
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 2, pp. 451–480. DOI:10.46586/tches.v2024.i2.451-480

CASA: A Compact and Scalable Accelerator for
Approximate Homomorphic Encryption

Pengzhou He1, Samira Carolina Oliva Madrigal2, Çetin Kaya Koç3,4,5,
Tianyou Bao1, and Jiafeng Xie1

1 Department of Electrical and Computer Engineering, Villanova University, Villanova PA, USA
{phe,tbao,jiafeng.xie}@villanova.edu

2 San José State University, San José, USA scolivamadrigal@gmail.com
3 University of California Santa Barbara, Santa Barbara, USA cetinkoc@ucsb.edu

4 Iğdır University, Iğdır, Turkey
5 Nanjing University of Aeronautics and Astronautics, Nanjing, Republic of China

Abstract.
Approximate arithmetic-based homomorphic encryption (HE) scheme CKKS [CKKS17]
is arguably the most suitable one for real-world data-privacy applications due to its
wider computation range than other HE schemes such as BGV [BGV14], FV and BFV
[Bra12, FV12]. However, the most crucial homomorphic operation of CKKS called
key-switching induces a great amount of computational burden in actual deployment
situations, and creates scalability challenges for hardware acceleration. In this paper,
we present a novel Compact And Scalable Accelerator (CASA) for CKKS on the
field-programmable gate array (FPGA) platform. The proposed CASA addresses the
aforementioned computational and scalability challenges in homomorphic operations,
including key-exchange, homomorphic multiplication, homomorphic addition, and
rescaling.
On the architecture layer, we propose a new design methodology for efficient acceler-
ation of CKKS. We design this novel hardware architecture by carefully studying the
homomorphic operation patterns and data dependency amongst the primitive oracles.
The homomorphic operations are efficiently mapped into an accelerator with simple
control and smooth operation, which brings benefits for scalable implementation
and enhanced pipeline and parallel processing (even with the potential for further
improvement).
On the component layer, we carry out a detailed and extensive study and present
novel micro-architectures for primitive function modules, including memory bank,
number theoretic transform (NTT) module, modulus switching bank, and dyadic
multiplication and accumulation.
On the arithmetic layer, we develop a new partially reduction-free modular arithmetic
technique to eliminate part of the reduction cost over different prime moduli within
the moduli chain of the Residue Number System (RNS). The proposed structure can
support arbitrary numbers of security primes of CKKS during key exchange, which
offers better security options for adopting the scalable design methodology.
As a proof-of-concept, we implement CASA on the FPGA platform and compare
it with state-of-the-art designs. The implementation results showcase the superior
performance of the proposed CASA in many aspects such as compact area, scalable
architecture, and overall better area-time complexities.
In particular, we successfully implement CASA on a mainstream resource-constrained
Artix-7 FPGA. To the authors’ best knowledge, this is the first compact CKKS
accelerator implemented on an Artix-7 device, e.g., CASA achieves a 10.8x speedup
compared with the state-of-the-art CPU implementations (with power consumption
of only 5.8%). Considering the power-delay product metric, CASA also achieves 138x
and 105x improvement compared with the recent GPU implementation.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-10-15 Accepted: 2023-12-15 Published: 2024-03-12

https://doi.org/10.46586/tches.v2024.i2.451-480
mailto:phe@villanova.edu,tbao@villanova.edu,jiafeng.xie@villanova.edu
mailto:scolivamadrigal@gmail.com
mailto:cetinkoc@ucsb.edu
http://creativecommons.org/licenses/by/4.0/

452 CASA

Keywords: Approximate homomorphic encryption CKKS · compact and scalable ·
FPGA · hardware accelerator · NTT · memory · partially reduction-free · RNS

1 Introduction
Data-privacy related technology advancement has drawn noted attention from various
communities recently. Fully Homomorphic Encryption (FHE) represents one of the
promising data-privacy technologies as it can execute various compuational functions
over encrypted data [Gen09a]. Subsequently, FHE is becoming significantly popular since
its original introduction in [Gen09b]. Thus, more variants of FHE schemes and related
implementation works have been proposed in recent years [MKS+22, RLPD20, HZL+22].

HEAAN or equally referred to as CKKS [CKKS17] is the first FHE scheme that supports
real number homomorphic arithmetic operations. The authors of CKKS also introduced a
variant of CKKS based on the Residue Number System (RNS) to reduce the computational
cost induced by large coefficients in CKKS [CHK+18]. This RNS variant reduced the
coefficients’ size from several hundreds of bits to a set of smaller coefficients within 64
bits, at the cost of increased complexity in homomorphic operations and new constraints
of parameter selections. Meanwhile, there also exist other types of FHE schemes such as
FV [FV12], BGV [BGV14], and BFV [Bra12]. Among these FHE schemes, RNS-CKKS
(referred to as CKKS throughout the paper afterward) has obtained significant attention
recently due to its fast operations on the encrypted real data [MKS+22].

1.1 Related Works, Motivation, and Proposed Plan
CKKS has been broadly implemented by software libraries across Windows, Linux, and
Mac OS [ABBB+22]. However, the sheer amount of computational work makes it too
expensive to use CKKS in today’s deep-learning or even communication scenarios. In
addition to limited reports for CKKS hardware accelerators in the literature, a compact &
power-efficient cryptographic accelerator with decent processing performance is needed for
practical scenarios that require low-degree FHE processing, including intelligent traffic,
multi-party computation, and multi-party signature. The study of such accelerators in the
literature is even more constrained. We put details about these applications in Section 5
(Paragraph of Application Discussion) for further reference.

The existing hardware accelerators for CKKS were either implemented through the
application-specific integrated circuits (ASIC) or on the field-programmable gate array
(FPGA) platform. While it is noticed that F1 [SFK+21], CraterLake [SFK+22], BTS
[KKK+22], and ARK [KLK+22] are the four recent ASIC-implemented CKKS accelerators,
the FPGA-based accelerators include some recent works like HEAX [RLPD20], coxHE
[HZL+22], and Medha [MKS+22].

Nevertheless, the ASIC-based accelerators still suffer from large power and area usage.
It is estimated by [MKS+22] that F1 [SFK+21] also contains unimplementable structures on
practical FPGAs. CraterLake [SFK+22] also suffers from similar architectural drawbacks
due to large resource consumption. As a result, F1 [SFK+21] and CraterLake [SFK+22]
presented only simulation-based estimation results (similar to BTS [KKK+22] and ARK
[KLK+22], based on the analysis in [MKS+22]). While the FPGA-based accelerators have
demonstrated high throughput and low-latency implementations, they again involve large
resource usage (let alone for fitting resource-constrained devices).

Overall, we observe that the existing hardware accelerators for CKKS involve three
major drawbacks: (i) sophisticated structural design (which causes large resource usage);
(ii) limited flexibility in scalability (difficult to adjust the accelerator for different application
scenarios, especially for resource-constrained applications); (iii) lack of significant arithmetic
innovation (key components are mostly implemented with existing algorithms/techniques).

Pengzhou et al. 453

Based on the above-mentioned limitations, in this work, we want to study a contrary
accelerator design methodology, i.e., pursue simplicity and better performance per unit of
cost. We found that sophisticated structures potentially increase synthesizing, routing,
and placing challenges for modern hardware description language (HDL) compilers. Fine-
tuned micro-architectures, on the other hand, provide better timing, area, and power
performance. Hence, our aim was to create a hardware framework that utilizes finely
tuned micro-architectures and facilitates parallel computation in a straightforward manner.
This target, overall, requires three layers of effort. (i) First, we need to design optimized
bottom-level units for primitive function units. To the best of authors’ knowledge, we
present the first fine-tuned micro-architecture for partially reduction-free arithmetic, which
allows flexible moduli configuration during modulo operation. This component suits well
the need for dealing with different moduli in the moduli chain of CKKS. (ii) Second, we
need to design scalable modules for mid-level operations such as number theoretic transform
(NTT), dyadic multiplication, and modulus switching. These scalable modules enable
us to construct a smooth pipeline and highly occupied hardware for high-performance
computation. (iii) Lastly, we need to create a balanced parallel computation strategy so
that the processing capacities of individual components, including memory I/O bandwidth,
can work well with each other. We categorize these steps into three layers: the arithmetic
layer, which we describe in Section 3.1; the component layer, for which we describe
individual modules in Section 3.2∼3.5; the architecture layer, for which we describe the
accelerator from top-level and the proposed parallel computation strategy (Section 4).

1.2 Major Contributions
Following the proposed research plan, we design a generic architecture for CKKS accelerator
based on a new design methodology with the help of several innovative techniques. The
proposed accelerator is compatible with different CKKS parameter sets and suitable for
different application scenarios. Major contributions of this work include:

• Unlike the existing design strategies, we present a new methodology for CKKS
hardware design that emphasizes constructing fine-tuned micro-architecture and
pertains to simplicity in each function module. We demonstrate this design method-
ology through detailed presentation of our design considerations and architectural
schemes. The implemented accelerator overall obtains compact resource usage (while
maintaining high-speed processing) on the FPGA devices.

• We showcase a low-latency parallel computation strategy for the bottleneck operation
(key-switching) to facilitate the practical use value of CKKS. We describe an efficient
pipeline data flow constructed by operating the area-optimized micro-architecture
modules. This pipeline strategy demonstrates not only high efficiency but also
desirable scalability (thanks to the scalable nature of the primitive modules). In
this case, the entire accelerator has a broad implementation range, covering low- to
high-ended hardware devices.

• We investigate the fundamental arithmetic in homomorphic operations and propose
a novel micro-architecture for CKKS using the proposed modular partially reduction-
free strategy. Compared with existing reduction techniques, we show that the
proposed method reduces hardware computational complexity and can be considered
the best fit for the moduli-chain requirement in CKKS.

• The proposed architecture and pipeline strategy allow many special prime slots for
switching the keys. As the precision boundary for key-switching operation significantly
depends on the size of special prime P , users of the proposed accelerator can adjust the
precision threshold for key-switching to fit different practical requirements (which was
not offered by the existing FPGA accelerators such as [RLPD20, HZL+22, MKS+22]).

454 CASA

• As a proof-of-concept, we implemented and evaluated the proposed design on FPGA
devices. We demonstrate the superior performance of the proposed accelerator
compared to the existing hardware accelerators. Even on the resource-constrained
FPGA, we show a 26.4x speedup against the state-of-the-art CPU acceleration and
a 161.6x power-delay improvement against a recent GPU acceleration for executing
homomorphic multiplication.

Besides the above-mentioned contributions, we want to mention that the proposed CASA
is the first hardware CKKS accelerator being implemented on the Artix-7 device with
compact resource usage (decent timing) and scalable architecture options. This innovative
achievement undoubtedly opens the door to accelerate the FHE schemes on resource-
constrained lightweight applications. We hope the outcome of this work can also facilitate
efficient acceleration of FHE schemes for practical lightweight applications such as the
Internet-of-Things (IoT).

The rest of the paper is organized as follows. Preliminaries are described in Section
2. Primitive modules are presented in Section 3 and CASA is introduced in Section 4.
Implementation & comparison are provided in Section 5. Conclusion is given in Section 6.

2 Preliminaries
This section provides a brief overview on the core algorithms and schemes used in this
paper, covering from RNS to the HEAAN-variant on which our work is based.

2.1 Notations
Let n be a power of two and n = deg(R) for integer polynomial ring R = R[X]/(xn + 1).
RQ is further defined as RmodQ for a positive integer Q. In this way, every coefficient of
RQ is a number in the interval of [0, Q− 1]. Q is called the modulus of R. In the following
sections, except otherwise stated, we use small letters, for example a, to denote polynomials
in R. â is used to denote a in the NTT domain, i.e., â = NTT(a). Let a[k] represent the
k-th coefficient of a for k ∈ [0, n− 1], while ai denotes the i-th RNS component of a for
i ∈ [0, L]. Finally, L is the number of ciphertext levels in CKKS.

2.2 Residue Number System (RNS)
HE constructions built from cyclotomic rings have the inherent problem of dealing with
modular arithmetic in rings of large characteristic. RNS is usually applied to help work
with large coefficients in such schemes. Instead of computing modulo a large prime, we
work in small rings and compute modulo small primes. One noted optimization is the
double-CRT (Chinese remainder theorem) representation, a two layer representation. The
double-CRT applies RNS representation to map an input cyclotomic polynomial into a
vector of small polynomials with corresponding small moduli. Then each polynomial is
mapped into the NTT domain as a vector modulo integers.

2.3 CKKS
CKKS embraces approximate arithmetic to maintain security of data. Compared with
homomorphic schemes such as BGV [BGV14], FV [FV12], and TFHE [CGGI16], CKKS
treats errors generated by approximate arithmetic as additional noise. This idea enables
CKKS to endure many adversarial facts by considering them all as noises. Since it is not
possible for homomorphic encryption schemes to achieve the IND-CCA1 (indistinguisha-
bility under (non-adaptive) chosen ciphertext attack) or IND-CCA2 (indistinguishability
under adaptive chosen ciphertext attack) standard, the IND-CPA (indistinguishability

Pengzhou et al. 455

under chosen plaintext attack) standard is broadly chosen to be the security requirement
for most homomorphic designs. CKKS relies on Ring Learning-with-Errors (RLWE) as
the security base, which has been extensively studied and shown to be quantum resistant.

CKKS follows RLWE construction to choose xn+1 as modulus polynomial for plaintext
and ciphertext space. Plaintext m ∈ R is an encoding of the message z ∈ Cn/2. Notice
that CKKS works with approximate arithmetic, so a scalar ∆ (usually a large integer) is
multiplied with each element of z to maintain precision before encoding it into an element
of R, i.e., the encoded information stored in m is actually ∆zi. The scale operation will
make a difference when users need to design their own leveled homomorphic circuits. For
example, suppose ciphertexts ct and ct′ encrypt ∆z and ∆z′, respectively. When ct and ct′
are homomorphically multiplied with each other, the correct homomorphic multiplication
oracle will give out a ciphertext ct′′ encrypting ∆2zz′ rather than ∆zz′. The original CKKS
also provides a rescaling(·) oracle to divide the encrypted information by ∆ [CHK+18].

Moreover, the lattice structure constructed by modular polynomial xn + 1 enables
multiplication to be done by negacyclic convolution, which can further be done by us-
ing point-wise multiplication in the NTT domain. The overall complexity of a single
multiplication over the ring is then brought down from O(n2) to O(nlog(n)) .

2.4 HEAAN and Its Variant
Cheon et al. describe Homomorphic Encryption for Arithmetic of Approximate Numbers
(HEAAN) [CKKS17]. As noted, due to the ciphertext modulus requirement (prime or a
power of two), it is difficult to represent the operation in RNS form. In 2018, Cheon et al.
designed a HEAAN variant that allows for double-CRT representation and RNS-friendly
modulus switching algorithms [CHK+18]. Applying approximate algorithms for modulus
switching and careful selection of a fixed basis, this variant exploits the performance benefit
of a full RNS implementation with a speedup factor of ten compared to the previous one.
This variant is the first full RNS version of CKKS.

The HEAAN variant reduces the computation cost induced by large polynomial
coefficients. Let Q be a sufficiently large integer such that Q =

∏L
l=0 qi. The CRT provides

a ring isomorphism from ZQ to
∏L
l=0 Zqi when the primes in the basis {q0, ..., qL} are co-

prime to each other. The small moduli {q0, ..., qL} are chosen to satisfy qi/qj ∈ (1−2η, 1+2η)
so that noise level can be maintained in a specific level.

A set of special prime {p0, ..., pk−1} is also chosen as an RNS base for key-switching
operation. Let P = p0 p1...pk−1, then a ciphertext polynomial c1 is firstly raised to RPQ to
evaluate with key-switching keys and then reduced back to RQ. The size of key-switching
modulus Q grows approximately linear with deg(R) so that CKKS can retain 128-quantum-
bit security. The security benefit of having a larger Q comes with a huge computational
overhead (though there is a wide range of application-specific demands).

2.5 Generic RNS-CKKS
RNS-CKKS (CKKS) supports homomorphic operations, including multiplication (cipher-
cipher, plaintext-cipher), addition, rotation, and conjugation. Two key oracles closely
related to homomorphic multiplication are rescaling RS(·) and key-switching KS(·). Overall,
encryption and decryption for CKKS can be summarized as follows [CHK+18].

Encrytion: Input {plaintext m ∈ RQL
, secret key s ∈ RQL

}; Uniformly sample a←
U(RQL

), e← χerr, where χ is a specific error distribution, ct = (ct1, ct2) = (−as+e+m, a);
Output {ct}.

Decryption: Input {ciphertext ct = (ct1, ct2), secret key s ∈ RQL
}; Calculate m =

ct1 + ct2 · s; Output {m}.

456 CASA

2.6 CASA
The proposed Compact and Scalable Architecture for Approximate Homomorphic En-
cryption (CASA) is built on the 2018 HEAAN variant from Cheon et al. [CHK+18] as it
supports the core rounding operation that other approximate arithmetic HE schemes do
not. While this CKKS is efficient for regression modelling, it is not so for other applications.
The goal of CASA is that the accelerated CKKS can be practical for machine learning,
artificial intelligence, and similar applications (especially in resource-constrained scenarios).

3 Primitive Function Modules
In this section, we give the details of the primitive function modules in CASA, along with
related arithmetic innovations and optimization techniques.

3.1 Modular Reduction Module
Polynomial multiplication is one of the most expensive operations required when working
with rings and fields. Usually, for NTT-friendly rings such as R = Zq[x]/(xn+1), reduction
with respect to the modulus polynomial is optimized and only modular multiplication with
respect to the coefficients of the polynomials is left. Various approaches have been proposed
for optimizing the NTT by considering NTT-friendly and unfriendly rings together with
known techniques, as well as exploring possible optimizations of the underlying arithmetic
using special primes.

The focus of our work in this respect is how to optimize the NTT itself (butterflies)
as well as the modular multiplication and reduction with respect to the RNS coefficients.
We have carefully considered the features of the existing reduction algorithms and the
moduli-chain requirement in CKKS and decided to propose a new partially reduction-free
strategy for CASA, including a new algorithm and a fine-tuned hardware architecture.

3.1.1 Brief Background

Modular multiplication comprises two main operations: multiplication and reduction. Such
multipliers can be implemented in an interleaved fashion or separate scanning. Proper
selection of an algorithm is done according to the operand size and the field, and their
applicability depends on whether the modulus is special or generic. These algorithms are
classified by the direction in which they apply the modular reduction to a product: from
the right, from the left, or from both ends in parallel [KAK96]. Primary examples of these
are Montgomery [Mon85], Blakely [Bla83], and BMM (bipartite modular multiplication)
[KT05], respectively.

3.1.2 Existing Multiplication and Reduction Algorithms

Montgomery is the most widely applied algorithm for multiplication, reduction, and
interleaved multiplication and reduction. If the multiplication and reduction are split, the
reduction routine is usually paired with a multiplication algorithm, such as Karatsuba or
Schönhage–Strassen depending on the application [KA98, KO63, SBE15, SCH71]. Barrett
[Bar00] and Longa and Naerig [LN16] are the most common reduction algorithms. Barrett
optimizes the division part of modular reduction by replacing it with multiplication and
computing the residue through approximation of the quotient [Bar00]. Longa and Naerig
is an optimized reduction algorithm that applies when the modulus is a prime of special
form [LN16], i.e., one must find primes that are compatible with the CKKS and Longa and
Naerig reduction, while ensuring that such primes preserve the security of CKKS. Barrett

Pengzhou et al. 457

and Montgomery are commonly selected for reduction (with preference for Montgomery
when it concerns hardware implementations) [PS21].

3.1.3 Interleaved Algorithms

In general, interleaving is complicated. Blakely and Montgomery are two well-known
interleaved algorithms [Mon85, Bla83]. Though such algorithms might seem attractive
because CKKS deals with a chain of different prime moduli, a generic algorithm would be
more desirable. Thus, investigating a more efficient algorithm that can conform to a given
FHE scheme (CKKS) is worth pursuing since the performance gain can be significant.

3.1.4 Recent Advances

Our focus is on bipartite algorithms that can perform interleaved multiplication and
reduction in parallel from both ends. The first such algorithm is BMM [KT05] followed
by a radix-4 version in [KT08]. This was followed by similar works, such as the partially
interleaved bipartite multiplier from Saldamlı et al. using Karatasuba multiplication (also
known as Karatsuba-Ofman, KO) [SBE15]. More interestingly, is the reduction-free fully
interleaved Karatsuba-Ofman modular multiplier, called RF-FIKO proposed in [OMSL+23].
RF-FIKO presents an advantage over BMM by exploiting the special form of the modulus
(a reduction-free trinomial or RFT) to eliminate reduction circuits. Overall, RF-FIKO is
a special case of the fully interleaved modular multiplication that integrates Karatsuba
multiplication with bipartite reduction.

3.1.5 Prime Number Selection.

The CKKS requirements for the primes that form the chain determine which modular
multiplication algorithms can be used. To further reduce the area consumption, we exploit
the similarity among different CKKS moduli. A first thought on optimization would be
using a shift-and-add strategy to take advantage of sparing ‘1’s in the selected primes.
Related prime representation and search methods include Canonical Signed Digit (CSD)
recoding, which is a method for finding sparse primes and representing them in an even
more spare form using “signed” representation of power-of-two values [DIZ07]. The work
of [PS21] used the CSD representation and proposed an FPGA-based NTT accelerator and
evaluated for polynomial degrees of 1,024 and 4,096 at coefficient bit-width of 28 and 30.
However, practical implementations of CKKS usually require larger primes with bit-width
ranging from 54 to 60 bits and which lie in a narrow range compliant with the form of
Proth primes [AS10].

In this paper, the prime number selection for CKKS is carried out as follows. First, we
search for Proth primes at each bit-width number ranging from 54 to 60. Then, we create
a group for each prime pi consisting of all Proth numbers pj we have already acquired such
that qi/qj ∈ (1− 2η, 1 + 2η) to satisfy the CKKS requirements for noise growth [CHK+18].
Since the bit precision η is correlated closely with the rescaling precision, [CHK+18] listed
several valid prime numbers for 55-bit sized primes in Appendix B to elaborate prime
selection. The η was chosen to be 31 which is more than half of the prime bit length. This
value of η allowed for computing the same ciphertext as in HEAAN, meaning rescaling
accuracy was not impacted. The CKKS requirements for the primes do not conform to
an RFT form to apply RF-FIKO. We explore primes for which the Blakely circuit can
be removed and the Montgomery circuit remains but with minimal modifications in the
existing operations. We found several primes of size 54 to 60-bit satisfying a partially
reduction-free variant of RF-FIKO by using the program open sourced by [CHK+18] to
generate candidate prime numbers for this step. The next step is to determine L prime
numbers within each group. The target for this process is set to find the group for the L

458 CASA

primes that have the least possible bits set. We take a brute-force approach to implement
this process because the number of possible primes is very limited. Finally, we compare the
best list within each group to acquire L primes for our prime chain and design a fine-tuned
micro-architecture to do the modular multiplication (details are described below). We
selected nine 54-bit primes where η ∈ [19, 23] and hence, the impact on rescaling accuracy
remains the same as in [CHK+18].

3.1.6 Novel Partially Reduction-Free Modular Multiplier

Limitation of the Existing Method. First, we would like to highlight the origins of
PRF-FIKO starting from the first bipartite algorithm [KT05]. For simplicity, we keep
this subsection and the description of the new algorithm in GF (2n). BMM computes the
bipartite residue of a× b (mod F (t)) as follows. It takes in two operands, splits one into
approximately equal halves, and solves the problem in two parts that can be computed
in parallel. For example, consider two operands a = {a1, a0} and b = {b1, b0}, where the
subscript 1 denotes the upper word of an operand and the subscript 0 the lower word.
Note we use this subscript convention throughout except for the Karatsuba terms where
the appended subscript h and l would refer to an upper or lower word, but the 0 or 1
is part of the term label. Then BMM will compute a residue s = a × b1 (mod F (t))
and t = a× b0 (mod F (t)) using Blakely and Montgomery interleaved multiplication and
reduction algorithms in parallel, where F(t) can be split as two polynomials P = {f1, f0}
to represent the prime modulus. At the end, it will sum s+ t+F (t) to obtain the bipartite
residue.

PIKO is a bipartite modular multiplier that separates the multiplication and reduction
parts [SBE15]. Karatsuba multiplication is applied using the first level of recursion (with
half-size words) to compute a product, it is partial and not fully interleaved multiplication.
Montgomery and Blakely reduction algorithms are applied to two of the Karatsuba terms,
c0 = a0 × b0 and c2 = a1 × b1, to obtain their quotients (mod f0) and (mod f1),
respectively. Each of the three Karatsuba terms, including the cross-term c1 = (a1 +
a0)(b1 + b0), is then summed with a respective bipartite term. Note, naming of the
Karatsuba terms varies and we follow the definition used here. Lastly, a bipartite residue
is computed as a final sum of the updated Karatsuba terms.

RF-FIKO is an improvement to PIKO in two respects. First, it eliminates the reduction
circuits completely, meaning that the Montgomery and Blakely reduction algorithms are
no longer needed. This result was obtained by exploring improvements to the form of the
modulus polynomial, which would allow the elimination of such circuits used by PIKO for
the purpose of computing the Montgomery and Blakely quotients. RF-FIKO was developed
considering desired forms of the modulus polynomial, the implications on the computations,
and exploring the possibilities when working with half-size words. Experimenting with
bit by bit computations in GF (2n), a known fact can be easily observed–that if the lower
half of F (t) is only 1, the Montgomery quotient of any input a reduced by 1 is simply a
and hence, the Montgomery reduction circuit can be eliminated. Similar observations with
respect to the upper half of F (t) allowed the elimination of the Blakely reduction circuit.

For cryptographic purposes, we require working with an irreducible polynomial of odd
degrees, preferably a trinomial or pentanomial. These observations collectively led to
defining F (t) as a trinomial where the upper word is a binomial and the lower word is a 1.
Such a trinomial is referred to as an RFT in [OMSL+23]. This means the Montgomery
and Blakely quotients can be taken directly from the Karatsuba terms c0 and c2 when
F (t) is an RFT. More specifically, the Montgomery quotient is found in the lower word
of c0 and the Blakely quotient in the upper word of c2 starting from the second most
significant bit of c2 since the operands are prefixed to match the bit-length of F (t) for
symmetry. Second, it was observed that both PIKO and RF-FIKO can be implemented
in a fully-interleaved fashion. The two improvements: removing reduction circuits and

Pengzhou et al. 459

fully interleaving the computations simplified PIKO to RF-FIKO where the core of the
algorithm consists of only three multiplications followed by some additions to compute the
final sum or bipartite residue.

The RF-FIKO was developed and tested for the operation over binary basis [OMSL+23],
but has not been explored further to be compatible with actual FHE schemes. Meanwhile,
the presented approach was still in the early stage, i.e., only produces one bit per cycle
and it is limited by a fixed modulus.

Our Proposal. We observe that RF-FIKO solves the problem of modular multipli-
cation and reduction by obtaining a bipartite residue with three simple half-size word
multiplications and some shifts and additions. This algorithm applies when the modulus
polynomial has the special RFT form that can give us reduction-free quotients. Because
the CKKS requirements for the primes clearly do not conform to an RFT form, we consider
a search for primes for which either the Blakely or Montgomery circuit can be removed.
Specifically primes where either the upper word has only the most significant bit set or the
lower word has only the least significant bit set (is a 1) to develop a variant of RF-FIKO
with minimal changes.

Based on this background, we propose to: (i) explore RF-FIKO further by testing for
generation of CKKS primes with RFT form; (ii) if the primes are not in the RFT form,
then find primes for which we can have a partially reduction-free algorithm. If (i) or (ii) is
successful, the algorithm can be integrated as a replacement for modular multiplication
and reduction; (iii) develop a low-latency parallel algorithm that requires no sequential
data flow control, so that the point-wise multiplication and reduction can be finished in
one cycle; (iv) design a fine-tuned hardware micro-architecture for the parallel algorithm
with minimum resource usage.

Algorithm 1 Partially Reduction-Free Fully Interleaved Karatsuba (PRF-FIKO) Modular
Multiplication Algorithm
1: Input: a, b ∈ P s.t. P is represented as an array of indices
2: Output : c ≡ a× b× 2−r (mod P)
3: c0 ← a0 × b0 . terms from Karatsuba Algorithm
4: c1 ← (a1 + a0)(b1 + b0)
5: c2 ← a1 × b1
6: q1 ← c2 ← Blakely quotient
7: q′0 ← Montgomery(c0, f0) . apply Montgomery reduction to c0 with f0
8: t0 ← MMSM(q′0, f0) . BMM terms, computes q′0 × f0
9: t2 ← MMSM(q1, f1) . computes q1 × f1
10: t1 ← MMSM(q′0 + q1, f0 + f1) . cross-term uses sparse-multiplier internally
11: c′0 ← c0 + t0 . add the bipartite reduction terms
12: c′1 ← c1 + t1
13: c′2 ← c2 + t2
14: c← (c′0h||c′2l) + (c′2l||c′0h) + c′1
15: Return c

Proposed Algorithm. CKKS requires a prime modulus chain of size L, which
grows approximately linear to n. Generating CKKS compatible primes with RFT form
is not feasible. However, several primes can be generated for which the most significant
bit is set and the bits in the lower word are sparse. Such primes allow for a partial
variant of RF-FIKO. The proposed new partially reduction-free algorithm called Partially
Reduction-Free Fully Interleaved Karatsuba (PRF-FIKO) modular multiplier, is shown
in Algorithm 1. Overall, we have improved the original algorithm of RF-FIKO in two
aspects: flexibility with the modulus polynomial F (t) and bipartite reduction. The original
algorithm computes the Karatsuba terms and makes use of the known special form of

460 CASA

F (t) to eliminate reduction circuits and implement remaining multiplications as shifts and
additions. PRF-FIKO re-adds the Montgomery reduction circuit and requires a minimal
sparse multiplier for the bipartite cross-term.

Step-by-step, Algorithm 1 computes the bipartite residue as follows. Let the prime P
be represented in the binary basis as a modulus polynomial F (t) that defines a finite field
GF (2n). Lines 3-5 compute the Karatsuba terms. Line 6 takes the Blakely quotient from
c2 since these are directly found in the uppermost significant bits of c2. By virtue of how we
compute the Blakely quotient bits given the form of f1, which has only the most significant
bit set, we can easily observe those bits are just the c2 bits. Moreover, we are only
interested in the upper word of the Blakely quotient and the lower word of the Montgomery
quotient, since we are working with half-size words. Now, because the modulus polynomial
is no longer an RFT, the lower bits in this case vary, meaning the bits in f0 vary and line
7 computes the Montgomery quotient q′0 obtained from reducing c0 with f0. Lines 8-10
compute the bipartite terms q′0 × f0, q1 × f1, and (q′0 + q1)× (f0 + f1). Because F (t) is no
longer an RFT, multiplication for the bipartite cross term (q′0 + q1)× (f0 + f1) requires a
sparse multiplier since multiplication by (f0 + f1) is no longer a simple left shift by a fixed
power of two. Lines 11-13 represent partial products by adding the bipartite terms to the
respective Karatsuba terms. Note, the bipartite terms may also be referred to as "bipartite
reduction terms" since they reduce the Karatsuba terms. Lastly, line 14 computes the
bipartite residue as a sum of the reduced terms. This is in line with the desired residue of
a× b× 2−h (mod F (t)) where h = k/2 denotes the bit length of a half-size word and k the
bit length of the F (t). A complete derivation of the Karatsuba-Ofman Algorithm shows
that the desired bipartite residue for the product modulo F (t) is obtained by adding to c′1
the partial products (c′0 + c′02h + c′2 + c′22h) [KO63]. Note that because c′0 and c′2 have
been reduced by their respective bipartite terms, we can discard the lower word of c′0 and
the upper word of c′2. This means that the remaining additions (c′0 + c′02h + c′2 + c′22h)
to c′1 can be expressed as in line 14 where || denotes concatenation. Lines 3-5, 7, and 8
can be computed in parallel. Line 9 is multiplication by f1 and can be implemented as a
simple left shift by the power of the degree of f1. Line 10 takes in the computed q′0 term
to compute the cross term, and finally, lines 11-14 (including Line 9) can be combined to
compute the bipartite residue. Naturally, the same algorithm can be implemented in a
single cycle.

In PRF-FIKO, the modulus polynomial F (t) now takes the form of the CKKS selected
primes. The upper word has the most significant bit set and the lower word varies with
two to six bits set. This allows us to use an array of indices to represent selected primes
instead of requiring the entire value of a given prime or F (t). For example, if F (t) has
degree 163, the RF-FIKO takes in a 164-bit array. In PRF-FIKO, the selected primes
we use can be represented with at least two and at most six bits. Hence, we let F (t) be
an array of indices that can represent any of our selected primes. Moreover, because the
arithmetic for the BMM terms involves shifts and additions by known amounts due to
the known form of F (t), we further optimize this part by incorporating a Multi-Modulus
Shift Multiplier (MMSM) that performs the BMM steps for a given modulus based on the
bits set of the 6-bit array F (t). The difference here is that the cross-term uses a sparse
multiplier since the lower word of F (t) is no longer one.

Fine-Tuned Hardware Micro-architecture. We present a novel partially reduction-
free hardware micro-architecture with significant performance enhancement by studying the
relationship between different prime moduli and exploring hardware resource multiplexing.
The selected L moduli form a moduli chain as mentioned in the previous subsections.
We can write all the moduli in binary format and collect all the positions for ‘1’s, e.g.,
suppose we have six different positions, we can index them from 0 to 5, as seen from Fig. 2.
The first micro-architecture we construct is the multi-modulus shift multiplier (MMSM).
When a key-switching, rescaling, mod-up or mod-down operation is executed, a modulus is

Pengzhou et al. 461

idx5 idx4 idx3 idx2 idx1 idx0

Shift(i0)

Padding

...

Coeff_in

Coeff_out

Shift(i1)

Zero

Shift(i5)

Reg

Reg

Figure 1: Multi-Modulus Shift Multiplier (MMSM), where idx refers to index.

MMSM MMSM

b0

p0 p1

p_in

a1

b1

MMSM

m_out
Shift-XOR

Unit

a_in

b_in

XOR

XOR

XOR

a0

XOR

XOR

XOR
H

H

H

H

H

width=d

width=d/2
R

e
g

R
e
g

Reg

MMSM H

XOR

Montgomery

Figure 2: Details of the proposed partially reduction-free module. Subscript H refers to
the high word of a given register.

determined and configured by setting the corresponding index to 1. Such an architecture
is suitable for FPGA-specific optimization since it creates clear critical paths between
arithmetic components. As shown in Fig. 1, inserting registers between adders allows a
higher clock frequency at the cost of sequential components. On the other hand, as shown
in Fig. 2, the delay incurred by inserting registers into MMSM has to be compensated by
inserting register arrays into several data paths to ensure correct data capture at required
clock cycles. Additionally, our investigation extends to optimizing digital signal processing
(DSP) aspects. For instance, we can further enhance the clock frequency when working
with Xilinx Artix-7 devices equipped with onboard DSP48E1 units supporting 25-bit ×
18-bit multiplication. On top of the previously mentioned strategy of inserting registers,
we divide the operands into distinct bitstring groups, each with a size of less than 18 bits.
In this scenario, registers are inserted between these bitstring groups rather than at various
layers of adders.

Complexity and Discussion. In this way, we construct a fine-tuned micro-architecture
for a low-latency, modulus changeable, and partially reduction-free multiplier. The complex-
ity analysis of the proposed design is as follows. Direct multiplication of two polynomials
in a ring with coefficients defined over Zq has a complexity of O(n2) with lazy reduction.
The NTT method brings this complexity to O(nlogn). With respect to the polynomial
coefficients, standard Barrett [Bar00], Blakely [Bla83], and Montgomery [Mon85] have

462 CASA

T1_LT0_H
T0_in

T1_L T0_H

XORXOR

T1_in

H

H

Figure 3: Shift-XOR Unit. Subscripts H and L refer to the high and low words of a given
register, respectively.

complexity O(n2) for n-digit operands. Bit-parallel interleaved algorithms in binary poly-
nomial basis for Blakely [Bla83] and Montgomery [Mon85] would have O(n) complexity.
BMM [KT05], RF-FIKO [OMSL+23], and PRF-FIKO have timing proportional to n/2.
Additional improvements for PRF-FIKO are in the form of optimization techniques and
further exploration of the underlying arithmetic. For example, a speedup can be incremen-
tally doubled at the cost of space. The recursion depth can also be increased at the cost of
added complexity.

Fig. 2 is a combinational circuit based architecture, whereas the existing approaches
(such as RF-FIKO) are sequential circuit based structures. Therefore, an analysis with
respect to time and space complexities can be better observed in the top-level module that
incorporates MSMM (such as NTT and Dyadic & Accumulation), i.e., our approach obtains
significant improvement in both complexities. The proposed architecture can be efficiently
switched among different prime moduli for CKKS, whereas the existing methods did not
offer this property. For instance, when n = 214 and the moduli chain contains 8 primes, the
proposed multiplier can shift between 8 moduli. A straightforward way to implement the
existing methods would need to construct 8 different modular components. Furthermore,
the proposed partially reduction-free modular multiplier integrates the multiplication and
reduction parts together. Thus, a comparison by direct programming and synthesizing
between the proposed multiplier and modular structure and the existing methods would
not be enough. Nevertheless, both the analysis here and the final implementation (see
Section 5) confirm the efficiency of the proposed partially reduction-free technique.

Algorithm 2 NTT Algorithm
1: Input: Polynomial x = (x0, ..., xn−1) ∈ Rp, modulus p
2: Output: NTT of x
3: Initialize: Primitive n-th root of unity ωn
4: for i← log2n downto 1 do
5: m← 2i
6: W ← ω

n/m
n (mod p)

7: for j ← 0 to n− 1 do
8: W ′ ← 1
9: for k ← 0 to m/2− 1 do
10: t← x[j + k]
11: u← x[j + k +m/2]
12: X ← t+ u
13: Y ← (t− u)W ′
14: x[j + k]← X (mod p)
15: x[j + k +m/2]← Y (mod p)
16: W ′ = W ′W (mod p)
17: end for
18: end for
19: end for
20: Return x

Pengzhou et al. 463

3.2 NTT Module
NTT operation (Algorithm 2) is not as efficient on CPU/GPU as on FPGA due to an
FPGA’s high parallelism processing style. Extensive studies have been conducted for NTT
over different parameter sets, such as coefficient modulus size, input polynomial size, and
the total execution time in the targeted application [ZLL+21, KLC+20, DNKYL22]. FPGA
accelerators for FHE implementations also contribute a variety of ways for constructing
the NTT module [RLPD20, HZL+22, MKS+22, TRV20, NSA+22]. We studied these
literature works and have presented an in-place NTT architecture for compact and scalable
CKKS accelerator (Fig. 2). We use parameter Nbf as a design parameter not only for
representing the number of butterfly cores in an NTT module but also directly relate
it to design parameters for other modules. In this perspective, we create a one-variable
configuration for the entire accelerator. The performance of the entire accelerator with
respect to different scalable factors is also categorized by this parameter (Section 5).

Let Nbf denote the number of butterflies we use in parallel. The first question is how
we organize memory for data storage. This is closely related to butterfly data flow and
NTT stages. An NTT operation consists of log2n stages requires each stage to operate
each coefficient once. [RLPD20] proposes to divide these stages into two types. The
first type (Type-I), consists of the first (log2n − logNbf − 1) stages (indexed from 0),
features the characteristic that the coefficients of butterfly inputs Xi and Yi distant from
each other by a relatively large distance, or precisely the distance greater than 2Nbf .
The second type (Type-II), then, consists of the rest stages. This method requires a
MUX-based architecture to route coefficients within the same memory address location
to the desired butterfly’s inputs and therefore contributes to a considerably large logical
circuit consumption. Another method allowing multiple butterflies to work in parallel and
achieved an excellent performance was proposed by [PS21]. This method requires Nbf to
be a power-of-two, the same as the aforementioned processing style. It then divides the
polynomial into even and odd parts, which fits well with the proposed memory accessing
pattern for data flow routing. Besides that, we do not need a MUX-based architecture to
route between different butterfly cores. However, this processing style needs a doubled
memory to store all n points to satisfy the proposed access pattern.

Since we want to design a compact accelerator and memory read/write contributes a
lot to FHE when deploying in many practical applications, we just follow [RLPD20] to
divide the NTT stage into Type-I and Type-II. Our memory bank architecture therefore
can be organized as shown in Fig. 4. We instantiate at least 2Nbf on-chip memories to
acquire 2Nbf memory ports. Note that more than one block memory tiles are possibly
used in one memory element.

The type-I stages require Xi and Yi fetched from different memory addresses, which
incurs an inter-memory-address dependency. This memory access pattern for these stages
is implemented by using a hybrid of finite-state-machine (FSM) and several address tables.
First, we generate address tables to indicate the step width between Xi and Yi for each
stage. Then, we generate the table for each stage to indicate whenever a jump is needed
within a stage. Finally, the FSM generates control signals for address management with the
help of the address tables. The address tables and FSM combined to form the address logic
unit in Fig. 4. The type-II stages fetch/store Xi and Yi from the same memory address
due to the relatively small step width. This stage requires a MUX-based combinational
circuit structure to route Xi and Yi to the desired butterflies. [RLPD20] suffered from the
same issue and proposed to optimize this huge MUX system by eliminating some small
MUX at a fixed location, e.g. the index 0 butterfly’s input X always does not need location
change. However, this method still requires a large MUX-based circuit, according to our
evaluation. Thus, we propose to construct the MUX circuit by utilizing the observation
that only logNbf stages need routing. These stages include stage log2n− logNbf to stage
log2n− 2 and the last stage (stage log2n− 1) does not need coefficient routing. Due to the

464 CASA

X’

Y’

X

Y

X’

Y’

X

Y

Butterfly Group

Type-II
NTT
Stage
Logic

NTT

Address

Logic

M
e

m
o
ry

D
a
ta

 M
u
x

RNS Memory

Element 0

RNS Memory

Element 1

RNS Memory

Element ...

RNS Memory

Element 2Nbf-1

Data

Data &

Address

NTT CoreMemory Bank

Twiddle Factor

Memory

Run-time

Twiddle Factor

Calculate Logic

Figure 4: Proposed in-place NTT architecture for polynomials represented in RNS format.

fact that: (a) the logarithm complexity of the number of stages needs routing with respect
to Nbf and (b) Nbf is intended to be small in a compatible design, we can efficiently reduce
the area consumption for this MUX-related logic. For instance, when Nbf = 8, type-II
stages require only 3 different patterns. We can use a 3-to-1 MUX for each bit to execute
this task. These MUXes are packed into the Type-II NTT Stage Logic Unit (Fig. 4). We
also use decimation in frequency (DIF) strategy for NTT and decimation in time (DIT)
strategy for INTT in this design. The DIF NTT is shown in Algorithm 2. The twiddle
factors are stored in the Twiddle Factor Memory, which is a dual-port memory of depth 2
(address space ranges from 0 to 1). When the root for NTT is determined and stored at
address 0, the rest of the roots used in the entire NTT process is calculated dynamically.
The same strategy is used for Type-I address logic. We store multiplicand in address 1
and update at running time. The multiplicand is multiplied with the last cycle’s roots to
derive roots for the current cycle.

Algorithm 3 Homomorphic Multiplication Algorithm
1: Input: Ciphertext ĉ = (ĉ0, ĉ1), ĉ′ = (ĉ′0, ĉ′1) ∈ R2

Ql
decryptable with secret (1, s)

2: Output: Ciphertext d = (d̂0, d̂1, d̂2) ∈ R3
Ql

decryptable with secret (1, s, s2)
3: for i← 0 to l do
4: d̂0{i} ← ĉ0{i} ⊗ ĉ′0{i}
5: d̂1{i} ← ĉ0{i} ⊗ ĉ′1{i}
6: d̂1{i} ← d̂1{i}+ ĉ′0{i} ⊗ ĉ1{i}
7: d̂2{i} ← ĉ1{i} ⊗ ĉ′1{i}
8: end for
9: Return d = (d̂0, d̂1, d̂2)

3.3 Dyadic and Accumulation (ACC) Module
The Dyadic and ACC Module is shown in Fig. 5. Dyadic multiplication is used in homo-
morphic multiplication, key-switching, and rescaling algorithms, as shown in Algorithm 3,

Pengzhou et al. 465

(a)

CSU

prime_in

data_in1

data_in2

dya_out

sel

X

Y

T

sel

X

Y

T

Buffer

sel

X

Y

T

sel

X

Y

T

PRF

Mult

p_in

a_in

b_in

m_out
PRF

Mult

p_in

a_in

b_in

m_out

clkclk

din

clk

din

clk

din

clk

din

set

clk

din

set

sel

X

Y T

Z
sel

X

Y T

Z

CSU

prime_in

data_in1

data_in2

dya_out

Buffer

sel

X

Y T

Z
sel

X

Y T

Z

Δ
-1

sum

sel

X

Y

T

sel

X

Y

T

PRF

Mult

p_in

a_in

b_in

m_out
PRF

Mult

p_in

a_in

b_in

m_out

clkclk

din

clk

din

clk

din

clk

din

set

clk

din

set

sel

X

Y

T

sel

X

Y

T

(b)

. CSU: coefficient subtraction unit.

Figure 5: (a) Architecture of Dyadic & ACC Module. (b) Data flow for Rescaling operation.
PRF Mult: partially reduction-free multiplier

Algorithm 4, and Algorithm 5 respectively. We design a highly efficient micro-architecture
for Dyadic and ACC Module by multiplexing hardware resources. The Dyadic and ACC
Module eventually embeds 4 functions into one structure including dyadic multiplication,
dyadic multiplication and accumulation, addition, and rescaling. Firstly, we instantiate
Nbf point-wise multipliers (PRF Mult in Fig. 5) using the proposed partially reduction-free
method (in Section 3.1) to reduce the area occupation. For the Dyadic multiplication
operation, a straight-forward data flow is executed, i.e., operands are fed into PRF Mult
by data_n1 one cycle by one cycle. Then, the 2-to-1 MUX before the adder selects input
X. It takes 2n-cycles to multiply two size n polynomials with one Dyadic core in this way.

For accumulation operation, the coefficient subtraction unit (CSU) is responsible for
subtracting one fold of modulus p from the sum if the sum is larger than p. We also
implement the polynomial addition in this module by multiplexing the adder. Data_in2 is
connected to the adder by using the set port of register so that one coefficient goes into
the adder from the output of the register (another from the input buffer). When rescaling
operation is executed, Line 9 Algorithm 5 indicates ∆−1 is multiplied by the sum of ĉ1
and t̂1 (this data flow is shown in Fig. 5 (b)). Again, we multiplex the adder by selecting
one coefficient from the output of the register and another from data_in1. Then the sum
is multiplied by ∆−1 (pre-stored in the register). Note here we also multiplex the register
of the input buffer.

466 CASA

Algorithm 4 Key-Switching Algorithm
1: Input: Ciphertext d = (d̂0, d̂1, d̂2) ∈ R3

Ql
decryptable with secret (1, s, s2)

2: Output: Ciphertext ĉ′′ = (ĉ′′0 , ĉ′′1) ∈ R2
Ql

decryptable with secret (1, s) d̂′2 ←
ModUp(d̂2)

3: for i← 0 to l + k do
4: t̂0{i} ← d̂′2{i} ⊗ swk0{i} mod qi
5: t̂1{i} ← d̂′2{i} ⊗ swk1{i} mod qi
6: end for
7: t̂′0 ← ModDown(t̂0)
8: t̂′1 ← ModDown(t̂1)
9: for i← 0 to l do
10: ĉ′′0{i} ← d̂0{i}+ t̂′0{i}
11: ĉ′′1{i} ← d̂1{i}+ t̂′1{i}
12: end for
13: Return ĉ′′ = (ĉ′′0 , ĉ′′1)

Algorithm 5 Rescaling Algorithm
1: Input: Ciphertext ĉ = (ĉ0, ĉ1) ∈ R2

Ql
encrypting message ∆z

2: Output: Ciphertext ĉ′ = (ĉ′0, ĉ′1) ∈ R2
Ql−1

approximately encrypting message z
3: c0{l} ← INTT(ĉ0{l}, ql)
4: c1{l} ← INTT(ĉ1{l}, ql)
5: for i← 0 to l − 1 do
6: t̂0 ← NTT(−c0{i}, qi)
7: ĉ′0 ← ∆−1(ĉ0 + t̂0) mod qi
8: t̂1 ← NTT(−c1{i}, qi)
9: ĉ′1 ← ∆−1(ĉ1 + t̂1) modqi
10: end for
11: Return ĉ′ = (ĉ′0, ĉ′1)

3.4 Memory Organization

Memory related data movement is considered as a major bottleneck for CKKS hardware
design [SFK+21, SFK+22]. The memory system for a specific-domain accelerator such
as a CKKS accelerator can be categorized into on-chip memory inclined style [MKS+22]
or on-off memory hybrid style [HZL+22, RLPD20]. When n = 214, each coefficient of
polynomial before decomposition is at least 438 bits. This results in a considerably large
ciphertext size at 13.69MB which is 106.7% of the on-chip memory (Block memory or
BRAM) for a resource-constrained device like Artix-7. It can be challenging even for
advanced FPGAs such as the data-center FPGA Alevo U250. While [MKS+22] relied all
on Alevo U250, other high-speed designs with cascaded [RLPD20] or ring-like [MKS+22]
structures had to use the off-chip memory to store the data (even their FPGAs were
very advanced). CASA takes a contrary way of organizing the memory architecture.
We argue that for scalable memory utilization, CKKS accelerator should incline to use
the off-chip memory as much as possible to keep the on-chip structural simplicity and
straightforwardness (while on-chip memory can directly connect to the other modules).
With a large amount of data stored on the chip, the address space and port fanout then
need to be enlarged for parallel computation. The on-chip address management thus
requires adding more control logic, which may result in a more complicated data exchange
process with external memory. On the contrary, relying on off-chip memory is relatively

Pengzhou et al. 467

easier. Data can be read into/out of the on-chip memory in trunk by manipulating a
memory offset variable since off-chip memory has a significantly larger memory space.

0x0

0x1

0x2

0x3

0x4

...

x0

x8

x12

x16

...

Port 0

x0

x8

x12

x16

...

Port 0

x1

x5

x9

x13

x17

...

Port 1

x2

x6

x10

x14

x18

...

Port 2

x3

x7

x11

x15

x19

...

Port 3

x4

2Nbf

Figure 6: Memory organization of the Memory Bank for Nbf=2. xi stands for the i-th
coefficient in an polynomial.

Algorithm 6 ModUp Algorithm
1: Input: Ciphertext component ĉ = (c{0}, ..., c{l}) ∈ RQl

2: Output: Ciphertext component with special primes ĉ′ = (c{0}′, ..., c{l+ k}′) ∈ RPlQk

3: for i← 0 to l do
4: c{i} ← INTT(ĉ{i}, qi)
5: c{i} ← c{i} ⊗ [q̂−1

i]qi

6: end for
7: for j ← 0 to k − 1 do
8: s← 0
9: for i← 0 to l do
10: s← s+ c{i} ⊗ [q̂i]pj

mod pj
11: end for
12: c{l + j + 1}′ ← s
13: ĉ{l + j + 1} ← NTT(c{l + j + 1}′, pj)
14: end for
15: Return ĉ′ = (c{0}′, ..., c{l + k}′)

The proposed memory bank is described in Fig. 6. We have used two memory banks
as the on-chip memory to provide data for all three computation components, namely
the NTT Module, the Dyadic and Accumulation (ACC) Module, and Modular Switching
Bank. Since we only use one NTT Module (as shown later in Fig. 7), the requirement
for maximum data transfer bandwidth between off-chip memory and on-chip memory can
be achieved even on the resource-constrained device at this level of throughput rate. For
example, for parameter set III of CKKS and RNS prime width set to 54 bits, an NTT
module works on 884,736 bits of data trunk (one polynomial) for 14,436 cycles. If the
programmable logic part works at 100MHz, it will require 71.68µs to finish the transform
of a polynomial. In this case, even without using PCIe, the AXI-4 interface working at
50MHz and 1024-bit width will be able to transfer 3,670,016 bits of data. This is also an
important factor that supports a memory design leaning on off-chip memory. We have
also demonstrated the detailed memory usage for CASA in Tables 2 and 4.

3.5 Modulus Switching Bank
Modular switching operation is a basis conversion operation that maps a ciphertext from
modulus Pl to a larger modulus PlQk, or in reverse [CHK+18]. The modulus switching
algorithm for conversion from Pl to PlQk is shown in Algorithm 6. The dyadic multiplication

468 CASA

Algorithm 7 ModDown Algorithm
1: Input: Ciphertext component with special primes ĉ = (c{0}, ..., c{l + k}) ∈ RPlQk

2: Output: Ciphertext component ĉ′ = (c{0}′, ..., c{l}′) ∈ RQl

3: for j ← 0 to k − 1 do
4: c{l + j + 1} ← INTT(ĉ{l + j + 1}, pj)
5: c{l + j + 1} ← c{l + j + 1} ⊗ [p̂−1

j]pj

6: end for
7: for i← 0 to l do
8: c{i} ← INTT(ĉ{i}, qi)
9: s← 0
10: for j ← 0 to k − 1 do
11: s← s+ c{l + j + 1} ⊗ [p̂j]qi mod qi
12: end for
13: c{i}′ ← c{i} − s
14: ĉ{i} ← NTT(c{i}′, qi)
15: end for
16: Return ĉ = (c{0}, ..., c{l + k})

is done between c{i} and a pre-calculated constant q̂ipj
. Therefore, each coefficient of

c{i} needs to apply modulo pj before doing dyadic multiplication. The similar situation
happens in Algorithm 7, where c{l + j + 1} is multiplied by p̂jqi

. Therefore, there is a
need to convert coefficients modular primei to equivalent coefficient modular primej under
the congruent equivalent definition for ModUp and ModDown. When primej is larger
than primei, the coefficient is automatically pertained as it is. On the other side, when
primej is less than primei, we can usually make an easy modular switching by subtracting
primej from the coefficient modulari. This is because the primes have a similar size due
to CKKS’s constraint on prime chain (qi/qj ∈ (1− 2η, 1 + 2η) for i, j ∈ {1, ..., L}). Only
when primei is q0 and primej is another prime number, we do a reduction by using the
partially reduction-free technique because q0 can be significantly larger than other primes.
But it is guaranteed that q0 is less than the square of any other number, so we can safely
use the partially reduction-free technique for this modular switching.

4 Accelerator: CASA
4.1 Overall Structure
CASA is a compact and scalable accelerator designed by adopting the proposed design
methodology. The top-level view of CASA is shown in Fig. 7. The key idea is to keep
operations among different modules well-aligned so that an efficient parallel computation
can be achieved. We use parameter Nbf to denote the number of butterfly cores, but it
is more crucial to the architecture layer because it also determines the number of dyadic
multipliers and modulus switching units being used, as well as the bandwidth of memory
I/O and data organization in the memory.

The challenging part is trying to keep as many modules working simultaneously as
possible during a high-level operation. Since the NTT Module is the one that consumes
the longest latency in the primitive function modules and needs to engage an entire
Memory Bank, we set the delay for pipeline elements equal to the latency of an NTT/iNTT
operation. Details of pipeline and parallel computation are introduced in Section 4.2.

CASA relies on off-chip memory to store the data that is not immediately used in
parallel computation. The interface to connect with the off-chip memory is set on a
Modulus Switching Bank to allow bit-width transition, i.e., the bit-width of off-chip

Pengzhou et al. 469

Memory
Bank 0

MSB

DYA & ACC

c_in

data_in

dya_out

Memory
Bank 1

sel

X

Y T

Z
sel

X

Y
T

sel

X

Y
T

NTT
Core

data_in

tf_in data_out

mem_bank_out

ocm_out

ocm_in

mem_bank_in

sel

X

Y T

Z

Figure 7: Top-level view of CASA. DYA & ACC: Dyadic and Accumulation. MSB:
Modulus Switching Bank.

memory port usually comes at a power-of-two number such as 64, 128, and sometimes can
go up to 1024 for AXI-4 interface on Artix-7.

The interface between CASA and external memory is set on Modulus Switching Bank
because it is responsible for cutting out padded zeros and storing coefficients into on-chip
memory (Memory Bank). Two 3-to-1 MUXes are placed before the two Memory Banks.
This allows the NTT Module to occupy one Memory Bank while the other has access to
MSB and DYA & ACC modules.

4.2 Scalable Parallel Computation

1 2 3 4 5 6 7 8 9 10 11

0 0 0

1 1 1

2 2 2

3

4_0 4_3 4_1 4_2

5_0 5_3 5_1 5_2

6_0 6_1 6_2

7 7 7

8 8 8

Stage ModUp
Complete

Dep.

Dep.

Dep.

Ln4

Mod
Up

Ln5

Ln10

Ln13

KS
Mod
Down

Ln4,5

Ln4,8

Ln11

Ln14

Ln10,
11

Time12

NTTINTT DYA DYA+ACC ADD

Figure 8: Key-Switching pipeline for L = 3,K = 1.

We propose a new hardware design methodology by first constructing the fine-tuned
micro-architecture. However, the challenging part (making such a design work as a whole)
is that the parallel computation needs to work smoothly and efficiently on top of those
micro building blocks. In addition, to work on a range of devices as broadly as possible,
we need to ensure the architecture has good scalability. Therefore, we design the parallel

470 CASA

computation strategy for CASA by the following steps. Firstly, we ensure the architecture
is scalable straightforwardly by defining a single parameter for scaling up or down. The
benefit is that we keep the entire structure scalable while any operation involved in the
pipeline is implied. As introduced in Section 3.2, this design parameter is Nbf . Secondly,
we consider the pipeline for key-switching (the most computationally-intensive operation in
CKKS) as the bottleneck for efficient homomorphic circuit design. We study the pipeline
of HEAX [RLPD20] and coxHE [HZL+22]. HEAX achieved a very high throughput by
creating a cascaded structure containing multiple NTT Modules and potentially a different
number of INTT modules. CoxHE proposed an optimized pipeline on top of HEAX and
achieved shorter latency. However, both designs cost a tremendous hardware resource
and rely on a pipeline that is challenging to scale. For example, HEAX requires {4 NTT
Modules of 16 butterflies, 1 INTT Module of 16 butterflies, 2 INTT Modules of 8 butterflies,
3 Dyadic Modules, and 2 Modular Switching Modules} for n = 212. However, it is unclear
how many modules of different types with different design parameters would be needed
for n = 213. It turns out that {2 NTT Modules of 16 butterflies, and 2 Dyadic Modules}
were added while the butterfly number of 2 INTT Modules was reduced from 8 to 4.
[RLPD20] only disclosed limited information about the pipeline for different parameter
sets, but this architectural change probably results in a significant change in its parallel
computation. A re-design of parallel computation strategy may cost a huge amount
of resource investment in real-world applications. CoxHE also involves a sophisticated
architectural scaling process, but very limited information was reported. Therefore, we put
the scalability of the proposed design as a priority when we design key-switching pipeline
for CASA. To achieve this goal, we use the latency for NTT as the time for each element.
The pipeline for L = 3,K = 1 is shown in Fig. 8. There are nine stages indexed from 0
to 8, and it takes 12 elements to finish the pipeline. The data dependency is denoted by
Dep. No NTT or INTT operation is executed at the same time so that the pipeline is
executable for one NTT Module. Since the bandwidth of the Memory Bank is organized
to Nbf coefficients (Fig. 6), the data flow goes into/out of the Memory Bank at each
cycle is at the same width as the NTT Module, Dyadic and ACC Module, and Modulus
Switching Bank. This square and aligned design allows the pipeline to work effectively,
e.g., tightly connecting stage 1 to stage 2 (theoretically, stage 2 has to wait for stage 1 to
fully accomplish due to the data dependency implied by ModUp Algorithm 6). But the
data movement speed for a Memory Bank and a Dyadic and Acc Module is equal, so we
can safely send the completed NTT data through the Dyadic and ACC Module before
it goes to off-chip memory. From the perspective of the pipeline, stage 1 and stage 2 are
finished at the same time. The same situation also happens in stages 7 and 8. For the
key-switching algorithm, the CKKS ciphertext contains two parts (c0, c1), so we implement
two identical structures as shown in Fig. 7 to process the key-switching pipeline. Another
important aspect of acquiring highly-efficient parallel computation hardware is to keep
as much component work at the same time as possible. Since the in-place NTT Module
engages an entire Memory Bank while working, the goal is that other modules can keep
working. We add two MUXes for the two Memory Banks so that all Memory banks can
keep working with a computational module or exchange data with off-chip memory.

5 Implementation & Comparison
We have coded our accelerator with VHDL (with functionality verified) and implemented
by Vivado 2020.1 on the AMD-Xilinx ZCU-102 FPGA evaluation board. The implemented
designs are categorized by different CKKS parameters and the design parameter Nbf . We
have followed the CKKS parameter sets from [RLPD20] to implement them so that the
security and accuracy are directly inherited. Note that the design parameter Nbf is the
number of butterfly cores within an NTT Module, which also implies the number of ports

Pengzhou et al. 471

Table 1: CKKS Parameter Sets (From [RLPD20])
Parameter Set n logPQ L+1 Homo. Op. Level Sec. Level/bit

I 212 109 2 1 128
II 213 218 4 3 128
III 214 438 8 7 128

in the Memory Bank, Partially Reduction-Free Multipliers in the Modulus Switching Bank,
and Dyadic Multiplication Module (as described in Section 4).

The security configurations are directly borrowed from [ACC+21] to ensure at least
128-bit security against computational attack. To make a straightforward comparison with
the existing reports in the literature, we select three parameter sets that can be uniquely
identified by n for n = 212, 213 and 214 as shown in Table 1. The number of primes in the
prime-chain for pi is L+ 1 and the homomorphic operation level is L.

Table 2: Area Usage Comparison with The Existing Hardware CKKS Accelerators (And
an FV Design)

Design Device n LUT FF DSP BRAM Extra Memory
(OFCM,URAM)

[HZL+22] ZCU102 8,192 153k 115k 2420 639 (Y,Y)
CASA (Nbf =2) ZCU102 8,192 19k 3k 108 52 (Y,N)
CASA (Nbf =4) ZCU102 8,192 33k 5k 216 56 (Y,N)

[RLPD20] Stratix10 16,384 1,199k 1,746k 2,370 5,183 (Y,N)
[MKS+22] Alveo U250 16,384 963k 669k 3,600 1,280 (N,Y)

CASA (Nbf =4) ZCU102 16,384 33k 6k 216 104 (Y,N)
CASA (Nbf =8) ZCU102 16,384 66k 11k 432 112 (Y,N)

[RTJ+19]1 ZCU102 16,384 63,522 25,622 815 208 (N,N)

OFCM: off-chip memory. URAM: ultra RAM.
1: The targeted FHE scheme is FV (the other works are all designed for CKKS).

We report the area usage of the entire design and the key-switching timing results
in Tables 2 and 3, respectively. For parameter set I, we report two implemented areas
for Nbf = 2 and 4; while for parameter set II, we reported the results for the cases of
Nbf = 4 and 8. Under these settings, the proposed CASA has shown superior overall
area-time performance compared to the existing accelerator based on the normalized metric
of area-delay product (ADP). Note that to conduct a fair comparison between different
designs implemented on different devices, we follow [LFK+19, THKX23] to assign different
equivalent ratios to specific hardware resources (LUT, FF, DSP, and BRAM) to calculate
the overall area usage, as mentioned in Table 3. We also report the implementation results
on a resource-constrained Artix-7 device. We choose Nbf = 8 and n = 213 and n = 214 to
demonstrate the compactness of proposed design.

Comparison to HEAX [RLPD20]. HEAX is the first full-hardware implementation
for CKKS that includes homomorphic multiplication, homomorphic addition, and key-
switching. It embraces a dedicated cascaded structure to enable a highly paralleled pipeline
dataflow and demonstrated a much higher processing speed, compared to previous software-
based implementations including CPU and GPU. Even though HEAX can generate a
much higher throughput with a significant area consumption (over 24x compared to CASA
of Nbf = 4) to maintain the high processing performance, it suffers from side-effects of
the sophiscated cascaded hardware structure. Compared with HEAX, CASA has at least
the following advantages. (i) Lower delay measured by per-unit of area cost. We argue
that constructing a high-throughput processor in one single design with complex structure
has less practical usage value than focusing on the execution delay per operation. (ii)
Simplicity in terms of real-world implementations. Common industrial demands for a

472 CASA

Table 3: Comprehensive Performance Comparison for Key-Switching Operation
Design Device N Area Overall1 Fmax Latency Delay/µs ADP

[HZL+22] ZCU102 8,192 309,972 - - 593.84∗ 184.07
CASA (Nbf =2) ZCU102 8,192 16,624 185 319488 3,463 57.57
CASA (Nbf =4) ZCU102 8,192 29,698 185 159,744 1,725 51.23

[RLPD20] Stratix10 16,384 792,013 300 - 1,195 946.19
[MKS+22] Alveo U250 16,384 602,546 200 95,352 476.76 287.27

CASA (Nbf =4) ZCU102 16,384 32,434 175 688,128 7,845 254.43
CASA (Nbf =8) ZCU102 16,384 59,450 174 344,064 3,964 235.63

[RTJ+19]2 ZCU102 16,384 104,645 200 - 29.3k3 3,062

1: We follow [LFK+19, THKX23] to assign different equivalent ratios to specific hardware resources and
calculated area overall as LUT/16+FF/8+DSP×102.4+BRAM×56.
2: The targeted FHE scheme is FV (rather than CKKS).
3: Delay is reported for homomorphic multiplication.
∗: The design of [HZL+22] did not report the maximum frequency, we assume this design can run at
250MHZ (the maximum frequency of the evaluation board) to estimate the delay.

high-performance design with robustness and simplicity. From a practical perspective, a
simple structure also implies a larger optimization space and lower manufacturing cost per
unit. (iii) Overall better area-time complexities, at least 3.7x ADP over CASA (Nbf = 4).

Comparison to coxHE [HZL+22]. Accelerator coxHE is a successor of HEAX
[RLPD20], which optimized the design parameters and pipeline strategy. The major
contribution of this work was a novel processing procedure. It claims 33-48% reduced
normalized key-switching latency compared with HEAX [HZL+22]. However, the detailed
timing and area information, such as the latency of key-switching operation, maximum
frequency of the processor, were not reported for making a straightforward comparison with
HEAX. Due to limited information disclosed by coxHE, we prepare a careful evaluation
based on the key-switching algorithm proposed by the authors to estimate the key-switching
latency. Firstly, we pick parameter set II, which is the largest parameter reported by
coxHE, and we acquire the best amongst three listed designs in Table 3 (original paper)
in terms of overall performance. Only a bar chart in the original paper (Fig. 5.(b) of
[RLPD20]) was given to indicate the key-switching cycle, i.e., when the number of cycles
was approximately 200,000 for HEAX for 4 moduli, coxHE claims 11.4%-25.77% overall
performance enhancement. In the best scenario for coxHE, we estimated the number of
cycles as 200, 000× (1− 25.77%). Meanwhile, due to the absence of the frequency report,
we estimate the maximum frequency allowed by coxHE at 250MHz, which is the maximum
allowed on-chip frequency of the target evaluation board. Under this best setting for
coxHE, CASA still achieves 3.2-3.6x overall performance measured by ADP, which is due
to the significant reduction in area usage. Another factor that could potentially contribute
to this comparison is that coxHE is implemented in HLS while CASA is implemented by
VHDL which is more suitable for describing micro-architectures.

Comparison to Medha [MKS+22]. Medha proposes a high-performance ring-like
architecture for CKKS implementation. Medha was evaluated on an advanced FPGA
board Alevo U250, which is designed for data center and cloud service usage. It runs
at 200 MHz with 10 Residue Polynomial Arithmetic Unit (RAPUs). When all RAPUs
were carefully placed to form a ring for smooth data flow, Medha achieved comparable
throughput compared to HEAX [RLPD20] while it was 2x faster in terms of latency in
multiplication + key-switching. Since 95.9% of the time in executing (multiplication +
key-switching) operations on Mehda was on key-switching, we mainly compare its key-
switching performance with CASA. At parameter set III, Mehda achieves approximately
16.5x and 8.3x speedup compared to CASA when Nbf is configured to 4 and 8, respectively.
This comes at a cost of 18.6x and 10.1x overall area consumption over CASA, and it
turns out to be that CASA achieves 12.9% and 21.9% performance enhancement in ADP

Pengzhou et al. 473

over Medha. We want to highlight that not only the slight increment in area-timing
performance, but also two come along factors proving CASA’s architectural advantages.
(i) CASA does not require a ring-like placement of a certain number of RPAUs, so it
demonstrates more scalability in practical usage. The need for routing data flow among
different RPAUs also implies dramatically increased placing and routing challenges for
hardware compilers. While Medha was only reported for evaluation on the data center
FPGA, CASA also reports the results on a resource-constrained device. (ii) The intended
simplicity in high-level architecture and control allows a quicker development and larger
optimization space. Data movement between major components is squared and aligned to
design parameter Nbf , which reduces the possibility of significantly modifying the data bus
structure inside the accelerator. When it comes to the design of control systems, the way
of taking pipeline strategy for parallel computation is also arguably easier in programming
and more extendable compared to controlling Medha’s ring-like RPAUs.

Comparison to [RTJ+19]. [RTJ+19] presented an FV accelerator based on the FPGA
platform. We used homomorphic multiplication time to evaluate the timing efficiency for
[RTJ+19] because its actual latency is not reported. With the same polynomial size, CASA
achieves about 7.4x faster speed than [RTJ+19]. Meanwhile, CASA consumes considerably
less resource usage than [RTJ+19]. Overall, the timing efficiency (of CASA) and much
smaller area consumption result in a 13.0x reduction in ADP (see Table 3).

Table 4: Complexities for CASA on Artix-7 Device
Design/Module LUT FF DSP BRAM Fmax/MHz

Param. Set-II, Nbf = 8
CASA 65,294 (48.51%) 11,058 (4.11%) 432 (58.38%) 40 (10.96%)

88

NTT 21,059 (15.65%) 1,037 (0.39%) 0 (0.00%) 0 (0.00%)
DYA & ACC 32,656 (24.26%) 932 (0.35%) 0 (0.00%) 0 (0.00%)

MSB 8,086 (6.01%) 9,089 (3.38%) 432 (58.38%) 0 (0.00%)
MemBank 0 (0.00%) 0 (0.00%) 0 (0.00%) 40 (10.96%)

Ctrl & Interface 3,493 (2.60%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Param. Set-III, Nbf = 8

CASA 67,587 (50.22%) 11,094 (4.12%) 432 (58.38%) 56 (15.34%)

85

NTT 23,618 (17.55%) 1,021 (0.38%) 0 (0.00%) 0 (0.00%)
DYA & ACC 32,190 (23.92%) 1,033(0.38%) 0 (0.00%) 0 (0.00%)

MSB 8,126 (6.04%) 9,040 (3.36%) 432 (58.38%) 0 (0.00%)
MemBank 251 (0.19%) 0 (0.00%) 0 (0.00%) 56 (15.34%)

Ctrl & Interface 3,402 (2.53%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

This Artix-7 device (xc7a200tffg1156-3) has 134,600 LUTs, 269,200 FFs, 740 DSPs, and 365 BRAMs.

Discussion about the Implementation on Artix-7 Device. The results in Table
4 fully demonstrate the compactness of the proposed CASA (as well as its potential in
resource-constrained applications), i.e., with resource usage of around 49% LUTs, 4.1%
FFs, 58% DSPs, and 11%/15% BRAMs, CASA still maintains an excellent timing.

Comparison to CPU [Mic20] and GPU [ABHM+20] implementations. Table
5 shows the performance comparison with CPU and GPU implementations. [Mic20] is
the SEAL library developed by Microsoft. SEAL is implemented in C++ and employs
many highly-optimized programming techniques, which is also fine-tuned on multi-thread
operations. SEAL takes 418 and 33,840 µs to execute one homomorphic addition, multi-
plication, and rescaling for parameter set II, respectively. CASA achieves 10.84x speedup
while only consuming 5.8% power (compared with [RLPD20]). Note the GPU acceleration
of [ABHM+20] is the only work implementing CKKS for the given parameter set, though
log2Q is slightly different (360-bit for [ABHM+20]). In this work [ABHM+20], the authors
used NVIDIA DGX-1 GPU (consisting of 8 NVIDIA V100 cores) to execute CKKS for
parameter set III. In terms of sheer speed, [ABHM+20] is 4.8x faster in homomorphic

474 CASA

Table 5: Performance Comparison with Recent CPU & GPU Implementations

Design Platform Homo. Homo. Resc. Power PDP3 PDP3 PDP3

Add./µs Mult./µs /µs /W Add. Mult. Resc.
Param. Set-II

[RLPD20] CPU1 - 11,905 - 85.0 - 1,012 -
CASA (Nbf =8) Artix-7 47 1,097 379 5.0 0.23 5.43 1.9

Param. Set-III
[ABHM+20] GPU2 40 740 0.14 3,500 140 2,590 490

CASA (Nbf =8) Artix-7 193 4,833 1,522 5.1 1.0 24.7 7.8

Add.: homomorphic addition; Mult.: homomorphic multiplication; Resc.: rescaling.
1 CPU used is a single-threaded Intel Xeon(R) Silver 4108 @ 1.8GHz.
2 GPU used is NVIDIA DGX-1 (8 NVIDIA V100 cores).
3 Power-timing product (PTP): power consumption (Walt) multiplied by operational latency (millisecond).

Table 6: Comparison of Throughput with Software and Hardware Implementations

Design Scheme Platform Thru./s Thru./Area1 Thru./Watt

[Mic20] RNS-CKKS CPU 29.55 - 0.49
[ABHM+20] RNS-CKKS GPU 1,351 - 0.39
[RLPD20] RNS-CKKS Stratix10 2,616 3.30 -
[MKS+22] RNS-CKKS Alevo U250 2,011 3.33 32.37

CASA (Nbf =8) RNS-CKKS ZCU102 423.9 7.13 89.76
CASA (Nbf =8) RNS-CKKS Artix-7 206.89 3.66 40.52

[RTJ+19] FV ZCU102 33.78 0.32 -

Polynomial degree is 214 for each RNS-CKKS and FV design.
1. Throughput per area unit is throughput per second divided by area. Area calculation is the same as
introduced in Table. 3. The presented value is multiplied by 1,000 for clarity.

addition, 6.5x faster in homomorphic multiplication, and 10.9x faster in rescaling. However,
if power consumption is taken into account, the peak power consumption of [ABHM+20]
is about 700x higher than CASA, which results in an approximately 141x, 104x, and 63x
advantage for CASA in terms of computation per Watt.

Throughput Evaluation. While we emphasize CASA’s flexibility and compatibility
by showing it does not apply to specific devices, especially devices of high power or
manufacturing cost, we compare CASA’s throughput (when Nbf =8) with larger accelerator
designs. As shown in Table 6, CASA’s high-level homomorphic operation (multiplication +
key-switching) throughput is listed along with CPU, GPU, and those recent FHE FPGA
accelerators. Due to the resource usage and design style of different implementations, we
use two metrics, namely Throughput/Area and Throughput/Watt, to evaluate a design’s
overall throughput efficiency.

We evaluate CASA’s throughput performance on an advanced ZCU102 device (still
less advanced than Alveo) and a mainstream resource-constrained Artix-7 device. Con-
sidering the performance on the ZCU102 device, though CASA’s throughput is 10.8%
per second compared to HEAX [RLPD20], CASA achieves 1.48 times better efficiency
than [RLPD20] when the area utilization is taken into account (i.e., Throughput/Area).
Mehda’s [MKS+22] sheer throughput is less than HEAX [RLPD20], but it achieves better
performance when throughput is normalized by area consumption (Throughput/Area).
Since Mehda [MKS+22] also reported power usage, we evaluate power normalized through-
put against Mehda [MKS+22], i.e., Throughput/Watt (also can be called energy efficiency).
Even though CASA uses ZCU102 (smaller than Medha used Alveo [MKS+22]), CASA
achieves 2.77 times better Throughput/Watt. On the Artix-7 device, CASA is 12.64 and
9.72 times slower compared to [RLPD20] and [MKS+22] from a sheer amount perspective

Pengzhou et al. 475

(we want to note that these two designs come with much more advanced devices and
much larger manufacturing costs). If we take power consumption into account, CASA
achieves 79.9% Throughput/Watt to Mehda [MKS+22]. Meanwhile, CASA obtains 1.11x
and 1.10x Throughput/Area compared to HEAX [RLPD20] and Mehda [MKS+22], re-
spectively (taking the devices’ differences and manufacturing costs into account, our
Artix-7 CASA actually involves much more efficiency than HEAX [RLPD20] and Mehda
[MKS+22]). Finally, compared with FV implementation [RTJ+19], CASA achieves 6.12
times enhancement on throughput and consumes a much smaller area.

When comparing with GPU/CPU implementation of [ABHM+20] and [Mic20], we
want to emphasize that CASA (on the Artix-7 device) has 105x Throughput/Watt than
[ABHM+20] and 7.0 times higher throughput (sheer volume) than [Mic20] (while consuming
1/12 power). CASA on the ZCU102 device has much better throughput efficiency than
the CPU and GPU implementations of [ABHM+20] and [Mic20].

Application Discussion. There are several real-word applications where low-degree
FHE, homomorphic evaluation, power efficiency, and low manufacturing costs are preferred.
One interesting application scenario is intelligent traffic navigation, which requires the
anonymity of vehicle users, while navigation needs to be real-time and energy efficient. Very
recently, [ZCC+23] proposed an efficient cryptographic protocol using multi-party FHE
key in road side unit (RSU) to achieve multiple benefits in a large scaled vehicular network.
The hardware part of the solution needs to place RSU on the critical points of each road
to communicate with vehicles and cloud service providers (CSP). To balance anonymity
and efficiency, RSU needs to return to CSP the average velocity and position of vehicles
on that road. It requires RSU to do a low-degree homomorphic evaluation in real-time
and before sending it back to CSP. Since each road will need a budget for installing RSU,
small devices would be preferred, and thus, the proposed CASA would be more desirable
than those much larger accelerators. Other real-world examples would be collaboration
over a multi-party shared project or dataset where one or several participating parties
possess only resource-constraint devices but must apply critical operations over encrypted
messages. A possible scenario can be, for instance, the collaborated work needs to be
signed by one party who has only a wearable device. As Aritx-7 device has already been
deployed in the IoT environment [MMM+21, IoT20], we are expecting that CASA can be
used for many similar emerging applications.

Scalability Consideration. As CASA is a compact design with scalability, we
demonstrate its efficiency in these two aspects when we choose Nbf from 2, 4, to 8 (Tables
2, 3, and 4). As shown in Table 3, CASA can be easily scaled for N = 213 and N = 214

by altering the design parameter Nbf . CASA’s overall area usage is closely related to
Nbf . When Nbf is doubled, all kinds of hardware resource usage also almost doubled,
i.e., CASA’s structure is well-aligned with design parameter Nbf . Meanwhile, CASA’s
operational frequency is relatively stable even the design parameter Nbf changes. Overall,
the proposed CASA follows a pattern that its resource usage will be doubled again if we
choose Nbf = 16, making CASA lose its compactness and applicability in low-end FPGA
devices. Hence, we chose the scale parameter Nbf from 2 to 8. With this type of scalability
setup, CASA is able to be deployed in a large variety of application scenarios, covering
both high-end and low-end applications (especially desirable for resource-constrained
applications), depending on the selection of the scale parameter and related FPGA devices.

Discussion. It is clear that CASA obtains better area-timing performance than the
existing designs while possessing excellent scalability. Meanwhile, CASA also demonstrated
its high potentiality in resource-constrained applications (first report in the literature).

Note that the practical setting for FHE applications usually can be divided into two
categories: (I) operations over ciphertext; and (II) interactions with plaintext and keys
including key-generation, encoding, and decoding. In order to focus on accelerating the
practical application of CKKS, we omitted category II in CASA since these operations

476 CASA

are not carried-out in batch but require a significant hardware resource (the same in the
existing designs like [RLPD20, HZL+22, MKS+22]). It is also likely that the operations
in this category are more economic if to be left as a CPU/GPU job.

Other FHE Acceleration Works. Other hardware implementations for FHE accel-
erators include FV implementations [RJV+18, RTJ+19, TRV20], BFV implementation
[SYYZ22]. As these designs targeted different FHE schemes, a direction comparison be-
tween CASA and these designs is not thus feasible (following the discussion in [MKS+22]).
Nevertheless, as shown in Tables 2, 3, and 6, the proposed CASA has demonstrated its
efficiency over the existing FV accelerator of [RTJ+19].

Meanwhile, other works [SFK+21, SFK+22, KKK+22, KLK+22] have proposed differ-
ent ASIC architectures and simulations. However, as stated in Section 1.1, these ASIC
designs suffer from several bottleneck drawbacks (following [MMM+21]), and their per-
formance results were obtained through estimations. [NSA+22] reported an accelerator
for CKKS based on a smaller parameter set but fabricated a real ASIC chip. Overall, we
don’t explicitly compare them here as they were already extensively discussed in previous
works such as [MKS+22].

Future Works and Direction. While the proposed CASA is highly efficient in
terms of compactness and scalability, more arithmetic innovations are expected to be
carried out due to the huge computational complexity of CKKS (and other FHE schemes).
Breakthroughs in the accelerator’s design methodology need serious investigation as
building such a large-scale accelerator is not a trivial effort.

6 Conclusions
In this paper, we present a compact and scalable accelerator suitable for the practical
use of homomorphic technique. Several innovative techniques are applied to obtain
a compact design target, including novel partially reduction-free modular arithmetic,
modular switching bank multiplexing, and dataflow optimization. The proposed CASA is
implemented on a resource-constrained FPGA resulting compact area usage and excellent
timing, which is the first report in the literature. Compared with the state-of-the-art
designs, CASA obtains significantly better overall performance (including the Artix-7
implemented CASA).

Acknowledgement
Ç. K. Koç was supported by TUBITAK Project 1001-121F348. J. Xie was supported in
part by NIST-60NANB20D203 and NSF SaTC-2020625.

References
[ABBB+22] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins,

Saroja Erabelli, Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey Kim,
Yongwoo Lee, et al. OpenFHE: Open-source fully homomorphic encryption
library. In Proceedings of the 10th Workshop on Encrypted Computing &
Applied Homomorphic Cryptography, pages 53–63, 2022.

[ABHM+20] Ahmad Al Badawi, Louie Hoang, Chan Fook Mun, Kim Laine, and Khin
Mi Mi Aung. Privft: Private and fast text classification with homomorphic
encryption. IEEE Access, 8:226544–226556, 2020.

[ACC+21] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser,
Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter,

Pengzhou et al. 477

et al. Homomorphic encryption standard. Protecting privacy through homo-
morphic encryption, pages 31–62, 2021.

[AS10] Tolga Acar and Dan Shumow. Modular reduction without pre-computation
for special moduli. Microsoft Research, 2010.

[Bar00] Paul Barrett. Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor. In Advances in
Cryptology—CRYPTO’86: Proceedings, pages 311–323. Springer, 2000.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. ACM Transactions on
Computation Theory (TOCT), 6(3):1–36, 2014.

[Bla83] G. R. Blakley. A computer algorithm for the product AB modulo M. IEEE
Transactions on Computers, 32(5):497–500, May 1983.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical GapSVP. In Advances in Cryptology–CRYPTO 2012: 32nd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2012. Proceedings, pages 868–886. Springer, 2012.

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene.
Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds.
In Advances in Cryptology–ASIACRYPT 2016: 22nd International Confer-
ence on the Theory and Application of Cryptology and Information Security,
Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I 22, pages 3–33.
Springer, 2016.

[CHK+18] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo
Song. A full RNS variant of approximate homomorphic encryption. In
International Conference on Selected Areas in Cryptography, pages 347–368.
Springer, 2018.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic
encryption for arithmetic of approximate numbers. In International conference
on the theory and application of cryptology and information security, pages
409–437. Springer, 2017.

[DIZ07] Vassil Dimitrov, Laurent Imbert, and Andrew Zakaluzny. Multiplication by
a constant is sublinear. In 18th IEEE Symposium on Computer Arithmetic
(ARITH’07), pages 261–268. IEEE, 2007.

[DNKYL22] Phap Duong-Ngoc, Sunmin Kwon, Donghoon Yoo, and Hanho Lee. Area-
efficient number theoretic transform architecture for homomorphic encryption.
IEEE Transactions on Circuits and Systems I: Regular Papers, 2022.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomor-
phic encryption. Cryptology ePrint Archive, 2012.

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. Stanford university,
2009.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of the forty-first annual ACM symposium on Theory of computing,
pages 169–178, 2009.

478 CASA

[HZL+22] Mingqin Han, Yilan Zhu, Qian Lou, Zimeng Zhou, Shanqing Guo, and Lei
Ju. coxHE: A software-hardware co-design framework for FPGA acceleration
of homomorphic computation. In 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1353–1358. IEEE, 2022.

[IoT20] Remote monitoring and control of home appliances from cloud using EDGE
Artix 7 FPGA board, https://allaboutfpga.com/remote-monitoring-and-
control-of-home-appliances-from-cloud-using-edge-artix-7-fpga-board/, 2020.

[KA98] Ç. K. Koç and T. Acar. Montgomery multiplication in GF(2k). 14(1):57–69,
April 1998.

[KAK96] Ç. K. Koç, T. Acar, and B. S. Kaliski Jr. Analyzing and comparing Mont-
gomery multiplication algorithms. IEEE Micro, 16(3):26–33, June 1996.

[KKK+22] Sangpyo Kim, Jongmin Kim, Michael Jaemin Kim, Wonkyung Jung, John
Kim, Minsoo Rhu, and Jung Ho Ahn. BTS: An accelerator for bootstrap-
pable fully homomorphic encryption. In Proceedings of the 49th Annual
International Symposium on Computer Architecture, pages 711–725, 2022.

[KLC+20] Sunwoong Kim, Keewoo Lee, Wonhee Cho, Yujin Nam, Jung Hee Cheon,
and Rob A Rutenbar. Hardware architecture of a number theoretic transform
for a bootstrappable RNS-based homomorphic encryption scheme. In 2020
IEEE 28th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 56–64. IEEE, 2020.

[KLK+22] Jongmin Kim, Gwangho Lee, Sangpyo Kim, Gina Sohn, Minsoo Rhu, John
Kim, and Jung Ho Ahn. ARK: Fully homomorphic encryption accelerator
with runtime data generation and inter-operation key reuse. In 2022 55th
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
1237–1254. IEEE, 2022.

[KO63] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers by
automata. Soviet Physics-Doklady, 7:595–596, 1963.

[KT05] M. E. Kaihara and N. Takagi. Bipartite Modular Multiplication Method.
Cryptographic Hardware and Embedded Systems - CHES 2005, pages 201–210,
2005.

[KT08] Marcelo Kaihara and Naofumi Takagi. Bipartite modular multiplication
method. IEEE Transactions on Computers, 57(2):157–164, 2008.

[LFK+19] Weiqiang Liu, Sailong Fan, Ayesha Khalid, Ciara Rafferty, and Máire O’Neill.
Optimized schoolbook polynomial multiplication for compact lattice-based
cryptography on FPGA. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 27(10):2459–2463, 2019.

[LN16] Patrick Longa and Michael Naehrig. Speeding up the number theoretic
transform for faster ideal lattice-based cryptography. In Cryptology and
Network Security: 15th International Conference, CANS 2016, Milan, Italy,
November 14-16, 2016, Proceedings 15, pages 124–139. Springer, 2016.

[Mic20] Microsoft. SEAL release. https://github.com/Microsoft/SEAL, 2020.

[MKS+22] Ahmet Can Mert, Sunmin Kwon, Youngsam Shin, Donghoon Yoo, Yongwoo
Lee, Sujoy Sinha Roy, et al. Medha: Microcoded hardware accelerator for
computing on encrypted data. arXiv preprint arXiv:2210.05476, 2022.

Pengzhou et al. 479

[MMM+21] Mahabub Hasan Mahalat, Suraj Mandal, Anindan Mondal, Bibhash Sen, and
Rajat Subhra Chakraborty. Implementation, characterization and application
of path changing switch based arbiter PUF on FPGA as a lightweight security
primitive for iot. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 27(3):1–26, 2021.

[Mon85] P. L. Montgomery. Modular multiplication without trial division. Mathematics
of Computation, 44(170):519–521, April 1985.

[NSA+22] Mohammed Nabeel, Deepraj Soni, Mohammed Ashraf, Mizan Abraha Ge-
bremichael, Homer Gamil, Eduardo Chielle, Ramesh Karri, Mihai Sanduleanu,
and Michail Maniatakos. CoFHEE: A co-processor for fully homomorphic
encryption execution. arXiv preprint arXiv:2204.08742, 2022.

[OMSL+23] Samira Carolina Oliva Madrigal, Gökay Saldamlı, Chen Li, Yue Geng, Jing
Tian, Zhongfeng Wang, and Çetin Kaya Koç. Reduction-free multiplication
for finite fields and polynomial rings. In Sihem Mesnager and Zhengchun
Zhou, editors, Arithmetic of Finite Fields, pages 53–78, Cham, 2023. Springer
International Publishing.

[PS21] Rogério Paludo and Leonel Sousa. Number theoretic transform architecture
suitable to lattice-based fully-homomorphic encryption. In 2021 IEEE 32nd
International Conference on Application-specific Systems, Architectures and
Processors (ASAP), pages 163–170. IEEE, 2021.

[RJV+18] Sujoy Sinha Roy, Kimmo Järvinen, Jo Vliegen, Frederik Vercauteren, and
Ingrid Verbauwhede. HEPCloud: An FPGA-based multicore processor for
FV somewhat homomorphic function evaluation. IEEE Transactions on
Computers, 67(11):1637–1650, 2018.

[RLPD20] M Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. HEAX: An archi-
tecture for computing on encrypted data. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 1295–1309, 2020.

[RTJ+19] Sujoy Sinha Roy, Furkan Turan, Kimmo Jarvinen, Frederik Vercauteren, and
Ingrid Verbauwhede. FPGA-based high-performance parallel architecture
for homomorphic computing on encrypted data. In 2019 IEEE International
symposium on high performance computer architecture (HPCA), pages 387–
398. IEEE, 2019.

[SBE15] Gokay Saldamli, YoJin Baek, and Levent Ertaul. Partially Interleaved
Modular Karatsuba-Ofman Multiplication. IJCSNS, 15(5):503–518, may
2015.

[SCH71] A. SCHONHAGE. Schnelle multiplikation grosser zahlen. Computing, 7:281–
292, 1971.

[SFK+21] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas,
Ronald Dreslinski, Christopher Peikert, and Daniel Sanchez. F1: A fast and
programmable accelerator for fully homomorphic encryption. In MICRO-
54: 54th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 238–252, 2021.

[SFK+22] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan Manohar,
Nicholas Genise, Srinivas Devadas, Karim Eldefrawy, Chris Peikert, and
Daniel Sanchez. Craterlake: a hardware accelerator for efficient unbounded

480 CASA

computation on encrypted data. In Proceedings of the 49th Annual Interna-
tional Symposium on Computer Architecture, pages 173–187, 2022.

[SYYZ22] Yang Su, Bai-Long Yang, Chen Yang, and Song-Yin Zhao. ReMCA: A recon-
figurable multi-core architecture for full RNS variant of BFV homomorphic
evaluation. IEEE Transactions on Circuits and Systems I: Regular Papers,
69(7):2857–2870, 2022.

[THKX23] Yazheng Tu, Pengzhou He, Çetin Kaya Koç, and Jiafeng Xie. LEAP:
Lightweight and efficient accelerator for sparse polynomial multiplication of
HQC. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
2023.

[TRV20] Furkan Turan, Sujoy Sinha Roy, and Ingrid Verbauwhede. HEAWS: An
accelerator for homomorphic encryption on the Amazon AWS FPGA. IEEE
Transactions on Computers, 69(8):1185–1196, 2020.

[ZCC+23] Jun Zhou, Shiying Chen, Kim-Kwang Raymond Choo, Zhenfu Cao, and
Xiaolei Dong. EPNS: Efficient privacy-preserving intelligent traffic navigation
from multiparty delegated computation in cloud-assisted vanets. IEEE
Transactions on Mobile Computing, 22(3):1491–1506, 2023.

[ZLL+21] Cong Zhang, Dongsheng Liu, Xingjie Liu, Xuecheng Zou, Guangda Niu,
Bo Liu, and Quming Jiang. Towards efficient hardware implementation of
NTT for Kyber on FPGAs. In 2021 IEEE International Symposium on
Circuits and Systems (ISCAS), pages 1–5. IEEE, 2021.

	Introduction
	Related Works, Motivation, and Proposed Plan
	Major Contributions

	Preliminaries
	Notations
	Residue Number System (RNS)
	CKKS
	HEAAN and Its Variant
	Generic RNS-CKKS
	CASA

	Primitive Function Modules
	Modular Reduction Module
	NTT Module
	Dyadic and Accumulation (ACC) Module
	Memory Organization
	Modulus Switching Bank

	Accelerator: CASA
	Overall Structure
	Scalable Parallel Computation

	Implementation & Comparison
	Conclusions

