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Abstract. Lattice-Based Cryptography (LBC) schemes, like CRYSTALS-Kyber and
CRYSTALS-Dilithium, have been selected to be standardized in the NIST Post-
Quantum Cryptography standard. However, implementing these schemes in resource-
constrained Internet-of-Things (IoT) devices is challenging, considering efficiency,
power consumption, area overhead, and flexibility to support various operations
and parameter settings. Some existing ASIC designs that prioritize lower power
and area can not achieve optimal performance efficiency, which are not practical for
battery-powered devices. Custom hardware accelerators in prior co-processor and
processor designs have limited applications and flexibility, incurring significant area
and power overheads for IoT devices. To address these challenges, this paper presents
an efficient lattice-based cryptography processor with customized Single-Instruction-
Multiple-Data (SIMD) instruction. First, our proposed SIMD architecture supports
efficient parallel execution of various polynomial operations in 256-bit mode and
acceleration of Keccak in 320-bit mode, both utilizing efficiently reused resources.
Additionally, we introduce data shuffling hardware units to resolve data dependencies
within SIMD data. To further enhance performance, we design a dual-issue path
for memory accesses and corresponding software design methodologies to reduce
the impact of data load/store blocking. Through a hardware/software co-design
approach, our proposed processor achieves high efficiency in supporting all operations
in lattice-based cryptography schemes. Evaluations of Kyber and Dilithium show our
proposed processor achieves over 10× speedup compared with the baseline RISC-V
processor and over 5× speedup versus ARM Cortex M4 implementations, making it
a promising solution for securing IoT communications and storage. Moreover, Silicon
synthesis results show our design can run at 200 MHz with 2.01 mW for Kyber
KEM 512 and 2.13 mW for Dilithium 2, which outperforms state-of-the-art works
in terms of PPAP (Performance × Power × Area).
Keywords: Post-quantum Cryptography · RISC-V · Single-Instruction-Multiple-
Data · Lattice-Based Cryptography · Internet-of-Things

1 Introduction
Shor’s algorithm [Sho99] undermines the cryptographic strength of traditional Public
Key Cryptography (PKC) schemes such as Rivest-Shamir-Adleman (RSA) and Elliptic
Curve Cryptography (ECC) algorithms, making them vulnerable to quantum computer
threats. In addition, the IBM Quantum Development Roadmap1 predicts that a quantum
computer with over 4000 qubits will be attainable by 2025. To defend against the potential

1https://www.ibm.com/quantum/roadmap
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attacks from quantum computers, the National Institute of Standards and Technology
(NIST) has organized four rounds of competitions since 2017 to standardize Post-Quantum
Cryptography (PQC) as an alternative to traditional PKC. In 2022, NIST announced the
standardization of four Round 3 candidates and introduced four candidates in Round 4 for
further consideration. Based on the underlying hard mathematical problems, these PQC
schemes can be categorized into three classes: lattice-based, code-based, and hash-based
cryptography. Among the four standardization schemes of Round 3 and four candi-
dates of Round 4, three algorithms (CRYSTALS-Kyber [BDK+18], CRYSTALS-Dilithium
[DLL+18], and Falcon [FHK+18]) are Lattice-Based Cryptography (LBC) schemes, which
have better performance and smaller key sizes. However, it is important to note that the
critical operations vary across different PQC schemes and secure-level parameters. To
accommodate more than one PQC scheme, it is crucial for the hardware design to exhibit
sufficient flexibility. Though LBC schemes offer the advantage of smaller key sizes in PQC
candidates, they are still about 5× larger than traditional PKC schemes. For instance,
the public key sizes of CRYSTALS-Kyber and CRYSTALS-Dilithium typically are in the
range of 800-1184 bytes and 1312-2592 bytes, respectively. In comparison, the public
key sizes of RSA typically range from 128-512 bytes [BR96]. However, the demand for
stringent security measures in IoT devices has made efficient solutions tailored to such
devices increasingly critical. In the IoT domain, where many devices are interconnected
and communicate with each other, they are more vulnerable to attacks. Consequently,
protecting them against quantum computers’ attacks is challenging due to limited hardware
resources, low power consumption requirements, and the need for flexibility in a wide range
of applications.

Low power consumption, high efficiency, small chip area, and a certain level of flexibility
are the focuses for IoT applications. However, current state-of-the-art works (including
FPGA, ASIC, co-processor, processor designs) have not successfully combined all these
aspects into a single design solution. The limitation of existing FPGA and ASIC works lies
in their large hardware consumption and lack of flexibility to accommodate diverse schemes.
Although several FPGA and ASIC designs [KLC+17, STCZ18, ZZZ+22] prioritize speed,
they are typically limited to specific algorithms with high power and resource consumption.
State-of-the-art co-processor and processor designs [BUC19, FSS20, XHY+20, AMI+22,
KSFS23, ZXXH22] accelerated LBC schemes by designing customized hardware accelera-
tors for critical operations with highly parallel architectures and some specific parameter
settings. However, these hardware accelerators usually have limited running frequency and
large power consumption, posing significant overhead for battery-powered IoT devices. For
instance, [XHY+20] and [ZZZ+22] proposed high-efficiency and flexible designs; however,
they come at the cost of larger power consumption and chip area requirements. On the
other hand, these customized hardware accelerators are often unable to efficiently accelerate
fine-grained operations such as polynomial compress/decompress, logic shiftings, and more.
[BUC19] introduced a low-power design, but it lacks the desired level of flexibility and
cannot support the acceleration of polynomial compress/decompress. To address the
efficiency, low costs, and flexibility requirements, this paper presents a solution using
instruction set architecture level and algorithmic-level co-optimization.

Our Contributions. In this paper, we present an efficient Lattice-based Cryptography
processor based on a customized RISC-V Single-Instruction-Multiple-Data (SIMD) architec-
ture. We focus on two lattice-based schemes CRYSTALS-Kyber and CRYSTALS-Dilithium.
To address the requirements of not only power consumption but also computing speed, chip
area, and flexibility, we propose a novel SIMD hardware architecture for PQC in IoT appli-
cations, including dedicated designs and optimizations for efficient parallel computations,
resource-reusable design, and memory access. Moreover, we propose algorithmic-level and
architectural-level optimizations with our proposed fine-grained SIMD instructions for
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efficient polynomial multiplications. The detailed technical aspects of our work are as
follows:

• Flexibility through fine-grained resource reuse. Our proposed processor is designed
with two SIMD working modes (320-bit and 256-bit) and resource-sharing hardware
units for various arithmetic and logic operations, including additions, exclusive-or,
multiplications, etc.

• Efficient computing with parallelism. Our proposed fine-grained SIMD instructions
enable efficient parallel computations of various arithmetic and logic operations
using 256-bit mode and accelerate Keccak computation using 320-bit mode. Small
operations, including polynomial compression, pack, logic shifting, modular reduction,
etc. that can be vectorized are accelerated with our SIMD instructions.

• Efficient computing with efficient memory access. To resolve data dependency
issues within SIMD data, data shuffling hardware units are designed and integrated
into the proposed processor. Moreover, a dual-issue path is proposed to achieve
efficient memory access by reducing data blocking during computation. Computation
instructions are executed simultaneously with memory access instructions. With the
proposed dual-issue design, we further optimize the performance at the algorithm
level.

2 Background
This section introduces the LBC schemes, including CRYSTALS-Kyber and CRYSTALS-
Dilithium, which belong to Key Encapsulation Mechanism (KEM) and Digital Signature
(DS), respectively. Furthermore, we give a brief introduction of the bottlenecks operations
in these two schemes, including hashing, polynomial multiplications, and polynomial
sampling. Polynomial vectors are denoted in bold lower-case, and polynomial matrices are
denoted in bold upper-case. The quotient ring of integers modulo q is denoted as Zq, and
the polynomial ring with degree n and modulo q is denoted as Zq[x]/(xn + 1).

2.1 CRYSTALS-Kyber

CRYSTALS-Kyber [BDK+18] is an IND-CCA2-secure KEM constructed from Kyber.CPAPKE
(IND-CPA-secure Public Key Encryption (PKE) scheme) using tweaked Fujisaki-Okamoto
(FO) transform [FO99]. FO transform is achieved by using a random oracle (hash function)
to generate a shared secret, encapsulating and decapsulating the shared secret, and deriving
the symmetric key and final shared secret using a Key Derivation Function (KDF). There
are three security levels for CRYSTALS-Kyber, and the corresponding parameters are
shown in Table 1. n is the polynomial length, k is the dimension of the polynomial vector,
q is the modulo, η1 and η2 are used for Centered Binomial Distribution (CBD) sampling.
For more details of CRYSTALS-Kyber, readers can refer to [BDK+18].

Table 1: Parameter sets for CRYSTALS-Kyber.
NIST Security Level n k q η1 η2

1 256 2 3329 3 2
3 256 3 3329 2 2
5 256 4 3329 2 2
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2.2 CRYSTALS-Dilithium
As a lattice-based digital signature scheme, CRYSTALS-Dilithium [DLL+18] uses polyno-
mials with the same length 256 as CRYSTALS-Kyber while the modulo q = 8380417 is
much larger. Table 2 summarizes the parameters used in Dilithium for different security
levels. The letters k and ` are the dimensions of polynomial matrices, and η is the secret key
polynomial coefficients range. In digital signature protocol, there are two parties (signer
and verifier) and three main operations, including key generation, signing, and verification.
Key generation creates a public and secret key pair in polynomial form. Signing combines
a message hash, private key, and public key to create a signature with a witness and hint
polynomial; Verification checks the signature’s correctness using the signer’s public key
and the message hash. For more details of CRYSTALS-Dilithium, readers can refer to
[DLL+18].

Table 2: Parameter sets for CRYSTALS-Dilithium.
NIST Security Level q (k, `) η

1 8380417 (4, 4) 2
3 8380417 (6, 5) 4
5 8380417 (8, 7) 2

2.3 Bottlenecks Operations
Hash Function. In the FO transform of KEM and the computation of DS, hash functions
play a crucial role, and it has been shown that the hash function occupies more than 40%
of the running cycles in Kyber, Dilithium, and many other schemes in the ARM platform
[KRSS19]. Currently, Secure Hash Algorithm 3 (SHA-3) is widely used as a hash function,
which was selected as the winner of the NIST hash function competition in 2012 [CPB+12].
SHA-3 uses a sponge construction - Keccak, where the input message is padded and then
absorbed into a state array. The state array is then processed using a series of permutation
rounds to provide diffusion and confusion to the input message. After processing all inputs,
the state array is squeezed to produce the output hash value. To accelerate SHA-3, the
most critical part is the Keccak-f[1600], which accepts 1600 bits as inputs and generates
1600 bits as outputs. Keccak-f[1600] consists of 24 rounds with five steps (θ, ρ, π, χ, ι) in
each round, as described in Algorithm 1.

Accelerating Keccak using 256-bit SIMD instructions is challenging due to data de-
pendencies in the ρ and π steps as a Keccak state matrix involves 5× 64-bit data. The
presence of an extra 64-bit data requires additional instructions to handle it. The work
[BDPVA13] utilized Intel AVX instructions to accelerate Keccak. Another work [RS16]
proposed customized SIMD instructions for Keccak with 128 and 256 bits that are com-
bined with multiple operations. However, their efficiency is hindered when using 128 or
256-bit registers due to the data dependencies.

Polynomial Multiplication and Number Theoretic Transform. Polynomial multiplica-
tion is another bottleneck operation in KEM and DS. For example, the key generation and
verification process of Dilithium 2 involves more than 16 polynomial multiplications. In
polynomial ring Zq[x]/(xn + 1), the complexity can be reduced from O(n2) to O(n logn)
by using Number Theoretic Transform (NTT), polynomial multiplication still accounts for
approximately 50% of running cycles [BNAMK21].

NTT is a Discrete Fourier Transform (DFT) variant where all numbers are integers, and
modular reduction is applied in all operations. NTT takes a polynomial a(x) =

∑n−1
i=0 aix

i

as input and returns the output A(x) =
∑n−1
i=0 Aix

i, where Ai =
∑n−1
j=0 ajω

ij (mod q)
and ω is the primitive n-th root-of-unity modulo q. For INTT, the twiddle factor ω is
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Algorithm 1 Plane-per-Plane processing of Keccak-f [BDPVA13]
Require: State matrix A (5× 5× 64 bits)
Ensure: State matrix E (5× 5× 64 bits)

1: for x = 0 to 4 do
2: C[x] = A[x, 0]⊕A[x, 1]⊕A[x, 2]⊕A[x, 3]⊕A[x, 4] // θ step
3: end for
4: for x = 0 to 4 do
5: D[x] = C[x− 1]⊕ ROT(C[x+ 1], 1) // θ step
6: end for
7: for y = 0 to 4 do
8: for x = 0 to 4 do
9: B[x] = ROT((A[x′, y′]⊕D[x′]), r[x′, y′]), with

(
x′

y′

)
= M−1

(
x
y

)
// ρ and π step

10: end for
11: for x = 0 to 4 do
12: E[x, y] = B[x]⊕ ((NOTB[x+ 1]) ANDB[x+ 2]) // χ step
13: end for
14: end for
15: E[0, 0] = E[0, 0]⊕ RC[i] // ι step

replaced with the multiplicative inverse ω−1, and additional final scaling n−1 is required:
ai = N−1∑n−1

j=0 Ajω
−ij (mod q). Similar to DFT, a divide-and-conquer method can be

used to reduce the complexity of NTT to O(n · log(n)).

Polynomial Sampling. Two types of random sampling are involved in LBC algorithms:
rejection sampling and binomial sampling. In polynomial samplings, additions, subtractions,
and other logic operations are performed on random uniform numbers generated by a
Pseudo Random Number Generator (PRNG), which involves output data from a hash
function. Though these operations can be performed efficiently in ASIC and FPGA designs,
they require several logic and arithmetic operations in a processor, resulting in critical
running cycles.

In the polynomial ring Zq[x]/(xn + 1), rejection sampling is used to ensure that the
coefficients are within the range [0, q − 1]. The process of rejection sampling can be
described as follows:

• Generate a uniformly sampled data point x from [0, 2k − 1], where k > log q.

• Check if x falls within the desired range of [0, q − 1]. It is accepted as a valid sample
if x is within this range.

• If x is outside the desired range, it is rejected. In this case, the above steps are
repeated until a valid sample within [0, q − 1] is obtained.

On the other hand, centered binomial distribution sampling is used for secret and error
polynomials where the coefficients are within a small range (−η, η). The process of CBD
sampling is shown as follows:

• Sample 1-bit data: (a1, ..., aη, b1, ..., bη)← {0, 1}2η

• Output:
∑η
i=1(ai − bi)

3 Hardware Architecture
In this section, our proposed SIMD architecture is presented. The proposed processor is
based on CV32E40P2, which is a 32-bit, in-order RISC-V core with a 4-stage pipeline and

2https://github.com/openhwgroup/cv32e40p
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RV32IMC instruction set architecture. To optimize the performance of LBC algorithms,
we propose some customized SIMD instructions and corresponding hardware designs. The
data width of SIMD can be configured to 256-bit mode (eight parallel 32-bit arithmetic
operations) and 320-bit mode (ten parallel 32-bit Keccak operations).
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Figure 1: Proposed SIMD Processor Architecture.

3.1 Proposed Instruction Set Architecture
As illustrated in Figure 1, the processor consists of four pipeline stages, including Instruction
Fetch (IF), Instruction Decode (ID), Execution (EX), and Write-Back (WB). To accelerate
the LBC algorithms, we apply several optimizations in our hardware designs:

SIMD Register File. 5 SIMD register files (PR1 to PR5) consisting of 16 rows of 64
bits are added in the ID stage. 8× 32-bit or 10× 32-bit data are stored in the register files
PR1 to PR5. Moreover, a small register file (FIX) consisting of 2 rows of 32 bits is added
to store frequently used constant numbers, such as parameters q and q−1 in Kyber and
Dilithium.

Proposed ALU Design. A PALU is added in EX stage to support 8/10 parallel opera-
tions of 32-bit data. Inside the EX stage, there are pre-processing and post-processing
hardware units for data shuffling. Figure 2a shows our proposed 10-core PALU design,
which is capable of receiving up to three 320-bit data from PRs and outputting up to
one 320-bit data. These cores can be classified into three types with different hardware
resources of Carry Propagate Adders (CPA), Carry Save Adder (CSA), multiplier, and
rotator. When executing SIMD Keccak instructions, all ten cores in PALU can be utilized,
whereas when executing SIMD arithmetic instructions, only PALU0 to PALU7 are utilized.

Load/Store Extensions. To minimize the overhead of data transmission between the
processor and main memory, we opt for a 128-bit data path in the Load-Store Unit (LSU)
because a 256-bit LSU will reduce the flexibility of data organization and consume much
more resources. When working on load/store instructions, data will be loaded to or stored
from (PR1, PR2) or (PR3, PR4) or PR5.
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Figure 2: Proposed PALU design and data path.

Dual-Issue. Since our PALU can process 256/320-bit data, and the LSU only supports
at most 128 bits, loading data from and storing data back to the main memory may
become a bottleneck. To enhance the performance, the IF data path is extended from 32
bits to 64 bits. With this, we propose a dual-issue design where two 32-bit instructions
(one load/store and the other non-load/store) are fetched and executed simultaneously.
If there are data dependencies, more than two load/store instructions, more than two
non-load/store instructions, or a jump/branch instruction, only one instruction will be
issued and executed. Consequently, both the program and compiler must be meticulously
designed to leverage this feature to optimize performance. It is noted that our proposed
dual-issue design works for both SIMD instructions and RV32 instructions.

3.2 Proposed SIMD Instructions
Our proposed SIMD instructions include arithmetic instructions, Keccak instructions, and
load/store instructions, as described in Table 10.

3.2.1 SIMD Arithmetic Instructions

Our PALU supports a variety of arithmetic operations since it includes multipliers, adders,
and rotators. For logic operations such as AND and XOR, adders are utilized. Additionally,
32-bit logic left-shift and 32-bit arithmetic right-shift are supported using rotators. Modular
additions and subtractions require one more addition/subtraction than ordinary addition
and subtraction because we assume the inputs are in the range (−q, q). The detailed data
path of PALU executing these instructions is illustrated in Figure 2b.

Data Shuffling. Data shuffling units are integrated into the pre-processing and post-
processing stages of PALU to rearrange sets of 32-bit data for efficient operations. As
depicted in Figure 3, 16 sets of 32-bit data are reordered during pre-processing (input
shuffling), and 8 sets of data from the PALU (output shuffling) are reordered during
post-processing. This approach helps to reduce data dependencies’ impact on SIMD
operations and improve overall performance. In addition to these two shuffling patterns,
it is also possible for two 256-bit data to exchange their halves by utilizing load/store
instructions. This can be achieved by loading the upper and lower halves of both 256-bit
data into separate registers, exchanging the lower halves using a store instruction followed
by a load instruction, and then similarly swapping the upper halves.

Rejection Sampling. To support rejection sampling for 8 sets of 32-bit data, we design a
specific instruction called bgeuv. This instruction compares each set of 32-bit data in rs1
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Figure 3: Data shuffling.

to the corresponding set of 32-bit data in rs2 and provides a branch indication if any of
the comparisons show that one of the 32-bit data of rs1 is greater than that of rs2.

Centered Binomial Distribution Sampling. cbd2 and cbd3 are designed for efficient
parallel CBD sampling for η = 2 and η = 3, respectively. The data path of cbd2 and cbd3
are illustrated in Figure 4, where the lower 32/48 bits of rs1 are utilized. In the case of
cbd2, the lower 32 bits of rs1 are split into 32 parts, and each part is extended to 4 bits
by padding 3 bits of 0. To avoid introducing additional adders in PALU, these extended
bits are further grouped into four 32-bit numbers: A0, A1, B0, and B1. Additions of A =
A0 + A1 and B = B0 + B1 are performed in the CPAs of PALU0 and PALU1 without
overflow because the result range is [0, 2], which reduces the number of required adders
from 16 to 2. The results A and B are then split into eight parts and sent to the CPAs of
PALU0 to PALU7. Finally, the subtractions A − B in 8 CPAs are performed, and the
results are stored in 256 bits. The instruction cbd3 is similar to cbd2 except that the lower
48 bits of rs1 are used and split into A0 to A2 and B0 to B2.

To perform CBD sampling with η > 3, one can combine cbd2 and cbd3 instructions.
For instance, the sum of cbd2 and cbd3 can form an η = 5 sampling process, and the sum
of cbd2 and cbd2 can form an η = 4 sampling process.
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3.2.2 SIMD Keccak Instructions

According to our experimental results, it takes about 13,000 cycles to perform one Keccak
operation on CV32E40P. To perform Keccak efficiently, we extend the datapath from
256 bits to 320 bits and allow more read ports in the SIMD register files, enabling the
processing of five 64-bit data simultaneously. Following the steps of Algorithm 1, we
design a set of SIMD Keccak instructions combining XOR, 64-bit rotations, AND and
data shuffling to accelerate Keccak (Table 10). The detailed operations of our proposed
SIMD Keccak instructions are illustrated in Figure 5.

To reduce the number of instructions and cycles of Keccak, some instructions are
designed to allow three-operand processing. As supporting rs3 directly would increase
hardware complexity and power consumption, we restrict the address of rs3 to be the
address of rs1 with a left-shift of 1 bit, i.e., addr[rs3] = addr[rs1] << 1. xorv3 computes
the XOR result of rs1, rs2, and rs3, while xorv2 computes the XOR result of rs1 and
rs2. xorrv broadcasts the data C of Algorithm 1 to PALU0 to PALU9 and performs an
1-bit rotation.

Instructions rxorv0 to rxorv4 are used to compute B in Algorithm 1. They compute
the XOR result of rs1 and rs2 and then perform 64-bit rotations. There are a total of 25
rotations in the ρ step of Keccak. To support the rotations with different numbers, the
rotators are configured to specific rotation numbers during the executions of rxorv0 to
rxorv4, as shown in Table 3.
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Figure 5: Keccak Instructions Data path. A 64-bit CSA is two 32-bit CSAs in the PALU.

Table 3: Rotators configurations in different cores.
PALU0 PALU1 PALU2 PALU3 PALU4

rxorv0 27 28 62 1 0
rxorv1 20 55 6 44 36
rxorv2 39 25 43 10 3
rxorv3 8 21 15 45 41
rxorv4 14 56 61 2 18

shufflev is designed to allow internal data shuffling which accepts rs1 and imm as
inputs. For example, when imm=1, the data input as [rs1[0], rs1[1], rs1[2], rs1[3], rs1[4]]
will give output rd=[rs1[4], rs1[0], rs1[1], rs1[2], rs1[3]]. xornavi is used to compute E
in Algorithm 1, which combines logic NOT, AND, and XOR operations. To handle the
data dependencies problem, we introduce rs4 and rs5, whose addresses are fixed in all
cases. Additionally, xornavi requires a 3-bit immediate value imm where 0 ≤ imm ≤ 5.
Although there is no rs2 in the RISC-V I type instruction, we still use instr[24 : 20] to
represent rs2, and instr[27 : 25] is used as the 3-bit immediate value in hardware design.

3.2.3 SIMD Load/Store Instructions

The proposed SIMD load/store instructions are designed for 32-bit register file FIX and
64-bit register files PRs:
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• lv and sv are used for SIMD PR1 to PR4.

• lw64 and sw64 are used for SIMD PR5.

• lwf is used for SIMD FIX.

Note that when dealing with load/store instructions, rs1 comes from the General Purpose
Register (GPR).

4 Design Methodology
In this section, the design methodologies using our proposed hardware and corresponding
customized SIMD instructions are proposed. To enhance performance, our proposed
dual-issue feature is utilized, which provides significant performance improvements in
programs with fewer data dependencies. Moreover, algorithmic-level and architectural-
level co-optimizations for polynomial multiplications are presented to further enhance the
performance.

4.1 Keccak Acceleration
The assembly code for Keccak using the proposed instructions is described in Listing 1,
following the steps of plane-per-plane processing (Algorithm 1). For simplicity, the data
loading and storing are ignored here. Note that registers x0 to x31 can function as either
GPR or SIMD PR, which are distinguished by hardware decoder.

Listing 1: Keccak assembly code.� �
1 // load data to x0 , x1 , x2 , x3 , x6
2 // using lv , lw64 and shufflev ...
3
4 // Round 0
5 // compute C
6 xorv3 x5 , x1 , x0
7 xorv3 x5 , x3 , x5
8 // compute D
9 xorrv x5 , x5 , x5

10 // compute B
11 rxorv1 x10 , x1 , x5
12 rxorv2 x11 , x2 , x5
13 rxorv3 x12 , x3 , x5
14 rxorv4 x13 , x6 , x5
15 rxorv0 x9 , x0 , x5
16 // compute E part 1
17 xornavi x15 , 0b001010( x9)
18 xornavi x4 , 0b1101010( x9)
19 xornavi x8 , 0b101010( x9)
20 // compute RC
21 lw64 x5 , 0(%[ round_consts ])
22 xorv2rc x15 , x15 , x5
23 // compute E part 2
24 xornavi x7 , 0b10001010( x9)
25 xornavi x14 , 0b1001010( x9)
26 // Round 1� �

� �
44 // compute C
45 xorv3 x5 , x4 , x15
46 xorv3 x5 , x7 , x5
47 // compute D
48 xorrv x5 , x5 , x5
49 // compute B
50 rxorv1 x10 , x4 , x5
51 rxorv2 x11 , x8 , x5
52 rxorv3 x12 , x7 , x5
53 rxorv4 x13 , x14 , x5
54 rxorv0 x9 , x15 , x5
55 // compute E part 1
56 xornavi x0 , 0b001010( x9)
57 xornavi x1 , 0b1101010( x9)
58 xornavi x2 , 0b101010( x9)
59 // compute RC
60 lw64 x5 , 8(%[ round_consts ])
61 xorv2rc x0 , x0 , x5
62 // compute E part 2
63 xornavi x3 , 0b10001010( x9)
64 xornavi x6 , 0b1001010( x9)
65
66 // 22 rounds ...
67
68 // store data b ack
69 // using sv , sw64 and shufflev ...� �

As Algorithm 1 is not in-place, the input and output are stored in different memory
addresses. To optimize memory, after every two rounds, the output of the second round is
stored back in the same address as the input of the first round. As 5× 5 64-bit elements
of the Keccak state matrix are assumed to be stored in continuous memory address by
columns, some elements that are aligned to 8 bytes are loaded using lw64 instructions,
and elements that are aligned to 16 bytes are loaded using lv instructions. To ensure that
the elements in the PRs have consistent indices, shufflev instructions are used after data
loading, as shown in Figure 6. The process of storing the state matrix in PRs back to the
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main memory is the reversal of the loading process. There is no other load/store of the
state matrix inside the 24 rounds operations because the memory space of PRs is sufficient.
The operations of Round 0 and Round 1 are shown in lines 4 to 64 of Listing 1. To reduce
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Figure 6: The organization of Keccak state matrix in PRs.

memory consumption, the output E of Round 1 is stored in the address of the input A
of Round 0. Similarly, the following 22 rounds repeat this process. Note that instead of
unrolling all 24 rounds, we implement a loop to handle the 24 rounds to reduce the code
size. Benefiting from our proposed design, the number of cycles of one Keccak operation is
404, which is about 32× faster than that of the CV32E40P processor (Table 5).

4.2 Modular Arithmetic
Our proposed processor supports modular additions and subtractions of two operands
within range (−q, q) using the addvm and subvm instructions. However, modular multi-
plications are more complex and require several instructions. The most commonly used
algorithms for modular multiplication and reduction are the Barrett algorithm [Bar86] and
the Montgomery algorithm [Mon85]. However, if the modulus q > 216, the subtraction of
[Bar86] would be more than 32 bits, which introduces additional computational complex-
ity. On the other hand, both of these algorithms are incompatible with signed number
arithmetic, which poses challenges when the CBD sampling generates signed numbers.

To address these issues and provide more flexibility, signed arithmetic is supported
in our proposed hardware, and signed Montgomery algorithm [Sei18] is implemented for
modular reduction. As shown Algorithm 2, parameters β, β−1, q, and q−1 are required
and we choose β = 232. The input range of a is [−β2 q,

β
2 q), and the output r′ is in the

range (−q, q). Because this algorithm can not compute a · b mod q directly, a or b should
be multiplied with β before signed Montgomery reduction. With our proposed instruction,
modular multiplication can be implemented in 5 instructions, as shown in Listing 2.

Listing 2: Assembly code of modular multiplication.� �
1 // load data to x0 and x1 using lv ...
2 // load constant data q and q^{ -1} to FIX using lwf ...
3 // modular multiplication
4 mulv x14 , x0 , x1 // lower 32 -b it result a0
5 mulvh x13 , x0 , x1 // higher 32 -b it result a1
6 mulvm x14 , x14 , x14 // a0 * q^{ -1} mod b eta
7 mulvhf x14 , x14 , x14 // m * q / b eta
8 subv x2 , x13 , x14 // a1 - t1
9 // store back using sv ...� �
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Algorithm 2 Signed Montgomery Reduction [Sei18]
Require: 0 < q < β

2 , −β2 q ≤ a = a1β + a0 <
β
2 q where β · β−1 ≡ 1 (mod q), 0 ≤ a0 < β

Ensure: r′ = β−1a (mod q),−q < r′ < q
1: m← a0q−1 mod ±β
2: t1 ← bmqβ c
3: r′ ← a1 − t1

4.3 Number Theoretic Transform
NTT is a bottleneck operation with the complexity of O(n · log(n)) that is commonly
used to accelerate polynomial multiplications. Gentleman-Sande NTT and Cooley-Tukey
INTT [CT65] are optimized and implemented with the proposed instructions in our design.
The Gentleman-Sande scheme performs modular multiplication after additions, whereas
the Cooley-Tukey scheme performs modular multiplication at first. With our proposed
SIMD instructions, eight butterfly operations are performed simultaneously. To deal with
data dependencies during different layers, input shuffling and output shuffling schemes are
utilized. To explain how NTT and INTT are performed, we take a 32-point polynomial
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Figure 7: 32 points example of NTT and INTT.

as an example, as shown in Figure 7. Note that we have addvmt, subvmt, addvti, and
subvti instructions to perform data shuffling. The numbers in the boxes are the indices of
polynomial coefficients where 32 coefficients are stored in 4 SIMD registers. In CT Layer 1
to 4 and GS Layer 2 to 5, x0 and x1 are the operands of the butterfly operation; in CT
Layer 5 and GS Layer 1, x0 and x2 are the operands of the butterfly operation. Data
shufflings are applied between Layer 1 and 2, Layer 2 and 3, and Layer 3 and 4. The
data shuffling of Cooley-Tukey data flow is performed by output shuffling (as shown in
Figure 3) and load/store instructions, while the data shuffling of Gentleman-Sande data
flow is performed by input shuffling. By utilizing our proposed SIMD instructions, NTT
can be accelerated by about 8×. To further enhance the performance, dual-issue, lazy
reduction, and twiddle factor sharing are utilized.

Dual-issue. There are many load/store during NTT computation because the SIMD
PR can only store 16 × 256-bit data, and twiddle factors also need to be loaded into
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SIMD PRs. To improve performance, we leverage the limited data dependencies within
a layer of NTT to maximize the benefits of our dual-issue scheme. One SIMD butterfly
operation requires 7 instructions, including 5 instructions for modular multiplication, 1
for modular addition, and 1 for modular subtraction. On the other hand, the data for
one SIMD butterfly operation requires 6 load instructions (butterfly operands and twiddle
factors) and 2 store instructions. In total, 7 instructions are used for computation, and 8
instructions are used for load/store. The number of load/store instructions can be reduced
to 6 when the update of the twiddle factors is not necessary.

To utilize dual-issue, we apply interleaving of butterfly instructions and load/store
instructions in programming. The current butterfly operations are mixed with proceeding
data storing or succeeding data loading. In this case, NTT/INTT can be executed efficiently.
The assembly codes of 256-pt Gentleman-Sande NTT are shown in Listing 3. The required
data for the first butterfly operation is loaded (lines 1 to 6), and dual-issue is applied in
lines 8 to 27. Due to the advantage of dual-issue, the number of cycles for lines 8 to 27 is
10 rather than 17.

Lazy Reduction. Lazy reduction is commonly used to reduce the number of instructions
required to perform modular additions and subtractions [HZZ+22]. In our design, we
have instructions addvm and subvm that support modular additions and subtractions
directly, and our proposed instructions addvmt and subvmt support modular additions
and subtractions with output shuffling. To minimize the number of new instructions,
we do not introduce instructions that support modular additions and subtractions with
input shuffling. In our design, we utilize lazy reduction in all layers of Gentleman-Sande
NTT for both Kyber and Dilithium. Lazy reduction can be applied because Algorithm 2
can accept data in the range [−β2 q,

β
2 q) and limit the output to the range (−q, q). As

the multiplicands used in the modular multiplications of NTT/INTT are pre-computed
twiddle factors, their values can be constrained to the range of [− q2 ,

q
2 ). Consequently, the

range of the other operands is limited to (−β, β). After performing one lazy reduction,
the output range increases by the value of q [Sei18]. Since the polynomial coefficients are
in the range (−q, q) at first, after operations of 8 layers with lazy reduction, the range
becomes (−9q, 9q), which is still a subset of [−231, 231 − 1] for both Kyber and Dilithium.

Listing 3: Assembly code of Gentleman-Sande NTT.� �
1 lv x0 , 0(%[ tws ]) // load twiddle factors
2 lv x16 , 16(%[ tws ])
3 lv x1 , 512(%[ coeffs ]) // load coeffs [128 -131] for BF1
4 lv x17 , 528(%[ coeffs ]) // load coeffs [132 -135] for BF1
5 lv x2 , 0(%[ coeffs ]) // load coeffs [0 -3] for BF1
6 lv x18 , 16(%[ coeffs ]) // load coeffs [4 -7] for BF1
7
8 // Dual - issue : interleaving of load / store and arithmetic instructions
9 lv x6 , 544(%[ coeffs ]) // load coeffs [136 -139] for BF2

10 mulv x15 , x0 , x1
11 lv x22 , 560(%[ coeffs ]) // load coeffs [140 -143] for BF2
12 mulvh x3 , x0 , x1
13 // twiddle factors sharing : only update when necessary
14 lv x0 , 32(%[ tws ])
15 lv x16 , 48(%[ tws ])
16
17 lv x7 , 32(%[ coeffs ]) // load coeffs [8 -11] for BF2
18 mulvm x14 , x15 , x0
19 lv x23 , 48(%[ coeffs ]) // load coeffs [12 -15] for BF2
20 mulvhf x13 , x14 , x0
21 lv x1 , 576(%[ coeffs ]) // load coeffs [144 -147] for BF3
22 subv x12 , x3 , x13
23 lv x17 , 592(%[ coeffs ]) // load coeffs [148 -151] for BF3
24 addvm x4 , x2 , x12
25 sv x4 , 0(%[ coeffs ]) // save coeffs [0 -3] for BF1
26 subvm x5 , x2 , x12
27 sv x20 , 16(%[ coeffs ]) // save coeffs [4 -7] for BF1
28 // ...� �
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Twiddle Factors Sharing. To further enhance performance, we reduce the number of
twiddle factors loading by observing that the number of different twiddle factors varies
across different layers. Although the number of required twiddle factors for one layer is n

2 ,
some twiddle factors are the same in some layers. In the case of Gentleman-Sande, the
number of different twiddle factors decreases as the layer increases, while in Cooley-Tukey
INTT, the number of different twiddle factors increases with the layer. Therefore, the
twiddle factors are loaded into dedicated SIMD registers at first and will be updated when
different twiddle factors are used. In layers with fewer unique twiddle factors, the same
factors can be shared multiple times, which eliminates the need to continuously reload
them from the main memory.

By applying the methodologies described above, our proposed design achieves a cycle
count of 1750 for one 256-point NTT and 1925 for one 256-point INTT. These results rep-
resent a significant improvement (25× faster) over the cycle counts achieved by CV32E40P
processor, as shown in Table 5. Some NTT-only designs [RVM+14, FLX19, LTHW22,
YCH22] that can not perform Kyber KEM and Dilithium could have an NTT cycle count
of 256, while our NTT cycle count is 1.7k because only some simple SIMD arithmetic
instructions are added to our proposed processor. Only the proposed shuffling hardware
which is composed of some MUXs is designed specifically for NTT. The other proposed
hardware designs (PALU, dual-issue, etc.) are not only optimized for NTT but also for
many other operations including Keccak, polynomial samplings, etc.

4.4 Polynomial Multiplication
In Dilithium, polynomial multiplication can be accelerated by Negacyclic Convolution,
where two NTT, one point-wise multiplication, and one INTT are performed [CMV+14].
However, due to the limitation of parameter settings in Kyber, the polynomial multiplication
is different from Dilithium, and in-completed NTT [XL21] is utilized. Unlike the approach
in [XL21], we split Kyber’s 256 polynomial coefficients into even and odd parts and
perform NTT/INTT transformations independently. In this case, the design methodologies
for general NTT are utilized in Kyber 128-pt NTT. Moreover, we propose a method
to reduce the number of modular reductions in Kyber polynomial multiplications and
polynomial matrix-vector multiplications. The details of our optimized Kyber polynomial
multiplication are depicted in Algorithm 3 where BR is the bit-reversal operation. To
further enhance the performance of polynomial multiplications, operations merging and
dual-issue are applied.

Optimization for Modular Multiplication. In Kyber, there are 5 modular multiplica-
tions in one basecase multiplication (lines 5 and 6 in Algorithm 3), which requires 25
instructions. To reduce the complexity, we replace some modular multiplications with
ordinary multiplications.

Since we use lazy reduction in Gentleman-Sande NTT, the output coefficients are in the
range of (−8q, 8q). When performing the operations in line 6 using ordinary arithmetic,
the resulting values fall within the range of (−65q2, 65q2), which remains within the limits
of a 32-bit representation. Thus, instead of performing two modular multiplications and
one modular addition as required in line 6, we just perform two ordinary multiplications,
one ordinary addition, and one additional modular reduction. For line 5, the modular
multiplication of B′o(x) �D is performed first, followed by similar processing as line 6.
In this case, the operations of line 5 can be reduced to one modular multiplication, two
ordinary multiplications, one ordinary addition, and one modular reduction.

Additionally, this technique can also be used in matrix multiplications where elements
are polynomials in Kyber and Dilithium. When the outputs of ordinary operations are in
the 32-bit range, matrix multiplications can use ordinary multiplications first. A modular
reduction is performed after the summation of all polynomials in the same row/column.
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This technique significantly reduces the number of modular multiplications and improves
the overall performance.

Operations Merging. When using SIMD instructions for computation, data needs to be
loaded from the main memory to SIMD PR and then stored back to the main memory,
resulting in a significant overhead in memory accesses, particularly when there are large
amounts of data. To address this issue, we propose an operation merging technique that
reduces the number of data load/store by reorganizing more operations into one SIMD
computation.

In polynomial multiplications, we take advantage of the fact that the twiddle factors
of the last layer in Gentleman-Sande NTT and the first layer in Cooley-Tukey INTT are
ones, making modular multiplication free. This reduces the number of instructions for one
butterfly operation to only 2. Therefore, we merge more operations into the last layer
of Gentleman-Sande NTT and the first layer of Cooley-Tukey INTT to fully utilize the
dual-issue feature and reduce the overhead of load/store. In our design, the final scaling of
INTT and post-processing are merged into the first layer of Cooley-Tukey INTT, and the
point-wise or basecase multiplications are merged into the last layer of Gentleman-Sande
NTT, which significantly reduces the load/store overhead.

Algorithm 3 Proposed Kyber polynomial multiplication
Require: A(x), B(x) ∈ Z3329[x]/(x256 + 1)
Require: Primitive 256-th root of unity ζ = 17, C = (ζ0, ζ1, ..., ζ127)
Require: D = (ζ2·BR(0)+1, ζ2·BR(1)+1..., ζ2·BR(127)+1)
Ensure: H(x) = A(x)B(x), H(x) ∈ Z3329[x]/(x256 + 1)
1: // pre-processing and NTT
2: A′e(x)← NTT(Ae(x)� C), A′o(x)← NTT(Ao(x)� C)
3: B′e(x)← NTT(Be(x)� C), B′o(x)← NTT(Bo(x)� C)
4: // basecase multiplication
5: H′e(x)← A′e(x)�B′e(x) +A′o(x)�B′o(x)�D // two modular reductions
6: H′o(x)← A′e(x)�B′o(x) +A′o(x)�B′e(x) // one modular reduction
7: // INTT and post-processing
8: He(x)← INTT(H′e(x))� (ζ0, ζ−1, ..., ζ−127)
9: Ho(x)← INTT(H′o(x))� (ζ0, ζ−1, ..., ζ−127)

Dual-issue. The technique of utilizing dual-issue is similar to that of NTT/INTT because
the point-wise and basecase multiplications operate on polynomials, which have fewer data
dependencies. To take advantage of dual-issue, we divide the entire operation into multiple
batches, each with some load/store instructions. Then, one operation is combined with
the load/store of a preceding or succeeding operation, allowing overlap computation with
memory access and reducing the overhead of load/store blockings.

The above optimizations enable our proposed design to achieve a remarkable 25.5×
and 30.3× acceleration for Kyber 2× 2 matrix multiplication and Dilithium 4× 4 matrix
multiplication (Table 5), respectively.

4.5 Polynomial Rejection Sampling
Rejection sampling is performed by checking whether a given dlog(q)e-bit random number
is in [0, q − 1]. The rejection probability is (1− 3329/212) = 18.726% for Kyber and (1−
8380417/223) = 0.098% for Dilithium. However, when sampling 8 numbers in parallel, the
rejection probability for Kyber is (1− (3329/212)8) = 80.961%, and (1− (8380417/223)8) =
0.779% for Dilithium. In this case, parallel rejection sampling of Kyber would take a long
time due to the high rejection probability.

To reduce the rejection probability of Kyber, we extend the range from [0, q − 1] to
[0, k · q− 1] where k is an integer, and then perform modular reduction to reduce the range
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back to [0, q−1] [BUC19]. By searching all possible k that satisfy k ·q < 231 and calculating
the corresponding rejection probability, k with the minimum rejection probability can be
found. For Kyber, the minimum rejection probability of 8 parallel samplings is 2× 10−5,
where k = 645082. For Dilithium, the probability is 0.779%, where k = 1. Therefore,
Kyber rejection sampling requires additional modular reduction.

In our design, the bgeuv instruction is used to check whether the given eight values are
all in [0, k · q − 1]. Instruction jump occurs when one of them is out of range. An example
program for Kyber rejection sampling is shown in Listing 4.

Listing 4: Assembly code of Kyber rejection sampling.� �
1 addi %[ cnt_data ], %[ addr_a ], 0
2 addi %[ cnt_buf ], %[b uf], 0
3 lv x0 , 0(%[ addr_b ]) // load kq
4 lv x16 , 0(%[ addr_b ])
5 lv x1 , 0(%[ mask ]) // load mask =2^31 -1
6 lv x17 , 0(%[ mask ])
7 lv x15 , 0(%[b eta ]) // load (b eta mod q)
8 lv x31 , 0(%[b eta ])
9 rej_loop :

10 lv x2 , 0(%[ cnt_buf ])
11 lv x18 , 16(%[ cnt_buf ])
12 andv x3 , x2 , x1 // reduce to 31 bit
13 addi %[ cnt_buf ], %[ cnt_buf ], 32� �

� �
17 bgeuv x3 , x0 , rej_loop
18 rej_modular : // modular multiplication
19 mulv x14 , x3 , x15
20 mulvh x13 , x3 , x15
21 mulvm x14 , x14 , x14
22 mulvhf x14 , x14 , x14
23 subv x3 , x13 , x14
24 sv x3 , 0(%[ cnt_data ]) // store back
25 sv x19 , 16(%[ cnt_data ])
26 // check if 256 numbers are sampled
27 addi %[ cnt_data ], %[ cnt_data ], 32
28 addi %[ index ], %[ index ], 1
29 bltu %[ index ], %[ data_256 ], rej_loop� �

4.6 Other Polynomial Operations
In addition to our proposed optimizations, other operations (polynomial compressions,
packings, Dilithium Power2round, Decompose, etc.) are optimized with the proposed
SIMD instructions whenever parallelism can be easily achieved. Our implementations
are based on PQClean [KSSW22], where Power2round and Decompose are computed by
additions, shiftings, and several logic operations. Operations that are difficult to parallelize
are not optimized using the proposed SIMD instructions.

5 Experimental Results
The experimental results of our proposed processor for Kyber and Dilithium with different
security levels are presented in this section. We compare the cycle counts of the accelerated
bottleneck operations of our proposed processor with those of the baseline CV32E40P
processor. In addition, we compare the cycle counts of Kyber and Dilithium with some
state-of-the-art designs to demonstrate the advantages of our design. Furthermore, we
present the implementation results of our proposed hardware design on FPGA and Silicon
synthesis results with 28 nm process technology.

Table 4: Code sizes of Kyber KEM and Dilithium.
Code size (kB)

Kyber KEM 512 24.4
Kyber KEM 768 26.1
Kyber KEM 1024 28.0

Dilithium 2 36.9
Dilithium 3 37.3
Dilithium 5 39.8

Our proposed processor is thoroughly tested and verified using the tools provided
by CV32E40P. The supports for FPU and other customized instructions are turned
off to ensure fair comparisons. To support assembly programming of our customized
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SIMD instructions, we modified the RISC-V assembler by using riscv-opcodes tool3. The
bottleneck operations and our optimizations are re-implemented by assembly code.

5.1 Code Sizes
We measured the code sizes by using riscv32-unknown-elf-readelf tools. As shown in
Table 4, a 40 kB instruction memory is enough to support all the evaluation schemes. On
the other hand, a 64 kB data memory is enough for running all these programs in our
proposed processor. Therefore, our design utilizes a total of 104 kB SRAM, comprising a
40 kB instruction SRAM and a 64 kB data SRAM.

Table 5: Cycle count of bottleneck operations.
CV32E40P Proposed Acceleration
(Baseline) Design Rate

Keccak 12,924 404 32.0
256-pt NTT 45,270 1,750 25.9
256-pt INTT 49,738 1,925 25.8
Kyber-512 2 × 2 Matrix Multiplication 445,072 17,426 25.5
Dilithium-2 4 × 4 Matrix Multiplication 564,028 18,621 30.3
Kyber Rejection Sampling 60,303 4,657 12.9
Dilithium Rejection Sampling 92,717 5,500 16.9
CBD2 Sampling 24,305 1,951 12.5
CBD3 Sampling 40,791 2,508 16.3

5.2 Comparisons of Cycle Count

Table 6: Cycle count comparisons of Kyber KEM.
Work Security

Level
Platform Key Gen. Encaps. Decaps. Total

Kyber KEM Ref. [BDK+18]

1

x86-64 122,684 154,524 288,912 566,120
PQM4 [KRSS19] Cortex-M4 514,291 652,769 621,245 1,788,305
VPQC [XHY+20] Co-processor 18,556 45,886 79,989 144,431
[ZXXH22] Co-processor 9,400 19,000 43,800 72,200
RISQ-V [FSS20] RISC-V 150,106 193,076 204,843 548,025
Baseline RISC-V 917,579 1,234,102 1,372,150 3,523,831
Proposed RISC-V 88,550 89,080 107,549 285,179
Kyber KEM Ref. [BDK+18]

3

x86-64 199,408 235,260 425,492 860,160
PQM4 [KRSS19] Cortex-M4 976,757 1,146,556 1,094,849 3,218,162
[ZXXH22] Co-processor 14,200 26,200 59,100 99,500
RISQ-V [FSS20] RISC-V 273,370 325,888 340,418 939,676
Baseline RISC-V 1,908,045 2,297,127 2,420,253 6,625,425
Proposed RISC-V 164,053 166,322 196,794 527,169
Kyber KEM Ref. [BDK+18]

5

x86-64 307,148 346,648 617,848 1,271,644
PQM4 [KRSS19] Cortex-M4 1,575,052 1,779,848 1,709,348 5,064,248
VPQC [XHY+20] Co-processor 39,689 81,569 136,475 257,733
[ZXXH22] Co-processor 18,500 33,700 77,500 129,700
RISQ-V [FSS20] RISC-V 349,673 405,477 424,682 1,179,832
Baseline RISC-V 2,223,879 2,699,323 2,849,316 7,772,518
Proposed RISC-V 194,523 197,808 244,168 636,499

The cycle counts in all our tests are measured by the rdcycle instruction and the
cycle count of bottleneck operations in Kyber KEM and Dilithium are summarized in
Table 5, which achieve more than 10× acceleration. The average results under 1000
tests of Kyber KEM and Dilithium with different security levels are presented in Table 6
and Table 7, respectively. The cycle counts are compared with state-of-the-art processor
implementations including reference implementation (Intel x86-64), Cortex-M4, RISC-V
co-processor and RISC-V. It should be noted that our decapsulation results include one
encapsulation operation.

3https://github.com/riscv/riscv-opcodes
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Table 7: Cycle count comparisons of Dilithium.
Work Security

Level
Platform Key Gen. Sign Verify Total

Dilithium Ref. [DLL+18]
1

x86-64 300,751 1,355,434 327,362 1,983,547
PQM4 [KRSS19] Cortex-M4 1,400,412 6,157,001 1,461,284 9,018,697
[ZXXH22] Co-processor 45,800 175,100 89,800 310,700
[KSFS23] RISC-V 593,403 1,905,872 651,217 3,150,492
Baseline RISC-V 2,558,152 4,239,156 2,889,910 9,687,218
Proposed RISC-V 177,148 594,477 207,970 979,595
Dilithium Ref. [DLL+18]

3
x86-64 544,232 2,348,703 522,267 3,415,202

PQM4 [KRSS19] Cortex-M4 2,282,485 9,289,499 2,228,898 13,800,882
[ZXXH22] Co-processor 68,400 224,600 110,300 403,300
[KSFS23] RISC-V 1,067,824 3,253,378 1,126,938 5,448,140
Baseline RISC-V 4,446,507 6,355,525 4,648,733 15,450,765
Proposed RISC-V 283,866 745,810 343,555 1,373,231
Dilithium Ref. [DLL+18]

5

x86-64 819,475 2,856,803 871,609 4,547,887
PQM4 [KRSS19] Cortex-M4 3,097,421 8,468,805 3,173,500 14,739,726
[ZXXH22] Co-processor 94,900 313,200 160,000 568,100
[KSFS23] RISC-V 1,784,767 4,357,249 1,848,324 7,990,340
Baseline RISC-V 7,444,308 10,114,960 7,771,766 25,331,034
Proposed RISC-V 467,453 1,172,521 536,543 2,176,517

Our proposed designs exhibit approximately 10× faster than the baseline implementa-
tions and about 5× faster than the PQM4 implementations in cycle counts. Furthermore,
our proposed processor achieves a remarkable 2× acceleration compared with the reference
implementations on Intel x86-64 platform, despite its greater complexity with more pipeline
stages and issue paths.

5.3 Hardware Implementation Results

Table 8: Resource utilization in FPGA.
Platform LUTs Registers BRAMs DSPs Freq.

Baseline Zynq-7000 4,852 2,142 20 5 150
[FSS20] Zynq-7000 24,306 10,837 32 18 -
Proposed Zynq-7000 24,177 8,859 24 37 125

FPGA. We utilized Vivado 2017.4 with default settings to synthesize and implement our
proposed processor and the CV32E40P processor. The results are presented in Table 8.
Our proposed processor uses a total of 104 kB of memory and the baseline uses a total
of 96 kB of memory (32 kB for instruction and 64 kB for data). Our resource usage is
slightly lower compared to RISQ-V [FSS20], while our cycle counts are only half of those
in RISQ-V.

Silicon. We synthesized our proposed processor using 28 nm technology. Both High
Voltage Threshold (HVT) and Low Voltage Threshold (LVT) cells were used under 25
◦C and 0.9 V . Our proposed processor operates at a frequency of 500 MHz with LVT
cells and 200 MHz with HVT cells. Latch-based register files and clock-gating technique
are used to optimize power consumption further. From our experiments, about 70% of
registers are gated in our design.

The technology, frequency, logic gate count, SRAM requirements, performance, and
power of different works are presented in Table 9. To make fair comparisons, the cor-
responding power consumption for Kyber KEM 512 and Dilithium 2 are normalized to
the 28 nm process by the methods of [SB17]. As [FSS20] specifically focuses on very
low-frequency targets, we also synthesized our design under 10 MHz for comparisons. To
take into consideration all relevant factors, the Performance, Power, and Area Product
(PPAP) for Kyber KEM 512 and Dilithium 2 are computed.

As can be seen, our proposed design achieves minimal PPAP, highlighting its significant
advantages over other designs in terms of power, performance, and area. Furthermore,
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Table 9: Silicon synthesis results.
Logic Kyber KEM 512 Dilithium 2

Tech.Volt. Freq. Gates SRAM Perf. Power Norm. PPAP* Perf. Power Norm. PPAP
(nm) (V ) (MHz)(kGE) (kB) (ms) (mW ) Power (ms) (mW ) Power

[FSS20] 65 1.2 10 170 146 54.80 2.57 1.49 13,881 - - - -
This

(HVT)
28 0.9 10 140.3 104 28.52 1.54 1.54 6,548 97.96 1.60 1.60 23,369

[KRSS19] - - 168 - 196 10.64 - - - 53.68 - - -
[BUC19] 40 1.1 72 106 40.25 4.84 5.49 2.69 1,380 11.52 7.57 3.70 4,517
[XHY+20]28 0.9 300 979 12 0.48 32.12 32.12 15,139 - - - -
[ZZZ+22] 28 0.9 500 1,900 484 0.02 163 163 6,462 0.09 237 237 39,064
[AMI+22] 28 - 1,000 747 34.82 0.02 366.98 366.98 4,155 0.06 367.10 367.10 16,913
[ZXXH22]28 - 540 581 24.75 0.13 83.23 83.23 6,465 0.58 85.29 85.29 28,512
[KSFS23] 22 0.8 800 244 >156 - - - - 3.94 6.94 11.25 10,810
Baseline
(HVT)

28 0.9 200 30.5 96 17.62 1.50 1.50 806 48.44 1.56 1.56 2,304

This
(HVT)

28 0.9 200 149.1 104 1.43 2.01 2.01 427 4.90 2.13 2.13 1,556

This
(LVT)

28 0.9 500 166.6 104 0.57 6.50 6.50 618 1.96 6.72 6.72 2,193

* PPAP = Perf. × Norm. Power × Logic Gate. (ms ·W ·GE)

our proposed processor provides support for all necessary operations of Kyber KEM and
Dilithium presented in PQClean. As our design provides flexible fine-grained acceleration,
various small polynomial operations including polynomial compress/decompress, reduction,
etc are efficiently executed in our proposed processor. In contrast, [BUC19] can not
support polynomial encode/decode, compress/decompress directly. On the other hand,
[FSS20, XHY+20, KSFS23] can only support one of the two LBC schemes. Through
hardware/software co-design, our proposed processor can efficiently support all operations
required by Kyber KEM and Dilithium.

6 Discussion and Future Work
In our designs, we have implemented all the schemes following PQClean, where many
operations are implemented with constant time. However, a more detailed analysis of
protection against possible attacks including side-channel, timing, and EM attacks is our
future work. One significant advantage of our design is its ability to implement protection
countermeasures in both software and hardware domains. We have the capability to
incorporate various countermeasures, such as random masking, electromagnetic shielding,
and noise addition, to enhance the security of our system. Moving forward, we are
committed to further exploring these countermeasures and conducting in-depth research to
identify additional techniques that can strengthen the security of our design even further.
Moreover, to further bolster our design for code-based and hash-based schemes, we are also
actively exploring additional techniques and conducting optimizations in both hardware
and software.

7 Conclusion
In this paper, we have presented a highly efficient LBC processor that offers significant
advantages over state-of-the-art designs. Instead of developing customized hardware
accelerators for the critical operations presented in LBC algorithms, we have designed
a customized SIMD RISC-V processor. This approach provides greater flexibility and
potential applications for IoT devices. With our hardware and software co-design, our
proposed design can implement all the operations presented in LBC algorithms, not just
some critical operations. The hardware architecture is designed to efficiently reuse resources
for various arithmetic and logic operations. To further enhance the efficiency of memory
accesses, our proposed processor has been accommodated with a dual-issue path for parallel
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execution of load/store instructions. Our hardware and software co-design has allowed us
to propose several algorithmic-level and architectural-level optimizations for polynomial
multiplications. Additionally, we have achieved a significant performance improvement of
Keccak with our proposed design due to the reduced overhead of memory accesses. We
have performed FPGA and Silicon synthesis for our proposed design and compared it
with the baseline RISC-V processor. Our design has achieved a significant performance
improvement for the LBC algorithms. Moreover, our proposed processor outperforms
state-of-the-art designs in terms of performance, power, and area, while offering greater
flexibility. Our proposed design is particularly well-suited for IoT applications, where it
can significantly reduce power and resource consumption while enhancing security against
quantum computer attacks.
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A Proposed SIMD Instructions

Table 10: Proposed SIMD Instructions.
Instr. Type rs1 rs2 rd Description

SIMD Arithmetic Instructions
addv R 8×32 8×32 8×32 8 Parallel additions
subv R 8×32 8×32 8×32 8 Parallel subtractions
andv R 8×32 8×32 8×32 8 Parallel logic AND
xorv R 8×32 8×32 8×32 8 Parallel logic XOR
addvm R 8×32 8×32 8×32 8 Parallel modular additions with FIX[0]
subvm R 8×32 8×32 8×32 8 Parallel modular subtractions with FIX[0]
addvmtR 8×32 8×32 8×32 The same as addvm but with output shuffling
subvmt R 8×32 8×32 8×32 The same as subvm but with output shuffling
addvti R 8×32 8×32 8×32 The same as addv but with input shuffling
subvti R 8×32 8×32 8×32 The same as subv but with input shuffling
mulv R 8×32 8×32 8×32 8 Parallel multiplications of lower 32 bits
mulvh R 8×32 8×32 8×32 8 Parallel mul. of higher 32 bits
mulvm R 8×32 - 8×32 8 Parallel mul. of rs1 and FIX[1], yielding lower 32 bits
mulvhf R 8×32 - 8×32 8 Parallel mul. of rs1 and FIX[0], yielding higher 32 bits
cbd2 R 8×32 - 8×32 Centered binomial distribution [−2, 2], sampling 8 num-

bers
cbd3 R 8×32 - 8×32 Centered binomial distribution [−3, 3], sampling 8 num-

bers
sllvi I 8×32 - 8×32 Logic left shift of each 32-bit number
sravi I 8×32 - 8×32 Arithmetic right shift of each 32-bit number
bgeuv B 8×32 8×32 - Branch if one of rs1 >rs2, for rejection sampling

SIMD Keccak Instructions
xorv3 R 10×

32
10×

32
10×

32
10 Parallel XOR with 3 operands (one is read from fixed
address)

xorrv R 10×
32

- 10×
32

Compute D of Algorithm 1

rxorv0 R 10×
32

10×
32

10×
32

XOR and rotate specific amounts for computing B of
Algorithm 1

rxorv1 R 10×
32

10×
32

10×
32

The same as rxorv0 but different rotation amounts

rxorv2 R 10×
32

10×
32

10×
32

The same as rxorv0 but different rotation amounts

rxorv3 R 10×
32

10×
32

10×
32

The same as rxorv0 but different rotation amounts

rxorv4 R 10×
32

10×
32

10×
32

The same as rxorv0 but different rotation amounts

xorv2 R 10×
32

10×
32

10×
32

10 Parallel logic XOR

xorv2rc R 10×
32

10×
32

10×
32

2 Parallel logic XOR (compute lower 64-bit XOR)

xornavi I 10×
32

- 10×
32

Compute E of Algorithm 1

shufflev I 10×
32

- 10×
32

Data shuffling of five 64-bit numbers

SIMD Load/Store Instructions
lv I 32 - 4×32 Load 128-bit data to SIMD PRi(1 ≤ i ≤ 4) rd
lwf I 32 - 32 Load 32-bit data to FIX rd
lw64 I 32 - 2×32 Load 64-bit data to SIMD PR5 rd
sv S 32 4×32 - Store 128-bit data in SIMD PRi(1 ≤ i ≤ 4) rs2 back to

memory
sw64 S 32 2×32 - Store 64-bit data in SIMD PR5 rs2 back to memory
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