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Abstract. In the context of side-channel attacks, the Signal to Noise Ratio (SNR)
is a widely used metric for characterizing the information leaked by a device when
handling sensitive variables. In this paper, we derive the probability density function
(p.d.f.) of the signal to noise ratio (SNR) for the byte value and Hamming Weight
(HW) models, when the number of traces per class is large and the target SNR is
small. These findings are subsequently employed to establish an SNR threshold,
guaranteeing minimal occurrences of false positives. Then, these results are used to
derive the theoretical number of traces that are required to remain below pre-defined
false negative and false positive rates. The sampling complexity of the T-test, ρ-test
and SNR is evaluated for the byte value and HW leakage model by simulations and
compared to the theoretical predictions. This allows to establish the most pertinent
strategy to make use of each of these detection techniques.
Keywords: Leakage · Side-Channel · Signal to noise Ratio · Sampling Complexity

1 Introduction
Leakage detection consists in identifying the information leaked by a device when processing
a sensitive data [WO19]. This information can then be employed in a second phase for
template [CRR03] or machine learning [CDP17] attacks. This is particularly relevant for
selecting Points of Interest (POI) in a template attack [DS16]. In this paper, we focus
on detecting information leakage and do not address its exploitation. Moreover, only
univariate methods that do not combine different samples from one trace are considered.
Leakage detection procedures decide for one of the two hypotheses:

• H0: there is no evidence of leakage within the trace

• H1: there is some leakage

where a model is given to characterize the leakage of information and a metric is defined
to decide for one of the two hypotheses.

Hamming Weight (HW) and byte value are two commonly used leakage models in
the existing literature [MOP08]. The HW model assumes that the deterministic part
of the leakage produced is in a linear relation with the HW of the processed data. For
example, it is applied to model the signal when reading or writing data on memory via a
communication bus [MOP08]. On the other hand, the byte value model assumes that the
amount of leakage produced depends on the value of the processed byte and thus varies for
all byte values. It is more generic than the HW model since it makes fewer assumptions.

The T-test [CdMG+13], χ2-test [MRSS18], ρ-test (Pearson’s correlation coefficient)
[DS16], Signal to Noise Ratio (SNR) [Man04] and Mutual Information (MI) [MOBW13] are
the most popular techniques used to detect information leakage. These detection methods
have different properties and usage conditions. While T-tests and χ2-tests indicate the
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presence or absence of leakage, they do not offer information on its exploitability. Leakage
detection with MI is appealing because it is leakage-model-agnostic, meaning that it is
robust to wrong a priori leakage model assumptions [VS09]. In addition, it is a good
predictor of security against differential power analysis [SMY06] [MOS09]. However, it
needs an accurate estimation of the signal’s probability density function (p.d.f.) which
is known to be a computational intensive task [MOBW13]. This is the reason why this
technique is not addressed in this paper.

The ρ-test detects univariate linear dependency between a leakage model and the
trace. SNR is also an univariate kind of test that detects dependences located at first-
order statistical moment. Unlike T-test and χ2-test, SNR provides information about
exploitability of the leakage since it is linked to the mutual information through the capacity
of the observation channel (C = 1/2 log2(1 + SNR)) and the success rate [dCGRP19].
Similarly, ρ-tests is also informative because it is related to the SNR [Man04]. However a
mathematical leakage model must be defined before performing the computation. The SNR
method is thus attractive because it is informative and does not need to make restrictive
assumption on the leakage model.

Once a metric is chosen, the evaluator must interpret the results in order to decide
for hypothesis H0 or H1. Practically, the result is compared to a detection threshold γ in
order to decide whether or not to reject the hypothesis H0. The value of γ is set according
to a pre-determined false positive rate (also known as false alarm rate), α =

∫∞
γ
p(x|H0)dx,

where p(x|H0) is the probability density function (p.d.f.) of the decision metric under
the hypothesis H0 [Poo94, Chapter 2]. Though an important performance criterion is not
taken into account: the false negative rate β =

∫ γ
−∞ p(x|H1)dx. A false negative (also

known as missed detection) happens when the decision metric is smaller than γ while
leakage is present (H1). One would like to minimize both α and β, but it is known from
detection theory that a trade-off must be made. If γ is increased α will be reduced at the
expense of β. Usually, the number of traces N is the parameter that allows to satisfy the
two constraints. In fact, the variance of the metric is usually inversely proportional to
N (e.g. sample mean variance). If γ is fixed and N is increased, the p.d.f. p(x|H1) will
concentrate around its mean value and β decreases. In order to estimate the false negative
rate, the probability distribution p(x|H1) must be known. In a nutshell, we are seeking for
each detection metric a theoretical formula for p(x|H0) and p(x|H1).

Under the hypothesisH0, the p.d.f. is known for the T-test [CdMG+13], χ2-test [MRSS18],
ρ-test [Man04] and SNR for the byte value model [BDGN14] [CK14]. Under the hypoth-
esis H1, the p.d.f. is known for the ρ-test [Man04] and the T-test (with equal class
sizes) [WO19]. Consequently, the p.d.f. of the SNR is unknown for the byte value
model under hypothesis H1 and the HW model under both hypothesis H0 and
H1. The motivation of this article is thus to derive these formula and exploit them.

The contributions of this paper may be summarized as follows:

1. First, we exhibit the p.d.f. of the SNR for the byte value and HW models and under
H0 and H1 hypotheses. To do so, we make use of a Gaussian approximation, that
we mathematically and experimentally validate under a small SNR assumption. The
proposed approximation allows to obtain a light and handy p.d.f. formulation which
helps for instance to link in an exploitable way α, N and the number of classes. This
is not possible with the F-distribution formula because it mixes all these parameters
in a complex way and its inverse is not easily tractable.

2. Second, the obtained probability distributions are used to derive the theoretical
number of traces that are required to remain simultaneously below the false positive
and false negative rates α and β. This evaluation of the sampling complexity is
made for the SNR and ρ-test methods. This is an extension of the work described in
[WO19] for the T-test.
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3. Third, we compare the T-test, χ2-test, ρ-test and SNR-based detection method in
terms of sampling complexity by means of simulations and experimental results.
Comparisons are performed over both byte value and HW models. The sampling
complexity is found minimum for the T-test and maximum for the SNR-based
detection method.

4. Finally, observing that the obtained results are in accordance to the theoretical
predictions, we make use of such theoretical models in order to establish the most
pertinent strategy to make use of each of the T-test, χ2-test, ρ-test and SNR-based
detection techniques.

Paper organization Section 2 provides a definition of the Signal to Noise Ratio
(SNR) and an explanation of the methodology used to compute various probability density
functions (p.d.f.). In Section 3, we derive the p.d.f. of the signal variance S, noise variance
B and SNR Z. In Section 4, these models are validated using samples obtained from both
simulation and experiments conducted on traces from the ASCADv2 dataset. Subsequently,
in Section 5, the optimal threshold γ, i.e. the one that minimizes the false alarms rate, is
calculated for each metric. This threshold is then used to derive the theoretical sampling
complexity of each detection test. These models are finally compared to simulation results
and validated with traces from the ASCADv2 dataset.

Notations The device processes a sensitive random data X resulting in a leakage
T = f(X) +W where f(.) is the leakage function and W ∼ N (0, σ2) an additive Gaussian
noise. Typically, X is a 8, 16 or 32 bits word. If f(X) is the Hamming weight function,
’HW8’ denotes a test when X is a byte and ’HW32’ when X is a 32 bits word. While
acquiring the nth trace, the device handles the sensitive variable xn which is a realization
of X. Traces are classified based on the values of the leakage function f(xn). A class is
defined by one of the possible value of f(xn). All variables xn having the same leakage
f(xn) belong to the same class. Given the assumption made on the leakage function f(.),
there are K classes (e.g. K = 9 for the HW of a data byte). Also, as a notation abuse,
we state that xn belongs to class k if f(xn) belongs to class k. Ωk represents the set of
indices of traces that belong to class k ∈ [0,K − 1].

2 SNR as a leakage detection method
A side-channel trace is a vector of non-invasive observations, such as power consumption
or electromagnetic radiation, captured while processing a sensitive variable. For our
theoretical work, we assume this vector includes only one element (univariate) to simplify
notations. When the device processes the sensitive random variable Xn belonging to class
k, the leakage for the nth trace is: Tn = fk +Wn. The signal’s deterministic component
for class k is labeled fk. Wn ∼ N (0, σ2) is an additive Gaussian noise. We define the
subsequent random variables: the mean of the signal for all traces belonging to the same
class k, denoted as Mk = E[Tn∈Ωk

] and its variance, denoted as Vk = V ar[Tn∈Ωk
].

The SNR is defined by [MOP08]:

Z = S

B
S = V ar (Mk)
B = E [Vk]

(1)

Z, S and B are random variables. The true SNR is defined by θ = var(fk)
σ2 .

Moreover, hypothesis H0 and H1 are defined as follows:

• H0: var(fk) = 0
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• H1: var(fk) 6= 0
In order to derive the p.d.f. of Z, the starting point of our work is the following property. If S
andB are approximated by Gaussian random variablesB ∼ N (µB , σ2

B) and S ∼ N (µS , σ2
S),

then, the p.d.f. of Z is defined by [Sim02]:

pZ(z) = σBσS
π(σ2

Bz
2 + σ2

S) exp
[
−1

2

(
µ2
B

σ2
B

+ µ2
S

σ2
S

)]
+ µBσ

2
S + µSσ

2
Bz√

2π(σ2
Bz

2 + σ2
S)3/2

exp
(
− (µS − µBz)2

2(σ2
Bz

2 + σ2
S)

)
A

A =
[
1− 2Q

(
µBσ

2
S + µSσ

2
Bz

σBσS(σ2
Bz

2 + σ2
S)1/2

)] (2)

where Q(x) is the tail distribution function of the standard normal distribution:

Q(x) = 1√
2π

∫ ∞
x

exp
(
− t

2

2

)
dt (3)

Our goal is to utilize the theoretical formulation of pZ to determine the detection threshold
γ and the sampling complexity of the SNR method. To do so, we will calculate the p.d.f. of
S and B under hypotheses H0 or H1 and find their mean and variance. This information
will be used to derive the p.d.f. of Z.

3 Approximation of the probability density function of S,
B and Z

3.1 Analysis of S
3.1.1 Hypothesis H1

We assume that N traces have been acquired, with |Ωk| = Nk traces per class. For the
sake of generality, this number is not the same for all of the classes. Let also P (k) be
the probability to draw a variable belonging to class k. According to the leakage model
defined in the previous section, Tn ∼ N (fk, σ2) is i.i.d. when n ∈ Ωk. Under this model,
Mk and S may be estimated in the following way:

M̂k = 1
Nk

∑
n∈Ωk

Tn

Ŝ =
K−1∑
k=0

P (k)(M̂k − M̄)2

(4)

where M̄ =
∑K−1
k=0 P (k)M̂k.

Proposition 1. For large Nk and K, the p.d.f. of Ŝ is approximated by a Gaussian
distribution N (µŜ , σ2

Ŝ
) with:

µŜ = σ2
f + σ2K − 1

N

σ2
Ŝ

= 2σ4I1 + 4σ2I2

(5)

I1 and I2 are defined by:

I1 =
K + 1 +

∑K−1
k=0 P (k)2

N2

I2 = 1
N

∑K−1
k=0 (P (k) + P (k)2) (fk − µf )2
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µf , σ2
f and N are defined by:

µf =
∑K−1
k=0 P (k)fk

σ2
f =

∑K−1
k=0 P (k) (fk − µf )2

N =
∑K−1
k=0 Nk

Proof. Let us define Ek = M̂k − M̄ . It is decomposed into a sum of M̂i’s:

Ek = (1− P (k)) M̂k −
∑
i 6=k

P (i)M̂i

M̂i is a sum of i.i.d. Gaussian random variable and is thus also Gaussian. Moreover, M̂i’s
are independent since they belong to different sets of traces and classes (Ωi ∩ Ωj = ∅
for i 6= j) and the noise variables Wn are independent. Consequently, Ek is a sum of
independent Gaussian variables and thus follows a Gaussian distribution.
In addition, after some cumbersome computation, the covariance of Ek and Ej is given by:

cov(Ek, Ej) = σ2

(
K−1∑
i=0

P (i)2

Ni
− P (k)

Nk
− P (j)

Nj

)
We also note that Nk ≈ P (k)N which leads to the following approximation: cov(Ek, Ej) ≈
−σ2/N . It converges towards zero for large N . Ek and Ej are thus asymptotically uncor-
related and consequently independent (because they are Gaussian).
If Ek’s are independent random variables with finite variance, according to Lindeberg’s
version of the Central Limit Theorem (CLT) [AL06], Ŝ converges towards a Gaussian distri-
bution for largeK. Since theWn’s are i.i.d., according to the Central Limit Theorem (CLT),

M̂k ∼ N (fk, σ2/Nk). Consequently, we also have M̄ ∼ N
(∑K−1

k=0 P (k)fk, σ2∑K−1
k=0 P (k)2 1

Nk

)
.

The mean µŜ and variance σ2
Ŝ
are computed with the ones of M̂k and M̄ . The result is

given by Eq. 5.

3.1.2 Hypothesis H0

When there is no leakage, it is possible to compute the probability density function of Ŝ
without relying on the central limit theorem for large K.

Proposition 2. When var(fk) = 0, the p.d.f. of Ŝ is:

pŜ(x) = C

∞∑
k=0

δkx
(H/2+k−1) exp−x/λ /

(
Γ
(
H

2 + k

)
λρ+k

)
(6)

where
σ2
uk

= σ2

N
(1− P (k))

λ = 2 min
k
σ2
uk

δk = 1
k + 1

k+1∑
i=1

iνi−1δk+1−i with δ0 = 1

νk = 1
2

K−1∑
i=0

(
1− λ

2σ2
ui

)k+1 1
k + 1

C =
K−1∏
i=0

(
λ

2σ2
uk

)1
2

(7)

and Γ(.) is the Gamma function.
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Proof. Ŝ is the sum of K independent random variables with non equal variances:

Ŝ =
K−1∑
k=0

U2
k (8)

where Uk =
√
P (k)Ek ∼ N (0, σ2

Uk
) with σ2

Uk
= σ2

N
(1− P (k))

If Uk ∼ N (0, σ2
uk

) then U2
k follows a gamma distribution: U2

k ∼ Γ(1/2, 2σ2
Uk

). The
p.d.f. of a sum of independent gamma random variables with unequal variances is defined
by Eq. 6, with parameters given in Eq. 7 [Mos85].

3.2 Analysis of B
B is estimated as follows:

B̂ =
K−1∑
k=0

P (k)V̂k

V̂k = 1
Nk − 1

∑
n∈Ωk

(Tn − M̂k)2
(9)

where M̂k is defined by Eq. 4. The analysis of B̂ is the same under hypothesis H1 or H0
because the leakage variable fk is eliminated in the subtraction Tn − M̂k.
Applying the same reasoning as in the previous section, variables Tn − M̂k are Gaussian
and asymptotically independent for large Nk’s. By application of the CLT, V̂k converges
towards a Gaussian distribution. The V̂k’s are also independent because the Tn’s are
taken from different set of traces and the noise variables Wn are independent. As a
result, B̂ is a sum of K independent Gaussian random variables and is thus Gaussian
itself: B̂ ∼ N (µB̂ , σ2

B̂
). After some computations, the mean µB̂ and variance σ2

B̂
have the

following expressions:

µB̂ = σ2

σ2
B̂

= 2σ4

N

(10)

3.3 Analysis of Z
3.3.1 Hypothesis H1

When Ŝ and B̂ have Gaussian distributions, the p.d.f. of the SNR Ẑ = Ŝ/B̂ is defined by
Eq. 2. This equation is challenging to apply in practical situations. We will demonstrate
how it can be approximated by a Gaussian p.d.f. in our context (large K, large N and
small SNR). Let us first focus on the first term of the Eq. 2:

I =
σB̂σŜ

π(σ2
B̂
z2 + σ2

Ŝ
) exp

[
−1

2

(
µ2
B̂

σ2
B̂

+
µ2
Ŝ

σ2
Ŝ

)]

We replace µB̂ and σ2
B̂

by their expressions defined in Eq. 10. We thus have:
µ2
B̂

σ2
B̂

= N/2.

In practical situations, N is very large which leads to a very high value for
µ2
B̂

σ2
B̂

. As a

result, the term exp
[
−1

2

(
µ2
B̂

σ2
B̂

)]
will force I to zero. This first component can thus be
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assumed negligible.
Let now focus on the last term of Eq. 2:

A =
[

1− 2Q
(

µB̂σ
2
Ŝ

+ µŜσ
2
B̂
z

σB̂σŜ(σ2
B̂
z2 + σ2

Ŝ
)1/2

)]

Let us define the following change of variable z =
µŜ
µB̂

(1 + x) with x << 1 (small SNR

region). With this modification, we obtain:

µB̂σ
2
Ŝ

+ µŜσ
2
B̂
z

σB̂σŜ(σ2
B̂
z2 + σ2

Ŝ
)1/2 ≈

√√√√µ2
B̂

σ2
B̂

+
µ2
Ŝ

σ2
S

+O(x)

where O(x) is the conventional big O notation.

As stated just above
µ2
B̂

σ2
B̂

is very large in practice. Moreover the Q(x) function vanishes for

large x. As a result A ≈ 1. This term can thus be also removed from Eq. 2. Eventually,
the remaining equation is:

pẐ(z) =
µB̂σ

2
Ŝ

+ µŜσ
2
B̂
z

√
2π(σ2

B̂
z2 + σ2

Ŝ
)3/2

exp
(
−

(µŜ − µB̂z)2

2(σ2
B̂
z2 + σ2

Ŝ
)

)

For low SNR values, a small signal approximation of pẐ(z) gives:

pẐ(z) ≈
µB̂√
2πσŜ

exp

−
(
µŜ
µB̂
− z
)2

2(σ2
Ŝ
/µ2

B̂
)


Hence, Ẑ approximately follows a Gaussian distribution with mean µẐ and σ2

Ẑ
defined by:

µẐ =
µŜ
µB̂

σ2
Ẑ

=
σ2
Ŝ

µ2
B̂

(11)

Under hypothesis H1, this gives:

µẐ = θ + K

N

σ2
Ẑ

= 4θ
N

+ 2K
N2

(12)

Under hypothesis H0, one has to set θ = 0 in Eq. 12.

3.3.2 Hypothesis H0

Under the hypothesis H0, the SNR is proportional to the F-score [CK14]: Ẑ = N

K
F where

F follows an F-distribution with K − 1 and N −K degrees of freedom. We will now derive
a Gaussian approximation. From Eq. 10 we observe that σ2

B̂
is very small for large N . B̂
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is thus almost deterministic and Ẑ is a scaled value of Ŝ. This assumption is also valid for
hypothesis H0 since the distribution of B̂ is unchanged: Ẑ ≈ Ŝ/µB̂. Consequently, the
p.d.f. of Ẑ is approximated by:

pẐ(z) ≈ µ
B̂
pŜ(µ

B̂
z) (13)

where pŜ(z) is defined by Eq. 6.
When the number of classes K is large (e.g. K = 256), this p.d.f. is well approximated
by a Gaussian distribution whose mean and variance are given by Eq. 11, 5 and 10, with
fk = µf .

4 Models validation
4.1 Validation with simulations
Simulations are performed to verify the Gaussian approximation of Ŝ, B̂ and Ẑ. Two
leakage models are evaluated:

• Stochastic linear leakage model [SLP05]: fk =
∑7
i=0 εiXi where Xi is a random

bit (’0’ or ’1’ with probability 1/2) and εi ∼ N (1, σ2
a). The vector (X0, · · · , X7) is

the binary decomposition of the class index k. In practice, the coefficients εi’s are
normalized so that var(fk) = 1. Simulations are performed with σ2

a = 0.2.

• HW model: fk = HW (X) for X uniformly distributed in the interval [0, 2H − 1].
There are K = H + 1 classes where H is the number of bits used for the binary
decomposition of the sensitive variable X. The value of K is significantly smaller
compared to the previous cases, the Central Limit Theorem (CLT) may thus lead
to a inaccurate model. Nk = 4 106 P (k) traces are generated for each class, where
P (k) = 2−HCkH and CkH is the binomial coefficient.

Unless mentioned, all simulations are conducted with σ2 = 10.

4.1.1 Stochastic linear leakage model

The probability density function for Ŝ and B̂ is assessed using sample sets generated
with the byte value linear model. This is then compared to the Gaussian approximation
described in Eq. 5 and Eq. 10. The outcomes are illustrated in Figure 1, demonstrating a
very good matching that validates the derived models.

Figure 1: p.d.f. of Ŝ (left) and B̂ (right).
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The p.d.f. of Ẑ is assessed using samples obtained from the byte value linear model.
This evaluation is then compared to the probability density function provided by Equation
2 (referred to as "Model"), as well as its Gaussian approximation with mean and variance
described by Equation 11 (referred to as "pdf-Gaussian approximation"). Results are
presented in Figure 2 for a balanced classes configuration (Nk = 1000 ∀k) and µŜ/µB̂ = 0.1.
We observe a good matching between the simulations and the two p.d.f. models. This
confirms the validity of the Gaussian approximation for low SNR. Figure 2 also illustrates
the p.d.f. of Z and the distribution proportional to the F-score under hypothesis H0
(fk = µf ) for the byte value model. The Gaussian approximation closely approximates
both the F-score distribution and the simulation results.

Figure 2: p.d.f. of Ẑ with µŜ/µB̂ = 0.1 (left) and hypothesis H0 (right).

4.1.2 HW leakage model

Figure 3 displays the p.d.f. of Ẑ for H = 8 and 32 when the HW leakage is present. The
model accurately represents the true p.d.f. even for a small number of classes (K = 9).
The Gaussian approximation slightly overestimates the p.d.f., but remains close to the
simulation results. As such, it is also suitable for a HW-based classification. Figure 4
shows the p.d.f. of Ẑ for H = 8 in the absence of any leakage (fk = µf ). The p.d.f. of the
model given by Eq. 6 matches very well with simulation results.

4.2 Validation with experimental results
In this section, we experimentally validate the p.d.f. models derived under hypotheses H0
and H1. The experiments use the ASCADv2 database [BPS+20]. More precisely, we use
the "ascadv2-extracted" database available for download. The SNR measured with the
byte value model for the first output of the masked sbox is presented in Figure 5. 500000
traces are used for the computation of the SNR. A distinguishable peak is observed at
time index 5222. We assigned this time sample to hypothesis H1 and the time samples
belonging to the interval [0, 4000] to hypothesis H0.
Figure 6 displays the p.d.f. of Ẑ for the byte value and HW models computed at time
index 1955. The Gaussian approximation outlined in Eq. 11 is precise for the byte value
model, whereas the p.d.f. provided by Eq. 6 closely matches the simulation results for the
HW model.
The p.d.f. of Ẑ for the byte value is evaluated at the time index 5222. Since the true
value of θ is unknown, we assume that the model of Eq. 11 is valid and estimate it by
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Figure 3: p.d.f. of Ẑ for HW model under hypothesis H1 : H = 8 (left) and H = 32
(right).

Figure 4: p.d.f. of Ẑ under hypothesis H0.
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Figure 5: SNR measured with the byte value model.

Figure 6: p.d.f. of Ẑ - byte value model (left) and HW (H = 8) (right) - Hypothesis H0.

θ̂ = E[Z]−K/N . This value is then inserted in Eq. 12 to compute µẐ and σ2
Ẑ
. Figure 7

displays the p.d.f. of Ẑ for the byte value. The Gaussian approximation outlined in Eq.
11 is precise for the byte value model.

5 Detection threshold and sampling complexity
The detector computes a decision variable D (e.g. Ẑ for SNR and correlation for the ρ-test)
and must decide between two hypotheses: H0 or H1. When p.d.f. p(D|H0) and p(D|H1)
are known, the Likelihood Ratio Test (LRT) [Poo94] is a conventional decision-making

rule. It based on the ratio p(D|H0)
p(D|H1) . However, in our situation, this is not applicable

because the LRT depends on the unknown variable we want to detect (e.g. θ for D = Ẑ).
An alternative solution is to design a detector that rejects the hypothesis H0. This is the
strategy already applied by T-test and χ2-test. A threshold γ is pre-determined and the
detector decides for hypothesis H0 when D < γ and H1 otherwise. The performance are
defined by the false positive (α) and false negative (β) rates [Poo94]:

α = Prob(D > γ|H0)
β = Prob(D ≤ γ|H1) (14)
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Figure 7: SNR measured with the byte value model - Hypothesis H1.

γ is set to ensure the false positive rate remains below α. Its depends on α, but also on
the other parameters such as N and K for the SNR. This equation is then inserted in the
definition of β. This provides a new equation that links N to α, β, θ and K. The p.d.f.
evaluated in the previous sections are used to compute α and β. The theoretical sampling
complexity N is eventually derived.

5.1 SNR
5.1.1 Byte value model

In the followings, we will denote Ẑ0 (resp. Ẑ1) the value of Ẑ under hypothesis H0 (resp.
H1). According to Section 3, Ẑ0 and Ẑ1 have Gaussian p.d.f. for small SNR. Using the
Gaussian approximation for Ẑ0:

α = Q
(
γ − µẐ0

σẐ0

)
(15)

where Q(x) is defined by Eq. 3.
Similarly,

β = 1−Q
(
γ − µẐ1

σẐ1

)
(16)

From Eq. 11 and 5, we have: µẐ1
= θ +K/N and σ2

Ẑ1
= 2K
N2 + 4 θ

N
. γ is set to maintain

a false alarm rate smaller than α. Using Eq. 15 with µẐ0
and σẐ0

given by Eq. 11 we
obtain:

γ = K

N
+
√

2K
N
Q−1(α) (17)
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Note that γ is independent from the noise variance. We will now derive the relationship
between the number of trace N , α, β and the SNR value θ when all classes have the same
size (Nk = N/K).
Inserting Eq. 17 in the definition of β in Eq. 16 gives:(

σZ0Q−1(α)− θ
)2 = σ2

Z1

(
Q−1(1− β)

)2
Let us define the following notations: a = Q−1(α) and b = Q−1(1− β). After insertion of
the expression of σZ1 and σZ0 , we obtain a polynomial on the variable x = Nθ:

x2 −
(

4b2 + 2a
√

2K
)
x+ 2K(a2 − b2) = 0

The root is eventually:

x0 = Nθ = 2b2 + a
√

2K + |b|
√

2K + 4b2 + 4a
√

2K (18)

The product Nθ is thus constant when a, b and K are fixed.

5.1.2 HW model

For an HW leakage model, the p.d.f. of Ẑ0 is not Gaussian anymore.
α is defined by:

α(γ) =
∫ ∞
γ

µB̂pS(µB̂x)dx (19)

where pS(x) is given by Eq. 6.
Assuming that the assumption µB̂ ≈ σ2 holds, we obtain:

α(γ) = C

∞∑
k=0

δk
Γ(H/2 + k)g(H/2 + k, σ2γ/λ) (20)

where g(s, x) =
∫∞
x
ts−1e−tdt is the upper incomplete gamma function.

From Eq. 7, we observe that λ is proportional to σ2. Hence σ2/λ = N/ (2 mink (1− P (k)))
does not depend on the the noise variance. Consequently, for a predefined α, the correspond-
ing detection threshold γ is independent from σ2 and can be pre-determined. Moreover,
the variable σ2γ/λ = γN/ (2 mink (1− P (k))) is constant for a fixed α. Consequently, the
product γN = cH is constant for a pre-determined α and a fixed value of H. Table 1 gives
the values of cH evaluated by simulations for different values of α and H = 8. The value
γ = cH/N is eventually inserted in Eq. 16 which results in a polynomial on the variable
x = Nθ:

x2 −
(
4b2 + cH −K

)
x− 2Kb2 + (cH −K)2 = 0

with K = H + 1.
The root is eventually:

x0 = Nθ = 2b2 + cH −K + |b|
√

2K + 4b2 + 4(cH −K) (21)

Table 1: Value of cH for different false positive rates (H = 8).

α = 10−3 α = 10−4 α = 10−5 α = 10−6

cH 17.34 21.06 24.5 28.08
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5.2 ρ test
Similar to the previous section, we compute the sampling complexity of the ρ-test taking
into account the false negative and positive rates. To do so, we reuse some results and
properties already presented in [Man04]. Let ρ be Peason’s correlation coefficient computed
with the acquisition samples and µρ be its mean. The Fisher’s Z transformation of ρ
follows a Gaussian distribution:

Q = 1
2 log

(
1 + ρ

1− ρ

)
∼ N (µQ, σ2

Q)

µQ = 1
2 log

(
1 + µρ
1− µρ

)
σ2
Q = 1

N − 3

If the leakage model is valid, µρ is related to the SNR θ: µρ =
√

θ

1 + θ
. For low SNR and

correlation values, this leads to the following approximation: µQ ≈ µρ ≈
√
θ

From the Gaussian approximation of Q and for low correlation values, we have:

α = Prob(|ρ| > γ|H0) ≈ 2Q
(
γ

σQ

)
β = Prob(|ρ| ≤ γ|H1) ≈ 2

(
1−Q

(
γ − µρ
σQ

)) (22)

Let us define the following notations: a1 = Q−1(α/2) and b1 = Q−1(1 − β/2). From
the definition of α and β, we have γ = a1/

√
N − 3 and µρ

σQ
= a1 − b1. Finally, an

approximation of N is found:

x0 = Nθ ≈ (a1 − b1)2 (23)

5.3 T-test
When the number of traces is large, the T-test follows approximately a Gaussian distribution
N (0, 1) [DS16]. Consequently, the detection threshold is set as follows:

γ = Q−1(α/2)

When α = 10−6, one finds the threshold value γ = 4.9 which is often found in the
literature [CdMG+13].
The sampling complexity of the T-test has been derived and studied in [WO19]. Using an
approximation of the T-test variable as a Gaussian distribution, N is derived when the
number of traces is equally partitioned between the two classes:

x0 = Nθ ≈ (a1 + b2)2

2 (24)

where b2 = Q−1(β).

5.4 Sampling complexity
The impact of the trace length L on the leakage detection is analyzed in [DZD+18] and
[WO19]. In a multivariate setting, the overall false positive rate αT is related to the
univariate counterpart α by αT = 1− (1− α)L if the L detection tests are independent.
The value assigned to α is thus set in order to limit the false positives over the entire trace:
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α = 1− (1− αT )1/L. The value of β is set similarly. There is however a difference due to
the small number of leakage points in the trace which reduces the practical value of L.

The sampling complexity of T-test and ρ-test are compared in [DS16] for the HW
model under hypothesis H1. For a fixed SNR, the average value of the decision metric is
computed as a function of the number of traces. The authors concludes that the T-test
needs less traces than ρ-test to detect leakage. However, it does not provide information
regarding the exploitable leakage samples. In this section, we extend this work by adding
the SNR method into the comparison and also consider a stochastic leakage model in
addition to the HW model. The comparison is also implemented differently. The detection
threshold γ is set for a false positive rate α = 10−6. Then, we evaluate the number of
traces required to provide a false negative rate below a pre-determined value β = 10−3.

The sampling complexity of the T-test, χ2-test, ρ-test and SNR is now evaluated. For
the T-test and χ2-test, the evaluation is made with the fixed-versus-random option. The
fixed class is built with byte X = 0 and the number of traces is equally partitioned between
the two classes. The χ2-test is implemented in the same way as it is described in the
original paper [MRSS18]. Since the number of column of the contingency matrix may
vary from one draw to another, the detection threshold is not constant. Consequently,
the p-value is computed and a false negative is declared if the p-value is larger than 10−6.
The estimation of the stochastic leakage model described in Section 4.1 is also considered
for the ρ-test. Instead of estimating each coefficient εi, the leakage fk is directly targeted.
In order to optimize the number of traces used to estimate the fk’s and compute the
ρ-test value, a cross-validation technique is applied. The number of traces N is split in
Nc sets. The first (Nc − 1)N/Nc traces are used to estimate parameters fk. Traces are
classified according to the target value (0 to 255) and fk is estimated by averaging the
traces belonging to the same class. The Nc traces of the last remaining set are used to
compute their contribution to the ρ-test value. This operation is then repeated by shifting
from one set at a time. In the end, all the traces are used for the estimation and the
computation of the ρ-test but with disjoint sets.

The number of traces N evaluated by simulations is compared to the theoretical value
predicted by Eq. 18, 21 , 23 or 24. Figure 8 shows the value of N as a function of the
true SNR for the T-test, ρ-test, χ2-test and SNR method for the stochastic linear leakage
model. The T-test is the most efficient technique, followed by the ρ-test when the leakage
model is perfectly estimated, the χ2-test and the SNR method. The theoretical models are
very close to the simulation results and even overlap for the T-test. This validates them.
The sampling complexity of the SNR is higher because it requires a minimum amount of
traces for each of the 256 classes whereas the T-test considers only two classes. When the
leakage model is estimated for the ρ-test , the number of traces increases significantly and
deviates from the value predicted by the theoretical model for a perfect estimation. In
addition, N decreases when the number of cross-validation sets Nc increases. It converges
to the same level as the SNR. The χ2-test is not the most appropriate solution because
it is not informative about the exploitability of the leakage and is less efficient than the
T-test for a binary leakage detection test.

Figure 9 shows the value of N as a function of the SNR for the T-test, ρ-test and SNR
method for the HW leakage model. Once again, the T-test is the most efficient technique,
followed by the ρ-test and the SNR method. The theoretical model for the SNR is accurate
for the HW32 leakage model. However it is not tight for the HW8 model and a very small
SNR. This is probably due to the Gaussian approximation of Ŝ in Section 3.1.1 which is
not fully valid for HW8. The number of classes is not large enough to apply the CLT. The
error between the model and the simulations may increase with σ2, explaining the gap
observed at an SNR below −12 dB.

The validity of the theoretical models is then evaluated on real traces from the ASCADv2
data base. We reuse the same set of traces and methodology as in Section 4.2 for the
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Figure 8: Sampling complexity - Stochastic model - α = 10−6 and β = 10−3.

Figure 9: Sampling complexity - HW model - α = 10−6 and β = 10−3.

validation of the H1 hypothesis. The results obtained for the SNR, T-test and ρ-test are
given in Table 2. It presents the theoretical value of N for the T-test, SNR (byte value and
HW8 models) and ρ-test (byte value and HW8 models), the experimental measure and the
error ratio. The value provided for the ρ-test with the byte value model (Nc = 6 or 10)
as "theory" is a simulation results obtained for θ = 0.044. This value is the experimental
SNR measured on the ASCADv2 dataset. This corresponds to a noise variance σ2 = 45.5.
The theoretical sampling complexity is close to the experimental results for the SNR with
the byte value model, the T-test and the ρ-test. The error is larger for the SNR with the
HW8 model. This may come from the relative inadequacy of the theoretical model for the
HW8 leakage, as explained in the paragraph just above.

Table 2: Sampling complexity - ASCADv2 - α = 10−6 and β = 10−3. (*): simulation
results with σ2 = 45.5.

SNR
(byte value)

SNR
(HW8) T-test ρ-test

(Nc = 6)
ρ-test

(Nc = 10)
ρ-test
(HW8)

Theory 4998 2102 712 5175 (*) 4750 (*) 1523
Experiment 4700 1800 660 5220 4700 1400
Error ratio 6% 14.4% 7.3% 0.8% 1% 8%
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6 Recommendations for an evaluator
The results presented in Section 5.4 allow to draw some recommendations for the best
usage of each method:

• If the evaluator is only interested by a YES/NO answer concerning the presence or
absence of leakage, he/she should use the T-test method.

• If the evaluator is interested in the exploitability of the leakage, he/she should use
the ρ-test method to test an HW leakage model and the SNR for the byte value
model.

• The SNR method is not appropriate to test an HW leakage model.

In addition, for fixed values of α and β, two strategies are offered to the evaluator:

• The number of traces is limited to Nmax: the minimum detectable SNR value is thus
θ0 = x0/Nmax, where x0 is given by either Eq. 18, 21, 23 or 24 depending on the
selected detection method.

• The evaluator is only interested in detecting leakages whose SNR is greater than θ0.
The minimum number of traces that must be acquired is thus Nmin = x0/θ0.

If none of the previous procedure succeeds and the evaluator knows a sensitive variable is
processed during the trace acquisition, the remaining solution is to implement a leakage
detection test based on MI [MOBW13][CLM20].

7 Conclusion
The SNR is a widely used metric for assessing an information leakage from a device. We
derived the theoretical formulation of its p.d.f. in case leakage is present or not, under
a small SNR assumption. Our study covers the byte value and the HW leakage models.
These p.d.f. formulations were validated through simulations and experiments on a set
of traces taken from the ASCADv2 dataset. They are used to set a detection threshold
that rejects false positives from the SNR measurements. These p.d.f. formulations are
also used to derive the theoretical number of traces that are required to remain below
pre-determined false negative and false positive rates. The sampling complexity of the
T-test, ρ-test and SNR has eventually been defined and compared for the byte value and
HW leakage model. The T-test is the most efficient technique for the two leakage models.
The ρ-test is more efficient than the SNR method under the HW leakage model but the two
techniques perform equally under the byte value model. In fact, the leakage model must
be estimated from the traces in order to implement the ρ-test with the byte value model.
Unfortunately, the T-test does not provide any information about the detected leakage
exploitability. Consequently, the SNR method is the most appropriate method when the
evaluator is interested in the exploitability of the leakage and has no prior information
about the leakage model. In that case, the SNR shall be computed with the byte value
model. When the evaluator wants to test the validity of the HW leakage model, the ρ-test
is the most appropriate solution.

Acknowledgment
The author is very grateful to the anonymous reviewers and the shepherd for their extensive
contribution in improving the paper.



Mathieu des Noes 401

References
[AL06] K.B. Athreya and S.N. Lahiri. Measure theory and probability theory. Springer,

Heidelberg, 2006.

[BDGN14] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm. Side-
channel leakage and trace compression using normalized inter-class variance.
Cryptology ePrint Archive, Report 2014/1020, 2014. https://eprint.iacr.
org/2014/1020.

[BPS+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Deep learning for side-channel analysis and introduction to ASCAD
database. Journal of Cryptographic Engineering, 10(2):163–188, June 2020.

[CdMG+13] J. Cooper, E. de Mulder, G. Goodwill, J. Jaffe, and G. Kenworthy. Test vector
leakage assessment (TVLA) methodology in practice (extended abstract). In
ICMC, 2013.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural
networks with data augmentation against jitter-based countermeasures –
profiling attacks without pre-processing –. Cryptology ePrint Archive, Report
2017/740, 2017. https://eprint.iacr.org/2017/740.

[CK14] Omar Choudary and Markus G. Kuhn. Template attacks on different devices.
Cryptology ePrint Archive, Report 2014/459, 2014. https://eprint.iacr.
org/2014/459.

[CLM20] Valence Cristiani, Maxime Lecomte, and Philippe Maurine. Leakage as-
sessment through neural estimation of the mutual information. In Applied
Cryptography and Network Security Workshops: ACNS 2020 Satellite Work-
shops, AIBlock, AIHWS, AIoTS, Cloud S&P, SCI, SecMT, and SiMLA,
Rome, Italy, October 19–22, 2020, Proceedings 18, pages 144–162. Springer,
2020.

[CRR03] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES 2002,
volume 2523 of LNCS, pages 13–28. Springer, Heidelberg, August 2003.

[dCGRP19] Eloi de Cherisey, Sylvain Guilley, Olivier Rioul, and Pablo Piantanida. Best
information is most successful. Cryptology ePrint Archive, Report 2019/491,
2019. https://eprint.iacr.org/2019/491.

[DS16] François Durvaux and François-Xavier Standaert. From improved leakage
detection to the detection of points of interests in leakage traces. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I,
volume 9665 of LNCS, pages 240–262. Springer, Heidelberg, May 2016.

[DZD+18] A Adam Ding, Liwei Zhang, François Durvaux, François-Xavier Standaert,
and Yunsi Fei. Towards sound and optimal leakage detection procedure.
In Smart Card Research and Advanced Applications: 16th International
Conference, CARDIS 2017, Lugano, Switzerland, November 13–15, 2017,
pages 105–122. Springer, 2018.

[Man04] Stefan Mangard. Hardware countermeasures against DPA – A statistical
analysis of their effectiveness. In Tatsuaki Okamoto, editor, CT-RSA 2004,
volume 2964 of LNCS, pages 222–235. Springer, Heidelberg, February 2004.

https://eprint.iacr.org/2014/1020
https://eprint.iacr.org/2014/1020
https://eprint.iacr.org/2017/740
https://eprint.iacr.org/2014/459
https://eprint.iacr.org/2014/459
https://eprint.iacr.org/2019/491


402 Distribution of Signal to Noise Ratio and Application to Leakage Detection

[MOBW13] Luke Mather, Elisabeth Oswald, Joe Bandenburg, and Marcin Wojcik. Does
my device leak information? An a priori statistical power analysis of leakage
detection tests. Cryptology ePrint Archive, Report 2013/298, 2013. https:
//eprint.iacr.org/2013/298.

[MOP08] S. Mangard, E. Oswald, and T. Popp. Power analysis attacks: Revealing the
secrets of smart cards. Springer, Heidelberg, 2008.

[Mos85] P.G. Moschopoulos. The distribution of the sum of independent gamma
random variables. Annals of the Institute of Statistical Mathematics, 37(1),
1985.

[MOS09] Stefan Mangard, Elisabeth Oswald, and Francois-Xavier Standaert. One for
all - all for one: Unifying standard DPA attacks. Cryptology ePrint Archive,
Report 2009/449, 2009. https://eprint.iacr.org/2009/449.

[MRSS18] Amir Moradi, Bastian Richter, Tobias Schneider, and François-Xavier Stan-
daert. Leakage detection with the χ2-test. IACR TCHES, 2018(1):209–237,
2018. https://tches.iacr.org/index.php/TCHES/article/view/838.

[Poo94] H.V. Poor. An introduction to signal detection and estimation. Springer,
Heidelberg, 1994.

[Sim02] M.K. Simon. Probability distributions involving Gaussian random variables:
A handbook for engineers and scientists. Springer, Heidelberg, 2002.

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model for
differential side channel cryptanalysis. In Josyula R. Rao and Berk Sunar,
editors, CHES 2005, volume 3659 of LNCS, pages 30–46. Springer, Heidelberg,
August / September 2005.

[SMY06] Francois-Xavier Standaert, Tal G. Malkin, and Moti Yung. A unified
framework for the analysis of side-channel key recovery attacks (extended
version). Cryptology ePrint Archive, Report 2006/139, 2006. https:
//eprint.iacr.org/2006/139.

[VS09] Nicolas Veyrat-Charvillon and François-Xavier Standaert. Mutual information
analysis: How, when and why? In Christophe Clavier and Kris Gaj, editors,
CHES 2009, volume 5747 of LNCS, pages 429–443. Springer, Heidelberg,
September 2009.

[WO19] Carolyn Whitnall and Elisabeth Oswald. A cautionary note regarding the
usage of leakage detection tests in security evaluation. Cryptology ePrint
Archive, Report 2019/703, 2019. https://eprint.iacr.org/2019/703.

https://eprint.iacr.org/2013/298
https://eprint.iacr.org/2013/298
https://eprint.iacr.org/2009/449
https://tches.iacr.org/index.php/TCHES/article/view/838
https://eprint.iacr.org/2006/139
https://eprint.iacr.org/2006/139
https://eprint.iacr.org/2019/703

	Introduction
	SNR as a leakage detection method
	Approximation of the probability density function of S, B and Z
	Analysis of S
	Analysis of B
	Analysis of Z

	Models validation
	Validation with simulations
	Validation with experimental results

	Detection threshold and sampling complexity
	SNR
	 test
	T-test
	Sampling complexity

	Recommendations for an evaluator
	Conclusion

