
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 1, pp. 592–616. DOI:10.46586/tches.v2024.i1.592-616

Fast and Accurate: Efficient Full-Domain
Functional Bootstrap and Digit Decomposition

for Homomorphic Computation
Shihe Ma1, Tairong Huang2, Anyu Wang2,4,5(�),

Qixian Zhou3 and Xiaoyun Wang2,4,5,6,7

1 Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing, China,
msh21@mails.tsinghua.edu.cn

2 Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China,
htr19@mails.tsinghua.edu.cn,{anyuwang,xiaoyunwang}@tsinghua.edu.cn

3 Ant Group, qixian.zqx@antgroup.com
4 Zhongguancun Laboratory, Beijing, China

5 National Financial Cryptography Research Center, Beijing, China
6 Shandong Institute of Blockchain, Jinan, China

7 Key Laboratory of Cryptologic Technology and Information Security (Ministry of Education),
School of Cyber Science and Technology, Shandong University, Qingdao, China

Abstract. The functional bootstrap in FHEW/TFHE allows for fast table lookups
on ciphertexts and is a powerful tool for privacy-preserving computations. However,
the functional bootstrap suffers from two limitations: the negacyclic constraint of
the lookup table (LUT) and the limited ability to evaluate large-precision LUTs. To
overcome the first limitation, several full-domain functional bootstraps (FDFB) have
been developed, enabling the evaluation of arbitrary LUTs. Meanwhile, algorithms
based on homomorphic digit decomposition have been proposed to address the second
limitation. Although these algorithms provide effective solutions, they are yet to be
optimized. This paper presents four new FDFB algorithms and two new homomorphic
decomposition algorithms that improve the state-of-the-art. Our FDFB algorithms
reduce the output noise, thus allowing for more efficient and compact parameter
selection. Across all parameter settings, our algorithms reduce the runtime by up
to 39.2%. Our homomorphic decomposition algorithms also run at 2.0x and 1.5x
the speed of prior algorithms. We have implemented and benchmarked all previous
FDFB and homomorphic decomposition algorithms and our methods in OpenFHE.
Keywords: Homomorphic Encryption · TFHE · FHEW · Functional Bootstrap ·
FDFB · Homomorphic Decomposition

1 Introduction
Fully Homomorphic Encryption (FHE) is a powerful cryptographic tool that enables
computation on encrypted data without requiring access to the decryption key. It has
great potential for use in computing fields where data privacy is important, such as secure
cloud computing [KSK+18, PKS+19, LATV12] and privacy-preserving machine learn-
ing [LKL+22, BMMP18, CJP21, LHH+21], as well as in the construction of cryptographic
protocols such as private set intersection [CLR17, CHLR18, CMdG+21].

Since Gentry’s first construction of an FHE scheme utilizing the bootstrap tech-
nique [Gen09], various FHE schemes have been developed [FV12, BGV14, CKKS17,
GSW13, DM15, CGGI20] and significant improvements have been made [LW23a, LW23b,

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-07-15 Accepted: 2023-09-15 Published: 2023-12-04

https://doi.org/10.46586/tches.v2024.i1.592-616
mailto:msh21@mails.tsinghua.edu.cn
mailto:htr19@mails.tsinghua.edu.cn,anyuwang@tsinghua.edu.cn,xiaoyunwang@tsinghua.edu.cn
mailto:qixian.zqx@antgroup.com
http://creativecommons.org/licenses/by/4.0/

Shihe Ma, Tairong Huang, Anyu Wang(�), Qixian Zhou and Xiaoyun Wang 593

BIP+22, Klu22]. Among these FHE schemes, BGV/FV, CKKS and FHEW/TFHE have
gained prominence recently because of their great efficiency. BGV/FV and CKKS have
effective packing capabilities that allow for computations over vector data using Single
Instruction Multiple Data (SIMD) instructions, making them ideal for simultaneously
processing large arrays of numbers. However, these schemes are less efficient for evaluating
deep circuits and inconvenient for evaluating non-polynomial functions. On the other
hand, FHEW/TFHE utilize an efficient functional bootstrap (or programmable bootstrap)
process that enables the evaluation of a lookup table (LUT) without additional cost,
making these schemes ideal for evaluating boolean circuits and non-polynomial functions.
Moreover, due to the switching method introduced in CHIMERA [BGGJ20] and later
improved in PEGASUS [LHH+21], a CKKS ciphertext can be converted into multiple
FHEW/TFHE ciphertexts to compute non-polynomial functions and then converted back
to CKKS ciphertext for SIMD polynomial evaluation. This makes functional bootstrap a
versatile tool for all FHE evaluation purposes.

Despite its strength, functional bootstrap still suffers from two limitations: (1) the
evaluated LUT f : Zp → Zp must be negacyclic such that f(x+ p

2) = −f(x) for all x ∈ Zp,
preventing some LUTs from being evaluated directly; (2) the input plaintext modulus p is
typically small due to efficiency constraints, limiting its ability to evaluate large precision
LUTs. Numerous efforts have been made to address these two limitations. To circumvent
the negacyclicity constraint, Full Domain Functional Bootstrap (FDFB) algorithms sup-
porting arbitrary LUTs have been proposed. These FDFB algorithms can be categorized
into Type-SelectMSB, Type-HalfRange and Type-Split. Type-SelectMSB selects between
two negacyclic LUTs based on the most significant bit (MSB) of the encrypted message
and is used in algorithms proposed by [CLOT21, KS22]. Type-HalfRange transforms
the encrypted message to prevent it from exceeding p

2 , thereby bypassing the negacyclic
limitation. This method is adopted in algorithms proposed by [LMP22, YXS+21, GBA22].
Finally, Type-Split expresses an arbitrary LUT as the sum of a ‘pseudo-odd’ LUT and a
‘pseudo-even’ LUT, each of which can be evaluated using two functional bootstraps. This
method is employed in the algorithm proposed by [CZB+22]. In addition to focusing on the
construction of FDFB, a method for using FDFB to aid in evaluating CKKS ciphertexts
is presented in [LY23]. To handle the evaluation of large-precision LUTs, Guimarães et
al. [GBA21] propose tree-based and chaining methods to combine multiple functional
bootstraps in TFHE. These two methods in [GBA21] assume that each ciphertext encrypts
a digit of the original message. Therefore, when an input ciphertext has a large modulus,
it must first be preprocessed with homomorphic decomposition before the methods can be
applied. On the other hand, Liu et al. [LMP22] develop homomorphic digit decomposition
algorithms and demonstrate how they can be used to evaluate large-precision sign functions.
As a result, homomorphic decomposition is a crucial component in current techniques for
evaluating large-precision LUTs.

In practice, functional bootstrap plays a critical role in many FHE applications, and
thus its optimization is paramount for achieving high performance. Nevertheless, the
efficiency of the FDFB and digit decomposition algorithms still requires further evaluation
and optimization.

1.1 Our Contributions
This work presents new methods for optimizing the current FDFB and homomorphic
decomposition algorithms. Our contributions can be summarized as follows.

(1) We present four novel FDFB algorithms: FDFB-Compress, FDFB-CancelSign,
FDFB-Select and FDFB-BFVMult (WoPPBS1-Refine). FDFB-Compress im-
proves Type-HalfRange to theoretical optimality, while the other three algorithms improve
Type-SelectMSB but are suitable for different scenarios. In our experiments, we observe
that our fastest algorithms demonstrate a significant speedup, ranging from 23.4% ∼ 39.2%,

594 Fast and Accurate: Efficient FDFB and Digit Decomposition

compared to the state-of-the-art results across various parameter settings.
(2) We present two new homomorphic decomposition algorithms HomDecomp-

Reduce and HomDecomp-FDFB, whose running speed is 2x and 1.5x that of Hom-
Floor andHomFloorAlt from [LMP22], respectively. UnlikeHomFloor, our algorithms
do not require the input ciphertext to have small noise. The speedup of our algorithms
directly results in faster large-precision evaluations of functions such as sign, ReLU, max,
ABS, etc.

(3) We provide a comprehensive theoretical noise analysis for our FDFB and homo-
morphic decomposition algorithms, as well as those developed by previous works. We have
implemented and benchmarked all the algorithms in the OpenFHE library [BBB+22] to
validate our results. Our implementation of all FDFB algorithms in a single library is a
first-of-its-kind initiative, which provides standardized access to these algorithms.

1.2 Related Works
1.2.1 FDFB Algorithms

The current FDFB algorithms are summarized as follows.
WoP-PBS1 [CLOT21] (Type-SelectMSB) introduces an extra MSB to the encrypted

message by doubling the ciphertext modulus. The algorithm evaluates the LUT to obtain a
ciphertext that possibly differs by a sign from the desired result. Then, it extracts the MSB
using functional bootstrap and offsets the sign by invoking BFV multiplication. However,
the rapid noise growth of BFV multiplication requires the algorithm to use inefficient
parameters, thus degrading performance.

WoP-PBS2 [CLOT21] (Type-SelectMSB) builds two sub-LUTs according to the MSB
of the encrypted message. The algorithm evaluates both sub-LUTs to obtain two ciphertexts
and extracts the MSB using functional bootstrap. Then BFV multiplication is invoked to
select the correct ciphertext. Again, BFV multiplication still requires large parameters
and degrades performance.

FDFB-KS [KS22] (Type-SelectMSB) builds two sub-LUTs similarly to WoP-PBS2.
The algorithm selects between the two sub-LUTs to obtain an encrypted LUT and then
uses functional bootstrap to evaluate it. However, selecting the sub-LUTs requires multiple
functional bootstraps and causes significant computational overhead.

EvalFunc [LMP22] (Type-HalfRange) introduces an extra MSB in a similar way to
WoP-PBS1. The algorithm extracts the MSB using functional bootstrap and cancels it
to ensure that the message belongs to half of Zp. Then it can evaluate the LUT without
being constrained by negacyclicity. We note that the FullyFBS of [YXS+21] and the
FDFB-C of [GBA22] are essentially the same as EvalFunc.

Comp [CZB+22] (Type-Split) expresses an arbitrary LUT as the sum of a ‘pseudo-
odd’ LUT and a ‘pseudo-even’ LUT. Then the algorithm evaluates each LUT using two
functional bootstraps.

In [CIM19], Carpov et al. develop a multi-value bootstrap technique that allows several
LUTs to be evaluated on the same input using a single functional bootstrap call. This
technique can reduce the functional bootstraps required for WoP-PBS1, WoP-PBS2
and Comp when the parameters support multi-value bootstrap.

1.2.2 Homomorphic Decomposition Algorithms

The current homomorphic decomposition algorithms are summarized as follows.
HomFloor [LMP22] uses two bootstraps to clear the lower bits of a large-precision

message before modulus switching, which prevents the modulus switching noise from
corrupting the higher digits. By iteratively applying these operations, a large-precision
message can be decomposed into a vector of 4-bit digits. However, this algorithm does

Shihe Ma, Tairong Huang, Anyu Wang(�), Qixian Zhou and Xiaoyun Wang 595

Table 1: A summary of the intuition behind our algorithms and the improvement over
previous methods.

Previous Ours Our Intuition/Improvement
over Previous Works

EvalFunc [LMP22] FDFB-Compress
Compress the coded message
using a functional bootstrap

and reduce the noise

WoP-PBS1 [CLOT21]
WoP-PBS2 [CLOT21]

FDFB-CancelSign
FDFB-Select

Replace BFV multiplication
with LWE-to-RLWE packing

and bootstrap

WoP-PBS1 [CLOT21]
WoP-PBS2 [CLOT21]

WoPPBS1-Refine
FDFB-BFVMult

Use a refined noise analysis for
BFV multiplication; use fewer

BFV multiplications

HomFloor [LMP22]
HomFloorAlt [LMP22]

HomDecomp-Reduce
HomDecomp-FDFB

Reduce the range of the lower
bits instead of clearing them
and use fewer bootstraps

not apply to extracted CKKS ciphertexts because it requires a small noise in the input
ciphertext.

HomFloorAlt [LMP22] uses three bootstraps to extract the digits of a large-precision
message, allowing it to support the decomposition into 5-bit digits and decompose extracted
CKKS ciphertexts.

1.3 Overview of Our Algorithms
We present the intuition behind our algorithm design and explain how it leads to better
performance (see Table 1 for a summary). The key advantage of our algorithms is
their reduced noise growth, which enables us to choose more compact LWE and RLWE
parameters (such as decomposition bases in blind rotation and RLWE dimension) for a
given plaintext modulus, resulting in shorter running time.

FDFB-Compress is a Type-HalfRange FDFB algorithm. Our key observation is that
the LWE message must be in a coded (and thus redundant) form q

pm
′ + e ∈ Zq to prevent

decryption failures due to errors, where q is the ciphertext modulus. This enables us to
design a compression function that can compress the coded LWE message into [− q4 ,

q
4 − 1]

using one functional bootstrap. Then, we can perform another functional bootstrap on the
compressed message to get the desired result. As a result, FDFB-Compress uses the
same number of bootstraps as EvalFunc but reduces the error variance of the compressed
message by half, resulting in a more compact parameter choice and better performance.

FDFB-CancelSign, FDFB-Select and FDFB-BFVMult (WoPPBS1-Refine)
are all Type-SelectMSB FDFB algorithms. The primary objective of FDFB-CancelSign
and FDFB-Select is to replace the BFV multiplication in WoP-PBS1 and WoP-PBS2
with LWE-to-RLWE packing and an additional functional bootstrap. This approach
prevents the multiplicative noise growth in BFV multiplication and instead achieves
additive noise growth. As a result, although FDFB-CancelSign and FDFB-Select
require an extra functional bootstrap compared to WoP-PBS, their slower noise growth
allows for more compact parameter choices and better efficiency in most cases, according
to our experiments. On the other hand, WoPPBS1-Refine and FDFB-BFVMult are
enhanced algorithms of WoP-PBS1 and WoP-PBS2, respectively. They significantly
reduce the error growth in WoP-PBS1 and WoP-PBS2 by roughly N times, where N
is the RLWE dimension. This is achieved through a refined noise analysis of the BFV
multiplication. Such an in-depth analysis allows for the choice of smaller bootstrapping

596 Fast and Accurate: Efficient FDFB and Digit Decomposition

LMP22ModSwitch

ModSwitch Ours

Figure 1: Comparison of our homomorphic digit decomposition approach and that of
[LMP22]. The blue parts stand for higher bits, while the green and red parts stand for
lower bits before and after modulus switching.

parameters, resulting in enhanced efficiency. Moreover, FDFB-BFVMult removes one
BFV multiplication in WoP-PBS2 by combining two BFV multiplications with the sign
bit into one multiplication, further reducing the noise growth by half.

The current homomorphic digit decomposition algorithms presented in [LMP22] extract
digits by repeatedly clearing the lower bits mlow of the encrypted messages (leaving a
small bootstrap error) and then modulus-switching it to a smaller modulus q0

B . We observe
that this goal can also be achieved by reducing the range of the lower bits instead of
clearing them. In contrast to clearing the lower bits, reducing their range consumes
fewer functional bootstraps. Still, it can reserve enough room to hold the modulus
switching noise, thus preventing the higher digits from being destroyed by overflowed
noise. Figure 1 illustrates a comparison of these two approaches. Following this idea, we
design HomDecomp-Reduce and HomDecomp-FDFB, which run 2x and 1.5x faster
compared to HomFloor and HomFloorAlt in our experiments.

2 Preliminaries

2.1 Notations

The ring of integers modulo q is denoted as Zq = Z/qZ. Its elements are represented as
integers in either [0, q − 1] (positive form) or [−b q2c, b

q−1
2 c] (signed form). For an integer

a, its positive form and signed form in Zq are denoted as [a]+q and [a]q, respectively.
For a power-of-2 N , the 2N -th cyclotomic ring is denoted as R = Z[X]/(XN + 1), and

its quotient ring is denoted as Rq = R/qR. Polynomials are represented using bold letters,
e.g., a. For a vector ~a or a polynomial b, we use ai and bi respectively to denote ~a’s
i-th entry and b’s coefficient of the Xi term. The coefficient vector of b is denoted as
~b = (b0,b1, . . . ,bN−1).

For a postive interger n, the set {0, 1, . . . , n− 1} is denoted as JnK. We use a← χ to
represent a random variable a sampled from the distribution χ, and a ← S to indicate
that a is uniformly sampled from the finite set S. We use D(Z, σ) to denote the discrete
Gaussian distribution of parameter σ over Z. The infinity norm and 2-norm of a vector ~a
are denoted as |~a|∞ and |~a|2 respectively. All logarithms are taken with a base of 2 unless
otherwise stated.

Shihe Ma, Tairong Huang, Anyu Wang(�), Qixian Zhou and Xiaoyun Wang 597

2.2 FHEW/TFHE Encryption Schemes
2.2.1 LWE and RLWE Ciphertexts

Throughout this paper, we use lowercase q and n to denote the modulus and dimension of
LWE instances, while uppercase Q and N are used for the RLWE modulus and dimension.

The LWE ciphertext encrypting an encoded message m ∈ Zq is defined to be

LWE~s,n,q(m+ e) = (−〈~a,~s〉+m+ e,~a) ∈ Zn+1
q ,

where ~a← Znq , e← D(Z, σ), and the secret vector ~s← {0,±1}n.
The RLWE ciphertext encrypting an encoded message m ∈ RQ is defined to be

RLWEs,N,Q(m + e) = (−a · s + m + e,a) ∈ R2
Q,

where a← RQ, ei ← D(Z, σ), and the secret polynomial satisfies si ← {±1, 0}.
For simplicity, we may sometimes use the abbreviated notation LWE~s(m) and

RLWEs(m) (or LWE(m) and RLWE(m)) to denote the LWE and RLWE ciphertexts
respectively.

Messages in LWE and RLWE ciphertexts are typically encoded to prevent decryption
failures caused by errors. For instance, in an RLWE ciphertext, m is often an up-scaled
version of the actual message m′ ∈ Rp, as given by m = bQpm

′e = Q
pm

′ + ernd, where
p < Q is the plaintext modulus and ernd accounts for the rounding errors. Then an RLWE
ciphertext (b,a) ∈ R2

Q decrypts to b pQ (b+ a · s)e = bm′ + p
Q (e+ ernd)e, which is equal to

m′ modulo p as long as | pQ (e + ernd)|∞ < 1
2 .

2.2.2 RLWE′ and RGSW Ciphertexts

An RLWE′ ciphertext is a vector of RLWE ciphertexts encrypting the same message at
different scales, i.e.,

RLWE′s(m) = (RLWEs(m),RLWEs(m ·B), . . . ,RLWEs(m ·Bl−1)),

where B ∈ Z is the decomposition base and l = dlogB Qe. For any u ∈ RQ, there is
a decomposition u =

∑l−1
i=0 ui ·Bi such that ui’s coefficients are all in [−B2 ,

B
2]. Let

Decomp(u) = (u0,u1, . . . ,ul−1). Then the product � : Rq × RLWE′ → RLWE can be
defined as

u� RLWE′s(m) = 〈Decomp(u),RLWE′s(m)〉 = RLWEs(u ·m).

The obtained RLWE ciphertext contains a noise much smaller than the regular Rq×RLWE
multiplication due to the small coefficients of ui’s. Besides, the LWE′ ciphertext can be
defined similarly, but we omit the details here.

An RGSW ciphertext is defined as

RGSWs(m) = (RLWE′s(m),RLWE′s(m · s)).

Then the external product � : RLWE×RGSW→ RLWE between (b,a) = RLWEs(u+ e)
and RGSWs(m) is defined as

(b,a) � RGSWs(m) = b� RLWE′s(m) + a� RLWE′s(m · s)),

which is equal to RLWEs((b + a · s)m) = RLWEs((u + e)m).

2.3 Homomorphic Operators
We introduce some basic homomorphic operations that will be used in our constructions.

598 Fast and Accurate: Efficient FDFB and Digit Decomposition

2.3.1 Mod Down/Up and Modulus Switching

Let c = (b,~a) = LWE~s,n,q(m+ e) be an LWE ciphertext, and let q′ be a positive modulus.
For q′ | q, the ‘mod down’ is defined as

ModDown(c, q′) = ([b]q′ , [~a]q′) = LWE~s,n,q′([m+ e]q′).

For q | q′, the ‘mod up’ is defined as

ModUp(c, q′) = (b,~a) = LWE~s,n,q′(m+ e+ vq),

where v ∈ Zq′/q.
For any modulus q′, the ‘modulus switching’ is defined as

ModSwitch(c, q′) = (bq
′

q
be, bq

′

q
~ae) = LWE~s,n,q′(q

′

q
(m+ e) + ems),

where ems is the noise modulus switching introduces. The three homomorphic operators
described above can also be defined for RLWE ciphertexts similarly but are omitted for
brevity.

2.3.2 Sample Extract

Given an RLWE ciphertext c = (b,a) = RLWEs,N,Q(m + e) and an index i ∈ JNK, define

SampleExtract(c, i) = LWE~s,N,Q(mi + ei),

which extracts the coefficient of the Xi term into an LWE ciphertext.

2.3.3 Key Switching

Given an LWE ciphertext c = (b,~a) = LWE~s,n,qks
(m + e), a decomposition base Bks

and key switching keys kski,j,k = LWE~s′,n′,q′(b q
′

qks
~si · j · Bkkse) for i ∈ JnK, j ∈ JBksK and

k ∈ JdlogBks
(qks)eK, define

KeySwitch(c, {kski,j,k}) = LWE~s′,n′,q′(b q
′

qks
(m+ e)e+ eks),

where eks is the error key switching introduces.
Besides LWE-to-LWE key switching, it is possible to pack LWE ciphertexts into an

RLWE ciphertext with similar techniques [GBA21, CZ22], which can be viewed as a
specific instance of the public functional key switching method proposed in [CGGI20].
This homomorphic operator, denoted as PackingKS(LWE(m), {kski,j,k}), is parameterized
by a positive integer d and outputs RLWE(m+mX + . . .+mXd−1). Its full definition is
detailed in the full version of the paper.

2.3.4 Blind Rotation and Functional Bootstrap

Blind rotation is the key step in the bootstrap of FHEW/TFHE. Given an LWE ciphertext
c = LWE~s(m+e) with modulus q|2N , a polynomial TV ∈ RQ (often called the test vector)
and blind rotation keys {brk±i }, define

BlindRotate(c,TV, {brk±i }) = RLWEs′(TV ·X−
2N

q (m+e) + eacc),

where eacc is the noise that blind rotation introduces. In other words, TV is rotated left
by 2N

q (m + e). {brk±i } are parameterized by the blind-rotation base Bg. A smaller Bg

Shihe Ma, Tairong Huang, Anyu Wang(�), Qixian Zhou and Xiaoyun Wang 599

Figure 2: The five steps of FHEW/TFHE bootstrapping: (1) blind rotation of TV by
the input ciphertext; (2) extracting the constant term of the rotated TV; (3) modulus
switching to qks; (4) key switching to the original secret key; (5) modulus switching to q.
F is an LUT from Zp to Zp.

means longer running time and smaller eacc. Since the inner structure of blind rotation is
irrelevant to the focus of this paper, we omit the details about the use of {brk±i }. Interested
readers can refer to [MP21] for more details. In this paper, we assume q = 2N and omit
the {brk±i } in notations.

Note that the constant term of the rotated TV equals TVm+e for m+ e ∈ [0, N − 1],
and equals −TV[m+e]+

N
for m+ e ∈ [N, 2N − 1], then the blind rotation actually evaluates

a negacyclic function f : Z2N → ZQ on m+ e. To evaluate a negacyclic LUT F : Zp → Zp
using blind rotation, the coefficients of TV are arranged in a redundant way to eliminate
the error in input ciphertext. Specifically, by setting TVi = bQp F (bpq ie)e, the constant
term of BlindRotate(LWE~s(b qpm

′ + ee),TV) is an encryption of bQp F (m′)e.
The entire process of the functional bootstrap is illustrated in Figure 2. The noise

introduced by the bootstrap process is denoted as eboot. We use Boot[f](c) to represent the
result of performing functional bootstrap using function f on an LWE ciphertext c and use
BootRaw[f](c) to represent the freshly extracted LWE ciphertext after blind rotation (i.e.,
without any modulus switching or key switching). Notably, each TV uniquely corresponds
to a negacyclic function f , so either TV or f can be used to parameterize the functional
bootstrap. If the plaintext polynomial TV is replaced with an RLWE ciphertext ctv, we
denote the resulting output as Boot[ctv](c) or BootRaw[ctv](c).

2.3.5 Multi-Value Bootstrap

Multi-value bootstrap enables the evaluation of multiple LUTs on the same input LWE
ciphertext with the cost of a single bootstrap [CIM19]. In this approach, the unscaled test
vector is denoted as TV′ ∈ Rp, and the goal is to compute bQp TV

′eX−(m+e), where p is
the plaintext modulus. To enable the computation of multiple LUTs, multi-value bootstrap
decomposes bQp TV

′e approximately into TV0 ·TV1, where TV0 = b Q2pe(1+X+ . . .+XN−1)
is a constant polynomial, and TV1 = TV′ − TV′ · X ∈ R2p is LUT-specific. TV0 is
first multiplied by X−(m+e) using blind rotation, and the resulting RLWE ciphertext is
multiplied by TV1, which also multiplies the output error variance by |TV1|22 ≤ p(p− 1)2.

2.3.6 BFV Multiplication

Let p be the plaintext modulus. For two RLWE ciphertexts ci = RLWEs,N,Q(Qpm
′
i + ei)

where i = 0, 1, define

BFVMult(c0, c1) = RLWEs,N,Q(Q
p
m′1m′2 + emult),

600 Fast and Accurate: Efficient FDFB and Digit Decomposition

Table 2: Symbols used in our noise analysis.
Symbol Meaning
σ2 Encryption error variance
σ2
ms Modulus-switching error variance
σ2
ks Key-switching error variance
σ2
pk PackingKS error variance, σ2

pk = σ2
ks

σ2
acc Blind-rotation error variance
σ2
com Variance of noise introduced in steps (3)∼(5) in Figure 2
σ2
boot Bootstrap error variance

bnd, β bnd =
√

2 · erfc−1(2−32) ≈ 6.338, and β = bnd · σboot
For x ∼ N(0, σ2

boot), |x| < β with high probability
p Plaintext modulus. p is an even number
q, n LWE ciphertext modulus and dimension. q is a power of 2
Q,N RLWE ciphertext modulus and dimension. N = 2q

where emult is the noise of BFV multiplication. We note that re-linearization keys are
required for BFV multiplication. See [KPZ21] for the detailed process.

2.4 Noise Introduced by the Operators
The variances of ems, eks, eacc, eboot are denoted by σ2

ms, σ
2
ks, σ

2
acc, σ2

boot respectively. Be-
sides, recall that qks is the key switching modulus in blind rotation. Bks and Bg are the
decomposition bases for key switching and blind rotation, respectively. The values of these
variances are listed in the following lemma, and the proof can be found in [MP21].

Lemma 1. Let σ2 be the variance of the encryption noise, and dg = dlogBg
Qe,

dks = dlogBks
(qks)e. Then

σ2
ms(n) = n

18 + 1
12 ,

σ2
ks(n, qks, Bks) = dks(1− 1

Bks
)n(σ2 + 1

4),

σ2
acc(n,N,Q,Bg) = 2dgB

2
gnNσ

2

3 ,
σ2
boot(n,N,Q, q,Bg, qks, Bks) = (q

qks
)2(σ2

ms(N)+σ2
ks(N, qks, Bks))+(qQ)2σ2

acc(n,N,Q,Bg)+
σ2
ms(n).

PackingKS introduces the same amount of noise as KeySwitch. Besides, we denote
σ2
com = (q

qks
)2(σ2

ms + σ2
ks) + σ2

ms as the variance of noise introduced by the last three steps
in the functional bootstrap (Figure 2).

The literature generally assumes that error introduced by homomorphic operations
follows a centered normal distribution. For a centered normal variable x ∼ N(0, σ2), its
range can be bounded by Pr[|x| > bnd · σ] < 2−32, where bnd =

√
2 · erfc−1(2−32) ≈ 6.338.

We denote the bound of bootstrapping error as β = bnd · σboot. Table 2 summarizes the
symbols used in our noise analysis.

3 Improved FDFB Algorithms
This section introduces four new FDFB algorithms. We assume that the plaintext modulus
p is a power of 2 for better presentation. Notably, changing p to any even number will not
affect the correctness or efficiency of the algorithms presented because, as we will see later,
the advantage of our algorithms comes from their slow noise growth, whose correctness
is independent of the choice of p. We assume the ciphertext modulus q = 2N is a power
of 2 and view the message as an integer modulo q in the positive form. For an LWE
ciphertext c encrypting m = q

pm
′ + e, we add q

2p to c before performing any operations

Shihe Ma, Tairong Huang, Anyu Wang(�), Qixian Zhou and Xiaoyun Wang 601

to ensure that e+ q
2p ∈ [0, qp − 1]. This will simplify the understanding of homomorphic

digit decomposition algorithms in Section 4 and is consistent with [LMP22]. To keep the
description of the FDFB algorithms concise, we focus on input arguments like the LUT F
and the input LWE ciphertext, omitting other arguments like the bootstrap key. In our
noise analysis, we assume that the input ciphertext of the FDFB algorithms has an error
variance of σ2

boot as in [LMP22]. The proof of correctness and noise analysis of the FDFB
algorithms is provided in the full version of the paper.

3.1 FDFB-Compress
This algorithm employs the Type-HalfRange strategy. Specifically, it first compresses
the coded message q

pm
′ + e ∈ Zq into the range [− q4 ,

q
4 − 1] by evaluating the negacyclic

function fC(x) : Zq → Zq via a functional bootstrap, where

fC(x) =
{

q
2p (bpqxc+ 1

2) x ∈ [0, q2 − 1]
− q

2p (bpqxc −
p
2 + 1

2) x ∈ [q2 , q − 1]
. (1)

The design of fC serves two purposes. Firstly, it maps messages encoding the same m′ to
the same value. Secondly, it ensures that the outputs of fC for different m′s are at least
q
2p apart. q

2p must be greater than 2β to prevent the bootstrapping noise from interfering
with the compressed message. In other words, the plaintext modulus p is upper bounded
by p < q

4β .
After compression, it is possible to bypass the negacyclicity constraint and evaluate an

arbitrary LUT F : Zp → Zp on the compressed message by using one functional bootstrap
to compute feval : Zq → Zq, which is defined as

feval(x) =

b qpF (b 2p

q xc)e x ∈ [0, q4 − 1]
b qpF (b 2p

q (q − x)c+ p
2)e x ∈ [3q

4 , q − 1]
−feval(x− q

2) x ∈ [q4 ,
3q
4 − 1]

. (2)

The algorithm for FDFB-Compress is fully described in Algorithm 1, with its parameter
requirements and noise analysis provided in Theorem 1.

Algorithm 1: FDFB-Compress
input :Plaintext modulus p and an LUT F : Zp → Zp
input :An LWE ciphertext (b,~a) = LWE~s,n,q(qpm

′ + e)
output :An LWE ciphertext LWE~s,n,q(qpF (m′) + eboot)

1 ct ← Boot[fC]((b+ q
2p ,~a))

2 return Boot[feval](ct)

Theorem 1. Suppose β < q
4p and |e| < q

2p , then FDFB-Compress(F,LWE~s,n,q(qpm
′ +

e)) = LWE~s,n,q(qpF (m′) + eboot) and ct in line 1 of Algorithm 1 has an error variance of
σ2
boot.

3.2 FDFB-CancelSign
This algorithm employs the Type-SelectMSB strategy. Given LWE~s,n, q

2
(q2pm

′+e), FDFB-
CancelSign first executes ModUp to obtain a ciphertext LWE~s,n,q(q2MSB + q

2pm
′ + e)

602 Fast and Accurate: Efficient FDFB and Digit Decomposition

and then performs a raw functional bootstrap to evaluate

fcs =
{
bQp F (b 2p

q xc)e x ∈ [0, q2 − 1]
−fcs(x− q

2) x ∈ [q2 , q − 1]
: Zq → ZQ (3)

and obtain a ciphertext encrypting (−1)MSBbQp F (m′)e. Finally, an LWE-to-RLWE packing
key switching and another functional bootstrap cancel the extra (−1)MSB factor. The
algorithm for FDFB-CancelSign is fully described in Algorithm 2, and its parameter
requirements and noise analysis are given in Theorem 2.

Algorithm 2: FDFB-CancelSign
input :Plaintext modulus p and an LUT F : Zp → Zp
input :Base Bpk and modulus qpk for PackingKS
input : {ksk′i,j,k}, packing keys for PackingKS with d = N
input :An LWE ciphertext (b,~a) = LWE~s,n, q

2
(q2pm

′ + e)
output :An LWE ciphertext LWE~s,n, q

2
(q2pF (m′) + e′)

1 ct← ModUp((b+ q
4p ,~a), q)

2 ct1 ← BootRaw[fcs](ct)
3 ctpk ← PackingKS(ct1, {ksk′i,j,k})
4 return Boot[ctpk](ct)

Theorem 2. Suppose |e| < q
4p and |e′| < q

4p , then FDFB-CancelSign(F,LWE~s,n, q
2
(q2pm

′+
e)) = LWE~s,n, q

2
(q2pF (m′) + e′). The output error e′ has a variance of (qQ)2(2σ2

acc + σ2
pk) +

(q
qpk

)2σ2
ms + σ2

core.ciphertext.

3.3 FDFB-Select
This algorithm employs the Type-SelectMSB strategy but does not perform the ModUp
operation as in FDFB-CancelSign. In particular, let F : Zp → Zp be an arbitrary LUT,
let ct = LWE~s,n,q(qpm

′ + e) be a ciphertext encrypting m′, and let MSB be the most
significant bit of m′. FDFB-Select first constructs two sub-LUTs from Zp/2 to Zp, which
correspond to the LUT F with MSB = 0 or MSB = 1 respectively. These two sub-LUTs
can be extended to F0, F1 : Zp → Zp to fulfill the negacyclic constraint. i.e., F0(x) = F (x)
and F1(x) = −F (x + p/2) for x ∈ [0, p/2), F0(x) = −F (x − p/2) and F1(x) = F (x) for
x ∈ [p/2, p). F0 and F1 correspond to the functions in (4) and (5).

fpos =
{
bQp F (bpqxc)e x ∈ [0, q2 − 1]
−fpos(x− q

2) x ∈ [q2 , q − 1]
: Zq → ZQ, (4)

fneg =
{
−fneg(x+ q

2) x ∈ [0, q2 − 1]
bQp F (bpqxc)e x ∈ [q2 , q − 1]

: Zq → ZQ. (5)

By evaluating these two functions on ct + q
2p using a single functional bootstrap each,

we can obtain two ciphertexts that encrypt F0(m′) and F1(m′), respectively. Additionally,
we can obtain a ciphertext encrypting MSB by evaluating function (6) on ct + q

2p using a
single functional bootstrap.

fsgn =
{
q
8 x ∈ [0, q2 − 1]
− q8 x ∈ [q2 , q]

: Zq → Zq. (6)

Shihe Ma, Tairong Huang, Anyu Wang(�), Qixian Zhou and Xiaoyun Wang 603

Finally, we use the encryption of MSB to select FMSB(m′) from Fi(m′) by a single
functional bootstrap. The algorithm for FDFB-Select is fully described in Algorithm 3,
and its parameter requirements and noise analysis are given in Theorem 3.

The first three functional bootstraps have the same input ciphertext ct, thus can be
accomplished via a single multi-value bootstrap at the cost of increased noise growth.
Therefore, when the parameter settings enable multi-value bootstrap, FDFB-Select
needs only two functional bootstraps, otherwise it requires four functional bootstraps. In
case multi-value bootstrap is unavailable, we develop a variant of FDFB-Select, called
FDFB-SelectAlt, described in Algorithm 4, which uses only three bootstraps. The
parameter requirements and noise analysis of FDFB-SelectAlt are given in Theorem 4.

Remark. We actually use an improved version of the base-aware LWE-to-RLWE packing
proposed by [GBA21] to pack ctpos and −ctneg into ctpk. To packM |N messages LWE(mi)
into RLWE(

∑M−1
i=0 mi(1+X+X2+. . .+X N

M−1)X N
M i), [GBA21] generatesM key switching

keys, with each key corresponding to an index i ∈ JMK. However, we observe that generating
the key switching key for i = 0 is sufficient since the keys for i 6= 0 can be obtained by
multiplying the key for i = 0 by X

N
M i. The storage cost of this optimized version of

PackingKS is only 1
M that of [GBA21].

Algorithm 3: FDFB-Select
input :Plaintext modulus p and an LUT F : Zp → Zp
input :Base Bpk and modulus qpk for PackingKS
input : {ksk′i,j,k}, packing keys for PackingKS with d = N

2
input :An LWE ciphertext (b,~a) = LWE~s,n,q(qpm

′ + e)
output :An LWE ciphertext LWE~s,n,q(qpF (m′) + e′)

1 ct← (b+ q
2p ,~a)

2 ctpos ← BootRaw[fpos](ct)
3 ctneg ← BootRaw[fneg](ct)
4 ctsgn ← Boot[fsgn](ct)
5 ctpk ← PackingKS(ctpos, {ksk′i,j,k}) + PackingKS(−ctneg, {ksk′i,j,k}) ·X

N
2

6 return Boot[ctpk](ctsgn)

Theorem 3. Suppose |e| < q
2p , β <

q
8 and |e′| < q

2p , then FDFB-Select(F,LWE~s,n,q(qpm
′+

e)) = LWE~s,n,q(qpF (m′) + e′). The output error e′ has a variance of (qQ)2(2σ2
acc + 2σ2

pk) +
(q
qpk

)2σ2
ms + σ2

com. Additionally, when multi-value bootstrap is employed, the variance
becomes (qQ)2((p(p− 1)2 + 1)σ2

acc + 2σ2
pk) + (q

qpk
)2σ2

ms + σ2
com.

Theorem 4. Suppose that |e| < q
2p and |e′| < q

2p , then FDFB-SelectAlt(F,LWE~s,n,q(qpm
′+

e)) = LWE~s,n,q(qpF (m′) + e′). The output error e′ has a variance of (qQ)2(3σ2
acc + σ2

ks) +
(q
qpk

)2σ2
ms + σ2

com. Additionally, when multi-value bootstrap is employed, the variance
becomes (qQ)2((6p(p− 1)2 + 1)σ2

acc + σ2
ks) + (q

qpk
)2σ2

ms + σ2
com.

3.4 FDFB-BFVMult (WoPPBS1-Refine)
This algorithm employs the Type-SelectMSB strategy but uses BFV multiplication to
handle the MSB. It contains WoPPBS1-Refine and FDFB-BFVMult.

604 Fast and Accurate: Efficient FDFB and Digit Decomposition

Algorithm 4: FDFB-SelectAlt
input :Plaintext modulus p and an LUT F : Zp → Zp
input :Base Bpk and modulus qpk for PackingKS
input : {ksk′i,j,k}, packing keys for PackingKS with d = N
input :An LWE ciphertext (b,~a) = LWE~s,n,q(qpm

′ + e)
output :An LWE ciphertext LWE~s,n,q(qpF (m′) + e′)

1 ct← (b+ q
2p ,~a)

2 cthdiff ← BootRaw[(fneg − fpos)/2](ct)
3 cthsum ← BootRaw[(fneg + fpos)/2](ct)
4 ctpk ← PackingKS(cthdiff , {ksk′i,j,k})
5 ctres ← cthsum − BootRaw[ctpk](ct)
6 ctres ← KeySwitch(ModSwitch(ctres, qks), {kski,j,k})
7 return ModSwitch(ctres, q)

The process of WoPPBS1-Refine is identical to that of WoP-PBS1, but it employs
a much tighter noise analysis, as we will demonstrate later. It first obtains a ciphertext that
encrypts (−1)MSBbQp F (m′)e in the same way as FDFB-CancelSign. Then it evaluates
the function (7) via a functional bootstrap to acquire the encryption of bQp (−1)MSBe.
Finally, it computes the product of the two LWE ciphertexts using LWE-to-RLWE packing
and BFV multiplication. The algorithm is fully described in Algorithm 5, and its parameter
requirements and noise analysis are given in Theorem 5.

fsgn1 =
{
bQp e x ∈ [0, q2 − 1]
Q− bQp e x ∈ [q2 , q − 1]

: Zq → ZQ (7)

Algorithm 5: WoPPBS1-Refine
input :Plaintext modulus p and an LUT F : Zp → Zp
input :Base Bks and modulus qks for key switching
input :Base Bpk and modulus qpk for PackingKS
input : {kski,j,k}, key switching keys
input : {ksk′i,j,k}, packing keys for PackingKS with d = 1
input :An LWE ciphertext (b,~a) = LWE~s,n, q

2
(q2pm

′ + e)
output :An LWE ciphertext LWE~s,n, q

2
(q2pF (m′) + e′)

1 ct← ModUp((b+ q
4p ,~a), q)

2 ct0 ← PackingKS(BootRaw[fcs](ct), {ksk′i,j,k})
3 ctsgn ← PackingKS(BootRaw[fsgn1](ct), {ksk′i,j,k})
4 ctprod ← SampleExtract(BFVMult(ct0, ctsgn), 0)
5 ctres ← KeySwitch(ModSwitch(ctprod, qks), {kski,j,k})
6 return ModSwitch(ctres, q2)

FDFB-BFVMult is an improved version of WoP-PBS2. Unlike WoP-PBS2, which
requires the sign bit to be multiplied with both fneg(ct) and fpos(ct), FDFB-BFVMult
only needs one BFV multiplication because the sign bit is multiplied with the fresh
ciphertext (fneg − fpos)(ct). Consequently, FDFB-BFVMult further halves the noise
growth. Specifically, FDFB-BFVMult first constructs two LUTs F0 and F1 in the same
way as FDFB-Select. Next, by using two functional bootstraps to evaluate fpos and
fneg − fpos (defined in (4) and (5)), it obtains encryptions of mpos = bQp F0(m′)e and
mdiff = bQp (F1−F0)(m′)e. Then it evaluates the function (8) via a functional bootstrap to

Shihe Ma, Tairong Huang, Anyu Wang(�), Qixian Zhou and Xiaoyun Wang 605

acquire the encryption of msgn = b− Q
2p (−1)MSBe+ b Q2pe ≈ b

Q
pMSBe Finally, it computes

MSB·mdiff+mpos ≈ bQp FMSB(m′)e using LWE-to-RLWE packing and BFV multiplication.
The algorithm is fully described in Algorithm 6, and its parameter requirements and noise
analysis are given in Theorem 6.

Since the two bootstraps in WoPPBS1-Refine (and the three bootstraps in FDFB-
BFVMult) share the same input, they can be accelerated by employing a single multi-value
bootstrap at the cost of increased noise growth.

fsgn2 =
{
Q− b Q2pe x ∈ [0, q2 − 1]
b Q2pe x ∈ [q2 , q − 1]

: Zq → ZQ (8)

Algorithm 6: FDFB-BFVMult
input :Plaintext modulus p and an LUT F : Zp → Zp
input :Base Bks and modulus qks for key switching
input :Base Bpk and modulus qpk for PackingKS
input : {kski,j,k}, key switching keys
input : {ksk′i,j,k}, packing keys for PackingKS with d = 1
input :An LWE ciphertext (b,~a) = LWE~s,n,q(qpm

′ + e)
output :An LWE ciphertext LWE~s,n,q(qpF (m′) + e′)

1 ct← (b+ q
2p ,~a)

2 ctpos ← BootRaw[fpos](ct)
3 ctdiff ← PackingKS(BootRaw[fneg − fpos](ct), {ksk′i,j,k})
4 ctsgn ← PackingKS(BootRaw[fsgn2](ct) + b Q2pe, {ksk

′
i,j,k})

5 ctprod ← SampleExtract(BFVMult(ctdiff , ctsgn), 0)
6 ctres ← ctprod + ctpos
7 ctres ← KeySwitch(ModSwitch(ctres, qks), {kski,j,k})
8 return ModSwitch(ctres, q)

Refined BFV Noise Analysis. Next, we provide a refined noise analysis for the BFV
multiplication involved in FDFB-BFVMult (WoPPBS1-Refine). Our core observation
is that in LWE-to-RLWE packing, only the constant term of the output polynomial message
is assigned the value of the input LWE message, while the coefficients of non-constant
terms are close to 0.

Lemma 2 provides a noise analysis of this kind of BFV multiplication. We note that
only the dominating term of the error variance is displayed in Lemma 2 (as well as in
Theorem 5 and Theorem 6) due to the complexity of the full formula. Refer to the full
version of the paper for the full formula and its proof.

In FDFB-BFVMult (WoPPBS1-Refine), each of the multiplicands for BFV mul-
tiplication is obtained by packing an LWE message with an error variance of σ2

acc into
the constant term of an RLWE ciphertext. This means that the constant term of the
encrypted polynomial has an error variance of σ2

acc + σ2
ks, while the error variance of

non-constant terms is σ2
ks. Note that σ2

acc and σ2
ks correspond to σ2

i and σ2′
i in Lemma 2.

In practice, σ2
acc is much larger than Nσ2

ks and one of the packed LWE messages is a sign
bit (i.e., in {0,±1}). It then follows from Lemma 2 that the output error variance is about
2p2σ2

msσ
2
acc.

On the other hand, for ordinary BFV multiplication where all terms have an error
variance of σ2

acc + σ2
ks, the output error variance is about 2Np2σ2

msσ
2
acc. This is because

the dominating noise term becomes a polynomial-polynomial multiplication and introduces
an extra factor N compared to scalar-polynomial multiplication (refer to the remark in the

606 Fast and Accurate: Efficient FDFB and Digit Decomposition

full version of the paper for details). This means the noise growth is reduced by roughly
N times compared to conventional BFV multiplication.

Lemma 2. Let ci = (bi,ai) = RLWEs,N,Q(Qpmi+ei+ei) for i = 0, 1, where ei ∼ N(0, σ2
i),

ei ∼ N(0, σ′2i)N , σ2
i � Nσ′2i andm0 ∈ {0,±1}. Then SampleExtract(BFVMult(c0, c1), 0) =

Q
pm0m1 + e and the variance of e is equal to p2σ2

ms(σ2
0 + σ2

1) approximately1.

Theorem 5. Suppose |e| < q
4p and |e′| < q

4p , thenWoPPBS1-Refine(F,LWE~s,n, q
2
(q2pm

′+
e)) = LWE~s,n, q

2
(q2pF (m′) + e′). The output error e′ has a variance of (qQ)2N

9 p
2σ2
acc+σ2

com

approximately. Additionally, when multi-value bootstrap is employed, the variance becomes
(qQ)2 N

18p
3(p− 1)2σ2

acc + σ2
com approximately.

Theorem 6. Suppose |e| < q
2p and |e′| < q

2p , then FDFB-BFVMult(F,LWE~s,n,q(qpm
′ +

e)) = LWE~s,n,q(qpF (m′) + e′). The output error e′ has a variance of (qQ)2N
9 p

2σ2
acc + σ2

com

approximately. Additionally, when multi-value bootstrap is employed, the variance becomes
(qQ)2 2N

9 p3(p− 1)2σ2
acc + σ2

com approximately.

4 Improved Homomorphic Digit Decomposition
This section presents two algorithms HomDecomp-Reduce and HomDecomp-FDFB
to decompose an LWE ciphertext with a large modulus q0 into multiple LWE ciphertexts
with a smaller modulus q, each encrypting a digit of the original message. HomDecomp-
Reduce creates buffer space for modulus switching noise by reducing the range of lower
bits by half. It can handle digits of up to 4 bits and requires one bootstrap operation per
decomposed digit. In contrast, HomDecomp-FDFB clears the lower bits approximately
and can handle digits of up to 5 bits, but it requires two bootstrap operations per digit.
We still assume q = 2N as in the previous section. In our noise analysis, we assume that
the input ciphertext of the decomposition algorithms has an error variance of σ2

boot as
in [LMP22]. Proof of theorems is left to the full version of the paper due to space limit.

4.1 HomDecomp-Reduce
In HomDecomp-Reduce, the range of lower bits is first reduced by half using one
bootstrap operation to accommodate the subsequent modulus switching noise. The
reduction function fred : Zq → Zq0 is defined in (9), with different input and output ranges.

fred =
{
q
4 x ∈ [0, q2 − 1]
q0 − q

4 x ∈ [q2 , q − 1]
: Zq → Zq0 (9)

The complete algorithm is described in Algorithm 7. Its parameter requirements and noise
analysis are given in Theorem 7.

Theorem 7. If bnd
√
B−2σ2

boot + σ2
ms <

q
4B , HomDecomp-Reduce outputs the decom-

posed digits correctly.
1Here, ‘approximately’ means that only the dominant term of the error variance is displayed, as the

full formula is quite complex. For the full formula and an explanation of the approximation, please refer
to the full version of the paper.

Shihe Ma, Tairong Huang, Anyu Wang(�), Qixian Zhou and Xiaoyun Wang 607

Algorithm 7: HomDecomp-Reduce
input :A base B for homomorphic decomposition
input :An LWE ciphertext ct = LWE~s,n,q0(q0

p m
′ + e)

output :LWE ciphertexts {cti} encrypting the digits of m′
1 i← 0
2 while q0 > q do
3 cti ← ModDown(ct, q)
4 ct← ct + (q0

2p ,
~0)

5 ct′ ← ModDown(ct, q)
6 ct← ct + Boot[fred](ct′)− (q2 ,~0)
7 ct← ModSwitch(ct, q0

B)
8 i← i+ 1
9 cti ← ct

10 return {cti}

4.2 HomDecomp-FDFB
In HomDecomp-FDFB, we use FDFB-Compress to evaluate the continuous identity
function fid(x) = x : Zq → Zq0 (using zero extension), and the obtained result is used
to approximately clear the lower bits in the input ciphertext. See Algorithm 8 for a full
description of HomDecomp-FDFB and Theorem 9 for its parameter requirements and
noise analysis.

Before beginning, we show how to evaluate a continuous function F ′ with FDFB-
Compress, where the input and output scaling factors are ∆in and ∆out respectively.
First, the compression function fC in (1) is substituted with f ′C , which is defined in (10)
and illustrated in Figure 3.

f ′C =
{
b

q
4−2β
q
2−1 x+ βe x ∈ [0, q2 − 1]

q − f ′C(x− q
2) x ∈ [q2 , q − 1]

: Zq → Zq (10)

The strategy adopted to construct f ′C is called ‘β-padding’, which creates a 2β distance
between f ′C(0) and f ′C(q2) to separate the cases where the input is 0 and q

2 . Otherwise,
the bootstrapping error may intermix the two cases, making it impossible for feval to
distinguish between them. As a result, when the input is positive and near 0, FDFB-
Compress may yield an incorrect result F ′(− q

2∆in
) instead of F ′(0). Also, f ′C(q2 − 1) and

f ′C(q − 1) must be β away from q
4 and 3q

4 respectively to ensure that the output message
of f ′C always lies within half of Zq.

The modified version of feval in (2) (which we denote as f ′eval) is rather complicated.
Intuitively f ′eval aims to recover the original input to f ′C , evaluate F ′ on the recovered
input, and subsequently scales the result by ∆out. As the evaluation of f ′C introduces
a bootstrapping error, the input recovered by f ′eval also contains a bootstrapping error
(multiplied by some constant), which means that the output error of FDFB-Compress
depends on the Lipschitz constant of F ′. The output error variance is given in Theorem 8,
and the proof can be found in the full version of the paper.

Theorem 8. When evaluating a continuous function f with Lipschitz constant L, the
output error variance of FDFB-Compress is (L

k2∆in
)2σ2

boot + ∆−2
outσ

2
boot, where k2 =

N
2 −2β
N−1 ≈

1
2 .

608 Fast and Accurate: Efficient FDFB and Digit Decomposition

Figure 3: Compression function f ′C for continuous function evaluation.

HomDecomp-FDFB sets ∆in = ∆out = 1 and F ′ = fid, which gives the following
theorem.

Theorem 9. Let ef be the output error of FDFB-Compress, then its variance is
σ2
f = (1 + k−2

2)σ2
boot. If bnd

√
B−2σ2

f + σ2
ms <

q
2B , HomDecomp-FDFB outputs the

decomposed digits correctly.

Algorithm 8: HomDecomp-FDFB
input :A base B for homomorphic decomposition
input :An LWE ciphertext ct = LWE~s,n,q0(q0

p m
′ + e)

output :LWE ciphertexts {cti} encrypting the digits of m′
1 i← 0
2 while q0 > q do
3 cti ← ModDown(ct, q)
4 ct← ct + (q0

2p ,
~0)

5 ct′ ← ModDown(ct, q)
6 ct← ct− FDFB-Compress[fid](ct′)
7 ct← ModSwitch(ct, q0

B)
8 i← i+ 1
9 cti ← ct

10 return {cti}

5 Analysis and Comparison
This section analyzes the FDFB and the homomorphic decomposition algorithms, both
previous ones and ours, concerning their noise growth and the number of required boot-
straps.

5.1 Analysis of FDFB Algorithms
Table 3 presents the error variance ratio between our and previous FDFB algorithms
and the number of bootstraps required. For Type-HalfRange FDFB algorithms (FDFB-
Compress and EvalFunc), the coded message must first be compressed into half of Zq.
Thus the error of the compressed message (e.g., the error in ct of line 1 of Algorithm 1)
plays a major role in the selection of parameters. For Type-SelectMSB FDFB algorithms
(other algorithms in Table 3), the output error plays a major role in the selection of
parameters. The dominant term of the output error variance is the σ2

acc-term for most

Shihe Ma, Tairong Huang, Anyu Wang(�), Qixian Zhou and Xiaoyun Wang 609

Table 3: Comparison of previous and our FDFB algorithms regarding their noise growth
and the number of bootstraps required.

Ours Previous Error Var Ratio Num of BTS
(Ours/Prev) (Prev→Ours)

FDFB-Compress EvalFunc [LMP22] 1/2 2→ 2
FDFB-CancelSign WoP-PBS1 [CLOT21] 18/N2p2 2→ 2
WoPPBS1-Refine 1/N 2→ 2
FDFB-Select 9/N2p2 3→ 4

FDFB-SelectAlt WoP-PBS2 [CLOT21] 27/2N2p2 3→ 3
FDFB-BFVMult 1/N 3→ 3
WoPPBS1-Refine∗ WoP-PBS∗1 [CLOT21] 1/N 1→ 1
FDFB-Select∗ 9/2N2p2 1→ 2

FDFB-SelectAlt∗ WoP-PBS∗2 [CLOT21] 27/N2p2 1→ 2
FDFB-BFVMult∗ 1/N 1→ 1
∗ FDFB algorithms that use multi-value bootstrap.

algorithms (refer to the full version of the paper for the formula of the output error
variance of all algorithms). Thus, in the table, the first row of the ratio column represents
the ratio of the error variances of the compressed message. The remaining rows of the
ratio column represent the ratios of the σ2

acc-terms of the output error variance. For
FDFB-CancelSign, FDFB-Select and FDFB-SelectAlt, the ratios of the output
error variance can be a small multiple of the displayed ones. For other algorithms, the
output error variance ratios are very close to the displayed ones since the σ2

acc-term is
dominant.

As stated earlier, the efficiency of an FDFB algorithm is not solely determined by the
number of bootstraps it requires. The error variances also impact the compactness of
parameters and thus affect the final efficiency. As shown in Table 3, the main advantage of
our FDFB algorithms is their reduced noise growth. This allows for the selection of larger
decomposition bases during blind rotation, resulting in a reduction in the decomposition
dimension (denoted by l as described in Section 2.2.2). Since the number of NTTs required
for a blind rotation is proportional to (l + 1), our algorithms achieve better performance.
To be more specific:
• FDFB-Compress reduces the error variance of the compressed message by half,

resulting in a more relaxed parameter choice than EvalFunc.
• FDFB-CancelSign, FDFB-Select, FDFB-SelectAlt and their multi-value boot-

strap variants use LWE-to-RLWE packing and blind rotation instead of BFV multiplication.
This reduces the noise to O(1/N2p2) that of WoP-PBS. Although our algorithms require
an additional bootstrap to replace the BFV multiplication, we demonstrate in Section 6
that they are still faster than WoP-PBS in most cases due to their slower noise growth.
•WoPPBS1-Refine and FDFB-BFVMult use significantly tighter noise analysis

for BFV multiplication than WoP-PBS1 and WoP-PBS2, reducing the noise growth to
1/N the original value.

The Optimality of FDFB-Compress. We observe that FDFB-Compress achieves opti-
mality among Type-HalfRange algorithms. Recall that Type-HalfRange first uses functional
bootstraps to transform the coded message q

pm
′ + e ∈ Zq into φ(m′) + ẽ ∈ U ⊆ Zq and

then evaluate the LUT with another functional bootstrap, where φ is an arbitrary map,
U satisfies U ∩ (U + q

2) = ∅ to bypass the negacyclic constraint, and ẽ has a variance
of at least σ2

ẽ ≥ σ2
boot. Additionally, to ensure the correctness of evaluation, m′ must be

reconstructible from m̃+ ẽ, i.e., there is a map λ from U to Zp such that λ(φ(m′)+ ẽ) = m′

610 Fast and Accurate: Efficient FDFB and Digit Decomposition

Table 4: Comparison of previous and our homomorphic decomposition algorithms.
Ours HomDecomp-Reduce HomDecomp-FDFB

Previous HomFloor [LMP22] HomFloorAlt [LMP22]
Number of BTS
(Previous→Ours) 2→ 1 3→ 2

Constraints of
Previous Methods

Cannot decompose extracted
CKKS ciphertexts q > 8

√
2β

for any m′ ∈ Zp and any |ẽ| < bnd · σẽ.
Thus, on the one hand, FDFB-Compress achieves the minimum number of bootstraps

required for Type-HalfRange (i.e., 2). On the other hand, since φ(m′) + ẽ ∈ λ−1(m′),
by the pigeonhole principle there exists an m′ ∈ Zp such that |λ−1(m′)| ≤ |U |

p ≤
q
2p ,

implying q
2p > 2 · bnd · σẽ ≥ 2β. This requires β < q

4p , which is also the only requirement
for FDFB-Compress. This means that FDFB-Compress achieves the most compact
parameter choice among Type-HalfRange algorithms, thus achieving optimality.

5.2 Analysis of Homomorphic Decomposition
Table 4 compares the number of bootstraps needed for previous and our homomorphic
digit decomposition algorithms. Algorithms in the same row of the table share the
same digit decomposition base B (i.e., their decomposed digits have the same plaintext
modulus). According to the table, our algorithms need one less bootstrap than previous
algorithms in [LMP22]. HomFloor requires that the input ciphertext encodes a discrete
plaintext with small noise, which ensures a gap between two adjacent encoded messages to
accommodate the noise introduced by subsequent bootstraps. Since an extracted CKKS
ciphertext encodes messages continuously without any gaps, HomFloor cannot be applied
to decompose it. Also, HomFloorAlt has an extra constraint for the ciphertext modulus.
In contrast, our methods are free of these constraints, making them more flexible than
previous methods. The full version of the paper provides a theoretical analysis of the noise
growth and parameter choice.

6 Implementation
We implement all the FDFB algorithms and homomorphic decomposition algorithms,
including both previous ones and ours, in OpenFHE [BBB+22] (commit id 745a492). We
disable multi-threading, except during key generation. We build OpenFHE using the g++
compiler of version 12.2.1 with flag WITH_NATIVEOPT=ON (as the authors did in [LMP22]).
The performance of algorithms is tested on a machine with Intel(R) Xeon(R) Gold 6248R
CPU @ 3.00GHz and 125G of RAM, running Fedora Release 36.

Parameter Setting. We use two parameter sets in our LWE schemes, i.e., PARAMdecomp
and PARAMfast, which have been verified to meet 128-bit security using lattice-
estimator [APS15] (commit id 48fa49b). Table 5 presents the details of these parameter

Table 5: Parameter sets for LWE scheme and their use cases.
LWE Param Sets n qks Use Cases
PARAMdecomp 1340 235 HomDecomp, Discrete FDFB
PARAMfast 760 220 Discrete FDFB

Shihe Ma, Tairong Huang, Anyu Wang(�), Qixian Zhou and Xiaoyun Wang 611

Table 6: Running time of previous and our FDFB algorithms under four scenarios (A to D).
Each running time is obtained by averaging over 100 tests and is measured in milliseconds
(ms). For each scenario, the best algorithms from previous works and this paper are
marked in blue and red, respectively. A ‘/’ indicates that the algorithm is unavailable in
that scenario because the plaintext modulus p exceeds its parameter requirements.

Algorithm PARAMdecomp PARAMfast
A: p = 24 B: p = 25 C: p = 24 D: p = 25

EvalFunc / / 598 /
WoP-PBS∗1 1160 / 682 /
WoP-PBS∗2 1200 1930 735 942
FDFB-KS 5360 6340 2940 3110
Comp∗ 1580 1760 897 985

FDFB-Compress 1050 / 598 /
FDFB-CancelSign 1060 / 611 /
FDFB-Select∗ 1260 1250 621 724

FDFB-SelectAlt∗ 1240 1250 717 718
WoPPBS1-Refine∗ 777 / 458 /
FDFB-BFVMult∗ 785 1150 458 573

sets, and we briefly explain the selection criteria of qks below since n can be determined
from qks. For PARAMdecomp, the maximum ciphertext modulus is set to 235 such that
the ciphertext to be digit-decomposed has a large modulus. This choice for qks is also
consistent with [LMP22]. For PARAMfast, we focus on FDFB algorithms for discrete
LUTs. Thus qks can be set to a smaller value to accelerate FDFB. However, if qks is
too small, it may lead to large key switching noise, corrupting the correctness of FDFB.
Therefore, we set qks = 220 in PARAMfast.

The performance of discrete LUT evaluation with FDFB variants is tested with the
plaintext modulus set to 24 and 25. To ensure fair comparisons, we have only recorded
the best performance among the parameters for FDFB variants with multiple parameter
choices (e.g., multi-value or not). In our experiments, the multi-value versions usually run
faster than the non-multi-value ones. Thus, the multi-value versions of most algorithms
are recorded.

Please refer to the full version of the paper for a complete list of the parameters used
in the benchmarks.

Performance of FDFB Algorithms. Table 6 shows the running time of previous and our
FDFB algorithms under four scenarios (two parameter sets × two choices of p). We can
draw the following conclusions from the benchmark data.

First, the experiment data validate our algorithms’ advantage over their predecessors,
as suggested theoretically in Section 5. To be more specific:
• FDFB-Compress can support p = 24 in scenario A while EvalFunc cannot because

the former benefits from a reduced error variance of the compressed message. In fact,
EvalFunc would need to double the RLWE dimension N to support p = 24, which leads
to worse efficiency.
• FDFB-CancelSign shows a speedup of 8.6%∼10.4% compared to WoP-PBS∗1,

even though it requires one additional bootstrap and does not use multi-value bootstrap
for acceleration. This is due to the slower noise growth of FDFB-CancelSign, which
allows for the choice of a larger decomposition base Bg in blind rotation, resulting in
improved performance. On the other hand, FDFB-Select∗ and FDFB-SelectAlt∗ have
similar running time to WoP-PBS∗2 in scenarios A & C and are 23.1%∼35.2% faster than
WoP-PBS∗2 in scenarios B & D. This advantage grows with p, as a larger p results in less

612 Fast and Accurate: Efficient FDFB and Digit Decomposition

14 16 18 20 22 24 26 28
log2(q0)

1000

2000

3000

4000

5000

6000

Ti
m

e
(m

s)

HomFloor
HomFloorAlt
HomDecomp-Reduce
HomDecomp-FDFB

Figure 4: The "running time"-"input precision" graph for previous (blue) and our (red)
homomorphic digit decomposition algorithms under PARAMdecomp.

tolerance for homomorphic noise and forces prior methods to use smaller Bg, degrading
their performance.
•WoPPBS1-Refine∗ is 32.8%∼33.0% faster thanWoP-PBS∗1 and FDFB-BFVMult∗

is 37.7%∼40.4% faster than WoP-PBS∗2. Again, such performance improvement benefits
from the choice of a larger Bg, which is possible due to the algorithms’ reduced noise
growth.

Second, when comparing the fastest algorithms from previous works and our algorithms,
we observe a 23.4%∼39.2% reduction in running time across all four scenarios (see Table 7).
Among our algorithms, FDFB-BFVMult∗ is the fastest or very close to the fastest in all
the scenarios. However, it does not render our other algorithms obsolete because (1) they
support the addition of more bootstrapped ciphertexts since they have smaller output error
than FDFB-BFVMult (WoPPBS1-Refine); (2) they are useful for smaller RLWE
dimensions, where BFV-based FDFB methods might be unavailable.

Performance of Homomorphic Digit Decomposition. Figure 4 illustrates the perfor-
mance of different homomorphic decomposition algorithms (the raw data can be found
in the full version of the paper). Data for B = 24 are drawn in solid lines, while data
for B = 25 are drawn in dashed lines. For all choices of log2(q0), HomDecomp-Reduce
runs roughly twice as fast as HomFloor, and HomDecomp-FDFB runs roughly at 1.5
times the speed of HomFloorAlt. Such speedup in homomorphic decomposition directly
leads to speedup in the large-precision sign/ReLU/max/ABS evaluation, as they all require
extracting the MSB of the input message.

Table 7: Performance improvement of our FDFB algorithms.
Scenario in Table 6 A B C D

Best Running Time (Old, ms) 1160 1760 598 942
Best Running Time (New, ms) 777 1150 458 573
Reduction in Running Time 33.0% 34.7% 23.4% 39.2%

Shihe Ma, Tairong Huang, Anyu Wang(�), Qixian Zhou and Xiaoyun Wang 613

7 Conclusion
This paper develops four FDFB algorithms and two homomorphic decomposition algorithms.
Our FDFB algorithms achieve a running time shorter than the best known results by up
to 39.2%. Our homomorphic decomposition algorithms run 1.5x to 2x as fast as those
presented in [LMP22], leading to speedup in large-precision ReLU, sign, max and ABS
evaluation. We give a thorough theoretical noise analysis for FDFB and homomorphic
decomposition algorithms, both in prior works and ours. We also implement all the
algorithms in OpenFHE for a fair comparison between them.

Acknowledgments
This work is supported by the National Key R&D Program of China (2018YFA0704701,
2020YFA0309705), Shandong Key Research and Development Program (2020ZLYS09),
the Major Scientific and Technological Innovation Project of Shandong, China
(2019JZZY010133), the Major Program of Guangdong Basic and Applied Research
(2019B030302008), and Tsinghua University Dushi Program.

References
[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness

of Learning with Errors. Journal of Mathematical Cryptology, 9(3):169–203,
2015.

[BBB+22] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins,
Saroja Erabelli, Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey Kim,
Yongwoo Lee, Zeyu Liu, Daniele Micciancio, Ian Quah, Yuriy Polyakov,
Saraswathy R.V., Kurt Rohloff, Jonathan Saylor, Dmitriy Suponitsky,
Matthew Triplett, Vinod Vaikuntanathan, and Vincent Zucca. OpenFHE:
Open-Source Fully Homomorphic Encryption Library. Cryptology ePrint
Archive, Paper 2022/915, 2022. https://eprint.iacr.org/2022/915.

[BGGJ20] Christina Boura, Nicolas Gama, Mariya Georgieva, and Dimitar Jetchev.
CHIMERA: Combining Ring-LWE-based Fully Homomorphic Encryption
Schemes. Journal of Mathematical Cryptology, 14(1):316–338, 2020.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) Fully
Homomorphic Encryption without Bootstrapping. ACM Trans. Comput.
Theory, 6(3), July 2014.

[BIP+22] Charlotte Bonte, Ilia Iliashenko, Jeongeun Park, Hilder V. L. Pereira, and
Nigel P. Smart. FINAL: Faster FHE Instantiated with NTRU and LWE.
In Shweta Agrawal and Dongdai Lin, editors, Advances in Cryptology –
ASIACRYPT 2022, pages 188–215, Cham, 2022. Springer Nature Switzerland.

[BMMP18] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier.
Fast Homomorphic Evaluation of Deep Discretized Neural Networks. In
Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptol-
ogy – CRYPTO 2018, pages 483–512, Cham, 2018. Springer International
Publishing.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
TFHE: Fast Fully Homomorphic Encryption Over the Torus. Journal of
Cryptology, 33(1):34–91, 2020.

https://eprint.iacr.org/2022/915

614 Fast and Accurate: Efficient FDFB and Digit Decomposition

[CHLR18] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI from
Fully Homomorphic Encryption with Malicious Security. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’18, page 1223–1237, New York, NY, USA, 2018. Association
for Computing Machinery.

[CIM19] Sergiu Carpov, Malika Izabachène, and Victor Mollimard. New Techniques
for Multi-value Input Homomorphic Evaluation and Applications. In Mitsuru
Matsui, editor, Topics in Cryptology – CT-RSA 2019, pages 106–126, Cham,
2019. Springer International Publishing.

[CJP21] Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable Bootstrapping
Enables Efficient Homomorphic Inference of Deep Neural Networks. In Shlomi
Dolev, Oded Margalit, Benny Pinkas, and Alexander Schwarzmann, editors,
Cyber Security Cryptography and Machine Learning, pages 1–19, Cham, 2021.
Springer International Publishing.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic
Encryption for Arithmetic of Approximate Numbers. In Tsuyoshi Takagi and
Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017, pages
409–437, Cham, 2017. Springer International Publishing.

[CLOT21] Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Im-
proved Programmable Bootstrapping with Larger Precision and Efficient
Arithmetic Circuits for TFHE. In Mehdi Tibouchi and Huaxiong Wang,
editors, Advances in Cryptology – ASIACRYPT 2021, pages 670–699, Cham,
2021. Springer International Publishing.

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast Private Set Intersection from
Homomorphic Encryption. In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’17, page 1243–1255,
New York, NY, USA, 2017. Association for Computing Machinery.

[CMdG+21] Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai,
Ilia Iliashenko, Kim Laine, and Michael Rosenberg. Labeled PSI from Ho-
momorphic Encryption with Reduced Computation and Communication. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’21, page 1135–1150, New York, NY, USA, 2021.
Association for Computing Machinery.

[CZ22] Olive Chakraborty and Martin Zuber. Efficient and Accurate Homomorphic
Comparisons. In Proceedings of the 10th Workshop on Encrypted Computing
& Applied Homomorphic Cryptography, WAHC’22, page 35–46, New York,
NY, USA, 2022. Association for Computing Machinery.

[CZB+22] Pierre-Emmanuel Clet, Martin Zuber, Aymen Boudguiga, Renaud Sirdey,
and Cédric Gouy-Pailler. Putting up the swiss army knife of homomorphic
calculations by means of TFHE functional bootstrapping. Cryptology ePrint
Archive, Paper 2022/149, 2022. https://eprint.iacr.org/2022/149.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping Homomorphic
Encryption in Less Than a Second. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology – EUROCRYPT 2015, pages 617–640, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

https://eprint.iacr.org/2022/149

Shihe Ma, Tairong Huang, Anyu Wang(�), Qixian Zhou and Xiaoyun Wang 615

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homo-
morphic Encryption. Cryptology ePrint Archive, Paper 2012/144, 2012.
https://eprint.iacr.org/2012/144.

[GBA21] Antonio Guimarães, Edson Borin, and Diego F. Aranha. Revisiting the func-
tional bootstrap in TFHE. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2021(2):229–253, February 2021.

[GBA22] Antonio Guimarães, Edson Borin, and Diego F. Aranha. MOSFHET: Opti-
mized Software for FHE over the Torus. Cryptology ePrint Archive, Paper
2022/515, 2022. https://eprint.iacr.org/2022/515.

[Gen09] Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In
Proceedings of the Forty-First Annual ACM Symposium on Theory of Com-
puting, STOC ’09, page 169–178, New York, NY, USA, 2009. Association for
Computing Machinery.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic Encryption
from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,
Attribute-Based. In Ran Canetti and Juan A. Garay, editors, Advances in
Cryptology – CRYPTO 2013, pages 75–92, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[Klu22] Kamil Kluczniak. NTRU-v-Um: Secure Fully Homomorphic Encryption from
NTRU with Small Modulus. In Proceedings of the 2022 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’22, page 1783–1797,
New York, NY, USA, 2022. Association for Computing Machinery.

[KPZ21] Andrey Kim, Yuriy Polyakov, and Vincent Zucca. Revisiting Homomorphic
Encryption Schemes for Finite Fields. In Mehdi Tibouchi and Huaxiong
Wang, editors, Advances in Cryptology – ASIACRYPT 2021, pages 608–639,
Cham, 2021. Springer International Publishing.

[KS22] Kamil Kluczniak and Leonard Schild. FDFB: Full Domain Functional Boot-
strapping Towards Practical Fully Homomorphic Encryption. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2023(1):501–537,
Nov. 2022.

[KSK+18] Andrey Kim, Yongsoo Song, Miran Kim, Keewoo Lee, and Jung Hee Cheon.
Logistic regression model training based on the approximate homomorphic
encryption. BMC Medical Genomics, 11(4):83, October 2018.

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-Fly
Multiparty Computation on the Cloud via Multikey Fully Homomorphic
Encryption. In Proceedings of the Forty-Fourth Annual ACM Symposium on
Theory of Computing, STOC ’12, page 1219–1234, New York, NY, USA, 2012.
Association for Computing Machinery.

[LHH+21] Wen-jie Lu, Zhicong Huang, Cheng Hong, Yiping Ma, and Hunter Qu. PEGA-
SUS: Bridging Polynomial and Non-polynomial Evaluations in Homomorphic
Encryption. In 2021 IEEE Symposium on Security and Privacy (SP), pages
1057–1073, 2021.

[LKL+22] Joon-Woo Lee, Hyungchul Kang, Yongwoo Lee, Woosuk Choi, Jieun Eom,
Maxim Deryabin, Eunsang Lee, Junghyun Lee, Donghoon Yoo, Young-Sik
Kim, and Jong-Seon No. Privacy-Preserving Machine Learning With Fully
Homomorphic Encryption for Deep Neural Network. IEEE Access, 10:30039–
30054, 2022.

https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2022/515

616 Fast and Accurate: Efficient FDFB and Digit Decomposition

[LMP22] Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov. Large-Precision Homo-
morphic Sign Evaluation Using FHEW/TFHE Bootstrapping. In Shweta
Agrawal and Dongdai Lin, editors, Advances in Cryptology – ASIACRYPT
2022, pages 130–160, Cham, 2022. Springer Nature Switzerland.

[LW23a] Feng-Hao Liu and Han Wang. Batch Bootstrapping I: A New Framework for
SIMD Bootstrapping in Polynomial Modulus. In Carmit Hazay and Martijn
Stam, editors, Advances in Cryptology – EUROCRYPT 2023, pages 321–352,
Cham, 2023. Springer Nature Switzerland.

[LW23b] Feng-Hao Liu and Han Wang. Batch Bootstrapping II: Bootstrapping in
Polynomial Modulus only Requires Õ(1) FHE Multiplications in Amortiza-
tion. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology –
EUROCRYPT 2023, pages 353–384, Cham, 2023. Springer Nature Switzer-
land.

[LY23] Kang Hoon Lee and Ji Won Yoon. Discretization Error Reduction for High
Precision Torus Fully Homomorphic Encryption. In Alexandra Boldyreva and
Vladimir Kolesnikov, editors, Public-Key Cryptography – PKC 2023, pages
33–62, Cham, 2023. Springer Nature Switzerland.

[MP21] Daniele Micciancio and Yuriy Polyakov. Bootstrapping in FHEW-like Cryp-
tosystems. In Proceedings of the 9th on Workshop on Encrypted Computing
& Applied Homomorphic Cryptography, WAHC ’21, page 17–28, New York,
NY, USA, 2021. Association for Computing Machinery.

[PKS+19] Sungjoon Park, Minsu Kim, Seokjun Seo, Seungwan Hong, Kyoohyung Han,
Keewoo Lee, Jung Hee Cheon, and Sun Kim. A secure SNP panel scheme
using homomorphically encrypted K-mers without SNP calling on the user
side. BMC Genomics, 20(2):188, April 2019.

[YXS+21] Zhaomin Yang, Xiang Xie, Huajie Shen, Shiying Chen, and Jun Zhou.
TOTA: Fully Homomorphic Encryption with Smaller Parameters and Stronger
Security. Cryptology ePrint Archive, Paper 2021/1347, 2021. https:
//eprint.iacr.org/2021/1347.

https://eprint.iacr.org/2021/1347
https://eprint.iacr.org/2021/1347

	Introduction
	Our Contributions
	Related Works
	Overview of Our Algorithms

	Preliminaries
	Notations
	FHEW/TFHE Encryption Schemes
	Homomorphic Operators
	Noise Introduced by the Operators

	Improved FDFB Algorithms
	FDFB-Compress
	FDFB-CancelSign
	FDFB-Select
	FDFB-BFVMult (WoPPBS1-Refine)

	Improved Homomorphic Digit Decomposition
	HomDecomp-Reduce
	HomDecomp-FDFB

	Analysis and Comparison
	Analysis of FDFB Algorithms
	Analysis of Homomorphic Decomposition

	Implementation
	Conclusion

