
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 2, pp. 276–303. DOI:10.46586/tches.v2024.i2.276-303

Masking Floating-Point Number Multiplication
and Addition of Falcon

First- and Higher-order Implementations and Evaluations

Keng-Yu Chen1 and Jiun-Peng Chen1,2

1 National Taiwan University, Taipei, Taiwan, r11921066@ntu.edu.tw
2 Academia Sinica, Taipei, Taiwan, jpchen@ieee.org

Abstract.
In this paper, we provide the first masking scheme for floating-point number mul-
tiplication and addition to defend against recent side-channel attacks on Falcon’s
pre-image vector computation. Our approach involves a masked nonzero check gadget
that securely identifies whether a shared value is zero. This gadget can be utilized
for various computations such as rounding the mantissa, computing the sticky bit,
checking the equality of two values, and normalizing a number. To support the
masked floating-point number addition, we also developed a masked shift and a
masked normalization gadget. Our masking design provides both first- and higher-
order mask protection, and we demonstrate the theoretical security by proving the
(Strong)-Non-Interference properties in the probing model. To evaluate the perfor-
mance of our approach, we implemented unmasked, first-order, and second-order
algorithms on an Arm Cortex-M4 processor, providing cycle counts and the number
of random bytes used. We also report the time for one complete signing process with
our countermeasure on an Intel-Core CPU. In addition, we assessed the practical
security of our approach by conducting the test vector leakage assessment (TVLA)
to validate the effectiveness of our protection. Specifically, our TVLA experiment
results for second-order masking passed the test in 100,000 measured traces.
Keywords: Falcon, Floating-Point Arithmetic, Masking, Post-Quantum Cryptogra-
phy, Side-Channel Analysis

1 Introduction
The rapid development of quantum computers has posed a potential threat to public
key cryptography systems. Due to Shor’s algorithm [Sho97], public key cryptographic
schemes based on the hardness of integer factorization and discrete logarithm, including
RSA [RSA78], Diffie-Hellman key agreement [DH76], ElGamal encryption [Elg85], and
ECDSA [JMV01], are vulnerable to large-scale quantum computing. To defend against
such a menace, post-quantum cryptography, which studies algorithms that are considered
secure against quantum computing, has been widely researched. In 2016, the National
Institute of Standards and Technology (NIST) initiated a standardization process for post-
quantum cryptography [oSTa]. Recently, the four selected algorithms, CRYSTALS-Kyber,
CRYSTALS-Dilithium, SPHINCS+, and Falcon became part of NIST’s post-quantum
cryptographic standards, which are expected to be finalized in about two years [oSTb].

Unfortunately, even with conjectured quantum resistance, cryptographic implemen-
tations may not be secure. Side-channel analysis considers the threat of information
leakage from an electronic device running cryptographic algorithms through its hardware
physical behaviors. These could be the running time of different inputs or the electromag-
netic emanation and power consumption during the execution. Many works have been

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-10-15 Accepted: 2023-12-15 Published: 2024-03-12

https://doi.org/10.46586/tches.v2024.i2.276-303
mailto:r11921066@ntu.edu.tw
mailto:jpchen@ieee.org
http://creativecommons.org/licenses/by/4.0/

Keng-Yu Chen and Jiun-Peng Chen 277

done on implementing such attacks against post-quantum algorithms. Therefore, some
side-channel resistance in post-quantum cryptography has been proposed in recent years.
For example, studies including [BGR+21, FBR+22, HKL+22] provided countermeasures
for CRYSTALS-Kyber, and countermeasures for CRYSTALS-Dilithium was presented in
[MGTF19]. However, the side-channel resistance of Falcon has lacked discussion.

Related Work The signing process of Falcon faces at least two side-channel vulner-
abilities: the Gaussian sampler and the pre-image vector computation. The Gaussian
sampler returns numbers following the discrete Gaussian distribution, and previous works
[BHLY16, EFGT17, PBY17, MHS+19] have demonstrated the threat of timing attacks
on the sampler. An isochronous design as a countermeasure was developed in [HPRR20].
Besides, a masked implementation of the Gaussian sampler is provided in [EFG+22].
Recently, Guerreau et al. [GMRR22] proposed a simple power analysis attack on Falcon
and a related light countermeasure, and their work was further improved in [ZLYW23],
which provides more potential sources of leakage and reduces the number of required traces
by new algorithms.

The pre-image vector computation in Falcon is used for finding the short vector
solution as the signature. In [KA21], Karabulut and Aysu first performed an EM attack
on such computation in Falcon, whose method in their setting can recover the secret key
with a few thousand measured traces. Their attack was later improved by Guerreau et
al. [GMRR22], which reduces the guess space complexity from 227 to only 211. However,
the protection of the pre-image vector computation in Falcon has so far seldom been
discussed. At the same time, the authors of Falcon [PFH+20] suggest that the masking
scheme should be considered to protect Falcon from side-channel attacks.

Our Contributions

• We propose the first masking scheme on the floating-point number multiplication and
addition in the pre-image vector computation of Falcon as a countermeasure. To
support functions for our masked design, we devise masked gadgets for the nonzero
checks, unsigned right-shift, and 64-bit normalization. We provide the details of our
algorithms and show that our approach can be extended to high-order protections.

• We verify the high-order security of our design in the probing model by the concepts
of Non-Interference security [BBD+16]. We offer formal proofs via simulation to
show they can resist high-order probing attacks.

• To test the practical leakage of our work, we implemented our algorithms on
ChipWhisperer-Pro [Inc] with STM32F415 target. We conducted the Test Vec-
tor Leakage Assessment (TVLA) [GGJR+11] experiments using 100,000 measured
traces to demonstrate the effectiveness of our countermeasure.

• We tested the performance of our work on an Arm Cortex-M4 core and Intel-Core
i9-12900KF CPU. The evaluation results are presented for our first- and second-order
implementations and compared with the original unmasked design.

Outline We organize our work as follows. In Section 2, we give notations throughout the
paper and review some contexts for our work. We introduce in Section 3 our masking
algorithms of floating-point number multiplication and addition in detail. The security
proofs in the probing model of our design are given in Section 4. The performance
evaluation of our implementation and security assessment results of TVLA are given in
Section 5.

278 Masking Floating-Point Number Multiplication and Addition of Falcon

2 Preliminaries
2.1 Notation
In the rest of the paper, N = 2κ for some integer κ, M > N , q is a prime number, and
φ = xN + 1 is the cyclotomic polynomial. For a polynomial f =

∑N−1
i=0 fix

i, its adjoint is
f∗ = f0 −

∑N−1
i=1 fix

N−i. We write a vector v in bold, and a matrix A is written in bold
and uppercase. The adjoint of a vector v or a matrix A, which is the transpose of adjoint
of each of its coefficient, is written as v∗ or A∗. For a polynomial f modulo φ, we may
write it as an N -by-N matrix, with the ith row representing the coefficients of (xif mod φ)
for 0 ≤ i ≤ N − 1. Matrix additions and multiplications will map to polynomial additions
and multiplications in the ring of polynomials modulo φ in this tradition.

For a variable x, the jth bit of x is written as x(j). The LSB is the first bit, and the
MSB is the kth bit if it is stored in a k-bit register. The ith bit to jth bit (j ≥ i) of x
is represented by x[j:i]. A sequence of n variables (x1, x2, · · · , xn) (e.g. shares of variable
x) is written as (xi)1≤i≤n, or simply (xi) if the sequence length is not our point, or it is
obvious from contexts. Without specifying, n will be the sequence length of (xi).

We use notations ⊕, ∧, ∨ to denote the bit-wise XOR, AND and OR operations,
respectively. For variable x, we denote by ¬x the bit inversion of x. Also, for a negative
integer in a register, we consider two’s complement representation and write −x = (¬x)+1.
The� and� are unsigned left- and right-shift of a variable. In addition, for a proposition
P , we let JP K = 1 if P is true and 0 if otherwise.

2.2 Falcon Signature Scheme
In this section, we briefly review the Falcon signature scheme, emphasizing on the pre-
image vector computation in the Fourier domain which is strongly related to our work. For
more details, we refer the readers to the NIST round-3 submission of Falcon [PFH+20].

The basis of Falcon is the GPV framework [GPV08]. At a high level, the framework
uses a full-rank matrix A ∈ ZN×Mq as public key, and B ∈ ZM×Mq as secret key where
BAT = 0 mod q. To sign a message m, one first computes H(m) for some hash function
H : {0, 1}∗ −→ ZNq , and the signature is a short vector s, which is derived by trapdoor B,
that satisfies sAT = H(m). To verify, one can simply check that the received s is short
and satisfies the above equation.

Falcon instantiates the GPV framework on NTRU lattices. The secret key is essentially
4 polynomials f, g, F,G in Zq[x]/(φ) which satisfy the NTRU equation

fG− gF = q mod φ

while the public key is now the polynomial h = gf−1 mod (φ, q). To sign a message
securely, coefficients of f and g are sampled from a discrete Gaussian distribution with a
small standard deviation σ{f,g} = 1.17

√
q/2N , and F,G are generated from f, g by solving

the NTRU equation. Matrices A,B are formed as

A =
[

1 h∗
]
, B =

[
g −f
G −F

]
The second part of Falcon key generation is the computation of the Falcon tree,

which will be used in looking for the short vector in signing. In short, the Falcon tree is
a binary tree where each node at height κ is a polynomial in Q[x]/(x2κ + 1). The Gram
matrix G = BB∗ is first comptuted, and a Falcon tree is built by recursively calling the
LDL decomposition on each element of the diagonal matrix and store the lower-triangular
matrix as a node value. The leaf node is then normalized by a constant σ. The whole key
generation process is given in Algorithm 1.

Keng-Yu Chen and Jiun-Peng Chen 279

Algorithm 1 FALCON.Keygen from [PFH+20]
Input: Polynomial φ, prime modulus q
Output: Falcon secret key sk, public key pk

1: f, g, F,G← NTRUGen(φ, q)

2: B̂←
[

FFT(g) FFT(−f)
FFT(G) FFT(−F)

]
3: G← B̂× B̂∗
4: T← ffLDL(G) . generate Falcon tree
5: for each leaf leaf of T do
6: leaf.value← σ/

√
leaf.value

7: sk← (B̂,T)
8: h← gf−1 mod q
9: pk← h

10: return sk, pk

The signing process of Falcon in Algorithm 2 starts by sampling a random salt
r and computing c = H(r‖m). Next it finds a short vector s = (s1, s2) such that
sA∗ = s1 + s2h = c. To do so, the vector t = (c, 0) × B−1 is first computed, which
we call the pre-image vector. Then the fast Fourier nearest plane algorithm [DP16]
(ffSampling in Algorithm 2) is applied to find some z where s = (t− z)B is close to zero
in a secure way, in the sense that no information about secret basis B is leaked. The
signature consists of the salt r and the second coefficient s2. The verification in Algorithm
3 is relatively easy. One first retrieves s1 by H(r‖m)− s2h, and then check whether the
norm of vector (s1, s2) is small.

Algorithm 2 FALCON.Sign from [PFH+20]
Input: Message m, secret key sk and a bound bβ2c
Output: Signature sig of m

1: r $←− {0, 1}320

2: c← H(r‖m)
3: t←

(
− 1
qFFT(c)� FFT(F), 1

qFFT(c)� FFT(f)
)

. pre-image vector computation
4: do
5: do
6: z← ffSampling(t,T)
7: s← (t− z)B̂
8: while ‖s‖2 > bβ2c
9: (s1, s2)← invFFT(s)

10: s← Compress(s2)
11: while s = ⊥
12: sig← (r, s)
13: return sig

To use the fast Fourier sampler and increase the speed in the signing process, Falcon
applies the fast Fourier transform on polynomials. Let Ωφ be the sets of all complex roots
of φ, the fast Fourier transform of a polynomial f is

FFT(f) = (f(ξ))ξ∈Ωφ , Ωφ =
{

exp
(
iπ(2k + 1)

N

)
| 0 ≤ k < N

}
In this representation, polynomial additions and multiplications can be done by performing

280 Masking Floating-Point Number Multiplication and Addition of Falcon

Algorithm 3 FALCON.Verify from [PFH+20]
Input: Message m, signature sig = (r, s), public key pk, and a bound bβ2c
Output: Accept or reject

1: c← H(r‖m)
2: s2 ← Decompress(s)
3: if s2 = ⊥ then
4: reject
5: s1 ← c− s2h mod q
6: if ‖(s1, s2)‖2 ≤ bβ2c then
7: accept
8: else
9: reject

operations on each coefficient, which is a complex number. Therefore, the pre-image vector
computation is composed of complex number multiplication of each coefficient.

In practice, a complex number a + bi is represented by two floating-point numbers
a, b as its real and imaginary parts. As pointed out in their document [PFH+20], it
may be hard to implement Falcon on constrained devices without a floating-point unit.
Falcon thus provides an emulation of floating-point operations with 53 bits of precision
in their reference implementation. They follow the IEEE-754 standard to store a 64-bit
floating-point number by 1-bit sign, 11-bit exponent, and 53-bit mantissa, where the
53rd bit is always 1 and omitted when storing. To make the comparison of values more
straightforward, the exponent is biased with a value 1023 to make it unsigned. For
convenience, we will represent a 64-bit floating-point number x as a tuple (s, e,m) where

x = (−1)s · 2e−1023 · (m · 2−52)

Compared to the floating-point number architecture, s is the 64th bit, e is the 53rd to
63rd bit, and m is the 1st to 52nd bit of the floating-point number with the omitted one
at the beginning. In this representation, m may be viewed as an integer in [252, 253).

2.3 Floating-Point Number Multiplication and Addition
The pre-image vector computation, or coefficient-wise complex number multiplication, is
performed by combinations of floating-point number multiplications and additions. We
here briefly introduce how Falcon emulates them in their given reference implementation.

We begin by introducing the last subroutine of both the multiplication and addition —
the floating-point number rounding and packing function FPR (Algorithm 4), which receives
a 55-bit mantissa, an unbiased exponent, and a sign bit and outputs the floating-point
number with a rounded mantissa and biased exponent. It starts by adding the exponent
with a constant 1076 for the bias (1023) and mantissa size (53). If the result is smaller
than 0, it is considered subnormal, and the mantissa should be turned to zero. Then it
zeros the exponent if the mantissa is zero. Next, the sign bit and mantissa are combined
together and added with the exponent. Note the exponent will be incremented by the top
bit of the mantissa. Finally, the rounding is done by checking the least three significant
bits of the mantissa. It follows the round-to-nearest strategy: if they are 011, 110, or 111,
a carry 1 is added.

Now we introduce the floating-point number multiplication in Algorithm 5. The
multiplication first XORs the sign bits and sums the exponents of both operands, and then
does the mantissa multiplication. Note that a constant −2100 is added to the exponent for
exponent bias (1023×2), scaling of mantissa (52×2), and shifting of the later multiplication
product (−50). The product is a 106-bit raw mantissa, and rounding is performed to

Keng-Yu Chen and Jiun-Peng Chen 281

Algorithm 4 FPR
Input: Sign bit s, exponent e, and 55-bit mantissa z
Output: Floating-Point number x packed by s, e, z

1: e← e+ 1076
2: b← Je < 0K
3: z ← z ∧ (b− 1)
4: b← Jz 6= 0K
5: e← e ∧ (−b)
6: x← ((s� 63) ∨ (z � 2)) + e� 52
7: f ← 0XC8� z[3:1]

8: x← x+ f (1) . increment if z[3:1] is 011,110 or 111
9: return x

reduce the mantissa to 55 bits in which the 55th bit is set. Notice that we need to make the
sticky bit preserved after the rounding. If either of the exponents is zero, the computations
above are invalid, and the mantissa is turned to zero. Finally, the sign bit, unbiased
exponent, and 55-bit mantissa are packed into one floating-point number by the FPR in
Algorithm 4.

Algorithm 5 FprMul
Input: Floating-Point numbers x = (sx, ex,mx) and y = (sy, ey,my)
Output: Floating-Point numbers product of x and y

1: s← sx⊕ sy
2: e← ex+ ey − 2100
3: z ← mx×my
4: b← Jz[50:1] 6= 0K
5: z ← z[106:51] ∨ b
6: z′ ← (z � 1) ∨ z(1)

7: w ← z(106)

8: z ← z ⊕ (z ⊕ z′) ∧ (−w) . round to 55 bits with sticky bit preserved
9: e← e+ w . increment if the product carries to 106th bit

10: bx← Jex 6= 0K, by ← Jey 6= 0K
11: b← bx ∧ by
12: z ← z ∧ (−b)
13: return FPR(s, e, z)

The floating-point number addition in Algorithm 6 first exchanges the operands to
make the absolute value of the first one no less than that of the other. Since the exponent
is biased, one can compare the absolute values of two floating-point numbers by comparing
their least 63 bits. If both operands are only differed by the sign, it lets the first operand
be the positive one. Then it extracts both operands’ sign bit, exponent, and mantissa,
where the mantissa is scaled up to 55 bits for further rounding. The exponent is subtracted
by 1078 for the bias (1023) and mantissa scaling (55). Next, it shifts the second operand
according to the exponent difference while preserving the sticky bit and adds both mantissa.
The sum is first normalized to [263, 264); that is, the 64th bit is set and then scaled down
to [254, 255) with the sticky bit preserved. Finally, the packing helps to return a 64-bit
floating-point number with a 53-bit mantissa, as it does in multiplication.

It should be noticed that the floating-point number multiplication and addition do not
follow the associative law and distributive law. In other words, for some floating-point
numbers a, b, and c,

a+ (b+ c) 6= (a+ b) + c or a× (b+ c) 6= a× b+ a× c

282 Masking Floating-Point Number Multiplication and Addition of Falcon

Algorithm 6 FprAdd
Input: Floating-Point numbers x and y
Output: Floating-Point numbers sum of x and y

1: d← x[63:1] − y[63:1]

2: cs← d(64) ∨ ((1− (−d)(64)) ∧ x(64)) . J|x| < |y|K ∨ (J|x| ≤ |y|K ∧ Jx(64) = 1K)
3: m← (x⊕ y) ∧ (−cs)
4: x← x⊕m, y ← y ⊕m . swap x and y if necessary
5: Extract (sx, ex,mx) and (sy, ey,my) from x, y, respectively.
6: mx← mx� 3,my ← my � 3
7: ex← ex− 1078, ey ← ey − 1078
8: c← ex− ey
9: b← Jc < 60K

10: my ← my ∧ (−b)
11: my ← (my � c) ∨ Jmy[c:1] 6= 0K
12: s← sx⊕ sy
13: z ← mx+ (−1)smy
14: Normalize z, ex to make the 64th bit of z set
15: z ← (z � 9) ∨ Jz[9:1] 6= 0K
16: ex← ex+ 9
17: return FPR(sx, ex, z)

This makes it complicated to design a masked implementation of Falcon without con-
structing new ways to do the multiplication and addition. In this paper, we follow Falcon
reference implementation and rewrite the floating-point number multiplication and addition
in a masked way. Our masked functions return the same values as the existing functions,
and they can apply to both security levels provided by Falcon (i.e., Falcon-512 and
Falcon-1024) since they use the same floating-point number arithmetic.

2.4 Masking
Side-channel attacks can extract secret information in cryptographic devices by measuring
their physical behavior during the computation, and masking helps avoid leakage by
randomizing secret variables in each operation. Essentially, it splits each sensitive value
into several shares that are randomized every round. In this way, the attacker cannot gain
any information if only a limited number of intermediate variables are seen.

Common masking methods include Boolean mask and arithmetic mask [MOP07]. The
Boolean masking method hides a variable x by a length n sequence (x1, x2, · · · , xn) where
x = x1 ⊕ · · · ⊕ xn. Since the value x should only be recovered if all xi’s are known to
the attacker, we also call the sequence (xi) Boolean shares of x. The arithmetic masking
method uses arithmetic shares (xi) where x = x1 + · · ·+xn. Note the addition is considered
to be modulo 2k for a k-bit variable.

To theoretically evaluate the power of the attacker and the security level protected
by masking, Ishai, Sahai, and Wagner [ISW03] introduced the notion of the t-probing
model, which assumes an adversary can probe up to t intermediate values during the
cryptographic operations. A gadget is said to be secure against t-order attacks if any
t intermediate values in operations leak no information about the hidden secret. Their
approach for proving this security is based on simulation; namely, to show that any t
intermediate values of the gadget can be simulated without the knowledge of the secret.

To prove the security of compositions of gadgets, the concept of (Strong)-Non-Interference
was proposed in [BBD+16]. We recall them in the version presented in [SPOG19].

Definition 1 (t-Non-Interference (t-NI) security). A gadget is t-Non-Interference (t-NI)

Keng-Yu Chen and Jiun-Peng Chen 283

secure if every set of t intermediate values can be simulated by no more than t shares of
each of its inputs.

Definition 2 (t-Strong-Non-Interference (t-SNI) security). A gadget is t-Strong-Non-
Interference (t-SNI) secure if for every set of tI internal intermediate values and tO of its
output shares with tI + tO ≤ t, they can be simulated by no more than tI shares of each
of its inputs.

If a gadget is itself t-NI secure, and if any set of t shares of its input is independent of
the secret, then it can resist t-order attacks. However, compositions of t-NI secure gadgets
may not be t-NI secure, and we can use t-SNI to avoid this problem. Note that a t-SNI
secure gadget is, by definition, also t-NI, and it can help the simulation since it requires
only the same number of input shares as the internal probed values to simulate all the
probes.

In section 4, we will show that our algorithms with n = t+ 1 shares are t-NI or t-SNI
secure and provide formal proofs via simulation.

2.5 Test Vector Leakage Assessment
The Test Vector Leakage Assessment (TVLA) methodology [GGJR+11] is used to analyze
whether a cryptographic device leaks information from its power/EM trace. The theory
behind this is Welch’s t-test. Here we introduce the non-specific version with fixed-versus-
random policy. The tester records a set of power traces where the device runs with
a fixed input and another set of traces where the device runs with random inputs. In
implementation, the tester records traces for different sets in random order to avoid possible
device bias through time. For each point of trace, the t statistic

t = X̄f − X̄r√
s2

f
nf

+ s2
r
nr

is calculated, where X̄f, sf, nf and X̄r, sr, nr are the sample mean, standard deviation, and
number of traces of set fixed and random, respectively. When the number of recorded traces
is large, the t statistic helps recognize whether both sets are sampled from distributions
of the same population mean, which is our null hypothesis. In our contexts, this implies
adversaries cannot distinguish some particular input. In practice, we reject the hypothesis
if the t statistic exceeds the standard threshold ±4.5, which is set to guarantee a p-value
under 0.00001. However, since our measured traces contain many sampled points, we refer
to [DZD+17] and alter this threshold to avoid false positives.

3 Masked Floating-Point Number Multiplication and Ad-
dition

We now introduce our main algorithms — floating-point number multiplication and addition
in Falcon, which rewrites FprMul in Algorithm 5 and FprAdd in Algorithm 6 in a masked
design. To support their complicated operations in shares, we design three masked gadgets
as subroutines in our main algorithms, including:

• SecNonzero: the masked algorithm which receives input shares and outputs whether
the input is zero in bit shares.

• SecFprUrsh: the masked algorithm which receives input Boolean shares (xi) of x and
arithmetic shares (ci) of c and returns shares of x� c with its sticky bit preserved.

284 Masking Floating-Point Number Multiplication and Addition of Falcon

Table 1: List of used gadgets in our work with n = t+ 1 shares

Algorithm Description Security Reference
SecAnd AND of Boolean shares t-SNI [ISW03, BBD+16]
SecMult Multiplication of arithmetic shares t-SNI [ISW03, BBD+16]
SecAdd Addition of Boolean shares t-NI [CGTV15, BBE+18]
A2B Arithmetic to Boolean conversion t-SNI [SPOG19]
B2A Boolean to arithmetic conversion t-SNI [BCZ18]
B2ABit One-bit B2A conversion t-SNI [SPOG19]
RefreshMasks t-NI refresh of masks t-NI [BBD+16, BCZ18]
Refresh t-SNI refresh of masks t-SNI [BBD+16]
SecOr OR of Boolean shares t-SNI Algorithm 7
SecNonzero Nonzero check of shares t-SNI Algorithm 8
SecFprUrsh Right-shift with sitcky-bit preserved t-SNI Algorithm 9
SecFprNorm64 Normalization to [263, 264) t-NI Algorithm 10

• SecFprNorm64: the masked algorithm which left-shifts 64-bit Boolean shares (xi) to
make its 64th bit set. It then adds the shift counts to the other input shares (ei).

We also use several gadgets from previous works. Table 1 lists all the gadgets used in
this work and their t-NI and t-SNI security. For those proposed in this work (Algorithm 7,
8, 9, 10), we provide details of them in the following of this section and will prove their
t-NI or t-SNI security in Section 4.

3.1 Masked Nonzero Check
We start by introducing our nonzero-check algorithm. Consider that a k-bit number x is
zero if bit-wise OR-ing all its bits results in a zero. That is,

x = 0⇐⇒ x(k) ∨ x(k−1) ∨ · · · ∨ x(1) = 0

Let the input be some Boolean shares. As each bit of shares is independent, we can
bitslice the shares and use the SecOr gadget to OR all the bits securely. The detail of the
SecOr gadget is given in Algorithm 7, which applies De Morgan’s law and calls the AND
algorithm SecAnd of shares as a subroutine. That is,

x ∨ y = ¬ [(¬x) ∧ (¬y)]

To increase efficiency, we consider OR-ing not one bit but half of the register size each time,
which reduces the complexity from O(n2k) to O(n2 log k) for n-shared k-bit numbers.

For arithmetic shares input (xi), since

n∑
i=1

xi = 0⇐⇒
n
2∑
i=1

xi =
n∑

i=n
2 +1

(−xi)⇐⇒
n
2∑
i=1

xi ⊕
n∑

i=n
2 +1

(−xi) = 0

We take the last n
2 shares, turn them negative, and use two n

2 -share arithmetic-to-Boolean
conversion gadgets A2B to create two Boolean shares, each representing half shares of
the input. Followed by the above nonzero check of Boolean shares, we end up getting
one-bit Boolean shares indicating if the input is nonzero. The whole algorithm is given in
Algorithm 8.

Keng-Yu Chen and Jiun-Peng Chen 285

Algorithm 7 SecOr
Input: Boolean shares (xi)1≤i≤n for value x, Boolean shares (yi)1≤i≤n for value y
Output: Boolean shares (zi)1≤i≤n for value z = x ∨ y

1: (ti)1≤i≤n ← (¬x1, x2, · · · , xn)
2: (si)1≤i≤n ← (¬y1, y2, · · · , yn)
3: (zi)← SecAnd((si), (ti))
4: z1 ← ¬z1
5: return (zi)

Algorithm 8 SecNonzero
Input: Shares (xi)1≤i≤n for value x
Output: One-bit Boolean shares (bi)1≤i≤n where

⊕
i bi = 0⇐⇒ x = 0

1: if input (xi) are arithmetic shares then
2: (ti)1≤i≤n2 ← A2B((xi)1≤i≤n2)
3: (ti)n2 +1≤i≤n ← A2B((−xi)n2 +1≤i≤n)
4: else
5: (ti)1≤i≤n ← (xi)1≤i≤n

6: len← bitsize/2
7: while len ≥ 1 do
8: (li)← Refresh((t[2len:len]

i), len)
9: (ri)← (t[len:1]

i)
10: (ti)← SecOr((li), (ri))
11: len← len� 1
12: return (t(1)

i)

3.2 Masked Unsigned Right-Shift
One step in the floating-point number addition is to right-shift the mantissa of the second
operand by the difference of exponents (in line 11 of FprAdd). This is used to make the
exponents of the two operands equal, and thus we can directly add their mantissa together.
While the exponent difference is part of the secret and is represented in shares, we cannot
directly unmask them. The SecFprUrsh in Algorithm 9 right-shifts a Boolean-masked
number by a value in arithmetic shares while preserving the sticky bit.

The idea goes as follows. For a 64-bit number, rotating it by some value c is equivalent
to rotating by value c mod 64. This shows we can rotate by a 6-bit arithmetic-masked
value via sequentially rotating by each share of it. To recover the shifted result from the
rotated one, we also rotate a constant (1 � 63) by the same value. As there is only a
single 1 in bit representation of (1� 63), we could sequentially XOR and right-shift the
value to set all the valid bits for our desired shifted result. Moreover, the unset bits are the
bits to discard, which determine the sticky bit. We use a SecNonzero to find our desired
sticky bit and replace the least significant bit of the shifted result with it.

It is noteworthy that we add t-NI secure RefreshMasks in each iteration of the rotation.
This is for removing the dependency between shares to achieve its t-SNI security. A formal
proof based on simulation and properties of the RefreshMasks gadget will be given in
Section 4.

3.3 Masked 64-bit Normalization
Another crucial part of the floating-point number addition is normalizing a number to
range [263, 264) (in line 14 of FprAdd). This is used to set the correct exponent and left-shift

286 Masking Floating-Point Number Multiplication and Addition of Falcon

Algorithm 9 SecFprUrsh
Input: 64-bit Boolean shares (xi)1≤i≤n for value x, 6-bit arithmetic shares (ci)1≤i≤n for

value c
Output: Boolean shares (zi)1≤i≤n for value z = x� c with the sticky bit preserved

1: (mi)1≤i≤n ← ((1� 63), 0, · · · , 0)
2: for j = 1 to n do
3: Right-rotate (xi) by cj
4: (xi)← RefreshMasks((xi))
5: Right-rotate (mi) by cj
6: (mi)← RefreshMasks((mi))
7: len← 1
8: while len ≤ 32 do
9: (mi)← (mi ⊕ (mi � len))

10: len← len� 1
11: (yi)← SecAnd((xi), (mi))
12: (zi)← (yi ⊕ xi ⊕ y(1)

i)
13: (bi)← SecNonzero((zi))
14: (zi)← (y[64:2]

i ∨ bi)
15: return (zi)

the mantissa sum for a valid floating-point number. In Falcon reference implementation,
they sequentially check whether the high-order bits are all zero and left-shift the mantissa
by the corresponding value. We follow their implementation and use our SecNonzero gadget
to check the shift counts. In addition, to add the shift counts to the exponent, we use
the one-bit Boolean-to-arithmetic conversion algorithm B2ABit to transform the result of
SecNonzero into arithmetic shares. The whole algorithm is given in Algorithm 10.

Algorithm 10 SecFprNorm64
Input: 64-bit Boolean shares (xi)1≤i≤n for value x, 16-bit arithmetic shares (ei)1≤i≤n for

value e
Output: Normalized (xi)1≤i≤n in [263, 264) and (ei)1≤i≤n with corresponding shift added

1: e1 ← e1 − 63
2: for j = 5 to 0 do
3: (ti)← (xi ⊕ (xi � 2j))
4: (ni)← (xi � (64− 2j))
5: (bi)← SecNonzero((ni))
6: (b′i)← (−bi)
7: (ti)← SecAnd((ti), (¬b′1, b′2, · · · , b′n))
8: (xi)← (xi ⊕ ti)
9: (bi)← B2ABit((bi))

10: (ei)← (ei + (bi � j))
11: return (xi), (ei)

3.4 Masked Floating-Point Number Packing
Given 1-bit Boolean-shared sign bit (si), 16-bit arithmetic-shared exponent (ei), and 55-bit
Boolean-shared mantissa (zi), the SecFPR in Algorithm 11 packs them into one Boolean
shares and round the mantissa to 53-bit with the round-to-nearest strategy.

Similar to Algorithm 4, the procedure starts by adding a constant 1076 to the exponent.
Then we turn the mantissa into zero if the result is smaller than 0 (line 4). The comparison

Keng-Yu Chen and Jiun-Peng Chen 287

is made by a 16-bit conversion A2B gadget and checking the most significant bit of the
result. Next, we zero the exponent if the mantissa is zero, and we check this by the 55th bit
of the mantissa (line 5). The 55th bit is also added to the exponent by the Boolean-masked
addition gadget SecAdd. We then pack the sign bit, exponent, and mantissa that is shifted
right by 2 bits (line 9). The Refresh gadgets for the sign bit and the exponent are used
here to satisfy the t-SNI security. Finally, to do the rounding securely. We consider adding
the mantissa by the value derived from OR-ing the first and third bit (line 10) and then
AND-ing the second bit (line 11). In this way, the least 3 bits 011, 110, or 111 will cause
an increment.

Note that the value will be indeterminate if the input exponent is too large, as it will
overflow to the sign bit in Algorithm 4. We omit this check and leave the responsibility for
not letting it happen to users, which is what Falcon reference implementation suggests
also.

Algorithm 11 SecFPR
Input: 1-bit Boolean shares (si)1≤i≤n for value s, 16-bit arithmetic shares (ei)1≤i≤n for

value e, 55-bit Boolean shares (zi)1≤i≤n for value z
Output: Boolean shares (xi)1≤i≤n representing the floating-point numbers packed by

s, e, z
1: e1 ← e1 + 1076
2: (ei)← A2B((ei))
3: (bi)← (−e(16)

i)
4: (zi)← SecAnd((zi), (¬b1, b2, · · · , bn)) . set z = 0 if e < 0
5: (ei)← SecAnd((ei), (−z(55)

i)) . set e = 0 if z = 0⇔ z(55) = 0
6: (ei)← SecAdd((ei), (z(55)

i))
7: (ei)← Refresh((ei))
8: (si)← Refresh((si))
9: (xi)← ((s(1)

i � 63) ∨ (e[11:1]
i � 52) ∨ (z[54:3]

i)
10: (fi)← SecOr(Refresh(z(1)

i), (z(3)
i))

11: (fi)← SecAnd((fi), (z(2)
i))

12: (xi)← SecAdd((xi), (fi))
13: return (xi)

3.5 Masked Floating-Point Number Multiplication
We now introduce the masked floating-point number multiplication SecFprMul in Algorithm
12. To begin with, we consider its input floating-point numbers to be split into three parts
of arithmetic shares: one-bit sign bit shares (si), 16-bit exponent shares (ei), and 128-bit
mantissa shares (mi) where

s =
⊕
i

si =
∑
i

si mod 2, e =
∑
i

ei mod 216, m =
∑
i

m
[128:1]
i mod 2128

We use this form of input to make the operations more straightforward. It should be noted
that the pre-image vector computation is the first operation that should be masked in
the signing process, and hence this form of input can be derived directly from unmasked
values.

To start with, the sign bit XOR and the exponent addition can be simply done by
adding the corresponding share of the input (lines 1 and 2). As in Algorithm 5, a constant
−2100 is also added. Mantissa multiplication is done by the SecMult gadget (line 3), which

288 Masking Floating-Point Number Multiplication and Addition of Falcon

multiplies each share of both operands and adds them together carefully by inserting
random mask values.

The next step is to round the mantissa to range [254, 255) and preserve the sticky bit.
We first convert the arithmetic-shared mantissa into Boolean shares (line 4). The product
is in the range [2104, 2106), so we shift the product by 50 or 51 bits according to the 106th
bit (line 6 to line 10). Note that for one-bit shares, the negative of it can be achieved by
turning each share negative, which is used in our conditional shift in lines 9 and 10. The
106th bit is then converted to 16-bit arithmetic shares by the one-bit B2ABit and added
to the exponent (line 13). To preserve the sticky bit, consider that if shifted by 50, we
need to OR the 51st bit of mantissa with the nonzero result of the last 50 bits, while for a
51-bit shift, we OR the 52nd bit with the nonzero result of the last 51 bits. This can be
done in both cases by using our SecNonzero on the last 51 bits and OR the result with the
shifted mantissa, which is done in lines 5 and 11.

Finally, we turn the mantissa into zero if any exponent of the input is zero (line 14 to
line 17), and we also make this by our SecNonzero gadget of the arithmetic-shared version.
Now we get the sign bit, exponent, and 55-bit mantissa, which are in Boolean, arithmetic,
and Boolean shares, respectively. We pack them into one Boolean-shared floating-point
number in SecFPR.

Algorithm 12 SecFprMul
Input: Shares (sxi)1≤i≤n, (exi)1≤i≤n, (mxi)1≤i≤n for floating-point number x, shares

(syi)1≤i≤n, (eyi)1≤i≤n, (myi)1≤i≤n for floating-point number y
Output: Boolean shares representing the floating-point numbers product.

1: (si)← (sxi ⊕ syi)
2: (ei)← (ex1 + ey1 − 2100, ex2 + ey2, · · · , exn + eyn)
3: (pi)← SecMult((mxi), (myi))
4: (pi)← A2B((pi))
5: (bi)← SecNonzero((p[51:1]

i))
6: (zi)← (p[105:51]

i)
7: (z′i)← (p[105:51]

i ⊕ p[106:52]
i)

8: (wi)← (p(106)
i)

9: (z′i)← SecAnd((z′i),Refresh((−wi)))
10: (zi)← (z′i ⊕ zi) . conditional shift
11: (zi)← SecOr((zi), (bi)) . preserve the sticky bit
12: (wi)← B2ABit((wi))
13: (ei)← (ei + wi) . add exponent by the 106th bit
14: (bxi)← SecNonzero((exi))
15: (byi)← SecNonzero((eyi))
16: (di)← SecAnd((bxi), (byi))
17: (zi)← SecAnd((zi), (−d(1)

i)) . set z = 0 if exponent of any operand is 0
18: return SecFPR((si), (ei), (zi))

3.6 Masked Floating-Point Number Addition
The SecFprAdd in Algorithm 13 takes in two Boolean-shared floating-point values and
adds them in a masked way. We use Boolean shares as its input since it is followed by
floating-point number multiplications in the pre-image vector computation.

The algorithm first exchanges the operands to make the first one no less than the second
(line 1 to line 9). Thanks to the biased exponent, we can make the comparison by a simple
subtraction and check the sign bit. Originally, the subtraction of two Boolean-masked

Keng-Yu Chen and Jiun-Peng Chen 289

values could be done by three steps: (1) inverting all the bits of the second operand (2)
adding the inverted result with 1 (3) adding the first and second operand, which applies
the equation x− y = x+ (¬y) + 1 To avoid an additional call to the SecAdd gadget, we
only invert bits and consider the boundary conditions. To put it clearly, let u, v be two
values stored in 64-bit registers; we use the relation

Ju− v < 0K = Ju− v − 1 < 0K⊕ Ju− v − 1 = −1K⊕ Ju− v − 1 = 263 − 1K

= Ju+ (¬v) < 0K⊕ Ju+ (¬v) = −1K⊕ Ju+ (¬v) = 263 − 1K

= Ju+ (¬v) < 0K⊕ Ju+ (¬v) 6= −1K⊕ Ju+ (¬v) 6= 263 − 1K

The first and second equalities come from the two’s complement representation, where an
increment of 263 − 1 results in −263 and ¬v = −v− 1. The third equality is for the output
of the SecNonzero gadget. To evaluate the range check of the value u+ (¬v), we also use
both of the facts in our algorithm (lines 4 and 5)

u+ (¬v) 6= −1⇐⇒ ¬(u+ (¬v)) 6= 0

u+ (¬v) 6= 263 − 1⇔ (u+ (¬v))⊕ (1� 63) 6= −1⇔ ¬((u+ (¬v))⊕ (1� 63)) 6= 0
After the conditional swap, we extract the sign bit, exponent, and mantissa from the

input shares. Like in Algorithm 6, the mantissa is scaled up 3 bits for further rounding
precision, and the exponent is turned to arithmetic shares and subtracted by 1078. Then
we use the SecFprUrsh gadget (Algorithm 9) we introduced in Section 3.2 to right-shift the
Boolean-masked mantissa of the second operand with sticky bit preserved to make both
operands have identical exponents. Note that we set the value to zero if the exponent
difference is larger than 59 before shifting, as indicated in lines 9 and 10 of unmasked
Algorithm 6 and lines 15 and 16 of Algorithm 13.

After the proper shift, we add/subtract the result to/from the mantissa of the first
operand (line 24). The sum has a wide range, so we normalize it to [263, 264) by the
SecFprNorm64 gadget (Algorithm 10) in Section 3.3 and right-shift the result by 9 bits
(line 27). Finally, we get the sign bit and exponent of the first operand and the shifted
mantissa sum in the range [254, 255), and the result floating-point number is given by
calling SecFPR as the case of multiplication.

4 Security Proof
In this section, we sequentially prove that our design with n = t + 1 shares is secure
regarding t-NI and t-SNI security.
Lemma 1. The gadget SecOr (Algorithm 7) is t-SNI secure.

Proof. This is a direct result that the SecAnd gadget is t-SNI secure and the negation is
operated share-by-share.

Lemma 2. The gadget SecNonzero (Algorithm 8) is t-SNI secure.

Proof. Since the A2B gadget is t-SNI secure, we only need to show that the following loop
is itself t-SNI. An abstract diagram of each iteration is given in Figure 1. Since SecOr
is t-SNI secure, for any probing set P1 in SecOr gadget and O of its output shares, one
can use some set S1

1 of outputs of Refresh and set S2
1 of shares of (ri) to simulate both P1

and O with |S1
1 |, |S2

1 | ≤ P1 . Also, since Refresh is t-SNI secure, for any probing set P2
in Refresh gadget, one can use some set S2 of shares of (ti) to simulate both P2 and S1

1
with |S2| ≤ P2. In summary, for probed output shares O and internal values P1,P2, one
can use S2

1 and S2 to simulate all of them with |S2
1 ∪ S2| ≤ |P1|+ |P2|. This shows each

iteration is t-SNI secure, and the whole loop is thus t-SNI secure.

290 Masking Floating-Point Number Multiplication and Addition of Falcon

Algorithm 13 SecFprAdd
Input: Boolean shares (xi)1≤i≤n and (yi)1≤i≤n representing floating-point numbers x and

y
Output: Boolean shares representing the floating-point numbers sum

1: (xmi)← (x[63:1]
i)

2: (ymi)← (¬y[63:1]
1 , y

[63:1]
2 , · · · , y[63:1]

n)
3: (di)← SecAdd((xmi), (ymi)) . d = xm− ym− 1
4: (bi)← SecNonzero(¬d1, d2, · · · , dn) . Jd 6= −1K
5: (b′i)← SecNonzero(¬(d1 ⊕ (1� 63)), d2, · · · , dn) . Jd 6= 263 − 1K
6: (csi)← SecAnd((¬b1, b2, · · · , bn), (x(64)

i))
7: (csi)← SecOr((csi), (d(64)

i ⊕ bi ⊕ b′i))
8: (mi)← SecAnd((xi ⊕ yi), (−csi))
9: (xi)← (xi ⊕mi), (yi)← (yi ⊕mi) . swap x and y if necessary

10: Extract (sxi), (exi), (mxi) and (syi), (eyi), (myi) from (xi) and (yi), respectively.
11: (mxi)← (mxi � 3), (myi)← (myi � 3)
12: (exi)← B2A((exi)), (eyi)← B2A((eyi))
13: ex1 ← ex1 − 1078, ey1 ← ey1 − 1078.
14: (ci)← (exi − eyi)
15: (c′i)← A2B((c1 − 60, c2, · · · , cn))
16: (myi)← SecAnd((myi), (−(c′(16)

i))) . set my to 0 if the exponent difference > 60
17: (myi)← SecFprUrsh((myi), (c[6:1]

i))
18: (my′i)← (¬my1,my2, · · ·myn)
19: (my′i)← SecAdd((my′i), (1, 0, · · · , 0)) . −my
20: (si)← (−(sxi ⊕ syi))
21: (myi)← Refresh((myi))
22: (my′i)← SecAnd((myi ⊕my′i), (si))
23: (myi)← (myi ⊕my′i) . (−1)sx⊕symy
24: (zi)← SecAdd((mxi), (myi)) . z = mx+ (−1)sx⊕symy
25: (zi), (exi)← SecFprNorm64((zi), (exi))
26: (bi)← SecNonzero((z[10:1]

i))
27: (zi)← (zi � 9)
28: (z(1)

i)← (bi) . preserve the sticky bit
29: ex1 ← ex1 + 9
30: return SecFPR(Refresh((sxi)), (exi), (zi))

Lemma 3. The gadget SecFprUrsh (Algorithm 9) is t-SNI secure.

Proof. We first show that the loop of rotation is itself t-SNI secure. Note that since there
are n iterations, at least one of them is not probed. Let it be the iteration when j = j∗.
Since any set of output shares of RefreshMasks with size ≤ n− 1 is uniformly distributed
([BCZ18], Lemma 1), all the probes after j∗, including probes of outputs, can be simulated
with fresh randomness. Thus we only need to show that one can simulate probes before j∗
with no more number of shares.

Since the rotation is done share-by-share, one can simulate probes of (xi) and (mi)
with the same number of input shares. As for the simulation of cj , if in some iteration
j = j′ the rotation is probed, one then adds cj′ into the simulation set. Also, if consecutive
RefreshMasks in iterations j = j′ − 1, j′ are probed, one adds cj′ into the simulation set.
Note that if RefreshMasks are not consecutively probed, one can simulate cj with fresh
randomness thanks to the uniformity of RefreshMasks’s outputs. In this way, the size of
the simulation set of cj is no more than the number of probes.

Keng-Yu Chen and Jiun-Peng Chen 291

Figure 1: An abstract diagram of each iteration in SecNonzero (Algorithm 8). The probing
sets O, P1, P2 are colored in red, and the simulations sets S1

1 , S2
1 , S2 are colored in blue.

Gadgets with t-NI and t-SNI security are marked in black and green, respectively.

Figure 2: An abstract diagram of SecFprUrsh (Algorithm 9). The probing sets O and Pi
for some i are colored in red, and the simulations sets Si and Sji for some i, j are colored
in blue. Gadgets with t-NI and t-SNI security are marked in black and green, respectively.

Now we show the operations following the rotation loop are t-SNI secure, and therefore
the whole gadget is t-SNI secure. An abstract diagram of SecFprUrsh is given in Figure
2. Let the adversary probe the intermediate values sets O of the output shares, P1 of
the SecNonzero, P2 of the XOR following SecAnd, P3 of the SecAnd, and P4 of the XOR
before SecAnd. First, by the t-SNI security of SecNonzero, one can use some sets S1 of
output shares of the XOR operation to simulate P1 and the first 63 bits of O with size no
more than |P1|. The XOR operation is done share-by-share, so there are some sets S1

2 ,S2
2

of output shares of the rotation and SecAnd, respectively, that can simulate P2 and S1.
Note only |O ∪S2

2 | ≤ |O|+ |P2|+ |P1| ≤ t output shares of SecAnd are used. Since SecAnd
is t-SNI secure, one can use some sets S1

3 ,S2
3 to simulate P3 and {the last bit of O} ∪ S2

2
with sizes no more than P3. Finally, one can simulate the probing set P4 in the XOR
and S2

3 with output shares S4 of the rotation of (mi). All the probes are now simulated
with output shares S1

2 ∪ S1
3 of the rotation of (xi) and output shares S4 of the rotation of

(mi). |S1
2 ∪ S1

3 | ≤ |P2|+ |P1|+ |P3| and |S4| ≤ |P4|+ |P3|. They, along with the internal
probes into the rotation loop, can be simulated by input shares due to the t-SNI security
we showed at first.

Lemma 4. The gadget SecFprNorm64 (Algorithm 10) is t-NI secure.

Proof. An abstract diagram of each iteration in SecFprNorm64 is given in Figure 3. Let
the adversary probe in iteration j the intermediate values set P(j)

1 of the addition, P(j)
2 of

the XOR, P(j)
3 of the B2ABit, P(j)

4 of the SecAnd, and P(j)
5 of the SecNonzero. We show

that all probes in iteration j can be simulated with no more number of shares of (ei) and
(xi) as the input of the iteration. If this is the case, all probes across different iterations
can be simulated with no more number of input shares.

First, since the addition is done share-by-share, one can use some sets S1
1 and S2

1 of
shares of (ei) and B2ABit, respectively, to simulate P(j)

1 . One can also use some sets S1
2

and S2
2 of shares of SecAnd and (xi), respectively, to simulate P(j)

2 . The t-SNI security of

292 Masking Floating-Point Number Multiplication and Addition of Falcon

Figure 3: An abstract diagram of iteration j in SecFprNorm64 (Algorithm 10). The
probing sets P(j)

i for some i are colored in red, and the simulation sets Si and Ski for some
i, k are colored in blue. Gadgets with t-NI and t-SNI security are marked in black and
green, respectively.

B2ABit assures that one can use some set S3 of the output of the SecNonzero with the size
no more than |P(j)

3 | to simulate P(j)
3 and S2

1 . Similarly, one can use some sets S1
4 ,S2

4 of
the SecNonzero and (xi), respectively, to simulate P(j)

4 and S1
2 with sizes no more than

|P(j)
4 |. Note only |S3 ∪ S1

4 | ≤ |P
(j)
3 |+ |P

(j)
4 | shares of the SecNonzero are used, and they,

along with P(j)
5 , can be simulated by some set S5 of (xi) with size no more than |P(j)

5 |.
Now all the probes are simulated by shares S1

1 of (ei) and shares S2
2 ,S2

4 and S5 of (xi).
As |S1

1 | ≤ P
(j)
1 and |S2

2 ∪ S2
4 ∪ S5| ≤ |P(j)

2 |+ |P
(j)
4 |+ |P

(j)
5 |, we show that all the probes in

iteration j can be simulated with no more number of shares of (ei) and (xi).

We now give proofs that our main algorithms SecFPR (Algorithm 11), SecFprMul
(Algorithm 12), and SecFprAdd (Algorithm 13) are t-SNI secure.

Theorem 1. The gadget SecFPR (Algorithm 11) is t-SNI secure.

Proof. We use an abstract diagram of SecFPR in Figure 4 to demonstrate our proof.
Assume the adversary probes t values, including output shares set O and sets Pi in each
gadget for i = 1, 2, · · · , 10. Also, assume we use sets Si or Sji for some j to simulate the
necessary values for the corresponding gadgets. For example, we use S1

1 ,S2
1 to simulate P1

and O, and S2 to simulate P2 and S1, just to name a few. Our goal is to show that if the
size of all the probing sets Pi is tI ≤ t, and if the size of values we require to simulate in
each gadget is smaller than t, then the simulation sets of input shares (that is, S8,S10,
and S2

9) have sizes no more than tI .
Since gadget SecAdd is t-NI, we have |S1

1 |, |S2
1 | ≤ |P1|+ |O|. Due to the t-SNI security

of Refresh and SecAnd, we have |S2| ≤ |P2| and |S1
3 |, |S2

3 | ≤ |P3|. Similarly, we can
sequentially derive

• |S1
4 |, |S2

4 | ≤ |P4|+ |S2|

• |S1
5 |, |S2

5 | ≤ |P5|

• |S1
6 |, |S2

6 | ≤ |P6|

• |S1
7 | ≤ |P7|

• |S8| ≤ |P8|

• |S1
9 |, |S2

9 | ≤ |P9|

• |S10| ≤ |P10|

Based on the above inequalities, one can check that the number of values to simulate
in each gadget is no more than tI + |O| = t. Finally we derive |S8| ≤ |P8|, |S10| ≤ |P10|,
and |S2

9 | ≤ |P9|, which are all no more than tI .

Theorem 2. The gadget SecFprMul (Algorithm 12) is t-SNI secure.

Keng-Yu Chen and Jiun-Peng Chen 293

Figure 4: An abstract diagram of SecFPR (Algorithm 11). The probing sets O and Pi for
some i are colored in red, and the simulation sets Si and Sji for some i, j are colored in
blue. Gadgets with t-NI and t-SNI security are marked in black and green, respectively.

Proof. We use an abstract diagram of SecFprMul in Figure 5 to demonstrate our proof.
Assume the adversary probes t values, including output shares set O and sets Pi in each
gadget for i = 1, 2, · · · , 15. Also, assume we use sets Si or Sji for some j to simulate
the necessary values for the corresponding gadgets. Similarly, we need to show that
if the size of all the probing sets Pi is tI ≤ t, and if the size of values we require to
simulate in each gadget is smaller than t, then the simulation sets of input shares (that is,
S1

9 ,S2
9 ,S1

11,S2
11,S1

15, and S2
15) have sizes no more than tI .

Theorem 1 shows that the SecFPR gadget is t-SNI secure, so we have |S1
1 |, |S2

1 |, |S3
1 | ≤

|P1|. We then sequentially write down all the inequalities based on the t-NI and t-SNI
properties of the gadgets.

• |S1
2 |, |S2

2 | ≤ |P2|

• |S1
3 |, |S2

3 | ≤ |P3|

• |S1
4 |, |S2

4 | ≤ |P4|+ |S1
3 |

• |S1
5 |, |S2

5 | ≤ |P5|

• |S6| ≤ |P6|

• |S7| ≤ |P7|

• |S8| ≤ |P8|

• |S1
9 |, |S2

9 | ≤ |P9|

• |S1
10|, |S2

10| ≤ |P10|+ |S2
1 |

• |S1
11|, |S2

11| ≤ |P11|+ |S1
10|

• |S1
12|, |S2

12| ≤ |P12|

• |S13| ≤ |P13|

• |S14| ≤ |P14|

• |S1
15|, |S2

15| ≤ |P15|+ |S1
1 |

Now we derive
|S1

9 |, |S2
9 | ≤ |P9|

|S1
11|, |S2

11| ≤ |P11|+ |S1
10| ≤ |P11|+ |P10|+ |S2

1 | ≤ |P11|+ |P10|+ |P1|
|S1

15|, |S2
15| ≤ |P15|+ |S1

1 | ≤ |P15|+ |P1|
Sizes of all of them are no more than tI .

One can also show that the number of values to simulate in each gadget is no more
than t. Here we show the case for the A2B gadget since it is the most complicated one.
The simulation set S8 needs to simulate P8 and S2

10 ∪ S6 ∪ S2
5 ∪ S2

4 ∪ S7. Note we have
|S2

10| ≤ |P10|+ |S2
1 | ≤ |P10|+ |P1|, |S6| ≤ |P6|, |S2

5 | ≤ |P5|, |S2
4 | ≤ |P4|+ |S1

3 | ≤ |P4|+ |P3|,
and |S7| ≤ |P7|. The number of values S8 needs to simulate is smaller than

|P8|+ |P10|+ |P1|+ |P6|+ |P5|+ |P4|+ |P3|+ |P7|

294 Masking Floating-Point Number Multiplication and Addition of Falcon

Figure 5: An abstract diagram of SecFprMul (Algorithm 12). The probing sets O and Pi
for some i are colored in red, and the simulation sets Si and Sji for some i, j are colored in
blue. Gadgets with t-NI and t-SNI security are marked in black and green, respectively.

which is guaranteed to be no more than tI .

Theorem 3. The gadget SecFprAdd (Algorithm 13) is t-SNI secure.

Proof. We first show that for any probing sets in the swap part of the algorithm, one can
use no more number of shares of each input to simulate. An abstract diagram of the swap
part is given in Figure 6. Similar to our proof in Theorem 1 and 2, we write down the
inequalities that the t-NI and t-SNI gadgets provide.

• |S1
1 |, |S2

1 | ≤ |P1|

• |S1
2 |, |S2

2 | ≤ |P2|

• |S1
3 |, |S2

3 | ≤ |P3|

• |S1
4 |, |S2

4 | ≤ |P4|

• |S1
5 |, |S2

5 | ≤ |P5|

• |S1
6 |, |S2

6 | ≤ |P6|+ |S1
4 | ≤ |P6|+ |P4|

• |S1
7 |, |S2

7 | ≤ |P7|+ |S2
6 | ≤ |P7|+ |P6|+

|P4|

• |S8| ≤ |P8|

• |S9| ≤ |P9|

• |S1
10|, |S2

10| ≤ |P10|+ |S1
6 |+ |S8|+ |S9| ≤ |P10|+ |P6|+ |P4|+ |P8|+ |P9|

• |S1
11|, |S2

11| ≤ |P11|+ |S1
3 | ≤ |P11|+ |P3|

Therefore we can use at most

|S2
2 ∪ S2

5 ∪ S2
10 ∪ S2

11| ≤ |P2|+ |P5|+ |P10|+ |P6|+ |P4|+ |P8|+ |P9|+ |P11|+ |P3|

of shares of (xi), and

|S1
1 ∪ S1

10 ∪ S1
11| ≤ |P1|+ |P10|+ |P6|+ |P4|+ |P8|+ |P9|+ |P11|+ |P3|

of shares of (yi) to simulate all the probed values.
Now we show that the operations after the swap are t-SNI secure, implying that the

whole algorithm is t-SNI secure. An abstract diagram of this part is given in Figure 7.

Keng-Yu Chen and Jiun-Peng Chen 295

Figure 6: An abstract diagram of the swap part in SecFprAdd (Algorithm 13). The probing
sets Pi for some i are colored in red, and the simulation sets Si and Sji for some i, j are
colored in blue. Gadgets with t-NI and t-SNI security are marked in black and green,
respectively.

From the figure, one can list all the inequalities similarly and check that for each gadget,
there are no more number of input shares than the probes used in the simulation. In
particular, shares of (xi) used to simulate include S2

5 , S15, and S18 ∪ S1
17, and

|S2
5 | ≤ |P5|+ |S1

4 | ≤ |P5|+ |P4|+ |S1
2 ∪ S3| ≤ |P5|+ |P4|+ |P1|+ |P2|+ |P3|

|S15| ≤ |P15|

|S18 ∪ S1
17| ≤ |P18|+ |P17|+ |S1

7 | ≤ |P18|+ |P17|+ |P7|

For shares of (yi), S2
12, S16, and S2

17 are used, and

|S2
12| ≤ |P12|

|S16| ≤ |P16|

|S2
17| ≤ |P17|+ |S1

7 | ≤ |P17|+ |P7|

Both sums are smaller than the number of internal probes.

5 Implementation and Evaluation
In this section, we provide our masked implementation’s performance and security eval-
uations. Our experiments were mainly implemented in plain-C code, but we rewrote
some segments of the 2-shared version by assembly to reduce some observed leakages
in security evaluation, which is discussed in Section 5.2 and 5.3. We first tested the
performance of our design on an Arm Cortex-M4 processor, and then we used the program
from Falcon reference code [PFH+20] to test the speed of one complete signing process
on an Intel-Core i9-12900KF CPU, a general-purpose processor. For security evaluation,
we ran our experiments on ChipWhisperer-Pro Level 3 Starter Kit [Inc], which includes
a main control board and a target board to run the main program. The control board
clocks the target board at 7.38MHz and measures its power consumption during execution
at the same frequency. The target board STM32F415 (CW308T-STM32F4) with an Arm
Cortex-M4 MCU was used.

In our implementation, the 128-bit multiplication in Algorithm 12 was realized by
combining four 32-bit registers in C. We generated the randomness for our masked
implementation beforehand and fill them in a table to be read off. We list the number of
used randomness in bytes for each algorithm in the performance evaluation subsection.

296 Masking Floating-Point Number Multiplication and Addition of Falcon

Figure 7: An abstract diagram of the operations following the swap in SecFprAdd (Algo-
rithm 13). The probing sets O and Pi for some i are colored in red, and the simulation
sets Si and Sji for some i, j are colored in blue. Gadgets with t-NI and t-SNI security are
marked in black and green, respectively.

5.1 Performance Evaluation
We first evaluate the performance of our masked implementation on the Arm Cortex-M4
processor and compare them with the unmasked version from Falcon reference code
in NIST round-3 submission [PFH+20], which is a re-implementation of floating-point
arithmetic also written in plain-C. The cycle counts of floating-point number multiplication
and addition are given in Table 2. For higher-order mask evaluation, we provide the results
for the second-order mask (3 shares). All our code was compiled by arm-none-eabi-gcc
10.3.1 with optimization level -O3.

The masked floating-point number multiplication takes about 23× overhead of the
unmasked version for 2 shares and 118× overhead for 3 shares. It shows that our nonzero
check gadget SecNonzero only causes a small amount of overhead compared to the whole
multiplication and addition algorithm. For the 2-shared design, the bottleneck is the
packing SecFPR, in which a 64-bit SecAdd is used. For the 3-shared design, the heaviest
overhead comes from the 3-shared 128-bit A2B, which internally calls a 128-bit SecAdd.

The masked floating-point number addition takes about 35× cycles for our first-order
masked version than the unmasked one and 99× cycles for our second-order version. It
shows that the main overhead is caused by the four 64-bit SecAdd functions, which is also
the case in multiplication. Although it costs much in our implementation, it seems unlikely
to avoid the Boolean masked addition gadgets or the mask conversion gadgets somewhere
since the mantissa needs to be rounded in different stages and the sticky bit needs to be
preserved.

In Table 3, we provide the speed for signing one message on the general-purpose
Intel-Core i9-12900KF CPU with our masking countermeasure on the pre-image vector
computation to show the amortized performance result in the whole Falcon. For this,
we first replaced the floating-point arithmetic in the pre-image vector computation (line
3) with our masked multiplication and addition, and then we unmasked the result after
all the computations were done. It shows that compared with the unmasked design, one
signing process takes about 7.7× for 2 shares (about 1.9 ms for Falcon-512) and about

Keng-Yu Chen and Jiun-Peng Chen 297

Table 2: Performance of each component in Algorithm 11, 12, and 13 on Arm Cortex-M4.
We count the cycles for subroutines and the total random numbers used in bytes.

Algorithm Cycles
Unmasked 2 Shares 3 Shares

SecFprMul

Total 308 7134 36388
128-bit A2B in line 4 - 1619 19253
64-bit SecNonzero in line 5 - 389 1350
Two 16-bit SecNonzero in line 14, 15 - 662 2012
SecFPR in Algorithm 11 - 3362 10813

#randombytes - 333 2005

SecFprAdd

Total 487 17154 48291
Three 64-bit SecAdd in line 3, 19, 24 - 6990 16956
Two 16-bit B2A in line 12 - 88 332
16-bit A2B in line 15 - 146 2267
SecFprUrsh in Algorithm 9 - 1112 3214
SecFprNorm64 in Algorithm 10 - 2846 7270
SecFPR in Algorithm 11 - 3362 10813

#randombytes - 849 2691

Table 3: Time (in microseconds) for signing a message on Intel-Core i9-12900KF CPU.

Security Level Unmasked 2 Shares 3 Shares
Falcon-512 246.56 1905.55 6137.25
Falcon-1024 501.62 3819.76 12287.29

24.9× for 3 shares (about 6.1 ms for Falcon-512).

5.2 Security Evaluation

For practical security evaluation, we conducted the leakage assessment via the TVLA
methodology, which we introduced in Section 2.5. We performed TVLA on our first-order
(2 shares) and second-order (3 shares) masked floating-point number multiplication and
addition, comparing them with the unmasked ones. Figure 8 shows our results. From left to
right are the t-value statistics for unmasked, first-order, and second-order implementation.
A threshold of ±4.5 is provided as red dotted lines, while for second-order traces, we offer
green dotted lines as the recommended threshold in [DZD+17]. For multiplication, the
traces have a length of 295727, and we set the threshold to ±6.628; while for addition with
traces length of 387764, the threshold is set to ±6.668.

For the unmasked function, we measured a total of 1,000 traces, and it turns out
that almost every point exceeds the threshold. The results are improved for first-order
implementation, but still some points exceed the threshold. By rewriting part of the
code by assembly, adding redundant operations, and rearranging the order of independent
instructions, every point is within the threshold in 10,000 traces. However, for tests with
100,000 traces, some values crossed the thresholds. It shows that the device may implicitly
leak first-order information in the 2-shared implementation. We discuss this problem more
thoroughly in Section 5.3. For second-order implementation, almost all the points are
within the threshold ±4.5 in 100,000 traces, and all the points pass the test with the
adapted thresholds. We see that the second-order implementation eliminates the leakages
that appeared in the first-order design.

298 Masking Floating-Point Number Multiplication and Addition of Falcon

(a) 1,000 traces, unmasked (b) 10,000 traces, first-order (c) 100,000 traces, second-order

(d) 1,000 traces, unmasked (e) 10,000 traces, first-order (f) 100,000 traces, second-order

Figure 8: TVLA results of floating-point number multiplication (top row) and addition
(bottom row) for (a)(d) unmasked implementation with 1,000 traces, (b)(e) first-order (2
shares) mask with 10,000 traces, and (c)(f) second-order (3 shares) mask with 100,000
traces

5.3 Discussion about the Leakage of the First-Order Design
The first-order implementation without further optimization still showed leakage with
10,000 power consumption traces in our experiment. Similar results were also found in
previous works [BGR+21, BC22]. On the other hand, our second-order implementation
can pass the TVLA test of 100,000 traces, which indicates that leakage in the first-order
design might be caused by unexpected equipment behavior. As pointed out and organized
in [GD23], probing security cannot capture the physical defaults of devices. Glitches and
transition-based leakage concerning the Hamming distance between two consecutive values
written in a memory cell can cause power consumption related to the unmasked secret.

The leakage in [BGR+21, BC22] was eliminated or mitigated through assembly opti-
mization. In our experiment, we used a defensive approach similar to that in [BC22], such
as adding a dummy load and store operation before and after each consecutive share-wise
operation where leakage appeared in the first-order TVLA result. We also found that shift
operations could induce leakage, so we inserted redundant shift operations around the
true ones. Besides, we separated dependent instructions to avoid potential leakage from
Hamming distance or hidden buffer. With these revisions, we removed all the high values
in the tests with 10,000 traces. Nevertheless, our first-order implementation failed to pass
the test in 100,000 traces.

Two approaches can be taken to improve the result. The first one is a thorough assembly
rewriting. With programs written in assembly, one can manipulate each register to avoid
the potential transition-based leakage caused by compiling from a high-level language.
However, hidden registers and other memory units in the processor [GOP22, MPW21]
cannot be directly accessed. They may still induce transition-based leakage or even
recombination of shares. Another concern with this strategy is that the design can vary
for different devices. For example, we found different leakage patterns and locations when
executing the same optimization method on STM32F303 and STM32F415 target boards;
by contrast, the TVLA results of the second-order implementation were similar on both.
The second approach is a secure design in the robust probing model [FGP+18, MMSS19],

Keng-Yu Chen and Jiun-Peng Chen 299

which considers typical physical defaults like glitches. Unfortunately, a glitch-resistant
model-based design of SecAdd, A2B, and B2A gadgets is still unknown to the best of our
knowledge, and the procedure can require more than two shares and reduce efficiency.

6 Conclusion
In this work, we provide a masking scheme for Falcon’s floating-point number multiplica-
tion and addition. To round the mantissa and compute the sticky bit efficiently, we design
a masked nonzero check algorithm to find whether a shared value is nonzero, which can also
be used to check the equality of two values and normalize a number. In addition, a masked
right-shift and a masked normalization algorithm are proposed to add two floating-point
numbers securely. The former can securely shift a value by some arithmetic shares while
preserving the sticky bit, and the latter helps normalize a 64-bit number to the specific
range [263, 264).

We provide formal proofs to show our design is secure in the t-probing model. Specifi-
cally, we apply the t-NI and t-SNI definitions and prove the security of our gadgets based
on simulation. In terms of practical leakage on board, we conducted the leakage assessment
experiments via TVLA. The first-order countermeasure with part of the functions rewritten
by assembly, adding redundant operations, and rearrangement of execution orders can
pass the test in 10,000 traces. With second-order masking, there is no significant leakage
in 100,000 measured traces.

For performance evaluation, we compare cycle counts among unmasked, first-order, and
second-order implementations on an Arm Cortex-M4 core. To achieve complete masking
for the procedures containing both Boolean and arithmetic operations, our algorithms call
arithmetic-to-Boolean mask conversion gadgets A2B and Boolean-masked addition gadgets
SecAdd several times. It turns out that they cause the most considerable overhead in our
design. We also tested the speed on an Intel-Core CPU, and it shows that a complete
signing process with our countermeasure can be finished within a few milliseconds.

Throughout the signing algorithm of Falcon, the attack and defense of the Gaussian
sampler have been discussed. However, the pre-image vector computation and other parts
of the fast Fourier sampler are still at risk of being attacked, even though no works on
the fast Fourier sampler have been proposed. A complete masking of Falcon can be
constructed by combining our works with a masked design of the sampler. With our
implementations and evaluations of the masking scheme for Falcon, it can resist known
attacks on the pre-image vector computation, allowing Falcon to be used more securely.

Acknowledgement
The authors would like to thank professor Ho-Lin Chen for his contributions through
extensive discussions and insightful feedback on this work; Tzu-Hsien Chang, Yi-Lin Hung,
and Yu-Cheng Su for their guidance in algorithm designs and implementations. The
authors are also grateful to professor Bo-Yin Yang for the support of this research and
the assistance in submission, as well as all the reviewers’ efforts during the review process,
which greatly improve this paper in all aspects.

References
[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-

jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Edgar R. Weippl,

300 Masking Floating-Point Number Multiplication and Addition of Falcon

Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM CCS 2016, pages 116–129. ACM Press, October 2016.

[BBE+18] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Benjamin
Grégoire, Mélissa Rossi, and Mehdi Tibouchi. Masking the GLP lattice-based
signature scheme at any order. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 354–384.
Springer, Heidelberg, April / May 2018.

[BC22] Olivier Bronchain and Gaëtan Cassiers. Bitslicing arithmetic/boolean mask-
ing conversions for fun and profit: with application to lattice-based kems.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2022(4):553–588, Aug. 2022.

[BCZ18] Luk Bettale, Jean-Sébastien Coron, and Rina Zeitoun. Improved high-order
conversion from Boolean to arithmetic masking. IACR TCHES, 2018(2):22–45,
2018. https://tches.iacr.org/index.php/TCHES/article/view/873.

[BGR+21] Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine
van Vredendaal. Masking kyber: First- and higher-order implementations.
IACR TCHES, 2021(4):173–214, 2021. https://tches.iacr.org/index.
php/TCHES/article/view/9064.

[BHLY16] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom.
Flush, gauss, and reload - A cache attack on the BLISS lattice-based signature
scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016,
volume 9813 of LNCS, pages 323–345. Springer, Heidelberg, August 2016.

[CGTV15] Jean-Sébastien Coron, Johann Großschädl, Mehdi Tibouchi, and Praveen Ku-
mar Vadnala. Conversion from arithmetic to Boolean masking with logarithmic
complexity. In Gregor Leander, editor, FSE 2015, volume 9054 of LNCS,
pages 130–149. Springer, Heidelberg, March 2015.

[DH76] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

[DP16] Léo Ducas and Thomas Prest. Fast fourier orthogonalization. In Proceedings of
the ACM on International Symposium on Symbolic and Algebraic Computation,
pages 191–198, 2016.

[DZD+17] A. Adam Ding, Liwei Zhang, François Durvaux, François-Xavier Standaert,
and Yunsi Fei. Towards sound and optimal leakage detection procedure.
In Thomas Eisenbarth and Yannick Teglia, editors, Smart Card Research
and Advanced Applications - 16th International Conference, CARDIS 2017,
Lugano, Switzerland, November 13-15, 2017, Revised Selected Papers, volume
10728 of Lecture Notes in Computer Science, pages 105–122. Springer, 2017.

[EFG+22] Thomas Espitau, Pierre-Alain Fouque, François Gérard, Mélissa Rossi, Akira
Takahashi, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu. Mitaka: A
simpler, parallelizable, maskable variant of falcon. In Orr Dunkelman and
Stefan Dziembowski, editors, EUROCRYPT 2022, Part III, volume 13277 of
LNCS, pages 222–253. Springer, Heidelberg, May / June 2022.

[EFGT17] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi.
Side-channel attacks on BLISS lattice-based signatures: Exploiting branch
tracing against strongSwan and electromagnetic emanations in microcon-
trollers. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and

https://tches.iacr.org/index.php/TCHES/article/view/873
https://tches.iacr.org/index.php/TCHES/article/view/9064
https://tches.iacr.org/index.php/TCHES/article/view/9064

Keng-Yu Chen and Jiun-Peng Chen 301

Dongyan Xu, editors, ACM CCS 2017, pages 1857–1874. ACM Press, Octo-
ber / November 2017.

[Elg85] T. Elgamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–472,
1985.

[FBR+22] Tim Fritzmann, Michiel Van Beirendonck, Debapriya Basu Roy, Patrick
Karl, Thomas Schamberger, Ingrid Verbauwhede, and Georg Sigl. Masked
accelerators and instruction set extensions for post-quantum cryptography.
IACR TCHES, 2022(1):414–460, 2022.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable masking schemes in the presence
of physical defaults & the robust probing model. IACR TCHES, 2018(3):89–
120, 2018. https://tches.iacr.org/index.php/TCHES/article/view/
7270.

[GD23] John Gaspoz and Siemen Dhooghe. Threshold implementations in software:
Micro-architectural leakages in algorithms. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2023(2):155–179, Mar. 2023.

[GGJR+11] Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Rohatgi, et al. A testing
methodology for side-channel resistance validation. In NIST non-invasive
attack testing workshop, volume 7, pages 115–136, 2011.

[GMRR22] Morgane Guerreau, Ange Martinelli, Thomas Ricosset, and Mélissa Rossi.
The hidden parallelepiped is back again: Power analysis attacks on falcon.
IACR TCHES, 2022(3):141–164, 2022.

[GOP22] Si Gao, Elisabeth Oswald, and Dan Page. Towards micro-architectural
leakage simulators: Reverse engineering micro-architectural leakage features
is practical. In Advances in Cryptology – EUROCRYPT 2022: 41st Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Trondheim, Norway, May 30 – June 3, 2022, Proceedings, Part
III, page 284–311, Berlin, Heidelberg, 2022. Springer-Verlag.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In Richard E. Ladner and
Cynthia Dwork, editors, 40th ACM STOC, pages 197–206. ACM Press, May
2008.

[HKL+22] Daniel Heinz, Matthias J. Kannwischer, Georg Land, Thomas Pöppelmann,
Peter Schwabe, and Amber Sprenkels. First-order masked kyber on ARM
cortex-M4. Cryptology ePrint Archive, Report 2022/058, 2022. https:
//eprint.iacr.org/2022/058.

[HPRR20] James Howe, Thomas Prest, Thomas Ricosset, and Mélissa Rossi. Isochronous
gaussian sampling: From inception to implementation. In Jintai Ding and
Jean-Pierre Tillich, editors, Post-Quantum Cryptography - 11th International
Conference, PQCrypto 2020, pages 53–71. Springer, Heidelberg, 2020.

[Inc] NewAE Technology Inc. Chipwhisperer-pro (com-
plete level 3 starter kit). https://store.newae.com/
chipwhisperer-pro-complete-level-3-starter-kit/.

https://tches.iacr.org/index.php/TCHES/article/view/7270
https://tches.iacr.org/index.php/TCHES/article/view/7270
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/058
https://store.newae.com/chipwhisperer-pro-complete-level-3-starter-kit/
https://store.newae.com/chipwhisperer-pro-complete-level-3-starter-kit/

302 Masking Floating-Point Number Multiplication and Addition of Falcon

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 463–481. Springer, Heidelberg, August 2003.

[JMV01] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital
signature algorithm (ecdsa). International journal of information security,
1(1):36–63, 2001.

[KA21] Emre Karabulut and Aydin Aysu. Falcon down: Breaking falcon post-quantum
signature scheme through side-channel attacks. In 2021 58th ACM/IEEE
Design Automation Conference (DAC), pages 691–696, 2021.

[MGTF19] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque.
Masking Dilithium - efficient implementation and side-channel evaluation. In
Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti Yung,
editors, ACNS 19, volume 11464 of LNCS, pages 344–362. Springer, Heidelberg,
June 2019.

[MHS+19] Sarah McCarthy, James Howe, Neil Smyth, Seamus Brannigan, and Máire
O’Neill. BEARZ attack FALCON: Implementation attacks with countermea-
sures on the FALCON signature scheme. Cryptology ePrint Archive, Report
2019/478, 2019. https://eprint.iacr.org/2019/478.

[MMSS19] Thorben Moos, Amir Moradi, Tobias Schneider, and François-Xavier Stan-
daert. Glitch-resistant masking revisited. IACR TCHES, 2019(2):256–292,
2019. https://tches.iacr.org/index.php/TCHES/article/view/7392.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks
- revealing the secrets of smart cards. Springer, 2007.

[MPW21] Ben Marshall, Dan Page, and James Webb. Miracle: Micro-architectural
leakage evaluation: A study of micro-architectural power leakage across
many devices. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2022(1):175–220, Nov. 2021.

[oSTa] National Institute of Standards and Technology. Post-
quantum cryptography standardization. https://
csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization.

[oSTb] National Institute of Standards and Technology. Post-quantum
cryptography standardization. https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022.

[PBY17] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. To BLISS-B or not
to be: Attacking strongSwan’s implementation of post-quantum signatures.
In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017, pages 1843–1855. ACM Press, October / November
2017.

[PFH+20] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirch-
ner, Vadim Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor
Seiler, William Whyte, and Zhenfei Zhang. FALCON. Technical re-
port, National Institute of Standards and Technology, 2020. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

https://eprint.iacr.org/2019/478
https://tches.iacr.org/index.php/TCHES/article/view/7392
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

Keng-Yu Chen and Jiun-Peng Chen 303

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Communications
of the Association for Computing Machinery, 21(2):120–126, February 1978.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Journal on Computing,
26(5):1484–1509, oct 1997.

[SPOG19] Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Güneysu. Effi-
ciently masking binomial sampling at arbitrary orders for lattice-based crypto.
In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume 11443
of LNCS, pages 534–564. Springer, Heidelberg, April 2019.

[ZLYW23] Shiduo Zhang, Xiuhan Lin, Yang Yu, and Weijia Wang. Improved power
analysis attacks on falcon. In Carmit Hazay and Martijn Stam, editors,
EUROCRYPT 2023, Part IV, volume 14007 of LNCS, pages 565–595. Springer,
Heidelberg, April 2023.

	Introduction
	Preliminaries
	Notation
	Falcon Signature Scheme
	Floating-Point Number Multiplication and Addition
	Masking
	Test Vector Leakage Assessment

	Masked Floating-Point Number Multiplication and Addition
	Masked Nonzero Check
	Masked Unsigned Right-Shift
	Masked 64-bit Normalization
	Masked Floating-Point Number Packing
	Masked Floating-Point Number Multiplication
	Masked Floating-Point Number Addition

	Security Proof
	Implementation and Evaluation
	Performance Evaluation
	Security Evaluation
	Discussion about the Leakage of the First-Order Design

	Conclusion

