
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 2, pp. 25–63. DOI:10.46586/tches.v2024.i2.25-63

ConvKyber: Unleashing the Power of AI
Accelerators for Faster Kyber with Novel

Iteration-based Approaches
Tian Zhou1, Fangyu Zheng2(B), Guang Fan3, Lipeng Wan2, Wenxu Tang1,

Yixuan Song3, Yi Bian4 and Jingqiang Lin1,5

1 School of Cyber Security, University of Science and Technology of China, Heifei, China,
{weekdayzt,wenxutang}@mail.ustc.edu.cn,linjq@ustc.edu.cn

2 School of Cryptology, University of Chinese Academy of Sciences, Beijing, China,
zhengfangyu@ucas.ac.cn,szxwlp@foxmail.com

3 Ant Group, Hangzhou, China, {fanguang.fg,songyixuan.syx}@antgroup.com
4 School of Computer Science and Technology, University of Chinese Academy of Sciences,

Beijing, China, bianyi18@mails.ucas.ac.cn
5 Beijing Research Institute, University of Science and Technology of China, Beijing, China

Abstract. The remarkable performance capabilities of AI accelerators offer promising
opportunities for accelerating cryptographic algorithms, particularly in the context
of lattice-based cryptography. However, current approaches to leveraging AI ac-
celerators often remain at a rudimentary level of implementation, overlooking the
intricate internal mechanisms of these devices. Consequently, a significant number of
computational resources is underutilized.
In this paper, we present a comprehensive exploration of NVIDIA Tensor Cores and
introduce a novel framework tailored specifically for Kyber. Firstly, we propose two
innovative approaches that efficiently break down Kyber’s NTT into iterative matrix
multiplications, resulting in approximately a 75% reduction in costs compared to
the state-of-the-art scanning-based methods. Secondly, by reversing the internal
mechanisms, we precisely manipulate the internal resources of Tensor Cores using
assembly-level code instead of inefficient standard interfaces, eliminating memory
accesses and redundant function calls. Finally, building upon our highly optimized
NTT, we provide a complete implementation for all parameter sets of Kyber. Our
implementation surpasses the state-of-the-art Tensor Core based work, achieving
remarkable speed-ups of 1.93x, 1.65x, 1.22x and 3.55x for polyvec_ntt, KeyGen, Enc
and Dec in Kyber-1024, respectively. Even when considering execution latency, our
throughput-oriented full Kyber implementation maintains an acceptable execution
latency. For instance, the execution latency ranges from 1.02 to 5.68 milliseconds for
Kyber-1024 on R3080 when achieving the peak throughput.
Keywords: Lattice-based Cryptography · GPUs · Tensor Core · Kyber

1 Introduction
The imminent possibility of large-scale quantum algorithm computers capable of practi-
cally executing Shor’s algorithm [Sho97] in the near future has sparked intensive research
in the realm of post-quantum cryptosystems, designed to withstand quantum attacks.
In anticipation of the quantum era, NIST proactively issued a call for proposals to re-
place their current standards for digital signatures, public-key encryption (PKE), and
key-encapsulation mechanisms (KEM). Following three rounds of thorough evaluation
and scrutiny, NIST announced in July 2022 that they had chosen CRYSTALS-KYBER

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-10-15 Accepted: 2023-12-15 Published: 2024-03-12

https://doi.org/10.46586/tches.v2024.i2.25-63
mailto:weekdayzt@mail.ustc,edu,cb, wenxutang@mail.ustc.edu.cn, linq@ustc.edu.cn
mailto:zhengfangyu@ucas.ac.cn, szxwlp@foxmail.com
mailto:fanguang.fg@antgroup.com, songyixuan.syx@antgroup.com
mailto:bianyi18@mails.ucas.ac.cn
http://creativecommons.org/licenses/by/4.0/

26 ConvKyber: Utilizing AI Accelerators for Kyber with Iteration-based Methods

(abbreviated as Kyber) as the standard algorithm for Post-Quantum Cryptography (PQC)
Public-key Encryption and Key-establishment Algorithms. In contrast to signature algo-
rithms, adopting KEM algorithms appears more pressing due to the threat of “harvest
now, decrypt later”. In August 2023, the Chromium Project declared its adoption of a
hybrid cryptographic algorithm (X25519/Kyber768) for Chrome and Google Servers [Blo].

In the realm of cryptographic schemes based on lattice-related problems, such as Ring-
LWE [LPR10], Module-LWE [LS15], and Module-LWR [BPR12], the most time-consuming
components typically involve polynomial multiplication (over the ring Rq) and hash
functions. Hash functions primarily entail bit operations, which can be expedited through
readily available commercial products featuring processor-assisted accelerations, such as the
SHA extension found in Intel and ARM CPUs [SKS+21]. Consequently, much of the effort
in lattice-based cryptography (LBC) acceleration is centered on optimizing polynomial
multiplication. Various techniques exist to expedite polynomial multiplication. In addition
to leveraging Karatsuba [Kar63] and Toom-Cook algorithms [Too63], a prevalent approach
is to employ Number Theoretic Transform (NTT), especially when the condition n|(q − 1)
holds, where q represents the modulus and n signifies the dimension. Kyber [BDK+18, Sch],
for instance, even incorporates a customized NTT within its algorithms to enhance
efficiency.

Up to this point, researchers have put forth numerous optimized implementations
of Kyber across various hardware and software platforms, with particular emphasis on
leveraging the NTT. Notably, for general use cases, researchers have crafted optimized
implementations using SIMD (Single Instruction, Multiple Data) vector instructions on
widely adopted x86 and ARM platforms [SKS+21].

1.1 An Opportunity for PQC with AI-accelerators
Many manufacturers have developed high-performance AI (artificial intelligence) accel-
erators to cater to the demands of AI applications. Notable examples include Google
TPU [Clo], Apple M1 [App], and NVIDIA Tensor Core [NVIb].

Compared to general-purpose processors, AI accelerators primarily emphasize low-
precision arithmetic, novel data-flow architectures, and often boast significantly higher
computational power. For instance, In 2017, Nvidia introduced the Volta architecture,
notable for being the first graphics processor to feature dedicated cores, known as Tensor
Cores, specifically designed for tensor calculations. These Tensor Cores can perform 64
General Matrix Multiplications (GEMMs) per clock cycle on 4× 4 matrices, which contain
FP16 (16-bit floating-point) values or a combination of FP16 multiplication and FP32
addition. Despite their small size, these cores effectively break down larger matrices into
smaller tiles to compute the final results. Tensor Cores are further enhanced in each new
NVIDIA GPU architecture generation. Tensor Cores of the latest Tesla H100 can deliver
up to 1979 Tensor TFLOPS for INT8 precision data. In the case of embedded products,
the NVIDIA Jetson AGX Orin offers supercomputer-level performance of up to 275 Tensor
TOPS while consuming up to 60W of power [NVIc].

The formidable capabilities of AI accelerators open up new possibilities for accelerating
Post-Quantum Cryptography (PQC). One pioneering effort in this domain was undertaken
by Wan et al. [WZL21]. They harnessed the power of Volta Tensor Cores to accelerate the
lattice-based scheme LAC [LLZ+18], which utilizes a byte-level modulus. This endeavor
yielded significant performance improvements.

1.2 Technical Challenges and Contributions
The substantial performance advantage has inspired researchers to integrate AI accelerators
into cryptographic implementations. Since AI accelerators are specialized for machine

T. Zhou, F. Zheng, et al. 27

learning and neural networks, the primary challenge lies in adapting cryptographic work-
loads to their operations while ensuring the accuracy of results and achieving significant
performance improvements.

It is noteworthy that most prior work has focused on lattice-based cryptography without
the need for Number Theoretic Transform (NTT), specifically schemes like LAC [WZL21,
LSZH22] or NTRU [LSZH22]. Their approaches are quite straightforward. For example,
Wan et al. [WZL21] extend the coefficient vector of a polynomial into a matrix resembling
a Toeplitz matrix. Subsequently, it transforms polynomial multiplication c = ab over the
ring Rq = Zq[X]/(Xn + 1) in LAC into a vector-matrix multiplication, as follows:

ab =
[
a0 a1 · · · an−1

]
n×1

b0 b1 · · · bn−1
−bn−1 b0 · · · bn−2

...
...

−b1 −b2 · · · b0

n×n

.

Then, they batch multiple such vector-matrix multiplications into matrix-matrix mul-
tiplications. These matrix-matrix multiplications can be directly accelerated using the
dedicated instructions of Tensor Cores, and the byte-level modulus q = 251 used in LAC
aligns perfectly with the most efficient INT8 parameter configuration of Tensor Cores.

However, the more commonly employed NTT-based schemes, such as Kyber, are not
amenable to Tensor Core acceleration. The prevalent approach for polynomial multipli-
cation using NTT relies on the divide and conquer method. Nevertheless, the resulting
butterfly operations are incompatible with the Tensor Core’s operational mode. In a
recent work, Wan et al. [WZF+22] further introduced a practical implementation of Kyber
that leverages Tensor Cores. In this implementation, they employed the formula method
to replace the commonly used butterfly calculations in NTT. Their research into the
relationship between accuracy and performance of WMMA (Warp Matrix Multiply and
Accumulate) operations provides valuable insights for future endeavors in this domain.

Twiddle
Factors16

128
128

Figure 1: Wan et al.’s approach for Kyber’s NTT [WZF+22]

The essence of Wan et al.’s approach [WZF+22] lies in transforming NTT operations
into a “large” matrix multiplication of size 128×128 and processing this large matrix using
the native “16× 16” matrix multiplication instructions of Tensor Cores. This strategy has
delivered highly favorable outcomes, primarily because the dimension n = 128 is relatively
small. It has achieved a remarkable over six-fold improvement compared to traditional
implementations [GJCC20].

However, it is evident that this direct and straightforward approach comes with
significant computational complexity. The primary goal of this paper is to harness Tensor
Cores to implement a more efficient algorithm, addressing this complexity and enhancing
performance.

28 ConvKyber: Utilizing AI Accelerators for Kyber with Iteration-based Methods

Based on our explored internal mechanism of Tensor Core and the unique design of the
customized NTT in Kyber, this paper proposes an NTT calculation scheme dedicated to
Kyber and further implements an entire implementation of Kyber. We name this frame-
work convKyber because we convert the core NTT operations into operations resembling
convolutions to leverage Tensor Cores better.

This paper mainly includes the three following contributions.

• Firstly, our work forms an iteration-based framework for an AI accelerator to accel-
erate module-lattice based cryptography. Two innovative approaches are proposed
under this framework that efficiently break down Kyber’s NTT into iterative matrix
multiplications, resulting in approximately a 75% reduction in costs compared to
the state-of-the-art scanning-based methods. Although these approaches are highly
tailored for Kyber’s NTT, they can be slightly modified for the universal NTT
acceleration. (Section 3).

• Secondly, we have gained a deep understanding of the internal operational mechanisms
of Tensor Cores behind the WMMA API through reverse-engineering. We precisely
manipulate the internal resources of Tensor Cores using assembly-level code rather
than relying on inefficient standard interfaces, thereby eliminating memory accesses
and redundant function calls. (Section 4).

• Finally, building upon our highly optimized NTT, we provide a complete implementa-
tion for all parameter sets of Kyber, including Kyber-512/768/1024, with non-trivial
optimizations for SHA-3, memory access coalescing etc. (Section 5).

For the NTT part, empirical results illustrate that our proposed NTT schemes achieve a
12.48x performance improvement compared to conventional butterfly operation based NTT
on the same GPU platform. Even when compared to state-of-the-art Tensor Core-based
NTT, we achieve a 93% speed-up. For a full Kyber implementation, compared with
the state-of-the-art implementation, we have achieved 1.93x, 1.65x, 1.22x, and 3.55x for
polyvec_ntt, KeyGen, Enc, Dec in Kyber-1024, as compared to the state-of-the-art Tensor
Core-based implementation in the same GPUs. We have also achieved improvements of 1 to
2 orders of magnitude compared to CPU, FPGA, and other embedded platforms. Although
achieving such performance advantages requires simultaneous processing of thousands of
requests, and the execution latency for these thousands of requests is several hundred
times higher compared to other platforms (e.g., CPU, FPGA) handling individual requests,
our throughput-oriented full Kyber implementation maintains an acceptable execution
latency and is highly suitable for scenarios targeting large-scale users. (Section 6).

The rest of this paper is organized as follows. Section 2 introduces some background
knowledge, especially the details of Kyber and the features of Tensor Core. Section 3
describes our approach to converting NTT into Tensor core workload. We proposed the
Tensor core based NTT approach in Section 4. Section 5 demonstrates the implementation
details. In Section 6, We present a series of evaluation and comparison results and
discuss the limitations and generalization of the proposed schemes. Then, we make a brief
conclusion in Section 7.

2 Preliminary

In this section, we give a basic background of Kyber and AI accelerators.

T. Zhou, F. Zheng, et al. 29

2.1 Notation and Definition
2.1.1 Notation

For a prime q, Zq = {0, 1, . . . , q − 1} is the residue class ring modulo q. Znq represents n
coefficients from Zq. Define the ring Rq = Zq[X]/(Xn + 1), which means the coefficients
are from Zq. Regular font letters denote elements in Rq (which includes elements in Zq)
and bold lower-case letters represent vectors with coefficients in Rq. By default, all vectors
will be column vectors. Bold upper-case letters are matrices. For a vector v (or matrix A),
vT (or AT) means its transpose, and v[i] denotes its i-th entry (with indexing starting at
zero). For a matrix A, A[i][j] denotes the entry in row i, column j (again, with indexing
starting from zero). The rank k represents that a polynomial vector contains k polynomials,
and a matrix contains k× k polynomials. For a finite field F = Zq, the primitive n-th root
ω of unity exist whenever n|(q − 1), where ωn ≡ 1(mod q).

2.1.2 Module-LWE

A lattice is the set of all integer linear combinations of some linearly independent vectors
belonging to the euclidean space. Most lattice-based cryptographic schemes are built
upon the assumed hardness of the Short Integer Solution (SIS) [Ajt96] and Learning With
Errors (LWE) [Reg05] problems. The LWE problem was popularized by Regev [Reg05]
who showed that solving a random LWE instance is as hard as solving certain worst-case
instances of certain lattice problems. This assumption states that it is hard to distinguish
the uniform distribution from (A, As+e), where A is a uniformly-random matrix in Zm×nq ,
s is a uniformly-random vector in Znq , and e is chosen from some distribution. Later,
Lyubashevsky et al. [LPR10] introduced a similar adaptation for LWE, called Ring-LWE,
which showed that it is also hard to distinguish a variant of the LWE distribution from the
uniform one over certain polynomial rings. Combining the security advantages of LWE
and the flexibility of Ring-LWE, Langlois et al. [LS15] demonstrated the worst-case to
average-case reductions for module lattices. Intuitively, the size of matrix A in Module-
LWE is k × k, where k is the rank. The elements in the matrix are vectors selected from
Znq .

2.2 Description of Kyber
Kyber is an IND-CCA2-secure post-quantum key exchange mechanism. The security of
Kyber is based on the hardness of solving the LWE problem in module lattices.

The submission to NIST PQC [SAB+22] lists three different parameter sets, Kyber-512,
Kyber-768, and Kyber-1024, aiming at different security levels roughly equivalent to
AES-128, AES-192, and AES-256, respectively. The parameters are listed in Table 1,
where η1 and η2 are the parameters of centered binomial distribution (CBD).

Table 1: Parameter sets for Kyber version 3
n k q η1 η2

Kyber-512 256 2 3329 3 2
Kyber-768 256 3 3329 2 2
Kyber-1024 256 4 3329 2 2

The key generation, encryption, and decryption are described in Algorithm 1, 2, and 3.
In the KeyGen phase, d is a random number, ρ and σ are fixed-length intermediate
variables generated by d through hash function G. The parameter Â is a k× k polynomial
matrix generated by ρ. The parameters s and e are polynomial vectors generated through
different sample functions but same distribution Bη1 . The final parameters need to be

30 ConvKyber: Utilizing AI Accelerators for Kyber with Iteration-based Methods

Algorithm 1 KYBER.CPAPKE.KeyGen(): key generation
Ensure: Secret key sk, Public key pk.
1: d← Random()
2: (ρ, σ) := G(d)
3: Â← Gen_matrix_Â(ρ), Â ∈ Rk×kq in NTT domain
4: s← Sample_s(σ), s ∈ Rkq from Bη1

5: e← Sample_e(σ), e ∈ Rkq from Bη1

6: ŝ := NTT(s)
7: ê := NTT(e)
8: t̂ := Â ◦ ŝ + ê
9: return pk := Encode(t̂||ρ), sk := Encode(ŝ)

compressed and encode. In the Enc phase, the public key pk will be decoded first. Here,

Algorithm 2 KYBER.CPAPKE.Enc(): encryption
Require: Public key pk, Message m, Random seed r
Ensure: Ciphertext c
1: (t̂, ρ)← Decode(pk)
2: ÂT ← Gen_matrix_ÂT (ρ), ÂT ∈ Rk×kq in NTT domain
3: r← Sample_r(r), r ∈ Rkq from Bη1

4: e1 ← Sample_e1(r), e1 ∈ Rkq from Bη2

5: e2 ← Sample_e2(r), e2 ∈ Rq from Bη2

6: r̂ := NTT(r)
7: u := NTT−1(Â ◦ r̂) + e1
8: v := NTT−1(t̂T ◦ r̂) + e2+Decompress(m)
9: return c1 := Encodeu(u), c2 := Encodev(v)

we need to emphasize that e2 and v are polynomials rather than vectors. The ciphertext c
consists of two parts: c1 and c2, which are obtained from u and v with different encode.
Correspondingly, in the Dec phase, these two parts need to be decoded with different
functions first. Then the NTT and the subsequent INTT are performed.

Algorithm 3 KYBER.CPAPKE.Dec(): decryption
Require: Secret key sk, Ciphertext c
Ensure: Message m
1: u := Decodeu(c)
2: v := Decodev(c)
3: ŝ := Decode(sk)
4: return m := Compress(v−NTT−1(ŝ ◦ NTT(u)))

2.3 AI Accelerator and Tensor Core
Due to the explosive growth of AI applications, general-purpose processors are having
difficulty meeting the needs of machine learning. Therefore, a dedicated AI accelerator,
an application-specific integrated circuit with a more specific design, may gain far more
efficiency. The well-known AI accelerators include Google TPU, Apple M1, M1 MAX, M1
Pro, and ARM NPU. These accelerators mainly focus on optimized memory use and lower
precision arithmetic to accelerate calculation and increase the throughput.

T. Zhou, F. Zheng, et al. 31

Tensor Core. In December 2017, NVIDIA released the 1st generation Tensor Core
(on Volta architecture), which is just for tensor calculations. Tensor Cores are designed
to carry 64 GEMMs (General Matrix Multiplication) per clock cycle on 4× 4 matrices,
containing FP16 values (16-bit floating-point numbers) or FP32 (the float format). A year
later, NVIDIA launched the Turing architecture Tensor Core, which has been updated
to support other data formats, such as INT8 (8-bit integer values). In the latest Ampere
architecture, NVIDIA has improved the performance (256 GEMMs per cycle, up from 64)
and added further data formats, shown in Table 2.

Up to now, Tensor Core can only support operations at the warp level, usually 32
threads. The warp matrix function requires co-operation from all threads in the warp and
performs D = A × B + C , where A, B, C , D are matrices with specific size, as shown
in Fig. 2.

= ✖ +

Figure 2: A warp-level m-n-k matrix operation

It is further complicated by threads holding only a fragment (a type of opaque
architecture-specific ABI data structure) of the overall matrix, with the developer not
allowed to make assumptions on how the individual parameters are mapped to the registers
participating in the matrix multiply-accumulate. There are also some restrictions on
matrix size. Generally, k is fixed to 16, and m can be 8, 16, or 32 (n corresponds to 32,
16, or 8).

The WMMA instruction exhibits the shortest latency when using INT8 as the com-
putational precision [WZF+22]. We have adopted this technique, decomposing values
exceeding 8 bits into multiple INT8 representations.

Given the degree of the polynomial (n = 256) in Kyber and the proposed schemes
(Section 3.2.2 and Section 3.2.3), we employ m, n, and k values of 16, 16, and 16,
respectively.

Table 2: Precision supported by multiple generations of Tensor Core
Volta Turing Ampere

Precision FP16 FP16, INT8,
INT4, INT1

FP64, TF32, bfloat16,
FP16, INT8, INT4, INT1

3 Decomposing NTTs into Matrix Multiplications
This section describes how we decompose NTTs into matrix multiplications.

3.1 The Limitation of Scanning-based Methods
Wan et al. [WZF+22] employed a straightforward approach to translate NTT workloads to
Tensor Cores. They organized several polynomials that required processing into a matrix

32 ConvKyber: Utilizing AI Accelerators for Kyber with Iteration-based Methods

and placed the twiddle factors into another matrix, wherein R is a power of 2, facilitating
Montgomery reduction, as follows:

ζ0×2br7(0)R ζ0×2br7(1)R · · · ζ0×2br7(127)R
ζ1×2br7(0)R ζ1×2br7(1)R · · · ζ1×2br7(127)R

...
...

ζ127×2br7(0)R ζ127×2br7(1)R · · · ζ127×2br7(127)R

128×128

On average, computing a single coefficient in the NTT domain required 128 multiplica-
tions.

It is important to note that only a fixed-size tile can be loaded into a fragment at a
time, while the target matrix is significantly larger. Therefore, Wan et al. devised two
scanning methods based on the raw precision of the data being processed. For parameters
with element values less than 8 bits (e.g., 256 or 128 for signed numbers), such as the
secret s and random noise r, e generated from CBD (Centered Binomial Distribution),
which have at most 3 significant bits, they employed a basic NTT method.

However, this direct approach is not very efficient. Firstly, it requires 16 concurrent
inputs, i.e., batching is necessary. Secondly, its computational workload is relatively high.
For Kyber’s NTT, it necessitates a total of 2× 128× 128 (where 2 accounts for odd and
even coefficients) element multiplications. Consequently, the computational complexity
of their scheme for a single NTT operation is equivalent to performing 2×128×128

16×16×16 = 8
instances of 16× 16 matrix multiplications. While this scheme is functional in its design,
it is straightforward and offers ample opportunities for optimization.

3.2 The Proposed Iteration-based Algorithms
In this section, we decompose NTTs into matrix multiplications (Section 3.2.1). Building
on this, and varying the handling of twiddle factors, we introduce a 2-phase scheme (Section
3.2.2) and a 3-phase scheme (Section 3.2.3), respectively.

3.2.1 Decomposing Kyber’s NTT

Let us revisit Kyber’s NTT. Kyber has incorporated NTT into its algorithms, resembling
the polynomial form of the Chinese Remainder Theorem (CRT). For the prime modulus
q = 3329 with q− 1 = 28 · 13, the base field Zq includes 28-th roots of unity. Consequently,
the defining polynomial (X256 + 1) of the ring R can be factored into 128 polynomials of
degree 2 modulo q. This polynomial can be expressed as:

X256 + 1 =
127∏
i=0

(X2 − ζ2i+1) =
127∏
i=0

(X2 − ζ2br7(i)+1)

Here, br7(i) for i = 0, 1, · · · , 127 represents the bit reversal of the unsigned 7-bit integer i.
Consequently, the NTT of a polynomial f ∈ Rq results in a vector of 128 polynomials of
degree 1, and can be represented as:

(f mod X2 − ζ2br7(0)+1, · · · , f mod X2 − ζ2br7(127)+1)

In Kyber, the NTT is defined NTT : Rq → Rq to be the bijection that maps f ∈ Rq to
the polynomial with the aforementioned coefficient vector. Hence,

NTT(f) = f̂ = f̂0 + f̂1X + · · ·+ f̂255X
255

with

f̂2i =
127∑
j=0

f2jζ
(2br7(i)+1)j (1)

T. Zhou, F. Zheng, et al. 33

f̂2i+1 =
127∑
j=0

f2j+1ζ
(2br7(i)+1)j (2)

f2i = n−1 ·
127∑
j=0

f̂2jζ
−(2br7(j)+1)i (3)

f2i+1 = n−1 ·
127∑
j=0

f̂2j+1ζ
−(2br7(j)+1)i (4)

Equation (1) - (4) is evidently far from the 16× 16 matrix multiplication we envision
for. As a starting point, we can attempt to transform the input vector with 128 elements
into a 16× 8 matrix. We take the NTT calculation of f̂2i as an example (i.e., Equation
(1)). The NTT calculation for f̂2i+1 is identical, so we will not derive it separately. While
there are some differences in the INTT part (mainly in the order of i and j), the basic
approach is similar, and we detail it in Appendix A.

To facilitate subsequent explanations, we introduce the following notations:

i = 8i0 + i1, j = 8j0 + j1, i0, j0 ∈ Z16, i1, j1 ∈ Z8

f0(i0, i1) = f2(8i0+i1) = f2i, f1(i0, i1) = f2(8i0+i1)+1 = f2i+1

f̂0(i0, i1) = f̂2(8i0+i1) = f̂2i, f̂1(i0, i1) = f̂2(8i0+i1)+1 = f̂2i+1

Using these notations, Equation (1) can be deduced as follows:

f̂0(i0, i1) =
127∑
j=0

f0(j0, j1)ζj(2br7(i)+1)

=
15∑
j0=0

7∑
j1=0

f0(j0, j1)ζ(8j0+j1)(2br4(i0)+32br3(i1)+1)

=
15∑
j0=0

7∑
j1=0

f0(j0, j1)ζ8j0(2br4(i0)+1) · ζj1(2br4(i0)+1) · ζ32j1br3(i1)

=
15∑
j0=0

7∑
j1=0

f0(j0, j1) · ζ0(i0, j0) · ζ1(i0, j1) · ζ2(i1, j1) (5)

It should be noted that ζ256k ≡ 1 (mod q), k ∈ Z and br7,br4,br3 represent the 7-bit,
4-bit and 3-bit bit-reverse function, respectively. The sub-twiddle factors are denoted as
follows:

ζ0(i0, j0) = ζ8j0(2br4(i0)+1), ζ1(i0, j1) = ζj1(2br4(i0)+1) and ζ2(i1, j1) = ζ32j1br3(i1).
Equation (5) will serve as the foundation for our work. While designed for the NTT

transform of even-indexed terms, this formula can also be applied to the NTT transform
of odd-indexed terms and the INTT transform of both odd and even-indexed terms. We
won’t delve into those aspects here.

In the subsequent section, we will develop two distinct strategies, a 2-phase scheme
and a 3-phase scheme, to efficiently compute NTT based on Equation (5). Please refer to
Appendix A for the discussion for INTT.

34 ConvKyber: Utilizing AI Accelerators for Kyber with Iteration-based Methods

3.2.2 2-Phase Scheme

It is important to highlight that all the sub-twiddle factors ζ0(i0, j0), ζ1(i0, j1), ζ2(i1, j1) in
Equation (5) can be precomputed. A natural idea is to merge as many sub-twiddle factors
as possible to avoid unnecessary online computation.

However, it is not possible to merge too many sub-twiddle factors because it would
involve too many indices (i.e., i0, i1, j0, j1), resulting in an extremely large table. In
practice, it is acceptable to work with construction methods that involve only three indices,
and there are two possible approaches:

1. Offline computing the product of ζ0 and ζ1, and denoting it as ζ01(i0, j0, j1), Equation
(5) can be computed in two phases as follows :

f̂0(i0, i1) =
7∑

j1=0

 15∑
j0=0

f0(j0, j1) · ζ01(i0, j0, j1)

︸ ︷︷ ︸

Phase 1

·
[
ζ2(i1, j1)

]

︸ ︷︷ ︸
Phase 2

2. Offline computing the product of ζ1 and ζ2, and denoting it as ζ12(i0, i1, j1), Equation
(5) can be computed in two phases as follows:

f̂0(i0, i1) =
7∑

j1=0

 15∑
j0=0

f0(j0, j1) · ζ0(i0, j0)

︸ ︷︷ ︸

Phase 1

·
[
ζ12(i0, i1, j1)

]

︸ ︷︷ ︸
Phase 2

The computation method for f̂1 can be derived similarly, and the twiddle factors are
the same as those for f̂0. When comparing these two merging approaches, the table for
ζ01(i0, j0, j1) comprises 8 precomputed tables, each of size 16 × 16, while ζ12(i0, i1, j1)
requires 16 tables. Clearly, the former is more space-efficient; therefore, we have chosen it
for our 2-phase scheme.

Considering both f̂0 and f̂1, let us now delve into the implementation of the compu-
tational aspects of this scheme using matrix operations as outlined below. Note that f̂0
and f̂1 in the matrix are interwoven in rows, much like the coefficients in a polynomial are
arranged in a power-order, alternating between even and odd. Besides, g0 and g1 represent
intermediate values in the computation, and the elements within the shadow matrix are
precomputed.

Phase 1 computes the following terms:
For i0 = 0, . . . , 15, j0 = 0, . . . , 15 and j1 = 0, . . . , 7,

g0(i0, j1) =
15∑
j0=0

f0(j0, j1) · ζ01(i0, j0, j1) (6)

g1(i0, j1) =
15∑
j0=0

f1(j0, j1) · ζ01(i0, j0, j1) (7)

⇒

g0(i0, 0) =

15∑
j0=0

f0(j0, 0) · ζ01(i0, j0, 0), g1(i0, 0) =
15∑
j0=0

f1(j0, 0) · ζ01(i0, j0, 0)

...

g0(i0, 7) =
15∑
j0=0

f0(j0, 7) · ζ01(i0, j0, 7), g1(i0, 7) =
15∑
j0=0

f1(j0, 7) · ζ01(i0, j0, 7)

T. Zhou, F. Zheng, et al. 35

The preceding equations will be expanded into a matrix multiplication, as illustrated
in Figure 3. In Figure 3, the red box denotes the elements involved in the computation of
g0(0, 0) and g0(0, 7), serving as an example. Note that there are eight 16× 16 precomputed
tables in computation :

Z0 ={ζ01(i0, j0, 0)}, i0 = 0, . . . , 15, j0 = 0, . . . , 15 (8)
...

Z7 ={ζ01(i0, j0, 7)}, i0 = 0, . . . , 15, j0 = 0, . . . , 15 (9)

Phase 2 computes the following terms:

Figure 3: The first phase of 2-phase scheme

For i0 = 0, . . . , 15 and j1 = 0, . . . , 7,

f̂0(i0, i1) =
7∑

j1=0
g0(i0, j1) · ζ2(i1, j1) (10)

f̂1(i0, i1) =
7∑

j1=0
g1(i0, j1) · ζ2(i1, j1) (11)

In Phase 2, there is a significant difference: ζ2(i1, j1) will be expanded into an 8× 8
matrix (notably, i1, j1 ∈ Z8), while the minimum unit of a Tensor Core is 16×16. Therefore,
we further expand this small matrix into a 16×16 sparse matrix, simultaneously completing
the computations for f̂0 and f̂1. In Figure 4, the red box highlights the elements involved
in the computation of g0(0, 0), serving as an example.

36 ConvKyber: Utilizing AI Accelerators for Kyber with Iteration-based Methods

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Figure 4: The second phase of 2-phase scheme

3.2.3 3-Phase Scheme

Merging sub-twiddle factors leads to a larger precompute table size, necessitating the
introduction of a batching process. Moving forward, let us return to the non-merging
approach, which is:

f̂0(i0, i1) =

7∑

j1=0

 15∑
j0=0

f0(j0, j1) · ζ0(i0, j0)

︸ ︷︷ ︸

Phase 1

·ζ1(i0, j1)

︸ ︷︷ ︸
Phase 2

·ζ2(i1, j1)

︸ ︷︷ ︸
Phase 3

The calculation method for f̂1 can be derived analogously.
Taking both f̂0 and f̂1 into consideration, let us now detail how the computational

aspects of this scheme can be implemented using matrix operations as follows. Note that
f̂0 and f̂1 in the matrix are interwoven in rows, much like the coefficients in a polynomial
are arranged in a power-order, alternating between even and odd. Besides, g0, g1, h0, h1
merely represent intermediate values in the computation, and the elements within the
shadow matrix are precomputed.

Phase 1 computes the following terms:
For i0 = 0, . . . , 15, j1 = 0, . . . , 7,

g0(i0, j1) =
15∑
j0=0

f0(j0, j1) · ζ0(i0, j0) (12)

g1(i0, j1) =
15∑
j0=0

f1(j0, j1) · ζ0(i0, j0) (13)

The preceding equations will be expanded into a matrix multiplication, as illustrated
in Figure 5. In Figure 5, the red box denotes the elements involved in the computation
of g0(0, 0), serving as an example. Different from the 2-phase approach, phase 1 of the
3-phase approach requires only one 16× 16 precompute table.

For i0 = 0, . . . , 15, j1 = 0, . . . , 7,

h0(i0, j1) = g0(i0, j1) · ζ1(i0, j1) (14)
h1(i0, j1) = g1(i0, j1) · ζ1(i0, j1) (15)

Phase 2 simply computes the Hadamard product, and in Figure 6, the red box denotes
the elements involved in the computation of h0(0, 0).

T. Zhou, F. Zheng, et al. 37

Figure 5: The first phase of 3-phase scheme

Figure 6: The second phase of 3-phase scheme

Phase 3 computes the following terms:
For i0 = 0, . . . , 15 and i1 = 0, . . . , 7,

f̂0(i0, i1) =
7∑

j1=0
h0(i0, j1) · ζ2(i1, j1) (16)

f̂1(i0, i1) =
7∑

j1=0
h1(i0, j1) · ζ2(i1, j1) (17)

Phase 3 works almost identically with phase 2 of the 2-phase scheme, as shown in Figure 4.

3.2.4 Summary of These 2 Approaches

Decomposing the 256-points NTT schemes into atomic operations (element multiplication
and 16× 16 matrix multiplication operations), the comparison between 4 NTT schemes
are summarized in Table 3. Note that in the first phase of the two-phase scheme, the 16
matrix-vector multiplications fold into 1 matrix multiplication.

As observed in Table 3, the butterfly operation has the lowest computational complexity.
However, the scanning-based scheme demonstrates superior performance when implemented
with Tensor Cores.

It is crucial to emphasize that while the butterfly operation requires fewer element
multiplications, GPU’s general instruction set only supports INT32 instructions. Even
though each element is relatively small, it still necessitates the use of slower INT32
instructions. In contrast, Tensor Cores can natively support faster INT8 instructions.
Therefore, Table 3 provides only a rough comparison, and in GPU implementations, the

38 ConvKyber: Utilizing AI Accelerators for Kyber with Iteration-based Methods

Table 3: Comparisons of operations per NTT in different schemes
NTT

Element
multiplications

Matrix
multiplications*

Precomputed
Elements

Butterfly operation
used in [GJCC20] 1792 0 128

Scanning-based scheme
used in [WZF+22] 0 8 128× 128

Proposed 2-phase scheme 0 2 9× 256
Proposed 3-phase scheme 256 2 3× 256
*Single 16× 16 matrix multiplication involves 4096 element multiplications

butterfly operation’s advantage in terms of operation count may not be as significant as it
appears.

Our proposed iteration-based scheme reduces computational complexity by a quarter
(considering only matrix multiplications) and is also highly compatible with Tensor Core
acceleration. Furthermore, there is no substantial disparity in computational load between
the 2-phase scheme and the 3-phase scheme (the 2-phase scheme involves additional
operations to integrate matrix-vector multiplications). Therefore, further investigation is
required, and their performance should be empirically compared through implementations.

4 The Proposed NTT Implementation
Section 3 provides the basic principle of the proposed Kyber’s NTT. This section will
further illustrate how to implement the two schemes with Tensor Cores. This section
will highlight three key techniques to overcome the limitations of native Tensor Core
instructions:

• Splitting Kyber’s NTT into small Tensor Cores based NTTs: We will briefly
outline how to implement finite field arithmetic for Kyber using the limited precision
of Tensor Cores. A standard Kyber’s NTT will be separated into several Tensor
Cores based NTT computations.

• A batch implementation for 2-phase NTT: Based on 2-phase NTT schemes,
we will implement a batch NTT that simultaneously processes 8 NTT operations.
Additional pre-processing and post-processing steps will be used to transform the
requests into matrices that can be accelerated by Tensor Cores.

• A memory-free 3-phase NTT implementation: Based on the 3-phase NTT
scheme and a thorough exploration of the internal mechanisms of Tensor Cores, we
will implement a novel memory-free NTT implementation.

4.1 Multi-precision Presentation and NTT Splitting
As Section 2 describes, Tensor Core performs FMA mixed-precision operation, with low-
precision input and high-precision output. For example, on the Ampere architecture, the
input can be INT8 (char), and the output can be INT32 (int).

Wan et al. [WZF+22] experimented on the performance of different precision combi-
nations and pointed out that the WMMA matrix multiplication instruction with INT8
precision delivers the highest performance, even though it offers very limited precision.
Consequently, depending on the modulus, we can categorize matrix multiplication using
the WMMA instruction into two groups: basic-Mul for smaller moduli and split-Mul for
larger moduli.

T. Zhou, F. Zheng, et al. 39

Additionally, the computation process of split-Mul can be integrated with the Karatsuba
multiplication [Kar63]. By incurring additional additions, the four multiplications in the
schoolbook multiplication can be reduced to three by Karatsuba multiplication. The
detailed computation process of split-Mul combined with Karatsuba multiplication is
illustrated in Figure 7.

Low Part
Split

High Part High PartLow Part

INT16 INT16

Precomputed
Talbe

Multiplier
Matrix

+ +

-

-

SHL 12 SHL 6

+ +

Reduction

INT16INT16

Product
Matrix

Split

 Tensor
Core

Figure 7: split-Mul combined with Karatsuba multiplication

We implement both split-Mul combined with schoolbook multiplication and split-Mul
combined with Karatsuba multiplication, with their performance comparison detailed in
Section 6.

4.2 2-phase NTT Implementation with Batch of 8
4.2.1 Pre- and Post- Processing

In the 2-phase NTT scheme, the first step involves splitting a matrix containing 256
polynomial coefficients into 16 vectors and performing 16 matrix-vector multiplications.
These 16 vectors cannot be simply merged because the matrices they multiply with are not
entirely identical. A straightforward approach would be to calculate all 16 NTT operations
simultaneously and then merge the vectors at corresponding positions for computation.
However, it’s worth noting that vectors at odd positions and their corresponding vectors
at even positions use the same twiddle factor matrix. Hence, we only need to compute 8
NTT operations concurrently to fill a 16× 16 matrix.

The input for these 8 NTT operations consists of 8 vectors, each containing 256 elements.
These matrices are recombined into 8 16×16 matrices, and they are multiplied individually
with 8 different precomputed twiddle factor matrices. The resulting product matrices are
then decomposed once again to restore the original arrangement.

40 ConvKyber: Utilizing AI Accelerators for Kyber with Iteration-based Methods

Before delving into the details of this scheme, let us establish a foundation by assuming
that we are about to perform NTT on eight polynomials. For the sake of reference, we
denote their respective coefficient matrices as P0 through P7.

Reconstruction
Matrix 7

Reconstruction
Matrix 0

Pre-Processing
Post-

Processing

Figure 8: Pre- and post-processing of the 2-phase scheme

The initial step of the batch 2-phase scheme is elegantly depicted in Figure 8. To
given context, let’s consider the precomputed matrix Z0 (defined by Equation (8)). It
corresponds to the first and second columns (highlighted by the red box) spanning from
P0 to P7. These columns are thoughtfully consolidated into a restructured matrix labeled
as 0, which is subsequently multiplied by Z0 and then reverted to their original positions.
The computation relating to Z7 (defined by Equation (9)) can be derived in a similar
fashion, illustrated by the blue box.

In the actual implementation, to facilitate the merging of memory accesses, the restruc-
tured matrix should be in row-major order rather than column-major order (with elements
in the same row arranged consecutively in memory). Therefore, all matrices involved in
the first phase need to be transposed, and the left matrix multiplication operations should
be changed to right multiplication.

In the second phase of the batch 2-phase scheme, the coefficient matrices associated
with polynomials 0 through 7 undergo multiplication with a precomputed matrix formed
by ζ2 (defined in Section 3.2.1) following the computations carried out in the preceding
stage. As a result, we obtain the NTT domain representations for all eight polynomials
simultaneously.

It is worth noting that the first matrix multiplication in the scheme requires pre-

T. Zhou, F. Zheng, et al. 41

processing and post-processing. However, the pre-processing can be omitted when the
NTT object is a polynomial obtained by sampling.

4.2.2 Implementation Summary

The resulting implementation method is illustrated in Figure 9.

Matrix
Reconstruction

Precomputed
Table 2

Precomputed
Table 2

 Shared Memory

wmma.
load

 Warp 7

wmma.
store

 Warp 0Precomputed
Table 1_0

Precomputed
Table 1_7

wmma.
load

 Warp 7

wmma.
store

wmma.
load

 Warp 0

wmma.
load

wmma.
store

wmma.
store

Phase 2
Matrix-Mul

Phase 1
Matrix-Mul

Matrix
Reconstruction

 Shared Memory

8X 8X

 Global Memory Global Memory

Figure 9: Details of the entire process of 2-phase NTT

In summary, in phase 1, 8 warps are each responsible for multiplying by 8 different
precomputed matrices, and in Phase 2, each warp multiplies by the same precomputed
matrix.

Batch processing is constrained by phase 1, requiring each block to simultaneously
contain 8 warps, which means a block size with a multiple of 256. In terms of memory,
shared memory is used for reorganizing matrices and facilitating data exchange among 8
warps after multiplication. Since the precomputed tables are fixed, we can load them all
at once when loading the binary, and there is no need for additional memory writes when
using the precomputed tables subsequently.

4.3 A Memory-free 3-phase NTT Implementation
4.3.1 Limitation of the Standard Interfaces of Tensor Cores

Whether it is the 2-phase or 3-phase approach, we must execute two WMMA instructions
sequentially, with the output of the first instruction serving as the input for the second.

Listing 1 provides a detailed explanation of the standard method for invoking the
WMMA API. After computation, the results need to be stored in (global or shared) memory
using wmma::store_matrix_sync before proceeding with the next operation. However,
this step appears to be unnecessary in theory if we recursively use the output as input, as it
should be possible to fully reuse the wmma::fragment variable. The challenge lies in the fact
that wmma::fragment is type-specific, being one of wmma::matrix_a, wmma::matrix_b, or
wmma::accumulator. Unfortunately, wmma::accumulator cannot be used as input, and
its type cannot be converted. The only way out is to “store” it in memory and then “load”
it into a new wmma::fragment.

We illustrate the limitation of the standard WMMA interfaces in Figure 10. It is
evident that 4 load/store operations are entirely unnecessary. While these surplus memory
transfers do not significantly impact the 2-phase approach due to the necessity of pre- and

42 ConvKyber: Utilizing AI Accelerators for Kyber with Iteration-based Methods

post-processing in memory, they become entirely redundant in the case of the 3-phase
approach.

Listing 1: Standard invocation methods of WMMA API
__global__ void wmma_ker(int8_t *a, int8_t *b, int *c) {

// Declare the fragments
wmma::fragment<wmma::matrix_a, 16, 16, 16,

int8_t, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, 16, 16, 16,

int8_t, wmma::row_major> b_frag;
wmma::fragment<wmma::accumulator, 16, 16, 16, int> c_frag;
// Initialize the output to zero
wmma::fill_fragment(c_frag, 0);
// Load the inputs
wmma::load_matrix_sync(a_frag, a, 16);
wmma::load_matrix_sync(b_frag, b, 16);
// Perform the matrix multiplication
wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
// Store the output
wmma::store_matrix_sync(c, c_frag, 16, wmma::mem_row_major);

}

This issue has piqued our interest. Next, we will delve deeper into the actual structure
of wmma::fragment to see if we can achieve functionalities beyond what standard interfaces
offer.

 ① wmma.load

 ② wmma.mma

 ③ wmma.store

 ④ normal.load

 ⑤ Hadamard product

 ⑥ normal.store

 ⑦ wmma.load

 ⑧ wmma.mma

 ⑨ wmma.store

Steps Supported by
Standard Interfaces Necessary Steps

Figure 10: The limitation of the standard WMMA interfaces

4.3.2 Reversing the Fragment Structure

wmma::fragment is essentially a data structure that stores the elements of a 16 × 16
matrix separately in a warp’s 32 threads. In reality, each thread will preserve 16×16

32 = 8
registers. If we can manually manipulate these registers, it becomes possible to perform
two consecutive matrix multiplications without the need to store them back in memory.
However, this idea faces two challenges:

T. Zhou, F. Zheng, et al. 43

• First, wmma::fragment itself is an abstract representation, and its internal registers
are transparent to developers. We do not have a direct way to access these register
resources via standard WMMA interfaces.

• Second, the storage arrangement within the warp for wmma::fragment is unknown.
Regarding this point, the CUDA C++ Programming Guide (Release 12.2) states,
“the mapping of matrix elements into fragment internal storage is unspecified and
subject to change in future architectures” (§10.24.1 in [NVIa]).

Fortunately, while the first issue cannot be resolved through standard interfaces, we can
achieve this through the PTX ISA assembly code. Through examination of the original
code using cuobjdump, we discovered that WMMA instructions, when actually executed,
directly use registers rather than wmma::fragment as parameters.

wmma::fragment<wmma::matrix_a, 16,16,16,int8_t, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b,16,16,16,int8_t, wmma::row_major> b_frag;

wmma::fragment<wmma::accumulator, 16, 16, 16, int> c_frag;

wmma::fill_fragment(c_frag, 0);

wmma::load_matrix_sync(a_frag, a, 16);

wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);

wmma::store_matrix_sync(c, c_frag, 16,
 wmma::mem_row_major);

wmma.load.a.sync.aligned.row.m16n16k16.global.s8
{a0,a1}, [%0], 16

wmma::load_matrix_sync(b_frag, b, 16); wmma.load.b.sync.aligned.row.m16n16k16.global.s8
{b0,b1}, [%1], 16

.reg .s32 a<2>

.reg .s32 b<2>

.reg .s32 c<8>

wmma.mma.sync.aligned.row.row.m16n16k16.s32.s8.s8.s32
{c0,c1,c2,c3,c4,c5,c6,c7},

{a0,a1},
{b0,b1},

{0,0,0,0,0,0,0,0}

wmma.store.d.sync.aligned.row.m16n16k16.global.s32
[%2], {c0,c1,c2,c3,c4,c5,c6,c7},16

CUDA WMMA API Version PTX Assembly Intruction Version

Figure 11: From CUDA WMMA APIs to PTX assembly instructions

The relationship between wmma::fragment and registers is shown in Figure 11. As a
result, we can delve into the data arrangement within the warp for wmma::fragment. The
following observation is primarily based on the Jetson AGX Orin platform, with extended
verification conducted on the RTX 3080 platform.

Data layout caused by wmma.load: A continuous memory address space containing
256 polynomial coefficients can be interpreted as a 16× 16 matrix, denoted as M , with
coefficients arranged sequentially, starting from row 0. When using wmma.load, it loads
256 data points into 32 threads within a warp, with each thread holding 8 data points.
This data arrangement within these 32 threads can also be considered as the 16×16 matrix
W , where the first row comprises 16 data points from thread 0 and thread 1, and so forth.
We subsequently refer to the transformation that converts the matrix M to the matrix W
as the wmma.load transformation (W=wmma.load(M)), as depicted in Figure 12. Please
be aware that this transformation is only correct when loading as matrix A; a different
transformation occurs when loading as matrix B (refer to Figure 2 for the definitions of
the matrix A and B).

Data layout caused by wmma.store: Similarly, we consider the data arrangement
within the warp before wmma.store as the matrix W and the data arrangement in memory
after wmma.store as the matrix M . We refer to the layout transformation from matrix W

44 ConvKyber: Utilizing AI Accelerators for Kyber with Iteration-based Methods

thread 1

thread 3

thread 5

thread 7

thread 9

thread 11

thread 13

thread 15

thread 17

thread 19

thread 21

thread 23

thread 25

thread 27

thread 29

thread 31

0 1 2 3 128 129 130 131 4 5 6 7 132 133 134 135

8 9 10 11 136 137 138 139 12 13 14 15 140 141 142 143

16 17 18 19 144 145 146 147 20 21 22 23 148 149 150 151

24 25 26 27 152 153 154 155 28 29 30 31 156 157 158 159

32 33 34 35 160 161 162 163 36 37 38 39 164 165 166 167

40 41 42 43 168 169 170 171 44 45 46 47 172 173 174 175

48 49 50 51 176 177 178 179 52 53 54 55 180 181 182 183

56 57 58 59 184 185 186 187 60 61 62 63 188 189 190 191

64 65 66 67 192 193 194 195 68 69 70 71 196 197 198 199

72 73 74 75 200 201 202 203 76 77 78 79 204 205 206 207

80 81 82 83 208 209 210 211 84 85 86 87 212 213 214 215

88 89 90 91 216 217 218 219 92 93 94 95 220 221 222 223

96 97 98 99 224 225 226 227 100 101 102 103 228 229 230 231

104 105 106 107 232 233 234 235 108 109 110 111 236 237 238 239

112 113 114 115 240 241 242 243 116 117 118 119 244 245 246 247

120 121 122 123 248 249 250 251 124 125 126 127 252 253 254 255

Data Layout in WarpData Layout in Memory
thread 0

thread 2

thread 4

thread 6

thread 8

thread 10

thread 12

thread 14

thread 16

thread 18

thread 20

thread 22

thread 24

thread 26

thread 28

thread 30

wmma.load

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

Figure 12: Fragment layout across 32 thread within a warp after wmma.load

to matrix M as the wmma.store transformation (M= wmma.store(W)), as illustrated in
Figure 13.

2 3 130 131 10 11 138 1390 1 128 129 8 9 136 137

4 5 132 133 12 13 140 141 6 7 134 135 14 15 142 143

16 17 144 145 24 25 152 153 18 19 146 147 26 27 154 155

20 21 148 149 28 29 156 157 22 23 150 151 30 31 158 159

32 33 160 161 40 41 168 169 34 35 162 163 42 43 170 171

36 37 164 165 44 45 172 173 38 39 166 167 46 47 174 175

48 49 176 177 56 57 184 185 50 51 178 179 58 59 186 187

52 53 180 181 60 61 188 189 54 55 182 183 62 63 190 191

64 65 192 193 72 73 200 201 66 67 194 195 74 75 202 203

68 69 196 197 76 77 204 205 70 71 198 199 78 79 206 207

80 81 208 209 88 89 216 217 82 83 210 211 90 91 218 219

84 85 212 213 92 93 220 221 86 87 214 215 94 95 222 223

96 97 224 225 104 105 232 233 98 99 226 227 106 107 234 235

100 101 228 229 108 109 236 237 102 103 230 231 110 111 238 239

112 113 240 241 120 121 248 249 114 115 242 243 122 123 250 251

116 117 244 245 124 125 252 253 118 119 246 247 126 127 254 255

Data Layout in Warp

wmma.store

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 111 111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

Data Layout in Memory
thread 0

thread 2

thread 4

thread 6

thread 8

thread 10

thread 12

thread 14

thread 16

thread 18

thread 20

thread 22

thread 24

thread 26

thread 28

thread 30

thread 1

thread 3

thread 5

thread 7

thread 9

thread 11

thread 13

thread 15

thread 17

thread 19

thread 21

thread 23

thread 25

thread 27

thread 29

thread 31

Figure 13: Fragment layout across 32 thread within a warp after wmma.store

4.3.3 Processing the Data Layout Displacement

Based on the exploration in Section 4.3.2, a rather challenging issue arises due to data
layout displacements between memory and registers across the warp. What complicates
matters further is our plan to perform two consecutive matrix multiplications, where the
result of the first multiplication serves as the input for the second. However, the data
layout displacements caused by wmma.store and wmma.load are entirely different.

For instance, when used as input, after wmma.load, thread 0 stores elements with indices
0, 1, 2, 3, 128, 129, 130, and 131. However, when used as output, before wmma.store,
thread 0 stores elements with indices 0, 1, 128, 129, 8, 9, 136, and 137. Therefore, before
performing the next matrix multiplication, we must rearrange the elements stored by the
threads from the layout at the output to the layout at the input.

T. Zhou, F. Zheng, et al. 45

As a result, the core issue lies in finding a cost-effective method to adjust the internal
data layout of the warp, ensuring the correct calculation of the following matrix multi-
plication. One seemingly straightforward approach is to use CUDA shuffle instruction
or shared memory to rearrange the output data back into the required input layout.
However, this approach contradicts our original intention, as shuffle instructions have
efficiency comparable to INT32 multiplication, and shared memory introduces unnecessarily
complicated matters.

Upon careful analysis of the data arrangement, a crucial observation is that we only need
to ensure that the data included in each row of the matrix, as it is actually represented,
remains consistent with the original representation, and the order within each row is
irrelevant. The reason for this simplicity is that we are performing matrix operations,
and in the context of matrices used for left multiplication, the matrices participate in
the operations on a row-by-row basis. Changing the order within the rows only requires
us to alter the column order of the corresponding right multiplication matrix (i.e., the
precomputed table of twiddle factors).

2 3 10 11 130 131 138 1390 1 8 9 128 129 136 137

4 5 12 13 132 133 140 141 6 7 14 15 134 135 142 143

16 17 24 25 144 145 152 153 18 19 26 27 146 147 154 155

20 21 28 29 148 149 156 157 22 23 30 31 150 151 158 159

32 33 40 41 160 161 168 169 34 35 42 43 162 163 170 171

36 37 44 45 164 165 172 173 38 39 46 47 166 167 174 175

48 49 56 57 176 177 184 185 50 51 58 59 178 179 186 187

52 53 60 61 180 181 188 189 54 55 62 63 182 183 190 191

64 65 72 73 192 193 200 201 66 67 74 75 194 195 202 203

68 69 76 77 196 197 204 205 70 71 78 79 198 199 206 207

80 81 88 89 208 209 216 217 82 83 90 91 210 211 218 219

84 85 92 93 212 213 220 221 86 87 94 95 214 215 222 223

96 97 104 105 224 225 232 233 98 99 106 107 226 227 234 235

100 101 108 109 228 229 236 237 102 103 110 111 230 231 238 239

112 113 120 121 240 241 248 249 114 115 122 123 242 243 250 251

116 117 124 125 244 245 252 253 118 119 126 127 246 247 254 255

Data Layout in Warp after Shuffle
0 1 8 9 2 3 10 11 4 5 12 13 6 7 14 15

16 17 24 25 18 19 26 27 20 21 28 29 22 23 30 31

32 33 40 41 34 35 42 43 36 37 44 45 38 38 46 47

48 49 56 57 50 51 58 59 52 53 60 61 54 55 62 63

64 65 72 73 66 67 74 75 68 69 76 77 70 71 78 79

80 81 88 89 82 83 90 91 84 85 92 93 86 87 94 95

96 97 104 105 98 99 106 107 100 101 108 109 102 103 110 111

112 113 120 121 114 115 122 123 116 117 124 125 118 119 126 127

128 129 136 137 130 131 138 139 132 135 140 141 134 135 142 143

144 145 152 153 146 147 154 155 148 149 156 157 150 151 158 159

160 161 168 169 162 163 170 171 164 165 172 175 166 167 174 175

176 177 184 185 178 179 186 189 180 181 188 189 182 183 190 191

192 192 200 201 194 195 202 203 196 197 204 205 198 199 206 207

208 209 216 217 210 211 218 219 212 213 220 221 214 215 222 223

224 225 232 233 226 227 234 235 228 229 236 237 230 231 238 239

240 241 248 249 242 243 250 251 244 245 252 253 246 247 254 255

Data Layout in Memory

Reverse
wmma.load

thread 1

thread 3

thread 5

thread 7

thread 9

thread 11

thread 13

thread 15

thread 17

thread 19

thread 21

thread 23

thread 25

thread 27

thread 29

thread 31

thread 0

thread 2

thread 4

thread 6

thread 8

thread 10

thread 12

thread 14

thread 16

thread 18

thread 20

thread 22

thread 24

thread 26

thread 28

thread 30

Figure 14: Reordered data layout for memory-free implementation

Building on this insightful observation, we have devised an innovative approach to
tackle the data displacement challenge. We reconfigure the data layout within the adjusted
warp, as illustrated in Figure 14. The resulting matrix can be obtained by performing
matrix multiplication between the permutation matrix P (as depicted in Figure 15) and
the order matrix (found in the rightmost matrix of Figure 13).

Remarkably, after this adjustment, although the order may seem shuffled, each row i of
the matrix contains elements spanning from 16i to 16i+ 15. There remains just one task
to complete: the corresponding precomputed table requires a right multiplication by P−1.

The surprising thing is that the implementation of the above method is very neat.
Notably, after wmma.mma, 256 products are scattered across 32 threads, with 8 b32 registers
in each thread. Let us label them sequentially as r0, r1, r2, r3, r4, r5, r6, and r7. To
address the data layout confusion resulting from omitting wmma.store and wmma.load, we
simply adjust the register order in all threads of a warp from (r0, r1, r2, r3, r4, r5, r6,
r7) to (r0, r1, r4, r5, r2, r3, r6, r7) (swap registers r2, r3 with r4, r5). This way, we
effectively perform the operation of multiplying the permutation matrix P. Regarding
the corresponding precomputed table, since it is precomputed, we only need to make
adjustments in the code to accommodate this change.

Note that the matrix obtained through shuffling the registers among threads can only

46 ConvKyber: Utilizing AI Accelerators for Kyber with Iteration-based Methods

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

Figure 15: Permutation matrix P

serve as matrix A in subsequent matrix multiplications. This is because the combined
transformation of storing and loading matrix B cannot be implemented by shuffling
registers (refer to Figure 2 for the definitions of the matrix A and B).

4.3.4 Implementation Summary

The final implementation consists of three phases and does not require additional memory;
it is entirely register-based, as shown in Figure 16.

Because it does not impose any batch requirements, a block can include any number of
warps, as opposed to the 2-phase scheme that requires a multiple of 8. Moreover, there is
no need for pre-processing, post-processing, or data reorganization, and the data input
and output fully comply with Kyber’s requirements.

 Global Memory

Precomputed
Table 1

wmma.
load

Precomputed
Table 2

Precomputed
Table 3

Phase 1
Matrix-Mul

Registers
Shuffle

Phase 2
Hadamard Product

Phase 3
Matrix-Mul

wmma.
store

 Register Files

 Global Memory

Figure 16: Details of the entire process of 3-phase NTT

5 Extending Proposed NTT Schemes to a Full Kyber Im-
plementation

In this section, we will demonstrate how to extend our proposed NTT schemes to a
complete Kyber implementation and elucidate some non-trivial optimization techniques.

T. Zhou, F. Zheng, et al. 47

5.1 Overall Architecture
Our full Kyber implementation follows the SIMT mode, where each thread handles one
Kyber KeyGen/Enc/Dec instance. While the specific procedures may vary slightly for
different phases, the high-level overview is depicted in Figure 17.

RNG Module
or Decoder

Sample
Module Split into INT8 Point-wise

Multiplication
Encoder/
Decoder

Point-wise
Multiplication

Encoder/
Decoder

8x
Instances

 thread 0

RNG Module
or Decoder

Sample
Module Split into INT8

 thread 8k-1

8-Batch
2-Phase

NTT
Module

 thread 0

 thread 8k-1

warp

RNG Module
or Decoder

Sample
Module Split into INT8 Point-wise

Multiplication
Encoder/
Decoder

Point-wise
Multiplication

Encoder/
Decoder

Arbitrary
Instance(s)

 thread 0

RNG Module
or Decoder

Sample
Module Split into INT8

 thread k

3-Phase
NTT

Module

 thread 0

 thread k

warp

Synchronization Synchronization

Figure 17: Our overall implementation of Kyber

This architecture is throughput-oriented. In fact, previous works either implemented
NTT with a single thread [GJCC20] or required a high degree of batching (e.g., a batch
size of 16 was necessary for [WZF+22]). This have to be throughput-oriented because
a single NTT operation could not fully leverage the parallel capabilities of the GPU. In
contrast, our proposed 3-phase NTT scheme can complete a single NTT with a warp (i.e.,
32 threads), and 2-phase NTT scheme requires a batch size of 8.

By lowering the concurrency requirements, we have the flexibility to choose whether
our solution is throughput-oriented or latency-oriented. Since our primary focus is on
NTT acceleration and for direct comparison with existing literature, we have implemented
full Kyber in a more straightforward throughput-oriented manner. In future work, we plan
to explore a latency-oriented implementation.

It is worth noting that the KeyGen step, as it does not require input requests, can
continuously generate key pairs into a pool in an offline manner and thus is well-suited for the
throughput-oriented architecture. Additionally, some works [PZZ+17, WZG+21, BZW+23]
have introduced an intermediate layer for caching requests to fully harness the potential of
throughput-oriented implementations.

The specific workings of the 8-batch 2-phase NTT module and 3-phase NTT module
are shown respectively in Figure 9 and Figure 16 and the precomputed tables can be found
in appendix B. Note that the inputs and outputs of these two modules are sequential

48 ConvKyber: Utilizing AI Accelerators for Kyber with Iteration-based Methods

coefficients; there is no need for reordering (the specific order required by the 2-phase NTT
scheme is completed within the module itself).

Furthermore, since the 8-batch 2-phase NTT module operates in batches of 8, the
number of instances input to this module must be a multiple of 8. Finally, since the
modules before and after the NTT module operate independently per thread, and the
NTT module is executed collaboratively by 32 threads (1 warp). When the program needs
to perform NTT, it will synchronize between threads in the same thread block, and then
input the data into the NTT module.

5.2 Other Implementation Details
This section details some worth-noting techniques in the full Kyber implementation.

5.2.1 Coalescing Memory Access

Ensuring coalesced memory access is vital for optimizing performance in applications
developed on GPU architectures. It involves efficiently using the memory bus to minimize
the number of memory accesses, which can significantly reduce the time spent on memory
read and write operations. For example, Orin’s memory bus width is 128 bits. This means
that for individual read and write operations on INT8, INT16, and INT data types on
Orin, there would be a wastage of 93.75%, 87.5%, and 75% of the data carrying capacity,
respectively. In other words, a substantial portion of the memory bus’s capacity remains
unused when dealing with these data types. However, in practice, GPU compilers are
designed to allocate individual instructions for load operations and store operations tailored
to various data precisions. This optimization helps mitigate the wastage of memory bus
capacity by aligning data transfers more closely with the actual data type requirements,
thereby improving memory access efficiency.

For instance, consider the code in Listing 2, which represents the poly_tobytes function
provided by the Kyber designers in the reference implementation for serializing polynomials.
In this context, the code that reads the variable coeffs[i] may be compiled into a form like
ld.global.s16 in0, [%0], and the code that stores the variable r [i] might be compiled
into a form like st.global.u8 [%1], out0.

To optimize memory access, we complete the read and write operations using constructs
like:

ld.global.v4.s32 {in0,in1,in2,in3}, [%0] and
st.global.v4.s32 [%1],{out0,out1,out2,out3}.
This approach retrieves data in chunks, which is then split based on the required

precision. In this specific case, reading 32 coeffs[i] and writing 48 r[i] ensures that
each read/write operation aligns with multiples of 128 bits. This alignment maximizes
memory access efficiency, making better use of the available memory bus capacity.

Listing 2: Function poly_tobytes in reference implementation of Kyber
typedef struct{

int16_t coeffs[KYBER_N];
} poly;
void poly_tobytes(uint8_t r[KYBER_POLYBYTES], poly *a){

unsigned int i;
uint16_t t0, t1;
...
for(i=0;i<KYBER_N/2;i++){

t0 = a->coeffs[2*i];
t1 = a->coeffs[2*i+1];
r[3*i+0] = (t0 >> 0);

T. Zhou, F. Zheng, et al. 49

r[3*i+1] = (t0 >> 8) | (t1 << 4);
r[3*i+2] = (t1 >> 4);

}
}

5.2.2 SHA-3

The symmetric primitives of Kyber are also a performance bottleneck for Kyber, with
the specific computations belonging to the SHA-3 family, at the heart of which is the
StatePermute function f . The f function consists of a total of five processes (θ,ρ,π,ι and
χ), of which ρ,π,ι require table look-ups.

We meticulously translated the computation process of the f function into assembly
code, unrolling each loop. Steps requiring table lookups were embedded directly into the
assembly instructions using immediate values, minimizing memory access requirements
during SHA-3 computation.

5.2.3 Lazy Reduction

When performing NTT on polynomials sampled from the CBD distribution, note that
the coefficients are expressed in less than 4 bits. The data in all precalculated tables
is less than or equal to 12 bits (modulus q = 3329), which means that the b32 register
of the result after matrix multiplication and Hadamard product can still be contained.
Therefore, instead of reducing after matrix multiplication immediately, we can reduce after
the Hadamard product.

6 Performance Evaluation & Discussion
In this section, we present our evaluation results, including the performance of the NTT
module and Kyber-512, Kyber-768, Kyber-1024, and perform a comparative analysis with
related works. All codes are written in CUDA C++, which uses PTX inline assembly to
optimize key operations and intensive memory access operations.

Table 4 details the specifications of the targeted platforms. To simplify matters, we
will refer to these two platforms as “Orin” and “R3080” respectively. Notably, the Jetson
AGX Orin is an embedded platform which offers adjustable power modes at 15W, 30W,
50W, and 60W, allowing for tailored performance optimization. And we will evaluate
Kyber across these modes.

It should be noted that our optimizations are primarily tailored for the Orin platform,
and evaluations based on the R3080 are principally aimed at facilitating comparisons with
other works within the same platform. Therefore, the parameters used, such as block size,
while being optimal for Orin, have been adopted as-is for the R3080 and may not represent
the most optimal configuration for the latter.

6.1 Results of NTT/INTT
Our evaluation starts with the testing for the peak throughput of the 2-phase phase and
3-phase NTT/INTT for input types of both INT8 and INT16 on Orin and R3080. Given
that the 2-phase scheme operates in batches of 8, a multiple of 8 warps is required for
collaborative computation, making the block size a minimum of 256. Since the INTT
always deals with data with full precision, we only evaluate implementations where the
input type is INT16. The experimental results are listed in Table 5.

As evident from Table 5 and consistent with the design expectations, the performance
of NTT and INTT is essentially comparable. When comparing the 2-phase NTT/INTT

50 ConvKyber: Utilizing AI Accelerators for Kyber with Iteration-based Methods

Table 4: Experimental Platform Configuration
Orin R3080

GPU NVIDIA Jetson
AGX Orin

NVIDIA GeForce
RTX 3080

Clock Frequency 408MHz (15W)/612MHz (30W)
816MHz (50W)/1.3GHz (60W) 1.8GHz

Streaming
Multiprocessor (SM) 6 (15W)/8 (30W)/16 (50&60W) 68

Shared Memory
per SM 48KB 100KB

CUDA Core
per SM 128 128

Tensor Core
per SM 4 4

OS Ubuntu 20.04.6 LTS Ubuntu 22.04 LTS
CUDA Toolkit v11.4 v11.8

Table 5: The peak throughput of NTT/INTT on Orin (the data inside the parentheses
represents the throughput on R3080), n = 256; For Orin (60W), Total_case=16384,
Grid_size=32; For R3080, Total_case=69632, Grid_size=136

Operations NTT INTT
Input precision INT8 INT16 INT16

Block size 128 256 128 256 128 256

2-Phase (Mops) / 77.1
(395.4) / 54.6

(316.3) / 54.2
(314.9)

3-Phase (Mops) 43.3
(439.8)

116.3
(485.6)

40.1
(381.9)

101.7
(414.0)

38.9
(381.8)

100.4
(410.2)

scheme and the 3-phase NTT/INTT scheme, an advantage of the former is that it is
universally applicable to platforms that support efficient matrix operations. However, this
scheme is slower than the 3-phase scheme in performance, especially in Orin (which we
particularly optimized for), due to the data exchange between warps in the post-processing
of the first phase, specifically during the matrices reconstruction, as illustrated in Figure 8.
In contrast, the latter offers higher performance, involves fewer precomputed tables, and
eliminates the need to allocate temporary memory for storing intermediate data. Since
the 3-phase NTT/INTT scheme has better performance, we will adopt this scheme in the
subsequent comparisons with other works targeting NTT and Kyber.

Notably, we made an unusual discovery during our experiments when testing NT-
T/INTT: utilizing column-major WMMA load/store is approximately 10% faster than
using row-major access. Consequently, we adjusted our implementation to prioritize reading
and writing polynomial coefficients in a column-major fashion wherever possible.

6.1.1 Comparison of Throughput under Peak Concurrency Conditions.

When comparing with other GPU-based research results, we consider the maximum level
of parallelism and compute the average time cost for each instance, as shown in Table
6. In addition, we implement split-Mul (Section 4.1) utilizing two methods: schoolbook
multiplication and Karatsuba multiplication.

T. Zhou, F. Zheng, et al. 51

When performing schoolbook multiplication, computing the product of double-precision
numbers (e.g., a1β+a0 and b1β+ b0) requires 4 multiplication operations (a0b0, a0b1, a1b0,
and a1b1) and 1 addition. As illustrated in Figure 7, in the case of Karatsuba multiplication,
with the cost of 3 additional additions/subtractions, it only requires 3 multiplication
operations (a0b0, a1b1, and (a0 + a1)(b0 + b1)). In our implementation, the main reason
for the comparable performance between schoolbook and Karatsuba multiplication lies
in the fact that multiplication utilizes fast Tensor Cores while addition and subtraction
operations uses general CUDA cores, which may offset the advantage in the number of
multiplications. But overall, Karatsuba multiplication still demonstrates slightly better
performance than the schoolbook approach.

Table 6: Comparison average time of polyvec_ntt in Kyber-1024, n = 256, k = 4
Device Architecture Average cost (ns)

Gupta et al. [GJCC20] R3080 Ampere 107.81 ∗

Wan et al. [WZF+22] R3080 Ampere 16.65

Ours R3080 Ampere 9.36◦ (Schoolbook)
8.61◦ (Karatsuba)

∗ The code in [GJCC20] is downloaded from https://github.com/nainag/PQC and tested on R3080.
◦ This performance is obtained by continuously testing 100 times with the (grid size, block size) set to
(136, 512) and averaging the results.

Table 6 demonstrates our approach achieving nearly double the speed compared to the
current state-of-the-art implementations. In fact, the performance data of our work lists
in Table 6 is not the maximum achievable, and with increasing (grid size, block size), the
performance can be further improved.

However, our method boasts just one-fourth of the computational complexity of Wan
et al.’s [WZF+22], as evident in Table 3, suggesting the potential for a fourfold perfor-
mance boost. This discrepancy is primarily due to precision decomposition and reduction
constraints between the two sequential matrix multiplications, limiting it from reaching its
theoretical potential. Moreover, upon consultation with the authors of [WZF+22], when
measuring, their input and output are pre-arranged with even and odd terms separated,
incurring additional time consumption when extending to a complete Kyber implemen-
tation. In contrast, our 3-phase scheme does not necessitate data reordering. While the
time cost is minimal, it is one of the potential reasons why our performance falls short of
expectations.

Another factor is that the implementation by Wan et al. [WZF+22] considers maximum
concurrency. Their scanning-based method, which continuously computes a substantial
number of matrix multiplications, optimally utilizes Tensor Core’s pipeline, ultimately
achieving peak performance when amortized.

6.1.2 Comparison of Execution Latency

In reality, there may not always be such a high level of concurrency. Therefore, we also
consider a challenging scenario for GPU-based implementation where only one polyvec_ntt
operation is executed at a time. In this context, we evaluate the latency of executing
a single polyvec_ntt operation to make comparisons across different types of devices, as
illustrated in Table 7.

For polyvec_ntt, we leverage the strength of the 3-phase scheme, where each warp
computes the NTT of an individual polynomial independently. By setting the block size to
128, we make sure there are 4 warps in a grid. In this manner, one grid computes one set of
polyvec_ntt, allowing us to evaluate the delay of computing a single polyvec_ntt when k = 4.
The enhancement in performance, as evidenced by our evaluation, can be attributed to

https://github.com/nainag/PQC

52 ConvKyber: Utilizing AI Accelerators for Kyber with Iteration-based Methods

Table 7: Comparison of execution latency of single polyvec_ntt of Kyber-1024,
n = 256, k = 4

Device Latency (µs)
Alkim et al. [AEL+20]§ Xilinx Artix-35T @59.2 MHz 464◦?
Ma et al. [MWB21]§ FPGA @227.27 MHz 2.389∗

Becker et al. [BHK+22]§ ARM Cortex-A72 @1.5GHz 3.2#?

Ours Orin @1.3GHz 0.35†
R3080 @1.8GHz 0.259†

§ The implementation result of this work is obtained using one core of processor.
◦ Derived from the “custom” implementation [AEL+20], where a NTT requires 6868 cycles for a single
polynomial.
∗ The authors in [MWB21] reported that a NTT requires 543 cycles for Kyber-1024.
The authors in [BHK+22] indicated that an NTT necessitates 1200 cycles for a single polynomial.
Moreover, it is imperative to note that their NTT is 32-bit.

? The comparison pertains to polyvec_ntt for Kyber-1024, thus the latency for NTT of one polynomial
should be multiplied by 4.
† In fact, we measure the execution latency for 16 instances of polyvec_ntt in Orin and 68 instances
in R3080. Because executing this many instances of polyvec_ntt and executing a single polyvec_ntt
yield nearly the same overall execution time. Grid_size=16, Block_size=128 is set for Orin and
Grid_size=68, Block_size=128 is set for R3080

several pivotal aspects as follows: 1) The remarkable technique of Tensor Core in executing
matrix computations bestows our scheme with a computationally efficient backbone; 2) Our
approach smartly decomposes NTTs into matrix multiplications, shifting the computational
load of the NTTs onto the Tensor Core to leverage its strong computational capabilities
effectively; 3) Our 3-phase scheme enables simultaneously computing of multiple NTTs by
utilizing parallel computing platforms.

In fact, it must be emphasized that the implementations [AEL+20, MWB21, BHK+22]
based on FPGA and embedded devices in Table 7 are single-core, and their design goals
prioritize low latency or low cost. The cross-platform comparison we conducted here is
solely to illustrate that our proposed approach not only achieves high throughput but also
demonstrates the potential for low-latency implementations on parallel platforms that do
not inherently excel in terms of latency.

6.2 Results of Kyber
We conduct continuous testing of Kyber security strengths, namely Kyber-512 (k = 2) on
the embedded platform Orin and Kyber-768 (k = 3), Kyber-1024 (k = 4) on the desktop
platform R3080, performing 500 iterations to calculate average performance, as illustrated
in Figures 18.

For Kyber1024, on Orin, the peak KeyGen, Enc, and Dec performance is achieved
when the (grid size, block size) is set to (32, 128). On R3080, the best KeyGen and Enc
performance is attained when the (grid size, block size) is set to (136, 128), while, for
Dec, the highest performance is achieved with (grid size, block size) set to (68, 128).
Additionally, from a latency perspective, the lowest latency is observed when the (grid
size, block size) is set to (16/68, 128). The latencies for (16/68, 256) and (32/136, 128)
are approximately twice that of (32/68, 128), while (32/136, 256) is approximately four
times that of (16/68, 128) on Orin or R3080 respectively.

From Figure 18, the computational performance of R3080 is approximately five times
that of Orin and it is evident that the throughput for KeyGen and Enc is relatively low,
whereas the throughput for Dec is significantly higher. This is because both KeyGen
(shown in Algorithm 1) and Enc (shown in Algorithm 2) involve the computationally
intensive XOF and PRF functions, which are based on hashing, to generate matrix A and
to sample multiple polynomials, respectively. On the other hand, Dec (shown in Algorithm
3) only involves decoding and polynomial computations, which are memory access-intensive

T. Zhou, F. Zheng, et al. 53

Figure 18: The performance of Kyber-512, Kyber-768, Kyber-1024 on Orin and R3080

operations. Effectively leveraging the data transmission capability of the memory bus
yields notable results.

6.2.1 Performance Comparison with Other Implementations on the Same GPU

We first compare our results with other GPU-based works, as shown in Table 8.

Table 8: Comparison of Kyber-1024 throughput with GPU-based works

Platform KeyGen
(kops)

Enc
(kops)

Dec
(kops)

KX◦
(kops)

Gupta et al.
[GJCC20]

R3080

/ / / 473

Wan et al.
[WZF+22] 1,250 1,299 2,381 820

This
work 2074 1587 8458 1336

◦ The throughput of KX is computed by ab
a+b

, where a, b are the throughput of KeyGen and Dec.
As seen in Table 8, in terms of Kyber’s implementation performance, our implemen-

tation’s KX (Key Exchange) is 2.82x faster than Gupta et al.’s, which uses butterfly
operations, and 1.62x faster than Wan et al.’s, which is based on Tensor Core as well.
Specifically, compared to Wan et al.’s implementation, our Dec is 3.55x faster. Beyond
adopting a more efficient NTT approach, as described in Section 5.2.1, we meticulously
merged nearly every memory access, ensuring that each access transfers data close to 128

54 ConvKyber: Utilizing AI Accelerators for Kyber with Iteration-based Methods

bits (the memory bus width of Orin). This substantially reduce memory access latency,
leading to a significant performance improvement.

Notably, the Dec operation showcases a more significant performance advantage. The
root of this lies in our utilization of Tensor Core-accelerated NTT/INTT implementations,
and the computational load for KeyGen and Dec is primarily hash-based, which are
challenging to accelerate on parallel computing platforms.

6.2.2 Performance Comparison with Other Implementations on CPU and FPGA

The previous implementations of Kyber are based on various platforms, targeting different
scenarios and following different design ideas. Table 9 lists the throughput of Kyber-1024
for the related works.

Table 9: Comparison of throughput on Kyber-1024 with related works

Platform KeyGen
(kops)

Enc/
Encaps∗
(kops)

Dec
(kops)

Decaps
(kops)

PQClean
[MJP+]§

ARM
Cortex-A75
@2.8GHz†

7.26 5.88 / 5.13

Xing et al.
[XL21]§

Xilinx
Artix-7

@161MHz
17.18 14.72 / 11.60

Aikata et al.
[AMI+23]§

US+Z
@270MHz 29.67 23.79 / 19.42

Sanal et al.
[SKS+21]§

Apple A12
@2.49GHz 26.15 26.77 / 26.94

Becker et al.
[BHK+22]§

ARM
Cortex-A72
@1.5GHz

9.57 7.80 / 8.14

C-Ref
[Sch]§

Intel Core
i7-4770K
@3492MHz

11.38 10.10 / 8.82

AVX2-Ref
[Sch]§

Intel Core
i7-4770K
@3492MHz

47.6 36.0 / 44.2

This work

Orin(15W)
@408MHz 94 69 775 63◦

Orin(30W)
@612MHz 204 144 1641 132◦

Orin(50W)
@816MHz 342 249 2272 224◦

Orin(60W)
@1.3GHz 545 400 2700 348◦

R3080
@1.8GHz 2074 1587 8458 1336◦

∗ Enc and Encaps have comparable computational costs.
◦ The throughput of decapsulation is computed by ab

a+b
, where a, b are the throughput of Enc and

Dec.
§ The implementation results of this work are obtained using one core of processor.
† The authors did not explicitly state the frequency of this platform in the paper. We consulted
technical documentation and provided the common frequency of this platform for reference purposes
only.
From Table 9, it can be observed that performance and power consumption under

T. Zhou, F. Zheng, et al. 55

different power modes of Orin exhibit an approximately proportional relationship. This
implies that we can choose power settings according to specific requirements, making it
easy to strike a balance between power consumption and performance.

Compared to resource-constrained devices, our implementation based on Orin exhibits
performance approximately one order of magnitude higher, while the implementation based
on R3080 demonstrates performance approximately two orders of magnitude higher. Even
in the 15W power mode, our proposed method outperforms platforms like Apple A12
CPU, ARM Cortex-A72 CPU, and Xilinx Artix-7 FPGA, with performance gains 2.5-8.8x.
Considering platform power consumption, this performance advantage remains substantial.

Then, we compare implementations based on different platforms in Table 9 for Ky-
ber1024 in terms of throughput and latency.

When measured against the state-of-the-art ASIC implementation detailed in [AMI+23],
they achieved KeyGen, Encaps, and Decaps performance of 33.7, 42.04, and 51.5 µs,
respectively, based on ASIC platform. Our implementation’s throughput on Orin (60W) is
approximately 17x higher than theirs. However, achieving such throughput is achieved when
concurrently processing 4096 (32× 128) requests . The execution latency for computing
these 4096 requests is 240x greater than that of processing a single request as indicated in
[AMI+23].

In comparison to the leading FPGA-based implementation, Xing et al. [XL21] achieved
decent performance by carefully scheduling sampling and NTT-related calculations within
limited hardware resources. They achieved KeyGen, Encaps, and Decaps performances of
58.2, 67.9, and 86.2 µs, respectively, based on a single processor. In terms of throughput,
our implementation on Orin (60W) is approximately 30x higher than theirs, but our latency
of 4096 requests is around 136x larger.

In the context of efficient ARMv8-based software implementation discussed in [BHK+22],
they achieved KeyGen, Encaps, and Decaps performance of 104.5, 128.2, and 122.8 µs,
respectively, based on the Cortex-A72. Our implementation on Orin (60W) achieves 42-56x
higher throughput than theirs, while their latency is 73-97x faster, considering that our
implementation simultaneously processes 4096 instances.

The above comparisons clearly illustrate the significant differences in performance
aspects between implementations based on embedded platforms and parallel platforms.

Objectively speaking, their implementations are all single-core or single-threaded,
focusing on low latency. Comparisons above are not conventional, and the purpose here is
to provide readers with a rough understanding of the current state-of-the-art performance
of different platforms. While their implementations may be more suitable for resource-
constrained platforms, as a throughput-oriented approach, our implementation is most
pronounced under high-scale concurrency, making our implementation well-suited for edge
devices connecting a multitude of IoT devices.

For desktop platforms, we compare the results of desktop-grade CPUs with our perfor-
mance on the R3080 platform. For the optimized AVX2 version of Kyber-1024 [Sch], our
implementation on R3080 achieves speedup factors of approximately 43x, 44x, and 30x
for KeyGen, Enc, and Decaps, respectively. Regarding latency, as we concurrently process
17408 (136×128) requests, we incur respective slowdowns of 95x, 93x, and 136x. It is worth
noting that even in the lowest-power mode (15W) of Orin, the implementation exhibits
performance superiority over the AVX version of Kyber-1024. Furthermore, given that the
primary focus of this paper pertains to enhancements in NTT, the present implementation
of Kyber, albeit effective, has not been subjected to fine-grained optimizations, thereby
suggesting significant scope for additional improvements.

6.3 Limitation and Discussion
In this section, we will delve into the limitations and scalability of our proposed solution,
identify its applicable scenarios, and explore generalizations to other PQC schemes. Finally,

56 ConvKyber: Utilizing AI Accelerators for Kyber with Iteration-based Methods

we will discuss the impact of various modular multiplication methods on implementation
performance.

6.3.1 Execution latency of the proposed scheme

Our primary focus is on throughput, making our solution well-suited for high-concurrency
scenarios like servers. However, it does not offer a specific advantage in terms of latency
when compared with CPU and FPGA-based implementations.

In future work, we aim to explore how to harness the internal parallelism of the algo-
rithm on GPUs to achieve a relatively low-latency implementation of Kyber. Section 6.1.2
demonstrates the potential for ultra-low latency in the NTT implementation. Neverthe-
less, for the overall solution, pursuing extremely low latency in GPU implementations is
considered imprudent. This is particularly true for components that require frequent syn-
chronization or strict serial execution, such as SHA-3. Forcing fine-grained parallelization
may result in a significant sacrifice in throughput.

In our future endeavors, we plan to design coarse-grained parallelism for relatively
low-latency Enc and Dec processes while maintaining high throughput. It is important
to note that KeyGen does not necessitate a latency-oriented implementation and can be
offline computed into a pool. For instance, in the Enc process, leveraging our 3-Phase
NTT implementation, which does not demand extensive concurrent requirements, we can
dispatch multiple CUDA threads to independently compute a SHA-3 instance for sampling
and matrix generation.

6.3.2 Generalization to other PQC candidates

For other PQC candidates, in fact, as long as NTT is used, our proposed solution should
be applicable. For instance, the implementation of Dilithium [DKL+18], which is also
based on MLWE, can be easily adapted using our techniques.

In Dilithium, the polynomial ring is denoted as Zq[X]/(Xn + 1) with n = 256, just
like in Kyber. However, in Dilithium, q = 223 − 213 + 1 means that the coefficients are
represented as 23-bit integers. Therefore, the most challenging aspect of applying our
proposed schemes to Dilithium lies in the larger modulus size (from 12-bit integers in
Kyber to 23-bit integers in Dilithium), which necessitates more complex multi-precision or
RNS decomposition. Overall, the difficulty in doing so is not significant; it merely requires
some customized modifications to harness the performance of AI accelerators for efficient
NTT in Dilithium.

6.3.3 Different modular multiplication (ModMult) methods

When performing modular reduction in our NTT implementation, we adopt the Mont-
gomery ModMult [Mon85], as in Kyber’s reference implementation [Sch]. Notably, other
commonly used modular reduction algorithms include Barrett ModMult [Bar86], and
Shoup ModMult [Sho01].

Firstly, we undertake a simple theoretical analysis of these three ModMult algorithms.
On the one hand, Shoup ModMult algorithm has lower computational complexity than
the conventional Barrett ModMult algorithm as analyzed in [KLC+19], Section II. On
the other hand, Shoup ModMult necessitates the computation of a precomputed value
related to one of the multiplicands (e.g., when computing a× b mod q, bβbq c should be
precomputed, where β is the radix), and thus reduction must be performed immediately
after each multiplication. However, it is essential to highlight that in our proposed scheme,
we do not perform modular reduction immediately after each multiplication. Instead, we
accumulate multiple product results (utilizing Tensor Cores) and perform the reduction
only once at the end and the multiplicand used in each multiplication is different. This

T. Zhou, F. Zheng, et al. 57

approach is compatible with both Montgomery and Barrett modular reduction since they
work for general multiplication products, but Shoup ModMult is not well-suited for our
proposed accumulation pattern.

Secondly, when analyzing the computational cost of Montgomery ModMult and Barrett
ModMult, excluding the precomputation part, we observe that both reduction operations
involve two multiplications, one shift and one addition. Therefore, the computational
overhead is quite similar, and the choice between the two has little impact on performance.
In both cases, the accumulated product is first computed and then subjected to reduction.

7 Conclusion
This paper proposes an NTT calculation scheme dedicated to Kyber and further imple-
ments an entire implementation of Kyber. Based on our explored internal mechanism of
Tensor Core and the unique design of the customized NTT in Kyber, our implementation
outperforms existing Tensor Core-based solutions. We achieve significant speed-ups of
1.93x, 1.65x, 1.22x and 3.55x for polyvec_ntt, KeyGen, Enc and Dec in Kyber-1024, respec-
tively. . Looking ahead, we plan to extend our achievements to accelerate NTT operations
in Dilithium and Fully Homomorphic Encryption (FHE) cryptographic schemes.

Acknowledgements
We would like to thank the anonymous reviewers for their careful reading of our manuscript
and their many insightful comments and suggestions. We are grateful to the anonymous
shepherd for helping us to improve our paper. This work is supported in part by the
National Natural Science Foundation of China No. 61902392, CCF-AFSG Research Fund
under Award No. CCF-AFSG RF20230206 and Antgroup Research Fund. Fangyu Zheng
is the corresponding author (E-mail: zhengfangyu@ucas.ac.cn).

References
[AEL+20] Erdem Alkim, Hülya Evkan, Norman Lahr, Ruben Niederhagen, and Richard

Petri. ISA extensions for finite field arithmetic. IACR TCHES, 2020(3):219–242,
2020. https://tches.iacr.org/index.php/TCHES/article/view/8589.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract).
In 28th ACM STOC, pages 99–108. ACM Press, May 1996.

[AMI+23] Aikata, Ahmet Can Mert, Malik Imran, Samuel Pagliarini, and Sujoy Sinha
Roy. Kali: A crystal for post-quantum security using Kyber and Dilithium.
IEEE Trans. Circuits Syst. I Regul. Pap., 70(2):747–758, 2023.

[App] Apple. Apple unleashes M1. https://www.apple.com/newsroom/2020/11/
apple-unleashes-m1/. Accessed 19 May 2021.

[Bar86] Paul Barrett. Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor. In Conference
on the Theory and Application of Cryptographic Techniques, pages 311–323.
Springer, 1986.

[BDK+18] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
CRYSTALS-Kyber: a CCA-secure module-lattice-based KEM. In 2018 IEEE

https://tches.iacr.org/index.php/TCHES/article/view/8589
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/

58 ConvKyber: Utilizing AI Accelerators for Kyber with Iteration-based Methods

European Symposium on Security and Privacy (EuroS&P), pages 353–367.
IEEE, 2018.

[BHK+22] Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Bo-Yin Yang, and
Shang-Yi Yang. Neon NTT: Faster dilithium, kyber, and saber on cortex-A72
and apple M1. IACR TCHES, 2022(1):221–244, 2022.

[Blo] Chromium Blog. Protecting chrome traffic with hybrid kyber kem. https://
blog.chromium.org/2023/08/protecting-chrome-traffic-with-hybrid.
html.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom func-
tions and lattices. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 719–737. Springer, 2012.

[BZW+23] Yi Bian, Fangyu Zheng, Yuewu Wang, Lingguang Lei, Yuan Ma, Jiankuo
Dong, and Jiwu Jing. Asyncgbp: Unleashing the potential of heterogeneous
computing for SSL/TLS with GPU-based provider. In Proceedings of the 52nd
International Conference on Parallel Processing, ICPP 2023, Salt Lake City,
UT, USA, August 7-10, 2023, pages 337–346. ACM, 2023.

[Clo] Google Cloud. Cloud TPU. https://cloud.google.com/tpu/. Accessed 19
May 2021.

[DKL+18] Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. Crystals-dilithium: A lattice-based dig-
ital signature scheme. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 238–268, 2018.

[GJCC20] Naina Gupta, Arpan Jati, Amit Kumar Chauhan, and Anupam Chattopadhyay.
PQC acceleration using GPUs: FrodoKEM, NewHope, and Kyber. IEEE
Transactions on Parallel and Distributed Systems, 32(3):575–586, 2020.

[Kar63] Anatolii Karatsuba. Multiplication of multidigit numbers on automata. In
Soviet physics doklady, volume 7, pages 595–596, 1963.

[KLC+19] Sunwoong Kim, Keewoo Lee, Wonhee Cho, Jung Hee Cheon, and Rob A.
Rutenbar. FPGA-based accelerators of fully pipelined modular multipliers
for homomorphic encryption. In David Andrews, René Cumplido, Claudia
Feregrino, and Marco Platzner, editors, 2019 International Conference on
ReConFigurable Computing and FPGAs, ReConFig 2019, Cancun, Mexico,
December 9-11, 2019, pages 1–8. IEEE, 2019.

[LLZ+18] Xianhui Lu, Yamin Liu, Zhenfei Zhang, Dingding Jia, Haiyang Xue, Jingnan
He, Bao Li, and Kunpeng Wang. LAC: Practical ring-LWE based public-
key encryption with byte-level modulus. Cryptology ePrint Archive, Report
2018/1009, 2018. https://eprint.iacr.org/2018/1009.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 1–23. Springer,
2010.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Designs, Codes and Cryptography, 75(3):565–599, 2015.

https://blog.chromium.org/2023/08/protecting-chrome-traffic-with-hybrid.html
https://blog.chromium.org/2023/08/protecting-chrome-traffic-with-hybrid.html
https://blog.chromium.org/2023/08/protecting-chrome-traffic-with-hybrid.html
https://cloud.google.com/tpu/
https://eprint.iacr.org/2018/1009

T. Zhou, F. Zheng, et al. 59

[LSZH22] Wai-Kong Lee, Hwajeong Seo, Zhenfei Zhang, and Seong Oun Hwang. Ten-
sorcrypto: High throughput acceleration of lattice-based cryptography using
tensor core on GPU. IEEE Access, 10:20616–20632, 2022.

[MJP+] Kannwischer M, Rijneveld J, Schwabe P, Stebila D, and Wiggers. The PQClean
project. https://github.com/PQClean/PQClean. Accessed 8 Apr 2022.

[Mon85] Peter L Montgomery. Modular multiplication without trial division. Mathe-
matics of computation, 44(170):519–521, 1985.

[MWB21] Liejun Ma, Xingjun Wu, and Guoqiang Bai. Parallel polynomial multiplication
optimized scheme for CRYSTALS-KYBER post-quantum cryptosystem based
on FPGA. In 2021 International Conference on Communications, Information
System and Computer Engineering (CISCE), pages 361–365, 2021.

[NVIa] NVIDIA. CUDA C++ Programming Guide (Release 12.2). https://docs.
nvidia.com/cuda/cuda-c-programming-guide/. Accessed 6 Oct 2023.

[NVIb] NVIDIA. NVIDIA tensor cores–unprecedented acceleration for HPC and AI.
https://www.nvidia.com/en-us/data-center/tensor-cores/. Accessed
19 May 2021.

[NVIc] NVIDIA. The Future of Industrial-Grade Edge AI - NVIDIA Jet-
son AGX Orin Industrial module. https://www.nvidia.com/en-gb/
autonomous-machines/embedded-systems/jetson-orin/.

[PZZ+17] Wuqiong Pan, Fangyu Zheng, Yuan Zhao, Wen-Tao Zhu, and Jiwu Jing. An
efficient elliptic curve cryptography signature server with GPU acceleration.
IEEE Transactions on Information Forensics and Security, 12(1):111–122,
2017.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 84–93. ACM Press, May 2005.

[SAB+22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède
Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé,
and Jintai Ding. CRYSTALS-KYBER. Technical report, National Institute
of Standards and Technology, 2022. available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/selected-algorithms-2022.

[Sch] Peter Schwabe. CRYSTALS-Cryptographic Suite for Algebraic Lattices. https:
//pq-crystals.org/kyber/index.shtml. Accessed 18 May 2021.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

[Sho01] Victor Shoup. NTL: A library for doing number theory. 2001.

[SKS+21] Pakize Sanal, Emrah Karagoz, Hwajeong Seo, Reza Azarderakhsh, and Mehran
Mozaffari-Kermani. Kyber on ARM64: Compact implementations of Kyber
on 64-bit ARM Cortex-A processors. In International Conference on Security
and Privacy in Communication Systems, pages 424–440. Springer, 2021.

[Too63] Andrei L Toom. The complexity of a scheme of functional elements realizing
the multiplication of integers. In Soviet Mathematics Doklady, volume 3, pages
714–716, 1963.

https://github.com/PQClean/PQClean
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://www.nvidia.com/en-us/data-center/tensor-cores/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-orin/
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://pq-crystals.org/kyber/index.shtml
https://pq-crystals.org/kyber/index.shtml

60 ConvKyber: Utilizing AI Accelerators for Kyber with Iteration-based Methods

[WZF+22] Lipeng Wan, Fangyu Zheng, Guang Fan, Rong Wei, Lili Gao, Yuewu Wang,
Jingqiang Lin, and Jiankuo Dong. A novel high-performance implementation
of CRYSTALS-Kyber with AI accelerator. In Vijayalakshmi Atluri, Roberto Di
Pietro, Christian Damsgaard Jensen, and Weizhi Meng, editors, Computer
Security - ESORICS 2022 - 27th European Symposium on Research in Computer
Security, Copenhagen, Denmark, September 26-30, 2022, Proceedings, Part III,
volume 13556 of Lecture Notes in Computer Science, pages 514–534. Springer,
2022.

[WZG+21] Rong Wei, Fangyu Zheng, Lili Gao, Jiankuo Dong, Guang Fan, Lipeng Wan,
Jingqiang Lin, and Yuewu Wang. Heterogeneous-PAKE: Bridging the gap
between PAKE protocols and their real-world deployment. In ACSAC ’21:
Annual Computer Security Applications Conference, Virtual Event, USA, De-
cember 6 - 10, 2021, pages 76–90. ACM, 2021.

[WZL21] Lipeng Wan, Fangyu Zheng, and Jingqiang Lin. TESLAC: accelerating lattice-
based cryptography with AI accelerator. In Joaquín García-Alfaro, Shujun
Li, Radha Poovendran, Hervé Debar, and Moti Yung, editors, Security and
Privacy in Communication Networks - 17th EAI International Conference,
SecureComm 2021, Virtual Event, September 6-9, 2021, Proceedings, Part I,
volume 398 of Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, pages 249–269. Springer,
2021.

[XL21] Yufei Xing and Shuguo Li. A compact hardware implementation of CCA-secure
key exchange mechanism CRYSTALS-KYBER on FPGA. IACR Transactions
on Cryptographic Hardware and Embedded Systems, pages 328–356, 2021.

Appendix

A INTT
A.1 Start from formula

INTT(f̂) = f

f2u = n−1 ·
127∑
v=0

f̂2vζ
−(2br7(v)+1)u (18)

f2u+1 = n−1 ·
127∑
v=0

f̂2v+1ζ
−(2br7(v)+1)u (19)

To facilitate subsequent descriptions, we introduce the following notations:

u = 16u0 + u1, v = 16v0 + v1, u0, v0 ∈ Z8, u1, v1 ∈ Z16

f0(u0, u1) = f2(16u0+u1) = f2u, f1(u0, u1) = f2(16u0+u1)+1 = f2u+1

f̂0(u0, u1) = f̂2(16u0+u1) = f̂2u, f̂1(u0, u1) = f̂2(16u0+u1)+1 = f̂2u+1

Using these notations, Equation (18) can be deduced as follows:

T. Zhou, F. Zheng, et al. 61

f̂0(u0, u1) = n−1 ·
127∑
v=0

f0(v0, v1)ζ−u(2br7(v)+1)

= n−1 ·
7∑

v0=0

15∑
v1=0

f0(v0, v1)ζ−(16u0+u1)(2br3(v0)+16br4(v1)+1)

= n−1 ·
7∑

v0=0

15∑
v1=0

f0(v0, v1)ζ−16u0(2br3(v0)+1) · ζ−u1(2br3(v0)+1) · ζ−32u1br4(v1)

(20)

We introduce notations for the sub-twiddle factors like NTT:

ζ0(u0, v0) = ζ−16u0(2br3(v0)+1)

ζ1(u1, v0) = ζ−u1(2br3(v0)+1)

ζ2(u1, v1) = ζ−u1(16br4(v1))

With these notations, f̂0(u0, u1) can be represented as:

f̂0(u0, u1) =
7∑

v0=0

15∑
v1=0

f0(v0, v1) · ζ0(u0, v0) · ζ1(u1, v0) · ζ2(u1, v1) (21)

Similarly

f̂1(u0, u1) =
7∑

v0=0

15∑
v1=0

f1(v0, v1) · ζ0(u0, v0) · ζ1(u1, v0) · ζ2(u1, v1) (22)

A.2 Iteration-based INTT Algorithms
A.2.1 2-Phase INTT

Merging ζ1 and ζ2, therefore
let ζ12(u1, v0, v1) = ζ1(u1, v0) · ζ2(u1, v1)

f̂0(u0, u1) =
7∑

v0=0

[15∑
v1=0

f0(j0, j1) · ζ12(u1, v0, v1)
]

︸ ︷︷ ︸
Phase 1

·
[
ζ0(u0, v0)

]
︸ ︷︷ ︸

Phase 2

A.2.2 3-Phase INTT

Computing ζ2, ζ1, and ζ0 separately.

f̂0(u0, u1) =

7∑

v0=0

[15∑
v1=0

f0(v0, v1) · ζ2(u1, v1)
]

︸ ︷︷ ︸
Phase 1

·ζ1(u1, v0)

︸ ︷︷ ︸
Phase 2

·ζ0(u0, v0)

︸ ︷︷ ︸
Phase 3

62 ConvKyber: Utilizing AI Accelerators for Kyber with Iteration-based Methods

B Precomputed Table of Twiddle Factors
Since the powers of ζ can be known in advance, then all the twiddle factors can be
precomputed and stored in the memory before the procedure. When NTT is executed,
these values can be obtained by directly looking up the table instead of multiplying, like
the original implementation.

Furthermore, considering the Montgomery reduction, the precomputed table should
be multiplied by R = 212 (mod q) in advance to transform it into the Montgomery form,
reducing the computational load during the reduction process.

Please note, the generation method provided here pertains only to the NTT precompu-
tated table; the part for INTT can be similarly derived.

B.1 Precomputed Table of 2-Phase NTT
Phase 1

In the first phase of 2-phase NTT, the 8 sections of the coefficient matrix will be
multiplied by the 8 precomputed matrices.

For k = 0, 1, . . . , 7,

P1k (2− phase)
={ζ01(k)}16×16 ·R

=

ζ(8×0+k)(2br4(0)+1) ζ(8×0+k)(2br4(1)+1) · · · ζ(8×0+k)(2br4(15)+1)

ζ(8×1+k)(2br4(0)+1) ζ(8×0+k)(2br4(1)+1) · · · ζ(8×0+k)(2br4(15)+1)

...
...

ζ(8×15+k)(2br4(0)+1) ζ(8×15+k)(2br4(1)+1) · · · ζ(8×15+k)(2br4(15)+1)

16×16

·R

Phase 2
In the second phase of 2-phase NTT, we perform matrix multiplication.

P2 (2− phase)
={ζ2}16×16 ·R

=

ζ32×0×br3(0) 0 · · · ζ32×0×br3(7) 0

0 ζ32×0×br3(0) · · · 0 ζ32×0×br3(7)

...
...

...
ζ32×7×br3(0) 0 · · · ζ32×7×br3(7) 0

0 ζ32×7×br3(0) · · · 0 ζ32×7×br3(7)

16×16

·R

B.2 Precomputed Table of 3-Phase NTT
Phase 1 In the first phase of 3-phase NTT, we perform matrix multiplication.

P1 (3− phase)
={ζ0}16×16 ·R

=

ζ(8×0)(2br4(0)+1) ζ(8×0)(2br4(1)+1) · · · ζ(8×0)(2br4(15)+1)

ζ(8×1)(2br4(0)+1) ζ(8×0)(2br4(1)+1) · · · ζ(8×0)(2br4(15)+1)

...
...

ζ(8×15)(2br4(0)+1) ζ(8×15)(2br4(1)+1) · · · ζ(8×15)(2br4(15)+1)

16×16

·R

T. Zhou, F. Zheng, et al. 63

Phase 2
The second phase of the 3-phase NTT involves computing the Hadamard Product of

matrices. Since the product matrix obtained from the previous step has a layout in the
registers that is equivalent to applying the inverse of the wmma.store transformation (refer
to Figure 13), the precomputed matrix also needs to apply the inverse of the wmma.store
transformation to achieve a one-to-one correspondence of multiplication elements.

P2 (3− phase)
=R · wmma.store−1({ζ1}16×16)
=R · wmma.store−1

ζ0×(2br4(0)+1) ζ0×(2br4(0)+1) · · · ζ7×(2br4(0)+1) ζ7×(2br4(0)+1)

ζ0×(2br4(1)+1) ζ0×(2br4(1)+1) · · · ζ7×(2br4(1)+1) ζ7×(2br4(1)+1)

...
...

ζ0×(2br4(15)+1) ζ0×(2br4(15)+1) · · · ζ7×(2br4(15)+1) ζ7×(2br4(15)+1)

16×16

=R ·

ζ0×(0br4(0)+1) ζ0×(2br4(0)+1) · · · ζ5×(2br4(8)+1) ζ5×(2br4(8)+1)

ζ2×(2br4(0)+1) ζ2×(2br4(0)+1) · · · ζ7×(2br4(8)+1) ζ7×(2br4(8)+1)

...
...

ζ2×(2br4(7)+1) ζ2×(2br4(7)+1) · · · ζ7×(2br4(15)+1) ζ7×(2br4(15)+1)

16×16

Phase 3
In the third phase of 3-phase NTT, we perform matrix multiplication. Based on the

analysis from the previous section, the coefficient matrix at this moment is equivalent to
having been right-multiplied by the permutation matrix P (refer to Figure 15). Therefore,
the precomputed matrix in this phase needs to be pre-multiplied by P−1 on the left to
obtain the correct result.

P3 (3− phase)
=R · P−1 × {ζ2}16×16

=R · P−1×
ζ32×0×br3(0) 0 · · · ζ32×0×br3(7) 0

0 ζ32×0×br3(0) · · · 0 ζ32×0×br3(7)

...
...

...
ζ32×7×br3(0) 0 · · · ζ32×7×br3(7) 0

0 ζ32×7×br3(0) · · · 0 ζ32×7×br3(7)

16×16

	Introduction
	An Opportunity for PQC with AI-accelerators
	Technical Challenges and Contributions

	Preliminary
	Notation and Definition
	Description of Kyber
	AI Accelerator and Tensor Core

	Decomposing NTTs into Matrix Multiplications
	The Limitation of Scanning-based Methods
	The Proposed Iteration-based Algorithms

	The Proposed NTT Implementation
	Multi-precision Presentation and NTT Splitting
	2-phase NTT Implementation with Batch of 8
	A Memory-free 3-phase NTT Implementation

	Extending Proposed NTT Schemes to a Full Kyber Implementation
	Overall Architecture
	Other Implementation Details

	Performance Evaluation & Discussion
	Results of NTT/INTT
	Results of Kyber
	Limitation and Discussion

	Conclusion
	INTT
	Start from formula
	Iteration-based INTT Algorithms

	Precomputed Table of Twiddle Factors
	Precomputed Table of 2-Phase NTT
	Precomputed Table of 3-Phase NTT

