
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 2, pp. 481–521. DOI:10.46586/tches.v2024.i2.481-521

Compact Circuits for Efficient Möbius Transform
Subhadeep Banik1 and Francesco Regazzoni2,1

1 Universita della Svizzera Italiana, Lugano, Switzerland,
{subhadeep.banik,francesco.regazzoni}@usi.ch

2 University of Amsterdam, Amsterdam, Netherlands, f.regazzoni@uva.nl

Abstract. The Möbius transform is a linear circuit used to compute the evaluations of
a Boolean function over all points on its input domain. The operation is very useful
in finding the solution of a system of polynomial equations over GF (2) for obvious
reasons. However the operation, although linear, needs exponential number of logic
operations (around n · 2n−1 bit xors) for an n-variable Boolean function. As such, the
only known hardware circuit to efficiently compute the Möbius Transform requires
silicon area that is exponential in n. For Boolean functions whose algebraic degree
is bound by some parameter d, recursive definitions of the Möbius Transform exist
that requires only O(nd+1) space in software. However converting the mathematical
definition of this space-efficient algorithm into a hardware architecture is a non-trivial
task, primarily because the recursion calls notionally lead to a depth-first search in
a transition graph that requires context switches at each recursion call for which
straightforward mapping to hardware is difficult. In this paper we look to overcome
these very challenges in an engineering sense. We propose a space efficient sequential
hardware circuit for the Möbius Transform that requires only polynomial circuit area
(i.e. O(nd+1)) provided the algebraic degree of the Boolean function is limited to d.
We show how this circuit can be used as a component to efficiently solve polynomial
equations of degree at most d by using fast exhaustive search. We propose three
different circuit architectures for this, each of which uses the Möbius Transform circuit
as a core component. We show that asymptotically, all the solutions of a system of
m polynomials in n unknowns and algebraic degree d over GF (2) can be found using
a circuit of silicon area proportional to m · nd+1 and circuit depth proportional to
2 · log2(n − d).
In the second part of the paper we introduce a fourth hardware solver that additionally
aims to achieve energy efficiency. The main idea is to reduce the solution space to a
small enough value by parallel application of Möbius Transform circuits over the first
few equations of the system. This is done so that one can check individually whether
the vectors of this reduced solution space satisfy each of the remaining equations of
the system using lower power consumption. The new circuit has area also bound
by m · nd+1 and has circuit depth proportional to d · log2 n. We also show that
further optimizations with respect to energy consumption may be obtained by using
depth-bound Möbius circuits that exponentially decrease run time at the cost of
additional logic area and depth.
Keywords: Boolean Functions, Möbius transform, Solution of Equation System.

1 Introduction
Several cryptanalytic problems can be reduced to instances of solving a system of multivari-
ate polynomial equations over GF (2). For example, block ciphers with low multiplicative
complexity like LowMC [ARS+15] employ only 3-bit S-boxes of algebraic degree 2. It
is known that given any single plaintext-ciphertext pair from an r-round instance of
LowMC gives rise to a system of equations in the secret key-bits of algebraic degree

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-10-15 Accepted: 2023-12-15 Published: 2024-03-12

https://doi.org/10.46586/tches.v2024.i2.481-521
mailto:subhadeep.banik@usi.ch,francesco.regazzoni@usi.ch
mailto:f.regazzoni@uva.nl
http://creativecommons.org/licenses/by/4.0/

482 Compact Circuits for Efficient Möbius Transform

2r/2 [Din21]. The public key in the signature scheme PICNIC v3.0, consists of a single
plaintext/ciphertext pair generated by the LowMC block cipher using the secret key as the
block cipher key. The designers recommend using 4-round instances of the block cipher
for this purpose. In this case, the secret key that corresponds to a given public key is
fully described by a system of n Boolean equations of degree 4 in the in the n unknown
bits of the key [Din21]. Thus finding the secret key amounts to cryptanalysis of the block
cipher using the single plaintext/ciphertext pair available as the public key of the signature,
which amounts to solving n degree 4 equations in n unknowns. (However, we would like
to state that our work does not practically threaten the full specification of PICNIC.) It
is also known that forging a signature in public key signature schemes like UOV can be
done by solving a set of quadratic equations over GF (2) [KPG99]. Other than this there
are specific problems in combinatorics like the graph-coloring problem (i.e. given a graph
decide whether it can be colored using k colors with no two adjacent vertices assigned the
same color) which can be reduced to an instance of solving multi-variate polynomials in
GF (2) [Bar09, Appendix C].

The problem can be stated in the following way: given n indeterminates x1, x2, . . . , xn,
and m polynomials fi ∈ F[x1, x2, . . . , xn] (for i ∈ [1,m]), where F is any finite field. The
task is to find common solutions x∗ ∈ {0, 1}n, such that fi(x∗) = 0 for all i. Over any
finite field F, the problem is NP-complete already when the polynomials are quadratic. For
a complete analysis of the significance of equation solvers in cryptography please see the
discussion in [Bou22]. Hereafter, we will focus on the case of the Boolean field F = GF (2).

1.1 Previous Work
To the best of our knowledge, there have been two previous works on hardware/software
architectures for fast exhaustive search over GF (2). The main idea is as follows: the secret
x∗ we are looking for is obviously a point which evaluates to zero for all the fi. Thus at
the index x∗, the truth tables of all the Boolean polynomials fi will have the constant 0.
Hence, we are looking for the indices x∗ at which the logical OR of all the truth tables of
all the fi’s is 0. In [BCC+10], the authors use the Gray code technique to evaluate the
truth table of each polynomial fi. Gray codes are linear codes that have the property
that successive codewords differ by only one bit. There are many methods of constructing
such codes in literature, and one of the simplest way is to define the i-th code word as
gi = i ⊕ (i � 1) (the � denotes the shift right operator). For example the eight 3-bit
codewords listed sequentially are: 000, 001, 011, 010, 110, 111, 101, 100. Take any
polynomial fi: we want to evaluate fi over all 2n points of its input domain. Then it is
more efficient to do this evaluation in the order specified by the Gray code, i.e. first fi(g0),
then fi(g1), fi(g2) . . . etc. The reason for this is as follows: note fi(g0) = fi(~0) is just the
constant term of fi, thereafter if t is the only bit-position where the successive codewords
gj and gj+1 differ in, and we already have the value of fi(gj) then we can use a Taylor-like
expansion formula for Boolean functions to compute fi(gj+1):

fi(gj+1) = fi(gj)⊕
δfi
δxt

(gj). (1)

Here δfi

δxt
is the 1st order derivative of the function fi at the point xt. For example if

fi = x1x2 ⊕ x3 ⊕ x1x4x5, then δfi

δx1
= x2 ⊕ x4x5 and δfi

δx2
= x1,

δfi

δx3
= 1 etc. It is known

that the derivative has algebraic degree at least one less than the original function, and
so if the derivative is not a constant or a degree one function we recursively evaluate the
derivative term in Equation (1) with another round of Taylor expansion. The method
obviously works best if the function fi is quadratic, but can also be applied to evaluate
moderately higher degree functions too if some of the derivatives are precomputed. In a
follow up work [BCC+13], the same authors proposed a hardware circuit for the problem,
however, for only degree 2 functions (that needed negligible amount of pre-computations).

Subhadeep Banik and Francesco Regazzoni 483

Another method to compute the truth table of a Boolean polynomial from its algebraic
expression is via the Möbius Transform. This method does not require pre-computations.
The transform can be simply evaluated as ~v = Mn~u, where ~u is the 2n × 1 algebraic
normal form (ANF) vector of any n-variable Boolean function, Mn is the 2n × 2n binary
Möbius matrix, and ~v is the truth-table of the function, with its i-th element being
the function evaluation at the binary string representation of i. As we will soon see, a
naive interpretation of this method requires time and space exponential in n to compute.
However there exist more subtle methods to compute the matrix-vector product given
above in polynomial space (bounded by nd+1 where d is the algebraic degree of the Boolean
polynomial). Translating this to hardware is a non-trivial task as the underlying algorithm
is significantly complex. In this paper, we will propose strategies to translate the Möbius
Transform algorithm into a hardware circuit and we will demonstrate how to overcome
the engineering challenges involved. We then show how multiple instances of the above
Möbius Transform circuit can be efficiently used to solve or perform fast exhaustive search
for roots of equation systems over GF (2) whose degree is bound by some constant d. We
show that asymptotically, with silicon footprint proportional to m · nd+1 we can describe a
circuit that finds roots of a system of m polynomial equations of degree d in n unknowns
over GF (2).

1.2 Impact and Comparison with the state of art
Till date we are not aware of any hardware architecture that solves equations over GF (2)
of degree larger than 2. This therefore presents the first instance of a solver in hardware
for higher degree equation systems over GF (2). Furthermore building a truth table in
hardware has many significant cryptographic applications (please see [Bou22, Section 1.3]).
Very briefly, it is known that the pre-image attack [DS11] against the Hamsi-256 hash
function requires the attacker to construct efficiently truth tables of degree 6 over 32
variables. The attack against the stream ciphers GEA-1/GEA-2 requires construction of
degree 4 truth tables over 33 variables [BDL+21]. The cube attack on Trivium [HST+21]
requires construction of such tables over upto 75 variables of degree 20. The attack against
Pyjamask-96 [DRS20] also requires construction of truth tables of Boolean functions of
degree 4 of around 128 variables.

1.2.1 Comparison with Linearization Algorithms

Linearization based algorithms like XL [CKPS00] and Elimlin [CB07] also attempt to find
the solution of a system of Boolean equations through matrix manipulation techniques like
Gaussian Elimination (GE). The idea is to rewrite every higher degree monomial in the
equation system as a new linear variable. This converts a system of m equations of any
arbitrary algebraic degree d to a system of m linear equations in around O(nd) extended
variables. Using hardware accelerators for GE like the SMITH framework [BMP+06], one
could also describe a circuit that finds roots of the system using silicon area proportional
to m · nd. However, as shown in [Bar09, Section 12.3], such an approach will generate
basis vectors for a space containing an exponential number of false solutions, and it is
not immediately clear how efficient circuit hardware architectures can be described to
eliminate them. However, note that there are papers in software like [BDT22, JV17,
BFSS13, LPT+17, Din21, BKW19] which achieve this in software in less than brute force
time.

1.2.2 Area Time product

The Möbius Transform operation is similar to the Fast Fourier Transform (FFT) which is
defined over larger rings. It is known that the if the layout of the circuit is restricted to 2

484 Compact Circuits for Efficient Möbius Transform

dimensions then the Area(A) and Time(T) product of the FFT is subject to a lower bound
AT 2 ≥ N2 (where N = 2n) [Tho79]. Because the circuit has to hold the N input data, this
implies that AT ≥ N3/2. This lower-bound is based on communication complexity, i.e. the
fact that “wires take space”. In this paper we begin with two circuits for Möbius Transform
i.e. Expmob1/Expmob2 that take AT 2 = N · log(N) and N · (log(N))2 respectively.

Instead of optimizing AT directly, consider the case when A is bound polynomially
by some nd+2 and T is the clock cycle count of the operation on the given circuit. It
makes sense to consider this, since as n increases, it is unreasonable to expect exponential
amount of silicon resources to be available for manufacturing. We could ask the question:
what is the minimum value of the AT product given that A ∈ O(nd+2) and the task is to
solve n equations of n variables in degree d. In fact this is the metric we look at for the
various circuit architectures that we propose in the paper. In Section 5.6, we show that the
minimum AT product for all the solvers that we have considered is around 4 · nd+2 · 2n−ĥ
where ĥ2 · 2ĥ = nd+2.

1.3 Contribution and Organization
In this paper we present a novel hardware architecture for the Möbius transform for n-
variable Boolean functions of degree≤ d that requires silicon resources that are polynomially
bounded by nd+1. We use the recursive definition of the transform found in [Din21, Section
4.2], and identify and solve the engineering difficulties of translating such an algorithm into
hardware. Parallel instances of this architecture can be combined to construct hardware
solvers that find roots of an underlying equation system over GF (2) by exhaustive search.
We describe the architectures of three such solvers the last of which is able to find all roots
of any system of m Boolean equations in n unknowns and algebraic degree d in circuit
area proportional to m · nd+1 and circuit depth proportional to 2 · log2(n− d) units.

In the next part of the paper we address the issue of energy efficiency. Given an equation
system with m equations, performing m Möbius computations leads to a lot of redundant
computation and thus wastage of computational effort and energy. We introduce a solver
architecture called Polysolve4, that aims to minimize these redundant computations. We
first use the Möbius Transform circuit to extract the roots of some µ < m equations of the
system. Assuming that this solution space is small enough we try to individually evaluate
the remaining m− µ equations at the all the vectors of this reduced space. Then we try to
construct Polysolve4 circuits with Möbius Transform circuits that are height bound. We
explain the concept of height bound circuits. We then show that (for solving 20 quartic
equations in 20 variables) these circuits can obtain around 100 times energy efficiency
when compared to the Polysolve3 circuit.

The rest of the paper is organized in the following manner. Section 2 presents some
preliminary lemmas and definitions in this field. In Section 3 we look at the recursive
definition of Möbius transform and we explain in detail how the hardware circuit for
the same is designed. In Section 4, we first show how to combine multiple instances of
the Möbius Transform circuit that produces a solver that finds at least one root of the
underlying equation system. We then list two variants of this architecture, the last of
which is able to find all the roots of the equation system. Section 5 describes the solver
Polysolve4 and analyzes of energy consumption of the circuit as a function of the internal
parameter µ of the circuit. We further look at depth-bound Möbius Transform circuits
that enable use to find better energy/time consumption figures. Section 6 concludes the
paper.

1.3.1 Notations:

Note that henceforth in the paper T will denote the number of clock cycles required to
complete any operation. This value of T is considered for all the AT metric optimizations

Subhadeep Banik and Francesco Regazzoni 485

throughout the paper. Simultaneously we use the notations Tmin, Tcr, Td at multiple
points in the paper. All these symbols denote some physical time parameter associated
with the circuit and will be made clear when they appear. As such they are measured in
ns or similar denominations.

2 Definitions and Preliminaries
Boolean function: An n-variable Boolean function is a map from {0, 1}n → {0, 1} and
it can be uniquely represented by its algebraic expression, called algebraic normal form or
ANF. The algebraic expression of such a function using the (⊕, ·) basis can be written as

f(~x) = f(x0, x1, . . . , xn−1) =
⊕

i∈{0,1}n

aix
i

Here i := i0i1 · · · in−1 is the binary string of length n, with ij as the individual bits and
xi is defined as

∏
x
ij
j . The ANF vector ~u = [a0, a1, . . . , a2n−1] is defined as the 2n-length

string of all the ai’s.

Example 1. For example, consider the 3-variable function f = 1 ⊕ x0x1 ⊕ x2 ⊕ x0x2.
We can write this as x0

0x
0
1x

0
2 ⊕ x1

0x
1
1x

0
2 ⊕ x0

0x
0
1x

1
2 ⊕ x1

0x
0
1x

1
2. The function can be expressed

as a length 8 bit-vector ~u with bits at locations given by the binary strings 000, 110,
001 and 101 i.e. 0, 6, 1 and 5 set to 1 and the rest of the bits 0, which is to say that
a0 = a1 = a5 = a6 = 1 and the rest of the ai = 0.

The algebraic degree of the function (provided the function is not identically null)
is defined as the maximum hamming weight of the string i such that ai = 1. Thus in
the previous example, the algebraic degree is 2. For functions having degree d, all the
coefficients ai such that hw(i) > d are naturally 0. Since there are exactly

(
n
i

)
length

n strings of hamming weight i, we can see that the ANF of degree d function can be
expressed using

(
n
↓d
)

:=
∑d
i=0
(
n
i

)
< nd binary coefficients.

Truth Table: The vector of evaluations of a Boolean function at all its input points is
called its Truth Table (therefore this is a 2n length vector). The ANF and the Truth
table vectors of any Boolean function are closely related by the Möbius transform. Let
~v = [v0, v1, . . . , v2n−1] be the truth-table of the function f , with its i-th element being the
function evaluation at the binary string representation of i, i.e. vi = f(i0, i1, . . . , in−1).
then it is well known that ~v, ~u are related as ~v = Mn · ~u, where Mn is the Möbius matrix
of size 2n × 2n. The i, j-th element of this matrix mij is given as

mij = 1 if j � i and 0 otherwise.

The operator � is a partial order over all binary strings: we say that j � i if the binary
string representing j is less than or equal to the binary string representing i in all indices.
For example, 4 � 5, since 100 is less than 101 at all bit-locations, but 3 6� 4 since 011
exceeds 100 in the last 2 bit-locations.

The Möbius matrix Mn has been widely studied in literature: for example it is well
known that is lower-triangular and involutive i.e. M−1

n = Mn. Thus both ~v = Mn · ~u and
~u = Mn · ~v hold. An example of the 8 × 8 Möbius matrix M3, i.e. for n = 3 is shown
in Figure 1. This helps us see an alternative recursive definition of Mn. If we define
M1 =

[
1 0
1 1

]
, then for all n > 1, we have Mn = M1⊗Mn−1, where ⊗ is the matrix tensor

product.
Multiplication of a vector by this matrix can be quickly executed by the butterfly-

like operations shown in Figure 2. The butterfly operation shaded in blue is actually

486 Compact Circuits for Efficient Möbius Transform

M3 =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


Figure 1: An example of the Möbius matrix M for n = 3

multiplication of the input 2-bit vector by the matrix M1. The figure tells us that for an
n-variable function, the algorithm can be done in-place (without any additional memory)
using around n · 2n−1 xor operations and 2n space.

3 Implementing the Möbius Transform
Given Figure 2, we can think of many strategies to implement the basic transform if one
has access to exponential silicon resources. The operation consists of n stages of sequential
xor layers, with each layer having exactly 2n−1 xor operations over bits. Given this, one
can think of several circuit strategies to implement this:

Expmob1 This architecture implements the circuit in Figure 2 as a single unrolled circuit,
i.e. it implements all the n butterfly stages as dedicated circuits sequentially. Consider
onei(x) : {0, 1}n−1 → {0, 1}n to be the function that inserts a 1 in the i-th MSB
position of x, and zeroi(x) to be a function that inserts a 0 in the same position, i.e
one0(1001) = 1 1101 and zero0(1001) = 0 1001 etc. Note that there are a total of
2n−1 butterfly operations in each of the n stages. In the i-th stage (for 0 ≤ i ≤ n−1),
the j-th butterfly takes as input the bits in the position zeroi(j) and onei(j) for all
0 ≤ j ≤ 2n−1 − 1. This requires a total of n · 2n−1 number of 2-input xor gates in
total. However such a circuit is able to compute the transformation in a single cycle.

Expmob2 This configuration is slightly different from the previous circuit, in the sense
that we have only a single stage butterfly which we operate over n clock cycles to
compute the transform, i.e. similar to round based circuits of block ciphers in which
a single round function circuit is iterated over a given number of cycles to compute
the transform. Unlike the round function of a block cipher the successive stages

x2x1x0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1

1

0

0

0

1

1

0

m
1

1

0

0

1

0

1

0

m

m
m

m
m

1

1

1

1

0

1

0

0m
m

m
m
m

1

0

1

0

1

1

0

0

Truth Table(f)

f=1+x0x1+x2+x0x2

m

ANF(f)

Figure 2: Möbius transform on f = 1⊕ x0x1 ⊕ x2 ⊕ x0x2. The blue shaded component
represents one butterfly unit.

Subhadeep Banik and Francesco Regazzoni 487

of xor layers are not exactly similar. For example, consider the topmost butterfly
circuit in each stage in Figure 2. The 1st stage takes bits at positions 0 and 4 as
input, the second stage takes bits 0 and 2, the third stage takes bits 0 and 1 and so
on. So to create a round based circuit, it would seem that one would need multiple n
to 1 multiplexers before each of the butterfly circuits. However this can be avoided
using a simple observation. Consider πn to be the following permutation:

πn(2x) = x, and πn(2x+ 1) = 2n−1 + x for all 0 ≤ x < 2n−1

The idea is that after the given stage of butterfly circuits, the bit at position i be
shifted to position πn(i). Such a permutation over the bits requires only re-routing
of wires and thus no additional silicon area. This is essentially the entire round
function circuit which has to be executed for a total of n cycles for the transform to
be computed. To see why this works, consider the following facts. Let Bn be the
block diagonal matrix defined as Bn = M1 ⊗ In−1, where In−1 is the identity matrix
of size 2n−1 × 2n−1. Note that Bn is transformation defined by the first stage of
butterfly layer in Figure 2. Let Pn be the permutation matrix corresponding to πn.
Then it is easy to verify that the Möbius matrix Mn = (Pn ·Bn)n.

3.1 Synthesis Results
In this section we will describe the flow of simulation followed for each of the circuits
reported in the paper. The design was described at the RTL level using a hardware
description language and functional correctness was first verified. Thereafter the circuit
was synthesized using the Nangate 15nm Open Cell Library [MMR+15] using Synyopsys
Design Vision, mainly to ensure that the results obtained can be reproduced readily. One
of the possible uses of the Möbius Transform, is in solving equation systems. In order to
ensure that equations are solved as quickly as possible, the circuit compiler was instructed
to specifically optimize the total critical path of the circuit. A timing analysis is then
performed on the synthesized netlist using sufficient number of randomly generated test
vectors, which outputs the switching statistic of every node in the circuit. This information
is used by a power compiler software to estimate the average power consumed by the
circuit. Energy is computed as the product of the average power and the total physical
time taken for the circuit to execute a given operation.

In Figure 3, we present synthesis results for the circuits Expmob1 and Expmob2. It
can be seen that Expmob1 performs better than Expmob2 in this regard, most probably
due to the fact that additional hold/setup time constraints need to be met for Expmob2
for writing on to the register in each cycle. Similarly the additional energy required for the
n successive register writes makes Expmob2 less energy efficient as compared to Expmob1
as shown in Figure. Detailed results are shown in Table 7 in Appendix D.

However both these circuits require exponential amount of logic gates which starts
to become a bottleneck as n increases. We have already seen that a degree d Boolean
function can be represented with only

(
n
↓d
)
< nd binary coefficients, which means that for

small values of d the size of the ANF vector is polynomially bounded. Thus the size of
the register that holds the ANF can be bounded by nd. However, it is not possible to
use Expmob1/Expmob2 circuit to compute the transform on this reduced size register,
since, although the initial ANF vector is small, the output of each layer of butterflies are
progressively larger till it reaches 2n (which is the expected size of the truth table) after
the last stage.

3.2 Recursive Algorithm for Möbius transform
There exists algorithms that perform the basic transform (on functions limited to degree d)
using polynomial space only, i.e. bounded by nd+1. We state the algorithm appearing in

488 Compact Circuits for Efficient Möbius Transform

5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6
·105

n

A
re
a
(k
G
E
)

Expmob2 Expmob1

(a) Area

5 6 7 8 9 10 11 12 13 14 15
0

200

400

600

800

1,000

n

M
in

T
im

e
(p
s)

Expmob2 Expmob1

(b) Time

5 6 7 8 9 10 11 12 13 14 15
0

200

400

600

800

1,000

1,200

1,400

n

E
n
er
g
y
(p
J
)

Expmob2 Expmob1

(c) Energy

5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

30

n

M
a
x
F
re
q
u
en

cy
(G

H
z)

Expmob2 Expmob1

(d) Maximum Frequency

Figure 3: Synthesis results for Expmob1 and Expmob2 circuits. Energy measured at
1GHz

[Din21, Section 4.3]. The algorithm requires a notional depth-first traversal in a transition
graph as shall be explained shortly.

The principal question is how do we circumvent the fact that even if we begin with a
ANF vector of size that is polynomially bounded, each butterfly stage is likely to produce
an output that is of size larger than the input.

Example 2. First let us make the following observation taking Figure 2 as a reference:
consider the initial ANF vector A0 = [1100 0110] and the vector A1 = [1100 1010] just
after the first layer. The initial vector corresponds to the function

f(x0, x1, x2) = 1⊕ x0x1 ⊕ x2 ⊕ x0x2 = x0 · (x1 ⊕ x2)⊕ (1⊕ x2)
= x0 ·

[
f(1, x1, x2)⊕ f(0, x1, x2)

]
⊕ f(0, x1, x2)

Note that
[
f(1, x1, x2)⊕ f(0, x1, x2)

]
:= δf

δx0
is simply the derivative of f at the coordinate

x0. Both δf
δx0

and f(0, x1, x2) have number of variables which is 1 less than the original
function, and it is obvious that both their algebraic degrees can not be more than that of
the original function.

Now consider the vectors in the top and bottom halves of A1 i.e. Atop = [1100] and
Abottom = [1010]. It is easy to observe/verify the following:

A: Atop is the ANF vector for f(0, x1, x2) (in this case 1 ⊕ x2) and Abottom is the ANF
vector for f(1, x1, x2) (in this case 1⊕ x1).

B: Both Atop/Abottom are outputs of the butterfly layer in which the input is A0. Whereas
Atop is the arm of the butterfly that does not require xor computations, some xor
computations are required for Abottom.

Subhadeep Banik and Francesco Regazzoni 489

C: The remaining steps from the 2nd stage onward can be seen as the parallel application
of the Möbius Transform on the reduced variable Boolean functions f(0, x1, x2) and
f(1, x1, x2)

Of course in the figure, both the transforms are computed parallelly, which requires
2n−1 space each and so the total space requirement is 2n which is the same as the original.
The idea behind the recursive transform is to do these 2 sub-transforms sequentially, i.e.
one after the other so that the same space (i.e. register locations) can be used for both the
transforms so that the cumulative space requirement does not add up. Let us state the
algorithm now formally (Algorithm 1). The algorithm is parameterized by two quantities:
number of variables n, and the maximum algebraic degree d that the underlying function
can have.

Algorithm 1: Recursive Möbius Transform
Möbius (A0, n, d)
Input: A0: The compressed ANF vector of a Boolean function f
Input: n: Number of variables, d: Algebraic degree
Output: The Truth table of f

/* Final recursion step, i.e. leaf nodes of recursion tree */
if n=d then

Use the formula B = Mn ·A0 to output partial truth table B.
/* Use either Expmob1/Expmob2 to do this */

end
else

Declare an array T of size
(
n−1
↓d
)
bits.

/* Now we compute the 2 operations of the butterfly layer */
1 Store 1st butterfly output i.e. Atop in T (requires no xors).

Call Möbius (T, n− 1, d)
2 Store 2nd butterfly output i.e. Abottom in T (requires some xors).

Call Möbius (T, n− 1, d)
end
For the sake of simplicity, we have excluded many operational details in the above

algorithm to give the reader a better idea of the flow of the algorithm. The space
requirement of this algorithm is easy to estimate from the algorithm description. We start
out with

(
n
↓d
)
coefficients required to store A0. Thereafter every successive i-th recursion

stage requires
(
n−i
↓d
)
additional memory for all 1 ≤ i ≤ n − d. The final stage can use

Expmob1/Expmob2 to perform Möbius Transform in-place and no additional memory is
required. However in our experiments we preferred to use Expmob1 because it is slightly
faster. Hence the total space requirement of this procedure is given by (for a proof of the
following please see Appendix B):

S(n, d) =
n−d∑
i=0

(
n− i
↓ d

)
∈ O(nd+1). (2)

Notionally speaking the algorithm listed above describes a depth first recursion tree as
shown in Figure 4, where each node in tree are connected to its two butterfly outputs. The
depth first nature of the structure gives rise to complications even while implementing it
in software. The problem with implementing such a routine, even in software, is the high
number of context switches, that is needed to traverse one level down. In layman’s terms,
before we can do a downward dive in the tree, the current state information, variables etc
has to be stored in a separate memory location (usually denoted as “call-stack”). This
costs time/energy and makes the algorithm less attractive from a practical point of view.

490 Compact Circuits for Efficient Möbius Transform

(n,↓d) coefficients

(n-1,↓d) (n-1,↓d)

(n-2,↓d)(n-2,↓d) (n-2,↓d) (n-2,↓d)

b

b

b

b

(n−d) levels

(2n−d) leaf nodes

b

b

b

A0

Atop Abottom

Figure 4: Recursion tree for the Möbius Transform algorithm. The blue shaded component
roughly represents one arm of the butterfly unit. Note here (x, ↓ d) :=

(
x
↓d
)
.

3.3 Hardware circuit Polymob1
The goal obviously is to construct a circuit that does not take more than a total of S(n, d)
bits of register space. As such we are looking at a circuit architecture similar to the one
shown in Figure 5.

To understand the challenges in this circuit, note that one needs to follow the flow given
by the orange line in the recursion tree in Figure 4. Now there is one top-level register of
size

(
n
↓d
)
storing the initial ANF vector A0. There is only one

(
n−1
↓d
)
size register to store

the second level coefficients Atop and Abottom. This implies that if in the first clock cycle
the 2nd register stores Atop, it must preserve this state till the entire left sub-tree rooted
at this node is executed before it overwrites its state to Abottom. Similarly there is only one(
n−2
↓d
)
register to store potentially four ANF vectors (two each from the butterfly operation

on Atop and Abottom). Thus the engineering challenge is to ensure that each register at the
successive levels store and preserve appropriate state vectors till it is time to overwrite
them, and so this in a manner that minimizes the total number of clock cycles required to
execute the Möbius Transform.

Thus we arrive at the architecture in Figure 5. Each i-th level has a single register of
size

(
n−i
↓d
)
(for 0 ≤ i ≤ n− d), and from i = 1 onwards each register is preceded by a 3:1

multiplexer of size
(
n−i
↓d
)
. This is because each register must be able to accept 3 different

inputs:

1. Its own output state, or in other words it must be able to preserve its state.

2. Either of the 2 outputs of the butterfly stage preceding it.

3.3.1 Architectural Details:

We begin by noting that a 3 : 1 multiplexer is not necessary for the above architecture
unless we add other functionalities to the circuit like the one described in Section 4.3. For
executing the basic Möbius Transform a 2 : 1 multiplexer will also serve the purpose. We
explain this with the first couple of registers but the same principle holds for the registers
in the lower levels too. Note that the second register in its lifetime can only store two
vector values Atop and Abottom depending on how far the execution has reached in the

Subhadeep Banik and Francesco Regazzoni 491

b

b

b

(n,↓d) coefficients

(n-1,↓d)

(n-2,↓d)

(d,↓d)

S[0]

S[1]
(n-d)
Levels

Partial
Truth
TableExpmob1

Figure 5: Hardware architecture Polymob1 for the Möbius Transform algorithm. The blue
shaded part roughly represents one arm of the butterfly unit. Note here (x, ↓ d) :=

(
x
↓d
)
.

process of the traversal of the recursion tree. Both of these are obtained from the butterfly
operation on A0 which resides on the register at the level just above. Thus the idea is to
have a single 2:1 multiplexer separating the two registers, which takes as input the two
outputs of the butterfly operation. When the 2nd level register would need to preserve
state (Atop or Abottom), it can be done by appropriately setting the select signal of the
multiplexer: for example to preserve Abottom we just need to set the select signal of the
preceding mux so that it accepts the Abottom signal from the previous butterfly stage.

It remains to be seen how one can effectively set the multiplexer signals. In order to do
that let us try to observe a small example. We will make use of a more general notation
for the successive ANF vectors instead of just Atop/Abottom, since we have to accommodate
ANFs at different levels. We use the notation A[`]b to denote the ANF vector at some
level of the recursion tree: the ` term in the square braces denotes the level of the ANF
vector in the recursion tree, and the term b which can be seen as a binary string or integer
contains information about the coordinates over which the derivatives have been computed
to obtain the function.

Example 3. For example, take the case when n = 5, d = 2. The ANF of original
function f(x0, x1, x2, x3, x4), we denote by the notation A[0]000: note that the subscript
is a binary string of length n− d (which is 3 in this example). This is because there are
n− d levels in the recursion tree, each obtained by taking derivative over some co-ordinate
variable. The level 1 ANFs corresponding to the functions f(0, x1, x2, x3, x4) and δf

δx0
=

f(0, x1, x2, x3, x4) ⊕ f(1, x1, x2, x3, x4) are denoted by A[1]000 and A[1]100 respectively
(thus Atop and Abottom defined earlier are equal to A[1]000 and A[1]100 respectively in this
new notation). Similarly the two level 2 functions obtained by applying the butterfly layer
on A[1]000 (by taking derivative over x1) are denoted as A[2]000 and A[2]010. Similarly
butterfly over A[1]100 yields the two vectors A[2]100 and A[2]110.

Generalizing this: if A[`]b is the ANF vector at some level ` of the tree, then after
applying the butterfly over the coordinate x`, the two output vectors are denoted as

492 Compact Circuits for Efficient Möbius Transform

A[`+ 1]b and A[`+ 1]b⊕e`
, where et is the unit vector of length n− d with 1 at the t-th

position, eg. e0 = 100 . . . 0, e1 = 010 . . . 0 etc. At this moment, let us turn towards the
example in Figure 6, where we have manipulated the select signals of each multiplexer so
that the entire Möbius Transform is computed in 2n−d = 8 cycles, i.e. in each of the 8
cycles we get one partial truth table of size

(
d
↓d
)

= 2d = 4. Initially the top-level register
would be initialized with A[0]000 and the remaining registers would stay uninitialized. In
the 2 cycles following this, the select signals of each multiplexer, is set to zero so that,
after this each level ` register contains A[`]000. Figure 6 shows us the flow of data in each
of the 8 cycles succeeding this.

We introduce an additional notation: let S[`]t be the select signal of the multiplexer
between the registers at levels ` and `+ 1 at time t. Which is to say that if S[`]t = 0 and
the ANF vector at level ` at time t is A[`]b, then at time t+ 1, the ANF vector at level
`+ 1 is A[`+ 1]b, and if S[`]t = 1 then the corresponding vector is A[`+ 1]b⊕e`

(this can
also be written as A[`+ 1]b+e`

since by design the coordinates of b at positions larger than
` are all 0). The two expressions can obviously be combined to give the single compact
expression A[`+ 1]b+S[`]t·e`

that caters for both values of S[`]t. In Figure 6, we have done
a series of assignments to the variables S[`]t (for 0 ≤ ` < n− d and 0 ≤ t < 2n−d − 1) so
that the vector at the bottommost level of the register chain is always A[n − d]t for all
0 ≤ t < 2n−d. Since Expmob1 is connected to the bottommost register, this ensures that
the all the partial truth tables are faithfully computed and the circuit indeed computes
the Möbius Transform of any five variable Boolean function of degree upto 2. However we
are more interested in engineering the multiplexer signals for general values of n, d. To do
so, equivalently consider the subscripts of the ANF vectors as integers, and return to the
example in Figure 6. Initially all the subscripts at all the levels are zeros: thereafter we
have the following subscripts assuming that all the S[`]t’s are unknowns.

Table 1: An example table of the subscripts at al levels, with respect to time.
t ` = 0 ` = 1 ` = 2 ` = 3
0 0 0 0 0
1 0 4 · S[0]0 2 · S[1]0 S[2]0
2 0 4 · S[0]1 4 · S[0]0 + 2 · S[1]1 2 · S[1]0 + S[2]1
3 0 4 · S[0]2 4 · S[0]1 + 2 · S[1]2 4 · S[0]0 + 2 · S[1]1 + S[2]2
4 0 4 · S[0]3 4 · S[0]2 + 2 · S[1]3 4 · S[0]1 + 2 · S[1]2 + S[2]3
5 0 4 · S[0]4 4 · S[0]3 + 2 · S[1]4 4 · S[0]2 + 2 · S[1]3 + S[2]4
6 0 4 · S[0]5 4 · S[0]4 + 2 · S[1]5 4 · S[0]3 + 2 · S[1]4 + S[2]5
7 0 4 · S[0]6 4 · S[0]5 + 2 · S[1]6 4 · S[0]4 + 2 · S[1]5 + S[2]6

Note that the above follows since e` = 2n−d−1−` as an integer, and therefore b+ S[`]t ·
e` = b + S[`]t · 2n−d−1−`. We have already seen that for this to serve our purpose, the
integer values of the last column of the above table should be 0 to 7. In other words we
need S[`]t’s from the set {0, 1} which are solutions of the following system of equations
over the integers.

S[2]0 = 1
2 · S[1]0 + S[2]1 = 2

4 · S[0]0 + 2 · S[1]1 + S[2]2 = 3
4 · S[0]1 + 2 · S[1]2 + S[2]3 = 4
4 · S[0]2 + 2 · S[1]3 + S[2]4 = 5
4 · S[0]3 + 2 · S[1]4 + S[2]5 = 6
4 · S[0]4 + 2 · S[1]5 + S[2]6 = 7

Subhadeep Banik and Francesco Regazzoni 493

A[0]000

S[0]0=0

S[1]0=1

A[1]000

A[2]000

S[2]0=1

A[3]000

A[0]000

S[0]1=1

S[1]1=1

A[1]000

A[2]010

S[2]1=0

A[3]001

(a) t=0 (b) t=1

A[0]000

S[0]2=1

S[1]2=0

A[1]100

A[2]010

S[2]2=1

A[3]010

(c) t=2

(d) t=3 (e) t=4 (f) t=5

(g) t=6 (h) t=7

A[0]000

S[0]3=1

S[1]3=0

A[1]100

A[2]100

S[2]3=0

A[3]011

A[0]000

S[0]4=1

S[1]4=1

A[1]100

A[2]100

S[2]4=1

A[3]100

A[0]000

S[0]5=0

S[1]5=1

A[1]100

A[2]110

S[2]5=0

A[3]101

A[0]000

S[0]6=0

S[1]6=0

A[1]000

A[2]110

S[2]6=1

A[3]110

A[0]000

S[0]7=0

S[1]7=0

A[1]000

A[2]000

S[2]7=0

A[3]111

Figure 6: Dataflow for the first 8 cycles.

494 Compact Circuits for Efficient Möbius Transform

It can be verified that the assignments to the S[`]t’s in Figure 6 satisfy the above equation
system. We address the issue of the general case with the following theorem.

Theorem 1. Given the circuit Polymob1 in Figure 5, in which each of the registers have
been initialized with the ANF vectors A[`]0n−d for all 0 ≤ ` ≤ n−d of an n-variable Boolean
function f of degree less than or equal to d. Then it is possible to design the multiplexer
signals S[`]t for 0 ≤ t ≤ 2n−d − 2 using logic gates efficiently, so that the circuit computes
the Möbius Transform of f in exactly 2n−d clock cycles.

Proof. We essentially have to prove that we can engineer the multiplexer signals S[`]t
efficiently so that the subscripts of the ANF vectors at the bottommost i.e. level n− d, at
t = 0→ 2n−d − 1 are each equal to t itself. Generalizing the observations made above, we
need S[`]t’s from the set {0, 1} which are solutions of the following system of equations
over the integers. Let u := n− d. Let i be a sequence variable and set j := u− 1− i for
conciseness, then we have

S[u− 1]0 = 1
2·S[u−2]0 + S[u− 1]1 = 2

...
2i · S[j]0 + · · · + S[u− 1]i = i + 1

...
2u−1 · S[0]0 + 2u−2 · S[1]1 + · · · + 2i · S[j]j + · · · + S[u− 1]u−1 = u

2u−1 · S[0]1 + 2u−2 · S[1]2 + · · · + 2i · S[j]j+1 + · · · + S[u− 1]u = u + 1
...

2u−1 ·S[0]2u−u−1 + 2u−2 ·S[1]2u−u + · · · + 2i·S[j]−i+2u−2 + · · · + S[u− 1]2u−2 = 2u − 1

To solve the above equation system, observe that the right side always has a u-bit
integer i.e. between 1 and 2u − 1. Not only that, the left side of each equation resembles
the decimal expansion of a u-bit binary string. For example the LHS of the last equation is
the decimal expansion of the u-bit binary string S[0]2u−u−1, S[1]2u−u, · · · , S[u− 1]2u−2.
Thus a trivial way to solve the above equation system is to assign to the unknowns the
values obtained from the binary representation of the corresponding integer in the right
side. For example, since the binary form of 2u− 1 is the u-bit string of all 1s we can assign
S[0]2u−u−1 = S[1]2u−u = · · · = S[u− 1]2u−2 = 1.

Thus we can see that a solution to the above equation system exists: however we will
further show that each of the signals S[`]t can be efficiently generated using a reasonable
amount of logic circuits. Using the method outlined above, we can immediately see that
S[u− 1]t = t+ 1 mod 2 for all t. With some misuse of notation the above can be written
as NOT (t mod 2), i.e. if we have a decimal up-counter implementing t, then the S[u− 1]t
signal can be implemented by inverting the least significant bit of t. Similarly the sequence
S[u − 2]t, t = 0, 1, 2, . . . is the second lsb of the sequence 2, 3, 4, . . ., i.e. the second lsb
of t+ 2. For the general case, let us look at the i-th column from the end of the above
equation system which has been highlighted in green. It can be seen that the sequence
S[j]t = S[u−1−i]t, t = 0, 1, 2, . . . is the i+1-th lsb of the sequence (i+1), (i+2), (i+3), . . .,
i.e. the (i+ 1)-th lsb of t+ i+ 1. Thus to construct all the signals S[`]t all we need are
the following circuit elements:

1. A u-bit decimal up-counter for the variable t.

2. A series of u incrementers (i.e. add by 1 circuits) to generate t+ 1, t+ 2, . . . , t+ u.

This proves the theorem statement.

Subhadeep Banik and Francesco Regazzoni 495

Theorem 2. Furthermore it is possible to design a control circuit that generates all
the select signals of the multiplexers in the Polymob1 circuit, incurring a total delay of
2 log2(n− d) gates.

Proof. As noted in the proof of Theorem 1, the control circuit consists of a u-bit decimal
up-counter (where u := n− d) for the variable t and a series of u incrementers. However
constructing the whole incrementer leads to a wastage of gates since we are only interested
in generating the (i+ 1)-th lsb of t+ i+ 1 for i = 0, 1 . . . , u− 1.

Consider any p-bit string ~w = wp−1, wp−2, . . . , w1, w0 (note that the indexing with
starts from right side in this definition). Define the p-variable Boolean function gp,~w as
follows

gp,~w =
{∏

wi=0

[
xi ∨

∨p−1
j=i+1:wj=1 xj

]
1, when p = 0 or ~w = 1p.

For example the function g8, 0001 0100 = (x0 ∨x2 ∨x4) · (x1 ∨x2 ∨x4) · (x3 ∨x4) ·x5 ·x6 ·x7
and g3,111 = 1. Each product term begins with a min index that has 0 in the sting ~w.
In the first example, in ~w indices 0,1,3,5,6,7 have 0. Then each min index is ORed with
indices larger than it that have 1 in ~w. Further, if the length of ~w is more than p, we
truncate ~w to its p least significant bits. We will prove that the (i+ 1)-th lsb of x+ i+ 1 is
given by the Boolean function xi⊕ gi,bini(i), where bini(i) is the binary encoding of i using
i bits, i.e. prepended with leading zeros when necessary. For small i, this is easy to verify.
Denoting xj as the Boolean variable for the j-th bit of x, we know that for i = 0, the 1st
lsb of x+ 1 is given by x0⊕ 1 = x0⊕ g0,0. For i = 1, the 2nd lsb of x+ 2 can be computed
thus: when we add with 2, i.e. the string “10” the 1st lsb location generates no carry. The
result of addition in the 2nd lsb location is therefore x1 ⊕ 1⊕ 0 = 1⊕ x1 = x1 ⊕ g1,1.

For general values of i, we proceed as follows. Let bini(i) = ci−1, ci−2, . . . , c0, where
each cj ∈ {0, 1}. Of these let the locations 0 ≤ n1 < n2 < · · · < ns ≤ i− 1 be such that
cnk

= 1 for k = 1 to s, and the remaining cj ’s be 0. When adding two strings a, b, the
carry out bit in the j-th position can be written as maj(aj , bj , carryj−1) (where maj is
the majority function). We use two properties of this function: (1) maj(x, y, 0) = xy
and (2) maj(x, y, 1) = x ∨ y. Figure 7 visually represents the process of addition by the
constant i+ 1. Using the above property of the majority function, the figure becomes self
explanatory: however we still have to explain the symbols zj for j = 1 to s, which are the
carry-outs for the position nj . By using the second property, we have

z1 = xn1 ∨
n1−1∏
k=0

xk =
n1−1∏
k=0

(xn1 ∨ xk) = gn1,i(x)

The above follows because of the Boolean identity A∨BC = (A∨B)(A∨C), and i in the
subscript of g is the truncation of bini(i) to the appropriate number of bits. Following the
same logic we now have

z2 = xn2 ∨

(
z1 ·

n2−1∏
k=n1+1

xk

)

= (xn2 ∨ z1) ·
n2−1∏
k=n1+1

(xn2 ∨ xk) =
(
xn2 ∨

n1−1∏
k=0

(xn1 ∨ xk)
)
·
n2−1∏
k=n1+1

(xn2 ∨ xk)

=
n1−1∏
k=0

(xn2 ∨ xn1 ∨ xk) ·
n2−1∏
k=n1+1

(xn2 ∨ xk) = gn2,i(x)

Following this chain of arguments, it is straightforward to show that zs = gns,i(x) and
that the carry out of the (i − 1)-th location is zs ·

∏i−1
k=ns+1 xk = gi,bini(i)(x). Thus it

follows that the sum we are looking for is xi ⊕ gi,bin(i)(x).

496 Compact Circuits for Efficient Möbius Transform

x0xn1xn2xn3

0111

b b bb b bb b bb b b

a

xi xn1+1xn2+1

z1

Carry outs

z1xn1+1

0

z2

0

x1

0

x2

0

1

x1x0

xns

1

xn3+1

z3

0

zs

b b b

x0x2x1x0z2xn2+1z3xn3+1

xi−1

0

zs · ∏i−1
k=ns+1xk

xn1−1

0

∏n1−1
k=0 xk

Figure 7: Visual representation of the addition

The expression for gi,bin(i)(x) naturally has the longest circuit depth for i = u− 1 =
n− d− 1. The number of product terms in the expression is bounded by n− d. Therefore
the depth required to construct the product terms, if the and gates were arranged in a
binary tree like manner is around log2(n − d). Furthermore, each collection of bracket
containing terms that are OR-ed together can also have a maximum of n− d terms, which
implies each such term can also be constructed using log2(n − d) depth. Putting this
together we arrive at 2 · log2(n− d). We also have to account for the decimal up-counter t
which counts from 0→ 2n−d − 1 in steps of 1. But it is well known in circuit theory that
the maximum depth required in this up-counter is only log2(n− d) (i.e. for the update bit
of the msb flip-flop which is tn−d−1 ⊕

∏n−d−2
k=0 tk).

3.3.2 Representation of the ANF vector

So far we have avoided some of the finer operational details of the circuit to concentrate on
the macro-level issues of dataflow through the circuit. One of the important topics we have
not dealt with so far, is the issue of representing any degree-limited ANF coefficient set as a
bit vector. The uncompressed ANF vector of an n-variable Boolean function has 2n entries
and mapping each coefficient into an array can be done canonically as explained earlier
in Section 2 and further shown in Figure 2. For example the x0x2 term has coefficient 1:
since the term can be written as x101 := x1

0 · x0
1 · x1

2, the exponent vector 101 (5 in decimal)
denotes the position where a one is inserted in the array. However when we are dealing
with functions of a small degree d, coefficients of all terms of degree larger than d are zero
and so in order to accommodate the potentially

(
n
↓d
)
non-zero coefficients we must be able

to map them into an array of equal length, i.e. we need to decide which array location a
given coefficient is going to reside in. This is important to decide for the following reasons

1. We have left the issue of the ordering in Lines 1,2 in Algorithm 1 open. The ANF
vector should be so represented so that constructing the vectors Atop/Abottom from
A0 should be efficient at all levels of recursion.

2. The ANF representation should be such that we can efficiently use Expmob1 at the
leaf nodes of the recursion tree.

3. The circuit constructed for some n = n∗, d = d∗, should produce correct result when
used for all n < n∗ and d < d∗, i.e. the circuit should work seamlessly for all smaller
and lower degree Boolean functions.

Let H(n, d) be the set of all binary strings of length n whose hamming weight is less
than or equal to d, where we will treat the elements of this set as both binary strings
and integers. The goal is to construct a mapping χn,d : H(n, d)→

[
0,
(
n
↓d
)
− 1
]
, so that

the coefficient of the xD term for any D ∈ H(n, d) is placed at location χn,d(D) in the

Subhadeep Banik and Francesco Regazzoni 497

compressed ANF vector. From the description of Expmob1 in Section 3, the following
things can be seen
a) if we are using a butterfly circuit to construct the derivative with respect to any variable

x`, then the two inputs to the circuit are the coefficients at xD and xD⊕e` . Without
loss of generality, let us assume that the `-th bit of D is zero i.e. D · e` = 0.

b) The coefficient of xD is copied as is from A0 to Atop (or if we follow the terminology
developed later: from A[`]b to A[`+ 1]b). The coefficients of xD and xD⊕e` are added
and copied to A[`+ 1]b+e`

.

c) If D be such that hw(D ⊕ e`) > d, then this last addition is not necessary since the
coefficient of xD⊕e` is 0 by assumption.

However note that the size of the vectors A[`]b and A[` + 1]b are
(
n−`
↓d
)
and

(
n−`−1
↓d

)
respectively. So if any D ∈ H(n− `, d), then we ought to not only decide what χn−`,d(D)
would be but also in which locations of A[`+ 1]b/A[`+ 1]b+e`

, the butterfly outputs would
go to. It seems we need to determine a series of mappings χn−`,d, however we will see
how only unified mapping will take care of our requirements. Let χn,d(D) = y if D
be the y-th largest integer with hamming weight less than or equal to d. For example
when n = 8, d = 2, we have χ8,2(u) = u for 0 ≤ u ≤ 6, and χ8,2(8) = 7, χ8,2(9) = 8,
χ8,2(10) = 9, χ8,2(12) = 10 etc. The example makes it clear that the map χn,d induces a
co-lexicographical (colex) ordering among all d and lesser hamming weighted binary strings
of length n. In fact χn,d acts as a rank function that assigns strings ranks in accordance
with the colex ordering.

Note that we have f(x0, x1, x2, . . .) = x0 · δfδx0
(x1, x2, . . .) ⊕ f(0, x1, x2, . . .). Rewrite

this as x0 · f1(x1, x2, . . .) ⊕ f2(x1, x2, . . .), where f1 = δf
δx0

and f2 = (0, x1, x2, . . .). Note
that A[1]00... gets the ANF vector of f2 and A[1]10... gets the ANF vector of f1 ⊕ f2 after
the butterfly operation. Therefore we have the following transitions

1. Algebraically f2 is simply all terms of f with the terms containing x0 removed. In
terms of ANF, f2 is therefore simply the terms contained at the indices of type 0 ‖ s
(where s is any (n−1)-bit string) in the uncompressed ANF vector. These are simply
copied to the index s in f2. In the compressed world, therefore, all entries at location
χn,d(0 ‖ s) of A[0]00... should go to location χn−1,d(s) of A[1]00.... However note that
when expanded as integers, 0 ‖ s and s give rise to the same integer. Thus for ease
of use χn−1,d(s) can simply be denoted as χn,d(0 ‖ s), and if we view the arguments
of these functions as integers we do not need to define any χn−i,d separately.

2. Similarly for f1 ⊕ f2, in the uncompressed form, all terms at indices 0 ‖ s are added
with terms at 1 ‖ s and copied to 0 ‖ s. Thus in the compressed form we should add
terms at locations χn,d(0 ‖ s), χn,d(1 ‖ s) (if 1 ‖ s has hamming weight less than or
equal to d) of A[0]00... and copy it to location χn,d(s) of A[1]10....

3. The same idea applies to all the levels of the recursion tree.

4. Note that in χn,d all integers of hamming weight less than or equal to d are mapped
to itself. Thus at the lowest leaves of the recursion tree, we can apply the canonical
version of Möbius Transform as used in Expmob1.

We are yet to determine if the mapping χn,d can be computed efficiently. The following
lemma addresses this computational issue.
Lemma 1. For positive integers n, d with d ≤ n, and s ∈ H(n, d), let s = 2i0 + 2i1 + · · · ,
be the binary expansion of the integer s, where i0 > i1 > · · · ≥ 0. Then we have

χn,d(s) =
(
i0
↓ d

)
+
(

i1
↓ d− 1

)
+ · · ·

498 Compact Circuits for Efficient Möbius Transform

where we extend the definition of
(
x
↓y
)
as follows:

(
x

↓ y

)
=
{∑y

i=0
(
x
i

)
if x ≥ y,

2x otherwise.

Proof. As per the definition of χn,d, given s we have to count how many integers strictly
less than s have hamming weight bound by d. It is obvious that this number for any 2m
is simply

(
m
↓d
)
, i.e. number of m-bit strings of hamming weight less than or equal to d.

Hence the number of such strings in the range [0, 2i0) is
(
i0
↓d
)
. The number of such integers

in the range [2i0 , 2i0 + 2i1) are strings which have 1 in the i0-th position and of hamming
weight less than or equal to d− 1 in the last i1 bits, and therefore equal to

(
i1
↓d−1

)
. Taking

this argument forward for the successive i2, i3, . . ., we arrive at the required result.

3.4 Helping Circuit Compiler synthesize faster
The above lemma shows that the map χn,d(·) can be efficiently computed. However for
ease of synthesis, one may want to precompute and store a few of the above values to
help the circuit compiler construct an optimal circuit especially when n becomes larger.
One could store all values of χn,d(s), ∀s ∈ H(n, d) for this purpose, but note that the
arguments “s” of this function are not exactly contiguous integers and thus we would not
be able to store the function table in any continuous memory structure like an array. We
could employ a hash table for this purpose, however designing a good collision free hash
function for this purpose is an open problem.

Another method we could employ is to store the adjacency matrix of a graph that we
describe below. Note that at the `-th recursion step, we need access to locations χn,d(0 ‖ s),
χn,d(1 ‖ s) of the current register, where s is an n− `− 1 bit string. Imagine the graph
G = (V,E), in which the elements of

[
0,
(
n
↓d
)
− 1
]
are nodes and each node α in this set is

connected with at most n− d types of edges to at most n− d neighbors. An edge of type `,
(for 0 ≤ ` < n− d) connects α to β := χn,d

[
χ−1
n,d[α]⊕ e`

]
if hw(β) ≤ d and unconnected

otherwise. This is helpful because at step ` of the recursion tree, if α = χn,d(0 ‖ s) then
the two inputs to the butterfly circuit can be equivalently seen as the wires at locations α
and β, as it can be easily deduced that β = χn,d(1 ‖ s). One can now define the reduced
adjacency matrix AM of size

(
n
↓d
)
× (n− d) such that

AM [α, `] =
{
χn,d

[
χ−1
n,d[α]⊕ e`

]
, if hw(χ−1

n,d[α]⊕ e`) ≤ d
0 otherwise.

Thus the `-th recursion step can be re-written from:

• For all n− `− 1 bit strings s with hw ≤ d

1 A[`+ 1]b(χn,d(s))← A[`]b(χn,d(0 ‖ s))
2 If hw(χn,d(1 ‖ s)) ≤ d:

A[`+ 1]b+e`
(χn,d(s))← A[`]b(χn,d(0 ‖ s))⊕A[`]b(χn,d(1 ‖ s))

3 Else A[`+ 1]b+e`
(χn,d(s))← A[`]b(χn,d(0 ‖ s))

to the following equivalent form that uses the AM matrix:

• For α = 0 to
(
n−`−1
↓d

)
− 1

Subhadeep Banik and Francesco Regazzoni 499

1 A[`+ 1]b(α)← A[`]b(α)

2 If AM [α, `] 6= 0

A[`+ 1]b+e`
(α)← A[`]b(α)⊕A[`]b(AM [α, `])

3 Else A[`+ 1]b+e`
(α)← A[`]b(α)

Using the 2nd description is much easier to write an RTL code for describing the Möbius
Transform circuit in any hardware description language. Additionally, the circuit compiler
also outputs the optimized netlist faster. In Appendix A, we outline an algorithm to
generate AM efficiently in polynomial time.

3.5 Further Utilities

Using the circuit for smaller functions: The circuit once constructed for some upper
limit (n, d) also caters for Boolean functions for any number of variables n0 < n. Since
any n0-variable Boolean function (for n0 < n) is also an n-variable Boolean function, i.e.
with the additional variables set to zero, the only thing we need to do is to embed the
ANF of the n0-variable Boolean function as a the ANF of an n-variable Boolean function
with appropriate zero padding. This is aided by the fact that χn,d has been defined in
a manner so that χn−1,d(s) is the same as χn,d(0 ‖ s) for any (n− 1)-bit string s. Thus
in order to embed any (n − 1)-variable Boolean function we simply add the coefficient
corresponding to s in χn,d(0 ‖ s) and place 0 in χn,d(1 ‖ s). Since the function χn,d is
monotonous this would amount to filling up locations

[
0,
(
n−1
↓d
)
− 1
]
with coefficients of

the smaller Boolean function and padding the remaining i.e.
[(
n−1
↓d
)
,
(
n
↓d
)
− 1
]
locations

with zeros. By induction on i, the same applies to any arbitrary (n− i)-variable function.

Finding truth table when some variables are fixed to constants: Often one is interested
to find solutions to a system of equations in which a fraction of variables has been fixed to
some given constant. Since our strategy in solving a system of polynomial equations is
to compute the OR the respective truth tables (see Section 1.1), we would therefore be
interested to find the truth table of a polynomial when some variables are fixed. To do
this, we could either first simplify the given Boolean polynomial by fixing some individual
variables to constants and then using the corresponding reduced ANF vector as input to
the circuit, after appropriately zero padding it. However this naturally requires additional
computations, i.e to simplify the original polynomial in the first place.

However if the t variables to be fixed are lexicographically the first t variables of the
system (for any t ≤ n− d) then we can do better. We see from Figure 6, that at the i-th
stage the ANF vector at the bottom most register is A[n − d]binn−d(i). As a result the
truth table output after the Expmob1 circuit is f(binn−d(i), . . .), i.e. in which the first
(n − d) bits of f is already set to binn−d(i). Thus one can use this method to extract
the truth tables when the number of variables to be fixed are less than n− d. Note that
one may think that one would need to wait exactly i cycles to obtain the tables, which
can be counterproductive if i is large. Note that Figure 6 already starts with A[3]000 in
the bottom most register at t = 0, as in the previous 3 cycles, i.e. t = −3,−2,−1, the
corresponding S[i]t’s were all set to zeros. Instead if all of these were set to 1, then at
t = 0, the signal in the bottom most register would be A[3]111, and we would get the
truth table of f(1, 1, 1, . . .) from the Expmob1 circuit. Similarly by adjusting the initial
select signals we can get the truth table where the first (n− d) variables are fixed to any
arbitrary constant in the first cycle itself.

500 Compact Circuits for Efficient Möbius Transform

Table 2: Results for d = 2, 3, 4 for the Polymob1 circuit. Power reported at 1 GHz.
d = 4 d = 3

n Area Tcr Tmin Power Energy Area Tcr Tmin Power Energy
GE (ps) (ns) (mW) (nJ) GE (ps) (ns) (mW) (nJ)

8 2078 40.57 0.811 0.707 0.014 1468 41.11 1.521 0.479 0.018
9 3535 44.87 1.660 1.121 0.041 2265 41.47 2.903 0.721 0.050

10 5780 46.77 3.274 1.749 0.122 3338 45.48 6.134 1.043 0.141
11 9040 66.95 9.038 2.715 0.366 4682 60.25 15.906 1.461 0.386
12 13525 75.95 20.051 4.020 1.061 6563 48.69 25.367 2.029 1.057
13 20024 61.74 32.167 5.800 3.022 8900 74.46 76.992 2.740 2.834
14 28754 73.61 76.113 8.375 8.661 11792 72.00 148.248 3.620 7.453
15 40706 73.18 150.678 11.854 24.409 15228 74.82 307.361 4.729 19.428
16 56683 79.71 327.449 16.385 67.311 19457 68.95 565.735 6.091 49.976
17 77402 78.07 640.564 22.305 183.016 24253 83.31 1366.117 7.748 127.051
18 102916 90.26 1480.084 29.821 489.015 30839 81.32 2665.014 9.718 318.573
19 134835 93.46 3063.899 39.289 1288.025 37781 76.57 5019.317 11.988 785.846
20 174268 101.48 6652.217 51.141 3352.416 45653 83.87 10994.434 14.695 1926.389

d = 2
n Area Tcr Tmin Power Energy

GE (ps) (ns) (mW) (nJ)
8 856 49.24 3.445 0.284 0.020
9 1160 51.82 6.996 0.394 0.053

10 1506 47.20 12.461 0.490 0.129
11 1984 58.09 30.265 0.630 0.328
12 2552 69.16 71.511 0.802 0.829
13 3123 65.45 134.761 0.986 2.030
14 3817 70.22 288.464 1.183 4.860
15 4584 70.96 582.227 1.429 11.727
16 5445 71.81 1177.540 1.720 28.208
17 6495 74.33 2346.761 2.057 67.440
18 7575 75.33 4938.032 2.420 158.639
19 8766 86.07 11282.830 2.819 369.585
20 10168 81.94 21481.554 3.286 861.349

3.6 Synthesis Results

For the actual synthesis, we can do some optimizations as follows: In Figure 6, we can
see that the topmost register of size

(
n
↓d
)
essentially holds a constant value throughout

the lifetime of the Möbius Transform operation, and as such it can be removed from the
circuit if the ANF signal is assumed as available on the input wires to the circuit. Using
this tweak, we again synthesized the Polymob1 circuit using the Nangate 15 nm open cell
library for various values of n ∈ [8, 20] and d ∈ [2, 4]. Note that the values of d chosen
apply to a number of instances of cryptanalytic problems known in literature as mentioned
in the introduction.

The results are presented in Table 2. As stated earlier, the circuits were synthesized to
minimize the total critical path, which allows us to clock them using higher frequencies. The
minimum time Tmin taken to compute the transform is calculated as [2n−d + (n− d)] · Tcr
where Tcr is the critical path of the circuit. Since the depth of the circuit (and therefore
to some extent also Tcr) increases logarithmically and the number of cycles increases
exponentially with respect to (n − d), some interesting tradeoffs can be observed: for
example to compute the Möbius Transform of quadratic Boolean functions one may either
use the circuit for d = 2, 3 or 4. Because of the exponential dependence on n− d, the total
physical time taken to compute the transform undoubtedly decreases with increase in d:
however it has to be paid for with larger circuit area and energy consumption. Furthermore,
it can also be seen that for the range 8 ≤ n ≤ 14 for which we have experimental data
for the Expmob1,Expmob2, Polymob1 circuits, the energy consumed by the Polymob1
circuits is larger than the corresponding Expmob1/Expmob2 circuits. This is to be
expected primarily because Polymob1 is essentially a serialized circuit that performs the
transform using exponential amount of time (in n− d) whereas Expmob1/Expmob2 either
take constant or linear time to execute.

Subhadeep Banik and Francesco Regazzoni 501

3.7 Energy Analysis of the Polymob1 Circuit
We will try to construct an analytical model of the energy consumed in the circuit. It
is important to recall that two components are primarily responsible for the amount of
energy dissipated in CMOS circuits:

• Dynamic power dissipation due to the charging and discharging of load capacitances
and the short-circuit current. Each 0 → 1 / 1 → 0 transition contributes to the
dynamic dissipation, and hence this component varies directly as the clock frequency.

• Static power dissipation due to leakage current and other current drawn continuously
from the power supply. This type of power is generally not dependent on the
frequency of the clock driving the circuit.

Thus the total energy dissipation can be written as Etotal = Edynamic + Estatic. Since
static power is independent of clock frequency we can write Estatic = Pstatic · Td, where
Pstatic is the static power consumption and Td is the total physical time taken to compute
the Möbius Transform.

It is not altogether unreasonable to assume that Pstatic is related to the circuit area.
In this respect let us look at the combinatorial and sequential elements of the circuit
separately. The total number of flip-flops in the circuit can be estimated easily to be
equal to F (n, d) =

∑n−d
i=1

(
n−i
↓d
)
. The total static power due to this component can be

estimated to be around Pstatic,seq = F (n, d) · αs, where αs is the leakage power due to
a single flip-flop. To estimate the static power due to the combinatorial portion as an
expression is trickier since as n increases the compiler does various optimizations (which
involves including in final netlist, cells with higher number of inputs and drive strength) to
reduce the combinatorial circuit area. As a result, as n increases, the ratio between (a) the
actual combinatorial circuit area as reported by the compiler and (b) the area estimated
by counting the number of two input multiplexers and xor gates, continually decreases.
While the combinatorial static power Pstatic,comb can still be estimated as the product of
some constant αc and the combinatorial area Ac, there is no good way of estimating Ac in
terms of n, d. As a loose upper bound we can estimate Ac by counting the number of
multiplexers and xor gates, but this overestimates the static power as n increases.

Regarding the dynamic power, the lion’s share of the consumption is due to the register
writes. In our simulation results for (n, d) ∈ [8, 20]× [2, 4] the dynamic power contribution
due to the combinatorial portion of the circuit has been less than 10% of the total dynamic
power. Hence Pdynamic ≈ Pdynamic,seq = F (n, d) · βs, for some constant βs. Combining
the above three expressions the energy consumed in the circuit can be written as:

EPolymob1 = Td ·
(
F (n, d) · αs +Ac · αc + F (n, d) · βs

)
(3)

We can estimate Ac = F (n, d) ·Amux + (F (n, d) + d · 2d−1) ·Axor, where Amux/Axor are
the silicon areas of the 2 input multiplexer/xor gate respectively. The values of αc, αs, βs
can be estimated using power simulation for n = 8, d = 2, or any other data point.
At higher frequencies: The left side plots in Figure 8 show the comparison of the actual
energy consumption as reported by the power compiler and that estimated by the algebraic
expression in Equation (3), when the clock frequency is 10 MHz. The purple plot which
represents the figures obtained by Equation 3, clearly overestimates the energy. However
consider the case when the clock frequency is increased to 1 GHz: a) since the static power
is independent of the clock frequency, it remains the same, and b) the value of Td decreases
by a factor of 100. Both these factors ensure that the contribution of the static power to
the total energy consumption decreases 100-fold. The contribution of the dynamic power
however remains the same, since this is proportional to the clock frequency, i.e Pdynamic
itself increases 100-fold so that Pdynamic · Td remains constant. Then the total energy is
almost entirely dynamic in nature, and so the numbers estimated by Equation (3) more
closely matches the actual consumption as shown by the right side plots in Figure 8.

502 Compact Circuits for Efficient Möbius Transform

8 10 12 14 16 18 20
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

n

E
n
er
g
y
(n
J
)

Actual Consumption
Algebraic Estimation

(a) Degree=4, Freq=10 MHz

8 10 12 14 16 18 20
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

n

E
n
er
g
y
(n
J
)

Actual Consumption
Algebraic Estimation

(b) Degree=4, Freq=1 GHz

8 10 12 14 16 18 20
0

1,000

2,000

3,000

4,000

5,000

n

E
n
er
g
y
(n
J
)

Actual Consumption
Algebraic Estimation

(c) Degree=3, Freq=10 MHz

8 10 12 14 16 18 20
0

1,000

2,000

3,000

4,000

5,000

n

E
n
er
g
y
(n
J
)

Actual Consumption
Algebraic Estimation

(d) Degree=3, Freq=1 GHz

8 10 12 14 16 18 20
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

n

E
n
er
g
y
(n
J
)

Actual Consumption
Algebraic Estimation

(e) Degree=2, Freq=10 MHz

8 10 12 14 16 18 20
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

n

E
n
er
g
y
(n
J
)

Actual Consumption
Algebraic Estimation

(f) Degree=2, Freq=1 GHz

Figure 8: Energy plots for the Polymob1 circuit at clock frequency 10 MHz, 1 GHz. Note
that “actual consumption” refers to the energy obtained after timing simulation on the
synthesized circuit.

Subhadeep Banik and Francesco Regazzoni 503

4 Solving Polynomial equations of degree ≤ d

One of the primary uses of the Möbius Transform circuit is in finding solutions of a
system of Boolean polynomials bounded by some algebraic degree d. Recapitulating, if
f1, f2, f3, . . . , fm are the m polynomials whose common root we are aiming to find, then
the root r ∈ {0, 1}n is an n-bit vector which simultaneously satisfies f1(r) = f2(r) = · · · =
fm(r) = 0. We can combine the above in a single equation:

m∨
i=1

fi(r) = 0

In other words, we take the truth tables of each fi and cumulatively compute the logical
OR of them. The common root(s) will be indices at which the vector of cumulative OR
of the tables have 0 in them. However note that the Möbius Transform circuit we have
constructed outputs the truth table in parts. We have seen that when at the lowest register
the ANF vector is A[n − d]b, then the circuit outputs the truth table of the function
f(b, xn−d, . . . , xn−1), i.e. when the first n− d bits have been set to the constant b. With
this information let us begin to see circuit configurations that compute the root of a system
of equations.

4.1 Polysolve1
Let’s say we have m Boolean equations fi we need to solve. We begin by having m copies
of the Möbius Transform circuit in parallel, each for one of the polynomials fi. At the b-th
step, we have the truth tables fi(b, . . .) output from each of the circuits. We then have a
layer of OR gates to compute the logical disjunction of all the truth tables. After we have
done this we have the combined truth table vector of length 2d bits, whose zeroes give us
the roots of the equation. The following cases may occur

• The vector is the all 1 bit-string. This indicates that there is no root of the underlying
system in which the first n− d bits are set to the constant b.

• The vector contains a single 0 at some position t, whose binary encoding is given by
bind(t). In this case the root of the system of equations is b ‖ bind(t).

• The vector contains a multiple 0s, which indicates that there are multiple roots of
the system beginning with b. We may wish to find all such roots, or any one of them.
For the moment let us concentrate on finding any one of them.

If the task is to find only one such root, the most efficient way to find this would be a
priority encoder, that will encode to binary the first occurrence of zero in the 2d-bit string.
The circuit is described pictorially in Figure 9a. We describe some micro-level details of
the circuit below:

OR Network: In order to compute the disjunction of m vectors of length 2d each, it is
obvious that we need (m− 1) · 2d number of 2-input OR gates. However we can ensure
that the network has a total latency bounded by dlog2 me OR gates by arranging the gates
in inverted binary tree like manner, in which each level would contain around half the
gates contained in the previous level. For example if m = 8, the first level would have a
total of 4 OR gates of width 2d bits, the next level 2, and the final level a single gate. This
makes the total latency of the network equal that incurred in three OR gates.

Priority Encoder: For a 2d → d bit priority encoder, the functionality can be simply
described as a look-up table if d is small enough. For larger d, we can also use recursive

504 Compact Circuits for Efficient Möbius Transform

description of the encoder functionality. In both cases, the critical path in the encoder is
known to be proportional to d gates.

Circuit Area: If we do away with the first level register in the Polymob1 circuit the total
number of scan flip-flops required for the successive registers in the m Polymob1 instances
is m ·

∑n−d
i=1

(
n−i
↓d
)
< m · (n− 1)d+1 < m ·nd+1. It is not difficult to work out that the total

number of xor gates required is m ·
∑n−d
i=1

(
n−i−1
↓d

)
. Since the area of a 2-input xor gate

is much less than that of a scan flip-flop the total area can be loosely upper bound by
m ·nd+1. The remaining circuit elements contribute md · 2d−1 xor gates (for the Expmob1
circuits), (m− 1) · 2d OR gates (for the OR network) and the area required for the priority
encoder (this will be proportional to 2d). For small d, this can be ignored with respect to
m · nd+1.

Total Critical Path: As shown in Figure 9a, the total critical path in this architecture
is due to the combination of Expmob1, the OR network and the encoder (call this τA).
Since we have seen that each Möbius Transform takes around 2n−d clock cycles to output
all the truth tables, this implies that the circuit will take at least τA · 2n−d amount of
physical time to solve the system of equations.

AT product: We are looking to find AT when AT when A is polynomially upper-bounded
in n. For solving n equations in n variables of degree d, we have A ∈ O(nd+2) as required.
Since T = 2n−d, we have AT = nd+2 · 2n−d.

4.2 Polysolve2
In order to break up the long chain of combinatorial circuitry after the Möbius Transform
computations one could install pipeline stages in between them as shown in Figure 9b. The
introduction of the pipeline stages requires only m+ 1 registers of size 2d bits each (m for
Reg1 and one more for Reg2 as shown in Figure 9b) and reduces the delay caused due to
the long chain of combinatorial elements, and increases the computation time by only two
cycles. However the breaking up of this combinatorial path means that the critical path
in the circuit will now most likely be due to the series of u = n− d incrementer circuits
required for generating the select signals for the multiplexers in the Möbius Transform
circuit or the optimized version of it described in Theorem 2.

Note that (as we shall see shortly) for smaller values of d that we report in this paper
(i.e less than 4), there is not much difference between the critical paths of Polysolve1 and
Polysolve2. For smaller values of d, the total critical path τA is not very high and the
circuit compiler effectively balances out various parts of the netlist so that the total critical
path of the Polysolve1 circuit is comparable with the Polysolve2 circuit. However as d
increases, Polysolve2 performs much better with respect to total circuit latency.

4.3 Polysolve3
So far Polysolve1/Polysolve2 have been focused to find only a single root in the series
of partial truth tables generated from each fi. However some applications may need the
underlying hardware accelerator to find all the roots of a given equation system. There
are a few solutions to the above problem we could consider. First, the circuit may choose
to communicate the disjunction of partial truth tables back to the processor, without
applying the encoder. The root would then be extracted by the processor using its own
instruction set architecture. Second, instead of a priority encoder, the 2nd register (Reg
2) in Figure 9b, could be additionally equipped with bitwise shift functionality. After the
disjunction of the m truth tables is loaded on to it, the bits would be shifted out serially
with another counter maintaining the index of the bit shifted out. Now if one of the shifted
out bits is zero, then the index counter can be used to construct the root. However this

Subhadeep Banik and Francesco Regazzoni 505

b b b b

b b b b

Polymob1

Expmob1

2d → 2d bits

OR Network

Priority Encoder Root

Critical
path

f1 f2 fm

(a) Polysolve1

b b b b

b b b b

Polymob1

Expmob1

2d → 2d bits

OR Network

Priority Encoder
Root

f1 f2 fm

Reg 1

Reg 2

(b) Polysolve2

b b b b

b b b b

Polymob1

Expmob1

2d → 2d bits

OR Network

Priority Encoder

Root

f1 f2 fm

Reg 1

Reg 2

Decoder

= 1d ?
N

Freeze

OR

(c) Polysolve3

Figure 9: Circuits for solving m equations

would require freezing the operations of the Möbius Transform circuit for exactly 2d cycles,
i.e. the Möbius Transform circuit does not produce another partial truth table till the
processing of the current table is completed. This implies that the underlying registers of
the Polymob1 circuit would now actually need a 3:1 multiplexer preceding it to help in
freezing the dataflow. However this increases the number of cycles required to execute the
operation by a factor of 2d i.e. from 2n−d to 2d · 2n−d = 2n cycles.

However the solution we propose here will require exactly R+ 2n−d cycles, where R is
the total number of roots of the underlying equation system. The main issue arises when
the disjunction of truth tables contains multiple zeros. In that case a priority encoder only
fishes out the location of the zero which is numerically smallest. However consider the
event when this actually happens: using the inverse of an encoder i.e. a decoder, one can
convert the encoded vector V back to a 2d vector of hamming weight one, with one at the
V -th location. We then OR this vector with the current vector in Reg 2 and update it in
the next cycle. The updated vector has one less 0 than the original vector in Reg 2. If
this is now the all one vector then there are no more roots to fish out, else we repeat the
process to decrease the number of zeros in Reg 2 by one, till it has the all one vector.

Example 4. If d = 4, and the OR of the truth tables is T0 = 1011 1111 1111 0111,
then the priority encoder in the first cycle outputs 0001 which is the index of the first
0. The decoder outputs D0 = 0100 0000 0000 0000, which after OR with T0 becomes
T1 = T0 ∨D0 = 1111 1111 1111 0111, and has one less zero than T0, and is written back to
Reg2. In the next cycle we get the next root 1100 from the priority encoder which decodes
to D1 = 0000 0000 0000 1000. Therefore we have T2 = T1 ∨D1 = 1111 1111 1111 1111
which is now the all one string.

During this time the Polymob1 pipeline will have to be frozen (and thus a 3:1 mux
functionality is needed in the Polymob1 circuit), and it is not difficult to see that if each
of the i disjunction of the partial truth tables (for i ∈ [0, 2n−d − 1]) has ri roots (with∑
ri = R) then the i-th step will execute for exactly ri + 1 cycles. To see why, note that

there are two scenarios: (a) when the disjunction of the partial truth tables is the all one
string, it means that that the pipeline immediately moves on to the next partial truth
table and thus only spends one cycle here, and (b) when the string has one or more than
one zero the mechanism reduces the number of zeros in the string by one every cycle, as
explained above, till the all one string is reached. This needs 1 + ri cycles. Therefore the
total number of clock cycles required is

∑2n−d−1
i=0 (1 + ri) = 2n−d +

∑2n−d−1
i=0 ri = R+ 2n−d.

The circuit is described diagrammatically in Figure 9c.
Circuit Area: The only significant addition to the Polysolve1 circuit is the additional

506 Compact Circuits for Efficient Möbius Transform

2:1 muxes before each of the scan flip-flops in the Polymob1 circuit (thus achieving 3:1
multiplexer functionality). Thus the circuit area is now bound by m · nd+1 scan flip-flop
and 2:1 muxes.

Total Critical Path: As n increases, the critical path is expected to be due to the select
signal generation of the Polymob1 circuit which has been shown to be proportional to
2·log2(n−d). If the underlying clock signal has this period then the total physical time taken
to solve the system will be proportional to 2 · log2(n−d) · (2n−d+R) ≈ 2 · log2(n−d) ·2n−d.

AT product: For solving n equations of degree d, we have that A ∈ O(nd+2) is again
upper-bounded. So we have AT = nd+2 · (R+ 2n−d).

4.4 Synthesis Results
In Figure 10, we present synthesis figures for the three solvers for the range of values of
n ∈ [8, 20] and d ∈ [2, 4]. We have let m = n, so that the circuits directly output the roots
of the underlying equation system. The figure shows the silicon area, theoretically the
lowest physical time taken (which is the product of the critical path and the number of clock
cycles required, which would occur if the circuit were to be clocked at the critical path)
and the total energy consumed. The red and the blue curves for each plot (denoting the
Polysolve1 and Polysolve2 circuit respectively) are almost coincident, which implies that
for the range of values of d we have chosen, the circuits have similar performance metrics.
The figures of time and energy for the Polysolve3 circuit has been computed assuming
that R = n. It is evident that the Polysolve3 circuit is much larger than the corresponding
Polysolve1/Polysolve2 circuits since we need to use additional 2:1 multiplexer in each of
the internal registers of the Polymob1 circuit to periodically freeze the dataflow. Detailed
results are available in Tables 8, 9 in Appendix E.

5 Solving for energy efficiency: Polysolve4
In the previous section we used n instances of the Möbius Transform circuit when there
are n equations to solve. While this will certainly extract the root faithfully, it will do
a lot of redundant calculations. Imagine a scenario where n = 50, and there is a system
of 50 equations such that the common solution-space of the first 10 equations is only
around 90-100 vectors in {0, 1}50. In that case computationally it makes much more
sense to do the following: a) Take each root r ∈ the common solution-space of the first
10 equations, and b) evaluate fi(r) for 11 ≤ i ≤ 50: if all these fi(r)’s evaluate to 0
then r is a root of th equation system. This amounts to evaluating around 40 Boolean
functions over 90-100 points. So if we have only 10 Möbius Transform circuits that extract
the common roots of the first 10 equations then we can do the functional evaluations of
the remaining 40 equations over this common solution-space in software. This is exactly
the approach followed in [BCC+10, Din21]. On the other hand if we used the Möbius
Transform circuit 50 times, mathematically it is equivalent to evaluating the remaining
40 equations over all the 250 points of its input space. Naturally this amounts to a lot of
wastage in computational power and energy.

In [BCC+13], the authors had shown that computationally the optimum solution is
to use the hardware backend to solve the first µ ≈ log2 n equations. This reduces the
cardinality of the solution-space to small enough, so that the remaining n − µ Boolean
functions can be evaluated over the points of this solution-space in software and hardware.
In [Din21, Appendix B], the author suggested that such evaluation can be done using a
Horner-like method in batches. Both the above are software based solutions: in this paper
we present a purely hardware based solution that achieves this.

Subhadeep Banik and Francesco Regazzoni 507

d=2

8 10 12 14 16 18 20
0

100

200

300

400

500

n

A
re
a
(k
G
E
)

Polysolve1 Polysolve2
Polysolve3

(a) Area

8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5
·104

n

M
in

T
im

e
(n
s)

Polysolve1 Polysolve2
Polysolve3

(b) Time

8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

n

E
n
er
g
y
(µ

J
)

Polysolve1 Polysolve2
Polysolve3

(c) Energy

d=3

8 10 12 14 16 18 20
0

200

400

600

800

1,000

1,200

1,400

n

A
re
a
(k
G
E
)

Polysolve1 Polysolve2
Polysolve3

(d) Area

8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
·104

n

M
in

T
im

e
(n
s)

Polysolve1 Polysolve2
Polysolve3

(e) Time

8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

n

E
n
er
g
y
(µ

J
)

Polysolve1 Polysolve2
Polysolve3

(f) Energy

d=4

8 10 12 14 16 18 20
0

1,000

2,000

3,000

4,000

5,000

6,000

n

A
re
a
(k
G
E
)

Polysolve1 Polysolve2
Polysolve3

(g) Area

8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1
·104

n

M
in

T
im

e
(n
s)

Polysolve1 Polysolve2
Polysolve3

(h) Time

8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

n

E
n
er
g
y
(µ

J
)

Polysolve1 Polysolve2
Polysolve3

(i) Energy

Figure 10: Synthesis results for Polysolve1/Polysolve2/Polysolve3 circuits

5.1 Root Expander
A root expander RE(n, d) is a circuit component that takes any n-bit vector and generates
the values of all the degree d monomials in n-variables. Thus essentially it is a map from
{0, 1}n → {0, 1}(

n
↓d). For example RE(4, 3) over the vector (x0, x1, x2, x3) = (1, 0, 1, 1) will

generate the monomial values: const value= 1, x0x1 = 0, x0x2 = 1, x0x3 = 1, x1x2 =
0, x1x3 = 0, x2x3 = 1, x0x1x2 = 0, x0x1x3 = 0, x0x2x3 = 1, x1x2x3 = 0. It can be
deduced that the value of each such monomial takes one AND gate to evaluate (eg. x0x1x2
can be calculated by AND-ing x0x1 and x2 etc), and so the total hardware overhead is(
n
↓d
)
−n AND gates. The outcome of such a circuit is thus an expanded root r ∈ {0, 1}(

n
↓d).

5.2 Dot-Product
A dot-product essentially takes the ANF vector of a Boolean function and evaluates it over
an expanded root r. It can be shown that a simple dot-product over GF (2) will achieve

508 Compact Circuits for Efficient Möbius Transform

Expander

b b

b b

Polymob1

Expmob1

2d → 2d bits

OR Network

Priority Encoder

Root

f1 f2 fµ

Reg 1

Reg 2

Decoder

= 1d ?
No

Freeze

OR

fµ+1

fµ+2

fm

Dot Product

Dot Product

Dot Product

Expanded Root

b

b

b

OR

Tree

= 0 ?

Yes

Root Valid

PolySolve3 instance with µ equations

Root

Figure 11: Polysolve4 Architecture

this. For example when n = 4, d = 2, consider the function f = 1 ⊕ x0 ⊕ x2 ⊕ x0x1 ⊕
x2x3. Using the mapping χ4,2, the corresponding vector description for this function
is v=1011 0001 001. For the point r = (x0, x1, x2, x3) = (1, 0, 1, 1), we have, using the
χ4,2 map the corresponding description of the expanded root r=1111 0001 110. The
dot-product r · v = 0, gives the evaluation of f at the point r. Thus each dot-product
will need

(
n
↓d
)
AND gates and

(
n
↓d
)
− 1 XOR gates to compute (in practice the product is

usually computed using
(
n
↓d
)
NAND gates and a similar number of XNOR/XOR gates).

While the AND/NAND are done in parallel, the XNOR/XOR gates can of course be
arranged in a tree like structure giving a depth of log2

(
n
↓d
)
≈ d log2 n gates.

5.3 Circuit Architecture for Polysolve4
The circuit architecture for Polysolve4 is shown in Figure 11. The core of the circuit is a
Polysolve3 instance with only µ < m instead of m equations. This core only outputs the
common solutions r of the first µ equations f1, f2, . . . , fµ. Whenever such a root is output
it is introduced to the next pipeline: the expander first expands it to r of size

(
n
↓d
)
. Then

a simultaneous dot-product is done with the m− µ equations fµ+1, fµ+2, . . . , fm, which as
we have seen, evaluates the fi’s at the root r. If all these evaluations are 0, then so will
the OR of them which is calculated thereafter. If this OR of the evaluations is 0, the root
r is output by the circuit as a valid root of the entire equation system.

Circuit Area: Over and above Polysolve3 the circuit which has area bound by µ · nd+1

flip-flops/XOR gates we have overheads due to m− µ dot-product circuits, and expander
circuit and an additional m − µ gates for the second OR-tree. Since each dot-product
circuit also takes

(
n
↓d
)
∈ O(nd) gates, the area requirement is still O(m · nd+1).

Total Critical Path: A long combinatorial path is added in the circuit due to the combi-
nation of the dot-product and OR-tree which we have seen is around log2

(
n
↓d
)
≈ d log2 n

XOR gates + log2(m− µ) OR gates.

AT product: Since A ∈ O(nd+2) is again upper-bounded. We will see in Lemma 2 that
the number of common roots R of the first µ Möbius Transform circuits is around 2n−µ.
Therefore we have AT = nd+2 · (2n−µ + 2n−d).

5.4 Energy Analysis
If we conduct all experiments at high enough frequencies, the static portion of the energy
consumption becomes less of an issue, and so throughout the experiments we have kept

Subhadeep Banik and Francesco Regazzoni 509

the clock frequency at 1 GHz. Before we proceed let us look at the following lemma:

Lemma 2. Let f1, f2, . . . , fµ be identically and independently distributed balanced Boolean
functions of n variables each. Then the expected cardinality of the solution space of the
system of equations f1 = f2 = · · · = fµ = 0 is 2n−µ.

Proof. Given any r ∈ {0, 1}n, the probability that it is a root of any fi is 1
2 , since all the

polynomials are balanced. Assuming independence, the probability that r is a common
root of all the fi’s is 2−µ. Using linearity of expectation, the expected cardinality of the
solution space is thus 2n−µ.

In the above lemma we have assumed that Boolean functions are on average balanced.
However note that a randomly sampled Boolean function need not be balanced with
high probability. In fact this probability can be shown to be equal to approximately√

1/(π · 2n−1). However using Stirling’s approximations it can be shown that Pr[|wt(f)−
2n−1| ≤

√
2n−1] > 0.8 (for f sampled uniformly randomly from the set of n-variable

Boolean functions), which means that Boolean functions are close to balanced with high
probability. Note that it is more probable that a randomly selected lower degree function
is balanced. For example, [CB10, Theorem 2.3] tells us that a randomly selected quadratic
function is balanced with probability more than 0.4, both when n is even and odd.

Let us again note the construction of the Polysolve4 architecture. There is a Polysolve3
core that caters to only µ equations. The number of clock cycles that the Polysolve3
core would take to output its solutions space (i.e. of the first µ equations) is R+ 2n−d ≈
2n−µ + 2n−d by Lemma 2. Since each root is filtered by the dot-product immediately, this
is also the time required by the Polysolve4 circuit to complete its operations.

Let Pmob, Pdp be the dynamic power consumed by each Polymob1 and dot-product
circuit respectively, then we can conclude that at high enough clock frequencies, the energy
consumption is proportional to

E(m,µ) = (µ · Pmob + (m− µ) · Pdp + C) · (2n−µ + 2n−d) · Tclk, (4)

where C is the power consumed by the other circuit components, and Tclk is the clock
period. The most energy efficient solution would be the value of µ that minimizes the
above expression.

Note that Equation (4) presents a high-level overview of the energy consumption. In
practice as µ increases or decreases other parts of the circuit like the OR/XOR tree may
need to be scaled up or down resulting in the power consumption included in the term C
to be significant. However for a basic understanding we can use this expression. From our
simulation results it was very clear that Pmob � Pdp, (eg. at 1 GHz, for n = m = 20, d = 4
and µ = 6, we had Pdp ≈ 1.5 mW and Pmob ≈ 70 mW). So increasing µ will increase the
power consumption and area of the circuit. However it brings down the time taken for
the circuit to extract the roots significantly (since it depends on 2n−µ). If µ < d, then
increasing µ brings down the time taken by a large enough factor, so that the total energy
consumed decreases. However as soon as µ ≥ d, 2n−d becomes the more dominant term
in the time expression. And then any decrease in time due to increase in µ becomes
insignificant and cannot offset the power increase incurred due to the inclusion of more
Polymob1 circuits. Thus the optimum energy consumed is at some value of µ = d+ some
small constant. This has been verified by simulations shown in Figure 12.

The above analysis means that the optimal value of energy is attained at µ = d+ ε
where E(m, d+ ε) < E(m, d+ ε− 1) and E(m, d+ ε) < E(m, d+ ε+ 1). For m = n = 20,
d = 4, using the values of Pmob, Pdp solving the two inequalities gives ε = 2. In our
simulations we found slightly less energy consumption at ε = 4. Assuming that E(m,µ) is
minimized at this value of µ, the energy consumption required to solve a set of n equations
of degree d can be expressed asymptotically as proportional to d · Pmob · 2n−d. Since Pmob

510 Compact Circuits for Efficient Möbius Transform

2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

Min

Min

Min

µ

E
n
er
g
y
(µ

J
)

d=4 d=3 d=2

Figure 12: Energy consumption for varying µ for n = m = 20. The colored dashed lines
show the energy consumed by Polysolve3 for the corresponding equation systems.

itself is proportional to S(n, d) ∈ O(nd+1), we can speculate that the optimal energy is in
O(nd+1 · 2n−d). For detailed report of synthesis results please refer to Tables 3, 4, 5 in
Appendix C.

5.5 Height-bound trees for time/energy trade-offs: Polymob2 [h]
Note that a full-depth Polymob1 tree has height (n − d) and takes around 2n−d clock
cycles. If instead, we bound the height of the tree to n− h (i.e. by limiting the number of
vertically stacked registers in the circuit in Figure 5 to n− h), for some h > d, it follows
that we obtain a new Möbius Transform circuit which completes in 2n−h clock cycles which
a factor 2h−d faster than the plain Polymob1 circuit. This circuit (let’s call it Polymob2
[h]) faithfully computes the Möbius Transform of the original n-variable Boolean function
if the following conditions are met:

• Note that the ANF vectors in the lowest registers are A[n− h]i, ∀i ∈ [0, 2n−h − 1].
These are naturally the ANFs of Boolean functions of h variables. Thus the Expmob1
circuit connected to the bottom-most register must be of h-variables instead of d-
variables needed in Polymob1.

• The Expmob1 circuit expects inputs of size 2h bits canonically arranged as explained
in Section 2. However, the lowest level vector A[n− h]i is of size

(
h
↓d
)
and the bits of

the vector are arranged according to the mapping χn,d. Thus one needs to apply the
inverse mapping χ−1

n,d to the vector before it is input to the Expmob1 circuit. Since
χ−1
n,d :

[
0,
(
n
↓d
)
− 1
]
→ H(n, d), naturally all the h-bit locations with hamming weight

greater than d are initialized to 0.

Although it may appear that increasing h would result in substantial decrease in
time/energy of computation, however note that we can not decrease the number of clock
cycles by arbitrarily increasing h. This is because as h increases the critical path of
the Expmob1 circuit becomes dominant. In that case the critical path of the circuit is
essentially given by the maximum of 2 log2(n− d) and h (which is the number of butterfly
layers required in the Expmob1 circuit). Once this happens we can clock the circuit at
lesser frequencies, which would increase the physical time of computation. In fact one can
easily deduce that Polymob2 [d] is equivalent to the Polymob1 circuit and Polymob2 [n]
is essentially equivalent to the fully combinatorial Expmob1 circuit for n variables. So

Subhadeep Banik and Francesco Regazzoni 511

increasing the value of h beyond a point always proves counter-productive. Note that when
we use the Polymob2 [h] circuits as components of equation solvers, as will be described in
the next section, many circuit components that follow the Möbius unit, scale exponentially
with h. This also ensures that scaling the value of h after a certain point is infeasible.

5.6 Polysolve4 solvers with Polymob2 [h] circuits
One can now think of Polysolve4 solvers that uses these depth bound Möbius Transform
circuits as the core circuit replacing the plain Polymob1. Following the arguments in the
previous sub-section it can be seen that the total number of cycles taken by this architecture
is around 2n−h + 2n−µ. However as we have alluded to before, as h increases the sizes
of the Expmob1 and Encoder-Decoder circuits that follow it also increase exponentially.
This increases the critical path of the circuit and the power consumption and so after a
certain point the energy and the total physical time required to solve the system increases.
One can list the salient features of the circuit thus:

Circuit Area: The circuit now requires µ ·
∑n−h
i=1

(
n−i
↓d
)
flip-flops/XOR gates which is loosely

upper-bounded by µ ·nd+1. Combining with the dot-product circuits, the area requirement
for the dot-product and Polymob1 circuits is still O(m · nd+1). As h increases we also
need to be mindful of the additional overhead of the µ Expmob1 circuits, and encoder and
decoder circuit all of which grow exponentially with h and is of the order µ · h · 2h.

Total Critical Path: The encoder/decoder and the Expmob1 both have circuit depth
proportional to h gates. Thus the critical path which grows due to the combination of
these 2 circuit components will be the maximum of the delay due to these 2 circuit parts
and that of the plain Polysolve4 solver.

AT product: Note that A grows as h increases. For m = n, we have A ≈ n ·nd+1 +µ ·h ·2h.
Since the time taken 2n−h + 2n−µ is dependent on two parameters h, µ, in order to balance
out the time contributions resulting form the 2 choices of parameter, we set h = µ. This
leads us to the product AT = (nd+2 + h2 · 2h) · 2n−h+1. If we choose the value of h = ĥ

such that ĥ2 · 2ĥ = nd+2, then A ∈ O(nd+2) as required, and we have AT = 4 · nd+2 · 2n−ĥ.
This seems to be the minimum AT product for all the solver circuits we have considered.

5.7 Energy Analysis
For the next set of experiments we kept n = m = 20 and h = µ and varied the value of h.
The goal was to find the value of h at which the energy consumed will be optimal. The
results of the next set of experiments are presented in Table 6, and the results presented
graphically in Figure 13.

To analyze the increase of energy consumption with respect to n, h we have to be
mindful of the fact that as h increases the contribution of the Expmob1 circuit to the
total energy consumption increases exponentially as h. We already know that the size of
Expmob1 circuit is O(h · 2h). We conjecture that the power consumed varies as h2 · 2h.
The reasoning is similar to the one followed in [BBR15]. If we assume that each xor gate
in the first layer of the butterfly consumes power proportional to 1 unit (see Figure 2),
then due to the propagation of glitches from one layer to the other, each xor-gate in the
second, third, fourth layers consume power proportional to 1 + δ, 1 + 2δ, 1 + 3δ etc, where δ
is some positive constant. The sum

∑h
i=1 1 + (i− 1)δ is a well known arithmetic series and

is of the order h2δ. Since there are 2h−1 xor gates in each layer we can conclude that the
power consumption of the Expmob1 varies as h2 · 2h. The remaining analysis is similar to
the plain Polysolve4 circuit. Let Pmob, Pexpmob, Pdp be the dynamic power consumed by
each Polymob1 (without Expmob1), the Expmob1 and dot-product circuit respectively,

512 Compact Circuits for Efficient Möbius Transform

3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

35

40

h

E
n
er
g
y
(µ

J
)

n=20,d=2
n=20,d=3
n=20,d=4

Figure 13: Energy decrease with increasing h for Polysolve4 solvers for n = 20, h = µ.
The colored horizontal lines indicate the optimal energy consumption for the full depth
Polysolve4 circuit for the same equation system.

then we can conclude that at high enough clock frequencies, the energy consumption is
proportional to

E′(m,µ) = (µ · Pmob + µPexpmob + (m− µ) · Pdp + C) · (2n−µ + 2n−h) · Tclk, (5)

where C is the power consumed by the other circuit components, and Tclk is the clock
period. For m = n and h = µ, we obtain E′(n, h) ≈ (h · (Pmob + Pexpmob) + (n− h) · Pdp)·
2n−h+1 · Tclk.

Asymptotically since both Pmob, Pexpmob � Pdp, and since Pmob ∝
∑n−h
i=1

(
n−i−1
↓d

)
<

C1 · nd+1 and Pexpmob ∝ h2 · 2h ≈ C2 · h2 · 2h, we have the asymptotical expression
E′(n, h) ≈ (h · C1 · nd+1 + h3 · C2 · 2h) · 2n−h+1 · Tclk, where C1, C2 are constants of
proportionality. The value of h at which a minimum is achieved depends on how much C1
is larger than C2. Generally in our experience, we find that C1 is much larger than C2
for not very large values of h, and increasing h will continue to decrease E′ as long as the
contribution due to Pexpmob is below that of Pmob. For example for, m = n = 20, d = 4,
at 1 Ghz for the Nangate 15 nm process, we find that Pmob ≈ 70 − 75 mW as h varies
between 5 to 12, which makes C1 ≈ 3.5 µW . Pexpmob more readily varies with h, and
we found that for this set of parameters we can approximate it as 82 · h2 · 2h nW (this
was estimated by studying the power simulation reports of the individual circuits for h
varying between 5-12, and is reasonably accurate). This gives us a minimum at h = 14, at
which E′(20, 14) is estimated to be around 0.6 µJ which is much less than the 32.6 µJ we
obtained for the full-depth Polysolve4 circuit, and around 100 times less than the 68.4 µJ
obtained for the Polysolve3 circuit. 1

Optimal energy consumption There are some practical issues in directly applying the
asymptotic expression. As h increases, the Expmob1 circuit dictates the critical path of
the circuit. If we want to clock the circuit at frequency f , we need to ensure that h is small
enough so that the critical path does not exceed 1/f . With this in mind let us re-examine
the asymptotic expression of E′(n, h). To minimize this expression we should set the
smallest value of h = h0 such that h3

0 · 2h0 · C2 > 2 · h0 · C1 · nd+1, and which additionally
keeps the critical path under Tclk. Then the optimal value of E′ < 3h3

0 · C2 · 2n · Tclk.

1Due to time constraints we did the actual simulation only upto h = 12 as seen in Figure 13. For
h ≥ 13 the synthesis takes close to 24 hours

Subhadeep Banik and Francesco Regazzoni 513

6 Conclusion
In this paper, we propose, design and evaluate hardware architectures to perform Möbius
Transform of Boolean functions using only polynomial amount of silicon area. In a nutshell,
this is a serialized implementation of the basic transform and uses around 2n−d clock cycles
to generate the entire truth table of the Boolean function. The immediate application of
the circuits is to use it to solve an underlying system of low degree equations over GF(2),
a problem which occurs in many cryptanalytic attacks on real world cryptosystems. We
further describe architectures for such equation solvers which keeps the critical path of the
circuit to a minimum. One of the first conclusions of the paper is the demonstration that
a system of m Boolean equations in n variables and algebraic degree upto d can be solved
using silicon area proportional to m · nd+1 gates and using physical time proportional to
2n−d · log2(n− d).
In the second part of the paper we introduce the Polysolve4 circuit that additionally aims
to achieve energy efficiency by checking the common solutions of a reduced number of
equations using specialized dot-product circuits. The new circuit has area also bound
by m · nd+1 and has circuit depth proportional to d · log2 n. We also show that further
optimizations with respect to energy may be obtained by using depth-bound Möbius
circuits that exponentially decrease run time at the cost of additional logic area and
depth. For n = m = 20, d = 4, we show that the final circuit is around 100 times more
energy efficient than the Polysolve3 circuit. Regarding future work, the next step could
be the acceleration of the proposed architecture using an high performance computation
environment [PBB+21].

Acknowledgments
This work is partially supported by the EU Horizon 2020 Programme under grant agreement
No. 957269 (EVEREST). The authors thank the anonymous reviewers of TCHES for the
productive comments that helped to improve the presentation of this work. Special thanks
to Charles Bouillaguet for enabling us to make the paper mathematically more precise.

References
[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,

and Michael Zohner. Ciphers for MPC and FHE. In Advances in Cryptology -
EUROCRYPT 2015 - 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part I, pages 430–454, 2015.

[Bar09] Gregory Bard, editor. Algebraic Cryptanalysis. Springer, 2009.

[BBR15] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Exploring
energy efficiency of lightweight block ciphers. In Orr Dunkelman and Liam
Keliher, editors, Selected Areas in Cryptography - SAC 2015 - 22nd Interna-
tional Conference, Sackville, NB, Canada, August 12-14, 2015, volume 9566
of Lecture Notes in Computer Science, pages 178–194. Springer, 2015.

[BCC+10] Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou, Ruben
Niederhagen, Adi Shamir, and Bo-Yin Yang. Fast exhaustive search for poly-
nomial systems in F2. In Stefan Mangard and François-Xavier Standaert,
editors, Cryptographic Hardware and Embedded Systems, CHES 2010, 12th

514 Compact Circuits for Efficient Möbius Transform

International Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Pro-
ceedings, volume 6225 of Lecture Notes in Computer Science, pages 203–218.
Springer, 2010.

[BCC+13] Charles Bouillaguet, Chen-Mou Cheng, Tung Chou, Ruben Niederhagen, and
Bo-Yin Yang. Fast exhaustive search for quadratic systems in F2 on FPGAs.
In Tanja Lange, Kristin E. Lauter, and Petr Lisonek, editors, Selected Areas
in Cryptography - SAC 2013 - 20th International Conference, Burnaby, BC,
Canada, August 14-16, 2013, Revised Selected Papers, volume 8282 of Lecture
Notes in Computer Science, pages 205–222. Springer, 2013.

[BDL+21] Christof Beierle, Patrick Derbez, Gregor Leander, Gaëtan Leurent, Håvard
Raddum, Yann Rotella, David Rupprecht, and Lukas Stennes. Cryptanalysis
of the GPRS encryption algorithms GEA-1 and GEA-2. In Anne Canteaut and
François-Xavier Standaert, editors, Advances in Cryptology - EUROCRYPT
2021 - 40th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings,
Part II, volume 12697 of Lecture Notes in Computer Science, pages 155–183.
Springer, 2021.

[BDT22] Charles Bouillaguet, Claire Delaplace, and Monika Trimoska. A simple de-
terministic algorithm for systems of quadratic polynomials over f2. In Karl
Bringmann and Timothy M. Chan, editors, 5th Symposium on Simplicity in
Algorithms, SOSA@SODA 2022, Virtual Conference, January 10-11, 2022,
pages 285–296. SIAM, 2022.

[BFSS13] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Pierre-Jean Spaenle-
hauer. On the complexity of solving quadratic boolean systems. J. Complex.,
29(1):53–75, 2013.

[BKW19] Andreas Björklund, Petteri Kaski, and Ryan Williams. Solving systems of poly-
nomial equations over GF(2) by a parity-counting self-reduction. In Christel
Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors,
46th International Colloquium on Automata, Languages, and Programming,
ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages
26:1–26:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[BMP+06] Andrey Bogdanov, M. C. Mertens, Christof Paar, Jan Pelzl, and Andy Rupp.
A parallel hardware architecture for fast gaussian elimination over GF(2). In
14th IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM 2006), 24-26 April 2006, Napa, CA, USA, Proceedings, pages 237–248.
IEEE Computer Society, 2006.

[Bou22] Charles Bouillaguet. Boolean polynomial evaluation for the masses. IACR
Cryptol. ePrint Arch., page 1412, 2022.

[CB07] Nicolas T. Courtois and Gregory V. Bard. Algebraic cryptanalysis of the
data encryption standard. In Steven D. Galbraith, editor, Cryptography and
Coding, 11th IMA International Conference, Cirencester, UK, December 18-20,
2007, Proceedings, volume 4887 of Lecture Notes in Computer Science, pages
152–169. Springer, 2007.

[CB10] Thomas W. Cusick and Yuri L. Borissov. A refinement of cusick–cheon
bound for the second order binary reed–muller code. Discrete Mathematics,
310(24):3537–3543, 2010.

Subhadeep Banik and Francesco Regazzoni 515

[CKPS00] Nicolas T. Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir.
Efficient algorithms for solving overdefined systems of multivariate polynomial
equations. In Bart Preneel, editor, Advances in Cryptology - EUROCRYPT
2000, International Conference on the Theory and Application of Cryptographic
Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding, volume 1807 of
Lecture Notes in Computer Science, pages 392–407. Springer, 2000.

[Din21] Itai Dinur. Cryptanalytic applications of the polynomial method for solving
multivariate equation systems over GF(2). In Anne Canteaut and François-
Xavier Standaert, editors, Advances in Cryptology - EUROCRYPT 2021 -
40th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings,
Part I, volume 12696 of Lecture Notes in Computer Science, pages 374–403.
Springer, 2021.

[DRS20] Christoph Dobraunig, Yann Rotella, and Jan Schoone. Algebraic and higher-
order differential cryptanalysis of pyjamask-96. IACR Trans. Symmetric
Cryptol., 2020(1):289–312, 2020.

[DS11] Itai Dinur and Adi Shamir. An improved algebraic attack on hamsi-256. In
Antoine Joux, editor, Fast Software Encryption - 18th International Workshop,
FSE 2011, Lyngby, Denmark, February 13-16, 2011, volume 6733 of Lecture
Notes in Computer Science, pages 88–106. Springer, 2011.

[HST+21] Kai Hu, Siwei Sun, Yosuke Todo, Meiqin Wang, and Qingju Wang. Massive
superpoly recovery with nested monomial predictions. In Mehdi Tibouchi and
Huaxiong Wang, editors, Advances in Cryptology - ASIACRYPT 2021 - 27th
International Conference on the Theory and Application of Cryptology and
Information Security, Singapore, December 6-10, 2021, Proceedings, Part I,
volume 13090 of Lecture Notes in Computer Science, pages 392–421. Springer,
2021.

[Jon96] CH Jones. Generalized hockey stick identities and n-dimensional block walking.
Fibonacci Quarterly, 34(3):280–288, 1996.

[JV17] Antoine Joux and Vanessa Vitse. A crossbred algorithm for solving boolean
polynomial systems. In Jerzy Kaczorowski, Josef Pieprzyk, and Jacek
Pomykala, editors, Number-Theoretic Methods in Cryptology - First Interna-
tional Conference, NuTMiC 2017, Warsaw, Poland, September 11-13, 2017,
Revised Selected Papers, volume 10737 of Lecture Notes in Computer Science,
pages 3–21. Springer, 2017.

[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar
signature schemes. In Jacques Stern, editor, Advances in Cryptology - EU-
ROCRYPT ’99, International Conference on the Theory and Application of
Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding,
volume 1592 of Lecture Notes in Computer Science, pages 206–222. Springer,
1999.

[LPT+17] Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, R. Ryan Williams,
and Huacheng Yu. Beating brute force for systems of polynomial equations
over finite fields. In Philip N. Klein, editor, Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,
Barcelona, Spain, January 16-19, pages 2190–2202. SIAM, 2017.

516 Compact Circuits for Efficient Möbius Transform

[MMR+15] Mayler Martins, Jody Maick Matos, Renato P. Ribas, André Reis, Guilherme
Schlinker, Lucio Rech, and Jens Michelsen. Open cell library in 15nm freepdk
technology. In Proceedings of the 2015 Symposium on International Symposium
on Physical Design, ISPD ’15, page 171–178, New York, NY, USA, 2015.
Association for Computing Machinery.

[PBB+21] Christian Pilato, Stanislav Böhm, Fabien Brocheton, Jerónimo Castrillón,
Riccardo Cevasco, Vojtech Cima, Radim Cmar, Dionysios Diamantopoulos,
Fabrizio Ferrandi, Jan Martinovic, Gianluca Palermo, Michele Paolino, Anto-
nio Parodi, Lorenzo Pittaluga, Daniel Raho, Francesco Regazzoni, Katerina
Slaninová, and Christoph Hagleitner. EVEREST: A design environment for
extreme-scale big data analytics on heterogeneous platforms. In Design, Au-
tomation & Test in Europe Conference & Exhibition, DATE 2021, Grenoble,
France, February 1-5, 2021, pages 1320–1325. IEEE, 2021.

[Tho79] Clark D. Thompson. Area-time complexity for VLSI. In Michael J. Fischer,
Richard A. DeMillo, Nancy A. Lynch, Walter A. Burkhard, and Alfred V.
Aho, editors, Proceedings of the 11h Annual ACM Symposium on Theory of
Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA, pages 81–88.
ACM, 1979.

Subhadeep Banik and Francesco Regazzoni 517

Appendix A: Fast generation of the AM graph

The following generates the adjacency matrix for the AM graph in polynomial time.
Algorithm 2: Generation of AM
Generate AM (n, d)
Input: n: Number of variables, d: Algebraic degree
Output: The adjacency matrix AM of size

(
n
↓d
)
× (n− d)

for s← the k-th string in H(n, d) do
Compute α := χn,d(s) =

(
i0
↓d
)

+
(
i1
↓d−1

)
+ · · · /*Assuming s = 2i0 + 2i1 + · · · * /

for `← 1→ n− d do
Compute s′ ← s⊕ e`
if hw(s′) ≤ d then

Compute β := χn,d(s′)
Assign AM [α, `]← β

end
else

Assign AM [α, `]← 0
end

end
end

Appendix B: Proof of Equation (2)

We need to prove the following:

S(n, d) =
n−d∑
i=0

(
n− i
↓ d

)
∈ O(nd+1).

To prove this we make use of the hockey-stick identity [Jon96] which states that
∑n
m=d

(
m
d

)
=(

n+1
d+1
)
. Note that expanding out S(n, d) we get

S(n, d) =

(
n
d

)
+

(
n
d−1
)

+ · · · +
(
n
0
)

+(
n−1
d

)
+

(
n−1
d−1
)

+ · · · +
(
n−1

0
)

+(
n−2
d

)
+

(
n−2
d−1
)

+ · · · +
(
n−2

0
)

+
...

...(
d
d

)
+

(
d
d−1
)

+ · · · +
(
d
0
)

Applying the hockey-stick identity on each column we get

S(n, d) <
(
n+1
d+1
)

+
(
n+1
d

)
+ · · · +

(
n+1

1
)

Using mathematical induction it is easy to prove the hypothesis P(d) :
∑d
i=0
(
n
i

)
< nd, for

all d ≥ 2, n > d. The base case for d = 2, amounts to n(n−1)/2+n+1 < n2 ⇒ n2 > n+2,

518 Compact Circuits for Efficient Möbius Transform

which holds for all n > 2. Taking P(d) to be true we have

P(d+ 1) :
d+1∑
i=0

(
n

i

)
< nd +

(
n

d+ 1

)
< nd + nd+1

(d+ 1)! = nd
(

1 + n

(d+ 1)!

)
< nd+1

Therefore we have S(n, d) < (n+ 1)d+1, from which we can conclude it is O(nd+1).

Appendix C: Synthesis results for Polysolve4 circuit

Table 3: Synthesis results for the Polysolve4 circuit for d = 4. Power reported at 1 GHz.
n µ Area Tcr Tmin Power Energy n µ Area Tcr Tmin Power Energy

KGE (ps) (ns) (mW) (µJ) KGE (ps) (ns) (mW) (µJ)
8 2 9.980 54.62 4.37 2.357 0.0002 15 2 201.483 80.36 822.89 43.166 0.4419

3 12.361 56.39 2.71 3.557 0.0002 3 253.167 81.95 503.50 64.634 0.3971
4 15.547 61.36 1.96 4.858 0.0002 4 301.172 79.60 326.04 83.143 0.3406
5 17.343 58.35 1.40 5.517 0.0001 5 353.891 81.47 250.28 95.265 0.2927

9 2 17.345 58.26 9.32 4.007 0.0006 16 2 273.810 85.20 1744.90 57.472 1.1770
3 21.623 63.35 6.08 5.921 0.0006 3 344.113 88.21 1083.92 92.117 1.1319
4 26.325 63.70 4.08 7.714 0.0005 4 415.411 86.36 707.46 118.521 0.9709
5 30.881 61.82 2.97 9.172 0.0004 5 486.599 87.23 535.94 132.367 0.8133

10 2 28.411 59.73 19.11 6.408 0.0021 17 2 372.018 82.40 3375.10 72.115 2.9538
3 35.737 62.97 12.09 9.557 0.0018 3 466.637 80.37 1975.17 115.223 2.8318
4 42.833 66.79 8.55 12.398 0.0016 4 563.460 85.59 1402.31 155.530 2.5482
5 49.947 66.62 6.40 14.450 0.0014 5 665.159 89.91 1104.81 179.444 2.2050

11 2 44.009 67.80 43.39 9.665 0.0062 18 2 497.044 89.69 7347.40 96.226 7.8828
3 56.271 65.20 25.04 14.402 0.0055 3 619.838 94.31 4635.53 153.796 7.5594
4 67.118 68.08 17.43 19.338 0.0050 4 749.498 89.44 2930.77 200.594 6.5731
5 78.388 67.52 12.96 22.084 0.0042 5 870.225 94.38 2319.48 231.616 5.6922

12 2 67.289 71.61 91.66 14.138 0.0181 19 2 651.059 95.90 15712.26 123.955 20.3087
3 85.850 66.75 51.26 22.190 0.0170 3 814.677 97.02 9537.45 205.160 20.1680
4 102.337 74.37 38.08 29.480 0.0151 4 980.324 100.14 6562.78 268.407 17.5903
5 119.146 74.35 28.55 33.264 0.0128 5 1144.174 102.38 5032.18 311.335 15.3027

13 2 100.638 68.34 174.95 20.869 0.0534 20 2 838.381 97.32 31889.82 156.245 51.1984
3 126.899 68.65 105.45 32.594 0.0501 3 1053.007 106.76 20989.87 263.029 51.7137
4 152.480 71.14 72.85 42.800 0.0438 4 1266.550 102.77 13470.27 351.538 46.0767
5 178.574 74.47 57.19 48.137 0.0370 5 1480.936 116.42 11444.55 392.951 38.6286

14 2 142.414 85.40 437.25 30.458 0.1559 6 1696.708 108.59 8895.69 434.253 35.5740
3 178.953 81.96 251.78 47.662 0.1464 7 1905.735 111.40 8213.30 447.604 33.0009
4 215.429 89.16 182.60 63.146 0.1293 8 2124.088 108.03 7541.15 467.919 32.5821
5 252.591 89.36 137.26 72.549 0.1114 9 2337.793 117.02 7908.68 498.876 33.7160

Table 4: Synthesis results for the Polysolve4 circuit for d = 3. Power reported at 1 GHz.
n µ Area Tcr Tmin Power Energy n µ Area Tcr Tmin Power Energy

KGE (ps) (ns) (mW) (µJ) KGE (ps) (ns) (mW) (µJ)
8 2 6.514 51.93 4.99 1.855 0.0002 15 2 70.259 75.30 925.29 17.405 0.2139

3 8.590 53.36 3.42 2.691 0.0002 3 89.858 78.79 645.45 26.429 0.2165
4 10.401 54.08 2.60 3.164 0.0002 4 110.598 78.62 483.04 31.874 0.1958
5 12.297 56.68 2.27 3.606 0.0001 5 130.313 79.51 407.09 34.420 0.1762

9 2 10.148 52.36 10.05 2.821 0.0005 16 2 90.243 68.96 1694.76 21.048 0.5173
3 13.140 58.10 7.44 3.940 0.0005 3 116.456 70.74 1159.00 31.734 0.5199
4 16.003 59.40 5.70 4.736 0.0005 4 142.741 70.98 872.20 39.131 0.4808
5 18.860 58.35 4.67 5.271 0.0004 5 168.370 75.69 775.07 42.968 0.4400

10 2 15.017 58.95 22.64 4.112 0.0016 17 2 114.245 84.46 4151.38 27.180 1.3360
3 19.110 58.39 14.95 5.742 0.0015 3 147.433 88.71 2906.85 42.078 1.3788
4 23.420 60.09 11.54 6.814 0.0013 4 180.560 90.85 2232.73 51.946 1.2766
5 27.734 61.07 9.77 7.512 0.0012 5 214.646 96.40 1974.27 59.980 1.2284

11 2 21.483 58.25 44.74 5.622 0.0043 18 2 143.817 85.24 8379.43 34.845 3.4254
3 27.491 60.21 30.83 8.020 0.0041 3 184.922 85.93 5631.51 51.837 3.3972
4 33.699 62.23 23.90 9.528 0.0037 4 226.011 84.89 4172.51 62.658 3.0798
5 39.903 60.77 19.45 10.405 0.0033 5 267.020 86.74 3552.87 68.206 2.7937

12 2 29.538 64.43 98.96 7.850 0.0121 19 2 176.951 90.52 17796.96 41.905 8.2389
3 38.282 63.23 64.75 11.283 0.0116 3 229.179 85.19 11166.02 63.657 8.3436
4 46.166 70.66 54.27 13.399 0.0103 4 282.592 95.25 9363.46 81.613 8.0229
5 55.035 66.86 42.79 14.612 0.0094 5 333.350 96.94 7941.32 84.799 6.9467

13 2 40.042 70.22 215.72 10.106 0.0310 20 2 217.541 97.47 38326.76 52.712 20.7272
3 51.436 76.39 156.45 15.365 0.0315 3 281.114 92.49 24245.70 77.029 20.1928
4 62.886 70.52 108.32 18.282 0.0281 4 343.450 87.47 17197.30 94.877 18.6536
5 74.448 75.14 96.18 20.144 0.0258 5 409.301 94.84 15538.59 106.279 17.4128

14 2 53.475 74.45 457.42 13.535 0.0832 6 473.097 92.87 13694.24 113.402 16.7218
3 69.084 75.20 308.02 20.829 0.0853 7 536.420 101.86 14185.31 120.851 16.8302
4 84.936 74.81 229.82 24.060 0.0739 8 595.860 96.24 13008.57 127.639 17.2527
5 99.137 77.52 198.45 26.821 0.0687 9 660.410 101.60 13524.99 139.206 18.5311

Subhadeep Banik and Francesco Regazzoni 519

Table 5: Synthesis results for the Polysolve4 circuit for d = 2. Power reported at 1 GHz.
n µ Area Tcr Tmin Power Energy n µ Area Tcr Tmin Power Energy

KGE (ps) (ns) (mW) (µJ) KGE (ps) (ns) (mW) (µJ)
8 2 3.369 47.68 6.10 1.022 0.0001 15 2 18.753 61.64 1009.91 4.403 0.0721

3 4.265 48.07 4.61 1.332 0.0001 3 24.750 64.46 792.08 6.654 0.0818
4 5.442 52.52 4.20 1.638 0.0001 4 30.766 64.61 661.61 8.242 0.0844
5 6.378 54.62 3.93 1.839 0.0001 5 36.348 63.87 588.63 9.187 0.0847

9 2 4.562 54.14 13.86 1.408 0.0004 16 2 22.463 65.24 2137.78 6.300 0.2064
3 5.947 57.22 10.99 1.862 0.0004 3 29.591 70.96 1743.91 8.487 0.2086
4 7.289 56.65 9.06 2.077 0.0003 4 36.805 68.78 1408.61 9.906 0.2029
5 8.682 57.29 8.25 2.332 0.0003 5 43.979 76.41 1408.39 11.355 0.2093

10 2 5.985 67.20 34.41 1.783 0.0009 17 2 26.627 74.01 4850.32 7.420 0.4863
3 7.942 67.10 25.77 2.397 0.0009 3 35.310 79.17 3891.36 10.314 0.5070
4 9.697 59.74 19.12 2.690 0.0009 4 43.789 79.27 3246.90 11.072 0.4535
5 11.696 56.96 16.40 3.011 0.0009 5 52.148 82.52 3042.02 12.116 0.4467

11 2 7.860 55.69 57.03 2.418 0.0025 18 2 31.431 75.79 9933.95 8.582 1.1249
3 10.348 61.94 47.57 3.008 0.0023 3 41.495 75.28 7400.33 11.307 1.1115
4 12.774 60.75 38.88 3.576 0.0023 4 51.532 82.75 6778.88 13.387 1.0966
5 15.237 59.50 34.27 3.925 0.0023 5 61.721 79.93 5893.08 15.086 1.1123

12 2 9.941 69.27 141.86 3.373 0.0069 19 2 36.697 81.72 21422.41 10.309 2.7024
3 13.162 63.42 97.41 3.701 0.0057 3 48.708 67.57 13284.80 13.541 2.6623
4 16.174 67.64 86.58 4.272 0.0055 4 59.890 88.79 14547.35 15.764 2.5828
5 19.302 72.35 83.35 4.803 0.0055 5 72.199 71.23 10503.29 17.770 2.6203

13 2 12.494 64.99 266.20 3.733 0.0153 20 2 42.653 84.39 44244.66 11.736 6.1533
3 16.467 64.89 199.34 4.867 0.0150 3 56.022 82.54 32456.05 16.453 6.4695
4 20.344 67.36 172.44 5.498 0.0141 4 70.047 82.56 27053.26 18.896 6.1918
5 24.418 76.39 176.00 6.289 0.0145 5 83.638 87.08 25680.94 23.650 6.9748

14 2 15.455 77.08 631.44 4.499 0.0369 6 97.631 89.53 24936.61 22.800 6.3504
3 20.268 63.79 391.93 6.015 0.0370 7 111.060 92.73 25068.26 25.137 6.7956
4 25.063 71.40 365.57 6.795 0.0348 8 125.232 90.86 24190.57 27.490 7.3189
5 29.819 70.14 323.21 7.448 0.0343 9 139.441 90.40 23882.96 30.188 7.9754

Table 6: Synthesis results for the Polysolve4 circuit with height bound Möbius Transform
circuits and h = µ and for n = m = 20. Power reported at 1 GHz.

d = 2 d = 3
h Area Tcr Tmin Power Energy h Area Tcr Tmin Power Energy

KGE (ps) (ns) (mW) (µJ) KGE (ps) (ns) (mW) (µJ)
3 56.677 124.67 32681.49 20.177 5.2892
4 70.332 119.63 15680.14 22.852 2.9953 4 348.237 152.21 19950.47 119.732 15.6935
5 85.475 122.94 8057.00 25.667 1.6821 5 413.541 153.15 10036.84 137.641 9.0204
6 101.202 124.37 4075.36 28.102 0.9208 6 474.366 158.04 5178.65 178.054 5.8345
7 122.115 130.94 2145.32 33.520 0.5492 7 543.620 164.43 2694.02 207.352 3.3973
8 153.022 141.29 1157.45 43.836 0.3591 8 622.745 174.61 1430.41 249.145 2.0410
9 206.305 143.17 586.42 70.914 0.2905 9 729.193 184.04 753.83 287.649 1.1782

10 312.200 156.39 320.29 116.714 0.2390 10 899.647 191.15 391.48 355.497 0.7281
11 531.863 163.87 167.80 208.395 0.2134 11 1209.696 195.50 200.19 560.684 0.5741
12 996.395 171.78 87.95 435.441 0.2229 12 1859.154 197.57 101.16 969.071 0.4962

d = 4
5 1621.265 208.87 13688.50 398.157 26.0936
6 1866.587 213.82 7006.45 474.863 15.5603
7 2084.936 225.81 3699.67 571.070 9.3564
8 2372.227 238.72 1955.59 652.621 5.3463
9 2659.779 247.40 1013.35 765.022 3.1335

10 2996.840 262.67 537.95 933.736 1.9123
11 3677.842 264.61 270.96 1192.6 1.2212
12 4908.635 281.91 144.34 1831.8 0.9378

Appendix D: Synthesis Results for Expmob1,Expmob2

520 Compact Circuits for Efficient Möbius Transform

Table 7: Synthesis results for the Expmob1/Expmob2 circuits. Power reported at 1 GHz.
n Circuit Area Tcr Tmin Power Energy

(µm2) (kGE) (ps) (ps) (mW) (pJ)
6 Expmob1 95.600 486.247 91.05 91.05 0.488 0.488

Expmob2 157.041 798.750 38.53 231.18 0.412 2.472
7 Expmob1 233.128 1185.750 118.05 118.05 1.403 1.403

Expmob2 300.958 1530.750 41.29 289.03 0.773 5.410
8 Expmob1 572.473 2911.750 134.02 134.02 4.085 4.085

Expmob2 573.702 2918.000 46.63 373.04 1.496 11.970
9 Expmob1 1333.936 6784.750 169.12 169.12 10.547 10.547

Expmob2 1138.754 5792.000 48.78 439.02 2.947 26.525
10 Expmob1 3227.910 16418.000 208.57 208.57 30.092 30.092

Expmob2 2255.831 11473.750 52.82 528.20 5.818 58.181
11 Expmob1 7855.473 39955.000 257.55 257.55 85.621 85.621

Expmob2 4486.152 22817.749 56.12 617.32 11.494 126.432
12 Expmob1 18784.420 95542.500 304.49 304.49 237.821 237.821

Expmob2 9046.868 46014.749 60.50 726.00 22.865 274.384
13 Expmob1 46181.007 234888.750 453.37 453.37 568.696 568.696

Expmob2 17860.706 90844.247 60.05 780.65 45.437 590.687
14 Expmob1 110026.212 559622.251 509.58 509.58 1098.835 1098.835

Expmob2 35611.803 181130.994 64.77 906.78 90.101 1261.414

Appendix E: Synthesis Results for Polysolve1/2/3 circuits

Table 8: Synthesis results for d = 3, 4 for the Polysolve1/Polysolve2/Polysolve3 circuits.
d = 4 d = 3

n Circuit Area Tcr Tmin Power Energy Area Tcr Tmin Power Energy
(kGE) (ps) (ns) (mW) (µJ) (kGE) (ps) (ns) (mW) (µJ)

8 Polysolve1 16.576 49.18 0.98 5.824 0.0001 11.805 47.33 1.75 3.907 0.0001
Polysolve2 17.619 48.30 1.06 6.523 0.0001 12.334 46.33 1.81 4.217 0.0002
Polysolve3 23.398 70.25 1.97 7.694 0.0002 16.901 66.15 2.98 5.013 0.0002

9 Polysolve1 31.515 61.62 2.28 10.306 0.0004 20.359 54.33 3.80 6.608 0.0005
Polysolve2 32.896 62.05 2.42 11.082 0.0004 21.066 53.33 3.84 6.953 0.0005
Polysolve3 43.996 86.10 3.96 14.245 0.0005 28.364 78.26 6.18 8.085 0.0006

10 Polysolve1 57.685 69.68 4.88 18.351 0.0013 33.175 52.49 7.09 10.625 0.0014
Polysolve2 58.516 69.53 5.01 18.703 0.0013 33.761 53.58 7.34 10.962 0.0015
Polysolve3 79.632 91.00 7.28 21.804 0.0015 47.450 87.42 12.68 12.356 0.0017

11 Polysolve1 99.034 55.81 7.53 29.951 0.0040 51.578 59.87 15.81 15.963 0.0042
Polysolve2 99.996 61.50 8.43 30.383 0.0041 52.477 57.69 15.35 16.344 0.0043
Polysolve3 139.714 99.33 14.50 35.960 0.0049 74.780 92.76 25.51 17.685 0.0047

12 Polysolve1 163.072 63.52 16.77 48.516 0.0128 78.050 58.69 30.58 24.201 0.0126
Polysolve2 164.813 62.42 16.60 49.358 0.0130 79.222 54.43 28.47 24.591 0.0128
Polysolve3 231.275 102.78 28.37 52.569 0.0139 113.831 95.53 50.92 26.127 0.0136

13 Polysolve1 260.169 65.06 33.90 77.411 0.0403 114.578 73.69 76.20 35.416 0.0366
Polysolve2 261.486 63.93 33.44 78.132 0.0407 115.318 75.48 78.20 35.908 0.0371
Polysolve3 372.485 107.27 57.28 83.274 0.0434 169.211 105.02 109.96 37.626 0.0389

14 Polysolve1 401.092 86.48 89.42 119.916 0.1240 163.204 77.76 160.11 50.536 0.1041
Polysolve2 402.774 86.68 89.80 120.761 0.1249 163.953 77.76 160.26 51.022 0.1051
Polysolve3 578.104 115.28 120.81 126.689 0.1310 241.382 105.22 218.12 53.265 0.1097

15 Polysolve1 613.099 81.59 167.99 178.653 0.3678 227.500 83.39 342.57 70.985 0.2916
Polysolve2 614.177 84.58 174.32 179.428 0.3694 228.338 80.84 332.25 71.420 0.2934
Polysolve3 881.542 115.42 239.38 186.955 0.3849 341.370 110.99 457.61 75.146 0.3087

16 Polysolve1 906.754 88.38 363.07 264.163 1.0852 310.420 70.43 577.88 96.845 0.7946
Polysolve2 910.589 88.52 363.82 265.064 1.0889 310.099 76.10 624.55 97.275 0.7981
Polysolve3 1288.795 118.22 487.54 273.345 1.1229 468.551 112.82 927.49 100.740 0.8266

17 Polysolve1 1315.172 79.99 656.32 379.680 3.1153 417.223 93.62 1535.18 132.329 2.1699
Polysolve2 1315.516 81.29 667.15 380.764 3.1242 419.061 90.15 1478.46 132.354 2.1703
Polysolve3 1859.152 128.32 1055.05 397.604 3.2623 637.230 124.26 2039.73 134.859 2.2114

18 Polysolve1 1852.910 91.64 1502.71 535.199 8.7762 549.628 92.24 3023.90 173.735 5.6955
Polysolve2 1854.821 90.74 1488.14 536.014 8.7896 552.144 88.42 2898.85 174.157 5.7094
Polysolve3 2630.265 128.36 2107.16 552.747 9.0640 854.195 126.92 4163.10 179.275 5.8772

19 Polysolve1 2559.844 96.69 3169.79 742.491 24.3411 714.216 94.08 6167.13 227.982 14.9447
Polysolve2 2561.273 97.32 3190.64 743.608 24.3777 717.534 92.17 6042.11 228.667 14.9896
Polysolve3 3738.741 138.64 4547.67 769.867 25.2385 1105.275 130.95 8586.52 231.834 15.1972

20 Polysolve1 3483.777 103.19 6764.31 1016.707 66.6472 917.092 95.78 12555.70 293.383 38.4593
Polysolve2 3485.519 104.23 6832.69 1017.967 66.7298 917.558 96.59 12662.08 293.985 38.5382
Polysolve3 5067.633 142.41 9338.11 1043.130 68.3793 1430.485 135.74 17796.74 302.021 39.5917

Subhadeep Banik and Francesco Regazzoni 521

Table 9: Synthesis results for d = 2 for the Polysolve1/Polysolve2/Polysolve3 circuits.
n Circuit Area Tcr Tmin Power Energy n Area Tcr Tmin Power Energy

(kGE) (ps) (ns) (mW) (µJ) (kGE) (ps) (ns) (mW) (µJ)
8 Polysolve1 6.825 54.60 3.82 2.390 0.0002 15 67.639 63.50 521.02 21.608 0.1773

Polysolve2 7.129 54.49 3.92 2.539 0.0002 68.253 63.81 523.69 21.934 0.1800
Polysolve3 9.561 75.43 5.88 2.766 0.0002 99.913 110.51 908.39 22.013 0.1806

9 Polysolve1 10.592 61.78 8.34 3.499 0.0005 16 87.013 81.31 1333.32 28.442 0.4664
Polysolve2 10.946 63.38 8.68 3.633 0.0005 87.722 79.22 1299.21 28.788 0.4721
Polysolve3 14.599 87.10 12.54 4.039 0.0005 128.802 113.30 1859.71 28.375 0.4653

10 Polysolve1 14.918 56.44 14.90 4.887 0.0013 17 109.243 80.49 2638.70 35.017 1.1480
Polysolve2 15.293 53.45 14.22 5.072 0.0013 110.079 79.91 2619.85 35.494 1.1636
Polysolve3 21.499 92.16 25.25 5.226 0.0014 164.822 120.03 3936.98 35.135 1.1518

11 Polysolve1 21.818 64.94 33.83 7.037 0.0037 18 134.939 85.62 5612.56 44.435 2.9128
Polysolve2 22.227 63.42 33.17 7.187 0.0037 135.727 83.92 5501.29 44.790 2.9361
Polysolve3 30.582 91.18 48.51 7.376 0.0038 203.528 123.36 8088.72 44.059 2.8881

12 Polysolve1 29.812 68.97 71.31 9.678 0.0100 19 165.645 72.36 9485.60 53.935 7.0703
Polysolve2 30.370 68.56 71.03 9.966 0.0103 166.119 83.69 10971.01 54.284 7.1161
Polysolve3 42.265 98.14 102.65 9.760 0.0101 252.294 130.64 17127.95 55.161 7.2310

13 Polysolve1 40.159 68.50 141.04 12.886 0.0265 20 202.519 90.44 23709.93 66.604 17.4611
Polysolve2 40.713 67.87 139.88 13.116 0.0270 204.073 92.54 24260.66 67.036 17.5742
Polysolve3 57.725 106.39 220.44 13.906 0.0286 306.535 129.47 33944.70 66.084 17.3248

14 Polysolve1 52.478 77.81 319.64 17.036 0.0700
Polysolve2 53.252 79.29 325.88 17.281 0.0710
Polysolve3 76.379 111.85 461.05 17.169 0.0705

	Introduction
	Previous Work
	Impact and Comparison with the state of art
	Contribution and Organization

	Definitions and Preliminaries
	Implementing the Möbius Transform
	Synthesis Results
	Recursive Algorithm for Möbius transform
	Hardware circuit Polymob1
	Helping Circuit Compiler synthesize faster
	Further Utilities
	Synthesis Results
	Energy Analysis of the Polymob1 Circuit

	Solving Polynomial equations of degree d
	Polysolve1
	Polysolve2
	Polysolve3
	Synthesis Results

	Solving for energy efficiency: Polysolve4
	Root Expander
	Dot-Product
	Circuit Architecture for Polysolve4
	Energy Analysis
	Height-bound trees for time/energy trade-offs: Polymob2 [h]
	Polysolve4 solvers with Polymob2 [h] circuits
	Energy Analysis

	Conclusion

