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Abstract. In this work, we look into an attack vector known as flash erase suppression.
Many microcontrollers have a feature that allows the debug interface protection to be
deactivated after wiping the entire flash memory. The flash erase suppression attack
exploits this feature by glitching the mass erase, allowing unlimited access to the data
stored in flash memory. This type of attack was presented in a confined context by
Schink et al. at CHES 2021. In this paper, we investigate whether this generic attack
vector poses a serious threat to real-world products. For this to be true, the success
rate of the attack must be sufficiently high, as otherwise, device unique secrets might
be erased. Further, the applicability to different devices, different glitching setups,
cost, and limitations must be explored. We present the first in-depth analysis of this
attack vector. Our study yields that realistic attacks on devices from multiple vendors
are possible. As countermeasures can hardly be retrofitted with software, our findings
should be considered by users when choosing microcontrollers for security-relevant
products or for protection of intellectual property (IP), as well by hardware designers
when creating next generation microcontrollers.
Keywords: embedded system security · fault-injection attack · microcontroller ·
firmware extraction · flash erase suppression attack

1 Introduction
Microcontrollers are the backbone of our modern and connected world and used in numerous
applications such as robotics, medical devices, aerospace, and automotive. The internet of
things (IoT) further increase the pervasiveness of microcontrollers in more areas within
industrial and consumer products. Since microcontrollers are responsible for complex tasks
they contain valuable intellectual property (IP) that could be of interest to competitors
and are therefore worth protecting. Furthermore, microcontrollers can be found in security-
critical applications such as hardware security tokens or crypto wallets, to name just
two of many examples [Fed23]. As a consequence, they contain credentials and other
cryptographic secrets which make them an attractive target for adversaries. For that
reason, the security of microcontrollers and their respective assets is of utmost importance
for today’s applications. Due to the distribution of microcontrollers and the physical access
attackers often have, hardware attacks are a serious threat. Moreover, countermeasures
against hardware attacks are difficult to retrofit, and even if software-based countermeasures
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can prevent some attacks, updates for products in the field are difficult to roll out in
practice. There are different attack vectors, but targeting the underlying hardware is
attractive since such attacks often work independent of the application a microcontroller is
used for. One of these attack vectors is to bypass the debug interface protection. The debug
interface provides access to the internals of a microcontroller, including the flash memory
which is used as non-volatile storage for the firmware, cryptographic credentials, or other
sensitive data. After production, this interface is locked, thus preventing access to the flash
memory. Attacking the debug interface protection is an attractive target for adversaries
since a successful attack usually enables access to all internals of a microcontroller.

1.1 Related Work
In the past, several hardware attacks that target the debug interface protection of mi-
crocontrollers have been published. These attacks range from non-physical attacks that
exploit implementation flaws to physical attacks that use different fault injection methods
to tamper with the debug interface protection. Physical attacks can be grouped in non-
invasive, semi-invasive and invasive. In this work, we consider only non-invasive attacks
that do not need any modification of the target microcontroller. Methods in this category
are, for example, voltage glitching and electromagnetic fault injection (EMFI).

A non-physical attack that allows to bypass the debug interface protection was presented
in [Bro15, OSM20]. The flash memory’s access restriction is circumvented by performing
read operations through load instructions executed in SRAM instead of directly through
the debug interface. Another non-physical attack which exploits a vulnerability that
leaks information about the flash memory content through the program counter (PC) was
presented in [SO20]. This information leakage can be used to extract large parts of the
internal flash memory. In both attacks from [Bro15, OSM20] and [SO20], the affected
microcontrollers do not allow to fully deactivate the debug interface and thus there is no
proper countermeasure against these attacks. In [OT17], a hardware implementation flaw
rather than a conceptual weakness is exploited. The authors discovered a race condition in
the implementation of the debug interface protection. For a short amount of time after the
microcontroller is powered up, the debug interface is accessible and allows to read from
the internal flash memory even though the protection is enabled. The authors are able to
exploit the race condition to extract the entire flash memory within minutes. A special
kind of debug interface protection feature is necessary to enable so-called multi-party
firmware development. It allows to deploy firmware on a microcontroller such that it can
be used by other developers without being able to read or copy the firmware. In [SO19],
a code recovery attack is presented that circumvents this kind of protection on several
devices from different manufacturers. By observing the state of the microcontroller while
executing the protected code, the instructions can be recovered.

Non-invasive physical attacks to bypass the debug interface protection have been shown
for some devices of the nRF52 and EFM32 microcontroller families [SWUH21, Lim20a,
Lim20b, Lim21]. The restrictions on their debug interface can be temporarily disabled
by applying a voltage glitch or injecting a pulse via EMFI during the power-up phase of
the microcontrollers. The underlying shortcomings that lead to this effect are not fully
understood and remain unknown. This is not unusual for physical attacks, especially
when the underlying hardware implementation is a black-box. Nevertheless, in some
cases the effects are fully understood. In [SWUH21, BFP19], for example, an attack that
reactivates a debug interface that was previously deactivated completely, was presented.
This attack exploits a design flaw, which makes the microcontroller’s hardware downgrade
the protection level, if an error during the transfer of configuration data from flash memory
into an internal register is detected. By injecting a glitch at a specific point in time during
the startup phase of the microcontroller, this protection downgrade can be triggered. It is
still not fully understood how the induced fault propagates, but the user manuals specify
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how the system reacts to an erroneous transfer.
The attacks listed so far target the debug interface’s implementation itself, either by

exploiting design flaws or by inducing malfunction through fault injections. In contrast,
Skorobogatov [Sko05] was the first to present an attack that exploits an internal feature
responsible for disabling the debug protection. This feature allows to unlock the debug
interface at any time, for example for failure analysis, and thereby disable all access
restrictions. However, in order to ensure the confidentiality of the data stored in flash
memory, a mass erase is performed before unlocking the debug interface. During the
unlock procedure, he targets the flash memory controller to suppress the erase rather than
the debug protection itself. The attack was carried out with voltage glitching on an 8-bit
microcontroller. About 15 years later, Schink et al. [SWUH21] present a similar attack,
this time on a more recent 32-bit microcontroller and using EMFI. Although a long time
has passed since this attack vector was first published, current microcontrollers still seem
to be vulnerable. However, neither Skorobogatov nor Schink et al. provide an in-depth
analysis and only discuss this attack vector in passing as part of their specific work. This
leaves open important questions regarding its feasibility under real-world conditions and
its limitations, which we address in this publication.

1.2 Contributions
In this work, we present the first in-depth analysis of the so-called flash erase suppression
attack vector presented by Schink et al. [SWUH21]. We improve and extend this work
with an assessment of the potential risks caused by this attack on real-world products by
investigating three open research questions:

• Generalizability Investigation of the debug interface protection of different micro-
controllers. This includes the STM32L422KxT microcontroller used in [SWUH21],
but also other devices of the STM32 microcontroller family as well as three other
manufacturers, namely, Geehy, GigaDevice, and Artery.

• Vulnerability Dedicated analysis of the devices that are targeted, including a side-
channel analysis (SCA) of the flash erase operation and the investigation of die shots
for the location of relevant components such as the flash memory. This analysis
provides reasoning regarding the chosen parameters for our fault attacks and their
results and is supposed to help researchers by describing the process behind carrying
out hardware attacks on black-box devices.

• Transferability Detailed analysis of the attack vector in different fault injection
setups. As the attack tries to suppress the flash memory’s erasure procedure, a failed
attack might lead to the loss of device unique secrets. For that reason, we evaluate
the attack on several microcontrollers of the same type. This answers the question
of the overall success rate for this attack and how well it can be transferred to other
devices of the same type. Further, in certain scenarios, the adversary’s time for
mounting the attack is limited. Therefore, the threat posed by the attack depends
highly on its reliability. To this end, we discuss a realistic adversary model and
evaluate the attack for this.

Our investigation shows that the attack affects various microcontrollers from differ-
ent manufacturers. Without claiming to have developed the best attack possible, we
demonstrate success rates that make the attack vector a realistic threat for real-world
products. We conclude our analysis with a discussion of the limitations of the integration
of countermeasures and the implications of our attack.
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2 Flash Erase Suppression
In this section, we outline a common way to implement a debug interface protection and,
based on that, describe the idea of the flash erase suppression attack. Afterwards, we
briefly introduce the necessary basics of flash memory in microcontrollers.

2.1 Debug Interface Protection
Modern microcontrollers have an integrated debug interface which is used to aid develop-
ment, initial commissioning, and debugging of a system. This interface provides access
to the internals of a microcontroller, including the flash memory which, on commercial
off-the-shelf (COTS) devices is often used for all non-volatile data, namely firmware, cryp-
tographic credentials, and other sensitive data. Due to the high level of access provided
by this interface, it needs to be restrictable to ensure data integrity and confidentiality
of products deployed in the field. While there are microcontrollers that only allow to
permanently and irreversibly deactivate their debug interface, often more complex pro-
tection mechanisms are implemented to meet the requirements of today’s applications
and development environments. One scenario where such mechanisms come in handy is
for example failure analysis, see below. Usually microcontrollers have multiple protection
levels with different features implemented, but most of them can be represented by the
transition graph depicted in Figure 1.

Full
debug access

Limited
debug access

Disabled
debug access

Mass erase of
flash memory

Figure 1: State transition diagram for the debug interface protection levels. The dashed
line indicates that not every microcontroller allows to disable debug access.

In its initial state, a microcontroller allows full debug access. This stage is used for the
development and testing of products. In order to prevent illegal reads from the internal
flash memory once the product is deployed, the protection level can be increased to allow
only limited access through the debug interface. The restrictions vary from microcontroller
to microcontroller. For example, some devices restrict only access to the flash memory and
allow to execute code from static random-access memory (SRAM). Others, however, only
grant access to specific peripherals. Their common feature is that the debug interface can
be unlocked to regain full debug access. During this unlock operation, however, the entire
flash memory is erased in order to ensure the confidentiality of its data. Finally, some
devices allow to further increase the protection such that no debug access is possible, this
state is irreversible. The dashed lines in Figure 1 represents that not all devices support
this feature.

Unlike other attacks listed in Section 1.1, the flash erase suppression attack does not
tamper with the debug interface protection itself, but exploits its integrated unlocking
feature. The goal is to disrupt the erase operation in a way that the microcontroller still
unlocks the debug interface protection. Instead of targeting the debug interface protection
itself, the flash memory controller and related components are targeted. If successful,
the adversary has unrestricted access to all secrets stored in the flash memory. We will
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demonstrate that this approach is a promising way to gain full and unlimited debug access
on a microcontroller and has indisputable advantages over trying to directly targeting the
debug interface protection. However, it also comes with two disadvantages. First, in case
the attack is not successful, the microcontroller is either bricked due to the injected fault
or the flash memory content is irretrievably lost. Second, the adversary needs some kind
of interface to trigger the unlock operation. The former disadvantage is a question of the
reliability and feasibility of the attack and will be answered through our experimental
evaluation in Section 7. The latter disadvantage is more general and will be discussed in
the following. There are different ways to interact with a microcontroller and perform
an unlock operation, such as application-specific interfaces or integrated bootloaders. In
this work, we consider only the microcontroller’s integrated debug interface. Ideally, this
interface should be deactivated after development and shielded from adversaries. Figure 1
already showed that there is a stage with limited debug access, which suffices to trigger
the unlock procedure and gain unlimited access. In the following, we discuss why it is
reasonable to assume that products in the field either use this stage or can be tricked into
reverting to this stage:

• Limited Debug Protection There are microcontrollers that are not capable to
fully deactivate the debug interface. In this case, debug access is always possible.

• Failure Analysis Even if microcontrollers can completely disable their debug
interface, failure analysis sometimes requires limited debug access. For example, a
disabled debug interface may prevent that chip manufacturers are not able to analyse
defective parts [STM18]. Further, product manufacturers are not able to perform
failure analysis of their devices through the debug interface. Some microcontrollers
allow access to peripherals to verify the flash memory integrity through the debug
interface [Art22b]. Other microcontrollers implement integrity verification even as
dedicated feature of the debug interface [Sil17].

• Multi-party Firmware Development Firmware is sometimes not developed by
a single vendor but consists of software libraries provided by one or more software
companies. In order to protect the IP of the different companies, there are micro-
controllers that support so-called multi-party firmware development. This feature
allows to store firmware on a microcontroller that can be used by other developers
without being able to read or copy the code. As this feature is intended to enable
development on the microcontroller while protecting the contained IP, debug access
is always possible. Physical attacks are not in the scope of this feature, nevertheless
it is a reasonable attack vector.

• Debug Interface Reactivation There are known attacks that show how a deac-
tivated debug access port can be reactivated. Since such attacks come with their
own difficulties, they further complicate the flash erase suppression attack and may
decrease the overall success rate. For example, the attack presented in [OT17] shows
how ultraviolet (UV) light can be used to reactivate a debug access port for the
STM32F1 microcontroller series. This attack is semi-invasive and may damage
the microcontroller during the execution. In contrast, in [SWUH21, BFP19] two
non-invasive glitching attacks are presented that show how the debug access port of
different STM32 microcontrollers can be reactivated. For these attacks, the number
of attempts is practically unlimited and the risk of damaging the device is low.

Three of the four listed points show that it is a reasonable to assume that devices allow
limited debug access, to enable failure analysis or multi-party firmware development, or
because there is no possibility to completely disable debug interfaces. Debug interface
reactivation attacks demonstrate that, even if the debug interface is deactivated completely,
it is not necessarily irreversible for a physical adversary.
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2.2 Embedded Flash Memory
The dominant technology to store non-volatile data on microcontrollers is embedded flash
memory (eFlash) [Hid17]. Beside the flash memory cells that store the actual data, the
eFlash consists of additional components such as high-voltage circuits and control and
management logic to ensure operation in spite of physical difficulties that arise during
read, erase and program operations [Hid17]. There are multiple types of flash memory
which all have different advantages and disadvantages for the use in microcontrollers. The
one-transistor (1T)-NOR flash memory cell architecture is widely deployed due to its
simplicity and high density [Hid17, Tor17, CGOZ99]. For example, STMicroelectronics
uses this cell architecture for different microcontroller types, ranging from security to low
power devices which have different requirements for their non-volatile memory [Hid17].

p-well

nn

Source Drain p-well

Control gate
Floating gateIsolator

Figure 2: Schematic cross-section of a one-transistor floating gate flash memory
cell [App07].

The advantage of simplicity and high density comes with the downside of a more
complex erase operation, which will be discussed later. In Figure 2, the schematic of a
1T floating gate cell is depicted. The basic operating principle of a floating gate flash
memory cell is that charges on the floating gate influence the threshold voltage Vth of
the transistor and thereby the current flow between drain and source. In the following,
we describe the different operations of a 1T-NOR flash memory cell from a high-level
perspective, neglecting most of the physical problems that occur in practice.

Read Operation. In order to determine the state of a cell, a reference threshold voltage
is applied to the control gate. If there are no charges on the floating gate, the cell conducts
a current between drain and source. In this case, the cell is by definition erased and in a
logical "1" state. Otherwise, the cell is programmed and in a logical "0" state [Ren19].

Program Operation. A flash memory cell is programmed by injecting charges inside its
floating gate. By applying a voltage difference between source and drain an electron flow
is caused. By additionally applying a high voltage on the control gate, the charges flowing
between source and drain are pulled into the floating gate [Ren19].

Erase Operation. While it is possible to program individual cells, the erase operation can
be performed only block-wise. The reason is that a high positive voltage must be applied
to the p-well in order to attract the charges trapped inside the floating gate. For space
reasons, multiple cells share a common p-well and thus can only be erased together [Ren19].
Since the amount of charge inside the floating gate of the individual cells can be different,
an erase operation may lead to so-called over-erased cells. Such cells lead to incorrect
results during read operations and must be avoided. For that reason, the eFlash control
logic executes the following procedure to perform an erase operation [Ren19, Hid17]:

1. Pre-program All erased cells inside a block are programmed. This ensures that
the amount of charges on all floating gates is approximately the same.
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2. Physical Erase A large electrical field is applied between the common p-well and
the control gates to attract charges trapped inside the floating gates. This process is
repeated until all cells of a block are erased.

3. Recovery In case there are still over-erased cells, a so-called soft-programming
operation is executed. This is an iterative process where a cell is programmed until
it is not over-erased anymore.

Since the pre-program and recovery phases operate only on certain memory cells, their
duration is proportional to the amount of erased data. The duration of these operations is
in the range of a few microseconds. The physical erase phase is almost independent of the
amount of data that is erased and takes usually a couple of milliseconds [Hid17].

A successful flash erase suppression attack must disturb at least phases (1) and (2).
Otherwise, the data stored in the flash memory is either lost because all cells are pro-
grammed or erased afterwards. The third phase is not critical since only over-erased cells
are recovered which should not affect the stored data.

3 Adversarial Model
In this section, we specify the adversarial model on which our investigation is based. We
consider the following capabilities of an adversary:

• Know-How We assume an attacker with proficient technical know-how and software
tooling. Standard tooling for firmware development for microcontrollers suffices.

• Equipment and Effort We consider equipment that does not exceed a couple
thousand USD in costs, such as off-the-shelf logic analyzers and side-channel mea-
surement or fault injection setups. Therefore, it is a fair investigation to analyse
COTS microcontrollers. While these devices are neither marketed nor designed as
dedicated high security products that must withstand sophisticated physical attacks,
they are used in security-relevant products and store sensitive data such as IP or
cryptographic secrets. Security-relevant products should withstand attacks according
to our constrained adversarial model.

• Physical Access and Time The attacker has physical access to at least one victim
device. Multiple devices to gain knowledge and to calibrate the attack setup can
be acquired. After calibration, the available time for performing the actual attack
depends on the scenario. The authors of [SWUH21] only consider scenarios, for which
the time span is constrained to a few hours and no visible physical modifications
are allowed. Our study also includes less constrained scenarios for which a device is
permanently stolen.

• Goal The adversary tries to obtain cryptographic secrets and/or other sensitive data
such as IP or personal records. If the flash erase is not suppressed, device unique
data is lost. Hence, it is important to achieve the best possible success rate for the
time available.

4 Selection of Microcontrollers
In [SWUH21], an STM32L422KxT microcontroller is used as target device. For compara-
bility of our results, we re-analyze this device in our study. We additionally include other
STM32 devices to assess if the attack vector generalizes within the device family. The
selection of these devices takes different (security) features and flash memory configurations
into account which will be described in more detail in Section 6.
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In order to evaluate whether the flash erase suppression attack is a general threat
for microcontrollers, we include devices from other manufacturers. Foremost, we select
microcontrollers that support a debug unlock procedure that promises confidentiality of
flash contents as described in Section 2. Further, we focus on general purpose devices
which cover a wide range of applications. We include devices of the APM32 and GD32
microcontroller families from Geehy and GigaDevice, respectively. These microcontrollers
are designed as drop-in replacements for STM32 microcontrollers and are completely or
mostly pin and software compatible to their counterparts. From [OSM20], we know that
these drop-in replacements are not copies but own developments. Finally, we include
devices of the AT32 microcontroller family from Artery in our research. The feature set,
including the debug interface protection, of these devices is similar to that of the STM32
family. However, these microcontrollers are neither pin nor software compatible.

Table 1: Microcontrollers selected for analysis.

Manufacturer Device series Target device

Artery AT32F415 AT32F415CBT7
AT32F421 AT32F421C8T7

Geehy APM32F1 APM32F103C4T6
GigaDevice GD32E103 GD32E103C8T6

STMicroelectronics STM32L1 32L151CBT6
STM32L162ZDT6

STM32L4 STM32L422KBT6

All microcontrollers we selected for evaluation are listed in Table 1. We analyze COTS
microcontrollers without dedicated protection against hardware attacks. This device class
is widely deployed in numerous areas where security devices are not strictly enforced by
regulations. Regardless of the use case — security-related or not — IP theft is a serious
threat for enterprises. Firmware extraction does not require a 100 % success rate as an
adversary has often access to multiple devices. It should be noted that, for some of the
selected devices, other non-physical and physical attacks on the debug interface protection
are already known (Section 1.1). While the flash erase suppression attack might not be
necessarily the easiest attack for some of these devices, we still consider it worthwhile to
include these devices into our analysis to study the attack’s effectiveness and aid future
developments of secure flash erasure features.

5 Experimental Setup
In this section, we describe the setup we use for device analysis and mounting the flash
erase suppression attack. As laid out in Section 1, the success rate and transferability
of the attack are critical to the threat it poses for real-world products. Therefore, the
experimental setup and its components are of importance. Our setup consists of laboratory
equipment according to Section 3, a software framework to orchestrate the measurements
as well as target boards for the individual microcontrollers and firmware that is running
on the microcontrollers.

Laboratory Setup. As basis for all experiments, we use the CW308 motherboard from
NewAE Technology. For each of the selected microcontrollers, we use a dedicated target
board that is mounted on the CW308 during the experiments. The target boards are
designed such that they can be used for the side-channel based evaluation of the microcon-
troller as well as for the actual fault attacks later on. We use side-channel analysis (SCA)
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as part of our device investigation in Section 6. For that we use a Langer RF-U 2,5-2 near
field probe and the WavePro 404HD oscilloscope from Teledyne LeCroy.

The voltage glitching experiments are conducted with the CW1200 ChipWhisperer-Pro
from NewAE Technology. Apart from that, the laboratory setup consists of a programmable
power supply (PPS) and a debug probe. With the PPS, we automatically power cycle the
target microcontroller after each fault attack and apply settings of the debug interface
protection that require a power cycle. Further, the PPS is used to power the target
microcontroller with different voltage levels during the voltage glitching attacks. To
interface the different microcontrollers, we use an off-the-shelf debug probe.

For the experiments with electromagnetic fault injection (EMFI), we use the Chip-
SHOUTER from NewAE Technology. The laboratory setup consists of an additional delay
generator and a positioning table. To place the injection coil automatically and repro-
ducibly on the chip package, the CW308 motherboard is mounted on a 3-axis positioning
table. We use the STEPCRAFT D-300, a CNC milling machine for hobbyists, as cheap
and affordable positioning table. As delay generator, an FPGA development board is used.
The delay generator is responsible to provide a trigger for the ChipSHOUTER to inject
the fault at different times relative to a trigger signal provided by the microcontroller.

To carry out the flash erase suppression attack, an adversary requires only part of the
listed equipment. At a minimum, only equipment to inject a fault is required. In the
most expensive case, a ChipSHOUTER is required for EMFI which costs approximately
4500 USD. If the positioning or timing is unknown to the attacker, the profiling phase
requires a setup including a positioning table or oscilloscope. The cost of the positioning
table we use is around 1500 USD. To determine the timing of the flash erase operations, an
oscilloscope of a lower performance class is sufficient. For example, a RIGOL DS1202Z-E,
which costs about 500 USD. All in all, the attack equipment costs at most 6500 USD.

Software Framework. All equipment and the target microcontroller are controlled by a
software framework running on a laboratory PC. As mentioned in Section 2, we only use the
debug interface to access the microcontroller. In order to interface the microcontrollers, we
use the open on-chip debugger (OpenOCD)1. A single test run of our evaluation software
consists of the following steps. First of all, a power cycle of the target microcontroller is
performed to ensure that the device is in a defined state. Afterwards, the flash memory is
programmed with a test pattern and the debug interface protection is configured. Next,
the software executes a firmware on the SRAM of the microcontroller to trigger the debug
unlock operation and the fault attack. Once the trigger signal is detected by our evaluation
tool, it checks the status of the microcontroller. Mainly, the tool checks whether the device
is unlocked and the test pattern stored in flash memory were erased or not.

Attack Firmware. We craft a simple attack firmware that initializes the device, provides
a trigger signal with a GPIO pin of the microcontroller and performs the debug unlock
operation. On many microcontrollers, firmware execution from SRAM is possible even
though only limited debug access is available. The reason for this is either that it does not
directly pose an additional attack surface, or that this functionality is used to accelerate
certain functions such as flash memory operations.

We chose to execute an attack firmware on the microcontroller as it provides a stable
and deterministic trigger signal with respect to the debug unlock operation. With that
we do not need side-channel or software-based triggers. Side-channel based triggers need
more attack equipment and software-based triggers usually have more jitter due to the
operating system (OS) and other confounding factors on the PC.

1 https://openocd.org/

https://openocd.org/
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6 Device Analysis
In this section, we perform an in-depth analysis of the selected microcontrollers to ensure
that we apply the flash erase suppression attack as effectively as possible and to understand
the effects of the introduced faults. We start with describing the concrete implementation
of the debug interface protection and other related security features of the respective
microcontrollers. Based on that information, we perform a side-channel analysis (SCA)
to understand how the debug unlock operation is implemented. This insight will help us
in narrowing down the point in time for the fault injection attack to suppress the flash
erase operation. The times in all the following diagrams refer to the time of the trigger
signal of our attack firmware. To reason about what actually happens during the flash
erase suppression attack, we take infrared (IR) pictures of the microcontroller dies. This
information is helpful to determine whether there is a spatial relation between the location
of the injected faults and the location of the eFlash. All information obtained during our
device analysis is used subsequently to apply, optimize, and evaluate our attack.

6.1 Debug Interface Protection
The microcontrollers we examine in this work comprise a debug interface protection feature
that can be configured to different levels. Their behaviour and transition follows the
principle discussed in Section 2.1. All microcontrollers use a similar implementation, only
naming convention or protection level encoding differs among the manufacturers. To avoid
confusion, we will use the naming introduced in Section 2.1 in the rest of this work.

The protection level resides in a dedicated memory region in the flash memory used
to store non-volatile configuration data. Since flash memory is used as storage, an erase
operation is necessary before the protection level can be changed. How and when the
configuration data is erased during a debug unlock operation will be discussed later.

Table 2: Flash memory features and chip package types of the selected microcontrollers.

Target
microcontroller

Flash
memory size

Mass erase
support

Debug access
deactivation Package

AT32F415CBT7 128KiB Yes Yes LQFP-48
AT32F421C8T7 64KiB Yes Yes LQFP-48
APM32F103C4T6 128KiB Yes No LQFP-48
GD32E103C8T6 64KiB Yes No LQFP-48
STM32L151CBT6 128KiB No Yes LQFP-48
STM32L162ZDT6 2 × 192KiB No Yes LQFP-144
STM32L422KBT6 128KiB Yes Yes LQFP-32

Except for the STM32L1 series, all microcontrollers have a standalone mass erase
operation for the flash memory that can be triggered independently from the debug unlock
process. We use this feature to draw a comparison between the side-channel emanation of a
debug unlock procedure and a standalone flash mass erase. The results of this comparison
and details on why it is beneficial for the analysis of the flash erase suppression attack are
discussed later in Section 6.2 and Section 7.

All important flash memory features and the device package of the microcontrollers we
analyze in this work are listed in Table 2. The device package is relevant for the attack
evaluation with EMFI in Section 7.2.

Debug Unlock Operation. The different methods how the debug unlock process and
the resulting mass erase are triggered are important for our analysis. An understanding
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Figure 3: Electromagnetic (EM) trace of the STM32L422KBT6 microcontroller during a
mass erase (top) and debug unlock (bottom) operation.

of these methods will be necessary for the subsequent SCA. For the STM32 devices we
analyze in this work, the entire debug unlock operation, including a mass erase of the
flash memory, is performed once the protection is disabled. In contrast, for the other
microcontrollers, the configuration block of the flash memory that holds the protection level
must be manually erased first. Afterwards, the protection level can be disabled which leads
to the immediate erasure of the flash memory. Note that after erasing the configuration
block, the debug interface access remains limited. This is due to the protection level
encoding. All microcontrollers remain protected until they are power-cycled or a dedicated
reload of the configuration is performed.

Multi-party Firmware Development. STMicroelectronics has a feature called proprietary
code-read out protection (PCROP) which enables multi-party firmware development. This
feature is implemented in many devices of the STM32 microcontroller family. Among
the devices we examine is this work, it is supported by the STM32L422KBT6. This
feature is of interest since its goal is protection of IP while the debug interface remains
accessible (Section 2.1). PCROP can be configured such that the protected code is affected
by the mass erase that is performed when the debug protection is disabled [STM18]. With
a successful flash erase suppression attack, firmware that is protected via PCROP could
be extracted. For that reason, we include this feature in our evaluation in Section 7. The
AT32 family integrates a similar feature which is called security library (sLib) and is
supported by both AT32F4 microcontrollers. In contrast to PCROP, this feature remains
active even after the debug interface is unlocked [Art22a, Art22b]. The protected flash
memory region must be deactivated explicitly by providing the password that was set
during the initialization of the sLib feature. Once the password is entered, a mass erase is
performed during the next system reset of the microcontroller. Since this behaviour does
not fit into the process of how we evaluate the flash erase suppression attack, we leave the
susceptibility of this feature to future work.

6.2 Side-Channel Analysis
In order to understand how the debug unlock operation is implemented we perform a
side-channel analysis (SCA) on two different microcontrollers. First, we take a look at
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Figure 4: Detail view of the EM traces for the mass erase (top) and debug unlock (bottom)
operation depicted in Figure 3.

the STM32L422KBT6 microcontroller. This device is well suited as example because
it exhibits a clear EM signal during the debug unlock operation. The different phases
of the flash mass erase operation are clearly visible. Afterwards, we take a look at the
AT32F415CBT7 microcontroller to show a different debug unlock implementation. The
insights we gain from these example devices can be applied to all other devices in this
work without exception. The EM traces for all remaining microcontrollers can be found in
Appendix A. All measurements are conducted with a supply voltage of 3.3 V and the near
field probe placed on one of the supply pins for the digital power domain.

Debug Unlock with Automatic Erasure. The EM traces of a standalone mass erase and
debug unlock operation for the STM32L422KBT6 microcontroller are depicted in Figure 3.
Due to the comparably high voltages used by the eFlash (Section 2.2), patterns are directly
recognizable and a single trace suffices. Since we perform only device initialisation before
the trigger, we can ignore the EM signal before t = 0 ms. It is recognizable that the unlock
operation is almost twice als long as the standalone mass erase operation. The start of
both traces looks similar and contains nearly identical patterns. Apart from the duration,
a major difference of the two traces is the short block at the end of the debug unlock
operation. Also, there is a small gap where the debug unlock procedure’s trace has a high
activity at around t = 23 ms.

To inspect both operations in detail, we zoom into the EM signal directly after the
trigger (A), at the small gap in the middle (B), and at the end of the debug unlock
operation (C). The resulting plot is depicted in Figure 4. In section (A), the debug unlock
operation looks similar to that of the standalone mass erase operation. Therefore, we
conclude that the flash is erased at this time. We identify the first block ( 1 ) as a kind
of initialization phase which always appears and is independent of the amount of data
that is erased. Based on the working principle of eFlash in Section 2.2, we identify the
second block ( 2 ) as the pre-program phase of the mass erase operation. It takes just
a few microseconds and its length correlates with the amount of data stored in flash
memory. To observe this correlation, we performed multiple debug unlock operations with
different amount of data stored in flash memory. The subsequent block of high activity
represents the physical erase phase. It takes several milliseconds and is independent of the
amount of erased data. We additionally confirmed this assumption by comparing the EM
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Figure 5: EM trace of the AT32F415CBT7 microcontroller during a mass erase (top) and
debug unlock (bottom) operation.

traces of a page and a mass erase. In section (B), the standalone mass erase is finished
afterwards, whereas the debug unlock procedure is only halfway done. We assume that
this part of the EM signal represents the erase operation of the configuration block, which
holds the protection level. The first reason for our assumption is that there must be an
erase before the configuration block is programmed. Secondly, the pattern of the signal
is very similar to that of the mass erase in section (A). Only the second block ( 3 ) is
shorter, which fits the significantly smaller size of the configuration block. The block of
high activity afterwards, which takes several milliseconds, also fits a subsequent physical
erase phase. From [SWUH21], we know that, at the end of the debug unlock operation,
the configuration block, which among others holds the protection level, is programmed.
This is consistent with section (C) of Figure 4. Each block represents one of the five 32-bit
configuration data words.

Debug Unlock with Manual Erasure. The previous analysis shows that the configuration
block of the STM32 devices is automatically erased and programmed with the lowest
protection level once the debug unlock operation is triggered. In contrast, all other
microcontrollers require that the configuration block is erased manually before the debug
unlock operation can be performed. In Figure 5, the EM emanation for the AT32F415CBT7
microcontroller during a standalone mass erase (top) and debug unlock (bottom) operation
is depicted. Like in Figure 3, we can see a similar pattern for the standalone mass erase and
the debug unlock operation after the trigger. Due to the similarity, we identify this part
as the mass erase of the debug unlock operation. There is also a small block of activity at
the end of the debug unlock operation that we identify as programming of the protection
level. The different phases of the mass erase and programming operation are similar to
the STM32L422KBT6 microcontroller but not shown here for the sake of brevity. The
EM trace before the trigger looks completely different for both traces. This is due to the
manual erase of the configuration block that needs to be performed only for the debug
unlock operation. The bottom plot shows the erase of the configuration block while the
leading six blocks in the top plot stem from the communication between the debug probe
and the microcontroller.
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Summary. We identified the individual parts of the debug unlock operation for all
microcontrollers. Based on the pattern of the EM signal, we assume that the standalone
mass erase operation and the mass erase during a debug unlock operation are implemented
similarly or are even the very same operation. Hence, if we are able to suppress the
standalone mass erase operation we may also be able to suppress the flash erase during the
unlock operation. The standalone mass erase operation is beneficial for the evaluation of
the flash erase suppression attack in Section 7. The analysis not only makes the individual
parts of the debug unlock operation visible but also the details within the mass erase
operation. We identified the two phases that are important for the flash erase suppression
attack: pre-program and physical erase. With that we narrowed down the temporal search
space for the attack from several milliseconds to a few microseconds.

6.3 Optical Inspection
After the analysis of the EM emanation during the debug unlock operation, we take a look
inside the chip package of the microcontrollers. For that, we open them from the backside
and acquire IR pictures of their dies with the WIDY SWIR 640V-S camera from New
Imaging Technologies. Later, we will use the gathered information to determine whether
there is a spatial relation between the location of the injected faults and the location of
the flash memory. The die shots are rotated such that they are aligned with the heatmaps
presented in Section 7.2.

From [OSM20] we know that the GD32F1 microcontroller series has a dedicated flash
memory die inside the chip package. For that reason, we remove the entire chip package of
the GD32E103C8T6 to expose all the dies it contains. In contrast to the GD32F1 series,
the chip package of the GD32E1 series contains no dedicated flash memory chip. The
front- and backside pictures of the microcontroller die are depicted in Figure 6. Based on
the backside die shot (Figure 6b) we identify the flash memory in the top left corner of
the chip. The regular structure of the flash memory cells right next to the control logic
and analog components such as high-voltage circuitry is clearly visible.

(a) Frontside die shot. (b) Backside IR die shot.

Figure 6: Die shots of a GD32E103C8T6 microcontroller.

The IR backside picture of the STM32L422KBT6 is shown in Figure 7a. On the bottom
left corner we can see the flash memory. It is recognizable from its regular structure and
distinguishable from SRAM through its more complex analog and high-voltage circuitry
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right next to it. For both devices of the STM32L1 series we are not able to acquire IR
backside pictures. We assume that an increased doping level of these devices impedes the
transparency in the near-infrared (NIR) range at around 1300 nm wavelength which we
used for illumination.

The IR die shot of the APM32F103C4T6 microcontroller is depicted in Figure 7b. On
the left side we can see two white, horizontally mirrored and seemingly identical blocks.
Based on their size and after all other relevant blocks could be excluded, we identify these
blocks as the flash memory.

The backside die shots of the AT32F4 microcontrollers are shown in Figure 7c and
Figure 7d. For the AT32F415CBT7, we identify the two white and horizontally mirrored
blocks as the flash memory. For the AT32F421C8T7, we assume the white block on the top
right corner to be the flash memory. The identification is based on an exclusion procedure
of all other relevant blocks and the fact that we see only a single block. This fits with the
flash memory size of the AT32F421C8T7 which is only half the size of the AT32F415CBT7.
Note that the die depicted in Figure 7d is placed rotated in the chip package.

7 Attack Evaluation
We use the information gathered in Section 6 to asses whether the mass erase during a
debug unlock operation can be suppressed with voltage glitching and EMFI. Further, we
try to identify the root cause of the flash erase suppression attack.

Since the parameter space for both fault injection (FI) techniques is quite large, we use
a two-step evaluation to speed up experiments. First, we fill only a single page of the flash
memory with a test pattern to verify whether the erase suppression was successful or not.
After this step, we have identified glitching parameters, such as the injection time, that
lead to a successful attack. To achieve a high test rate, we run only a single experiment
for each possible set of parameters. Only in the experiments where the suppression of
erasing a single page is successful, we check again by filling the entire flash memory with
the test pattern. This approach drastically reduces the time needed per experiment. When
available, we also use the standalone mass erase operation to increase the test rate as the
complete debug unlock procedure takes about twice the time. For the experiments with
EMFI, we also limit the experiments to the susceptible area once identified to further
speed up the experiments.

Attack Methodology. From the adversarial model introduced in Section 3, it is obvious
that transferability and success rate are extremely important for this attack and therefore
crucial parts of the investigation in this section. An attack that tries to extract device
unique secrets is only reasonable if the success rate is 100 %, as the data is irreversibly erased
if the attempt fails. For the extraction of IP, lower success rates are acceptable, however
the economic incentive decreases with the success rate. Our methodology is as follows: for
a single device, we performed a parameter search to achieve the highest possible success
rate. To determine the parameter transferability, we performed independent measurements
on four devices for each analyzed product. We do not run any calibration for these devices
prior to any experiments. This allows to evaluate the impact of intrinsic and external
variations, such as displacement or manufacturing deviations. Whenever we experienced
singular behaviours of individual chips that we could not reproduce for others, we disclose
this and describe it in detail. We count such results as failed attacks. The results represent
the expected success rate for an attack on an unknown device. This approach is similar to
side-channel template attacks as devices are used for "calibration" which differ from the
victim device.

In the following, we present the attack methodology for both fault injection techniques
using a single device only, namely the STM32L422KBT6 microcontroller which was used
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(a) STM32L422KBT6 (b) APM32F103C4T6

(c) AT32F415CBT7 (d) AT32F421C8T7

Figure 7: Backside IR die shots of the selected microcontrollers.

in [SWUH21]. For the sake of clarity, we only present the results for all other devices
where there are device-specific findings.

7.1 Voltage Glitching
For voltage glitching to be effective, usually the buffer capacitors must be removed, or the
glitch must be inserted directly into the digital domain of the microcontroller. This is a
common preparation step when the CPU of a microcontroller is targeted in order to skip
instructions or alter the control flow another way [Lim20c, Lim19, BFP19]. Since flash
erase suppression attacks have not been investigated so far, we analyse all microcontrollers
with and without the buffer capacitors. We also test the attack with different supply
voltages of the target microcontroller. Further, we vary the number of injected pulses and
the pulse width of each glitch. The pulse width is a parameter of the ChipWhisperer and
expressed as percentage of one clock period of an internal clock source. We also experiment
with different injection delays within the time ranges we identified in Section 6. If not
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Figure 8: EM trace of the STM32L422KBT6 microcontroller during the debug unlock
operation (top) and the number of effective faults parameters (bottom) at different injection
times and supply voltages.

stated otherwise, we use the default settings of the ChipWhisperer for all experiments.

STM32L4 Series. According to [SWUH21], the STM32L422KxT microcontroller is not
susceptible to voltage glitches. However, the authors state that they use the very same
setup as for the EMFI attack with regard to the target supply voltage and the circuitry
of the chip. They evaluate the attack in a scenario where physical modifications such as
the removal of capacitors are not possible due to time restrictions and the evidence of
tampering. For our setup, we can confirm that this microcontroller is not susceptible to
voltage glitches when the buffer capacitors of the digital power domain are in place. Once
both buffer capacitors are removed, we experience effective faults that suppress the flash
erase operation.

Table 3: Glitching parameters and success rate for the STM32L422KBT6 microcontroller.

Supply voltage Pulses Pulse width Injection time Success rate

1.9 V 18 19 % 13µS to 20µS 100 %20 18 % 13µS to 27µS

In order to find the best parameters for our setup we sweep the supply voltage of the
microcontroller. The STM32L422KBT6 microcontroller has a minimum and maximum
supply voltage of 1.71 V and 3.6 V [STM18]. We start our experiments with a minimum
voltage of 1.8 V as the device does not work reliably with a lower supply voltage. Note that
the minimum supply voltage is specified for certain conditions and with the recommended
buffer capacitors in place.

As mentioned above, we start our analysis by only considering a single page of the flash
memory. In Figure 8, the number of effective fault parameters at different injection times
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Figure 9: EM trace of the STM32L422KBT6 microcontroller during a debug unlock
operation without (top) and with (bottom) injected voltage glitch.

and supply voltages is depicted. The plot shows the three supply voltages with the most
effective fault parameters we found. As a time reference, the top plot shows the EM signal
of the microcontroller during a debug unlock operation. The results affirm our analysis of
Section 6 that the second block is related to the pre-program phase since the number of
effective faults decreases for later injection times. We also experience an increasing number
of defects the later a fault is injected. This also fits with the assumption that after the
pre-program phase, all data is already lost.

We confirmed the most promising parameters by evaluating that flash contents are
preserved across all pages. Further, we chose two of these parameters (Table 3) to evaluate
whether the flash erase suppression also works on other STM32L422KBT6 devices. Note
that there are many other parameter sets that work, we just list two as an example. The
success rate for both parameter sets is 100 % for 1000 tries on all four devices. The time
period in which the injection must take place is not critical for either sets and ranges
from 7µS to 14µS. We also evaluated whether the PCROP is affected by the flash erase
suppression attack and can confirm its vulnerability. After a successful attack, the flash
memory region that previously was secured with PCROP can be read out.

In order to reason about the effect the injected fault generates in the microcontroller,
we acquire the EM signal of the microcontroller during the debug unlock operation while
injecting a glitch. In Figure 9, the EM trace of the part of the debug unlock operation
we identified as pre-program and beginning of the physical erase phase is depicted. The
high activity which exceeds the signal range at around t = 15µS arises due to the injected
voltage glitch. At the same time, the start of the pre-program phase can be observed in the
trace without injected glitch. Similar activity can be observed in the trace with injected
glitch. The amplitude is smaller and it lasts longer than a normal pre-program operation
and extends into the area that we identified as the physical erase phase. In Figure 10, the
EM trace of the entire debug unlock operation is depicted. The faulted and non-faulted
operation take exactly the same time. The first part, which corresponds to the mass erase
of the flash memory, shows a lower amplitude but lasts exactly the same time. The second
part, which starts at about t = 23 ms, relates to the erase and subsequent programming
of the configuration block to deactivate the debug protection. The traces in the second
part look similar which makes sense, considering that in both cases the debug protection
is unlocked. Based on this observation, we conclude that the injected voltage glitch does
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Figure 10: EM trace of the STM32L422KBT6 microcontroller during a debug unlock
operation without (top) and with (bottom) injected voltage glitch.

not affect the internal state machine or control logic of the eFlash but rather perturbs the
high-voltage circuitry. We base our conclusion on the fact that the EM activity during the
mass erase is comparatively low which would fit a malfunction of the high-voltage circuitry.
Further, since the duration is exactly the same, we come to the conclusion that the eFlash
performs the actual erase operation without being effective.

STM32L1 Series. For the STM32L151CBT6 and STM32L162ZDT6 microcontroller,
we found no working parameter for our setup to successfully suppress the flash erase
operation. We tested both chips with all capacitors in place and nonetheless experience
multiple defective devices. Since the STM32L1 series does not support a standalone mass
erase operation, all experiments are performed using the debug unlock operation which,
according to our experience, leads more often to defective devices during the parameter
search. Since devices without capacitors are even more susceptible to defects we have not
carried out the experiments without capacitors.

APM32F1 Series. The APM32F103C4T6 microcontroller is very sensitive to voltage
glitches and even the parameter search with the standalone mass erase leads to multiple
defective devices. We found no working parameter set for this microcontroller. As with
the devices of the STM32L1 series, all capacitors were in place during our experiments.

AT32F415 Series. For the AT32F415 microcontroller series, we found working parameters
during the parameter search with the standalone mass erase operation. We verified these
parameters afterwards with the debug unlock operation for the actual attack. We performed
all experiments without capacitors, because, from our experience, we cannot expect a more
favorable behavior with capacitors. The numbers of effective fault parameters at different
injection times during the mass erase operation are depicted in Figure 23 in Appendix B.

The highest success rate we achieve with our setup is 3.7 % for 1000 tries. Table 4 lists
the parameters we use for this fault injection attack. Due to the low success rate, we did
not examine this parameter set on multiple microcontrollers. For successful attacks, we
observe the same behaviour during the attack as for the STM32L422KBT6. The debug
unlock operation takes the same amount of time but the mass erase process is not effective.



Schink et al. 107

Table 4: Glitching parameters and success rate for the AT32F415CBT7 microcontroller.

Supply voltage Pulses Pulse width Injection time Success rate
2.6 V 20 30 % 7µS 3.7 %

AT32F421 Series. For the AT32F421C8T7 microcontroller we found no working pa-
rameter but also experienced no device defects throughout our experiments. As for the
AT32F415 series, we performed all measurements without capacitors installed.

GD32E103 Series. For the GD32E103C8T6 microcontroller, we also found no working
parameter set to successfully suppress the flash erase operation. We tested the device
without capacitors installed. During our experiments we experienced no defective devices.

Summary. The selected microcontrollers are very sensitive to voltage glitches during
flash operations as we experience many defective devices during the parameter search. In
most cases, the defective devices work electrically, but the debug interface is no longer
accessible. We assume that either the injected faults corrupt parts of the flash configuration
or physically damage the debug port. This analysis is outside the scope of this paper, so
we did not investigate it further.

We have only found working parameters for a single device that allow an attack
according to the adversarial model (Section 3), namely the STM32L422KBT6. For this
microcontroller we achieve a success rate of 100 %. This allows an adversary to extract IP
and even device unique secrets from the flash memory of such a microcontroller.

7.2 Electromagnetic Fault Injection
The advantage of EMFI in contrast to voltage glitching is that an injected glitch may
not affect the entire device but only certain areas. This advantage comes at the cost of
an increased parameter space due to the spatial location of the injection coil. For our
experiments, we place the coil as close as possible to the package while still being able to
move it with the positioning table. In order to further reduce the search space, we use
a fix pulse width of 80 ns and use only the ChipSHOUTER’s 4 mm coil with clockwise
winding for our experiments. We chose this configuration as it has proven to be effective
in [SWUH21]. Also, we use a fix supply voltage of 3.3 V for the microcontrollers during all
experiments. If not stated otherwise, we perform the measurements with all capacitors in
place. This leaves the injection delay and voltage as well as the coil’s position as major
parameters. For the spatial exploration of the chip package, we use a grid size of 0.5 mm
unless otherwise specified. We consider this as a reasonable resolution which allows manual
positioning of the probe or positioning using a stencil.

The final results of our experiments are heatmaps that show the success rate of the
flash erase suppression in relation to the chip’s package. For every position on the heatmap
we perform 32 test runs unless otherwise specified. The black circle on the heatmaps
indicates the chip orientation. We use a discrete color map in order to make even small
changes visible and to ensure that success rates are not overestimated. The heatmaps that
we present in the following are conservative in the sense that we round down the success
rate in steps of 10 %. Non-evaluated coordinates that did not yield successful faults during
the first evaluation step are colored grey.

STM32L4 Series. In Figure 11, the EM signal of the debug unlock operation (top)
and the corresponding number of effective fault positions (bottom) is depicted. For this



108 Unlock the Door to my Secrets, but don’t Forget to Glitch

A
m

pl
itu

de

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Time in µs

0

5

10

15

Fa
ul

t p
os

iti
on

s

375 V
400 V
425 V

Figure 11: EM trace of the STM32L422KBT6 microcontroller during the debug unlock
operation (top) and the number of effective faults positions (bottom) at different injection
times and coil voltages.

parameter exploration, we used the first step of experimental evaluation described above.
The plot shows the three coil voltages with the highest number of fault locations on the
chip package. Similar to voltage glitching, the time span for successful fault injection
extends over the two blocks we identified as part of the erase operation. With a coil voltage
of 400 V we achieve the highest number of fault positions. Especially at the beginning
of the second block, starting at around 20µS, the number of fault positions is increasing.
Nevertheless, we chose a coil voltage of 375 V and an injection delay of 18µS for further
analysis. Using this coil voltage, we experience a better transferability, i.e. a higher average
success rate on different devices. With a voltage of 400 V, we see more (non-permanent)
failures on some devices leading to a lower overall success rate.

For all coil voltages and delays we see only effects on the bottom right corner of the
chip package. For that reason, we reduce the area to this part of the chip for further
analysis. The superposition of the results from all devices is depicted in Figure 12a.
The heatmaps for the individual devices are depicted in Figure 30. There is an area
of 1 mm2 in the bottom right corner with a success rate between 70 % and 100 %. Our
investigation yields a different susceptible area on the chip package in comparison to
the original publication [SWUH21]. Most likely, the distance between chip package and
injection coil is the reason for the different location. In both cases, the susceptible area
does not match with the location of the flash memory on the chip. We assume that the
injected EM pulses affect the power supply of the chip or the high-voltage circuitry of
the eFlash which results in a suppression of the flash erase operation. As for the voltage
glitching analysis, we can confirm that firmware protected by PCROP is vulnerable as
well. A successful attack allows an adversary to read out flash memory that previously
was secured with PCROP. For successful erase suppression attacks, the devices exhibit
the same behaviour as for voltage glitching. The debug unlock operation still includes the
mass erase operation but is not effective (Section 7.1).
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STM32L1 Series. The results of the parameter exploration for the STM32L151CBT6
are depicted in Figure 24 in Appendix C. The time span for successful fault injection
extends over the two blocks we identified as part of the erase operation. In contrast to
the STM32L422KBT6 microcontroller, there is no such a sharp drop in the number of
effective faults after the second block. This does not fit with the analysis in Section 6.2, we
assume that the implementation has not such a strict separation between pre-program and
physical erase phase and both are combined. Another reason could be that the EM signal
does not allow a proper separation between both phases. With a coil voltage of 300 V we
achieve the highest number of fault positions. Especially at the end of the second block,
starting at 68µS, the number of fault positions is increasing. We chose a coil voltage of
300 V and an injection delay of 73µS for further analysis. The decision is based on the
number of faults but just as important is that for these parameters, there is a contiguous
area that is susceptible, as the following results will show.
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Figure 12: Heatmaps showing the overall success rate of the flash erase suppression attack
from four (a) and eight (b) devices for two STM32 microcontrollers.

For a single device we made the observation that the suppression is only partially
successful. Every second block of 256B of the flash memory is erased while the other
half remains preserved. This means that at least 64KiB of this device can successfully be
recovered. The heatmap for this device is depicted in Figure 31a. On another device we
experience less susceptibility in the upper right corner of the package and observe more
failures of the executed firmware. Even though the execution of our attack firmware is
disrupted by the injected fault, the attack was successful and the flash memory remains
intact. The heatmap of this device is depicted in Figure 31f. Since we did not experience
similar behaviour on other devices, we repeat the experiment on a second, identical target
board. As the second device does not exhibit such a behaviour, we assume that this
behaviour is device intrinsic or stems from small deviations caused by hand soldering the
devices. In total, we ran the complete attack evaluation on eight devices. Figure 12b shows
a heatmap where the success rate for all eight devices is combined into a superposition.
The resulting success rates are calculated conservatively in the sense that we consider the
device where only half of the flash memory remains intact as completely failed. The eight
individual heatmaps per device are depicted in Figure 31 in Appendix D. Nevertheless,
with our setup we achieve a success rate of 70% to 80% in the top right corner.

The STM32L162ZDT6 microcontroller differs from the others in two respects. First, it
comes in an LQFP-144 package and is eight times larger in terms of area. Second, this
microcontroller has two instead of a single flash memory bank. To keep the evaluation
time within reasonable limits we increase the grid size for our measurements to 1 mm.
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(b) Bank 1 and 2
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(c) Bank 2
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(d) Bank 2 (58µS injection delay)

Figure 13: Heatmaps showing the overall success rate of the flash erase suppression attack
from four individual STM32L162ZDT6 devices.

We perform the parameter exploration for both flash banks separately. The results are
shown in Figure 25 in Appendix C. The parameter exploration shows that the number of
fault positions decrease and increase over time, for the first and second bank, respectively.
The reason may be that the banks are erased consecutively. One interesting observation
on this device is that the high number of effective fault positions for bank 1 are 15µS
to 25µS before the large block of activity in the EM signal appears that we identified as
beginning of the flash erase operation. The reason could be that on this device it is not the
erase operation that is directly suppressed but already the preparation phase. For further
analysis, we chose a coil voltage of 200 V because we experience a more stable success rate
across multiple devices in comparison to higher voltages. Since we want to use the same
injection parameters for both flash banks, we conducted the parameter exploration for the
second bank only with a coil voltage of 200 V. We chose an injection delay of 34µS for
further analysis. We additionally performed a measurement for the second bank with an
injection delay of 58µS because we experienced a large and contiguous area at the bottom
of the chip package. There are multiple vulnerable regions on the chip. Since they depend
very much on the injection time and flash bank, we chose three areas in order to keep the
measurement time within a reasonable range.

In Figure 13, the superposition of four devices for both flash banks and at different
injection delays are depicted. The individual heatmaps are depicted in Figure 32 in
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Appendix D. For bank 1 we achieve a maximum success rate of 70 % in the top left corner.
This is because on a single device we experience no effect at all. In contrast, bank 2
has multiple regions on the chip package where a success rate of 100 % can be achieved.
Especially at the bottom of the chip package, we experience a large and consecutive area
of 3 × 4mm2 that is susceptible on all four devices. In this area, the injection coil can be
placed by hand and without further aids. The highest overall success rate for both flash
banks can be achieved in the top left corner of the chip package with a success rate of
up to 60 %. Note that the heatmap with both banks is a superposition of bank 1 and 2
and not measured separately. However, we performed spot checks to verify that both flash
banks remain intact when injecting faults at the resulting positions on the chip package.
For our setup, we experience that bank 2 is more susceptible and stable than bank 1.
Further experiments are needed to find out the root cause for this behaviour.

As we were unable to acquire die shots for STM32L1 chips (Section 6.3), we cannot
draw any further conclusions about the fault positions.

APM32F1 Series. For the APM32F103C4T6 microcontroller we experienced an increased
sensitivity to higher coil voltages compared to other devices. On one device we made the
observation that it is no longer susceptible to the flash erase suppression attacks once we
injected a fault with a coil voltage above 300 V. The general functionality of the device
remains intact. We limit the coil voltage for our experiments on this device series to
300 V. With this limitation, no more defective devices occurred and we did not investigate
this behavior further. The plot for the parameter exploration is depicted in Figure 26 in
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Figure 14: Heatmaps showing the overall success rate of the flash erase suppression attack
from four devices for the APM32F103C4T6 microcontroller.

Appendix C. The general behaviour is similar to that of the STM32 devices, however, lower
coil voltages seem to be more effective and the overall number of fault positions is lower.
The timing plot is limited to 20µS for the sake of clearance, although we still experience
successful fault injection later. However, the later the fault is injected, the higher chance
that the attack is not successful or that parts of the flash memory have already been
erased. Due to the low number of fault positions, we also investigated whether removing
the capacitors influences the number of effective faults. For our setup and the parameters
we evaluated, we achieve the best results when all capacitors are removed.

Based on the results of Figure 26, we chose a coil voltage of 275 V and an injection time
of 8µS for all further experiments. In Figure 14, the superposition heatmap with the success
rates in relation to the chip package is depicted. The heatmap shows that we achieve
the highest success rates of 70% to 100% on a large area on the left side. For individual
devices, we manage to successfully suppress flash erase for all 32 test runs (Figure 33). The
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locations of the effective faults show a clear relation to the location of the flash memory
we identified in Figure 7b. Since we experience no effective faults in other locations on the
chip, we conclude that on this device, the high-voltage circuitry of the eFlash is disrupted
which results in an ineffective mass erase.

AT32F415 Series. Our measurements for the AT32F415CBT7 microcontroller with
different coil voltages of 300 V to 500 V, in steps of 100 V, show that this device is not
susceptible when all capacitors are installed. For that reason, we remove all capacitors
from the target board and evaluate the device again. Without capacitors and with a coil
voltage of at least 450 V, we were able to suppress the flash erase operation. The results of
the parameter exploration can be seen in Figure 27 in Appendix C.

For further experiments, we chose a coil voltage of 500 V and increase the number of
delays and repetitions per delay. In the second step, we again analysed the complete attack
with this reduced parameter set. Due to the initial evaluation with a single flash page
we already know that the susceptible area is to the left 2 mm of the chip package. We
achieve the best results for an injection delay of 15.1µS. In Figure 15a, the superposition
of all four heatmaps is depicted. The individual heatmaps of all devices can be found in
Figure 34. The success rate for the superposition is only between 20% to 70% in the middle
on the left edge of the chip package. Nevertheless, the AT32F415CBT7 microcontroller
is still vulnerable to the flash erase suppression attack. Especially in scenarios where an
attacker has multiple tries, for example when the IP stored on the device is of interest,
this attack vector still poses a threat. When we compare the area of the effective faults
with the location of the flash memory identified in the die shot (Figure 7c), no spatial
relation is recognizable. We assume that on this device, we targeted other components
such as the internal power supply of the microcontroller.
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(a) AT32F415CBT7
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(b) AT32F421C8T7

Figure 15: Heatmaps showing the overall success rate of the flash erase suppression attack
from four devices for two AT32 microcontrollers.

AT32F421 Series. Based on the results of the AT32F415CBT7 microcontroller, we start
our measurements with no capacitors equipped and similar coil voltages. The results
of the parameter exploration can be found in Figure 28. Note that the fault positions
after 40µS do not disappear but we finished the measurement from that point on. We
observe no increase in the number of fault positions or an increase of contiguous area. For
some configurations we observe single defects caused by the flash erase operation after
only 27µS. At around 20µS, the number of fault positions drastically increases for 400 V
and 500 V and for 300 V a small number of fault positions appears. In contrast to the
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AT32F415CBT7, we observe for a coil voltage of 500 V a fives times higher number of fault
positions. Remember that these measurements are performed for a single page only and
we have no information about the condition of the remaining flash pages. Therefore, we
use an injection delay of 21µS for evaluating the complete attack. As mentioned above,
faulting the erase operation at its beginning increases the chance that all pages are still
intact. Further, we used a coil voltage of 500 V subsequently.
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(b) Analog domain capacitors.
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(c) All capacitors.

Figure 16: Heatmaps showing the influence of the capacitors to the success rate of the
flash erase suppression attack on the AT32F421C8T7 microcontroller.

In Figure 15b the resulting superposition heatmap is depicted. The heatmaps of all
devices can be found in Figure 35 in Appendix D. It can be seen that the area for which
the flash erase operation can be successfully suppressed is relatively wide and in the middle
of this area success rates of 90% to 100% are achieved on all devices. When we compare
the susceptible area with the die shot (Figure 7d) of the microcontroller, we can see that
the area reflects the orientation of the die in the package. Also the location of the flash
memory and the susceptible area matches.

In order to evaluate the influence of capacitors on the flash erase suppression attack,
we use an additional device with three configurations: no capacitors, only capacitors of
the analog domain, and all capacitors equipped. The resulting heatmaps of the three
configurations are depicted in Figure 16. For each point on the heatmap, we executed four
test runs. Based on the resulting heatmaps we conclude that the capacitors do not have a
negative impact on the success rate. On the contrary, the area on the right side is even
slightly larger when all capacitors are in place.

GD32E103 Series. The GD32E103C8T6 microcontroller exhibits a very high sensitivity
against EMFI. We bricked one device by injecting a pulse with a coil voltage of 400 V and
one device with a coil voltage of 200 V. The two bricked devices cause a short circuit as
soon as they are powered and can no longer be operated.

After multiple measurements on small areas across the chip, we narrowed down the
sensitive region where injecting a fault causes a permanent defect. We discovered that
only at the very bottom edge of the package, the chip is susceptible to the flash erase
suppression attack. To analyze, whether this region expands beyond the package, we
extend the scan region by additional 1.5 mm at the bottom. This means that the injection
coil is placed, to some extend, outside the chip package. The number of fault positions for
different coil voltages and injection times are depicted in Figure 29 in Appendix C. The
overall number of effective faults is low in comparison to the other microcontrollers we
evaluated in this work. Based on these results we chose a coil voltage of 500 V and an
injection delay of 16µS for all further evaluations.

The superposition heatmap is depicted in Figure 17. The heatmaps for all devices can
be found in Figure 36 in Appendix D. For the reason we mentioned before, the heatmaps
are larger than the actual package of the microcontroller. The red colored region on the
heatmap marks the keep out zone so the device is not permanently damaged. Keeping
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Figure 17: Heatmaps showing the overall success rate of the flash erase suppression attack
from four devices for the GD32E103C8T6 microcontroller. The red colored area is the
area that may lead to a permanent device defect if a fault is injected.

clear of this zone, we experienced no further device defects. There are two locations
with a success rate of 70 % and 100 %. However, the shape of the area makes the correct
positioning of the injection coil difficult. We also evaluate whether the success rate or the
susceptible area can be improved by removing capacitors. For our setup and parameters,
the bulk capacitor and the analog capacitors are necessary to achieve effective faults. Only
the capacitors of the digital domain can be removed.

The fault location does not match with the eFlash we identified on the die shot in
Figure 6. For that reason we assume that we inject the fault in the power supply of the
microcontroller. The location of the faults matches with the location of the analog power
supply pin of the chip, however, this can also be just a coincidence. Based on the optical
inspection we cannot identify any component at the keep out zone which allows to infer
the cause of the permanent defects. Further evaluation is necessary to identify the root
cause of the faulty behaviour on this microcontroller.

Summary. In contrast to voltage glitching, we were able to successfully carry out the
attack on all microcontrollers with EMFI. The results show that the attack can be
transferred to different devices, once suitable parameters for a setup are found.

For all devices, the success rate is sufficiently high to extract the IP from flash memory
if only a few target devices are available. Except for two microcontrollers, namely the
STM32L151CBT6 and STM32L162ZDT6 (bank 1), we also can achieve a success rate of
100 %. However, the size and shape of the vulnerable area is very different for the other
devices. For example, the AT32F421C8T7 and STM32L162ZDT6 (bank 2) both form
a large contiguous area which means that the attack’s repeatability and transferability
make it a realistic threat for many scenarios. The injection coil can be placed by hand
and without further aids. In an evil maid scenario where time and equipment is limited,
an attack on these device seems feasible. In contrast, the small vulnerable area for the
APM32F103C4T6 and GD32E103C8T6 make a stencil or positioning table necessary to
reliably achieve a 100 % success rate. The shape of the vulnerable area also makes it very
difficult to place the coil by hand.

For both microcontrollers of the STM32L1 series, we experience very different behaviour
among the individual devices. On some devices, the vulnerable area is different or we
observe no effect at all. Further experiments are necessary here to determine the cause.
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8 Countermeasures
As the flash erase suppression attack targets the underlying hardware of the microcontroller
and fully reactivates the debug interface, any general countermeasure must be implemented
in hardware. A possible countermeasure could be to check the memory content after
the erase operation. The debug interface is only unlocked when the entire flash memory
content is erased. For a successful attack, an adversary would also have to fault this check.
Another possible countermeasure would be to reduce the success probability by varying
the time of the erase operation. This could be achieved, for example, by using a jittery
clock with a variation of several microseconds. In case a static trigger is used like in this
work, this approach would reduce the success probability. However, the high activity of
the erase operation visible in the EM signal could be used as trigger. In this case, the
countermeasure would make the attack more complicated in terms of required hardware
but not necessarily reduce its success rate.

Without hardware support, only application-specific mitigations implemented in soft-
ware are possible. One example for such a countermeasure is to store credentials encrypted
in flash memory. This is possible, for example, in applications like hardware security
tokens or crypto wallets. For these applications, the user provides the key to decrypt the
credentials on-demand before an authentication or to sign a transaction.

In case the IP contained in the firmware of the microcontroller needs to be protected,
countermeasures are more difficult to implement. One mitigation is code obfuscation
in order to complicate reverse engineering. Obfuscation can also be used to impede the
transfer of the firmware to other devices. For example, the authors in [CMG19, HMV+21]
propose to use unique device secrets that determine the order of instructions. Even though
reasonably high computational complexities for reverse engineering are derived in those
works, it remains unclear how to realize the identifier the obfuscation is based on. If only
chip IDs, as discussed in [HMV+21], are used, an adversary can obtain the value the same
way as the obfuscated firmware in our setting. The same holds for physical unclonable
identifiers, as long as no dedicated hardware that shields it from adversaries is in place.
Without a secret that is inaccessible via the reactivated debug interface, obfuscation only
complicates reverse engineering but cannot be considered a proper countermeasure.

There are other mitigations that can be seen as a trade-off between reliability and
security. For example, using a protection level for which the debug interface is permanently
disabled, if available. This comes with the downside that failure analysis may not be
possible anymore. For certain use cases, however, this might be expedient. For others,
at least the trade-off between potential failure analysis and the device security should be
reevaluated. Note that for some devices, even deactivating the debug interface does not
provide sufficient security when further hardware attacks are considered.

9 Conclusion and Outlook
In this work, we evaluate the susceptibility of microcontrollers to the so-called flash erase
suppression attack. Our results show that this attack vector affects multiple devices across
different manufacturers. In comparison to state-of-the-art literature, our evaluation takes
difficulties such as reproducibility and transferability into account which arise under real-
world conditions. For all microcontrollers, we achieve success rates that are sufficiently high
that with a small number of available target devices, the containing IP can be extracted.
On some microcontrollers, we even reach a success rate of 100 % which allows an adversary
to extract device unique secrets. The device intrinsic variations we experience in this
work confirm that experiments on single devices as done so far [SWUH21, Sko05] are not
sufficient to assess the threat of this attack vector. Despite the fact that our analysis had
to be carried out in a black-box setting, we provide insights into the root cause of this
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attack vector. Based on optical inspection we could not find a spatial relation between the
introduced faults and the embedded flash memory (eFlash) on the chip. In combination
with the insights of our side-channel analysis (SCA), we come to the conclusion that an
injected fault disturbs the power supply or high-voltage circuitry of the eFlash which leads
to a suppressed flash erase operation.

Implications. Our results show that the flash erase suppression attack vector needs to be
considered by manufacturers of microcontrollers and the companies who build products
based on those microcontrollers. Due to the attack’s high success rate and transferability
even on simple lab setups, microcontroller vendors should acknowledge the attack vector
by integrating it into their threat model such that product manufacturers can judge its
threat correctly for their use case. These product vendors, in turn, should try to mitigate
the attack vector in software, if possible. We want to emphasize that our results should
not be understood as the best attack that can be mounted on the evaluated devices but as
a lower bound of what is possible. Due to the high number of parameters, better results
in terms of affected area and success rate are likely possible. An attacker targeting a
specific microcontroller will most likely extend the parameter exploration to find favorable
parameters for that device. Rather, our results should raise awareness for developers and
manufacturers alike.

Future Work. Further investigation of possible countermeasures is needed to protect
future products. A complete mitigation of the attack can only be achieved by hardening
the microcontroller’s hardware. As discussed in the previous section, the retrofitting of
countermeasures to existing devices is highly dependent on the use case. Further research
in relation to the attack could evaluate whether microcontrollers using other non-volatile
memory technologies such as EEPROM, MRAM, and FRAM are also susceptible to erase
suppression.
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A Device Analysis
The EM side-channel traces of the STM32L1 microcontrollers differ slightly from the other
devices. For that reason, we take a closer look at them.

The EM side-channel trace during the debug unlock operation of the STM32L151CBT6
microcontroller is depicted at the top of Figure 18. In contrast to the other devices, we
can identify three instead of two distinct blocks. We assume that the additional block is
related to the integrated data EEPROM. Like the flash memory, the EEPROM is erased
during the debug unlock operation [STM17]. To inspect the unlock operation in detail, we
zoom into the signal directly after the trigger (A), after the first block (B), and after the
second block (C). The resulting plot is depicted at the bottom of Figure 18.
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Figure 18: EM trace of the STM32L151CBT6 microcontroller during a debug unlock
operation (top) and a detailed view (bottom).

In Section (A), we observe a similar pattern as for the STM32L422KBT6 microcon-
troller: a short block followed by a longer block of EM activity. We conclude that this is
the mass erase of the flash memory. In section (B), there are nine short blocks of high EM
activity. We assume that these blocks corresponds to write operations of the flash memory
or EEPROM but can not conclusively clarify its function. In section (C), we observe four
additional blocks of activity. Since the microcontroller is a so-called Cat.1 device [STM17],
the number of blocks matches with the amount of 32-bit words of the configuration block
stored in flash memory. The assumption that the four blocks represent the write operation
of the configuration block is strengthened by the fact that we do not see any activity at
the end of the debug unlock operation.

The STM32L162ZDT6 microcontroller is a so-called Cat.4 device with a dual-bank
flash memory and additional EEPROM as data storage [STM17]. The EM signal of the
entire debug unlock operation is depicted at the top of Figure 19. The signal has a structure
similar to that of the STM32L151CBT6 microcontroller: three large blocks of activity
with a duration of about 4 ms each. To inspect the unlock operation in detail, we zoom
into the signal directly after the trigger (A), after the first block (B), and after the second
block (C). The resulting plot is depicted at the bottom of Figure 19. Section (A) and (C)
are similar to the STM32L151CBT6 microcontroller while section (B) shows a different
pattern: we observe only three or four blocks of activity instead of nine. For this device
we cannot match the blocks of EM activity neither in section (B) nor (C) with the number
of 32-bit configuration data words. We would expect 10 blocks of activity, one for each of
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Figure 19: EM trace of the STM32L162ZDT6 microcontroller during a debug unlock
operation (top) and a detailed view (bottom).

the 32-bit configuration data words of a Cat.4 microcontroller.
In contrast to the STM32L4 series, we observe no dedicated erase operation for the

configuration data on both devices of the STM32L1 series. Based on the EM side-channel
and the information provided by the data sheet, we assume that the first large two blocks
correspond to the erase operation of the flash memory and EEPROM. However, it remains
unclear what function the last block has. Further investigation is necessary to determine
a relation between the EM activity and the individual operations of the debug unlock
operation.
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Figure 20: EM trace of the AT32F421C8T7 microcontroller during a mass erase (top)
and debug unlock (bottom) operation.
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Figure 21: EM trace of the APM32F103C4T6 microcontroller during a mass erase (top)
and debug unlock (bottom) operation.
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Figure 22: EM trace of the GD32E103C8T6 microcontroller during a mass erase (top)
and debug unlock (bottom) operation.
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B Voltage Glitching: Parameter Exploration
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Figure 23: EM trace of the AT32F415CBT7 microcontroller during the mass erase
operation (top) and the number of effective faults parameters (bottom) at different
injection times and supply voltages.
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Figure 24: EM trace of the STM32L151CBT6 microcontroller during the debug unlock
operation (top) and the number of effective faults positions (bottom) at different injection
times and coil voltages.
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Figure 25: EM trace of the STM32L162ZDT6 microcontroller during the debug unlock
operation (top) and the number of effective faults positions for flash bank 1 (middle) and
bank 2 (bottom) at different injection times and coil voltages.
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Figure 26: EM trace of the APM32F103C4T6 microcontroller during the debug unlock
operation (top) and the number of effective faults positions (bottom) at different injection
times and coil voltages.



124 Unlock the Door to my Secrets, but don’t Forget to Glitch

A
m

pl
itu

de

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Time in µs

0

5

10

15

Fa
ul

t p
os

iti
on

s

450 V
475 V
500 V

Figure 27: EM trace of the AT32F415CBT microcontroller during the debug unlock
operation (top) and the number of effective faults positions (bottom) at different injection
times and coil voltages.
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Figure 28: EM trace of the AT32F421C8T7 microcontroller during the debug unlock
operation (top) and the number of effective faults positions (bottom) at different injection
times and coil voltages.
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Figure 29: EM trace of the GD32E103C8T6 microcontroller during the debug unlock
operation (top) and the number of effective faults positions (bottom) at different injection
times and coil voltages.
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D EMFI: Heatmaps
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(d) Device 3

Figure 30: Heatmaps showing the success rate of the flash erase suppression attack from
four individual STM32L422KBT6 devices.
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Figure 31: Heatmaps showing the success rate of the flash erase suppression attack from
eight individual STM32L151CBT6 devices. The colored heatmaps indicate that only parts
of the flash memory are retained (red) and that the firmware execution failed but the
entire flash memory is retained (green).
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(a) Device 0: Bank 1
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(b) Device 0: Bank 2
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(c) Device 0: Bank 2

0 2 4 6 8 10 12 14 16 18 20

0
2

4
6

8
10

12
14

16
18

20

 0
10
20
30
40
50
60
70
80
90
100

(d) Device 1: Bank 1
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(e) Device 1: Bank 2
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(f) Device 1: Bank 2
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(h) Device 2: Bank 2
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(i) Device 2: Bank 2
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(j) Device 3: Bank 1
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(k) Device 3: Bank 2
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(l) Device 3: Bank 2

Figure 32: Heatmaps showing the success rate of the flash erase suppression attack from
four individual STM32L162ZDT6 devices. For each device, results are shown for both
flash banks at different locations and injection times.
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(d) Device 3

Figure 33: Heatmaps showing the success rate of the flash erase suppression attack from
four individual APM32F103C4T6 devices.
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Figure 34: Heatmaps showing the success rate of the flash erase suppression attack from
four individual AT32F415CBT devices.
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Figure 35: Heatmaps showing the success rate of the flash erase suppression attack from
four individual AT32F421C8T7 devices.
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Figure 36: Heatmaps showing the success rate of the flash erase suppression attack from
four individual GD32E103C8T6 devices. The red colored area represents an area in which
there is a risk of permanent destruction of the device due to EMFI.
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E Coordinated Disclosure
As part of a coordinated disclosure process, we informed the security teams of all affected
products about our findings. Technical and detailed information were provided more than
90 days prior to the publication of this paper. Table 5 lists the affected microcontrollers
identified in this work together with the corresponding device series, manufacturer, and
the assigned CVE numbers.

Table 5: Assigned CVE numbers for each affected microcontroller identified in this work.

Manufacturer Device series Target device CVE number

Artery AT32F415 AT32F415CBT7 CVE-2024-21740AT32F421 AT32F421C8T7
Geehy APM32F1 APM32F103C4T6 CVE-2024-21739

GigaDevice GD32E103 GD32E103C8T6 CVE-2024-21741

STMicroelectronics STM32L1 STM32L151CBT6
CVE-2021-29414STM32L162ZDT6

STM32L4 STM32L422KBT6
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