×)

• Our evaluation primarily focuses on MSM calculations in the G1 group. The
benchmark results indicate that our MSM achieves approximately 63.9%− 156.6%,
40.2%− 131.4%, and 42%− 185% faster performance than cuZK on V100, RTX3090,
and RTX4090, respectively (at scales ranging from 219 to 224). This implies that our
approach can be applied to the vast majority of MSM computation scales required
by zk-SNARKs and significantly outperforms cuZK in terms of performance.

• Our load-balancing method requires a buffer size of Nmax+d λ16e·214 cached Jacobian
points. Taking RTX3090 as an example, we set the maximum threads Nmax to
82 · 256, and therefore, the buffer size mentioned above does not exceed 52MB
(independent of the MSM size). Additionally, due to the similarity in the number of
SMs between V100 and RTX3090, we compare the acceleration on RTX3090 and
RTX4090. cuZK is a load-balanced solution that utilizes sparse matrices, and the
results show that our relative speedup compared to cuZK remains largely consistent
on RTX4090 as it does on RTX3090. Hence, our performance also exhibits nearly
linear growth with an increase in the total allocated threads.

To demonstrate the speedup of each optimization technique employed in Table 3, we first
use only our method for mapping scalars (in Section 3.1) and the parallel layered reduction
algorithm (in Section 3.4), comparing performance with cuZK. After incorporating the lazy
reduction technique, we conduct another round of testing. Finally, with the application
of the load-balancing algorithm (in Section 3.3), we get the complete benchmark results
presented in Table 3. The speedup ratio for each round of the testing mentioned above is
shown in Table 4.

• Even in the "imbal" version, our implementation achieves up to 2.35×, 2.1×, and
2.3× speedup compared to cuZK on V100, RTX3090, and RTX4090, respectively
(at scales ranging from 219 to 224). After adding the lazy reduction technique, the
"imbal+lazy" version achieves a further acceleration of up to 5.76% compared to the
"imbal" version. Finally, the complete "bal+lazy" version is up to 21.48% faster
than the "imbal+lazy" version. It should be noted that the "bal+lazy" version
performs significantly faster on higher computational power devices compared to the
"imbal+lazy" version.
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Table 4: The speedup ratio compared to cuZK after adding our optimization techniques
one by one (For simplicity, "imbal" means we only use the method for mapping scalars
and the parallel layered reduction algorithm, "imbal+lazy" means we incorporate the
lazy reduction technique, and "bal+lazy" means we further utilize the load-balancing
algorithm).

Size V100 RTX3090 RTX4090

imbal
imbal
+lazy

bal
+lazy

imbal
imbal
+lazy

bal
+lazy

imbal
imbal
+lazy

bal
+lazy

219 2.35× 2.45× 2.57× 2.10× 2.18× 2.31× 2.30× 2.39× 2.85×
220 2.12× 2.20× 2.32× 1.81× 1.87× 1.97× 1.89× 1.97× 2.36×
221 1.84× 1.92× 2.00× 1.52× 1.58× 1.65× 1.42× 1.49× 1.81×
222 1.69× 1.77× 1.82× 1.39× 1.47× 1.52× 1.18× 1.23× 1.49×
223 1.70× 1.77× 1.82× 1.42× 1.50× 1.52× 1.13× 1.18× 1.42×
224 1.54× 1.60× 1.64× 1.32× 1.39× 1.40× 2.22× 2.30× 2.77×

Furthermore, we also evaluate the performance improvement brought about by the load-
balancing algorithm on the BLS24-315 curve. Before this, we switch to the homogeneous
coordinate on the basis of the "imbal+lazy" version, which yields a further performance
improvement of approximately 3% (The reason for the improvement not reaching the
theoretical value is due to issues such as bank conflicts in the usage of shared memory in
CUDA). This gives us a new control group with load imbalance. The comparative results
between the imbalanced and balanced versions are shown in Figure 7.3
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Figure 7: Comparison of the load-balanced and imbalanced versions of our method based
on the homogeneous coordinate system (BLS24-315 MSM on RTX4090).

In the load-imbalanced version, we additionally sort the key âi[0 : 30] during radix sort.
Since each thread is responsible for sub-scalar values corresponding to non-overlapping
buckets, warp synchronization is achieved for the operation of determining whether the
y-coordinate should be negated. Warp synchronization is a critical factor affecting the
efficiency of CUDA programs. However, despite this, our load-balanced version is still 28.2%
to 85.3% faster than the imbalanced version. Furthermore, as the MSM size gradually
increases, this advantage becomes even more pronounced.

In summary, our implementation on SNARK-friendly curves like BLS12-381 and
BLS24-315 significantly improves MSM calculation speeds in G1 compared to the latest
implementations. Additionally, it satisfies load balancing and adapts well to GPUs with
varying computational power.

3Since cuZK has not been implemented on the BLS24-315 curve, we do not have a corresponding
comparison with their work.
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5 Constant-time algorithm for the bucket accumulation
This section reviews the cost analysis from Section 3.5, where the bucket accumulation
phase based on the cached Jacobian coordinate is not constant time (here, "constant time"
means the running time is independent of the secret input). In particular, for accumulating
parts of the buckets into buffers, we can set the parameter τ to c − 1. It eliminates all
doubling operations and the cost per individual thread is fixed at n/N point additions.
For aggregating the buffered points into buckets, we design a new algorithm that can be
executed in constant time.

For each subtask, the size of the static buffer is N + 2c−2. Compared to the previous
Alg. 5, we retain only one auxiliary array: buffer_index. This array is used to store the
bucket offsets corresponding to the points being written. According to our definition of
"inter-boundary" in Figure 5, each occurrence of such boundary results in a redundant
point. Excluding the bucket offsets corresponding to the redundant points, the array
buffer_index is non-decreasing. Therefore, we can perform operations OP 1, OP 2, OP 3,
and OP 4 in each thread based on the four consecutive buffer_index values to be processed
(as shown in Table 5).

Table 5: Operations (OP 1 → OP 2 → OP 3 → OP 4) corresponding to the relationships
among four values in the buffer_index. We write A,B,C,D for the points corresponding
to these values. The operation OUT requires copying a point once.

Relationships OP 1 OP 2 OP 3 OP 4
<,<,< A = PADD(A,O) OUT(B) OUT(C) C = PADD(D,O)
<,<,= A = PADD(A,O) OUT(B) OUT(O) C = PADD(C,D)
<,=, < B = PADD(B,C) OUT(B) OUT(O) C = PADD(D,O)
<,=,= C = PADD(C,B) OUT(O) OUT(O) C = PADD(C,D)
=, <,< A = PADD(A,B) OUT(C) OUT(O) C = PADD(D,O)
=, <,= A = PADD(A,B) OUT(O) OUT(O) C = PADD(C,D)
=,=, < A = PADD(A,C) OUT(D) → C OUT(O) A = PADD(A,B)
=,=,= A = PADD(A,B) OUT(O) OUT(O) C = PADD(C,D)

Before accumulating parts of the buckets, it should be noted that we initialize the buffer
as {O} and the buffer_index as {0}. Then we increment the bucket offsets corresponding
to non-redundant points by 1, i.e., add a redundant bucket at the front position. The
offset of this redundant bucket is 0 and corresponds to redundant points. After generating
the buffered points, due to the attribute of "inter-boundary", the value before the element
0 must be less than the value after it in buffer_index. Thus, when determining which
relation is in Table 5, the element 0 needs to be equal to the preceding element and smaller
than the following element.

It is obvious that each thread requires at most 2 PADD and 2 OUT operations.
Although some relationships may not require the complete execution of these operations,
we still use operations such as adding O to ensure the constant-time property. More
importantly, we avoid program branches through techniques such as address offsetting and
table lookup. In details, we unify the operations as follows:

OP 1 :DST 1 = PADD(SRC1, SRC2),
OP 2 :OUT(SRC3)→ DST 2,

OP 3 :OUT(SRC4)→ DST 3,

OP 4 :DST 4 = PADD(SRC5, SRC6)

We encode the less-than relationship as bit 0 and the equal relationship as bit 1. It
allows us to precompute a table op_index of size 8, where the elements are encoded as
(δ1 � 28) | (δ2 � 24) | (δ3 � 20) | (δ4 � 16) | (δ5 � 12) | (δ6 � 8) | (δ7 � 4) | (δ8). Then
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we allocate two arrays of length 6 in each thread, aux1 and aux2. The former stores the
addresses of points A,B,C,D, followed by the addresses of O and a copy of the address of
point D. The latter stores the addresses of the buckets corresponding to points A,B,C,D,
followed by the addresses of O and a copy of the address of point C. Assuming the
corresponding value of the relationship being processed by the current thread is i, the
operations can be rewritten as follows:

OP 1 :aux1[δ1] = PADD(aux1[δ2], aux1[δ3]),
OP 2 :OUT(aux1[δ4])→ aux2[δ4],
OP 3 :OUT(aux1[δ5])→ aux2[δ5],
OP 4 :aux1[δ6] = PADD(aux1[δ7], aux1[δ8])

The required operand addresses can be obtained through the same table lookup in all
branches. Then the exactly same operations OP 1 → OP 2 → OP 3 → OP 4 are executed.
After that, only the new points A and C are useful. However, we still need to update the
corresponding values in buffer_index. Similarly, we allocate another array, aux3, with a
length of 5. It stores the bucket offsets corresponding to points A,B,C,D, followed by
a zero. Then we perform operations OP 5, OP 6 and OP 7, where OP 6 is designed for the
” =,=, < ” case. It should be clarified that these operations are still performed on each
branch.

OP 5 :aux3[δ1] = aux3[δ2] | aux3[δ3],
OP 6 :aux3[2] = aux3[2] + (aux3[3]− aux3[2]) · (δ4 == 5),
OP 7 :aux3[δ6] = aux3[δ7] | aux3[δ8]

Therefore, the complete set of operations includes OP 1~OP 7. After each round of
parallel processing, the buffered points and corresponding bucket offsets to be processed
will be reduced by half, and the adjacent distances will also double. We can complete
the aggregation of buffered points into buckets within log2(N + 2c−2) − 1 rounds. The
operations in the final round require two more additions to handle the remaining two points.
In summary, our new algorithm for aggregating buffered points requires 2 log2(N + 2c−2)
point additions and 2(log2(N + 2c−2) − 1) copies within each thread. OP 5~OP 7 only
involve bitwise operations with relatively low overhead. All of the above operations are
independent of the values of input scalars. We have theoretically achieved the constant-time
property in the bucket accumulation phase.

It should be noted that if all scalars are identical, there will only be N useful buffered
points (i.e., there are 2c−2 points at infinity). This will result in many instances of OP1
and OP4 containing O in the operands. After aggregating the buffered points into buckets,
there are also 2c−2−1 buckets equal to O. The popular implementation of PADD usually
starts by checking whether there is a O in the operands. If O is found, it directly outputs
the other operand. Therefore, if we apply this type of implementation, the overall running
time of the corner case (i.e., all scalars are identical) is less than that of the random
instance. To solve this problem, we also patch the PADD operation. We first execute
addition formulas consistently, and finally check whether there is a O in the operands. If
it does not exist, we copy the temporary result to the output. Otherwise, we copy the
other operand. The copy cost of these two cases is exactly the same.
Experimental results. We do benchmark tests on our new algorithm with different
cases, including corner and average scalar distribution. In the average case, all n scalars
are randomly sampled in Fr, where r is the order of G. While in the corner case, scalars
are still random but identical. Our experiments correspond with the average of 1000
executions. The results on V100 are shown in Table 6.

Since the selection of the parameter τ directly determines the cost of doublings when
generating buffered points, increasing τ to 15 eliminates all doubling operations. It can
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Table 6: Execution times (millisecond) of BLS12-381 MSM on V100 (based on the
cached Jacobian coordinate). For simplicity, "const" denotes satisfying the constant-time
property, while "non-constant" does not. "avg" means scalars are randomly sampled,
and "corner" means all scalar values are random but identical.

Size cuZK
τ = 6

non-const
(avg)

τ = 15
non-const

(avg)

τ = 15
const
(avg)

τ = 15
non-const
(corner)

τ = 15
const

(corner)
219 115.39 44.97 19.75 21.70 39.36 21.59
220 195.94 84.28 33.89 36.33 52.80 36.42
221 321.92 161.08 60.93 62.22 82.45 62.49
222 574.47 315.51 116.84 117.69 143.59 116.65
223 1128.36 620.74 227.31 217.74 243.38 218.21

be observed that the performance has been significantly improved, but requiring more
GPU memory. For instance, the MSM with a size of 223 requires precomputing 16 · 223

affine points (including the base points themselves). It occupies 12GB of memory, but
when τ = 6, it only requires 5.25GB. This increase in memory usage remains within an
acceptable range and is applicable to popular GPUs, such as the V100-SXM2-32GB.

Then if we apply the new algorithm for aggregating the buffered points into buckets, we
will obtain a constant-time version. In the average case, the performance of the constant-
time version is close to that of the non-constant-time one. Although more additions are
required to aggregate buffered points compared to Alg. 5, the warp synchronization also
contributes to the faster parallel execution of several operations such as PADD.

If the parameter τ is fixed at 15, the non-constant-time version will experience a
performance drop in the corner case. As analyzed in Section 3.5, it requires at most
N point additions to aggregate buffered points in one of the threads. However, the
performance drop in the corner case becomes less noticeable with an increase in n, as
N is relatively smaller than n. For example, the performance decreases by 50.2% when
n = 219, while only decreases by 6.8% when n = 223. In contrast, the running time of our
constant-time version in the corner case is almost indistinguishable from the average case.
For example, the running time differs by less than 0.22% when n = 223.

The slight difference in running time of the constant-time version is due to CUDA’s
internal optimizations for memory access that we cannot adjust (e.g., coalesced memory
access [NVI23]). When a warp executes an instruction that accesses global memory, it
coalesces the memory accesses of the threads within the warp into one or more of these
memory transactions depending on the size of the word accessed by each thread and the
distribution of the memory addresses across the threads. And the memory transaction is
up to 128 bytes. In the BLS12-381 curve, |Fp| = 48-byte but |G| = 192-byte> 128-byte
(based on the cached Jacobian coordinate). Recalling our implementation, different threads
do not access points at the same global memory location. Thus, these accesses to points
will not be coalesced.

The affected accesses are only to the scalar mapping table and op_index, where each
element is 4-byte. Global memory accesses are always cached in L2 cache (i.e., using
32-byte memory transactions). Therefore, a memory transaction will cover 8 elements in
these two tables.

• For op_index : The total length of this array is 32-byte, so these accesses are coalesced
regardless of the input.

• For the scalar mapping table: When the elements in the table mapped by sub-scalars
within the same warp appear in consecutive 32-byte, the accesses will be coalesced.
Assuming the attacker is in an ideal scenario without benchmark errors, if he knows
that the running time of n scalars is less than that of another n scalars, he can only
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infer that the difference between certain sub-scalars within the same warp does not
exceed 7. Even if the small range of 32 sub-scalars whose accesses will be coalesced
is given, there are at least ( 32

4 )32 possibilities. Moreover, the small range is also
indeterminable in reality.

Based on the above analysis, along with the inherent benchmark errors, the information
leakage introduced by CUDA’s internal memory access optimization is negligible.

6 Conclusion
In this work, we present a novel GPU-accelerated MSM algorithm that can be applied
to large-size scenarios required by zk-SNARKs and achieves high performance. First,
we propose a new method for mapping scalars into Pippenger’s bucket indices, reducing
the number of buckets to 1

4 of that in the original Pippenger algorithm. Second, we
focus on the fundamental operations of point addition during the bucket accumulation
phase. We employ mixed point addition formulas in cached Jacobian coordinates when
the GPU memory is of typical size, and switch to a more efficient algorithm based on
homogeneous coordinates which can save one finite field multiplication cost for every two
additions when memory is sufficient. In addition, we also apply the lazy reduction skill to
all point addition and doubling operations. Third, we present our load-balanced bucket
accumulation method using the compact static buffer, which means the parallel speedup
ratio is almost linear growth as the number of device threads increases. Finally, we provide
a parallel layered reduction algorithm for the serially executed bucket aggregation phase,
whose time complexity remains at the logarithmic level of the number of buckets.

Utilizing the aforementioned techniques, our MSM achieves approximately 40.2% to
185.1% faster performance than cuZK on popular graphics cards (at scales ranging from
219 to 224). Our approach can also be further optimized at the lower level. Longa [Lon23]
proposed an approach that generalizes interleaved modular multiplication algorithms for
the computation of sums of products over large prime fields. It can avoid the penalty of
double-precision operations and perform faster over the popular SNARK-friendly curve.
Andy [AM22] et al. presented a LSD radix sorting algorithm for large GPU sorting
problems residing in global memory. Compared to CUB which we use, it provides a
speedup of ≈ 1.5×. The optimizations using these algorithms are left as future work.
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