
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 1, pp. 563–591. DOI:10.46586/tches.v2024.i1.563-591

Faster Bootstrapping via Modulus Raising and
Composite NTT

Zhihao Li1,2, Ying Liu1,2, Xianhui Lu1,2(�), Ruida Wang1,2, Benqiang Wei1,2,
Chunling Chen1,2 and Kunpeng Wang1,2

1 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese
Academy of Sciences, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
{lizhihao,luxianhui}@iie.ac.cn

Abstract. FHEW-like schemes utilize exact gadget decomposition to reduce error
growth and ensure that the bootstrapping incurs only polynomial error growth. How-
ever, the exact gadget decomposition method requires higher computation complexity
and larger memory storage. In this paper, we improve the efficiency of the FHEW-
like schemes by utilizing the composite NTT that performs the Number Theoretic
Transform (NTT) with a composite modulus. Specifically, based on the composite
NTT, we integrate modulus raising and gadget decomposition in the external product,
which reduces the number of NTTs required in the blind rotation from 2(dg + 1)n to
2(ddg/2e+ 1)n. Furthermore, we develop a modulus packing technique that uses the
Chinese Remainder Theorem (CRT) and composite NTT to bootstrap multiple LWE
ciphertexts through one blind rotation process.
We implement the bootstrapping algorithms and evaluate the performance on various
benchmark computations using both binary and ternary secret keys. Our results
of the single bootstrapping process indicate that the proposed approach achieves
speedups of up to 1.7 ×, and reduces the size of the blind rotation key by 50% under
specific parameters. Finally, we instantiate two ciphertexts in the packing procedure,
and the experimental results show that our technique is around 1.5 × faster than the
two bootstrapping processes under the 127-bit security level.
Keywords: Gadget decomposition · Composite NTT · External Product · Modulus
Raising · Packing

1 Introduction
Homomorphic encryption (HE) is a prospective cryptographic primitive that performs arbi-
trary computation on ciphertexts without access to the secret key. Due to its confidentiality,
HE schemes have emerged as a core technology for applications such as privacy-preserving
cloud computations [MSM+22]. The first fully homomorphic encryption scheme was
proposed by Gentry [Gen09] in 2009, and since then, the field has seen significant progress.
The common FHE schemes are typically divided into three classes based on the data types:
BGV and BFV schemes for modular arithmetic over finite fields, which are usually used
for small integer computations [BGV14, Bra12, FV12]; CKKS scheme for approximate
computations over real and complex numbers [CKKS17, CHK+18]; FHEW and TFHE
schemes for evaluating boolean circuits, which are well-suited for comparisons and decision
diagram computations [DM15, CGGI16].

Nowadays, these homomorphic encryption schemes are based on the (Ring) Learning
With Errors assumptions, where a small amount of error (noise) is introduced to the
encrypted message in the encryption process. However, the error can accumulate during

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-07-15 Accepted: 2023-09-15 Published: 2023-12-04

https://doi.org/10.46586/tches.v2024.i1.563-591
mailto:lizhihao@iie.ac.cn,luxianhui@iie.ac.cn
http://creativecommons.org/licenses/by/4.0/

564 Faster Bootstrapping via Modulus Raising and Composite NTT

circuit evaluations and even corrupt the plaintext if it exceeds a certain threshold. As a
result, managing noise effectively has become a central concern in the design of FHE schemes.
At present, there exist two popular methods for reducing error in FHE schemes. The first
method is gadget decomposition, including digit decomposition and RNS decomposition,
in which an element is broken down into smaller digits. Although this approach can reduce
noise, it suffers from efficiency bottlenecks due to its quadratic growth. Modulus raising,
introduced by Gentry et al. [GHS12], offers a more efficient alternative compared to gadget
decomposition. However, a larger ciphertext modulus is required in the HE cryptosystem,
which may reduce the security level of the scheme. Thus, some works [KPZ21a, CCH+22]
explore a hybrid method that combines the advantages of both gadget decomposition and
modulus switching to achieve a balance between noise control and security level.

Furthermore, choosing an appropriate ciphertext modulus is also crucial in FHE schemes
since it determines the upper bound on the noise level that the scheme can tolerate during
the computation. A sufficiently large ciphertext modulus must be chosen in advance to
account for noise growth during calculation, or a bootstrapping procedure must be used to
reset the noise and keeps the modulus within a reasonable range. FHEW [DM15, MP21]
and TFHE [CGGI16, CGGI20] schemes typically use the latter strategy and are known
for efficient bootstrapping. Their efficiency is mainly due to the small ciphertext modulus,
which allows for the use of CPU native types to represent ciphertexts in both the coefficient
representation and Discrete Fourier Transform (DFT) representation. Specifically, the
two schemes follow the same bootstrapping framework, which involves the homomorphic
decryption of an LWE ciphertext through a blind rotation procedure. However, there
are some differences in terms of their underlying algebraic structures and implementation
details.

The TFHE scheme typically relies on the real torus T, which is the set of real numbers
modulo 1, represented as the interval [0, 1). In practice, torus elements are not represented
with an infinite number of digits but instead approximated to a finite precision. At
the level of implementation of the algorithm, the TFHE scheme usually utilizes 32 or
64 bits data to represent the ciphertext modulus in TFHE-lib [CGGI20] and TFHE-rs
[BSJJ22], which offers the advantage of performing modulo operations for free based on
the data type. However, this set can only utilize the Fast Fourier Transform (FFT) to
accelerate polynomial multiplication. On the other hand, the choice of ciphertext modulus
in the FHEW-like schemes is more flexible. Typically, the modulus can be set to a prime
number, which enables it to perform more homomorphic operations than powers-of-two.
For instance, the trace operation [CDKS21] requires the polynomial dimension and the
modulus to be coprime. In scenarios like this case, the NTT outperforms the FFT in terms
of efficiency.

These original FHEW and TFHE schemes focus on bootstrapping single LWE ciphertext.
Micciancio et al. [MS18] proposed a novel refreshing procedure that can simultaneously
refresh multiple LWE ciphertexts, which makes it more suitable for practical applications.
Building upon this, subsequent works, such as [LW23a] and [LW23b], have significantly
improved the asymptotic cost per gate bootstrap to homomorphic multiplications. It is
worth noting that these schemes heavily rely on certain algebraic structures, and therefore,
these works are all designed based on FHEW-like schemes.

1.1 Contributions and Techniques
In this paper, we focus on the FHEW-like bootstrapping and use composite NTT to
optimize and improve the blind rotation procedure.

Composite NTT. The methods for performing NTT using composite moduli can be
categorized into different strategies. we analyze these mathematical principles for these
methods and investigate the computational environments and tasks associated with HE in

Zhihao Li et al. 565

which they are best suited. We provide a proof for the approach [HP22] that constructs
the root for the composite NTT, and extend this method to encompass multiple moduli,
enhancing its versatility and applicability.

Reduce the number of NTTs in blind rotation. Based on the composite NTT, we
present two more flexible and improved variants of the external product. In the first method,
the RGSW ciphertext is represented as RLWEPQ(Psm) and RLWEPQ(Pm) ciphertexts,
where s is the secret key, m is the massage, and P is a temporary modulus. The new
external product between RLWE and RGSW ciphertexts is⌊

a · RLWEPQ(Psm) + b · RLWEPQ(Pm)
P

⌉
,

where the division is performed to reduce error growth. We also integrate the modulus
raising, digit decomposition, and RNS decomposition in the hybrid method, which can
further reduce noise by the decomposition. Compared to the 2(dg+1)n of NTTs required for
gadget decomposition, our methods only involve 2(ddg/2e+ 1)n in GINX-based [CGGI16]
blind rotation. Furthermore, we show that the proposed techniques can accelerate the
blind rotation based on the AP [DM15], and LMK [LMK+23] methods in FHEW-like
schemes.

Composite NTT-based packing bootstrapping. We introduce a novel packing boot-
strapping algorithm for FHEW-like schemes. In particular, we can use CRT to pack some
independent accumulators into one large composite modulus. By performing the composite
NTT, these accumulators only need to perform one external product operation with a large
modulus in each CMux gate. We remark that this technique gains from the application
of composite NTT and does not apply the FFT-based TFHE scheme. Our approach
offers adaptable deployment capabilities for platforms that implement various machine
word lengths, especially hardware-accelerated architectures (i.e., the state-of-the-art ASIC
accelerator SHARP [KKC+23]). Finally, we implement the above methods and provide
some comparisons and analyses.

Table 1: Comparison of GINX blind rotation with different external products, where
GD is the gadget decomposition, MR is the modulus raising, and HY is the hybrid
method. In operation counts, NTT is the Number Theoretic Transforms, HM is the
Hadamard Multiplication, and GDP and DRP are the gadget decomposition and division
and rounding for polynomials, respectively, where dg, d′g(dg > d′g) are the length of the
gadget decomposition.

Methods # Operations

GD Binary 2(dg + 1)n NTTs + 2n GDPs + (4dg + 2)n HMs
Ternary 2(dg + 1)n NTTs + 2n GDPs + (8dg + 4)n HMs

MR Binary 4n NTTs + 2n DRPs + 6n HMs
Ternary 4n NTTs + 2n DRPs + 12n HMs

HY Binary 2(d′g + 1)n NTTs + 2n GDPs + 2n DRPs + (4d′g + 2)n HMs
Ternary 2(d′g + 1)n NTTs + 2n GDPs + 2n DRPs + (8d′g + 4)n HMs

Performance Comparison and Implementation.

• We comprehensively analyze the proposed bootstrapping algorithm under different
parameters, including the variance of noise growth, computational complexity, and

566 Faster Bootstrapping via Modulus Raising and Composite NTT

decryption failure rate. We summarize the number of operations required in the
blind rotation process for different methods in Table 1.

• Compared to exact decomposition in FHEW-likes schemes, our bootstrapping algo-
rithm reduces the key sizes by 50% for blind rotation and achieves a speedup of up
to 1.7 × compared to gadget decomposition.

• We implement the packing bootstrapping algorithm that bootstraps two LWE
ciphertexts within 64 bits of CPU machine word lengths. The result shows that the
proposed method is 1.5 × faster than the two bootstrapping processes.

1.2 Related Work
Number Theoretic Transform (NTT), Fast Fourier Transform (FFT), and Toom–Cook
multiplication can be used to efficiently perform polynomial multiplication. The NTT
algorithm needs to satisfy that Q ≡ 1 (mod 2N), which guarantees the existence of
the 2N -th primitive root of unity. Regarding other NTT-unfriendly rings, Chung et al.
[CHK+21] propose that one can lift the polynomial ring to a larger NTT-friendly ring that
covers all results without modular reduction. Compared to Toom–Cook multiplication,
this method can improve the efficiency for unprotected Saber implementations on the
Cortex-M4. After that, Abdulrahman et al. [ACC+21] note that the implementation for
[CHK+21] has a large memory footprint. The method [ACC+21] utilized multi-moduli
NTTs to enable a very stack-efficient implementation competitive in memory usage. In
terms of composite NTT, Heinz et al. [HP22] also propose a method to construct the root
for the composite NTT. However, their work lacks conclusive proof and does not consider
the scenario of multiple moduli.

Despite the advantages of NTT and FFT, it is incompatible with the noise control
methodology since modulus switching is involved in gadget decomposition and modulus
raising. Therefore, frequent switching of data form between the coefficient representation
and DFT representation is required during the homomorphic encryption algorithm, which
also leads to the consumption of a large number of computational resources [JLK+21].
Recently, Kim et al. [KLSS23] accelerated the key-switching in the Full-RNS setting
for the CKKS scheme, which introduces a second gadget decomposition to reduce NTT
computations. This work focuses on the multi-precision modulus, and the benefits do not
appear to be evident in the RNS-based FHEW-like schemes.

The blind rotation procedure in FHEW and TFHE bootstrapping can homomorphically
compute the RLWE ciphertext of X

∑n
i=0 aisi , which needs massive NTTs or FFTs, and

Hadamard multiplications. Currently, there are three strategies for performing blind
rotation: the AP method [ASP14, DM15] using ai as a selector to pick all the evaluation
keys that encrypt E(a · si), and these are accumulated by the external product; and
the GINX method [CGGI16] that homomorphically performs CMux gate, which is more
effective for binary and ternary secret key distributions; and the LMK method [LMK+23]
that uses the ring automorphisms and RLWE-based key switching technique to support
the arbitrary distribution of secret keys, which is subsequently used by [DMKMS23] to
support packaging bootstrapping.

1.3 Paper Organization
The rest of the paper is organized as follows. We provide the necessary background
knowledge and some general tools in FHE schemes in Section 2. In Section 3, we present
some methods and comparisons for performing polynomial multiplication with composite
modulus. In Section 4, we show the new bootstrapping algorithm with the composite
NTT technique. In Section 5, we suggest some analysis of noise growth and details of the
algorithm execution and experimental results. Finally, we conclude the paper in Section 6.

Zhihao Li et al. 567

2 Background
2.1 Notation
We denote as Z the set of integers, R as the set of reals. We use lower-case bold letters
for vectors and upper-case bold letters for matrices. 〈a,b〉 is the inner product between
two vectors. We denote ZQ the ring Z/QZ, and the scope of ZQ is [−Q/2, Q/2) ∩ Z. We
denote Z∗Q as the residue ring modulo Q, and the centered remainder of x modulo Q as
[x]Q. For a real number r, we write the floor, ceiling, and round functions as brc dre bre,
respectively. For a set of k co-prime moduli Q1, ..., Qk, we denote Q∗i = Q/Qi ∈ Z and
Q̃i = Q∗−1

i (mod Qi) ∈ ZQi .
Furthermore, we denote the 2N -th cyclotomic ring by R = Z[X]/(XN + 1) and the

quotient ring by RQ = ZQ[X]/(XN + 1) with coefficients in ZQ, where N is a power of
2. For a polynomial m(X) = m0 + m1X + · · · + mN−1X

N−1 ∈ R, its coefficients are
represented by the vector Coefs(m) = (m0,m1, ...,mN−1). In our notation, sometimes a
polynomial is denoted by a(X), and sometimes it is denoted by a. The multiplication
operations are indicated by the · and � symbols, where the former is used for number and
polynomial multiplication, while the latter is used for Hadamard multiplication. We use
x← D to denote the sampling of x according to distribution D. We denote Var(err(ct))
as the variance of error for the ciphertext ct. Fianlly, we denote ‖a‖p = (

∑n
i=1 |ai|

p)1/p

the p -norm of a vector a ∈ Zn and compute the p-norm with a polynomial by taking its
coefficient vector.

2.2 Gadget Decomposition
Gadget Decomposition. Gadget decomposition includes digit decomposition and RNS
decomposition. The digit decomposition can break a number down into individual digits
using a radix base. Let a ∈ RQ and dg =

⌊
logBg

Q
⌉

+ 1 . The decomposition function
g−1
d and the expansion function g with the radix base Bg are:

g−1
d (a) =

[a]Bg
,

[⌊
a

Bg

⌉]
Bg

, · · · ,

[⌊
a

B
dg−1
g

⌉]
Bg

 ∈ Rdg

Bg
,

gd =
(
B0
g , Bg, · · · , Bdg−1

g

)
∈ Rdg

Q .

Thus, we can get
〈
g−1
d (a),g

〉
≡ a mod Q. Furthermore, Residual Number System (RNS)

decomposition is another gadget decomposition technique, and the details will be described
in the following section.

2.3 Gaussian Distribution
The Gaussian function is defined as a distribution over Z and each element in Z is sampled
with probability proportional to its probability mass function value under a Gaussian
distribution over R. The Gaussian function is

ρσ,c(x) = exp
(
−|x− c|

2

2 · σ2

)
,

where σ, c ∈ R ≥ 0 and then

ρσ,c(Z) =
∞∑

i=−∞
ρσ,c(i).

The discrete Gaussian distribution with standard deviation σ and mean c is a distribution
on Z with the probability of x ∈ Z given by Dδ,c = ρσ,c(x)/ρσ,c(Z). If c = 0, we denote
this distribution by χδ.

568 Faster Bootstrapping via Modulus Raising and Composite NTT

2.4 Learning With Errors
We recall the learning with errors (LWE) assumption[Reg09] and Ring learning with errors
(RLWE) assumption [LPR13]as follows.

• LWE Sample. A valid LWE sample is a vector (a, b) ∈ Zn+1
q that satisfies b =

〈a, s〉+ e mod q, where s is the secret key for LWE sample, a← Znq is a uniformly
random vector, and error e← χδ is chosen from an error distribution. Then, (a, b)
is a fresh ciphertext of 0.

• RLWE Sample. A valid RLWE sample is a pair (a, b) ∈ R2
Q that satisfies b =

a · s+ e mod Q, where s is the secret key for RLWE sample, a is uniformly random
in RQ, and the error e← χNδ is chosen from the error distribution. Then, (a, b) is a
fresh ciphertext of 0. Thus, we can define the LWE and RLWE ciphertexts as

LWEns,q(m) = (a, b = 〈a, s〉+
⌊q
t
·m
⌉

+ e) ∈ Zn+1
q ,

RLWENs,Q(m) = (a, b = a · s+
⌊
Q

t
·m
⌉

+ e) ∈ R2
Q.

Sometimes, the dimension N and secret key s may be omitted for the sake of
simplicity. The message m can be recovered if satisfying e < q

2t by the (R)LWE
decryption process

LWE−1
s,q(a, b) =

⌊
t

q
· [b− 〈a, s〉]q

⌉
t

, and RLWE−1
s,Q(a, b) =

⌊
t

Q
· [b− a · s]Q

⌉
t

.

Arithmetic The structure of ciphertexts in LWE and RLWE allows for homomorphic
addition and scalar multiplication operations. For instance, given the LWE samples
ct1 = (a1, b1) and ct2 = (a2, b2) , their terms can be added together to obtain: ct1 + ct2 =
(a1 + a2, b1 + b2). Moreover, the multiplication between a ciphertext ct1 = (a1, b1) and a
scalar cleartext z can be obtained directly from the addition operation: z ·ct1 = (z ·a1, z ·b1).

2.5 Original RGSW Ciphertext and External Product
The original RGSW cryptosystem [GSW13, DM15] involves some RLWE samples and
gadget matrix G, which can be denoted by I2 ⊗ gT , where g = (B0

g , Bg, · · · , B
dg−1
g). To

construct the RGSW ciphertext, we sample 2dg RLWE ciphertexts {ct0, · · · , ct2dg−1} ∈
RLWENs,Q(0). Then the ciphertext CT of m is of the form:

RGSWs,Q(m) =

 ct0
...

ct2dg−1

+m ·G ∈ R2dg×2
Q .

External Product We define the original external product as �D that involve the digit
decomposition. Given the RLWE and RGSW ciphertexts, the external product outputs a
new RLWE ciphertext as

ct′ = RLWEs,Q(µ) �D RGSWs,Q(m)
= g−1

d (RLWEs,Q(µ)) · RGSWs,Q(0) +m · RLWEs,Q(µ)
= RLWEs,Q(0) + RLWEs,Q(m · µ)
= RLWEs,Q(m · µ).

Zhihao Li et al. 569

Error analysis. The noise in ct′ is given by e′ =
∑dg−1
i=0 (ai · ei + bi · ei+l) +m · e, where

e0, ..., e2dg−1 are the noise terms of the RGSW ciphertext and e is the noise term of
the RLWE ciphertext. In bootstrapping, m ∈ ±Xk is used as messages in the RGSW
ciphertext. Thus, we can get the variance of e′ is

Var(err(ct′)) ≤
NdgB

2
g

6 · Var(err(CT)) + Var(err(ct)) (1)

Note that we define two additional forms of RGSW ciphertext in Section 4, and distinguish
them based on their modulus.

2.6 NTT-based Multiplication
The Number Theoretic Transform (NTT) is a variation of the Discrete Fourier Transform
(DFT) over the finite field. The NTT algorithm can convert a polynomial from its
coefficient representation to the NTT representation, enabling Hadamard multiplication
and significantly reducing the computation complexity from O(N2) to O(N logN).

To achieve NTT-based multiplication, the polynomial ring ZQ[X]/(f(X)g(X)) is
mapped into several rings of the lower order, i.e, ZQ[X]/(f(X))× ZQ[X]/(g(X)), where
f(X) and g(X) are coprime. If the prime modulus satisfies the condition Q ≡ 1 (mod 2N),
then there exists a 2N -th primitive root of unity ζ in ZQ that satisfies XN + 1 =
XN − ζN (mod Q). Thus, we can get:

ZQ[X]/(XN + 1)→ ZQ[X]/(X N
2 + ζ

N
2)× ZQ[X]/(X N

2 − ζ N
2).

Due to the symmetric property of ζ, the polynomial can be further decomposed into N
polynomials of 1 degree, i.e.,

ZQ[X]/(XN + 1)→ ZQ[X]/(X − ζ)× ZQ[X]/(X − ζ3)× · · · × ZQ[X]/(X − ζ2N−1).

Thus, for a polynomial a(X) ∈ RQ, we can obtain the length-N vector using the CRT

(a(X) mod (X − ζ), a(X) mod (X − ζ3), · · · , a(X) mod (X − ζ2N−1)).

Depending on this decomposition, we can define the NTT representation as NTT(a) =
(A0, · · · , AN−1), where

Ai =
N−1∑
j=0

Coefs(a)j · ζj(2i+1)(mod Q) for i = 0, 1, · · · , N − 1.

The iNTT process is symmetric and omitted. Then, for the multiplication of two polyno-
mials c(X) = a(X) · b(X) ∈ RQ, we can compute the process as follows

Coefs(c) = iNTT(NTT(a)�NTT(b)).

The detailed NTT and iNTT algorithms are described in Appendix A.

2.7 Useful Algorithms
2.7.1 Sample Extraction

We show that the sample extraction technique [CGGI16] can extract the LWE ciphertext
for the constant term of the polynomial. Given an RLWE cipheretext ct = (a, b) ∈
RLWENs,Q(m), it returns an LWE sample as

SampleExtraction(ct) = (a0,−aN−1,−aN−2, ...,−a1, b0) ∈ LWENCoefs(s),Q(m0).

570 Faster Bootstrapping via Modulus Raising and Composite NTT

2.7.2 Key Switching

Key switching procedure [DM15] is an important technique in FHE schemes, which can
change the LWE dimension without changing the message. The procedure is described as
follows.
• The key switching key generation algorithm takes secret keys z ∈ ZN , s ∈ Zn and a

base Bk as input, outputs kski,j,v ∈ LWEns,Qk

(
vziB

j
k

)
, where v ∈ {0, . . . , Bk − 1}, for all

0 ≤ i ≤ N − 1, 0 ≤ j ≤ dk − 1, and let dk =
⌈
logBk

Qk
⌉
.

• Given the key switching key kski,j and a ciphertext ct = (a, b) ∈ LWENz,Qk
(m), the key

switching procedure computes the base Bk expansion of each coefficient ai =
∑
j ai,jB

j
k ,

and outputs
ct′ = KeySwitch(ct)

= (0, b)−
∑
i,j

kski,j,ai,j
mod Qk

= (a′, b′) ∈ LWEns,Qk
(m).

Correctness. Let kski,j,v = (a′i,j,v,a′i,j,v · s + vziB
j
ks + ei,j,v) for some a′i,j,v ∈ Znq and

ei,j,v ∈ χδ. We can obtain that a′ = −
∑
i,j a′i,j,ai,j

and b′ = b− a · z + a′ · s−
∑
i,j ei,j,ai,j

.
which is a new LWE ciphertext under the secret key s. And the variance of the noise
satisfies Var(err(ct′)) ≤ Ndk · Var(err(ksk)) + Var(err(ct)).

2.7.3 Modulus Switching

The modulus switching technique can change the modulus of the ciphertext [BGV14, DM15].
Take as input a ciphertext ct = (a, b) ∈ LWEns,Q(m), the modulus switching algorithm
outputs a ciphertext as

ct′ = ModSwitch(ct)

= (b q
Q
· ae, b q

Q
· be) ∈ LWEns,q(m).

According to [DM15], the variance of noise satisfies Var(err(ct′)) ≤ (qQ)2 · Var(err(ct)) +
||s||22+1

12 . The correctness of the algorithm is given in Appendix B.

2.8 GINX Blind Rotation with Gadget Decomposition

Algorithm 1 GINX Blind Rotation with Gadget Decomposition.
Input:

An LWE sample ct = (a, b) ∈ LWEns,q(m), where q|2N .
A bootstrapping key bsks′(si) : {RGSWs′,Q(si)}, for 0 ≤ i ≤ n− 1.

Output:
An RLWE ciphertext acc ∈ RLWEs′,Q(X−b+

∑n−1
i=0 aisi) .

1: Set acc = (0, X−b) ∈ R2
Q

2: for i = 0 to n− 1 do
3: acci = g−1(acci)
4: acc′i = NTT(acci)
5: acc′i = ((Xai − 1)� acc′i)� bski + acc′i ∈ R2

Q

6: acci = iNTT(acci)
7: end for
8: return accn−1.

Zhihao Li et al. 571

We first present the GINX blind rotation algorithm with gadget decomposition. Given
an LWE ciphertext (a, b) and n RGSW ciphertexts encrypting (s0, ..., sn−1), the blind
rotation outputs a ciphertext ct ∈ RLWE(X−b+

∑n−1
i=0 aisi) as shown in Algorithm 1. In

detail, the loop from lines 3-6 performs a CMux gate. It is easy to see that if si = 0,
the first term of the supplement is disregarded since it encrypts 0. On the other hand,
if si = 1, then (acc ·Xai) � RGSW(1) equals the current accumulator value. Thus, the
accumulator is replaced with the ciphertext of Xaisi · acc. Furthermore, the CMux gate
can be updated to the ternary CMux gate as shown in Section 4.

3 NTT Multiplication with Composite Modulus
In this section, we present an overview of the existing approaches employed in performing
Number Theoretic Transform (NTT) with composite numbers, which include our construc-
tion as well. Furthermore, we undertake an extensive investigation into the theoretical
principles behind these techniques and their suitability in diverse Homomorphic Encryption
(HE) scenarios.

3.1 RNS Decomposition
A well-known technique is the Residue Number System (RNS), which uses the Chinese
Remainder Theorem (CRT) to decompose multi-precision integers into vectors of NTT-
friendly integers. It enables efficient operations using native (64-bit) integer types and
reduces both the theoretical and practical computational overhead. More formally, for
some distinct NTT-friendly moduli Q1, ..., Qk, the CRT yields an isomorphism

ZQ[X]/(XN + 1)→ ZQ1 [X]/(XN + 1)× · · · × ZQk
[X]/(XN + 1),

where Q = Q1 × · · · ×Qk. The RNS representation of an element a ∈ RQ relative to the
RNS basis Q1, ..., Qk is

CRT{Q1,...,Qk} = ([a]Q1 , ..., [a]Qk
) ∈ RkQi

.

Then one can perform the NTTs on the [a]Qi with coefficient-wise over the cyclotomic
rings. Similar to the digit decomposition, the corresponding RNS vector is

gr =
(

[Q̃1 ·Q∗1]Q, · · · , [Q̃k ·Q∗k]Q
)
∈ RkQ.

Similarly to the digit decomposition, we can obtain that 〈CRT(a),gr〉 ≡ a mod Q. Fur-
thermore, we denote the iCRT as

iCRT{Q1,...,Qk} ([a]Q1 , ..., [a]Qk
) =

k∑
i=1

[a]Qi
· Q̃i ·Q∗i (mod Q),

Note that some homomorphic operations, such as homomorphic multiplication in the
CKKS scheme, need to switch this RNS basis to another RNS basis P = P1 × · · · × Pl in
the so-called fast basis extension technique that involves the iCRT process. Please refer to
[CHK+19, KPZ21b] for more details.

3.2 NTT-unfriendly Rings
NTT-unfriendly rings mean that the parameters do not meet the requirements of section 2.6.
For example, the NIST PQC finalist Saber [DKRV19] utilizes the power-of-two modulus,
which is inherently incompatible with the NTT algorithm. Chung et al. [CHK+21] present

572 Faster Bootstrapping via Modulus Raising and Composite NTT

a technique to implement NTT on these rings, yielding better performance than the original
schemes.

Specifically, the main idea entails elevating the polynomial ring to a larger one, where
the modulus can cover the intermediate results of polynomial multiplication. Then, the
NTT algorithm can be performed correctly on this ring directly. Before lifting, one should
think about the maximum value of the product. When considering a modulus Q, the
magnitude of the coefficients resulting from the multiplication within the ring RQ should
not surpass NQ2

4 . Thus, one can choose an NTT-friendly prime modulus Q′ > NQ2

2 or
multiple coprime NTT-friendly prime moduli pi that satisfy

∏
pi >

NQ2

2 . When using
these moduli, the coefficients of the product will not be reduced during the polynomial
multiplication, which guarantees the correctness of NTT-based multiplication in the larger
ring. The subsequent processing can be summarized in the following three steps:

1. Lift polynomial coefficients on NTT-unfriendly Ring to one or multiple NTT-friendly
Rings.

2. Perform NTT-based polynomial multiplications on the new NTT-friendly Rings.

3. Map the results back to the original NTT-unfriendly Ring by using either a modulo
operation or inverse Chinese Remainder Theorem (iCRT).

Moreover, the methods of mixed-radix decomposition and Good’s permutation are
proposed by [CHK+21] to deal with the case that polynomial dimension N does not satisfy
the parameter requirements for NTT evaluation. Since we focus on the modulus, these
details have been omitted.

3.3 NTT with Composite Modulus
In contrast to the aforementioned approaches, we delve into the mathematical essence of
the NTT algorithm and explore the construction of a 2N -th primitive root of unity for the
composite number Q = Q1 × · · · ×Qk, where Qi are the distinct NTT-friendly numbers.

The NTT requirement that Q ≡ 1 (mod 2N) ensures the presence of the 2N -th
primitive root of unity in ZQ. Consequently, the set r1, r2, ..., rQ−1 forms a cyclic group
denoted as Z∗Q, where r serves as the generator of this cyclic group with modulus Q.
As a result, ζ = r

Q−1
2N ∈ ZQ has periodicity of 2N . That is ζ2N = 1(mod Q) and

ζN = −1(mod Q), where ζ is the 2N -th primitive root of unity in RQ. So, this property
makes it suitable for decomposing the modulo polynomial XN + 1, as explained in Section
2.6.

However, if the modulus Q is a composite number, the generator r exists only if Q
takes the form of 4, pk, or 2pk, where p is a prime and k is an integer. It should be noted
that using the primitive root directly to generate a 2N -th root that satisfies the NTT
requirements is not possible. To solve this problem, Heinz et al. [HP22] propose a method
to construct the root for the composite NTT, while applying it to the attack and defense
of the measurement channel. Given two NTT-friendly numbers Q1, Q2, let ζQ1 and ζQ2 be
the 2N -th primitive root of unity for the polynomials RQ1 and RQ2 , respectively. The
method that construct the 2N -th primitive root of unity ζQ in [HP22] as

ζQ = ζQ1 ·Q2 · (Q−1
2 mod Q1) + ζQ2 ·Q1 · (Q−1

1 mod Q2). (2)
In practice, the Equation 2 is often replaced with the slightly more efficient method as

ζQ = ζQ1 +Q2 · [(ζQ2 − ζQ1) · (Q−1
2 mod Q1) mod Q1].

It is easy to verify that these two methods of constructing roots are equivalent. Then, we
provide complete proof of their approach.

Zhihao Li et al. 573

Lemma 1. Let Q = Q1 ×Q2 and Qi = 1 (mod 2N) for i = 1, 2, Equation 2 outputs the
2N -th primitive root ζ with the properties ζ2N = 1 (mod Q) and ζN = −1 (mod Q).

Proof. The equation 2 uses the inverse Chinese Residue Theorem to integrate two roots
ζQ1 and ζQ2 , we have {

ζQ = ζQ1(mod Q1)
ζQ = ζQ2(mod Q2).

Since the ζQ1 and ζQ2 are the primitive roots of unity of ring RQ1 and RQ2 , respectively,
the following equation holds{

ζ2N
Q = 1(mod Q1)
ζ2N
Q = 1(mod Q2),

{
ζNQ = −1(mod Q1)
ζNQ = −1(mod Q2).

Therefore, we can derive that ζ2N
Q = 1(mod Q1 ·Q2) and ζNQ = −1(mod Q1 ·Q2), which

means that ζNQ satisfies the property of being periodic and symmetric.

We extend this method to composite modulus consisting of multiple distinct NTT-
friendly moduli, as illustrated in Algorithm 2. In this approach, we employ a binary tree
technique to minimize the number of multiplications, instead of directly utilizing k − 1
iCRT operations. This optimization allows for more efficient computations and improved
performance.

Algorithm 2 Construction of the 2N -th Root for Modulus Q = Q1 × · · · ×Qk
Input:

k distinct NTT-friendly moduli Q1, · · · , Qk and the corresponding 2N -th primitive
roots ζQ1 , · · · , ζQk

.
Output:

Run the CrootGen(1, k) function to obtain the 2N -th primitive root of unity ζ for
modulus Q.

1: function CrootGen(w, v)
2: if w = v, return {ζQw

, Qv}
3: mid = w + b(v − w)/2c
4:

{
Qj , ζQj

}
← CrootGen(w,mid)

5: {Qk, ζQk
} ← CrootGen(mid+ 1, v)

6: Set Qm = Qj ·Qk and ζQm = ζQj ·Qk · (Q−1
k mod Qj) + ζQk

·Qj · (Q−1
j mod Qk)

7: return {Qm, ζQm}
8: end function

It is worth noting that the NTT and iNTT algorithms with composite modulus differ
from traditional algorithms solely in their input. This implies that we can input the root
ζ and its inverse into Algorithms 6 and 7 respectively, to perform the composite NTT
and iNTT operations, collectively referred to as Com-NTT. This approach allows for
the seamless integration of composite modulus into the NTT and iNTT computations,
enhancing the flexibility and compatibility of the NTT algorithm.

3.4 Applications
These methods for polynomial multiplication with composite modulus are aimed at different
application scenarios for HE schemes. The RNS technique is commonly used in BGV, BFV,
and CKKS schemes. By incorporating the RNS technique, these schemes can effectively
deal with larger moduli while improving computational efficiency. RNS variants have
emerged as the preferred choice in practical implementations, featured in software libraries
like SEAL [SEA22] and OpenFHE [BBB+22].

574 Faster Bootstrapping via Modulus Raising and Composite NTT

Compared to RNS decomposition, the composite NTT approach provides a more
flexible strategy. On the one hand, it is compatible with the RNS decomposition. In
addition, it can directly perform the Number Theoretic Transform (NTT) on the composite
modulus. In general, the latter option is more suitable for HE operations within a 64-bit
ciphertext modulus. For instance, the external product is improved in FHEW-like schemes,
as demonstrated in Section 4.

The method described in [CHK+21] applies to predetermined ring parameters, including
the dimension and modulus of the polynomial. For instance, the original CKKS scheme
[CKKS17] uses the ciphertext modulus q = pl to reduce the error resulting from the
rescaling operation. The implementation in the HEAAN library adopts the strategy
outlined in [CHK+21], which lifts the ciphertext modulus to utilize the RNS-based NTT
implementation. In summary, depending on various scenarios and application requirements
in the homomorphic encryption scheme, it is possible to identify suitable parameter settings
and NTT strategies that effectively accelerate the underlying polynomial operations.

4 Faster FHEW-like Bootstrapping with Modulus Raising
The external product and blind rotation in the FHEW-like scheme use exact gadget
decomposition to reduce noise, which means that only digit decomposition is utilized to
reduce the error growth. We introduce the modulus raising technique into the FHEW-like
schemes and then propose a hybrid method for external products by integrating digit
decomposition, RNS decomposition, and modulus raising. These methods improve the
efficiency of blind rotation and bootstrapping. Finally, we show the new technique to
bootstrap two LWE ciphertexts in one blind rotation.

4.1 External product with modulus raising
Instead of using a single ciphertext modulus in RGSW ciphertext, our method involves
the composite number consisting of multiple NTT-friendly moduli. More precisely, the
ciphertext modulus of RGSW is set to the composite number PQ, where PQ ≈ Qg. Sample
two RLWE ciphertexts {ct0, ct1} ∈ RLWEs,PQ(0) and the RGSW ciphertext takes the
following form:

RGSWs,PQ(m) =
(

ct0
ct1

)
+m ·

(
P 0
0 P

)
∈ R2×2

PQ .

Definition 1. (Variant External Product). We define variant external product as �M ,
which is performed between ct = (a, b) ∈ RLWEs,Q(µ) and CT = RGSWs,PQ(m) ciphertexts
as

ct′ = RLWEs,Q(µ) �M RGSWs,PQ(m)

= b [RLWEs,Q(µ) · RGSWs,PQ(0) +mP · RLWEs,Q(µ)]PQ
P

e

= RLWEs,PQ(mP · µ)
P

= RLWEs,Q(m · µ).

The error generated in �M is e′ = a·e0+b·e1
P + e + eround, where e0 and e1 are the error

terms of the RGSW ciphertext, e is the error term of the RLWE ciphertext, and eround is
the error caused by the rounding operation. And the variance of e′ is

Var(err(ct′)) ≤ 2NQ2

12P 2 · Var(err(CT)) + Var(err(ct)) + ||s||
2
2 + 1
12

≤ NQ2

6P 2 · Var(err(CT)) + Var(err(ct)) + N + 2
24 .

(3)

Zhihao Li et al. 575

where the factor 1
12 corresponds to the variance of discrete uniform distribution in the

range [−1/2, 1/2] and the ternary secret key distribution ensures that ||s||2 ≤
√
N/2.

4.1.1 Bootstrapping Procedure with Modulus Raising and Composite NTT

Then, we show the FHEW-like bootstrapping procedure based on the external product
with modulus raising. For a ternary LWE secret key s ∈ {−1, 0, 1}n, our bootstrapping
key generation process [BIP+22] is described as follows.

bsk =

bski,0 = RGSWs′,PQ(0), bski,1 = RGSWs′,PQ(1), if (si = −1);
bski,0 = RGSWs′,PQ(0), bski,1 = RGSWs′,PQ(0), if (si = 0);
bski,0 = RGSWs′,PQ(1), bski,1 = RGSWs′,PQ(0), if (si = 1).

(4)

Note that the bootstrapping keys are precomputed and stored in the NTT representation,
and can be reused in the bootstrapping process.

Algorithm 3 GINX Bootstrapping with Modulus Raising and Composite NTT
Input:

An LWE sample ct = (a, b) ∈ LWEns,q(m), where q|2N .
A bootstrapping key bsk.
A key switching key ksks(s′i) as shown in Section 2.7.
A test polynomial tv embedding a look-up table f .

Output:
An LWE sample ct′ ∈ LWEns,q(f(m)).

1: Set acc = (0, X−b · tv) ∈ R2
Q

2: for i = 0 to n− 1 do
3: acc′i = Com-NTT(acci)
4: acc′i = acc′i � (1 + (Xai − 1)� bski,0 + (X−ai − 1)� bski,1) ∈ R2

PQ

5: acci = Com-iNTT(acci)
6: acci = b acci

P e ∈ R
2
Q

7: end for
8: ct′ = SampleExtract(accn−1)
9: ct′ = KeySwitch(ct′)

10: ct′ = ModSwitch(ct′)
11: return ct′.

Algorithm 3 presents the improved bootstrapping algorithm for the GINX method by
using modulus raising. The procedure begins with an LWE ciphertext as usual. In line 4
of the algorithm, let

CTMux,i = (1 + (Xai − 1)� bski,0 + (X−ai − 1)� bski,1)

is a ternary CMux gate, and it is easy to verify that acci�M CTMux,i yields the ciphertext
acc′i = RLWE(Xai·si), where 1 is a noiseless RGSW ciphertext. In more detail, the
accumulator acc is viewed as two polynomials with modulus PQ, and performs the
composite NTTs. To reduce the number of NTT transformations and rounding operations,
we generate beforehand a table containing all NTT representations of Xi− 1 with modulus
PQ, where 0 ≤ i ≤ 2N − 1. Subsequently, we utilize the ciphertext ai to retrieve the
corresponding NTT representation for Xai − 1 and X−ai − 1, enabling direct Hadamard
multiplication with bootstrapping keys. However, the division operation needs to be
performed in the coefficient representation, which involves two iNTT operations. By

576 Faster Bootstrapping via Modulus Raising and Composite NTT

utilizing n external products, we can get the ciphertext as

acc = RLWEs,Q(tv ·X−b+
∑n−1
i=0 aisi)

= RLWEs,Q(tv ·X−(b q
t ·me+e)).

Note that the test vector tv serves two purposes. It not only refreshes the noise but also
embeds a lookup table f : Zt → Zt by defining the coefficients of the polynomial as follows:

tv(X) =
N−1∑
i=0

Q

t
· f(b t

q
· ie) ·Xi.

This method, known as functional bootstrapping, is described in [CJP21, KS21] schemes.
Then, we can get an LWE ciphertext LWENCoefs(s),Q(f(m)) through the sample extraction
operation. Finally, the key switching and modulus switching operations are performed to
obtain the ciphertext ct′ = LWEns,q(f(m)) ∈ Zn+1

q , which completes the entire bootstrapping
procedure.

Remark 4.1. Note that the RNS decomposition method can also be utilized for polynomial
multiplication in the external product. However, this approach requires additional NTT
operations, as explained in Appendix C. The computational complexity of blind rotation for
the Algorithms 1, 3 and 8 is outlined in Table 2.

Table 2: Comparison of blind rotation for different algorithms under the ternary secret
key, where the length is set to dg = 2 for gadget decomposition in Algorithm 3.

NTTs # Modular multiplication # Rounding # Decomposition
Algorithm 1 6n 20nN × 2nN
Algorithm 3 4n 14nN 2nN ×
Algorithm 8 8n 26nN × ×

4.1.2 Error analysis

In this subsection, we analyze the variance of error for Algorithm 3. Firstly, the error
growth in blind rotation is caused by a sequence of n external products i.e., acc�n−1

i=0 CTMux

= (...((acc0 � CTMux,0) � CTMux,1)... � CTMux,n−1). Thus, we can obtain variance by
using n times Equation 3 as

Var(err(acc)) ≤ NQ2

6P 2 · Var(err(CTMux,n−1)) + Var(err(accn−2)) + N + 2
24

≤ NQ2

6P 2 · Var(err(CTMux,n−1)) + NQ2

6P 2 · Var(err(CTMux,n−2))

+ Var(err(accn−3)) + 2 · N + 2
24
...

≤ NQ2

6P 2 ·
n−1∑
i=0

Var(err(CTMux,i)) + Var(err(acc0)) + n · N + 2
24

Zhihao Li et al. 577

Due to the fact that Var(err(CTMux,i)) = (||Xai − 1||22 + ||X−ai − 1||22) · Var(err(bsk)) ≤
4 · Var(err(bsk)) and the initial RLWE is noise-free, i.e., Var(err(acc0)) = 0. We can obtain
the variance from the blind rotation as

Var(err(acc)) ≤ 2nNQ2

3P 2 · Var(err(bsk)) + n · (N + 2)
24 .

Then, we can get the variance of the error from the key switching operation as

Var(err(ct′)) ≤ Ndk · Var(err(ksk)) + Var(err(ct)).

Finally, after modulus switching, we can conclude that the variance of the error generated
by the bootstrapping process is

Var(err(ct′)) ≤ q2

Q2 · [
2nNQ2

3P 2 · Var(err(bsk)) + n · (N + 2)
24 +Ndk · Var(err(ksk))] + 2 + n

24 .

Compared to the gadget decomposition, our method introduces an additional error
that is derived from the rounding operation. In Section 5, we demonstrate that the error
is negligible for the decryption failure rate.

4.2 Hybrid External Product and Blind Rotation
In Definition 1, we only use the modulus switch to reduce noise growth. Following that,
we present a hybrid external product operation in Definition 2. Firstly, we show a hybrid
approach based on digit decomposition and modulus raising. Given a modulus Q and
the base B′g, we can denote the gadget matrix G as I2 ⊗ (P · g′d)T ∈ Z2d′g×2

PQ , where
d′g =

⌊
logB′g Q

⌉
+ 1. Sample 2d′g RLWE ciphertexts {ct0, · · · , ct2d′g−1} ∈ RLWENs,PQ(0),

we have the RGSW ciphertext of m as

RGSWs,PQ(m) =

 ct0
...

ct2d′g−1

+m ·G ∈ R2d′g×2
PQ .

Definition 2. (Hybrid External Product). We define the hybrid external product as �H ,

ct′ = RLWEs,Q(µ) �H RGSWs,PQ(m)

= bRLWEs,Q(µ) �D RGSWs,PQ(m)
P

e

= bRLWEs,PQ(Pm · µ)
P

e

= RLWEs,Q(m · µ).

(5)

The error generated by �H is e′ =
∑d′g−1
i=0 (ai · ei + bi · ei+d′g)/P + e + eround, and its

variance is

Var(err(ct′)) ≤
Nd′gB

′2
g

6P 2 · Var(err(CT)) + Var(err(ct)) + N + 2
24 .

Afterward, Algorithm 4 shows the second improved GINX blind rotation algorithm
using the hybrid external product. The gadget decomposition and modulus switching
are utilized to reduce error growth in lines 3 and 7, respectively. The correctness of the
algorithm can be directly derived from the new external product. Compared to the case
of dg > 2 for Algorithm 1 with the ternary secret key, the new blind rotation algorithm
involves a lesser number of NTT operations.

578 Faster Bootstrapping via Modulus Raising and Composite NTT

Algorithm 4 GINX Blind Rotation with Hybrid External Product.
Input:

An LWE sample ct = (a, b) ∈ LWEns,q(m), where q|2N .
A blind rotation key bsks(si) as shown in Equation 4 using hybrid RGSW.

Output:
An RLWE ciphertext acc ∈ RLWEs,Q(X−b+

∑n−1
i=0 aisi) .

1: Set acc = (0, X−b) ∈ R2
Q

2: for i = 0 to n− 1 do
3: acc′i = g′−1(acci) ∈ R

d′g
Bg

4: acc′i = Com-NTT(acc′i)
5: acc′i = ((Xai − 1)� acc′i)� bski,0 + ((X−ai − 1)� acc′i)� bski,1 + acc′i ∈ R2

PQ

6: acci = Com-iNTT(acc′i)
7: acci = b acci

P e ∈ R
2
Q

8: end for
9: return acc.

Remark 4.2. We remark that the digit decomposition in Equation 5 can be replaced by
RNS decomposition with the same number of NTTs and Hadamard multiplications. To
be specific, we can select d′g NTT-friendly numbers Qi, and let Q = Q1 × · · · ×Qd′g . In
this way, the gadget matrix G associated with the RNS decomposition can be expressed as
I2 ⊗ (P · g′r)T ∈ Z2d′g×2

PQ . Thus, the external product can perform the RNS decomposition
against the accumulator acc′, and then use the composite NTTs to compute the subsequent
Hadamard multiplications. Table 3 exhibits the computation complexity of blind rotation
for Algorithms 1 and 4.

Table 3: Comparison of blind rotation for Algorithms 1 and 4 with the ternary secret
key, where the dg and d′g are the length for gadget decomposition and hybrid method,
respectively, where dg > 2 and d′g = ddg/2e.

Algorithm 1 Algorithm 4
Digit decomposition RNS decomposition

NTTs 2n(dg + 1) 2n(d′g + 1) 2n(d′g + 1)
Modular multiplication (8dg + 4)nN (8d′g + 4)nN (8d′g + 4)nN

Rounding × 2nN 2nN
Decomposition 2nN 2nN ×

Modular × × 2nN

4.3 Packing Bootstrapping with Composite NTT
We show that the proposed composite NTT technique can support packing bootstrapping
procedures. To simplify our algorithm, we use binary keys in this section. Details of this
subroutine are given in Algorithm 5. Specifically, when packing l bootstrapping procedures,
we first need to choose l sets for parameters PkQk, and set PQ =

∏
PkQk, where k ∈ [1, l].

Given l blind rotation keys brkPkQk
that are generated in Section 4.2, we can precompute

to generate the new blind rotation key using iCRT as

brkPQ = iCRT{P1Q1,...,PlQl}(brkP1Q1 , ..., brkPlQl
) (6)

Zhihao Li et al. 579

Algorithm 5 Packing Bootstrapping using CRT and composite NTT.
Input:

l LWE samples ctk = (ak, bk) ∈ LWEns,q(mk), for k ∈ [1, l].
The blind rotation key brkPQ as shown in Equation 6.

Output:
l RLWE ciphertexts acck ∈ RLWEs,Qk

(X−bk+
∑n−1
i=0 ak,isi).

1: Set l accumulators acck = (0, X−bk) ∈ R2
Qk

.
2: for i = 0 to n− 1 do
3: acck,i = g′−1

d (acck,i), for all k ∈ [1, l]
4: acci = iCRT{P1Q1,...,PlQl}(acc1,i, ..., accl,i) ∈ R2

PQ

5: acc′i = Com-NTT(acci)
6: acc′i = acc′i � brki + acc′i ∈ R2

PQ

7: acci = Com-iNTT(acc′i)
8: {acc1,i, ..., accl,i} = CRT{P1Q1,...,PlQl}(acci) ∈ R4

PkQk

9: acck,i = b acck,i

Pk
e ∈ R2

Qk
, for all k ∈ [1, l]

10: acck,i = acck,i · (Xak,i − 1), for all k ∈ [1, l] .
11: end for
12: return {acck}k∈[1,l].

In order to improve the expensive external product operation in CMux gates for the
l blind rotations processes. We utilize the CRT to merge the l accumulators acck into
polynomial ring RPQ. Subsequently, we utilize the composite NTT to perform a single
external product operation. Here, we need 2d′g+2 NTTs and 4d′g Hadamard multiplications
in polynomial ring RPQ in lines 5-7 of the algorithm. To achieve this purpose, we incur
additional operations, i.e., the CRT and iCRT processes. Furthermore, we use gadget
decomposition for each LWE ciphertext to reduce noise and advance to the next iteration.
The detailed analyses of algorithm correctness and noise growth have been omitted, as
they can be directly derived from the properties of the CRT.

It is worth noting that the number of packing bootstrapping of the proposed algorithm
is directly related to the machine word length of the experimental platform. Typically,
by taking advantage of the CPU’s capacity to handle 64 bits, we can achieve maximum
gain by packing two bootstrapping procedures together, resulting in improved overall
performance.

4.4 Extensions for other FHE schemes
4.4.1 Improved Blind rotations for AP and LMK Methods

AP Blind Rotation. The AP blind rotation [DM15, ASP14] supports arbitrary types
of secret key distributions. The idea is to decompose the LWE ciphertext and extract
the associated blind rotation key. Then, the blind rotation keys are accumulated through
some external products. Our technique can improve the AP blind rotation by utilizing the
external product �M and �H Given an LWE secret key s ∈ Znq , the AP blind rotation
key is generated as

bsk =
{

bski,j,v = RGSWs′,PQ(Y vB
j
rsi)
}

(7)

where i ∈ [0, n− 1], j ∈ [0, logBr
q − 1] and v ∈ ZBr

. The decomposition base Br ≥ 2 can
offer a tradeoff between space and computational complexity. For an LWE cipheretxt, we
can decompose each term ai as ai =

∑logBr
q−1

j=0 ai,j and accumulator acc is updated for
all ai,j that

580 Faster Bootstrapping via Modulus Raising and Composite NTT

acc = acc �M bski,j,ai,j
.

The detailed algorithm is described in Appendix D.

LMK Blind Rotation. The LMK blind rotation [LMK+23] improves the AP method
for efficiently supporting arbitrary secret key distributions by utilizing ring automorphisms
and RLWE-based key switching in the FHEW cryptosystem. The technical overview of
the high-level structure of their solution is as follows.

Given a current accumulator RLWE(gi−1(X)), one can use automorphism ψa−1
i

: X →
Xa−1

i to get an encryption of gi−1(Xa−1
i). Then, with the blind rotation key RGSW(Xsi),

the external product is performed to the ciphertext of gi−1(Xa−1
i) · Xsi . Finally, the

ring automorphism ψai : X → Xai is utilized to get the accumulator that encrypt
gi−1(Xaisi). After repeating this process n times, the accumulator can be calculated as
RLWE(X−b+

∑n−1
i=0 aisi). During this process, the automorphisms ψa exist only for odd

values due to the power-of-two cyclotomic setting. Their work introduces some solutions
and optimizes the algorithm by reordering the secret key.

In bootstrapping, key-switching is necessary to transform the ciphertext into encryption
under the original key following the automorphism operation. The proposed external
product technique can be utilized to accelerate both the external product and key-switching
operations. We omit the algorithm, refer to [LMK+23] for the detailed process.

4.4.2 NTRU-based External product

Our technique can also apply to the NTRU-based external product and bootstrapping
procedure. In particular, Bonte et al. [BIP+22] construct NTRU-based GSW-like ciphertext
(NGS), where the NGS ciphertext is represented as a vector polynomial and performed
external product by gadget decomposition. We can improve the NTRU-based external
product by using techniques similar to section 4.2. These techniques serve to further improve
the efficiency of NTRU-based bootstrapping. However, in practice, careful consideration
must be given to parameter selection due to the dense sublattice attack, which restricts
the modulus size of the NTRU problem below n2.484+o(1)[DvW21].

5 Parameters and Performance
This section presents a comprehensive analysis of the proposed scheme, including param-
eter setting, error growth, and decryption failure rates. Additionally, we compare the
bootstrapping experimental results of the proposed method with the gadget decomposition.
This analysis will offer valuable insights into the respective strengths and weaknesses of
these methods, allowing us to make choices about which method is more suitable for
different parameters and scenarios.

5.1 Parameters and Noise Growth
The proposed algorithm in Section 4 works with the following parameters:

- λ, Security level ;
- t, Plaintext modulus for the LWE sample, t = 4 by default;
- n, Lattice dimension for the LWE sample;
- q, Ciphertext modulus for LWE sample;
- N , Ring dimension for RLWE/RGSW;
- σ, Standard deviation of Gaussian distribution;
- Q, Ciphertext modulus for the RLWE sample and key-switching;

Zhihao Li et al. 581

Table 4: Bootstrapping parameters for the modulus raising

Parameters Secret key λ n N σ q P Q

B_1024_36 Binary 94 512 1024 3.19 512 ≈ 220 ≈ 216

T_1024_36 Ternary 96 512 1024 3.19 512 ≈ 220 ≈ 216

B_1024_27 Binary 127 512 1024 3.19 1024 ≈ 211 ≈ 216

T_1024_27 Ternary 131 512 1024 3.19 1024 ≈ 211 ≈ 216

B_2048_50 Binary 139 1024 2048 3.19 1024 ≈ 228 ≈ 222

T_2048_50 Ternary 141 1024 2048 3.19 1024 ≈ 228 ≈ 222

- P , Modulus used in the RGSW sample and external product operation.
Table 4 presents specific parameters used in implementation with the modulus raising

and hybrid methods. The secret keys are selected from binary and ternary distributions,
which are employed in the TFHE and FHEW schemes. We choose the numbers PQ that
satisfy the requirements for the composite NTT as shown in Section 3.3.

Table 5 displays specific parameters for gadget decomposition and key-switching. The
two columns labeled B′g and d′g are used in the hybrid external product, while corresponding
to parameter sets B_1024_27 and T_1024_27 in table 4. The remaining parameters
are used in the external product based on gadget decomposition and key-switching, which
is provided by [MP21] scheme. Note that the bootstrapping with procedure with gadget
decomposition entails an additional step of modulus switching to a smaller modulus Q,
then performing the key switching operation.

- Qg, RLWE ciphertext modulus for gadget decomposition;
- Bg, Gadget base for RGSW encryption, which breaks integer Qg into dg digits;
- Bk, Gadget base for key switching, which breaks integer Qg into dk digits;

Table 5: Bootstrapping parameters for the gadget decomposition and key-switching

Parameters λ Qg Bg dg B′g d′g Bk dk

(B)T_1024_36 >94 ≈ 236 218 2 × × 29 2
(B)T_1024_27 >127 ≈ 227 27 4 28 2 27 2
(B)T_2048_50 >139 ≈ 250 225 2 × × 25 5

The security level of HE schemes is determined by several factors, including the secret
key distribution, the dimensions and modulus of the (R)LWE sample, and the standard
deviations of the error according to the HE standard [ACC+18]. Then, we use the LWE
estimator [APS15] to estimate the security level, which calculates the complexity of primal
attacks via the shortest vector problem, decoding, and dual-lattice attacks. Table 6
provides the cost of specific attacks using the BKZ.sieve cost model.

Afterward, we analyze the error growth and decryption failure probability with these
methods under different parameters. Specifically, the bootstrapping procedure results
in a ciphertext with an error from a Gaussian distribution with standard deviation
σ =

√
q2

Q2 (σ2
ACC + σ2

KS) + σ2
MS , where the σ2

ACC plays a prominent role in determining
the overall error magnitude. We compare the error growth of three different methods
generated by blind rotation with the ternary secret key distribution, and the variances of
errors are

σ2
ACC−MU = q2

Q2 · (
2nN ·Q2 · 3.192

3P 2 + n · (N + 2)
24).

582 Faster Bootstrapping via Modulus Raising and Composite NTT

Table 6: Security estimations for the parameter sets.

Parameters Gadget decomposition
uSVP dec dual

B_1024_36 94.3 110.7 97.5
T_1024_36 96.3 110.7 101.1
B_1024_27 127.6 160.0 133.4
T_1024_27 131.6 160.7 138.7
B_2048_50 139.1 158.7 143.2
T_2048_50 141.1 158.7 145.3

σ2
ACC−GD = q2

Q2
g

· (
2nNdgB2

g · 3.192

3).

σ2
ACC−HY = q2

Q2 · (
2nNd′gB′2g · 3.192

3P 2 + n · (N + 2)
24).

We note that the modulus raising and hybrid methods introduce additional noise terms due
to the rounding operation. However, we have a smaller value for the length of decomposition
that satisfies d′g = ddg/2e, where d′g = 1 is used in the modulus raising method. Typically,
for the sets of parameters of the ternary key T_1024_36, T_1024_27, and T_2048_50.
the results in Tables 4 and 5 can be obtained as follows:

σ2
ACC−GD = 1.028 · σ2

ACC−MU ,

σ2
ACC−HY = 1.274 · σ2

ACC−GD.

We remark that these comparison results give an intuition that the ratio of noise
is so small as to be negligible, which can also be verified in the decryption failure rate.
Specifically, in experiments, we evaluate one homomorphic addition for the NAND gate in
bootstrapping, where t = 4, and the probability of decryption failure can be calculated
using the following formula:

1− erf(q/82σ),

erf is the Gaussian function. Table 7 presents the decryption failure rate for parameter sets
T_1024_36, T_1024_27, and T_2048_50 with the ternary secret key distribution.
From the table, we can see that the error gap has almost no effect on the decryption
failure rate. Finally, we also performed a large number of experiments on the LWE samples
with various key distributions, and the results of the experiments were consistent with the
theoretical analysis.

Table 7: Decryption failure rates for Bootstrapping.

Parameters Fail. prob.
GD MU HY

T_1024_36 2−40 2−40 ×
T_1024_27 2−53 × 2−53

T_2048_50 2−100 2−100 ×

Zhihao Li et al. 583

Figure 1: Comparison of blind rotations with different lengths of decomposition

5.2 Key Sizes
In this subsection, we analyze the key sizes for the aforementioned methods. Table 8
illustrates the sizes of blind rotation keys for both gadget decomposition and modulus
raising. It is worth noting that the sizes of the key switching have been omitted from the
table since they remain consistent for all the methods.

Table 8: Sizes of blind rotation keys.

Parameters Gadget decomposition Modulus raising
B_1024_36 4nNdg log2 Qg 18 MB 4nN log2 PQ 9 MB
T_1024_36 8nNdg log2 Qg 36 MB 8nN log2 PQ 18 MB
B_1024_27 4nNdg log2 Qg 27 MB 4nNd′g log2 PQ 13.5 MB
T_1024_27 8nNdg log2 Qg 54 MB 8nNd′g log2 PQ 27 MB
B_2048_50 4nNdg log2 Qg 100 MB 4nN log2 PQ 50 MB
T_2048_50 8nNdg log2 Qg 200 MB 8nN log2 PQ 100 MB

Across all parameter sets, the modulus raising and composite NTT techniques achieve a
remarkable reduction in key size, amounting to 50% compared to the gadget decomposition.
This notable outcome holds great promise, particularly for hardware acceleration, as the
binary key distribution necessitates a mere 9 MB of key size.

5.3 Implementation and Experiment performance
Firstly, we compare the number of NTTs and Hadamard multiplications in bootstrapping
using different decomposition lengths dg in Figure 1. In addition, we implement Algorithms
3 and 4. The evaluation environment was a commodity desktop computer system with
an Intel(R) Core(TM) i5-12500 CPU @ 3.00GHz and 64 GB of RAM, running Ubuntu
22.04.2 LTS. The compiler was g++ 11.3.0. The experiments of identity bootstrapping
evaluation are presented in Table 9, and each result is an average of 5000 executions.

The proposed method demonstrates a significant improvement in runtime compared to
the gadget decomposition technique. In particular, we achieve speedups of around 1.5 ×
and 1.7 × under the specific sets of parameters, respectively, which is consistent with the
expected results described in Section 4 and Figure 5.3. After that, we show the effect of
gain when using our method in AP-based and LMK-based blind rotation under 127-bit
security levels as shown in Table 10.

584 Faster Bootstrapping via Modulus Raising and Composite NTT

Table 9: Single-threaded timing results for bootstrapping

Parameters Gadget decomposition Modulus raising
B_1024_36 37.63 ms 25.61 ms
T_1024_36 51.94 ms 34.38 ms
B_1024_27 68.58 ms 37.04 ms
T_1024_27 93.46 ms 55.67 ms
B_2048_50 159.26 ms 106.15 ms
T_2048_50 205.98 ms 137.44 ms

Table 10: Comparison AP-based and LMK-based blind rotations in 127-bit security level
with the ternary secret key, where GD is the gadget decomposition, the hybrid method is
used in our technique, and dg = 3 and dg = 4 are the lengths of decomposition in AP and
LMK method, respectively.

Methods # Operations

AP-based GD 50n NTTs + 80n HMs
Ours 30n NTTs + 40n HMs

LMK-based GD (8n+ 412) NTTs + (12n+ 612) HMs
Ours (6n+ 309) NTTs + (8n+ 408) HMs

Moreover, Table 11 presents the experiment results for the packing method as shown
in Algorithm 5. Under the B_1024_27 parameter setting, the packing approach achieves
efficiency gains of approximately 2.6 × and 1.5 × when compared to Algorithms 1 and 4 for
two bootstrappings, respectively. This substantial improvement holds practical significance
for the practical application of FHEW-like schemes.

Table 11: Bootstrapping comparisons for two LWE ciphertexts with the parameter
B_1024_27, where the corresponding times for Algorithms 1 and 4 are simply doubled.

Times Fail. prob.
Algorithm 1 137.16 ms 2−53

Algorithm 4 74.08 ms 2−53

Algorithm 5 51.85 ms 2−53

Finally, we note that the proposed algorithms can not apply the FFT-based TFHE
scheme. In terms of time performance, the TFHE scheme incorporates optimizations and
accelerations for AVX instructions, as seen in libraries such as TFHE-lib [CGGI20] and
TFHE-rs [BSJJ22] libraries. Generally, the AVX-512 instructions can potentially deliver a
substantial 3 ∼ 4 times speedup compared to the baseline performance in C++. One of
our future works is to utilize AVX-512 instructions to accelerate the proposed algorithms.
This enhancement will allow us to further optimize the performance of our scheme and
make it compatible with advanced AVX instructions.

Zhihao Li et al. 585

6 Conclusion
In this paper, we propose a faster bootstrapping procedure for FHEW-like schemes. By
introducing a composite NTT technique, we integrate the gadget decomposition and
modulus raising into the external product operation, we can reduce the number of NTTs
required in the blind rotation process. Furthermore, we introduce a packing method that
can bootstrap two LWE ciphertexts using a blind rotation process based on composite
NTT. The results of the implementation of the proposed algorithm show gains in both
efficiency and size. Our methods have the potential to improve the FHEW-like schemes
and can be applied in practical scenarios.

Acknowledgments
We are grateful for the helpful comments from the anonymous reviewers. This work was
supported by the Huawei Technologies Co., Ltd and CAS Project for Young Scientists in
Basic Research (Grant No. YSBR-035).

References
[ACC+18] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser,

Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter,
et al. Homomorphic encryption security standard. HomomorphicEncryption.
org, Toronto, Canada, Tech. Rep, 11, 2018.

[ACC+21] Amin Abdulrahman, Jiun-Peng Chen, Yu-Jia Chen, Vincent Hwang,
Matthias J. Kannwischer, and Bo-Yin Yang. Multi-moduli ntts for saber on
cortex-m3 and cortex-m4. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2022(1):127–151, Nov. 2021.

[APS15] Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of learning with errors. Journal of Mathematical Cryptology, 9(3):169–203,
2015.

[ASP14] Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with poly-
nomial error. In Advances in Cryptology–CRYPTO 2014: 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Pro-
ceedings, Part I 34, pages 297–314. Springer, 2014.

[BBB+22] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins,
Saroja Erabelli, Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey Kim,
Yongwoo Lee, Zeyu Liu, Daniele Micciancio, Ian Quah, Yuriy Polyakov,
Saraswathy R.V., Kurt Rohloff, Jonathan Saylor, Dmitriy Suponitsky,
Matthew Triplett, Vinod Vaikuntanathan, and Vincent Zucca. Openfhe:
Open-source fully homomorphic encryption library. Cryptology ePrint
Archive, Paper 2022/915, 2022. https://eprint.iacr.org/2022/915.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. ACM Transactions on
Computation Theory (TOCT), 6(3):1–36, 2014.

[BIP+22] Charlotte Bonte, Ilia Iliashenko, Jeongeun Park, Hilder VL Pereira, and
Nigel P Smart. Final: Faster fhe instantiated with ntru and lwe. Cryptology
ePrint Archive, 2022.

https://eprint.iacr.org/2022/915

586 Faster Bootstrapping via Modulus Raising and Composite NTT

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical gapsvp. In Annual Cryptology Conference, pages 868–886.
Springer, 2012.

[BSJJ22] Lars Brenna, Isak Sunde Singh, Håvard Dagenborg Johansen, and Dag
Johansen. Tfhe-rs: A library for safe and secure remote computing using
fully homomorphic encryption and trusted execution environments. Array,
13:100118, 2022.

[CCH+22] Anamaria Costache, Benjamin R Curtis, Erin Hales, Sean Murphy, Tabitha
Ogilvie, and Rachel Player. On the precision loss in approximate homomor-
phic encryption. Cryptology ePrint Archive, 2022.

[CDKS21] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. Efficient homomorphic
conversion between (ring) lwe ciphertexts. In International Conference on
Applied Cryptography and Network Security, pages 460–479. Springer, 2021.

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene.
Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds.
In international conference on the theory and application of cryptology and
information security, pages 3–33. Springer, 2016.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Tfhe: fast fully homomorphic encryption over the torus. Journal of Cryptol-
ogy, 33(1):34–91, 2020.

[CHK+18] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo
Song. Bootstrapping for approximate homomorphic encryption. In Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 360–384. Springer, 2018.

[CHK+19] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo
Song. A full rns variant of approximate homomorphic encryption. In Selected
Areas in Cryptography–SAC 2018: 25th International Conference, Calgary,
AB, Canada, August 15–17, 2018, Revised Selected Papers 25, pages 347–368.
Springer, 2019.

[CHK+21] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J Kannwischer, Gregor
Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. Ntt multiplication for ntt-
unfriendly rings: New speed records for saber and ntru on cortex-m4 and
avx2. IACR Transactions on Cryptographic Hardware and Embedded Systems,
pages 159–188, 2021.

[CJP21] Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable bootstrapping
enables efficient homomorphic inference of deep neural networks. In Interna-
tional Symposium on Cyber Security Cryptography and Machine Learning,
pages 1–19. Springer, 2021.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic
encryption for arithmetic of approximate numbers. In International confer-
ence on the theory and application of cryptology and information security,
pages 409–437. Springer, 2017.

[DKRV19] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren. Saber. submission to the nist post-quantum cryptography
standardization project. [NIS], 2019.

Zhihao Li et al. 587

[DM15] Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic
encryption in less than a second. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume
9056 of Lecture Notes in Computer Science, pages 617–640. Springer, 2015.

[DMKMS23] Gabrielle De Micheli, Duhyeong Kim, Daniele Micciancio, and Adam Suhl.
Faster amortized fhew bootstrapping using ring automorphisms. Cryptology
ePrint Archive, 2023.

[DvW21] Léo Ducas and Wessel van Woerden. Ntru fatigue: how stretched is over-
stretched? In Advances in Cryptology–ASIACRYPT 2021: 27th International
Conference on the Theory and Application of Cryptology and Information
Security, Singapore, December 6–10, 2021, Proceedings, Part IV 27, pages
3–32. Springer, 2021.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomor-
phic encryption. Cryptology ePrint Archive, 2012.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of the forty-first annual ACM symposium on Theory of computing,
pages 169–178, 2009.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P Smart. Homomorphic evaluation
of the aes circuit. In Advances in Cryptology–CRYPTO 2012: 32nd An-
nual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012.
Proceedings, pages 850–867. Springer, 2012.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-
based. In Annual Cryptology Conference, pages 75–92. Springer, 2013.

[HP22] Daniel Heinz and Thomas Pöppelmann. Combined fault and dpa protection
for lattice-based cryptography. IEEE Transactions on Computers, 2022.

[JLK+21] Wonkyung Jung, Eojin Lee, Sangpyo Kim, Jongmin Kim, Namhoon Kim,
Keewoo Lee, Chohong Min, Jung Hee Cheon, and Jung Ho Ahn. Accelerating
fully homomorphic encryption through architecture-centric analysis and
optimization. IEEE Access, 9:98772–98789, 2021.

[KKC+23] Jongmin Kim, Sangpyo Kim, Jaewan Choi, Jaiyoung Park, Donghwan Kim,
and Jung Ho Ahn. Sharp: A short-word hierarchical accelerator for robust
and practical fully homomorphic encryption. In Proceedings of the 50th
Annual International Symposium on Computer Architecture, pages 1–15,
2023.

[KLSS23] Miran Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo Song. Accelerating
he operations from key decomposition technique. Cryptology ePrint Archive,
2023.

[KPZ21a] Andrey Kim, Yuriy Polyakov, and Vincent Zucca. Revisiting homomorphic
encryption schemes for finite fields. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 608–
639. Springer, 2021.

588 Faster Bootstrapping via Modulus Raising and Composite NTT

[KPZ21b] Andrey Kim, Yuriy Polyakov, and Vincent Zucca. Revisiting homomorphic
encryption schemes for finite fields. In Advances in Cryptology–ASIACRYPT
2021: 27th International Conference on the Theory and Application of
Cryptology and Information Security, Singapore, December 6–10, 2021, Pro-
ceedings, Part III 27, pages 608–639. Springer, 2021.

[KS21] Kamil Kluczniak and Leonard Schild. Fdfb: Full domain functional boot-
strapping towards practical fully homomorphic encryption. arXiv preprint
arXiv:2109.02731, 2021.

[LMK+23] Yongwoo Lee, Daniele Micciancio, Andrey Kim, Rakyong Choi, Maxim
Deryabin, Jieun Eom, and Donghoon Yoo. Efficient fhew bootstrapping
with small evaluation keys, and applications to threshold homomorphic
encryption. In Advances in Cryptology–EUROCRYPT 2023: 42nd Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part III, pages
227–256. Springer, 2023.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. Journal of the ACM (JACM), 60(6):1–35,
2013.

[LW23a] Feng-Hao Liu and Han Wang. Batch bootstrapping i: A new framework for
simd bootstrapping in polynomial modulus. Springer-Verlag, 2023.

[LW23b] Feng-Hao Liu and Han Wang. Batch bootstrapping ii: Bootstrapping in
polynomial modulus only requires õ(1) fhe multiplications in amortization.
Springer-Verlag, 2023.

[MP21] Daniele Micciancio and Yuriy Polyakov. Bootstrapping in fhew-like cryp-
tosystems. In Proceedings of the 9th on Workshop on Encrypted Computing
& Applied Homomorphic Cryptography, pages 17–28, 2021.

[MS18] Daniele Micciancio and Jessica Sorrell. Ring packing and amortized fhew
bootstrapping. Cryptology ePrint Archive, 2018.

[MSM+22] Chiara Marcolla, Victor Sucasas, Marc Manzano, Riccardo Bassoli, Frank HP
Fitzek, and Najwa Aaraj. Survey on fully homomorphic encryption, theory,
and applications. Proceedings of the IEEE, 110(10):1572–1609, 2022.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM (JACM), 56(6):1–40, 2009.

[SEA22] Microsoft SEAL (release 4.0). https://github.com/Microsoft/SEAL,
March 2022. Microsoft Research, Redmond, WA.

A NTT and iNTT Algorithm
The NTT and iNTT are shown in Algorithm 6 and Algorithm 7.

https://github.com/Microsoft/SEAL

Zhihao Li et al. 589

Algorithm 6 Algorithm for Number Theoretic Transform
Input:

A coefficient vector a = (a0, a1, ..., aN−1) for a(X) ∈ RQ.
A table ζrev computed by powers of ζ and stored in bit-reversed order, where ζrev[i] =
ζbit-reverse(i) mod Q.

Output:
An NTT vector of a ∈ ZNQ in bit-reversed order.

1: t = N
2: for (m = 1;m < 2N ;m = 2m) do
3: t = t/2
4: for (i = 0; i < m; i+ +) do
5: j1 = 2 · i · t
6: j2 = j1 + t− 1
7: for (j = j1; j ≤ j2; j + +) do
8: U = aj
9: V = aj+t · ζ[m+ i] (mod Q)

10: aj = U + V (mod Q)
11: aj+t = U − V (mod Q)
12: end for
13: end for
14: end for
15: return NTT(a).

Algorithm 7 Algorithm for Inverse Number Theoretic Transform
Input:

An NTT vector a ∈ ZNQ in bit-reversed order.
A table ζ−1

rev computed by powers of ζ−1 and stored in bit-reversed order, where
ζ−1
rev[i] = ζ− bit-reverse(i) mod Q.

Output:
A coefficient vector a of a(X) ∈ RQ in normal order.

1: t = 1
2: for (m = N ;m > 1;m = m/2) do
3: j1 = 0
4: h = m/2
5: for (i = 0; i < h; i+ +) do
6: j2 = j1 + t− 1
7: for (j = j1; j ≤ j2; j + +) do
8: U = aj
9: V = aj+t

10: aj = U + V (mod Q)
11: aj+t = (U − V) · ζ−1

rev[h+ i] (mod Q)
12: end for
13: j1 = j1 + 2t
14: end for
15: t = 2t
16: end for
17: for (j = 0; j < N ; j + +) do
18: aj = 1

N · aj (mod Q)
19: return a .

590 Faster Bootstrapping via Modulus Raising and Composite NTT

B Algorithm for modulus switching
We show the modulus switching algorithm as follows.

Lemma 2. Input an LWE ciphertext ct = (a, b) ∈ LWEns,Q(m) with the error variance
Var(err(ct)), the modulus switching operation outputs a new LWE ciphertext ct′ with the
error variance Var(err(ct′)).

Proof. Let the integers Q > q > t, the output ciphertext is

ct′ = ModSwitch(ct)

= (b q
Q
· ae, b q

Q
· be).

By checking the decryption function, we can get (b qQ · be −
〈
b qQ · ae, s

〉
) mod q =

q
Q · b −

〈
q
Q · a, s

〉
+ 〈r, s〉 + r = t

q ·m + q
Q · e + 〈r, s〉 + r, where r ∈ R and r ∈ Rn are

in [−1/2, 1/2]. According to the central limit heuristic, the error is close to a gaussian
distribution, and its variance is Var(err(ct′)) ≤ (qQ)2 · Var(err(ct)) + ||s||22+1

12 , where the
factor 1

12 is the standard deviation of a uniform distribution in [−1/2, 1/2].

C Bootstrapping with Modulus Raising and RNS

Algorithm 8 Blind Rotation with Modulus Raising and RNS
Input:

An LWE sample ct = (a, b) ∈ LWEns,q(m), where q|2N .
A bootstrapping key bsk as shown in Equation 4.

Output:
An RLWE ciphertext acc = RLWEs,Q(X−b+

∑n−1
i=0 aisi) .

1: Set acc = (0, X−b) ∈ R2
Q.

2: for i = 0 to n− 1 do
3: acc′ = acc mod P ∈ R2

P

4: acc = NTT(acc) and acc′ = NTT(acc′)
5: acc = acc� [(1 + (Xai − 1)� bski,0 + (X−ai − 1)� bski,1)]Q ∈ R2

Q

6: acc′ = acc′ � [(1 + (Xai − 1)� bski,0 + (X−ai − 1)� bski,1)]P ∈ R2
P

7: acc = iNTT(acc) and acc′ = iNTT(acc′)
8: acc = P−1 · [acc− (acc′ mod Q)] ∈ R2

Q

9: end for
10: return acc .

Algorithm 8 shows the blind rotation by utilizing modulus raising and RNS techniques.
To conduct polynomial multiplication between RQ and RPQ, the conventional approach
involves decomposing the bootstrapping key polynomials with modulus PQ into RQ and
RP using the CRT, as demonstrated in Section 3.1. This decomposition process doubles
the number of NTTs and Hadamard multiplications required. Moreover, similar to gadget
decomposition, the division operation must be performed on the coefficient representation,
which also requires the iNTT operations.

Zhihao Li et al. 591

D AP Bootstrapping with Modulus Raising
We show the AP Bootstrapping with modulus raising in Algorithm 9. Moreover, similar to
section 4.2, the hybrid external product method can also be used in this algorithm, where
Br is the decomposition base for LWE ciphertext.

Algorithm 9 AP Blind Rotation with Modulus Raising
Input:

An LWE sample ct = (a, b) ∈ LWEns,q(m), where q|2N .
A bootstrapping key bsk as shown in Equation 7.

Output:
An RLWE ciphertext acc = RLWEs,Q(X−b+

∑n−1
i=0 aisi) .

1: Set acc = (0, X−b) ∈ R2
Q.

2: for i = 0 to n− 1 do
3: for j = 0 to logqBr

−1 do
4: ai,j = ba/Brc (mod Br)
5: acc = Com-NTT(acc)
6: acc� bski,j,ai,j

7: acc = Com-iNTT(acc)
8: acc = b acci

P e ∈ R
2
Q

9: end for
10: end for
11: return acc .

	Introduction
	Contributions and Techniques
	Related Work
	Paper Organization

	Background
	Notation
	Gadget Decomposition
	Gaussian Distribution
	Learning With Errors
	Original RGSW Ciphertext and External Product
	NTT-based Multiplication
	Useful Algorithms
	GINX Blind Rotation with Gadget Decomposition

	NTT Multiplication with Composite Modulus
	RNS Decomposition
	NTT-unfriendly Rings
	NTT with Composite Modulus
	Applications

	Faster FHEW-like Bootstrapping with Modulus Raising
	External product with modulus raising
	Hybrid External Product and Blind Rotation
	Packing Bootstrapping with Composite NTT
	Extensions for other FHE schemes

	Parameters and Performance
	Parameters and Noise Growth
	Key Sizes
	Implementation and Experiment performance

	Conclusion
	NTT and iNTT Algorithm
	Algorithm for modulus switching
	Bootstrapping with Modulus Raising and RNS
	AP Bootstrapping with Modulus Raising

