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Abstract. Even given a state-of-the-art masking scheme, masked software implemen-
tation of some cryptography functionality can pose significant challenges stemming,
e.g., from simultaneous requirements for efficiency and security. In this paper we
design an Instruction Set Extension (ISE) to address a specific element of said
challenge, namely the elimination of leakage stemming from architectural and micro-
architectural overwriting. Conceptually, the ISE allows a leakage-focused behavioural
hint to be communicated from software to the micro-architecture: using it informs
how computation is realised when applied to masking-specific data, which then offers
an opportunity to eliminate associated leakage. We develop prototype, latency-
and area-optimised implementations of the ISE design based on the RISC-V Ibex
core. Using them, we demonstrate that use of the ISE can close the gap between
assumptions about and actual behaviour of a device and thereby deliver an improved
security guarantee.
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1 Introduction

Use of masking to mitigate information leakage. Modern embedded computing devices
are increasingly used in applications that can be deemed security-critical in some way. This
role is challenging due to the inherent constraints on storage, computation, and communi-
cation, and also because such devices may be deployed in an adversarial environment. Set
within this context, implementation attacks, which focus on the concrete implementation
rather than abstract specification of some functionality, represent a particularly potent
threat. A side-channel attack is a category of implementation attack: the idea is that
an attacker passively observes a target device while it executes some target functionality,
using the observed behaviour to make inferences about 1) the computation performed
and/or 2) the data said computation is performed on. Doing so affords the attacker an
advantage with respect to some goal, such as recovery of any security-critical information
(e.g., key material) involved; we say such information is leaked via (or is leakage with
respect to) the mechanism used for observation (i.e., the side-channel in question).
Although alternatives exist, we focus on Differential Power Analysis (DPA) [KJJ99] and
variants thereof. The importance of robust countermeasures against DPA has motivated a
significant amount of research activity, with techniques often classified as being based on
hiding [MOPO07, Chapter 7] and/or masking [MOPO07, Chapter 10]. We focus on the latter,
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Figure 1: A selective overview of the design space for masked software implementation;
indicative assessment of security guarantee and overhead is reflected by zero (O)7 low
((®), and high (@), plus various intermediate points.

and, more specifically, the concept of a d-th order Boolean masking scheme. Such a scheme
represents a variable x as & = (2¢, 21,...,2q), i.e., as d+ 1 statistically independent shares,
where
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Application of the scheme to some functionality r = f(z) can be described as three
high-level steps: 1) z is masked to yield &, 2) an alternative but compatible functionality
# = f(2) is executed, then 3) 7 is unmasked to yield 7. An attacker is now tasked with
recovering Z; for all 0 < i < d using leakage which stems from f , because x can no longer
be recovered directly (as it might have been using leakage which stems from f). Put
another way, such a scheme is designed to prevent a ¢-th order attack, in which the attacker
is able to combine leakage from ¢t < d + 1 points of interest. For example, a 1-st order
scheme prevents a 1-st order attack but may be vulnerable to a 2-nd order attack.

Challenges stemming from production of a masked implementation. Consider a soft-
ware implementation of some f, intended for execution by a micro-processor that supports
a given Instruction Set Architecture (ISA), and the task of producing an associated masked
implementation, i.e., an implementation of f . At least two significant challenges stem from
this task. The first challenge relates to efficiency, i.e., ensuring the masked implementa-
tion is efficient enough to be viable. Doing so is challenging because masking implies a
notoriously high overhead due to factors such as computation on shares (i.e., overhead
related to each “gadget” which represents the masked version of some non-masked func-
tionality), storage of shares (e.g., register pressure due to the larger working set), and the
requirement for generation of randomness; all the above are amplified when scalability to
larger d is considered. The second challenge relates to security, i.e., translating theoretical
security guarantees related to the masking scheme into practical guarantees related to
the masked implementation. There is significant evidence that doing so is challenging
(cf. Beckers et al. [ BWGT22]), e.g., due to the invalidity of theoretical assumptions on a
given device. One common example is the occurrence of micro-architectural leakage (see,
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e.g., [PV17, MPW22]), which can invalidate 1) the only computation leaks assumption
(“computation, and only computation, leaks information” [MR04, Section 2, Axiom 1)),
and 2) independent leakage assumption (“information leakage is local” [MRO04, Section 2,
Axiom 4)).

A design space for masked implementation. Given the task outlined above, Figure 1
attempts to illustrate the design space of implementation strategies. A given strategy
within said design space essentially selects whether software and/or hardware is responsible
for (resp. aware of) or not responsible for (resp. unaware of) masking-specific properties
of instructions and their execution. Toward the right-hand side are pure software or ISA-
based implementation strategies, which place responsibility in software alone. These imply
zero overhead in hardware, e.g., in relation to metrics such as area, but high overhead in
software, e.g., in relation to metrics such as execution latency and memory footprint. Since
hardware is unaware of masking, it cannot eliminate micro-architectural leakage; software
must address micro-architectural leakage via purely architectural means, e.g., using the
ISA-based rewrite rules presented by Shelton et al. [SSBT21, Section V.C]. Toward the
left-hand side are pure hardware implementation strategies, which place responsibility in
hardware alone (typically via an entirely masked micro-architecture). These imply high
overhead in hardware, but close to zero overhead in software. Since hardware is aware
of masking, it can eliminate micro-architectural leakage; hardware can address micro-
architectural leakage via micro-architectural means, e.g., through careful management
of instruction execution. A variety of hybrid, implementation strategies exist between
the two extremes. Generalising a little, such strategies will typically share responsibility
by 1) adding some limited, hardware-supported functionality related to masking, and
2) exposing this functionality to software via an Instruction Set Extension (ISE); an
ISE-based implementation strategy of this type naturally implies a compromise, namely
some overhead in hardware and some overhead in software. Addressing micro-architectural
leakage could be a shared responsibility, although, since hardware is aware of masking, a
security guarantee more in line with a pure hardware implementation strategy is at least
plausible.

It seems reasonable to claim there is no definitively best implementation strategy.
Rather, each strategy will simply offer a different trade-off in terms of the metrics above
plus other important examples such as usability (i.e., the burden on a software developer)
and invasiveness (i.e., whether alteration of hardware is possible, and the scope and form
of said alterations).

Contributions and organisation. Within Figure 1, we claim there are (at least) two
classes of hybrid, ISE-based implementation strategy:

1. a class of compute-oriented ISEs (which are closer to a pure hardware implementa-
tion strategy), where software indicates that the micro-architecture should execute
masking-specific computation (e.g., a gadget) on masking-specific data (i.e., the
shares used to represent a variable), and

2. a class of data-oriented ISEs (which are closer to a pure software implementation
strategy), where software indicates that the micro-architecture should execute generic
computation on masking-specific data.

We note that the data-oriented ISE class is at best less explored than the compute-oriented
ISE class, and thus, in this paper, explore a specific instance of it. Conceptually, our
ISE allows a leakage-focused behavioural hint' to be communicated from software to the

1 As an aside, note that the same concept has been harnessed for various non-security use-cases across a
range of existing ISAs. For example the ARMv6-M [ARM18, Section A6.6] and ARMv7-M [ARM21, Section
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micro-architecture; doing so informs how existing, generic computation is realised when
applied to masking-specific data. After presenting relevant background information in
Section 2, we organise the paper content as follows:

 In Section 3 we provide some technical analysis that fixes the scope of (i.e., provides a
problem statement for) subsequent content. In short, we aim to support an ISE-based
implementation strategy which eliminates leakage stemming from architectural and
micro-architectural overwriting.

e In Section 4 we present a concrete ISE design. We stress that although the design is
based on RISC-V, or, more specifically, the RV32I [RV:19a, Section 2] base ISA, the
concepts involved are more generally applicable.

e In Section 5 we explore prototype, latency- and area-optimised implementations of
our ISE design, each based on the open source Ibex? base core. We stress that any
implementation of the ISE will depend inherently on the base core (resp. micro-
architecture); our implementations are intended to act as exemplars, therefore, rather
than a limit on how the ISE could or should be implemented in general.

e In Section 6 we evaluate our prototype ISE implementations with respect to their
impact on area, execution latency, and security guarantee. Alongside an experimental
approach, we utilise the Coco [GHP21, HB21] formal verification framework to
evaluate the latter.

Among existing® work with a similar remit, we view the Rosita tool of Shelton et
al. [SSBT21] and FENL design of Gao et al. [GMPP20] as the most closely related.
Section 6 offers a limited comparative evaluation of the ISE relative to such work.

Note that all material associated with the paper, e.g., documentation and source code
relating to all hardware and software implementations, is openly available* under an open
source license.

2 Background

2.1 RISC-V

RISC-V (see, e.g., [Wat16]) is an ISA specification which emerged from academic roots;
it now enjoys a significant role in educational and research activities, and industrial
deployment across a range of use-cases and sectors. At least two features make RISC-V an
attractive option. First, the design is open in the sense it can be implemented or modified
by anyone, with neither licence nor royalty requirements. This fact has contributed to 1)
a rich community organised around the RISC-V International non-profit, 2) availability
of supporting infrastructure such as compilation tool-chains, and 3) a range of (typically
open source) compliant implementations. Second, it adopts strongly RISC-oriented design

A7.6] ISAs include a generic mechanism that can “provide advance information to memory systems about
future memory accesses, without actually loading or storing any data”; the RISC-V RV32I [RV:19a, Section
2.9] and RV64I [RV:19a, Section 5.4] ISAs include a generic mechanism that can be “used to communicate
performance hints to the micro-architecture”; the x86 ISA includes various specific mechanisms with
applications that span branch prediction (e.g., branch taken and not taken prefixes [X8622, Page 2-2]),
pre-fetching (e.g., as in prefetch [X8622, Page 4-414]), and non-temporal memory access (e.g., as in
movntdq [X8622, Page 4-99]).

2https://github.com/1owRISC/ibex

3We note that the RISC-V Zkt [RV:22, Chapter 5] (meta-)extension is conceptually analogous: we
omit it from Figure 1, however, because it focuses on execution latency and so not masking nor micro-
architectural leakage per se. Likewise, we omit other fence instructions, e.g., [WSGT20, LHP20], due to
the same lack of specificity.

4See https://github.com/scarv/eliminate.
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principles but is highly modular: a sparse, general-purpose base ISA, e.g., RV32I [RV:19a,
Chapter 2] or RV64I [RV:19a, Chapter 5], can be augmented with special-purpose (or even
domain-specific), standard and non-standard extensions.

We focus, without loss of generality, on a non-standard extension for RV32I, i.e., the
32-bit integer RISC-V base ISA; although such base ISAs use XLEN to denote the word
size abstractly, our focus means we assume XLEN = 32 concretely throughout. We assume
that some mechanism is available which supports the generation of randomness and hence
fresh masks, so deem this out of scope. Such a mechanism might, for example, but without
loss of generality, be constructed using the RISC-V Zkr [RV:22, Chapter 4] extension.

2.2 Notation

Algorithmic notation. Let x(;) denote z expressed in radix- or base-b. If the base is
omitted, it is safe to assume use of decimal (i.e., that b = 10). Let z <— y denote

assignment of y to z, and x & y denote selection of x uniformly at random from (e.g., a
set) y. Let =, A, V, and & denote the Boolean NOT, AND, (inclusive) OR, and (exclusive
OR, or) XOR operators respectively, and z < y and << y (resp. z > y and z >> y)
denote left-shift and left-rotate (resp. right-shift and right-rotate) of « by y bits respectively.
Let z || y denote concatenation of x and y. Let exty (x) and ext¥ (x) respectively denote
zero- or sign-extension of = to w-bits.

Architectural notation. Let MEM[i]® denote a b-byte access to some byte-addressable
memory, using the address i; where b = 1, the access granularity may be omitted. Let
GPR{[i], for 0 < i < r, denote the i-th, w-bit entry in the r-entry general-purpose register file.
Note that our focus on RV32I means GPR[0] is fixed to 0 (in the sense reads from it always
yield 0 and writes to it are ignored), and abstract parameters such as w = XLEN = 32
and r = 32 are instantiated with concrete values. We allow reference to Control and
Status Registers (CSRs) using either a numeric- or mnemonic-based notation. Per [RV:19b,
Chapter 2], for example, CSR[C00(;4)] = cycle both refer to the cycle counter CSR.

Micro-architectural notation. The micro-architectural implementation of instructions
may involve one or more steps. For example, the RISC-V load word instruction

1v rd, imm(rs1) + GPR[rd] +— MEM[GPR[rs1] + imm|*

might be executed by 1) latching s = GPR[rs1] + imm in a Memory Address Register
(MAR), 2) carrying out a memory access to yield v = MEM[s]* then latching v in a
Memory Buffer Register (MBR), 3) writing-back MBR into GPR[rd]. When describing the
semantics of such an instruction, it can be important to show the cycle a given step is
performed in. For example, we could describe the above as

1: MAR <— GPR[rs1] + imm
lw rd, imm(rsl) — 2 : MBR +— MEM|[MAR]*
3 : GPR[rd] «+— MBR

to show that the three steps are performed in cycles 1, 2, and 3, within what is therefore a
3-cycle execution stage. Said annotation may include ranges, e.g., 1...3 denotes cycles
1 to 3 inclusive: a step annotated as such is itself multi-cycle therefore. Annotation of
multiple steps with the same cycle means they are performed in parallel, with no annotation
implying all steps are performed in parallel.
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2.3 Terminology

Modulo details such as access granularity, memory and the register file can both be viewed
as addressable forms of storage. As such, transfers between them can be modelled using
the operation T[t] «— S[s] noting that if S = GPR and 7 = MEM this models a store
instruction type, whereas if S = MEM and 7 = GPR this models a load instruction type;
in both cases, s and t are the (effective) source and target addresses respectively.

Terminology 1. We focus on data, and so, e.g., the MBR throughout. Noting that
neither use of nor terminology for the MBR is consistent, if S = GPR and 7 = MEM we
term it the store buffer, if S = MEM and 7 = GPR we term it the load buffer, and if
the MBR is bi-directional (i.e., one MBR is used to support both operations) we term it
the load/store buffer.

Terminology 2. We distinguish between resources which are physically internal or external
to the micro-architecture: we term such resources intra-core or extra-core resources
respectively.

Terminology 3. We distinguish between resources which permit direct control (e.g.,
via specific control signals) or require indirect control (i.e., via an abstraction layer or
interface).

For example, a load/store buffer might be intra-core or extra-core (e.g., exist within an
SRAM module, or bus connecting such a module to the core): the former would permit
direct control by the micro-architecture but require indirect control by software, whereas
the latter would require indirect control by both the micro-architecture and software.

Various work has identified architectural and micro-architectural leakage effects which
relate to unintentional share recombination shown to occur during transfer of shares
between forms of storage. For example, using an ST-based ARM Cortex-M0 [Cor09] target
device, Shelton et al. [SSBT21, Section IV.E] carry out experiments which identify leakage
stemming from overwriting one value with another 1) within 7 = GPR (see [SSBT21,
Section IV.E.1]) or T = MEM (see [SSBT21, Section IV.E.2]), and 2) within the interface,
i.e., a load or store buffer between S and 7 (see [SSBT21, Section IV.E.4]).

Terminology 4. We refer to the cases above as architectural overwriting and micro-
architectural overwriting, because they stem from architectural and micro-architectural
resources respectively.

3 Analysis

Some leakage-focused requirements for share transfer. Gaspoz and Dhooghe [GD23]
introduce what they term horizontal [GD23, Definition 5] and vertical [GD23, Definition 6]
non-completeness requirements on the representation of variables: their goal is to prevent
unintentional share recombination that might stem from inter- and intra-register interaction
respectively. One could imagine attempting to introduce analogous requirements to guide
the transfer of shares between memory and the register file. For example:

Requirement 1 (Architectural overwriting). Suppose instructions of the form 7[¢] +— vo
and T[t] «— v are executed in cycles i and j > i respectively, and that no intermediate
instructions that update T[t] are executed, i.e., no instruction of the form Tt] +— vy is
executed in cycle k where i < k < j. If vg equals £, for some 0 < p < d, one must ensure
that v # 24 for all 0 < g < d.

Requirement 2 (Micro-architectural overwriting). Suppose instructions of the form
TTlto] <— S[so] and T[t1] «— S[s1] are executed in cycles i and j > i respectively, and
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that no intermediate instructions of the same type are executed, i.e., no instruction of the
form T [ta] +— S[s2] is executed in cycle k where i < k < j. If S[so] equals &, for some
0 < p < d, one must ensure that S[s;] # &, for all 0 < ¢ < d.

The aim of these requirements is to eliminate leakage stemming from &, being overwritten
with some Z,. Put simply, the former requirement does so by preventing architectural over-
writing while the latter requirement does so by preventing micro-architectural overwriting.
Note that the former requirement is more general than required by the context, in the
sense it captures any instruction which updates 7T[t] (rather than load or store instructions
specifically).

ISA-based requirement satisfaction. As part of a pure software implementation strategy,
both architectural and micro-architectural overwriting must be prevented by using the
ISA alone: for architectural resources this fact implies use of direct control, whereas for
micro-architectural resources it implies use of indirect control. The Rosita tool of Shelton et
al. [SSBT21, Section V.C] offers an excellent example of how to do so concretely. [SSBT21,
Section V.A] outlines the main strategy: Rosita reserves a (random) mask register r7,
and uses this to flush architectural and micro-architectural state, i.e., shares, by rewriting
pertinent instructions. For example:

1. Suppose GPR[4] = #,,. Per [SSB*21, Section V.A], Rosita might rewrite
movs r3, r4 +— movs r3, r7; movs r3, r4

to prevent architectural overwriting: doing so randomises GPR[3] before it is over-
written.

2. Suppose MEM[GPR[3]] = #,. Per [SSB*21, Section V.E], Rosita might rewrite
ldr r2, [ r3 ] + push r7; pop r2; ldr r2, [ r3 ]

to prevent architectural and micro-architectural overwriting: doing so randomises
GPR[2] and the load buffer before they are overwritten.

3. Suppose MEM[GPR[2]] = Z,. Per [SSBT21, Section V.E], Rosita might rewrite
strr2, [r3] — strr7, [ r3]; str r2, [ r3]

to prevent architectural and micro-architectural overwriting: doing so randomises
MEM|GPR[3]] and the store buffer before they are overwritten.

Even given a set of requirements, whose specification is a challenge in and of itself, we make
two claims about an ISA-based strategy for their satisfaction along the lines above. First,
an ISA-based strategy may be sub-optimal with respect to efficiency. Consider the example
above, where Rosita prevents architectural and micro-architectural overwriting related to
an 1dr instruction: the rewrite translates 1 load instruction (resp. memory access) into 3.
Although the overhead differs on a case-by-case basis (both per-instruction and per-ISA), it
clearly may be significant. Second, an ISA-based strategy may be sub-optimal with respect
to security. In particular, there are clear limitations on how effective indirect control of
a micro-architectural resource can be. Consider the same example above: the security
guarantee offered will depend on validity of assumptions about the micro-architecture,
e.g., that the push and pop instructions use the same data-path and hence load/store
buffer as the 1dr instruction. In fact, some instructions can prevent either direct or
indirect control over pertinent micro-architectural resources. Consider the store instruction
variants in ARMv6-M: in contrast to the single-access variant str [ARMI8, Section
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A6.7.60], the multi-access variant stm [ARM18, Section A6.7.58] “store[s] multiple registers
to consecutive memory locations using an address from a base register”. So if GPR[1] = &,
and GPR[2] = &4, then while executing stm r0, { r1, r2 } one cannot prevent &, from
overwriting &, within a load/store buffer: the instruction semantics mean one cannot
control the order registers are accessed in, nor take a Rosita-like approach by randomising
the load/store buffer between accesses (because execution of stm is architecturally atomic,
i.e., the multiple accesses are captured “inside” execution of a single instruction).

An argument for ISE-based requirement satisfaction. We claim the points above stem
from the role of an ISA as an abstraction of the micro-architecture, and thus relevant
resources. Somewhat aligned with the argument of Ge, Yarom, and Heiser [GYH18] for
a “new security-oriented hardware/software contract”, we propose to address this fact
using an ISE-based strategy. Specifically, we aim to design a data-oriented ISE class
which is leakage-focused: the ISE should eliminate leakage stemming from architectural
and micro-architectural overwriting. This goal can be described as necessary but not
sufficient, in the sense that additional forms of leakage may also need to be considered (e.g.,
non-overwriting forms, such as parallel processing of shares per Casalino et al. [CBCH23]).

It is important to stress that doing so has inherent limitations, reflecting the idea in
Section 1 that it simply offers a different trade-off. For example, relative to a compute-
oriented ISE, a data-oriented ISE cannot be competitive in terms of execution latency
because it does not add support for masking-specific computation; we focus on comparison
with an ISA-based strategy therefore. Likewise, under the conservative assumption that
extra-core resources require indirect control by the micro-architecture, neither a compute-
oriented nor data-oriented ISEs can deliver an “ideal” security guarantee; again, we focus
on comparison with an ISA-based strategy therefore.

4 Design

In this Section, we present the ISE design. To explain it at a high level, consider, without
loss of generality, the RISC-V load word instruction

1w rd, imm(rsl) + GPR[rd] +— MEM|GPR[rs1] + imm|*

and some (abstractly defined) mechanism denoted

GPR[rd] «> MEM[GPR[rs1] + imm]*

which represents a variant of the existing semantics. The existing and variant semantics
are functionally identical but may be behaviourally different: the existing semantics are
expressed in [RV:19a, Section 2.6] as “loads a 32-bit value from memory into rd”, whereas
the variant semantics might be expressed as “loads a 32-bit value from memory into
rd, preventing any architectural and micro-architectural overwriting while doing so” by
appending a written hint which controls how they are implemented: the hint essentially
captures a guarantee that leakage stemming from architectural and micro-architectural
overwriting will be eliminated by said implementation. Note that expression of the written
hint requires some care, because under-specification means any value it affords is degraded
(because the semantics offer too weak a security guarantee), whereas over-specification
means the semantics may be unimplementable. We attempt to balance these facts by
capturing the goal in Section 3 while also permitting some degree of micro-architectural
flexibility, i.e., multiple viable micro-architectural implementations.

Framed as such, the ISE can be viewed as two somewhat orthogonal components. First,
a general mechanism by which such a hint can be encoded programmatically: Section 4.1
explores and selects from a range of candidate encoding mechanisms. Second, a specific
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set® of instructions: as summarised by Table 1, we divide this set into instruction classes
outlined in Section 4.2 and Section 4.3.

4.1 Encoding

RV32I employs a fixed-length, 32-bit instruction encoding with 4 base instruction for-
mats [RV:19a, Figure 2.2] (plus variants for, e.g., immediate operands). Each of the
following candidate encoding mechanisms offers advantages and disadvantages given the
goal at hand. However, we try remain consistent by aligning with wider RISC-V design
principles. For example, we do not consider candidates which define new instruction
formats or redefine existing instruction formats (e.g., to go beyond a 3-address format,
with at most 2 source registers and 1 destination register) in a significant way.

Candidate #1. One could define variant instructions, providing the necessary hint via
their use. For example, one could define and then use

sec.lw rd, imm(rsl) +— GPR[zd] & MEMI[GPR[rs1] + imm]*

for security-critical cases.

Candidate #2. One could redefine existing instructions, providing the necessary hint via
management of a processor mode. For example, given SEC, a Control and Status Register
(CSR) for said mode, one could redefine

lu rd, imm(rsl) s { GPR[rd] <~ MEM[GPR[rs1] + imm]* if SEC =1
GPR[rd] +— MEM[GPR[rs1] + imm]* otherwise
and then use SEC = 1 for security-critical cases. This approach is conceptually similar to
those now employed by ARM via Data Independent Timing (DIT) and by Intel via Data
Operand Independent Timing (DOIT). For a capability-enabled ISA (e.g., one that supports
CHERI [WMSN19]), it may be possible to control the mode via a capability associated
with the program counter: this would allow the variant semantics to be applied while
executing the masked implementation, and the existing semantics otherwise. Arguably,
fault induction (e.g., skip instructions which update SEC, or corrupt it directly) may be
a plausible attack vector against an implementation of this approach. Other practical
considerations include the execution latency of instructions which update SEC; depending
on the micro-architecture, for example, it may be necessary to flush the pipeline in order
to maintain coherency with respect to execution of in-flight instructions.

Candidate #3. One could redefine existing instructions, providing the necessary hint via
their operands. For example, given SEC, a set of distinguished registers, one could redefine

A . .
lv rd, imm(rs1) > GPR[rd] +— MEMI[GPR[rs1] + imm]* if rd € SEC
GPR[rd] +— MEM[GPR[rs1] + imm|* otherwise
and then use an rd € SEC for security-critical cases. This approach is conceptually similar
to that outlined by Escouteloup et al. [EFLL20, Recommendation 1], who apply some
security-focused requirements and semantics to a set of general-purpose registers, e.g.,

5We stress that the ISE presented is fixed by the scope in Section 1 rather than reflecting a limitation of
the concept: a broader scope can be catered for naturally, but extending the set of instructions considered
to include 1) additional class-1 instructions, e.g., to offer support for alternative masking schemes or gadgets
related to them, and 2) additional class-2 instructions, e.g., for memory access using other addressing
modes, granularities, or alignment constraints.
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313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

sec.and rd, rsi, rs2 : | 0000000 | rs2 | rst [ooo| rd [ 00010 [11] ~ GPR[rd] & GPR[rs1] A GPR[rs2]
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

sec.andi rd, rsi, imm : 7 imm _ rsl _ 001 _ rd _ 00010 _HL — GPR[zd] % GPR[rs1] A ext¥ (imm)
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

sec.or rd, rsl, rs2 : [ 0000000 [ rs2 | rst [ot0] rd | 00010 [11] ~ GPR[rd] & GPR[rs1] V GPR[rs2]
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

sec.ori rd, rsi, imm o imm | rst Joi1]| =rd [ 00010 [11] + GPR[rd] & GPR[rs1] V ext (imm)
OMN‘MMIH 313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

sec.xor rd, rsl, rs2 : [ 0000000 [ rs2 | rst [100] rd | 00010 [11] ~ GPR[rd] & GPR[rs1] @ GPR[rs2]

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

sec.xori rd, rsl, imm : 7 imm _ rsl _HoH_ rd _ 00010 _HL — GPR[zd] %m_um?m:@mﬁwﬁssv

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

sec.slli rd, rsi, imm : [ 0000000 | imm | rsi [110] rd [ 00010 [11] =~ GPR[rd] <= GPR[rsi] < imm

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

sec.srli rd, rsl, imm : | 0000000 | imm | rst [111] rd [ 00010 [11] =~ GPR[rd] <> GPR[rsi] > imm

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

sec.add rd, rsi, rs2 : | 0000000 | rs2 | rst [ooo| rd [ 10110 [11] = GPR[rd] <= GPR[rsi] + GPR[rs2]

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

sec.sub rd, rsi, rs2 : | 0000000 | rs2 | rst [oot| rd [ 10110 [11] = GPR[rd] <> GPR[rs1] — GPR[rs2]

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

sec.lw rd, rsi, imm, ms : |ms] imm | rst Jooo| rd | o1010 [11] + GPRrd] & MEM|GPR[rs1] + ima]*
313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
sec.sw rs2, rsl, imm, ms : T:m_ imm _ rs2 _ rsl _ 001 _ imm _ 01010 _HL — MEMI[GPR[rs1] 4 imm]* v GPR[rs2]
OM@WMIM 313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
sec.lbu rd, rsi, imm, ms : |ms] imm | rst Jo10] rd [ o1010 [11] ~ GPR[rd] & MEM|GPR[rs1] + imn]!

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

sec.sb rs2, rsl, imm, ms : T:m_ imm _ rs2 _ rsl _o:_ imm _ 01010 _HL +  MEM[GPR[rs1] + imm]' %O_U_N_Hmﬁ

Table 1: A summary of additional instructions that constitute the ISE, described in terms of assembly language syntax (left), encoding (middle),
and semantics (right).
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SEC = {8,9,...,15}, deemed confidential. As above, and at least for load and store
instructions (where GPR[rs1] can be viewed as a pointer) within a capability-enabled ISA,
an alternative way to designate a register as distinguished might be via a capability.

Candidate #4. One could redefine existing instructions, providing the necessary hint via
micro-architectural compliance with a suitable specification. For example, a non-compliant
micro-architecture could retain

1w rd, imm(rs1) +— GPR[rd] +— MEM[GPR[rs1] + imm|*,
whereas a compliant micro-architecture could redefine
lw rd, imm(rsl) +— GPR[zd] A MEM[GPR[rs1] + imm]4.

This approach is conceptually similar to the RISC-V Zkt [RV:22, Chapter 5] (meta-)extension,
which, rather than defining functionality per se, simply “attests that the machine has
data-independent execution time for a safe subset of instructions”.

Summary. The candidates presented above can be summarised as follows

Definition Invocation
Candidate #1 | Variant  Unconditionally dynamic
Candidate #2 | Existing Conditionally dynamic
Candidate #3 | Existing Conditionally dynamic
Candidate #4 | Existing Static

using two properties. First, a given mechanism can either define variant instructions or
redefine (or overload) existing instructions. Second, invocation of a given mechanism
can either be 1) static, i.e., the variant semantics are “always on” or “always off”, 2)
conditionally dynamic, i.e., the variant semantics are “opt in” but there is some overhead
or constraint, or 3) unconditionally dynamic, i.e., the variant semantics are “opt in” and
there is no overhead nor constraint.

We anticipate that a masked implementation will use a limited subset of the ISA and
form a limited component of the overall workload. Although all candidates are viable,
these factors suggest candidate #1 would be an effective choice: although it consumes
encoding space, it permits a targeted, self-contained extension (limiting impact on the
ISA as a whole) with no overhead related to invocation (for masking-specific instruction
sequences) or non-invocation (for generic instruction sequences).

4.2 Class-1 instructions: computation-related

Concept. Consider the (optimised) SecAnd and SecOr gadgets for d = 2 presented by
Biryukov et al. [BDLU17, Table 1], which represent the masked versions of AND and OR
respectively:

function SecAND((Zq, £1), (§0,91)) begin  function SecOR((£q, 1), (fo,%1)) begin
P (@1 A 91) ® (81 V o) 14— (21 AG1) @ (21 V o)
o «— (Lo A1) ® (£0 V ~9o) o +— (Zo V 1) @ (Zo A do)
return(rg, 1) return(ro, 1)

end end

Although generalisation to other functionality and larger d is clearly important, we claim
these gadgets act as exemplars: they are implemented using a (short) sequence of bit-wise
logical and shift instructions. As such, the goal of this instruction class is to provide
a minimal set of such instructions to support the implementation of a maximal set of
gadgets.
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Table 2: Additional mask seed CSRs which support class-2 instructions.
Number | Privilege | Name Description

800(16y | read/write | msO Mask seed #0
801(16) | read/write | msi | Mask seed #1
802(16)y | read/write | ms2 | Mask seed #2
803(16) | read/write | ms3 | Mask seed #3

Instructions. Per Table 1, this instruction class includes sec.andi and sec.and, sec.ori
and sec.or, sec.xori and sec.xor, sec.slli and sec.srli, sec.add, and sec.sub;
these instructions support register-immediate and register-register variants of AND, OR,
XOR, left-shift, right-shift, addition, and subtraction respectively.

In line with the approach taken by the base ISA, note that NOT can be synthesised
by using XOR: doing so relies on the fact that -z = x @ ext{(—1). Also note that, per
the above, most instructions are included to offer support for Boolean masking. The
exceptional inclusion of sec.add and sec.sub is, however, intended to offer (limited)
support arithmetic masking; although doing so goes beyond the scope outlined in Section 1,
we include them to highlight extensibility of the underlying concept.

4.3 Class-2 instructions: storage-related

Concept. The goal of this instruction class is to support transfer of shares between
memory and the register file using load and store instructions. During execution of the
masked implementation, we claim use of such instructions is dominated by spilling, i.e.,
temporary use of (a larger) memory to deal with pressure on the register file (stemming
from the smaller size). This implies some structure, in the sense that loads (to pop, or
restore some shares) and stores (to push, or preserve some shares) will be “grouped” into
phases rather than used in a more isolated, ad hoc manner.

As well as a destination (resp. source) register address, load (resp. store) instruction
provided by this class must specify 1) an effective address (via a base register address,
plus an immediate offset), and 2) a mask seed; the former mirrors existing RISC-V load
(resp. store) word instructions, whereas the latter is an addition to and so deviation
from them. Furthermore, two constraints apply to their use. First, from a functional
perspective, we assume load and store instructions operate in pairs. For example, consider
two instructions: the first stores vy at address ag using mask seed mg, whereas the second
loads vy from address a; using mask seed my. These instructions form a load/store pair
iff. a9 = a1 and mg = my; otherwise, there is no guarantee that vy = v;. Second, from
a behavioural perspective, a security guarantee is offered iff. each load/store pair uses a
unique combination of address and mask seed. For example, consider two instructions: the
first stores vy at address ag using mask seed mg, whereas the second stores v, at address
a1 using mask seed my. If ag # a1 or mgy # mq, the guarantee offered is that no leakage
will stem from v; overwriting vy.

As will become more obvious later in Section 5, the design represents an interface
that allows several micro-architectural implementations, e.g., enable an approach which
randomises (or remasks) shares while storing them into memory then derandomises shares
while loading them from memory. Variants of this approach are presented by, e.g., De
Mulder, Gummalla, and Hutter [DGH19, Section 4], and Stangherlin and Sachdev [SS22,
Section GJ; one could also view it as a realisation of Escouteloup et al. [EFLL20, Recom-
mendation 2] i.e., to “encrypt the confidential data in memory, as soon as it leaves the
pipeline”.

State. Per Table 2, instructions in this class are supported by four additional CSRs:
CSR[800(16y 4 4] for 0 < i < 4 denotes the i-th mask seed. The CSRs must be initialised
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with fresh randomness before execution of the masked implementation (or at least before
their first use). We assume the overhead of doing so is amortised by the execution latency
of said implementation as a whole. The CSRs may need to be refreshed during execution
of the masked implementation, e.g., to satisfy the two constraints outlined above.

Instructions. Per Table 1, this instruction class includes sec.lw (resp. sec.lbu) and
sec.sw (resp. sec.sb): these instructions support load word (resp. byte) and store
word (resp. byte) memory access® respectively. The encodings for sec.lw and sec.sw
reserve 2 MSBs of imm for some meta-data ms, which is used to specify the mask seed, i.e.,
CSR[800(y6) + ms]. Note that doing so reduces imm from 12 to 10 bits, and thus the range
from 22 = 4096 to 210 = 1024.

5 Implementation

In this Section, we present prototype implementations of our ISE design: Section 5.1
introduces the base core, after which Section 5.2 and Section 5.3 then describe latency-
and area-optimised implementations of the ISE within it. Later, Section 5.4 discusses the
generalisation of our design to alternative micro-architectures.

We stress (again) that any implementation of the ISE will depend on the base core
(resp. micro-architecture), meaning certain aspects of them are tailored to suit Ibex
specifically. For example, we assume use of a generic SRAM module: we can neither
select nor modify the specific SRAM module combined with the core. This suggests a
conservative approach, where potential leakage (stemming, e.g., from a potential load/store
buffer within the SRAM module) is eliminated using indirect control; doing so means
greater overhead, but also a more robust security guarantee. However, we note that it
is clearly possible and, depending on the context, attractive to do the opposite. In their
Cocolbex core, for example, Gigerl et al. [GHP 21, Section 4] use a special-purpose SRAM
module that eliminates certain forms of leakage. Also note that our implementations of
the ISE currently focus on and so only support aligned memory access, although extending
them to also support unaligned memory access is clearly possible.

5.1 Base core: lIbex

General overview. Ibex is a 32-bit, RISC-V compliant micro-processor core, which is
designed for embedded use-cases and supports FPGA- and ASIC-based synthesis targets;
originally developed as part of the PULP7 platform, the core (and a suite of associated
resources) is now maintained by lowRISC. The block diagram in Figure 2 describes the
micro-architectural design, which is highly configurable. For example, the core can support
either the integer (i.e., RV32I) or embedded (i.e., RV32E) RISC-V base ISA; said base
ISA can be supplemented by the multiplication [RV:19a, Chapter 7], compressed [RV:19a,
Chapter 16], or bit manipulation [RV:19a, Chapter 17| extensions; the micro-architecture
can use either a 2- or 3-stage pipeline (by excluding or including a dedicated write-back
stage), and supports options relating to the multiplier, branch prediction, and Physical
Memory Protection (PMP). Beyond this, implementation of specific units can be specialised
to suit the underlying technology; the register file can be implemented using flip-flops,
latches, or RAM elements, for example, in order to suit the synthesis target.

6 Although their use implies a penalty with respect to execution latency, Ibex does support unaligned
memory accesses, e.g., a load word instruction based on an effective address  where z Z 0 (mod 4).
The ISE design does not constrain or distinguish between aligned and unaligned cases, but note that our
implementations of it in Section 5 currently focus on and so support the former only.

"https://pulp-platform.org
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Figure 2: A block diagram describing the Ibex micro-architecture (image source:
blockdiagram.svg, obtained from https://github.com/lowRISC/ibex).

Before execution After execution
T PR T PR

(0] = o0 GPR[0] (0] = 0 GPR[0]

1] = 1 GPR[1] (1] = 32 0

rd=1—— \ /

(2] = 2 GPR[2] (2] = 2 \ GPR[2]
rsl=2—— |7[3] = 3 GPR[3] | "~ [7[3] = 3 GPR([3]
rs2=3 ——

r[31] = 31 GPR[31] 7[31] = 31 4// GPR[31

v = 32 — 0 v = 1 \ GPR[1]

Figure 3: A diagrammatic description of how PR, GPR, 7, and v are managed during
execution of sec.xor x1, x2, x3 by the latency-optimised implementation.

Specific configuration. We develop the prototype ISE implementation and perform our
experiments on Ibex Demo System®, which is also developed by lowRISC and comprises
the Ibex core plus peripherals such as a UART. We select the flip-flop-based register file
implementation, but, for all other options retain the default configuration. This means
the ISA is RV32IMC, i.e., bit manipulation extension is not enabled; a fast multi-cycle
multiplier and an iterative divider are used; a 2-stage pipeline is used, which includes an
Instruction Fetch (IF) stage and an Instruction Decode and Execute (ID/EX) stage, while
Write-Back (WB) is not enabled as a dedicated stage; PMP and the instruction cache are
disabled.

5.2 ISE implementation #1: latency-optimised

Class-1 instructions. For the implementation of class-1 instructions, we design a new
mechanism for indexing the registers. In order to make it clearer, we introduce a term
Physical Register, denoted by PR. In the base core, GPR[i] and PRJ[:] refer to exactly
the same registers; given a register index k there is only one map k = PR[k] (equally
k = GPR[k]) used by reading (resp. writing) the data from (resp. to) the target physical

8https://github.com/lowRISC/ibex—demo-system
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register. In our implementation, first of all, GPR and PR are different: the use of GPR is
viewable to software in the sense that developers can see which GPRs are being used and
can choose which GPRs to use in their code (instructions); however, the use of PR is not
viewable to software and is controlled by only micro-architecture. We add a new index
look-up table 7 between the two objects of the original map, i.e., the register index and
the target physical register, and change to use two maps to link them such that k = 7[k]
then 7[k] = PR[7[k]]. But for GPR, it is still a direct map from k to GPR[k]. Furthermore,
we add an additional physical register PR[32] to the register file. In our setting, in each
clock cycle there are 32 general-purpose registers and 1 idle register that will always hold
the value 0. In more detail, there are 32 entries in 7 (see a diagrammatic description in
Figure 3), each of which stores the index of a general-purpose register, and there is another
one v used to hold the index of the idle register. At the beginning (i.e., after a reset), each
entry of 7 is initialised as 7[i] +— 4, and v points to PR[32]. In each instruction executed,
we always use the current idle register, i.e., PR[v], as the destination (physical) register,
and set PR[7[rd]] to be the new idle register. In this way, the data is always written to
a cleared register, which prevents the architectural overwriting in the register file. The
values of entries in 7 and of v update dynamically according to the different instructions
executed. Note if rd is 0, we will not update 7 and v. For the software side, there is no
difference in the use of GPR. Taking sec.xor as an example, a formal definition is as
follows:

PR[v] «— PR[r[rs1]] & PR[r[rs2]]
PR[7[rd]] «— 0

T[rd] +— v

v «— T[rd]

sec.xor rd, rsl, rs2 +—

For easy understanding, in Figure 3 we consider an example that sec.xor x1, x2, x3
is executed. It reads operands PR[7[2]] and PR[T[3]], i.e., in essence PR[2] and PR[3] per
current 7, computes the result, writes the result to the idle register PR[v], i.e., PR[32],
and clears the register PR[7[1]], i.e., PR[1]. In the meantime, v changes to be 7[1], i.e., 1,
which indicates the idle register is now PR[1], and 7[1] should accordingly update to be 32
as well, i.e., GPR[1] is now essentially the register PR[32].

Class-2 instructions. We implement the class-2 instructions based on the remasking
method of De Mulder et al. [DGH19, Section 4]. When storing (resp. loading) a share to
(resp. from) the memory, the share is always masked with a Load/Store Mask (LSM), which
eliminates both the architectural overwriting in the memory and the micro-architectural
overwriting in the MBR. Plus our new mechanism for indexing the registers, both sec.sw
and sec.lw prevent the architectural and micro-architectural overwriting. As described
in [DGH19)], it suggests using 2 or 3 rounds of Keccak-pl00 permutation [BDP*12] to
generate an LSM, where the state is formed with the memory address and a mask seed
from a specific CSR. In our implementation, we use 2 rounds of Keccak-p100 and define
the generation of an LSM as (given rs1, imm, and ms from a class-2 instruction):

LSM := KECCAK-P100-2ROUNDS(0---0 || CSR[800(;¢) +ms] || (PR[7[rs1]] + imm))

Our implementation of 2 rounds of Keccak-p100 is developed in an unrolled way to ensure
a single-cycle execution, and is developed on the basis of an open-source SystemVerilog
implementation®. As indicated in Table 2, we add four mask seed CSRs with the addresses
of 80016y to 803(1), which, defined in [RV:19b, Table 2.1], are preserved for the use of
custom read/write. The ms selects which CSR to be used. In formal, sec.sw and sec.1lw
are defined as:

sec.sw rs2, rsl, imm, ms — MEM[PR[7r[rs1]] + imm]* +— PR[r[rs2]] ® LSM

9https://github.com/jmoles/keccak-verilog
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PR[v] +— MEM[PR[r[rs1]] + imm]* & LSM
PR[7[rd]] «— 0

Tlrd] «— v

v <— T[rd]

sec.lw rd, rsl, imm, ms ~—

5.3 ISE implementation #2: area-optimised

Class-1 instructions. We again take the sec.xor as an example to elaborate the im-
plementation details of class-1 instructions. Note that we do not import and use the
concept of PR in area-optimised implementation. At the high-level operation viewpoint,
the sec.xor instruction is composed of two steps, namely:

1:GPR[rd] +— 0

sec.xor rd, rsl, rs2 { 2 : GPR[rd] +— GPR[rsi] ® GPR[rs2]

For the low-level hardware implementation, in the decoder, a dedicated signal named
sec_bwlogic (secure bitwise logical instruction) will be set to 1 when the class-1 instruction
is decoded, and to 0 otherwise. When sec_bwlogic is 1, the ID stage stalls in the first
clock cycle, and at the same time the signal of sec_bwlogic is transmitted to register file
and drives to clear the destination register. In the next clock cycle, it just works the same
as the case of a normal xor, i.e., computing the result and writing it to the destination
register. The computation of class-1 instructions is realised by simply (re-)using the
hardware implementation of normal bitwise logical, addition, and subtraction instructions
(in ALU), hence its hardware cost is negligible.

Class-2 instructions. Essentially, the memory access instructions are implemented based
on a pure-software implementation strategy used in Rosita [SSB*21]. Therefore, the LSM
as well as the mask seed are not needed in this implementation; we also do not add four
mask seed CSRs to further save the area overhead, and ms has no impact on the operation
of instruction. In detail, sec.sw consists of two steps whereas sec.lw needs three steps,
and they are shown as follows:

5 L N 1-2: MEM[GPR[rs1] + imm|* <— 0
SeC.SW TSL, ST, 1mm, 1S 3—4: MEM[GPR[rs1] + imm]* +— GPR[rs2)]
1—-2: MEM[GPR[sp] + (-4)]* +— 0
sec.lw rd, rsl, imm, ms 3—4 : GPR[rd] «+— MEMI[GPR][sp] + (-4)]*
5—6 : GPR[rd] «+— MEM[GPR[rs1] + imm]*

In the low-level hardware implementation, in order to make class-2 instructions work
correctly in each of their different steps, some new states need to be introduced to the
Finite State Machine (FSM) of the ID stage and of the load-store unit respectively, which
constitutes the most of additional hardware cost of class-2. Similar to class-1 instructions,
we add two dedicated signals sec_store (secure store) and sec_load (secure load), whose
values get updated in the decoder, and they are used by the ID-stage FSM and the
load-store unit FSM. Furthermore, some other modifications in the decoder are also needed;
e.g., in the first two steps of sec.lw, it reads the data of stack pointer register sp instead
of the source register rsi.

5.4 Generalisation

The prototype ISE implementations detailed above are all based on Ibex. Any imple-
mentation of the ISE (these included) will depend inherently on the base core, however,
which raises the question of generalisation to alternative micro-architectures. A definitive
answer is difficult, but involves 1) identification of viable implementation strategies, and 2)
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¢ clk

Figure 4: A generic, “double-buffer” strategy for transforming a non-addressable storage
element £ into an alternative which prevents overwriting.

evaluation of a strategy as applied to a given micro-architecture; we focus our effort (and
space) on the former, since we view doing so as having the greatest utility.

Generalising the area-optimised implementation. The strategy used by our area-optimised
implementation in Section 5.3 is already generic, in the sense that any storage element
£ can be managed via 2 sequential steps: these act in an analogous way to a pre-charge
logic style, by respectively resetting (cf. pre-charging) then updating (cf. evaluating) R.
Such a strategy can be optimised with respect to latency if more aggressive changes to
the clocking strategy are permissible. For example, one can employ “double-pumping” to
respectively reset then update £ on the positive and negative edges of one clock cycle.

As such, it seems fair to claim that such a strategy (or variants of it) could be
integrated into other area-optimised, e.g., multi-cycle micro-architectures: instances of this
type include PicoRV32'°.

Generalising the latency-optimised implementation. The strategy used by our latency-
optimised implementation in Section 5.2 is also generic, but less obviously so. We note
that a “double-buffer” strategy can be applied to a non-addressable storage element &, e.g.,
a load/store buffer or pipeline register, using the structure shown in Figure 4. Put simply,
the idea is to duplicate £ using & and &, then maintain a counter ¢ which alternates
between use of & and &;. That is,

_ 0 (mod2) = r=¢&, &+—0, &=z
- 1 (mod2) = 7":51, €0<—x, 51<—0

so that, in a given cycle, each update will overwrite either & or & whose value is reset to
0 in the previous cycle. The overhead of applying it to each such element is the sum of 1)
the additional register, plus 2) the input and output multiplexers, both of which depend
on the register width. Note that the overhead of the single, global 1-bit counter required
is negligible.

For an addressable storage element £, however, the implied overhead becomes too large.
This fact motivates the alternative strategies used in Section 5.2: the intra-core register file
is catered for using 1 idle register versus 32 double-buffer registers, whereas the extra-core
memory is catered for by randomising (resp. derandomising) data before storing (resp.
after loading) it. Note that these are also generic, in so far as they relate to standard
(micro-)architectural components (versus those specific to Ibex).

As such, it seems fair to claim that such a strategy (or variants of it) could be integrated
into other latency-optimised, e.g., pipelined micro-architectures: instances of this type
include VexRiscv'!.

Ohttps://github.com/cliffordwolf/picorv32
Mhttps://github.com/SpinalHDL/VexRiscv
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Table 3: Comparison of area, stemming from synthesis of the base core plus implemen-
tation #1 (latency-optimised, per Section 5.2) and implementation #2 (area-optimised,
per Section 5.3) of the ISE; note that cumulative support for instruction classes is presented
to highlight their individual contribution.

Registers LUTs
Base core 2364 (1.00x) | 3722 (1.00x
Base core + latency-optimised class-1 2585 (1.09%) | 4950 (1.33x%

(
Base core + latency-optimised class-14+2 | 2713 (
Base core +  area-optimised class-1 2363 (1.00x
Base core +  area-optimised class-1+2 | 2364 (1.00x

3877 (1.04x

) )
) ( )
1.15%) | 5242 (1.41x)
) | 3710 (1.00%)
) ( )

Table 4: Comparison of execution latency (measured in clock cycles), stemming from
use of the base core plus implementation #1 (latency-optimised, per Section 5.2) and
implementation #2 (area-optimised, per Section 5.3) of the ISE; note that functionally
comparable instructions are included in the ISE-based (e.g., sec.and) and ISA- (e.g., and)
cases respectively.

Class-1 Class-2
= = | =]

9 | ° R - - 3
gl el sl wlololA|l w8 |3 =|=|a8]|.a
[0} [0} [e] o I N n n (o] n — n — n
ol oflo|lolo|lolo|lo|lolo|lolo|olo
o|l o|lo|lo|lo|lo|lo|lo|lo|lo|lo|lao| ol o
O T T L B L L P L PR P [P
Base core 1 1 1 1 1 1 1 1 1 1 2 2 2 2
Base core + latency-opt. | 1 1 1 1 1 1 1 1 1 1 2 2 2 2
Base core +  area-opt. | 2 2 2 2 2 2 2 2 2 2 6 4 6 4

6 Evaluation

To permit evaluation of the ISE, we used a NewAE ChipWhisperer CW305'2 board, which
hosts a Xilinx Artix-7 (model XC7A100T2FTG256) FPGA device. We synthesised stand-
alone implementations of the base or extended core for this FPGA using Xilinx Vivado
2020.1; default synthesis settings were used, with no effort invested in synthesis or post-
implementation optimisation. Once programmed onto the FPGA, the core was provided
with an 8 MHz clock frequency via the CW305 Phase Locked Loop (PLL) implementation.
We connected a NewAE ChipWhisperer CW1173 (or ChipWhisperer-Lite)'3 board to the
CW305 via the X4 pin in order to measure power consumption of the FPGA and hence
core: use of X4 implies the measured signal is passed through Low-Noise Amplifier (LNA)
implementations on both the CW305 (20dB gain) and CW1173 (20dB gain).

6.1 Area

Table 3 summarises the ISE overhead in terms of area: it lists the resource utilisation for
base core and base core plus ISE (for both latency and area-optimised implementation
variants), using an incremental approach to demonstrate the overhead of each instruction
class. For the case of latency-optimised implementation, the extra area overhead of class-1
instructions mostly comes from our new mechanism of register indexing, e.g., the cost
brought by index look-up table 7 and an extra register PR[32]; the overhead of class-2 is
obviously due to the generation of LSM, e.g., additional hardware resources for four mask
seed CSRs and for the associated 2 rounds of Keccak-p100 permutation. The total overhead
of class-1 and class-2 amounts to 15% more registers and 41% more LUTSs compared to

2https://rtfm.newae.com/Targets/CW305ArtixFPGA
Bhttps://rtfm.newae.com/Capture/ChipWhisperer-Lite
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the base core. As for the area-optimised variant, compared to the base core, the class-1
plus class-2 instructions take nearly no extra registers and only 4% more LUTs.

6.2 Latency

Table 4 summarises the ISE overhead in terms of execution latency: it lists the number
of cycles required to execute each instruction on base core and base core plus ISE (for
both latency and area-optimised implementation variants). The latency of the class-1 and
class-2 instructions in latency-optimised implementation is the same as the latency of
their counterparts on the base core, which is as designed and as expected. The latency of
instructions in area-optimised implementation is the same as the latency of the ISA-based
strategy, e.g., the latency of a sec.xor x1, x2, x3 equals the latency of a mv x1, x0
plus an xor x1, x2, x3. This translates to, when using area-optimised variant of our
ISE for a masked implementation, it might take a similar execution time as an ISA-based
strategy. This is less attractive for a use case where the execution time is the priority.

6.3 Security

We use two different approaches, namely formal verification and empirical testing, to
evaluate the security (i.e., the elimination of leakage stemming from architectural and
micro-architectural overwriting) afforded by use of our ISE.

Formal verification: architectural overwriting. Coco [GHP'21, HB21] is used as the
verification tool in this security evaluation. In [GHP'21, Section 3], it states when using
base Ibex core there are two constraints that a masked implementation should fulfil:

Constraint 1. Shares of the same secret must not be accessed within two successive
instructions.

Constraint 2. A register or memory location which contains one share must not be
overwritten with its counterparts.

Recall that our ISE aims at eliminating the architectural and micro-architectural over-
writing, which means, when using our secure instructions the constraint 2 should be no
longer required. We then use Coco to perform the evaluation, where we label GPR[5] and
GPR[12] to hold two shares of the same secret while we label GPR[6] and GPR][7] to hold
the static random values. We use the following micro-benchmarks'# to evaluate the class-1
instructions (using [sec.]xor as an example):

# Base core 1| # Base + latency-opt 1| # Base + area-opt

xor x5, x5, x7 2| sec.xor x5, x5, x7 2| sec.xor x5, x5, x7

and X6, x6, x6 3| and x6, x6, x6 3| and x6 , x6, x6

xor x12, x5, x7 4| sec.xor x12, x5, x7 4| sec.xor x12, x5, x7
5

# Leakage captured # No leakage # No leakage

o

Line 4 checks if there is a leakage when writing a share to a register that already contains
another share of the same secret. This leakage is captured in the base core whereas it
does not exist in the core extended with our ISE, which proves our class-1 instructions
are secure in the sense of eliminating the architectural overwriting. We use the following
micro-benchmarks to evaluate the store:

MFor the case of latency-optimised ISE implementation, we make sure that the register indices do not
get updated before execution of the micro-benchmarks.
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# Base core 1| # Base + latency-opt 1| # Base + area-opt

1i x13, 0x20 2| 1i x13, 0x20 2| 1i x13, 0x20

sw x5, 0(x13) 3| sec.sw x5, x13, 0, O 3| sec.sw x5, x13, 0, O
and X6, x6, x6 4| and x6, x6, x6 4| and x6 , x6, X6

sw x12, 0(x13) 5| sec.sw x12, x13, 0, 1 5| sec.sw x12, x13, 0, O
# Leakage captured 6|# No leakage 6|# No leakage

A leakage caused by overwriting in memory is expected in the base core since we write
two shares to the same memory address, and it is successfully captured by Coco. When
using our secure store instructions, this leakage does not exist, i.e., sec.sw eliminates this
leakage as expected. Note that when evaluating the latency-optimised implementation,
the initialisation of mask seed CSRs is already done before the micro-benchmark. The
micro-benchmarks used for evaluating the load are shown as follows:

# Base core 1| # Base + latency-opt 1| # Base + area-opt

1i x13, 0x20 2| 1i x13, 0x20 2 11 x13, 0x20

sw x5, 0(x13) 3| sec.sw x5, x13, 0, O 3| sw x5, 0(x13)
and X6, x6, x6 4| and X6, x6, x6 4| and x6 , x6, x6

1w x12, 0(x13) 5| sec.lw x12, x13, 0, O 5| sec.lw x12, x13, 0, O
# Leakage captured 6| # No leakage 6| # No leakage

The same results are also obtained from the evaluation of load instructions, i.e., no leakage
is captured in the micro-benchmarks of our secure load.

Empirical test: architectural overwriting. In order to validate the formal verification
results, we carried out a set of empirical tests; we stress in doing so, the focus was
assessment rather than exploitation of leakage. Our strategy follows that of Marshall,
Page, and Webb [MPW22, Section 4.3], in the sense that we base each experiment on a
leakage micro-benchmark: by writing and executing such a micro-benchmark on a given
core, we then use Correlation Power Analysis (CPA) [BCO04] to assess whether or not
overwriting-based leakage is observable. Our hypothesis is that on the base core such
leakage will be observable, but on the extended core such leakage will not be observable.
Although alternative strategies, e.g., Vector Leakage Assessment (TVLA) [GJJR11], are
viable, use of CPA more easily allowed us to 1) specifically focus on overwriting as a source
of leakage, and so 2) avoid additional forms of micro-architectural leakage, which per
Section 3, we deem out of scope.

Figure 5, Figure 6, and Figure 7 illustrate experiments for [sec.]xor, [sec.]sw, and
[sec.]1lw respectively, where, in each case, the left-hand side shows the micro-benchmark
and the right-hand side shows the result of CPA (i.e., the correlation coefficient). Note
that, in each case, 200,000 executions of and so power consumption traces stemming from
the micro-benchmark are used to form the data set for CPA, with hypothetical leakage
modelled by the Hamming Distance (HD) between a value being written and a value
being overwritten. As expected, a significant (although somewhat weak) peak is evident
between samples 200 and 250 when executing each micro-benchmark on the base core;
again as expected, this peak is eliminated when using either the latency-optimised and
area-optimised extended cores.

Discussion: micro-architectural overwriting. One thing must be noted is that there is no
MBR in the Ibex core, which means the above security evaluation can only straightforwardly
prove our ISE is capable of eliminating the architectural overwriting (i.e., in the register
file and in the memory). As we mentioned before, the location of MBR can be intra-core
or extra-core, and our ISE is designed to be capable of working in both cases. It is not
trivial to directly perform the security evaluation in this situation, especially when the
extra-core MBR is used. However, it is possible and easy to conclude that (if it is correctly
implemented) our sec.sw and sec.lw can eliminate the micro-architectural overwriting
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(b) Base core + latency-optimised.
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(c) Base core + area-optimised.

300 350 400

Figure 5: Correlation power analysis results (right) of executing [sec.]lxor micro-
benchmarks (left), on the base core plus implementation #1 (latency-optimised, per Sec-
tion 5.2) and implementation #2 (area-optimised, per Section 5.3). Each experiment uses

200, 000 traces, and hypothetical leakage modelled by HD(A,B @ C).
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(b) Base core + latency-optimised.
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(c) Base core + area-optimised.

Figure 6: Correlation power analysis results (right) of executing [sec.]lsw micro-
benchmarks (left), on the base core plus implementation #1 (latency-optimised, per Sec-
tion 5.2) and implementation #2 (area-optimised, per Section 5.3). Each experiment uses

200,000

traces, and hypothetical leakage modelled by HD(A,B).
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(b) Base core + latency-optimised.
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(c) Base core + area-optimised.

Figure 7: Correlation power analysis results (right) of executing [sec.]lw micro-
benchmarks (left), on the base core plus implementation #1 (latency-optimised, per Sec-
tion 5.2) and implementation #2 (area-optimised, per Section 5.3). Each experiment uses

200, 000 traces, and hypothetical leakage modelled by HD(A, B).
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Table 5: A somewhat quantitative, somewhat qualitative comparison versus
Rosita [SSBT21] and FENL [GMPP20] (the two closest alternatives). Note that +,
—, and = suggest the comparison respectively positive, negative, and approximately equal
versus Rosita or FENL.

i
> F =
212 £ & °
o= N
AP B 4 |< 5
- Rosita | + | — 4+ + | — —
B 1 -
ase core + latency-optimised versus FENL | « | — + 4+ 4
. it - ~ | - -
Base core +  area-optimised versus ?E?\IIE i ~ i ~ |~ +

(i.e., in the MBR) based on the above security evaluation for architectural overwriting; 1) in
the case of latency-optimised implementation, sec.sw and sec.lw do the same operation
in the MBR that sec.sw does in the memory, i.e., overwriting with a remasked share; 2)
as for area-optimised implementation, sec.sw performs the same operation in both the
MBR and memory, and the last two steps (i.e., steps that interact with the load buffer) of
sec.lw perform the same operation in the MBR as sec.sw performs in the memory. In
other words, for both latency-optimised and area-optimised implementations, if there is no
architectural overwriting leakage captured in the micro-benchmarks of sec.sw, then we
can claim sec.sw and sec.lw can eliminate the micro-architectural overwriting.

6.4 Usability

The latency-optimised implementation demands a software developer correctly manages
use of the mask seed CSRs to eliminate architectural and micro-architectural overwriting;
in contrast, the area-optimised implementation does so transparently. This implies a clear
difference in terms of their usability.

6.5 Comparison with related work

The two closest alternatives, and hence most natural comparison points, are 1) the ISA-
based strategy provided by Rosita [SSBT21], and 2) the ISE-based strategy provided by
FENL [GMPP20]; we focus on the most similar, zeroisation-based variant of FENL. Use of
all three can be framed as rewriting instructions within an existing software implementation,
with the goal of eliminating leakage. Rosita and FENL introduce additional instructions;
eLIMInate replaces existing instructions (from ISA- to ISE-based, e.g., xor to sec.xor).
FENL and eLIMInate use ISE-based instructions, so require support from hardware; Rosita
uses ISA-based instructions, so requires no support from hardware. Note that Rosita,
FENL, and eLIMInate are all largely agnostic to properties of the masking scheme or
attacks on them. For example, Rosita++ [SCS'21] addresses the challenge of higher-order
leakage elimination using the same set of rewrite rules as Rosita [SSBT21].

A direct comparison is difficult, because the ISAs, cores, and indeed stated remits
differ. However, Table 5 attempts to offer a somewhat quantitative, somewhat qualitative
summary that is derived from the analysis below:

e Security. The scope of Rosita addresses both architectural and micro-architectural
leakage. As an ISA-based strategy, it uses indirect control of extra- and intra-core
resources; per Section 3, doing so offers a weaker guarantee than, e.g., direct control.
The scope of FENL addresses only micro-architectural leakage with any extra-core
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resources deemed out of scope. As an ISE-based strategy, it uses direct control of
intra-core resources.

o Usability. A careful security analysis is required to identify where Rosita rewrite rules
are applied. They can be described as local, in the sense they can be applied by using
“peephole-like” translation which has no global impact (and so does not require any
global analysis). The difficulty of doing so is significantly reduced by the associated,
automated tooling. A similar argument to that above can be applied to FENL, in the
sense one needs to analyse 1) how to configure and 2) where to place fence instructions.
However, although it is plausible to use Rosita-like automation, a tool to do so for
FENL currently does not exist. Application of eLIMInate is local for the area-optimised
implementation, but is local (for class-1 instructions) and global (for class-2 instructions)
for the latency-optimised implementation.

e Footprint. Both Rosita and FENL imply marginal overhead in memory footprint, since
their application demands at least one additional instruction; all else being equal, the
additional memory access required to fetch said instructions could plausibly contribute
to greater energy consumption.

e Latency. For both Rosita and FENL, the global impact on execution latency depends
where the mechanism is or is not applied, so we focus only on local instances where it is
applied. Translating the ARM-based Rosita rewrite rules to RISC-V yields a similar
outcome: as suggested by Section 3, this means a 2-cycle latency for class-1 instructions,
a 6-cycle latency for the class-2 instruction 1w, and a 4-cycle latency for the class-2
instruction sw when executed on the base core. For FENL, comparison is more difficult.
For the case most similar to the base core, [GMPP20, Section 3.3.3] lists two options in
which fenl.fence has 1) a 1 cycle (non-bubbling) or 2) a 1 or 4 cycle execution latency
(bubbling: depending whether or not a pipeline stall is required to deliver the security
guarantee). Using the former, this suggests a 2-cycle latency for class-1 instructions,
a 3-cycle latency for the class-2 instruction lw, and a 3-cycle latency for the class-2
instruction sw. However, note that FENL deems extra-core resources such as SRAM
out of scope; the comparison is only reasonable for class-1 instructions, therefore.

e Area. Rosita implies no overhead in hardware area. FENL implies modest overhead
in hardware area: for the core most similar to Ibex, [GMPP20, Table 2] cites 0.7%
additional flip-flops plus 1.0% additional LUTs.

o Invasiveness. Rosita is an ISA-base strategy, so is not invasive. FENL is an ISE-based
strategy, so is somewhat invasive: assuming existing instructions to manage CSRs, it
adds 1 instruction and 1 CSR. Implementation of that instruction could be viewed
as invasive, however, because it 1) has a global impact, potentially throughout the
micro-architecture, and 2) intentionally exposes micro-architectural detail to software.

We also comment on the secured Ibex-based core described by Gigerl et al. [GHP*21],
focusing on two features in particular. First, the secured core involves alteration of intra-
core resources (per [GHP 21, Section 3]) focused on leakage sources which are explicitly
not related to overwriting. The elimination of such leakage is instead delegated to software,
which must satisfy two constraints (as already outlined in Section 6.3). That said, the
secured core clears the load/store buffer (per [GHP'21, Section 3.4]) for a reason and
in a manner similar to our work: the 2-cycle process described is conceptually similar
to our area-optimised implementation. Second, the secured core is integrated with an
extra-core SRAM (per [GHP 21, Section 4]) which is altered to support 1) one-hot address
encoding, and 2) glitch-free blocks of memory cells: per Section 5, we explicitly adopt a
conservative approach meaning similar alterations are out of scope. In summary then, we
view [GHP™21] as more complementary than it is directly comparable: offering evidence
with respect to their claim that “/w/hile fizing such [overwriting] problems in hardware
would, in principle, be possible, it would be very costly” in fact represents a succinct
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motivation for our work.

7 Conclusion

Summary. In this paper, we presented a functionally light-weight, leakage-focused ISE
with the aim of supporting masked software implementation. By developing two concrete,
prototype implementations of an underlying design concept, we demonstrate that use of
the ISE can close the gap between assumptions about and actual behaviour of a device
and thereby deliver an improved security guarantee.

In our view, it is important to stress that use of our ISE enables a subtle shift
in how masked implementations can be developed. Currently, the starting point is a
masked implementation consisting of instructions from the ISA this is functionally correct,
insecure but efficient, implying a need to improve security (e.g., by identifying and
eliminating micro-architectural leakage). Anecdotal evidence suggests that doing so is
both conceptually difficult (and thus error-prone), and labour-intensive; the impact of
failure can be catastrophic, in the sense it can render the implementation insecure. Now,
by using an eLIMInate-enabled platform, the starting point is a masked implementation
consisting of instructions from the ISE: this is functionally correct, secure but inefficient,
implying a need to improve efficiency (e.g., by selectively replacing ISE instructions, with
ISA alternatives). We claim that doing so is conceptually easier, and the impact of failure
is lessened; it aligns with a more general secure-by-default ethos.

Future work. Given the scope of this paper, and work presented within it, the following
points seem to represent either useful or interesting future work:

1. Section 3 highlights an inherent limitation of the ISE, namely that extra-core resources
require indirect control; improvement beyond this requires a change to the resource
interface. For example, consider an SRAM module whose interface supports direct
control via a “flush state” control signal: by removing the need for assumptions around
indirect control, securing access to the SRAM can be more efficient and yield a more
robust security guarantee. Realising such a systemic change is of course non-trivial, not
least because of trade-offs between security and other metrics, but seems an important
long-term goal.

2. Section 3 is clear about insufficiency of the ISE, in the sense that additional forms of
micro-architectural leakage may also need to be considered. Doing so by extending the
scope is somewhat open ended, but, for example, Section 4.2 includes sec.s11i and
sec.srli for left- and right-shift; it would be plausible to extend the variant semantics
for these instructions to, e.g., address the observation by Gao et al. [GMPO19] that
bit-interaction within a barrel shifter can produce leakage.

3. For the latency-optimised implementation, Section 6 highlights a challenge with respect
to usability: a software developer must correctly manage use of the mask seed CSRs.
Alongside generation of ISE-based instructions rather than their ISA-based instructions
analogue, this aspect seems ripe for automation within an appropriate compilation
tool-chain.
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