
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 2, pp. 154–189. DOI:10.46586/tches.v2024.i2.154-189

Impeccable Keccak
Towards Fault Resilient SPHINCS+ Implementations

Ivan Gavrilan1, Felix Oberhansl1, Alexander Wagner1,2, Emanuele Strieder1,2

and Andreas Zankl1,2

1 Fraunhofer Institute for Applied and Integrated Security (AISEC), Garching, Germany,
firstname.lastname@aisec.fraunhofer.de

2 Technical University of Munich (TUM), Munich, Germany,
firstname.lastname@tum.de

Abstract. The standardization of the hash-based digital signature scheme SPHINCS+

proceeds faster than initially expected. This development seems to be welcomed by
practitioners who appreciate the high confidence in SPHINCS+’s security assumptions
and its reliance on well-known hash functions. However, the implementation security
of SPHINCS+ leaves many questions unanswered, due to its proneness to fault
injection attacks. Previous works have shown, that even imprecise fault injections on
the signature generation are sufficient for universal forgery. This led the SPHINCS+

team to promote the usage of hardware countermeasures against such attacks. Since
the majority of operations in SPHINCS+ is dedicated to the computation of the
Keccak function, we focus on its security. At the core, hardware countermeasures
against fault injection attacks are almost exclusively based on redundancy. For hash
functions such as Keccak, straightforward instance- or time-redundancy is expensive
in terms of chip area or latency. Further, for applications that must withstand
powerful fault adversaries, these simple forms of redundancy are not sufficient. To
this end, we propose our impeccable Keccak design. It is based on the methodology
presented in the original Impeccable Circuits paper by Aghaie et al. from 2018. On
the way, we show potential pitfalls when designing impeccable circuits and how the
concept of active security can be applied to impeccable circuits. To the best of our
knowledge, we are the first to provide proofs of active security for impeccable circuits.
Further, we show a novel way to implement non-linear functions without look-up
tables. We use our findings to design an impeccable Keccak. Assuming an adversary
with the ability to flip single bits, our design detects all attacks with three and less
flipped bits. Attacks from adversaries who are able to flip four or more bits are
still detected with a high probability. Thus, our design is one of the most resilient
designs published so far and the only Keccak design that is provably secure within
a bit-flip model. At an area overhead of factor 3.2, our design is competitive with
state-of-the-art designs with less resilience.
Keywords: Keccak, fault injection, impeccable circuits, active security, SPHINCS+,
post-quantum cryptography

1 Introduction
In 2023, NIST released the first draft of FIPS 205, concerning the standardization of the
stateless hash-based digital signature SPHINCS+ [NIS23] with SHAKE-256 [NIS15] as
underlying hash function. The extendable output function SHAKE-256 is built from the
Keccak primitive [BDPvA11]. Initially, the standardization of SPHINCS+ was expected
to move a lot slower, as it was classified as an alternative candidate at the end of the
third round of the NIST PQC standardization process. However, NIST promoted it to a

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-10-15 Accepted: 2023-12-15 Published: 2024-03-12

https://doi.org/10.46586/tches.v2024.i2.154-189
mailto:ivan.gavrilan@aisec.fraunhofer.de,felix.oberhansl@aisec.fraunhofer.de,alexander.wagner@aisec.fraunhofer.de,emanuele.strieder@aisec.fraunhofer.de,andreas.zankl@aisec.fraunhofer.de
mailto:alexander.wagner@tum.de,emanuele.strieder@tum.de
http://creativecommons.org/licenses/by/4.0/

Ivan Gavrilan et. al. 155

standardization candidate and justified this decision with the solid security assumptions of
SPHINCS+ and the fact that it relies on completely different assumptions than all other
schemes selected for standardization [AAC+22].

While the cryptography community is confident in SPHINCS+’s theoretical security,
its implementation security remains a major concern. The first fault attack on the original
SPHINCS scheme was presented in [CMP18]. Since then, the attack was adapted for
SPHINCS+ and demonstrated to be feasible for both software [GKPM18] and hardware
implementations [ALCZ20]. The attack stands out due to its relaxed adversarial model.
An attacker can inject a fault at numerous points in time. It is possible to target the data
flow and the control flow of an implementation in various ways, e.g. it does not matter how
many instructions are skipped or how many data bits are flipped. Further, an adversary
does not need to be in possession of valid signatures. Within a few iterations of the fault
attack, the adversary is able to forge the signature for an arbitrary message. Similar attacks
on the Dilithium signature framework exist [EAB+23, GBP18], but either require more
precise fault injections, the knowledge of valid and faulty signature pairs, or they can be
easily mitigated by countermeasures with minimal overhead. For completeness, it should
be mentioned that also fault attacks targeting Winternitz one-time signatures [WWO+23]
or SHA-3 [BGS15, LAFW17] directly exist. However, since these attacks require more
precise fault injections, which corresponds to a higher expenditure of time and money,
they are not included in the adversarial model for most applications.

In light of its proneness to fault attacks, the SPHINCS+ team recommended investiga-
tion of hardware countermeasures in their submission to the third round of the NIST PQC
standardization process [ABB+22]. Genêt [Gen23] backed this reasoning by showing the
limited applicability of software countermeasures. In particular, caching of intermediate
values could be shown to be ineffective for SPHINCS+. The author comes to the conclusion
that - for software implementations - redundancy is the best option to date, even if it
introduces a significant performance overhead. However, for highly precise fault injection
attacks such as laser fault injection, simple redundancy might be insufficient.

1.1 State-of-the-Art

At hardware level, there are many ways to implement countermeasures efficiently and
reliably. The protection of common control flow modules such as finite-state machines
or bus systems is straightforward, e.g. via integrity bits or sparse encodings. Modules
that implement more complex permutations on large data structures are harder to protect
against physical faults.

Impeccable Circuits. The key idea of the Impeccable Circuits paper [AMR+20] by Aghaie
et al. and its follow-up papers [SRM20, RSM21] was to protect data with concurrent,
redundant processing, where the redundant data is encoded, such that an adversary needs
to flip more than two bits to corrupt the circuit. While the concept behind impeccable
circuits is theoretically sound and provides a thorough protection against physical faults,
it has not seen much adoption for cryptographic algorithms. In [RBSBG20], the authors
apply it to AES and combine it with masking to mitigate power and electromagnetic
side-channel attacks. Their work demonstrates, that designers of impeccable circuits still
need to put a lot of thought into the encoding, such that non-linear permutations can be
implemented efficiently. For their AES design, the authors use an orthogonal encoding
of the AES state. To implement all four operations within an AES round efficiently, the
input of the S-boxes is the decoded output of a correction module. In [BBM+22], various
implementations of impeccable circuits were evaluated with laser fault injection.

156 Impeccable Keccak

Active, Combined, and Composable Security. The resilience of circuits against fault
injection adversaries is hard to measure. In [DN20], the formal notion of dth-order
active security was proposed [DN20], which assumes that an adversary can flip up to
d − 1 wires. It is unclear how an impeccable circuit needs to be designed, such that
it meets this security notion. Current research focuses more on formal approaches to
construct gadgets, i.e. re-usable components, that can be combined into dth-order active
secure circuits [SMG16, DN20, FGM+23, DN21, BEF+23, FRBSG22] and to verify these
circuits [RBFSG22, RBRSS+21, AWMN20, NOV+22]. A different approach is to use
information-theoretic MAC tags as countermeasure against fault injection [RDMB+18,
DMAN+18]. These approaches are almost exclusively combined with countermeasures
against passive side-channel attacks, mostly masking. Further, the approaches used to
model attackers are still evaluated [RBSG23, DN22].

Heuristic Security. Independent from these formal and security-focused approaches,
multiple Keccak designs with security claims purely based on heuristics were proposed.
Representative of this approach, the work of Luo et al. [LLF16] is described here. Other
works that also fall into this category will be used for a detailed analysis later in this
paper. Luo et al. [LLF16] proposed a solution that is based on parity checks. In addition
to the original Keccak function, the system contains a predictor and a compressor.
The predictor uses the inputs of a function to predict parity values of the function’s
outputs. The compressor consumes the outputs and computes its own parity values that
are compared with those from the predictor. The proposed design uses parity checks, i.e.
two bit-flips might suffice to compromise the implementation. Moreover, if the input data
is corrupted at a point in time where the parity check for the last function was completed
and the data is not yet loaded into the next function and its predictor, a single bit-flip is
sufficient.

This design was developed to protect Keccak against random errors, which is more a
safety than a security issue, and fault attacks, which are only relevant for security. In the
safety domain it is common practice to model faults by assuming a certain probability
that bits to flip due to environmental effects. The relevant metric for such designs is the
probability that a certain number of bit-flips is not detected in a sufficiently elaborate
simulation. Therefore the results of heuristic analysis provide a meaningful metric for
the resilience of a design. In that regard, Luo et al. derive an error coverage of 83.6 % of
stuck-at-1 and stuck-at-0 faults. For fault attacks, however, it is common to consider the
worst case scenario, namely an adversary with white-box knowledge of the design and its
flaws, as well as the ability to inject precise faults. It is questionable if an error-coverage
of 83.6 % for random faults is sufficient do mitigate attacks from such an adversary. As a
result, the formal methodologies described above are preferred by the research community,
even though the relationship with realistic fault attacks is still being researched.

1.2 Our Contributions
Since Keccak is the most frequent and time consuming operation during signature
generation, its protection against fault attacks is the first step towards a secure SPHINCS+

implementation. Therefore, in this paper, we focus on the protection of the Keccak
function. We briefly discuss the integration of countermeasures for the complete SPHINCS+

scheme.
We introduce the first Keccak implementation that is resistant against all faults that

manipulate less than four bits. We proof the resilience of the circuit in a formal model, by
showing that our design is 3rd-order active secure. Moreover, this fault (or faults) must be
precise, i.e. the adversary must manipulate values of determined bits, otherwise the attack
will be detected. The bit-flip fault model is widely used in research [AMR+20, DN20] and
was examined in practical works [BBM+22, CGV+22]. Later in this paper, we discuss

Ivan Gavrilan et. al. 157

this fault model in relation to our design. In short, we can derive a strict lower limit for
the number of bit-flips and probabilities for n random bit-flips to corrupt the design. We
show that even for arbitrary faults in the original data successful fault injection into our
design must be highly precise. This mitigates, for example, the grafting trees attack on
SPHINCS+ [CMP18]. Furthermore, we evaluate the real-world resilience of our design
using related work on practical fault attacks and models.

In contrast to current research, we focus only on security against active fault attacks
and ignore passive side-channel attacks, since they are less relevant for SPHINCS+. Our
solution is inspired by the impeccable circuits concept [AMR+20, SRM20, RSM21]. More
precisely, we build on this work and provide the following contributions:

• A generalized investigation how the concept of active security can be applied to
impeccable circuits and what implementation pitfalls need to be avoided on the
example of [SMG16].

• A generalized impeccable AND gate for an efficient processing of the encoded data.

• A formal proof that our impeccable AND gate is 3rd-order strong-non-accumulative.

• A complete impeccable Keccak implementation exploiting the simple and efficient
encoding of sub-structures without a loss of fault resilience. We include proofs that
the complete permutation is 3rd-order active secure.

• A detailed implementation study that demonstrates that our design can be imple-
mented with an area overhead of factor 3.2, a comparison with state-of-the-art designs
and their potential flaws, and a discussion of the practicability of the assumed fault
model.

• A discussion how a complete implementation of SPHINCS+ can be protected.
We publish our impeccable Keccak design and all resources we used during the security

evaluation of our design.1

Outline. Section 2 includes information on the grafting trees attack and the Keccak
function itself. In Section 3, the concepts of active security and impeccable circuits are
revisited, fault attacks on impeccable circuits are formalized, and a method to efficiently
prove the active security of impeccable circuits is presented. Further, a design of an
impeccable AND gate is presented and its active security and non-accumulation are formally
proven. Section 4 describes our encoding of the Keccak state and the design of the five
impeccable Keccak steps. In Section 5 we show our implementation results, compare
them with state-of-the-art designs, propose how a complete SPHINCS+ implementation
can be protected, and discuss the assumed fault model.

2 Background
This section covers the necessary background on the grafting tree fault attack targeting
SPHINCS+ and Keccak. Further, we introduce the notation we use throughout this
paper.

Notation. We perform computations in the finite field F. Most operations are done either
in the binary field F2 or in the extended binary field F2k . We denote matrices by bold
capital letters (e.g. A), matrix elements by capital letters with indices (e.g. A[i, j] or
A(i, j)), vectors by bold small letters (e.g. a), vector elements by small letters with an
index in brackets (e.g. a[i] or a(i)), and single bits or variables by small letters (e.g. a).

1https://github.com/Fraunhofer-AISEC/impeccable-keccak

https://github.com/Fraunhofer-AISEC/impeccable-keccak

158 Impeccable Keccak

f f f f f

r

c

message

absorbing squeezing

digest
trunc

Figure 1: The Keccak sponge function. It consists of two phases: absorbing —the
module consumes the input message, squeezing — Keccak produces the output digest.
The function f represents Keccak-f [b], r denotes the rate, c is the capacity.

2.1 SPHINCS+ and the Grafting Trees Fault Attack

SPHINCS+ is a stateless hash-based digital signature scheme [ABB+22]. It is based on
a combination of Merkle hash trees, Winternitz one-time signatures, and the forest of
random subsets few time signature scheme. In [CMP18] the authors presented the so-called
Grafting Trees fault attack targeting the SPHINCS signing operation. This attack is not
only applicable to SPHINCS but to any signature scheme based on a multi-tree architecture,
i.e. Goldreich or GMSS construction [Gol87, BDK+07] and XMSSMT [HRB13]. Therefore,
SPHINCS+ is affected as well. During the key generation of a multi-tree architecture only
the top-most Merkle tree is generated. All lower Merkle trees and the respective signatures
to authenticate these are only generated during a signing operation. The grafting trees fault
attack exploits these recurrent generations of the same signatures. It does so by introducing
a fault into the message calculation, which is the generation of the public key of one of
the lower Merkle trees. Hence, the same Winternitz one-time key pair signs a tampered
message. A single reuse - a one-time signature key pair signing two different messages -
is sufficient to significantly degrade the security of the signature scheme [GBH18]. The
fault can be introduced in numerous ways and over a long period of time, since it is only
important that the message signed with the one-time signature differs from the original
message. The faulted signature will verify correctly with a high probability, thus verifying
after signing is not a viable countermeasure.

2.2 Keccak

Keccak is a sponge function that is at the core of all SHA-3 hash functions. These, in turn,
are fundamental building blocks of hash-based PQC algorithms such as the SPHINCS+

digital signature scheme. Moreover, SHA-3 is an important building block of many other
cryptographic algorithms.

The Keccak function processes a 3-dimensional block (state) of size b = 5×5×2l, where
l ∈ [0 . . . 6]. Input blocks are subsequently absorbed into the state and a round function
Keccak-f [b] is applied to them. Keccak-f [b] can be defined via general Keccak-p[b, nr]
function, where b is the block size and nr is the number of rounds. Therefore, we only use
the Keccak-f [b] notation in the following. For SHA-3, nr = 24 and b = 1600. As soon as
the complete message is consumed, the hash digest can be squeezed from the Keccak
state (Figure 1).

Keccak-f [b] consists of n = 12 + 2l rounds:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ, (1)

Ivan Gavrilan et. al. 159

y

x

z

block

plane

row

sheet

lane

bit

column

slice

Figure 2: The Keccak state and its substructures (according to [BDPvA11]). The
complete state, also referred to as block, has a size of 5× 5×w elements, sheet and plane
are of dimension 5× w, a slice has a size of 5× 5, row and column are one-dimensional
arrays and consist of 5 elements, lane consists of w elements, the fundamental element is
a single bit.

where θ, ρ, π, χ and ι permutations are defined as:

θ : A(x, y, z) = a(x, y, z)⊕
4⊕
y=0

a(x− 1, y, z)⊕
4⊕
y=0

a(x+ 1, y, z − 1), (2)

ρ : A(x, y, z) = a(x, y, z − c(x,y)), where c(x,y) is a constant, (3)

π : A(x, y, z) = a(x′, y′, z) : (x, y) = (y′, 2x′ + 3y′), (4)

χ : A(x, y, z) = a(x, y, z)⊕ (a(x+ 1, y, z) ∧ a(x+ 2, y, z)), (5)

ι : A(0, 0, z) = a(0, 0, z)⊕ rc(i, z), where rc(i) is the i-th round constant. (6)

3 Efficient and Active-secure Impeccable Circuits
This section reiterates the principles of active security and impeccable circuits as described
in [DN20] and [AMR+20]. Further, we revisit the coding scheme, which has already been
applied to secure PRESENT [SMG16] and AES [RBSBG20] implementations against fault
attacks. Subsequently, we establish a methodology to analyze the active security of linear
and non-linear impeccable circuits efficiently. According to it, we show that, although
the design of linear impeccable circuits appears to be simple, it involves pitfalls that
reduce their active security order. We demonstrate this on the example of [SMG16]. We

160 Impeccable Keccak

also propose a novel mechanism for the secure implementation of non-linear functions in
presence of a coding scheme. This approach is used to introduce a generalized impeccable
AND gate that will be proven to be active secure and strong non-accumulative.

3.1 Active Security
Fault attacks are classified as active attacks, where the attacker actively tampers with the
circuit to violate its functionality or corrupt the processed data. Therefore, circuits can be
classified according to their resilience against such attacks. We use the definition of active
security from [DN20].
Definition 1. Order of active security (according to [DN20]). A gadget (circuit)
is dth-order active secure if any set of d faults on the gadget’s (circuit’s) intermediate
variables results in either abort or a correct output.
Remark 1. In contrast to [DN20], we use d instead of k for the active security notation.
We also allow the attacker to violate input and output variables.

According to Definition 1, we can define a fault.
Definition 2. Fault. A fault injected into the circuit is an unexpected modification of
a single variable.
Remark 2. Variables can be represented as vectors or matrices (in the instance of Keccak
e.g. as shown in Figure 2). However, the smallest representation of the variable is a bit.
Therefore, in this paper, we consider variables as single bits. Further, a bit can be an
intermediate value in combinatorial logic or a value stored inside a flip-flop.

According to our remarks, active security can also be expressed as follows. Assume,
there exists a circuit F that applies a function f(·) to the input value x. Let f(x) be
vulnerable to fault injection. Considering that f(x) can be calculated redundantly (either
time- or instance/area- redundant), we index it as f(x)i. The result of F is then a sequence
f(x)1, f(x)2 . . . f(x)n. If an error is present, it is detected if:

∀ i, j ∈ [1, n] ∃ f(x)i 6= f(x)j (7)

If i = j, the given condition is not violated. Therefore, the minimum positive number of
variables that has to be modified to violate Equation (7), is the order of the active security
of F .

The authors of [DN20] proposed the notions of non-accumulation and strong non-
accumulation, which help to prove the active-security of a circuit composed from smaller
gadgets.
Definition 3. d-Non-Accumulative (d-NA) (according to [DN20]). A gadget
(circuit) F is d-NA if for any set of d′ ≤ d errors, the gadget (circuit) either aborts or gives
an output with at most d′ errors.
Definition 4. d-Strong Non-Accumulative (d-SNA) (according to [DN20])). A
gadget (circuit) F is d-SNA if for any set of d1 errors on each input and every set of d2
errors on the intermediate values, with d1 + d2 ≤ d, the gadget (circuit) either aborts or
gives an output with at most d2 errors.

A circuit that is built only from d-SNA gadgets is d-NA and therefore also dth-order
active secure. In this paper, we either use these composability notions from [DN20] or
our own methodology to prove the active security of impeccable circuits. We show that,
for impeccable circuits, the non-accumulation notions can be replaced by other security
requirements (Section 3.3.1, Section 3.3.3) and how impeccable circuits can be verified
efficiently for these requirements. These notions are required for impeccable circuits, since
the validation of their d-NA and d-SNA properties is not always trivial. However, if an
impeccable circuit is d-NA or d-SNA, the security analysis can be simplified.

Ivan Gavrilan et. al. 161

f(·) f ′(·)

P

S

x

f(x) s

F

Figure 3: Structure of the module F according to [AMR+20]. The input vector x is
encoded by P and processed by f ′(·). The checkpoint S analyzes the outputs of f(·) and
f ′(·) and produces the signal s, which depends on the correctness of the results.

3.2 Impeccable Circuits
Aghaie et al. [AMR+20] proposed a general solution for the reliable implementation of a
function f(·) in hardware. Its generalized structure is shown in Figure 3. The module
F encodes the input vector x = (x1 x2 . . . xn) by P : x 7→ P(x) and computes f(x) and
f ′(P(x)), assuming f ′(·) exists. Then let y = f(x) and y′ = f ′(P(x)). A checkpoint S
analyzes the results and raises a signal s, depending on the correctness of y and y′. The
checkpoint function can therefore be summarized as s = S(y,y′,P).

Richter-Brockmann et al. [RBSBG20] proposed an impeccable circuit design for AES.
Subsequently, we will use their work as an example to demonstrate how impeccable circuits
can be constructed. For encoding, they used the systematic Hamming Code C(8, 4, 4)2
with the matrix G4×8 =

[
I4 P4

]
∈ F4×8

2 , where

P4 =

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

 (8)

Throughout this section, we use P instead of P4. Recall that a coding scheme C can
be written as C(n, k, d)q, where n is the code length, k its cardinality, d the minimum
distance, and q the size of the alphabet. For the given code, n = 8, k = 4, d = 4, and q = 2
(the code operates on data in the extended binary field F2k). The choice of the matrix
P has the advantage that it is self-inverse in F4×4

2 , such that P = P−1. Therefore , the

corresponding parity-check matrix, can be represented as H8×4 =
[
P
I

]
.

Once the code C is fixed, the redundancy x′ of a binary vector x ∈ F2k can be calculated
as x′ = x ·P. Then the code word c = x ·G = (x · I,x ·P) = (x,x′). So, P can be defined
as P : P(x) = x ·P.

162 Impeccable Keccak

In this paper, we use a slightly modified coding scheme, shown in Equation (9). A
matrix like this has also been used in [SMG16], a work that laid the foundation for
building secure circuits based on encoded data and that even precedes the original work
on impeccable circuits [AMR+20]. The en-/decoding matrix can be represented as:

P′ =

P 0˜ 0˜ · · · 0˜0˜ P 0˜ · · · 0˜0˜ 0˜ P · · · 0˜...

...
...

0˜ 0˜ 0˜ · · · P

 , (9)

where P = P4 as defined in Equation (8) and 0˜ is a four-by-four matrix with elements of
the value zero. The justification of this choice is given in Section 4.

Now, a given string c ∈ F4N
2 can be represented as a set of N words c(i), such that

each c(i) is encoded with P. Assume, there exist the functions g(·) and g′(·) that apply
the function f(·) and the corresponding function f ′(·), where:

f ′ = P ◦ f ◦P−1 (10)

due to linearity of f , to every c(i). Therefore, g′ can also be defined as:

g′ = P′ ◦ g ◦P′−1 (11)

However, this does not hold for non-linear permutations. Subsequently, we demonstrate
an AND function for words c1 and c2, which are encoded with P. If instead of P, the
matrix P′ is used, the approach works analogously by applying the AND gate to each pair
of codewords c(i)

1 , c(i)
2 . However, before demonstrating our impeccable circuit designs, we

formally define an adversary’s goal in presence of a coding scheme.

3.3 Fault Attacks on Impeccable Circuits
In this part, we define the success criteria of a fault injection attack on impeccable circuits
that use either P (Equation (8)) or P′ (Equation (9)). First, we revisit the fact that an
attacker is able to inject faults into any input, output and intermediate variables. Her
goal is to obtain from a given codeword c = (x,x′) of a code C a valid codeword ce ∈ C,
such that ce 6= c by introducing an error e = (ex, ex′). If the resulting codeword ce is
invalid, the modification (the error e) can be detected by the checkpoint or a module with
a similar functionality.

3.3.1 Fault Attacks on Linear Impeccable Circuits

For a linear impeccable circuit F that performs the linear functions f(·) and f ′(·), assume,
the adversary manipulates output, intermediate and input variables.

Attack on output variables. An impeccable circuit F produces c = (x,x′). Therefore,
if the attacker tries to manipulate c with e, such that ce = c + e, e has to be a codeword
in C, since c, ce ∈ C. Codewords in C have a minimum distance d, therefore the Hamming
weight of e must be at least d for the attack to succeed. Therefore, if the attacker tries to
manipulate output variables, she has to inject an error e, such that e ∈ C and HW (e) ≥ d.

Ivan Gavrilan et. al. 163

Attack on input variables. An impeccable circuit F consumes an input c = (x,x′) and
produces F(c) = (f(x), f ′(x′)). The attacker manipulates c with an error e = (ex, ex′).
Therefore,

ce = (f(x + ex), f ′(x′ + ex′))
= (f(x) + f(ex), f ′(x′) + f ′(ex′))
= (f(x), f ′(x′)) + (f(ex), f ′(ex′))
= F(c) + F(e)

Since F(c) is a valid codeword and ce must be valid as well, the attack is successful, if
F(e) 6= 0 is a valid codeword in C for a given e.

Attack on intermediate variables. An impeccable circuit F applies the f(·) and f ′(·)
functions to its inputs. Moreover f and f ′ can be decomposed to f = fn◦· · ·◦fm◦· · ·◦f2◦f1
and f ′ = f ′n ◦ · · · ◦ f ′m ◦ · · · ◦ f ′2 ◦ f ′1, such that fi and f ′i are linear for all i ∈ [1, n]. Assume,
that c = (x,x′) is the input of fm(·) and f ′m(·). Let F = fn ◦ · · · ◦fm and F ′ = f ′n ◦ · · · ◦f ′m.
Therefore, if an error is injected into an intermediate variable c:

ce = (F (x + ex), F ′(x′ + ex′))
= (F (x) + F (ex), F ′(x′) + F ′(ex′))
= (F (x), F ′(x′)) + (F (ex), F ′(ex′))
= Fs(c) + Fs(e)

where Fs ⊂ F . Since Fs(c) and ce are valid codewords, Fs(e) : Fs(e) 6= 0 must be a
codeword in C for a successful attack.

Attack on multiple intermediate variables. Similar to the previous paragraph, we can
write f(·) and f ′(·) as f = fn ◦ · · · ◦ fm ◦ · · · ◦ f2 ◦ f1 and f ′ = f ′n ◦ · · · ◦ f ′m ◦ · · · ◦ f ′2 ◦ f ′1
and fi and f ′i are linear for all i ∈ [1, n]. Let F1 = fm ◦ · · · ◦ f2, F ′1 = f ′m ◦ · · · ◦ f ′2,
F2 = fn ◦ · · · ◦ fm+1, F ′2 = f ′n ◦ · · · ◦ f ′m+1 and let c = (x,x′) be the input of F1 and F ′1.
The attacker injects e1 = (ex1 , ex′

1
) into c and e2 = (ex2 , ex′

2
) into the input of F2 and F ′2.

ce = (F2(F1(x + ex1) + ex2), F ′2(F ′1(x′ + ex′
1
) + ex′

2
))

= (F2(F1(x)) + F2(F1(ex′
1
)) + F2(ex′

2
), F ′2(F ′1(x′)) + F ′2(F ′1(ex′

1
)) + F ′2(ex′

2
))

= (F2(F1(x)), F ′2(F ′1(x′))) + (F2(F1(ex1)), F ′2(F ′1(ex′
1
))) + (F2(ex2), F ′2(ex′

2
))

= Fs2(Fs1(c)) + Fs2(Fs1(e1)) + Fs2(e2)

where Fs1 ,Fs2 ⊂ F . Therefore, the codeword Fs2(Fs1(e1)) + Fs2(e2) 6= 0 must be valid
in C.

Combination of attacks. An attacker may also combine attacks on different sets of
variables. In this case, a recombination of the equations above is required. For example, if
for an attack on multiple intermediate variables F1 = fm ◦ · · · ◦ f1 and F ′1 = f ′m ◦ · · · ◦ f ′1,
the attack combines faults on input and intermediate variables. In general, the attack is
successful if ce ∈ C for a given e.

Encoding with P′. So far, a single impeccable circuit for a linear function processing x
and x′ = x ·P was considered. However, if P′ is used, each circuit F consumes, processes
and produces multiple codewords, such that ce and e can be represented as a set of
codewords. So, the attack criteria are generalized to:

164 Impeccable Keccak

• attack on output variables: ∀ e(i) ∈ e, e(i) ∈ C,

• attack on input variables: ∀ e(i) ∈ F(e), e(i) ∈ C,

• attack on intermediate variables: ∀ e(i) ∈ Fs(e), e(i) ∈ C,

• attack on multiple intermediate variables: ∀ e(i) ∈ Fs2(Fs1(e1)) + Fs2(e2), e(i) ∈ C,

• attack in general: ∀ c(i)
e ∈ ce, c(i)

e ∈ C.

As stated above, a combination of attacks can be represented with a combination of the
given equations. It is clear, that if we use P instead of P′, these criteria are still valid,
since e and ce may contain only one element (word).

Active Security of Linear Impeccable Circuits. From our investigations above, we can
conclude that the circuit F is dth-order active secure if for any combination of faults ej
with 0 <

∑
j HW (ej) ≤ d exists at least one invalid codeword e(i) ∈ e and e(i) 6∈ C, such

that the fault is detected.

3.3.2 Analyzing the Active Security Order of a Linear Impeccable Circuit

In this example, we demonstrate how the criteria above can be applied to linear impec-
cable circuits and why their security analysis is important. For this purpose we use a
design proposed in [SMG16]. It should be noted, that [SMG16] precedes the general
concept of impeccable circuits [AMR+20], while also using the concept of processing
redundant encoded data. We consider the Add Constant step in an implementation of
the Present [BKL+07] cipher from [SMG16]. An input column vector r ∈ F6

2 is extended
with two additional bits, such that r′ = (r, 00) and encoded with a matrix

P′ =
[
P 0˜0˜ P

]
such that c = r′ · P′. Since the same P as in [RBSBG20] (described in Section 3.2,
recall that d = 4) and in this paper is used and the Add Constant step is linear, the
circuit should ideally be 3rd-order active secure. The resulting Add Constant matrix is
represented as:

ULcheck
=

0 0 0 1 0 0 0 0
0 1 1 0 1 1 1 0
1 0 1 0 1 1 1 0
1 1 0 0 1 1 1 0
0 0 0 0 1 1 0 1
0 0 0 0 1 1 0 1
1 1 1 0 1 1 0 1
1 1 1 0 0 0 1 0

,

where ULcheck
is defined in [SMG16].

Remark 3. For any faults in intermediate variables of a vector-matrix multiplication it is
easy to see, that a faulted bit does not propagate to more than one output bit. Consider a
vector a ∈ Rn and a matrix B ∈ Rn×n. Intermediate variables of a ·B are represented by
aibi,j . These variables are unique and occur only once in the operation.

Since c′ = c ·
[
UL 0˜0˜ ULcheck

]
, we can formalize an attack on the implementation as:

ce = c ·
[
UL 0˜0˜ ULcheck

]
+ e1 ·

[
UL 0˜0˜ ULcheck

]
+ e2

Ivan Gavrilan et. al. 165

Assume, e1 = (0000000000001000). Therefore,

e1 ·
[
UL 0˜0˜ ULcheck

]
= (0000000000001101)

If e2 = (0000001000000000) and

e = e1 ·
[
UL 0˜0˜ ULcheck

]
+ e2 = (0000001000001101) ≡ (00000000, 00101101) = (e(1), e(2))

the attack is successful, since e(1), e(2) ∈ C and HW (e(2)) > 0, and therefore, c(1)
e , c(2)

e ∈ C
as ce = c′ + e. So, the implementation can be broken with two faults. We can automate
the process of finding such errors with an overall Hamming weight smaller than four,
which lead to a set of valid codewords. For this purpose we went through all relevant
combinations of e1 and e2 and checked, whether an output vector e is non-zero and
contains only valid codewords. As a result, we discovered that the implementation can be
broken with two faults in five scenarios and three faults in 55 scenarios. In this case, we
could disprove 3rd-order active security for the investigated circuit. Moreover, we found
that, if the function f(·) is linear, we can analyze the fault propagation for f(·) and f ′(·)
independent of the processed data.

Example. Assume, the the originally processed data is in F64
2 and P′ ∈ F64×64

2 is used.
Therefore, the codeword c is 128 bit long. This codeword is processed by the impeccable
circuit F . Assume the attacker is able to inject up to 10 faults into the input variables
of F . Let eIN be a fault applied to the input c, where HW (eIN) ≤ 10. In case of a
straightforward simulation, that does not consider that we deal with encoded inputs,
one would first have to evaluate all possible values of eIN , which amounts to

∑10
j=1

(128
j

)
possibilities. Further, one would have to simulate all possible values for eIN with all possible
input codewords, so 264∑10

j=1
(128
j

)
combinations would have to be checked. However,

from Section 3.3.1, we know that e = F(eIN). This means that the simulation does
not need to care about the processed codeword. So now, only

∑10
j=1

(128
j

)
possible error

patterns, where
(128
j

)
corresponds to all errors with a Hamming weight of j, need to be

considered. This reduces the verification effort from hardly feasible to a program that can
easily be run on a laptop. For each of the possible error patterns, it needs to be checked if
e is either a valid codeword or a set of valid codewords. If this is not the case for any of
the possible patterns, the linear impeccable circuit would be 10th-order active secure.

3.3.3 Fault Attacks on Non-Linear Impeccable Circuits

In contrast to linear impeccable circuits, non-linear circuits are more difficult to design
and verify for active security. Let F be an impeccable circuit, such that f(·) and f ′(·) are
non-linear functions.

Attack on output variables. An attack on the output codeword c is successful if and
only if there exists e with HW (e) > 0, such that ce = c + e ∈ C =⇒ e ∈ C. This is the
same as with linear impeccable circuits.

Attack on input variables. If an error e = (ex, ex′) is injected into the input codeword
c = (x,x′):

ce = (f(x + ex), f ′(x′ + ex′)) = F(x + ex,x′ + e′x) = F(c + e)

Since f(·) and f ′(·) are non-linear, F(c+e) 6= F(c)+F(e). Therefore, an analysis of errors
independent from the processed data is not possible. So, the circuit F is compromised if
there exists an e with HW (e) > 0, such that ce ∈ C and ce 6= F(c).

166 Impeccable Keccak

Attack on intermediate variables. If f(·) and f ′(·) are composed from other non-linear
functions, we can write f = fn ◦ · · · ◦ fm ◦ · · · ◦ f1 and f ′ = f ′n ◦ · · · ◦ f ′m ◦ · · · ◦ f ′1.
Assume the attacker tries to manipulate the inputs of fm and f ′m. For this purpose, we
define F = fn ◦ · · · ◦ fm and F ′ = f ′n ◦ · · · ◦ f ′m and x, x′ be outputs of fm−1 and f ′m−1
correspondingly, such that c = (x,x′). Then,

ce = (F (x + ex), F ′(x′ + ex′)) = Fs(x + ex,x′ + ex′) = Fs(c + e),

where Fs ⊂ F . As above, the criteria for a successful attack given e with HW (e) > 0 is
ce = Fs(c + e) ∈ C and ce 6= Fs(c).

Attack on multiple intermediate variables. The success condition for an attack on
multiple intermediate variables is a generalization of the formula derived in the previous
paragraph:

ce = (F2(F1(x + ex1) + ex2), F ′2(F ′1(x′ + ex′
1
) + ex′

2
))

= Fs2(Fs1(x + ex1 ,x′ + ex′
1
) + (ex2 , ex′

2
))

= Fs2(Fs1(c + e1) + e2),

where Fs1 ,Fs2 ⊂ F . Therefore, a circuit is compromised if a combined manipulation with
e1 and e2, where HW (e1) +HW (e2) > 0, results in a valid codeword ce ∈ C, such that
ce 6= Fs2(Fs1(c)). The equations for the manipulation of more intermediate variables, as
well as the combination of attacks on different variables can be derived from the given
description.
Remark 4. As shown above, analysis of non-linear impeccable circuits without the knowl-
edge on the processed data is not possible. Therefore, the verification of non-linear
impeccable circuits can not be simplified as discussed in Section 3.3.2.

Encoding with P′. As for linear circuits, an attack’s success condition for an encoding
with P′ can be written as follows:

• attack on output variables: ∀ e(i) ∈ e, e(i) ∈ C,

• attack on other variables: ∀ c(i) ∈ ce, c(i) ∈ C.

Similar to Section 3.3.1, we can now derive a general statement on the active security
of non-linear impeccable circuits, even though it does not lead to a simplified verification
procedure as with linear impeccable circuits (Section 3.3.2).

Active Security of Non-Linear Impeccable Circuits. An impeccable circuit F is dth-
order active secure if for any combination of errors ej with 0 <

∑
j HW (ej) ≤ d, the

faulty output ce 6∈ C or ∀ c(i)
e ∈ ce exist at least one c(i)

e 6∈ C. It is observable that this
definition is exactly the same as in Section 3.3.1.

3.4 Fault Attacks on Combined Impeccable Circuits
As stated above, the active security of non-linear impeccable circuits is difficult to verify.
Therefore, if a circuit F consists of a linear Fl and a non-linear Fn sub-circuits, the
verification complexity cannot be reduced. However, if Fn is d-SNA (see Section 3.1) for a
given [n, k, d+ 1] linear code, the simplification is possible.

Assume, Fn is d-SNA. So, for a given e with HW (e) ≤ d (we assume that e can be
injected into any variables of Fn) holds:

ce = Fn(c, e) = Fn(c) + e′,

Ivan Gavrilan et. al. 167

where HW (e′) ≤ HW (e) ≤ d and e′ is the error, which affects the output of Fn in the
same way as e. This is guaranteed by the d-SNA property. Therefore for a combined
impeccable circuit F = Fl ◦ Fn, we can express any fault attacks as:

ce = Fl(Fn(c, e1), e2) + e3 = Fl(Fn(c) + e′1, e2) + e3

= Fl(Fn(c) + e′1 + e′2) + e3

where e2 is mapped to the input of Fl as e′2 due to its linearity and HW (e′1) ≤ HW (e1).

ce = Fl(Fn(c)) + Fl(e′1 + e′2) + e3

= F(c) + Fl(e′1 + e′2) + e3 = F(c) + Fl(e′1, e2)
= F(c) + eOUT ,

where eOUT = Fl(e′1 + e′2) + e3 = Fl(e′1, e2) + e3.
Remark 5. Here, we assume that errors e1 and e2 can be injected into any variables of Fn
and Fl correspondingly.

So, F is compromised if for a set of errors {e1, e2, . . . , eN}, where 0 <
∑N
i=1 HW (ei),

eOUT ∈ C (or ∀ e(i) ∈ eOUT , e(i) ∈ C) and HW (eOUT) > 0. Therefore, F is dth-order
active secure if the given condition does not hold for 0 <

∑N
j=1 HW (ej) ≤ d.

3.5 Generalized Impeccable AND Gate
Here, we propose a methodology to construct an impeccable AND gate with the coding
scheme from Section 3.2. Our approach avoids look-up tables and is useful for the design
of impeccable circuits for Keccak and various other algorithms.

3.5.1 Construction of fAND
Let u and v two 4-bit vectors u = (u0 u1 u2 u3)T and v = (v0 v1 v2 v3)T , u,v ∈ F24 . For
simplicity of description, we assume that input vectors are column vectors. All operations
on them are done in F24 . We re-use P from Equation (8) and C(8, 4, 4)2. So, the vectors u

and v are encoded with G =
[

I
P

]
. The corresponding codewords cu, cv can be represented

as cu = (u,u′), cv = (v,v′), where

u′ = P · u =

u0 + u1 + u2
u0 + u1 + u3
u0 + u2 + u3
u1 + u2 + u3

 =

u′0
u′1
u′2
u′3

 v′ = P · v =

v0 + v1 + v2
v0 + v1 + v3
v0 + v2 + v3
v1 + v2 + v3

 =

v′0
v′1
v′2
v′3

A straightforward approach for the fAND implementation consists of three steps: decode
cu and cv, compute u ∧ v and encode the result:

r = G · ((H · cu) ∧ (H · cv)) , (12)

where H = [P I]. It is observable that any error introduced after decoding cu and cv and
before encoding u ∧ v will be encoded in r, since r can be expressed as

r = (u ∧ v,P · (u ∧ v)) = (u ∧ v,P · ((P · u′) ∧ (P · v′)))

Obviously the processing of decoded data is a vulnerability that must be avoided at all
costs. Therefore, we define a function fAND that performs AND operation on encoded
data without the decoding:

168 Impeccable Keccak

r = (u ∧ v, fAND(u′,v′))

Assume, ∃ fAND : (u′ ∧ v′) 7→ P · (u ∧ v). We can see that

u′ ∧ v′ =

u0 + u1 + u2
u0 + u1 + u3
u0 + u2 + u3
u1 + u2 + u3

 ∧

v0 + v1 + v2
v0 + v1 + v3
v0 + v2 + v3
v1 + v2 + v3

 =

(u0 + u1 + u2)(v0 + v1 + v2)
(u0 + u1 + u3)(v0 + v1 + v3)
(u0 + u2 + u3)(v0 + v2 + v3)
(u1 + u2 + u3)(v1 + v2 + v3)

=

u0v0 + u0v1 + u0v2 + u1v0 + u1v1 + u1v2 + u2v0 + u2v1 + u2v2
u0v0 + u0v1 + u0v3 + u1v0 + u1v1 + u1v3 + u3v0 + u3v1 + u3v3
u0v0 + u0v2 + u0v3 + u2v0 + u2v2 + u2v3 + u3v0 + u3v2 + u3v3
u1v1 + u1v2 + u1v3 + u2v1 + u2v2 + u2v3 + u3v1 + u3v2 + u3v3

(13)

has to be mapped to

P · (u ∧ v) = P ·

u0v0
u1v1
u2v2
u3v3

 =

u0v0 + u1v1 + u2v2
u0v0 + u1v1 + u3v3
u0v0 + u2v2 + u3v3
u1v1 + u2v2 + u3v3

 (14)

Therefore, we define a correction function Y(u′,v′), such that

fAND(u′ ∧ v′) = u′ ∧ v′ + Y(u′,v′) = u′ ∧ v′ + y (15)

From Equation (15) follows

y = P · (u ∧ v) + u′ ∧ v′ (16)

Therefore,

u′ ∧ v′ + y = u′ ∧ v′ +

u0v1 + u0v2 + u1v0 + u1v2 + u2v0 + u2v1
u0v1 + u0v3 + u1v0 + u1v3 + u3v0 + u3v1
u0v2 + u0v3 + u2v0 + u2v3 + u3v0 + u3v2
u1v2 + u1v3 + u2v1 + u2v3 + u3v1 + u3v2

︸ ︷︷ ︸

y

= P · (u ∧ v)

This shows that fAND can be constructed from a normal AND gate and a correction
vector y = Y(u′,v′). The latter can be written as

y =

u0(v1 + v2) + u1(v0 + v2) + u2(v0 + v1)
u0(v1 + v3) + u1(v0 + v3) + u3(v0 + v1)
u0(v2 + v3) + u2(v0 + v3) + u3(v0 + v2)
u1(v2 + v3) + u2(v1 + v3) + u3(v1 + v2)

We see that, at least for now, we only shifted the problem of processing decoded data to y.

Ivan Gavrilan et. al. 169

However, we can also construct y using only u′ and v′. For this, we first extend y:

y =

u0v1 + u0v2 + u1v0 + u1v2 + u2v0 + u2v1 + u0v0
u0v1 + u0v3 + u1v0 + u1v3 + u3v0 + u3v1 + u0v0
u0v2 + u0v3 + u2v0 + u2v3 + u3v0 + u3v2 + u0v0
u1v2 + u1v3 + u2v1 + u2v3 + u3v1 + u3v2 + u1v1

+

u0v0 + u0v0 + u1v1 + u1v1 + u2v2 + u2v2
u0v0 + u0v0 + u1v1 + u1v1 + u3v3 + u3v3
u0v0 + u0v0 + u2v2 + u2v2 + u3v3 + u3v3
u1v1 + u1v1 + u2v2 + u2v2 + u3v3 + u3v3

=

(u0 + u1)(v0 + v1) + (u0 + u2)(v0 + v2) + (u1 + u2)(v1 + v2)
(u0 + u1)(v0 + v1) + (u0 + u3)(v0 + v3) + (u1 + u3)(v1 + v3)
(u0 + u2)(v0 + v2) + (u0 + u3)(v0 + v3) + (u2 + u3)(v2 + v3)
(u1 + u2)(v1 + v2) + (u1 + u3)(v1 + v3) + (u2 + u3)(v2 + v3)

The decomposition of y gives:

D =

(u0 + u1)(v0 + v1) (u0 + u2)(v0 + v2) (u1 + u2)(v1 + v2)
(u0 + u1)(v0 + v1) (u0 + u3)(v0 + v3) (u1 + u3)(v1 + v3)
(u0 + u2)(v0 + v2) (u0 + u3)(v0 + v3) (u2 + u3)(v2 + v3)
(u1 + u2)(v1 + v2) (u1 + u3)(v1 + v3) (u2 + u3)(v2 + v3)

 (17)

yi =
∑
j

Di,j ∀yi ∈ y (18)

The matrix D can be decomposed further into two other matrices U and V:

U =

u0 + u1 u0 + u2 u1 + u2
u0 + u1 u0 + u3 u1 + u3
u0 + u2 u0 + u3 u2 + u3
u1 + u2 u1 + u3 u2 + u3

 V =

v0 + v1 v0 + v2 v1 + v2
v0 + v1 v0 + v3 v1 + v3
v0 + v2 v0 + v3 v2 + v3
v1 + v2 v1 + v3 v2 + v3

such that:

D = U ∧V : Di,j = Ui,j · Vi,j (19)
Further, U and V can be obtained from u′ and v′ directly:

U =

u′2 + u′3 u′1 + u′3 u′1 + u′2
u′2 + u′3 u′0 + u′3 u′0 + u′2
u′1 + u′3 u′0 + u′3 u′0 + u′1
u′1 + u′2 u′0 + u′2 u′0 + u′1

 V =

v′2 + v′3 v′1 + v′3 v′1 + v′2
v′2 + v′3 v′0 + v′3 v′0 + v′2
v′1 + v′3 v′0 + v′3 v′0 + v′1
v′1 + v′2 v′0 + v′2 v′0 + v′1

 (20)

such that:

Ui,j =
3∑
k=0
k 6=i

k 6=2−j

u′k Vi,j =
3∑
k=0
k 6=i

k 6=2−j

v′k (21)

So, Equation (21), Equation (19) and Equation (18) allow the computation of y from u′
and v′ and, therefore, evaluate an AND operation without decoding data, such that

cu∧v = (u ∧ v, fAND(u′,v′)) , (22)

where cu∧v = r from Equation (12). This approach works for any square matrix Pk with
zeros on the off-diagonal and ones in other positions, where k = 2N, and which is a part of
a generator matrix. Moreover, from the AND gate, we can easily construct other non-linear
gates such as an OR gate, since u ∨ v = (u + v) + u ∧ v.

170 Impeccable Keccak

u
v

u′

v′

Y

S

u ∧ v

fAND(u′, v′)

s

fAND

Figure 4: Impeccable AND gate. Operands: cu = (u|u′) and cv = (v|v′). Result:
r = (u∧ v|P · (u∧ v)). The checkpoint compares decoded and encoded data to ensure the
integrity of the input. If the integrity is violated, the error signal s is raised to abort the
operation.

3.5.2 Active Security of fAND

We established that we can construct an impeccable AND gate by applying fAND to
the encoded data independently, i.e. without introducing new dependencies between the
decoded and encoded data processed by F . However, this does not mean that the code’s
minimum distance d is still the lower bound for bit faults an attacker needs to corrupt
the AND gate. In fact, it can be seen that a single bit error in u′ or v′ flips up to three
output bits of fAND (Equation (20)). Accordingly, the adversary would have to flip only
one additional bit in either u, v or u ∧ v to successfully manipulate the circuit with a
total of two faults. Therefore, using the concept from [DN20], the circuit is only 1st-order
active-secure.

However, if we insert a checkpoint before the fAND function, it guarantees the integrity
of cu = (u,u′) and cv = (v,v′). The overall structure of our impeccable AND gate is
shown in Figure 4. For the original AND operation, a single bit-flip in input variables
does not affect more than one output bit. The security of the checkpoint itself is analyzed
in Section 3.5.3. Therefore, we assume that inputs are secured against fault injection up to
order d and analyze the remaining part of the circuit, which is described by Equations (18),
(19) and (21).

If the attacker injects a single bit error into y, ∃! yi ∈ y : yi ← yi + 1 that implies
∃! ri ∈ r : ri ← ri + 1 (Equation (15)). So, a single fault in y corrupts only one output bit
in r.

If the attacker injects a single bit error into D, such that ∃!Di,j ← Di,j + 1 (Equa-
tion (19)), then ∃! yi ∈ y : yi ← yi + 1 = 1 +

∑
j Di,j (Equation (18)), which does not

affect more than one bit of r.
If the attacker injects a single fault into U, such that ∃!Ui,j ← Ui,j + 1, then ∃!Di,j ∈

D : Di,j = (Ui,j + 1)∧Vi,j that implies ∃≤1Di,j ← Di,j + 1 (Equation (19), Equation (18)),
which does not affect more than one bit of r. A single bit-flip of V propagates in the same
way and also does not flip more than one bit of r. Since the distance of C is 4 and no error

Ivan Gavrilan et. al. 171

alters more than one output bit, the function fAND is 3rd-order active secure.
Remark 6. This proof can be extended for a given Hamming Code and a square matrix
Pk with zeros on the off-diagonal and ones in other positions, where k = 2m, with m ∈ Z.

3.5.3 Active Security of the Checkpoint

As shown above, the AND operation is 3rd-order active secure, if the checkpoint is able to
detect up to three input faults. Therefore, a combination of AND and fAND is 3rd-order
active secure, if for any up to three faults, the circuit produces a non-valid codeword or an
error signal.

The checkpoint S can be implemented in two ways: it either computes u′ × P and
compares it with u (Checkpoint 1), or u×P and compares it with u′ (Checkpoint 2). In
this section we analyze the order of active security for both methods. For this analysis,
we first describe how an error propagates through P. Since this corresponds to a generic
vector-matrix multiplication, it is easy to see that eOUT = eIN ·P (Section 3.3.1), therefore,
for any input error eIN with HW (eIN) ≤ d holds:

HW (eOUT) =

0, if HW (eIN) = 0
1, if HW (eIN) = 3
2, if HW (eIN) = 2
3, if HW (eIN) = 1
4, if HW (eIN) = 4

Hence, faults in intermediate variables are equivalent to faults in output variables in this
case. For faults in output variables, it is easy to see that the observations from Section 3.3.1
and Section 3.3.3 hold. We also emphasize that the comparator outputs 0, if inputs b and
c are equal, 1 otherwise. Therefore:

s =
{

0, if val(b)⊕ val(c) = 0 ⇐⇒ HW (val(b)⊕ val(c)) = 0
1 otherwise

Since all calculations are done in the extended binary field, ⊕ is replaced by +.

P
==?

u

u′
s

a

c

b

(a) Checkpoint 1.

P
==?

u′

u
s

a

c

b

(b) Checkpoint 2.

Figure 5: The internal structure of the checkpoint. u and u′ are parts of the codeword
c = (u,u′). The signal s is the output that is equal to 0, if comparator inputs are the
same, 1 otherwise. Wires (communication channels) are denoted by a, b and c.

Checkpoint 1. A representation of Checkpoint 1 is shown in Figure 5a. Note that the
checkpoint is implemented before the fAND function. Therefore, an error injected into u
or u′ propagates either to the AND or the fAND gate via a or c. Therefore, the attacker
is required to manipulate both u and u′. So, if a single bit in u and u′ is flipped, the
corresponding values u+eu and u′+eu′ are inputs of the AND and fAND gate respectively.
For the AND gate, a single fault on the input does not affect more than one output variable,
for the fAND gate less than four bits are corrupted (Equations (18), (19) and (21)). In

172 Impeccable Keccak

the worst case, the attacker flips four output bits in total and is able to obtain another
valid codeword. However, this is not the case, if the checkpoint is implemented. A single
fault injected into u propagates to P and flips exactly three of its output bits. Since only
one bit in u′ is manipulated, u ·P and u′ cannot be equal, since

(u ·P + eu ·P) + u′ + eu′ = u′ + eu ·P + u′ + eu′ = eu ·P + eu′

and HW (eu ·P) = 3, while HW (eu′) = 1, which implies

HW (eu ·P + eu′) = HW (eu ·P) +HW (eu′)− 2HW (eu ·P ∧ eu′) ≥ 2

So, the attacker needs at least two additional faults either for u×P or for u′, and therefore,
four faults in total. A similar analysis can be conducted for other scenarios. If the
attacker manipulates two bits of u and exactly one bit of u′, then HW (eu ·P) = 2, while
HW (eu′) = 1. Therefore:

HW (eu ·P + eu′) = HW (eu ·P) +HW (eu′)− 2HW (eu ·P ∧ eu′) ≥ 1

and the attacker has to inject at least one additional fault into either u ·P or u′ to bypass
the security check. In general, four faults are necessary for the given scenario. If she flips
one bit in u and two bits in u′, then HW (eu ·P) = 1 and HW (eu′) = 2 implies

HW (eu ·P + eu′) = HW (eu ·P) +HW (eu′)− 2HW (eu ·P ∧ eu′) ≥ 1

and forces the attacker to flip one more bit in one of two comparator inputs, which corre-
sponds to four faults in total. Therefore, this checkpoint implementation in combination
with an AND gate is 3rd-order active-secure.

Checkpoint 2. An implementation of Checkpoint 2 is depicted in Figure 5b. The attacker
still has to manipulate both data paths for a successful attack. Security analysis for this
case is similar to the analysis above:

u + eu + (u′ + eu′) ·P != 0

eu + e′u ·P
!= 0 =⇒ HW (eu + e′u ·P) != 0

If the attacker flips a single variable in u, this fault propagates to the AND gate and flips
at most one of its output bits. However, if she flips one bit in u′, it affects at most three
bits on the output of fAND and exactly three bits in u′ ·P. The latter means

HW (eu + e′u ·P) = HW (eu) +HW (e′u ·P) +HW (e′u ·P ∧ eu) ≥ 2

Therefore, the attacker must inject two more faults into u or u′ ·P, which sums up to four
faults in total. In the next scenario, the attacker flips two bits in u and one bit in u′. This
pattern does also not lead to a successful attack, since:

HW (eu + e′u ·P) = HW (eu) +HW (e′u ·P) +HW (e′u ·P ∧ eu) ≥ 1

So, the attacker has to inject one more error into one of comparator inputs (four in total).
In the last scenario, the attacker manipulates one variable in u and two variables in u′. In
this case

HW (eu + e′u ·P) = HW (eu) +HW (e′u ·P) +HW (e′u ·P ∧ eu) ≥ 1

this forces the attacker to flip one more bit in b or c. In total, this scenario requires four
faults as well. Therefore, this implementation of the checkpoint is also 3rd order active
secure.

Ivan Gavrilan et. al. 173

Remark 7. Note that the adversary is able to manipulate values in b and c channels as
well. Therefore, if the same fault is injected into them, the comparator is not capable
to detect this error. So, comparator can be "switched off" with two faults. However, the
channel c is directly connected to either the AND or fAND gate and the corresponding
output will contain an error, while the other data path is error free, since channels a and b
are isolated via P. Therefore, an error can be detected in the subsequent operation.

It should be noted that the checkpoint’s output signal s is out-of-scope for the analysis,
as it is trivial to protect with multi rails and a sparse encoding.

3.5.4 Arbitrary-order Non-linear Impeccable Circuits

As shown above, for up to three faults on input and intermediate variables, the AND
gate either produces an output with at most three errors or an error signal. Therefore,
the proposed structure is 3-SNA. From [DN20], we know that a combination of 3-SNA
circuits is 3-NA and also 3rd-order active secure. Therefore, a combination of proposed
AND gates is 3rd-order active secure. However, this only applies if each AND gate has its
own checkpoint. Since this makes our impeccable AND gate rather expensive in terms of
hardware consumption, it is expected that implementing algorithms with a high algebraic
degree such as AES is expensive with relation to resource utilization. For simple S-boxes
with only one AND operation, such as the χ permutation in Keccak, we will show
in Section 4 and Section 5 that the overhead is feasible.

4 Encoded Keccak Round Function
In this section, our design of an impeccable Keccak is presented and its active security
is proven. For this, we re-use the concepts introduced in Section 3. In particular, we
provide reasoning for the chosen coding scheme that we already introduced in Section 3.2
(Equation (9)). Further, we re-use our impeccable AND gate (Section 3.5) and our
investigation of linear and non-linear impeccable circuits (Sections 3.3.1 and 3.3.3) to
construct impeccable circuits for the five steps within a Keccak round and to prove their
order of active security.

Encoding the Keccak state For a general matrix P with a pattern as in Equation (8)
to have an inverse P−1 and P−1 = P, it must hold that k ∈ 2N. If the complete Keccak
state were to be encoded with a 1600× 1600 matrix P1600, the matrix alone would require
312.5kB of storage. Further, the construction of θ′, ρ′, π′ and χ′ would raise significant
implementation issues due to complex inter-bit dependencies. The encoding of sheets
or planes would still imply huge dimensions for P and have similar difficulties regarding
the realization of some steps within the Keccak permutation, which are then non-linear
with respect to the encoded sub-structure. As slices and rows span an uneven amount of
bits, they would have to be padded, which introduces an overhead. An encoding of lanes
seems more promising, as it allows an efficient implementation of all permutations, with χ
being the only non-linear permutation. If lanes were encoded directly with P64, 12,5kB
for the matrix storage would be required. We can reduce this by dividing each lane into
multiple sublanes of length 4. This allows us to use a matrix P′ as was previously described
in Section 3.2. Since this matrix is sparse, vector-matrix multiplication in hardware is
promising due to low number of interconnected variables. For the remainder of this paper,
we describe an impeccable Keccak implementation that uses this encoding. For simplicity
we also denote P′ as P throughout this and the next sections. We start by describing ρ,
as its results can be reused subsequently.

174 Impeccable Keccak

4.1 ρ permutation
In vector form, Equation (3) can be written as:

ρ(ax,y) = ax,y ·R(t) (23)

where ax,y ∈ F264 is a 64-bit lane of the Keccak state and R(t) is the rotation matrix
in F64×64

2 . In the following, we omit (x, y) indices for simplicity. According to Figure 3,
we have ρ and its redundant block computing on encoded data ρ′, therefore ρ′ processes
a′ = a · P. With Equation (10), ρ′ = P ◦ ρ ◦ P−1. We can merge this into a single
vector-matrix multiplication:

ρ′(a′) = a′ ·T(t) = a′ ·P−1 ·R(t) ·P = a′ ·P ·R(t) ·P (24)

Active Security of Fρ. Since ρ and ρ′ are applied lane-wise with different rotation
coefficients, we analyze their security with a lane granularity. Due to linearity of Fρ, we use
the strategy from Section 3.3.1 to investigate its attack surface. According to Equation (23)
and Equation (24), both ρ and ρ′ can be expressed as vector-matrix multiplications. An
attack on the output variables is straightforward and requires the manipulation of at least
four variables (bits). The attack on intermediate results of vector-matrix multiplication
can be expressed as an attack on its output variables (Section 3.3.2) and, therefore, is
straightforward as well.

It is unclear, what effect faulting input variables (in combination with other variables
as well) has, therefore we analyze it in more detail. Outputs of ρ and ρ′ can be written as(
a ·R(t),a′ ·T(t)). Based on our analysis in Section 3.3.1, we can express fault attacks on
input, intermediate, and output values in terms of the resulting error e = (ea1 ·R(t), ea′

1
·

T(t)) + (ea2 , ea′
2
). The error vector e1 = (ea1 , ea′

1
) covers errors within input variables.

Errors within intermediate and output variables are expressed with e2 = (ea2 , ea′
2
). For a

successful attack, e has to represent a set of valid codewords in C and HW (e) > 0. This
condition can be rewritten in form of the following equation:

e = e1 ·
[
R(t) 0˜0˜ T(t)

]
+ e2 : ∀e(i) ∈ e e(i) ∈ C (25)

If, for Equation (25), there does not exist a pair of vectors e1, e2, where HW (e1) +
HW (e2) < 4, that can be exploited by the attacker, Fρ is 3rd-order active secure (Sec-
tion 3.3.1). For this purpose, we analyze all relevant combinations of e1 and e2 and
verify the breakdown condition for each resulting e. As described in Section 3.3.2, our
approach makes the verification computationally feasible as it vastly limits the amount of
combinations that need to be evaluated from all possible values of e1 and e2. In this case,(128

1
)

+ 4
(128

2
)

+ 2
(128

3
)

= 716, 032 different combinations have to be evaluated for each of
the 24 possible values of t. Fortunately, for no combination with 0 <

∑
j HW (ej) < 4,

Equation (25) holds. Therefore, Fρ is 3rd-order active secure.

4.2 θ permutation
For a lane ax,y, the θ permutation (Equation (2)) can be rewritten in vector form:

θ(ax,y) = ax,y ⊕
4⊕
y=0

ax−1,y ⊕

(4⊕
y=0

ax+1,y

)
·R(1) (26)

For an encoded lane a′x,y, only the matrix multiplication with R(1) must be adjusted
similarly to Equation (24). The exclusive or operations do not require any changes.

Ivan Gavrilan et. al. 175

Therefore, the equation for a′ can be written as:

θ′(a′x,y) = a′x,y ⊕
4⊕
y=0

a′x−1,y ⊕

(4⊕
y=0

a′x+1,y

)
·T(1) (27)

Active Security of Fθ. Both θ and θ′ consist of addition in F64
2 and a vector-matrix

multiplication. A single bit fault injected during addition does not corrupt more than one
output variable. Moreover, vector-matrix multiplication with R(1) and R(1) was already
discussed in Section 4.1. Therefore, Fθ has the same order of active security as Fρ.

4.3 π permutation
The π permutation does not require any modifications, since it only shuffles complete lanes.
We can express this with a simple change of (x, y) coordinates:

π′(a′x,y) = a′x′,y′ : (x, y) = (y′, 2x′ + 3y′) (28)

Active Security of Fπ. Since π and π′ are identical and require only rewiring according
to the lane coordinate, they do not accumulate any errors. Therefore, Fπ is 3-NA and
3rd-order active secure.

4.4 χ permutation
For lanes, Equation (5), can be expressed as:

χ(ax,y) = ax,y ⊕ (ax+1,y ∧ ax+2,y) (29)

Accordingly, for a′x,y we can use our impeccable AND gate fAND from Section 3.5 and
write

χ′(a′x,y) = a′x,y ⊕ f
(16)
AND(a′x+1,y,a′x+2,y), (30)

where f (16)
AND is a circuit of 16 fAND gates to process a complete lane simultaneously.

Active Security of Fχ. In Section 3.5 we showed that the combination of an AND gate
and fAND is 3rd-order active secure. For the inversion before and exclusive or operation
after the AND gate it is obvious that errors do not accumulate. Therefore, Fχ is 3-NA
and 3rd-order active secure.

4.5 ι permutation
For a lane a(x,y), the ι permutation (Equation (6)) can be written as:

ι(ax,y) =
{

ax,y, if (x, y) = (0, 0)
ax,y + rci : i ∈ [0, 24] otherwise

(31)

To apply it to an encoded lane a′(x,y) = a(x,y) ·P, the round constants rci : i ∈ [0, 24] must
be encoded with P. Therefore:

ι′(a′x,y) =
{

a′x,y, if (x, y) = (0, 0)
a′x,y + rci ·P = a′ + rc′i otherwise

(32)

176 Impeccable Keccak

Active Security of Fι. Since both ι and ι′ perform only simple addition in F264 , faulting
a single bit corrupts exactly one output bit. Therefore, Fι is 3-NA and 3rd-order of active
secure.

4.6 Composition of Keccak Round
So far, we provided standalone 3rd-order active security proofs for each of the five steps
within a Keccak round. As laid out in [DN20], this is not sufficient for the complete
Keccak round logic to be 3rd-order active secure. In the following, we derive this proof
step by step. We start with the combination of θ and ρ permutations.

Active Security of θ and ρ combination. A combination of Fρ ◦ Fθ can be represented
by two functions:

F =
(

ax,y ⊕
4⊕
y=0

ax−1,y ⊕

(4⊕
y=0

ax+1,y

)
·R(1)

)
·R(t)

F ′ =
(

a′x,y ⊕
4⊕
y=0

a′x−1,y ⊕

(4⊕
y=0

a′x+1,y

)
·T(1)

)
·T(t)

As described above, it is obvious that an addition in a binary field does not accumulate
errors. Therefore, only two vector-matrix multiplications are in the scope of the security
analysis. The attacker is able to inject faults into input, intermediate and output variables
of these multiplications. We can extend Equation (25) to cover Fρ ◦ Fθ as follows:

e =
(

e1 ·
[
R(1) 0˜0˜ T(1)

]
+ e2

)
·
[
R(t) 0˜0˜ T(t)

]
+ e3 (33)

Similar to our analysis in Section 4.1, we constrain the faulty terms e1, e2, e3 : HW (e1)+0 <
HW (e2) + HW (e3) < 4. The attack is successful, if a combination of errors exists for
which ∀e(i) ∈ e e(i) ∈ C.

Our investigation yields that for all 3
(128

3
)

+ 9
(128

2
)

+ 18
(128

1
)

= 6, 293, 376 possible
combinations of e1, e2, e3 for each of the possible t values, no such patterns exist. Hence,
the combination Fρ ◦ Fθ is 3rd-order active secure.

Active Security of Fι ◦ Fχ ◦ Fπ. Since Fπ, Fχ and Fι are 3-NA (and 3rd-order active
secure), their outputs cannot contain more errors than inputs. For Fχ ◦ Fπ:

eOUT = Fχ(Fπ(e1), e2) + e3

such that HW (Fχ(Fπ(e1), e2)) ≤ HW (e1) +HW (e2) due to non-accumulation property.
Therefore, HW (eOUT) ≤ HW (e1) +HW (e2) +HW (e3). Since the maximum Hamming
weight of injected faults does not exceed three, Fχ ◦Fπ is 3-NA and 3rd-order active secure.

For Fι ◦ Fχ ◦ Fπ,

eOUT = Fι(Fχ(Fπ(e1), e2) + e3) + e4 = Fι(e′3) + e4,

where HW (e′3) ≤ HW (e1) +HW (e2) +HW (e3) due to their non-accumulation. Since Fι
is 3-NA as well, HW (eOUT) ≤ HW (e′3) + HW (e4) ≤ HW (e1) + HW (e2) + HW (e3) +
HW (e4). Fι ◦Fχ ◦Fπ is 3rd-order active secure due to the fact that HW (e1) +HW (e2) +
HW (e3) +HW (e4) < 4.

Ivan Gavrilan et. al. 177

Active Security of Keccak Round. The complete Keccak round can be expressed as
Fι ◦ Fχ ◦ Fπ ◦ Fρ ◦ Fθ. It is observable that the circuit consists of 2 parts, which are
3rd-order active secure by their own. Due to the cyclic structure of Keccak-f [b], we can
rewrite this equation to focus on the checkpoint: Fπ ◦Fρ ◦Fθ ◦Fι ◦Fχ. It does not reflect
the actual functionality of the circuit, but allows us to verify its security efficiently. Since
π and π′ permutations can be implemented via rewiring, the equation can be modified
further:

F = Fρ ◦ Fθ ◦ Fι ◦ Fχ ◦ Fπ

Therefore, we divide F into F2 ◦ F1, where F2 = Fρ ◦ Fθ and F1 = Fι ◦ Fχ ◦ Fπ. So,

eOUT = F2(F1(e1), e2) + e3 = F2(e′1, e2) + e3,

where e′1, such that HW (e′1) ≤ HW (e1), is the input error of F2, while e2 can be
distributed across multiple variables. However, F2 is proven to be secure if HW (e1) +
HW (e2) ≤ 3. Therefore, HW (eOUT) < HW (e1) +HW (e2) +HW (e3). So, the Keccak
round is 3rd-order active secure.

In the implementation, a state register is used to store intermediate round results.
However, since the register simply transmits stored variables, it does not affect the security.
It is also important to mention, that, of all five permutations, only the χ circuit has a
checkpoint and accordingly an abort mechanism. This is possible due to the linearity of the
remaining four permutations. Therefore, an error propagation within these permutations
can be predicted strictly, which is not the case for non-linear circuits. However, the
checkpoint protects the sole non-linear circuit Fχ, detects errors and aborts the operation,
if required.
Remark 8. The checkpoint S is implemented between Fπ and Fχ. Within the checkpoint
is the encoding module with matrix P. We reuse this to encode and decode data at the
beginning and end of Keccak-f [b] (see Section 5. Therefore, the checkpoint is used in
three cases: Fπ ◦ Fρ ◦ Fθ (for the first round), Fρ ◦ Fθ ◦ Fι ◦ Fχ ◦ Fπ (for the main cycle)
and Fι ◦ Fχ (for the final check). The main loop is 3rd-order active secure. Since Fπ only
changes lane indices, it can be removed from Fπ ◦Fρ ◦Fθ and added to Fι ◦Fχ. Therefore,
we obtain circuits, which are described above and which are 3rd-order active secure as
well. So, the resulting Keccak implementation is 3rd-order active secure according to all
possible data paths.

5 Implementation and Evaluation
In this section, we combine the five steps of a Keccak round from Section 4 and the
encoding/decoding matrix from Section 3.2 to one impeccable Keccak. We evaluate our
design for FPGAs and ASICs.

5.1 Impeccable Keccak Module
According to [AMR+20], we can combine the five permutations from Section 4 to R′ as:

R′ = ι′ ◦ χ′ ◦ π′ ◦ ρ′ ◦ θ′ (34)

Therefore, the Keccak module consists of the two round functionsR (Equation (1)) and
R′ (Equation (34)). In addition, the checkpoint is required before χ and χ′ permutations
to fulfill the requirements for 3rd-order active security. As described in Section 3.2, the
checkpoint performs decoding of the π′ output and compares it with the result of the
original π permutation. We use the matrix P′, which we introduced in Equation (9), for

178 Impeccable Keccak

encoding and decoding (in the following, we denote it as P). In terms of hardware design,
this means that we can re-use the same logic for en- and decoding. This introduces the
constraint that encoding and decoding of different data (blocks) can not be performed
simultaneously.

Our Keccak implementation is depicted in Figure 6. After the π and π′ permutation,
the checkpoint S is instantiated. It consists of a module that corresponds to a vector-matrix
multiplication with P and the comparator, which produces an error signal s, if an error
is detected. The Keccak and Encoded Keccak modules each have a dedicated state
register. It should be noted that we view the integrity of the KeccakIN , KeccakOUT and
s signals as out of scope for this work. A generic interface for our impeccable Keccak
could be a standard FIFO or shift register which allows to store integrity bits for each
word. In this case it is important that the implementation manages a "secure hand-off",
e.g. by checking both the integrity of the data word and its redundancy that were written
into the state registers and the consistency of the data word with its integrity bits, before
abandoning the integrity bits. Since P can be reused during the encoding and the decoding,
the module requires one clock cycle to encode the Keccak input and store it in the
corresponding register. Another clock cycle is required to decode the Keccak output
using the same module P. A single round of Keccak-f [b] is computed in one clock cycle.
Therefore, an execution of the Keccak-f [1600] function without data transmissions takes
26 clock cycles.

5.2 Evaluation
We implemented our impeccable Keccak in VHDL and synthesized it for Artix-7 FP-
GAs2 and the generic FreePDK453 open-source standard-cell library4. The results and a
comparison with related work are presented in Table 1 and Table 2.

5.2.1 Evaluation in a bit-flip Fault Model

In Section 1.1, we introduced other Keccak designs. In this section, we revisit these
designs and their security claims for a thorough comparison with our work. In general,
the designs can be classified to be either area/instance- or time-redundant. We evaluate
all designs according to the definitions of a fault and active security from Section 3.1.
It should be noted that this fault and security model does not necessarily match the
physical reality of fault injections. In particular for time-redundant designs, permanent
faults might be an issue. Further, when the physical realities of chip design are taken into
account, it becomes obvious that a single bit-flip - e.g. within a clock tree - can lead to
multiple bit-flips. Such effects are obviously not covered within the bit/variable fault model
in Definition 1 and Definition 2. Including such weaknesses into the evaluation is difficult.
Even frameworks such as [RBFSG22, NOV+22, RBRSS+21] conduct their analysis after
RTL synthesis, i.e. on netlist level, therefore any structures that are only created during
place-and-route can not be investigated. We discuss our design with relation to real-world
fault attacks in the next section.

Comparison with State-of-the-Art Designs. The predictor-compressor design by Luo
et al. [LLF16] was already investigated in Section 1.1. Its resilience is based on one- or
multiple dimensional parity checks. It was shown that - for one dimensional parity checks -
two precise bit-flips are always sufficient to compromise the design. Further, there seems
to be the possibility to corrupt the design at a short period of time with a single bit-flip.

2using Vivado 2020.2 and the XC7A35T-1CPG236C part
3https://eda.ncsu.edu/freepdk/freepdk45/
4using Cadence Genus, Version 21.10-p002_1

https://eda.ncsu.edu/freepdk/freepdk45/

Ivan Gavrilan et. al. 179

Table 1: Synthesis results for FPGAs.

Design FPGA
Keccak (no countermeasures) Keccak (with countermeasures)

Slices LUT FF Frequency
(MHz)

Slices LUT FF Frequency
(MHz)

[MB23] Virtex-5 1,370 - - 258.6 1,680 - - 387

[MBM21] Virtex-5 1,350 - - 252.4 1,601 - - 365.2

[KMBM17] Virtex-5 1,356 - - 296.5 2,260 - - 291.3

[TAMRAB+22]-
HC

Virtex-7 - 2,453 2,457 194.3 - 28,702 18,256 41.1

[TAMRAB+22]-
TMR-HC

Virtex-7 - 2,453 2,457 194.3 - 27,233 26,261 59

This work Artix-7 1,036 3,953 1,621 222.2 3,269 12,408 3,260 111.1

Table 2: Synthesis results for ASICs.

Design PDK
Keccak (no countermeasures) Keccak (with countermeasures)

Chip
Area

(µm2)

Gate
Eqv.
(kG)

Frequency
(MHz)

Chip
Area

(µm2)

Gate
Eqv.
(kG)

Frequency
(MHz)

[BSMKRM14] Synopsys
65nm

66,306 47.0 676 69,249 49.1 1,192

[LLF16] FreePDK45
45nm

41,612 - 256.9 66,621 - 228.3

[PADM19]-
BLAZE

FreePDK45
45nm

- - - - 2,495 -

[PADM19]-
FAST

FreePDK45
45nm

- - - - 1,318 -

[PADM19]-
FUR

FreePDK45
45nm

- - - - 177.2 -

[PADM19]-
KIT

FreePDK45
45nm

- - - - 89.8 -

This work FreePDK45
45nm

45,569 57.1 1,316 142,782 177.7 719.4

180 Impeccable Keccak

KeccakIN

REG
π ◦ ρ ◦ θ ι ◦ χ

P
==?

REG
π′ ◦ ρ′ ◦ θ′ ι′ ◦ χ′

KeccakOUT

s

Keccak

Checkpoint

Encoded Keccak

Figure 6: The impeccable Keccak implementation. It consists of three parts: the
original Keccak module (highlighted with green color), the Encoded Keccak module
(highlighted with red color) and the checkpoint (highlighted with yellow color).

Using the notion from [DN20], this design would then not even meet 1st-order of active
security. At an overhead of factor 1.6 for the chip area, their solution is relatively compact.

Torres-Alvarado et al. [TAMRAB+22] combined Hamming codes with triple redun-
dancy. More concretely, the authors proposed two designs with error detection capabili-
ties, [TAMRAB+22]-HC and [TAMRAB+22]-TMR-HC in Table 1. The [TAMRAB+22]-
HC design only protects registers by encoding the Keccak state with a Hamming code.
[TAMRAB+22]-TMR-HC uses additional triple-redundant permutation modules to also
protect combinatorial logic. The outputs of the Keccak instances are fed into a voting
system, which corrects errors based on a majority vote. Therefore, if two precise faults
are introduced into two of the three inputs, the attacker can successfully compromise the
implementation. Further, similar to [LLF16], the data could be corrupted if a single fault
is injected exactly between the voting system and the register. Therefore, this design
is not even 1st-order active secure. Since both implementations use an error correction
scheme, the comparison with our approach is not fair. However, it is interesting to note
the difference between designs developed for safety and reliability versus designs developed
for security. Table 1 shows that the designs from [TAMRAB+22] are rather costly.

Hassen et al. [MBM21] described a Keccak implementation, where the same data is
processed twice using pipelining. Intermediate results are stored in registers and compared
with an offset of one cycle. Kehri et al. [KMBM17] duplicated the Keccak round logic and

Ivan Gavrilan et. al. 181

introduced a scrambling of the state before storing it in the according registers. Further,
Hassen et al. [MB23] combined the pipelined execution from [MBM21] with the state
shuffling from [KMBM17]. From their descriptions and evaluations we can conclude that the
design in [KMBM17] is 1st-order active secure. Its shuffled state registers might complicate
differential fault analysis, but not the grafting trees attack. The designs in [MB23, MBM21]
seem to be 1st-order active secure. In comparison to [MBM21], [MB23] makes precise fault
injection into registers more difficult. In [MB23], probabilities of 0.023 % and 0.014 % for
2-bit (3-bit errors) to pass undetected are derived from simulation. All three methods
can be implemented efficiently (Table 1). The overhead of [KMBM17] is smaller than
factor two, since only combinatorial logic is duplicated. [MBM21, MB23] are also compact
since they combine area- and time-redundancy. It is noteworthy that the protected and
pipelined designs in [MB23, KMBM17] achieve higher frequencies than the unprotected
design they used for reference.

The authors of [BSMKRM14, LZFD16] also use shuffling of the Keccak state for their
countermeasures. The rotation invariance of the Keccak is exploited by rotating the
state randomly for each Keccak-f [b] permutation. The Keccak-f [b] function is executed
multiple times, i.e. time-redundant, and results are compared after each run. Assuming
that an adversary is able to inject bit-flips with a high spatial and temporal resolution, it
is not guaranteed that the same bit of the state is hit. There are 64 possibilities to rotate
the state (including rotation by 0), which gives a probability of 1

64 that the bit is located
in the same position. Depending on the adversarial model, the developers can decide to
repeat the permutation two or more times. Since the design is entirely time-redundant
and only needs additional shuffling logic, the area overhead of [BSMKRM14] is only 4.3 %.
Unfortunately, the authors of [LZFD16] did not provide implementation results. Due to
its time-redundancy, the approach also has a severe latency penalty.

In [PADM19], Purnal et al. use the CAPA approach [RDMB+18] to protect a Keccak
against side-channel and fault attacks. CAPA builds on a tile-probe-and-fault model
and employs information-theoretic unpredictable MAC tags to mitigate fault injection.
Each sensitive value is accompanied by m tags. Compared to all previous approaches,
CAPA allows a formal verification of the countermeasure. However, there is no 100 %
probability that any faults are detected. The detection probability is given as 1− 2−m.
As such, the design is not even 1st-active secure. It should be noted, that at the time,
this notion did not yet exist. Instead, the authors provided a experimental verification of
the detection probability for their Keccak design. The values in Table 2 are for m = 2,
i.e. a fault detection probability of 75 %, and second-order masking. The authors provide
four design trade-offs, of which only BLAZE is completely parallel. Due to the masking
countermeasure, the area consumption is rather high.

Compared to the high-speed Keccak hardware implementation of the Keccak
Team [BDPvA11], our design has a significant area overhead: factor 3.2 on the FPGA
and factor 3.1 in ASIC chip area. In addition, the maximum frequency is reduced by half
due to additional encoding and decoding operations. In Section 4, we proved that our
design is 3rd-order active secure. More generally, our design can be broken only with n ≥ 4
bit-flips. If these bit-flips are assumed to be random, the following probabilities regarding
a successful attack hold:

• bit-flips spread over the complete Keccak state: < 1.5 · 10−9

• bit-flips within a lane in the Keccak state: < 2.4 · 10−5

• bit-flips within an 8-bit code-word (i.e. 4-bit data, 4-bit redundancy): < 0.25

A success probability of 100 % is only achievable, if the attacker knows the processed
data and can manipulate at least four bits precisely. To identify potential bits, or so called
points of interest, the attacker can use different techniques. Detailed knowledge of the

182 Impeccable Keccak

layout of the integrated circuit, e.g. obtained via reverse engineering, could help to identify
relevant positions. However, the adversary still needs information which data is processed
when. While this knowledge could be obtianed via side-channel analysis, it makes the
attack highly complex. Even with the knowledge of the circuit, the processed data, and
the timing, an adversary needs four precise single-bit errors.

We emphasize that our design does not protect Keccak against statistical ineffective
fault analysis (SIFA) [DEK+18]. However, due to the urgent need to thwart the grafting
trees attack, we leave protection against SIFA for future research.

5.2.2 Evaluation in real-world Fault Models

As mentioned in the previous section, mapping security in a bit-flip model (as e.g. the
notion of active security from [DN20]) to resilience against real-world fault attacks is
hard. This is, because the placement and routing of an impeccable circuit is unknown
from its netlist and depends on the hardware design toolchain. Further, the grafting trees
attack does not require a precise number of flipped bits, but only an incorrect output
that passes any error detection countermeasures. Thus, imprecise faults that affect many
bits can also lead to success for an adversary. However, we argue that everything but
precise attacks are unrealistic. On the one hand, we base this on the practical evaluation
of complete redundant impeccable circuits in the work of Bartkewitz et al. [BBM+22] (see
below). On the other hand, our intuition is as follows: Each of the 400 8-bit code-words
(4-bit original data, 4-bit redundancy) in our design is either affected or unaffected by
a fault. If it is affected, all combinations, where three or less bits are faulty will be
detected with a probability of 100 %. As described above, for n ≥ 4 random bit-flips,
the probability that the code-word is valid is at most 25 %. For imprecise fault attacks,
we estimate the probability that this condition applies to all affected code words to be
sufficiently low to focus our further analysis on an adversarial model, where the attacker
attempts to insert precise and localized faults, which are limited to as few code-words
as possible. Nevertheless, we think that an elaborate analysis (similar to [BBM+22]) of
countermeasures based on encoded data, i.e. including both simple memory elements
featuring code-based checks such as [TAMRAB+22, LLF16] and impeccable circuit designs
such as ours, with different precise and imprecise fault injection methods, is an important
analysis for future work in this direction.

The layout of the integrated circuit and its technology node determine how hard it is to
insert faults into multiple bits of interest with a single glitch (e.g. clock or supply voltage)
or pulse (e.g. laser or electromagnetic). The results from [DBC+18] offer some insight
regarding the capability of laser fault injection, arguably the most precise method for fault
attacks, independent from the design. For an 28 nm CMOS node, the authors demonstrate
that 1-bit faults are feasible. Further, their results indicate that, while multi-bit faults are
possible, the number of flipped bits is hard to control and they are less likely. Furthermore,
there are differences between setting and resetting a bit.

Bartkewitz et al. provide further insights into the resilience of impeccable circuits in
practice. [BBM+22]. They use various hardware implementations of the SKINNY [BJK+16]
cipher. In particular, they compare full-redundant impaccable circuits, where the redundant
data is processed independent from the actual data, with encoded circuits, where the
redundant data is insufficient for independent processing. In this case, a dependency in the
data flow of the circuit processing the actual data and the circuit processing the redundant
data must be introduced. Bartkewitz et al. show, that circuits with this insufficient
redundancy can be successfully faulted with laser fault injection. The only designs they were
not able to compromise, are a simple circuit, where the original design is duplicated and the
outputs are compared and an impeccable circuit with complete redundancy ([8,4,4] coding
scheme), similar to our Impeccable Keccak. In this case, the simple duplicated design
might seem more attractive, as it is 27 % smaller than the encoded circuit. Considering

Ivan Gavrilan et. al. 183

our results for Keccak without countermeasures (Table 2), we estimate that our Keccak
design has a similar overhead, compared to simple duplication (the duplication requires
two Keccak instances and a comparator). However, in [BBM+22], the authors only
consider attacks with a single laser beam. In [CGV+22], it was demonstrated that up to
four bits can be flipped with four synchronous laser beams. We suspect that it is simpler
to introduce two symmetric (target the same bit in both instances) faults with two laser
beams than flipping four bits, such that our design does not detect the fault. As described
above, depending on the technology and layout of the integrated circuit, an adversary does
not necessarily need four laser beams to achieve this. However, in [BBM+22], the authors
were unable to achieve this with a single laser beam.

It is worth noting, that protection against SIFA could make protected designs based
on redundant instances more favorable. To protect against SIFA, one could either use
simple triplication or quadruplication in combination with a majority voting system that
suppresses faults. For a design based on encoded data, error correction instead of detection
would be required. As stated above, we emphasize the importance of protection against
SIFA for future works.

5.3 Towards a Secure SPHINCS+ Implementation
Our motivation for designing an impeccable Keccak was to protect SPHINCS+ from
the grafting trees attack [CMP18]. In general, secure implementations must be protected
against side-channel and fault attacks. In the case of SPHINCS+, side-channel attacks
are less of a concern. This is because a side-channel attack on SPHINCS+ must target
the underlying hash function [KGB+18], which is relatively hard, even for unprotected
implementations of Keccak, due to its sponge construction [DEM+17] and the completely
parallel permutation. Fault attacks, such as the grafting trees attack [CMP18], are a much
more severe risk for the implementation security of SPHINCS+. Therefore, we built on
the impeccable circuits approach, instead of using other work, which combines masking
with resilience against fault attacks [SMG16, DN20, FGM+23, DN21, BEF+23, FRBSG22,
DMAN+18, RDMB+18]. This allows us to build a performant and cost efficient impeccable
Keccak.

Further, we mainly investigated the protection of Keccak in this work. This is because
we view the protection of other building blocks in SPHINCS+ as mostly solved. Hashing
is by far the most time-consuming operation in SPHINCS+, the remaining time is mostly
spent with managing hashchains or Merkle trees. While the attack surface of the grafting
trees attack expands to these operations as well, it is easy to implement them on a CPU and
harden the CPU with generic countermeasures. One might argue that the hash algorithm
could also be implemented on the CPU. However, since most of SPHINCS+’s computation
time is spent on the Keccak function, its performance can be significantly improved by
using a hardware accelerator for this operation.

Therefore, we recommend to implement SPHINCS+ on a microcontroller that includes
countermeasures against fault injection and uses our impeccable Keccak as co-processor.
In fact, with the OpenTitan5, a suitable system-on-chip already exists. Its countermeasures
include (among others): generic hardening of state machines and control signals with sparse
encodings, one-hot encodings, scrambled memories with error correction codes, a lockstep
core for the main processor, bus integrity checking, register file with error correction codes
and a hardened program counter in the main processor. Obviously, the application of
these countermeasures to a complex system like a CPU can not be evaluated under the
same formal model of active security as our design. Therefore, their effectiveness must be
evaluated manually with heuristic simulations or laboratory investigations.

The OpenTitan also includes a Keccak core, which is protected against side-channel
5https://github.com/lowRISC/opentitan

https://github.com/lowRISC/opentitan

184 Impeccable Keccak

attacks. Due to the countermeasures listed above, localized fault attacks by means of
electromagnetic or laser fault injection on the Keccak core would be the most promising
approach to attack SPHINCS+ if it were implemented on the OpenTitan. If our design
were integrated into the OpenTitan, all operations within the SPHINCS+ algorithm would
be hardened against fault injection at almost no latency penalty.

6 Conclusion
In this paper we combined the concepts of impeccable circuits [AMR+20, SRM20, RSM21]
and active security [DN20] to propose an impeccable Keccak. Our design is provably
3rd-order active secure, i.e. an adversary needs to flip at least four bits. In this context, a
bit refers to either a single flip-flop or a wire. Further, not any four bits in the Keccak
state lead to a successful attack. With an area overhead of factor 3.2 and 3.1 on FPGA
and ASIC, a decrease of the maximum frequency by 50 % and practically no overhead in
cycle counts, our design is more than competitive with state-of-the-art work on reliable
Keccak implementations. Besides, we laid out that state-of-the-art proposals - some of
which were designed for safety rather than security - show flaws, when the formal notion
of active security is used. We argue that these flaws, e.g. leaving data unprotected for a
short moment in time, could be exploited with highly precise fault injection. With our
design, the adversary needs to flip four or more bits at any given time.

Due to the powerful grafting trees attack, SPHINCS+ implementations are in dire need
of fault injection countermeasures. By integrating our design into a microcontroller that
incorporates generic fault injection countermeasures, the vulnerability to fault injection
attacks is massively reduced to a point where an attack is hardly feasible.

While developing our impeccable Keccak, we investigated how the resilience of
impeccable circuits can be verified. For this, we proposed a model that captures arbitrary
fault attacks on impeccable circuits. Further, we combined this with the notion of active
security [DN20] and demonstrated that this exposes unexpected weaknesses in previous
work [SMG16]. We showed how the security of arbitrary linear and non-linear impeccable
circuits can be proven. Further, we derived a 3rd-order strong-non-accumulative AND gate
that we use to implement the χ permutation in Keccak, but is also of general interest.

Future work could investigate how our design compares to a Keccak implementation
with combined countermeasures, i.e. against passive side-channel and active fault injection
attacks (e.g. SIFA). Moreover, we see potential value in adapting the ongoing research on
verification [RBFSG22, RBRSS+21, AWMN20, NOV+22] for our evaluation methodology
of impeccable circuits and verifying our design with these approaches. Finally, we also want
to spark research on formal security notions and adversarial models that are more closely
related to the physical reality of fault injection attacks. The random fault model [DN22] is
a step in this direction. Since the proposed design does not prevent SIFA, the protection
against it is an important step towards secure Keccak and SPHINCS+ implementations.
Future research could also be connected to finding efficient coding schemes with greater
distances (e.g. [16,8,5] Hamming code) or alternative coding schemes (e.g. low or moderate-
density parity check codes), building impeccable circuits from them and evaluating them
in the random fault model.

Ivan Gavrilan et. al. 185

References
[AAC+22] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang,

John Kelsey, Jacob Lichtinger, Yi-Kai Liu, Carl Miller, Dustin Moody,
Rene Peralta, Ray Perlner, Angela Robinson, and Daniel Smith-Tone.
Status Report on the Third Round of the NIST Post-Quantum Cryp-
tography Standardization Process. National Institute of Standards and
Technology Interagency or Internal Report, NIST IR 8413-upd1, 2022.
https://doi.org/10.6028/NIST.IR.8413-upd1.

[ABB+22] Jean-Philippe Aumasson, Daniel J. Bernstein, Ward Beullens, Christoph
Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, An-
dreas Hülsing, Panos Kampanakis, Stefan Kölbl, Tanja Lange, Martin M.
Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rechberger,
Joost Rijneveld, Peter Schwabe, and Bas Westerbaan. SPHINCS+.
Submission to the NIST post-quantum project, v.3.1, 2022. https:
//sphincs.org/resources.html.

[ALCZ20] Dorian Amiet, Lukas Leuenberger, Andreas Curiger, and Paul Zbinden.
FPGA-based SPHINCS+ Implementations: Mind the Glitch. In 2020 23rd
Euromicro Conference on Digital System Design (DSD), pages 229–237,
2020.

[AMR+20] Anita Aghaie, Amir Moradi, Shahram Rasoolzadeh, Aein Rezaei Shah-
mirzadi, Falk Schellenberg, and Tobias Schneider. Impeccable Circuits.
IEEE Transactions on Computers, 69(3):361–376, 2020.

[AWMN20] Victor Arribas, Felix Wegener, Amir Moradi, and Svetla Nikova. Cryp-
tographic Fault Diagnosis using VerFI. In 2020 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages
229–240, 2020.

[BBM+22] Timo Bartkewitz, Sven Bettendorf, Thorben Moos, Amir Moradi, and
Falk Schellenberg. Beware of Insufficient Redundancy: An Experimental
Evaluation of Code-based FI Countermeasures. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2022(3):438–462, Jun.
2022.

[BDK+07] Johannes Buchmann, Erik Dahmen, Elena Klintsevich, Katsuyuki Okeya,
and Camille Vuillaume. Merkle Signatures with Virtually Unlimited
Signature Capacity. In Applied Cryptography and Network Security, pages
31–45, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[BDPvA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles van
Asche. The Keccak reference. https://keccak.team/files/
Keccak-reference-3.0.pdf, 2011.

[BEF+23] Sebastian Berndt, Thomas Eisenbarth, Sebastian Faust, Marc Gourjon,
Maximilian Orlt, and Okan Seker. Combined Fault and Leakage Resilience:
Composability, Constructions and Compiler. In Helena Handschuh and
Anna Lysyanskaya, editors, Advances in Cryptology – CRYPTO 2023,
pages 377–409, Cham, 2023. Springer Nature Switzerland.

[BGS15] Nasour Bagheri, Navid Ghaedi, and Somitra Kumar Sanadhya. Differential
Fault Analysis of SHA-3. In Alex Biryukov and Vipul Goyal, editors,
Progress in Cryptology – INDOCRYPT 2015, pages 253–269, Cham, 2015.
Springer International Publishing.

https://doi.org/10.6028/NIST.IR.8413-upd1
https://sphincs.org/resources.html
https://sphincs.org/resources.html
https://keccak.team/files/Keccak-reference-3.0.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf

186 Impeccable Keccak

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS.
In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology
– CRYPTO 2016, pages 123–153, Berlin, Heidelberg, 2016. Springer Berlin
Heidelberg.

[BKL+07] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-
Lightweight Block Cipher. In Pascal Paillier and Ingrid Verbauwhede,
editors, Cryptographic Hardware and Embedded Systems - CHES 2007,
pages 450–466, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[BSMKRM14] Siavash Bayat-Sarmadi, Mehran Mozaffari-Kermani, and Arash Reyhani-
Masoleh. Efficient and Concurrent Reliable Realization of the Secure
Cryptographic SHA-3 Algorithm. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 33(7):1105–1109, 2014.

[CGV+22] Brice Colombier, Paul Grandamme, Julien Vernay, Émilie Chanavat, Lilian
Bossuet, Lucie de Laulanié, and Bruno Chassagne. Multi-Spot Laser Fault
Injection Setup: New Possibilities for Fault Injection Attacks. In Vincent
Grosso and Thomas Pöppelmann, editors, Smart Card Research and
Advanced Applications, pages 151–166, Cham, 2022. Springer International
Publishing.

[CMP18] Laurent Castelnovi, Ange Martinelli, and Thomas Prest. Grafting Trees:
A Fault Attack Against the SPHINCS Framework. In Tanja Lange and
Rainer Steinwandt, editors, Post-Quantum Cryptography, pages 165–184,
Cham, 2018. Springer International Publishing.

[DBC+18] Jean-Max Dutertre, Vincent Beroulle, Philippe Candelier, Stephan De Cas-
tro, Louis-Barthelemy Faber, Marie-Lise Flottes, Philippe Gendrier, David
Hély, Regis Leveugle, Paolo Maistri, Giorgio Di Natale, Athanasios Pa-
padimitriou, and Bruno Rouzeyre. Laser Fault Injection at the CMOS 28
nm Technology Node: an Analysis of the Fault Model. In 2018 Workshop
on Fault Diagnosis and Tolerance in Cryptography (FDTC), pages 1–6,
2018.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Man-
gard, Florian Mendel, and Robert Primas. SIFA: Exploiting Ineffective
Fault Inductions on Symmetric Cryptography. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2018(3):547–572, Aug.
2018.

[DEM+17] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,
and Thomas Unterluggauer. ISAP – Towards Side-Channel Secure Au-
thenticated Encryption. IACR Transactions on Symmetric Cryptology,
2017(1):80–105, Mar. 2017.

[DMAN+18] Lauren De Meyer, Victor Arribas, Svetla Nikova, Ventzislav Nikov, and
Vincent Rijmen. M& M: Masks and Macs against Physical Attacks.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2019(1):25–50, Nov. 2018.

[DN20] Siemen Dhooghe and Svetla Nikova. My Gadget Just Cares for Me -
How NINA Can Prove Security Against Combined Attacks. In Stanislaw

Ivan Gavrilan et. al. 187

Jarecki, editor, Topics in Cryptology – CT-RSA 2020, pages 35–55, Cham,
2020. Springer International Publishing.

[DN21] Siemen Dhooghe and Svetla Nikova. Let’s Tessellate: Tiling for Security
Against Advanced Probe and Fault Adversaries. In Pierre-Yvan Liardet
and Nele Mentens, editors, Smart Card Research and Advanced Applica-
tions, pages 181–195, Cham, 2021. Springer International Publishing.

[DN22] Siemen Dhooghe and Svetla Nikova. The Random Fault Model. Cryptology
ePrint Archive, Paper 2022/1627, 2022. https://eprint.iacr.org/
2022/1627.

[EAB+23] Mohamed ElGhamrawy, Melissa Azouaoui, Olivier Bronchain, Joost Renes,
Tobias Schneider, Markus Schönauer, Okan Seker, and Christine van Vre-
dendaal. From MLWE to RLWE: A Differential Fault Attack on Random-
ized and Deterministic Dilithium. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2023(4):262–286, Aug. 2023.

[FGM+23] Jakob Feldtkeller, Tim Güneysu, Thorben Moos, Jan Richter-Brockmann,
Sayandeep Saha, Pascal Sasdrich, and François-Xavier Standaert. Com-
bined Private Circuits - Combined Security Refurbished. Cryptology ePrint
Archive, Paper 2023/1341, 2023. https://eprint.iacr.org/2023/1341.

[FRBSG22] Jakob Feldtkeller, Jan Richter-Brockmann, Pascal Sasdrich, and Tim
Güneysu. CINI MINIS: Domain Isolation for Fault and Combined Security.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’22, page 1023–1036, New York, NY, USA,
2022. Association for Computing Machinery.

[GBH18] Leon Groot Bruinderink and Andreas Hülsing. “Oops, I Did It Again” –
Security of One-Time Signatures Under Two-Message Attacks. In Selected
Areas in Cryptography – SAC 2017, pages 299–322. Springer International
Publishing, 2018.

[GBP18] Leon Groot Bruinderink and Peter Pessl. Differential Fault Attacks on
Deterministic Lattice Signatures. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2018(3):21–43, Aug. 2018.

[Gen23] Aymeric Genêt. On protecting SPHINCS+ against fault attacks.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2023(2):80–114, Mar. 2023.

[GKPM18] Aymeric Genêt, Matthias J. Kannwischer, Hervé Pelletier, and Andrew
McLauchlan. Practical Fault Injection Attacks on SPHINCS. Cryptology
ePrint Archive, Paper 2018/674, 2018. https://eprint.iacr.org/2018/
674.

[Gol87] Oded Goldreich. Two Remarks Concerning the Goldwasser-Micali-Rivest
Signature Scheme. In Proceedings on Advances in Cryptology—CRYPTO
’86, page 104–110, Berlin, Heidelberg, 1987. Springer-Verlag.

[HRB13] Andreas Hülsing, Lea Rausch, and Johannes Buchmann. Optimal Param-
eters for XMSSMT. In Alfredo Cuzzocrea, Christian Kittl, Dimitris E.
Simos, Edgar Weippl, and Lida Xu, editors, Security Engineering and
Intelligence Informatics, pages 194–208, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

https://eprint.iacr.org/2022/1627
https://eprint.iacr.org/2022/1627
https://eprint.iacr.org/2023/1341
https://eprint.iacr.org/2018/674
https://eprint.iacr.org/2018/674

188 Impeccable Keccak

[KGB+18] Matthias J. Kannwischer, Aymeric Genêt, Denis Butin, Juliane Krämer,
and Johannes Buchmann. Differential Power Analysis of XMSS
and SPHINCS. In Junfeng Fan and Benedikt Gierlichs, editors, Con-
structive Side-Channel Analysis and Secure Design, pages 168–188, Cham,
2018. Springer International Publishing.

[KMBM17] Fatma Kahri, Hassen Mestiri, Belgacem Bouallegue, and Mohsen Mach-
hout. Fault Attacks Resistant Architecture for KECCAK Hash Function.
International Journal of Advanced Computer Science and Applications,
8(5), 2017.

[LAFW17] Pei Luo, Konstantinos Athanasiou, Yunsi Fei, and Thomas Wahl. Alge-
braic fault analysis of SHA-3. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017, pages 151–156, 2017.

[LLF16] Pei Luo, Cheng Li, and Yunsi Fei. Concurrent error detection for reliable
SHA-3 design. In 2016 International Great Lakes Symposium on VLSI
(GLSVLSI), pages 39–44, 2016.

[LZFD16] Pei Luo, Liwei Zhang, Yunsi Fei, and A. Adam Ding. An Improvement of
Both Security and Reliability for Keccak Implementations on Smart Card.
Cryptology ePrint Archive, Paper 2016/214, 2016. https://eprint.iacr.
org/2016/214.

[MB23] Hassen Mestiri and Imen Barraj. High-Speed Hardware Architecture
Based on Error Detection for KECCAK. Micromachines, 14(6), 2023.

[MBM21] Hassen Mestiri, Imen Barraj, and Mohsen Machhout. Analysis and
Detection of Errors in KECCAK Hardware Implementation. In 2021
IEEE International Conference on Design and Test of Integrated Micro
and Nano-Systems (DTS), pages 1–6, 2021.

[NIS15] Information Technology Laborartory NIST. FIPS 202 Standard -
Permutation-Based Hash and Extendable-Output Functions. Federal
Information Processing Standards Publication, 2015. https://doi.org/
10.6028/NIST.FIPS.202.

[NIS23] Information Technology Laborartory NIST. FIPS 205 (Draft) - Stateless
Hash-Based Digital Signature Standard. Federal Information Processing
Standards Publication, 2023. https://doi.org/10.6028/NIST.FIPS.
205.ipd.

[NOV+22] Pascal Nasahl, Miguel Osorio, Pirmin Vogel, Michael Schaffner, Timothy
Trippel, Dominic Rizzo, and Stefan Mangard. SYNFI: Pre-Silicon Fault
Analysis of an Open-Source Secure Element. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2022(4):56–87, Aug. 2022.

[PADM19] Antoon Purnal, Victor Arribas, and Lauren De Meyer. Trade-offs in Pro-
tecting Keccak Against Combined Side-Channel and Fault Attacks. In Ilia
Polian and Marc Stöttinger, editors, Constructive Side-Channel Analysis
and Secure Design, pages 285–302, Cham, 2019. Springer International
Publishing.

[RBFSG22] Jan Richter-Brockmann, Jakob Feldtkeller, Pascal Sasdrich, and Tim
Güneysu. VERICA - Verification of Combined Attacks: Automated
formal verification of security against simultaneous information leakage
and tampering. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2022(4):255–284, Aug. 2022.

https://eprint.iacr.org/2016/214
https://eprint.iacr.org/2016/214
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.205.ipd
https://doi.org/10.6028/NIST.FIPS.205.ipd

Ivan Gavrilan et. al. 189

[RBRSS+21] Jan Richter-Brockmann, Aein Rezaei Shahmirzadi, Pascal Sasdrich, Amir
Moradi, and Tim Güneysu. FIVER – Robust Verification of Counter-
measures against Fault Injections. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021(4):447–473, Aug. 2021.

[RBSBG20] Jan Richter-Brockmann, Pascal Sasdrich, Florian Bache, and Tim
Güneysu. Concurrent Error Detection Revisited: Hardware Protection
against Fault and Side-Channel Attacks. ARES ’20, New York, NY, USA,
2020. Association for Computing Machinery.

[RBSG23] Jan Richter-Brockmann, Pascal Sasdrich, and Tim Güneysu. Revisiting
Fault Adversary Models – Hardware Faults in Theory and Practice. IEEE
Transactions on Computers, 72(2):572–585, 2023.

[RDMB+18] Oscar Reparaz, Lauren De Meyer, Begül Bilgin, Victor Arribas, Svetla
Nikova, Ventzislav Nikov, and Nigel Smart. CAPA: The Spirit of Beaver
Against Physical Attacks. In Advances in Cryptology – CRYPTO 2018:
38th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 19–23, 2018, Proceedings, Part I, page 121–151, Berlin,
Heidelberg, 2018. Springer-Verlag.

[RSM21] Shahram Rasoolzadeh, Aein Rezaei Shahmirzadi, and Amir Moradi. Im-
peccable Circuits III. In 2021 IEEE International Test Conference (ITC),
pages 163–169, 2021.

[SMG16] Tobias Schneider, Amir Moradi, and Tim Güneysu. ParTI – Towards
Combined Hardware Countermeasures Against Side-Channel and Fault-
Injection Attacks. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology – CRYPTO 2016, pages 302–332, Berlin, Heidel-
berg, 2016. Springer Berlin Heidelberg.

[SRM20] Aein Rezaei Shahmirzadi, Shahram Rasoolzadeh, and Amir Moradi. Impec-
cable Circuits II. In 2020 57th ACM/IEEE Design Automation Conference
(DAC), pages 1–6, 2020.

[TAMRAB+22] Alan Torres-Alvarado, Luis Alberto Morales-Rosales, Ignacio Algredo-
Badillo, Francisco López-Huerta, Mariana Lobato-Báez, and Juan Carlos
López-Pimentel. An SHA-3 Hardware Architecture against Failures Based
on Hamming Codes and Triple Modular Redundancy. Sensors, 22(8),
2022.

[WWO+23] Alexander Wagner, Vera Wesselkamp, Felix Oberhansl, Marc Schink, and
Emanuele Strieder. Faulting Winternitz One-Time Signatures to Forge
LMS, XMSS, or SPHINCS+ Signatures. In Post-Quantum Cryptography,
2023, pages 658–687. Springer Nature Switzerland, 2023.

	Introduction
	State-of-the-Art
	Our Contributions

	Background
	SPHINCS+ and the Grafting Trees Fault Attack
	Keccak

	Efficient and Active-secure Impeccable Circuits
	Active Security
	Impeccable Circuits
	Fault Attacks on Impeccable Circuits
	Fault Attacks on Combined Impeccable Circuits
	Generalized Impeccable AND Gate

	Encoded Keccak Round Function
	 permutation
	 permutation
	 permutation
	 permutation
	 permutation
	Composition of Keccak Round

	Implementation and Evaluation
	Impeccable Keccak Module
	Evaluation
	Towards a Secure SPHINCS+ Implementation

	Conclusion

