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Abstract.
Delay-based Physically Unclonable Functions (PUFs) are a popular choice for “keyless”
cryptography in low-power devices. However, they have been subjected to modeling
attacks using Machine Learning (ML) approaches, leading to improved PUF designs
that resist ML-based attacks. On the contrary, evolutionary search (ES) based
modeling approaches have garnered little attention compared to their ML counterparts
due to their limited success. In this work, we revisit the problem of modeling delay-
based PUFs using ES algorithms and identify drawbacks in present state-of-the-art
genetic algorithms (GA) when applied to PUFs. This leads to the design of a new
ES-based algorithm called CalyPSO, inspired by Particle Swarm Optimization (PSO)
techniques, which is fundamentally different from classic genetic algorithm design
rationale. This allows CalyPSO to avoid the pitfalls of textbook GA and mount
successful modeling attacks on a variety of delay-based PUFs, including k-XOR APUF
variants. Empirically, we show attacks for the parameter choices of k as high as
20, for which there are no reported ML or ES-based attacks without exploiting
additional information like reliability or power/timing side-channels. We further show
that CalyPSO can invade PUF designs like interpose-PUFs (i-PUFs) and (previously
unattacked) LP-PUFs, which attempt to enhance ML robustness by obfuscating the
input challenge. Furthermore, we evolve CalyPSO to CalyPSO++ by observing that
the PUF compositions do not alter the input challenge dimensions, allowing the
attacker to investigate cross-architecture modeling. This allows us to model a k-XOR
APUF using a (k−1)-XOR APUF as well as perform cross-architectural modeling of BR-
PUF and i-PUF using k-XOR APUF variants. CalyPSO++ provides the first modeling
attack on 4 LP-PUF by reducing it to a 4-XOR APUF. Finally, we demonstrate
the potency of CalyPSO and CalyPSO++ by successfully modeling various PUF
architectures on noisy simulations as well as real-world hardware implementations.
Keywords: Physically Unclonable Functions · Modeling Attacks · Evolutionary
Algorithms · Particle Swarm Optimization

1 Introduction
Physically Unclonable Functions. Over the last two decades, the advent of ubiquitous
computing has led to significant growth and pervasiveness of resource-constrained devices
in modern networks. These devices, deployed in-the-wild on edge platforms, face numerous
challenges in terms of security and integrity. They are vulnerable to various attack vectors
like fault injection and side-channel attacks [BHB19, CAF20]. In such scenarios, generic
cryptographic primitives, which rely on the assumption of the explicit secret key generation
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and management procedures on the victim device, fail their security guarantees when secret
key recovery is performed using fault injection or side-channel attacks. In this context,
Physically Unclonable Functions (PUFs) [SD07, GCvDD02] have garnered interest from
the security research community. PUFs are appealing due to their inherent feature of being
“keyless”, thereby mitigating the risk of physical attacks that could potentially leak the
key. A PUF can be conceptualized as a physical system that relies on intrinsic hardware
randomness as the source of entropy. When given a challenge c (which is essentially a n-bit
bitstring, for some security parameter n) as external stimulus, a PUF essentially behaves as
an activated hardware component that depends on nanoscale structural variances to produce
an output response r. These nanoscale structural variances can originate from a variety
of sources like multiplexer delays [SD07, GCvDD02, MKD10], ring oscillators [MCMS10],
start-up values of a static random access memory (SRAM) [BHP11, XRF+14].
Modeling attacks on PUFs. PUFs, by definition, are designed to be “unclonable”;
however, in practice, they are not impervious to modeling attacks [RSS+10, RSS+13]. In
such attacks, the adversary attempts to create an algorithmic model that can predict
the PUF’s response to arbitrary challenges with high probability. If such a model is
successfully created, it essentially undermines the security guarantee of the PUF, and
consequently, any protocols built on top of it. Therefore, developing PUFs resistant to
modeling attacks is a significant and intriguing challenge in the security research community.
We now note different tactics employed in literature to approach the problem of modeling
PUFs. Machine Learning (ML) is one of the most powerful tools for this task due to its
ability to learn multi-dimensional hyperplanes, thereby enabling the modeling of the non-
linear relationship between challenges and their corresponding responses. While classical
ML attacks use only challenge-response pairs (CRPs) to train ML models, which are
simpler to obtain for adversaries [RSS+10, RSS+13], works like [Bec15a, TAB21, Bec15b,
RXS+14, MRMK13] aid the learning process with additional information (like reliability
or power/timing side-channel information) to model higher-order XOR APUFs. Although
ML-based attacks dominate the literature, there are a few notable works [VPPK16, KB15,
RSS+10, RSS+13] that take an alternative approach by employing different types of
Evolutionary Search Algorithms (ES) for modeling. While works like [VPPK16, RSS+10,
RSS+13] have demonstrated successful ES-based modeling attacks on a specific class of
PUFs (namely the Feed-Forward Arbiter PUFs (FF-PUF)), to the best of our knowledge,
there are no known works that have been able to model higher XOR APUFs and other
delay-based PUFs that utilize input transformations (like LP-PUF [Wis21b]).

1.1 Related Works
ML attacks on PUFs have been a major line of research that led to the introduction of
different attack strategies as well as ingenious countermeasures to thwart such modeling
attacks. Classical Arbiter PUF [GLC+04] (APUFs) and its lower order XOR variants (up
to 6-XOR) can be modelled using simple logistic regression techniques [RSS+10, RSS+13].
For the higher order variants, more advanced ML techniques like multi-layer perceptron
(MLP) and long short-term memory (LSTM) based neural networks have been used
to successfully model 11-XOR [WTM+22] and 8-XOR APUFs [FKMK22]. Similarly, in
[SLZ19], artificial neural networks (ANNs) along with global approximations were used
to model 5-XOR APUFs. While these attacks have been demonstrated on APUFs and
their XOR-variants, there have been attacks proposed on variants of delay-based PUFs
that use input transformations for additional resilience. For example, interpose-PUFs
[NSJ+18] that use input transformations have been successfully modelled using a divide-
and-conquer ML strategy [WMP+20]. In addition to classical ML techniques, works such
as [TAB21, Bec15a] have incorporated relaxed assumptions on the adversary, such as
availability of reliability information, to achieve high accuracy for modeling up to 10-XOR
APUFs. Likewise, [RXS+14] used side-channel information, like power consumption, to
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achieve high accuracies in modeling up to 16-XOR APUFs. However, it’s important to note
that these side channels require physical access to the PUF device and advanced physical
attack capabilities, making them challenging to implement [MRMK13, RXS+14].

The successful modeling of different delay-based PUFs provided a major impetus to
consider two major design strategies for these PUFs - 1© increasing non-linearity and
2© introducing complex input transformations. Such design choices have, to an extent,
been able to resist known ML attacks beyond 12-XOR APUFs without usage of additional
side-channel information (as in [KB15, BK14]).

1.2 Motivation
Although machine learning has been successful in modeling a wide variety of delay-based
PUFs, it is still limiting in the sense that either 1© there are no reported works in literature
reporting successful ML modeling attacks on PUFs of certain complexities (such as k-XOR
APUFs for k > 12 or LP-PUF), or 2© has additional side-channel requirements (for instance,
availability of reliability information). Moreover, due to the predominance of ML attacks
in literature, the strategies used to design modeling-resilient delay-based PUFs have mainly
accounted for state-of-the-art ML-based techniques only.

However, there exist an entirely different class of attack vectors than ML which has
received limited attention from the community. While there certainly have been prior
works [VPPK16, KB15, RSS+10] investigating the efficacy of applying evolutionary search
(ES) algorithms to model PUFs, the overall implications are still limiting. This is because,
first, these works have focused only on a small sub-class of ES algorithms (i.e. genetic
algorithms), ignoring a wide array of other ES algorithms. And secondly, such works have
generally reported negative results on the modeling accuracy for modeling stronger PUFs,
as observed in [VPPK16] where the maximum success rate is only 60% against XOR APUFs.
This lack of exploration of ES based approaches in the context of PUFs prompted us to
delve deeper into the intricacies of modeling techniques of known ML and ES techniques.
We believe that a deeper inspection can lead to a better search optimization approach for
modeling higher order XOR APUFs and other well-known ML-resilient delay-based PUF
variants. These insights lead us to ask the following questions:

1. Does there exist sub-classes of Evolutionary Algorithms other than the well inves-
tigated genetic algorithms which are possibly more efficient than modern Machine
Learning techniques at modeling non-linear delay-based PUFs?

2. Is it possible to devise an Evolutionary Search Algorithm that can efficiently model
higher order XOR APUFs and other delay-based PUFs like LP-PUF that are shown
to be resilient against state-of-the-art ML techniques?

3. Given the architectural topologies of PUF chains, is it possible to formulate a cross-
architectural modeling attack such that a particular class of PUFs can be approximated
by a PUF belonging to another class?

1.3 Contributions
In this work, we answer the aforementioned questions in the affirmative. In particular, we
make the following contributions:

1 An alternative modeling strategy for delay-based PUFs: The current state-of-
the-art Machine Learning algorithms have their limitations in modeling higher order XOR
PUFs and certain classes of complex PUF architectures like LP-PUF. Recognizing these
limitations and the lack of adequate exploration into the use of evolutionary search (ES)
algorithms outside of genetic algorithms (GA), this work demonstrates how ES algorithms
other than GAs can outperform machine learning in the modeling of delay-based PUFs.
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Specifically, a new model of attacking delay-based PUFs is introduced, which focuses not
on learning the decision hyperplane (as ML does), but rather on learning the cumulative
effect of the delay parameters (parameters which drive the behaviour of delay-based PUFs).
This allows us to construct modeling strategies for PUF architectures that reportedly show
stronger resilience against ML based attacks.
2 CalyPSO - novel modeling framework for PUFs: As part of our investigation
into evolutionary search (ES) algorithms, we review the negative results in literature
wherein a rather small sub-class of ES algorithms (i.e. genetic algorithms) failed to model
complex delay-based PUFs, and develop a causal understanding of the same. We shed light
on why certain properties of textbook genetic algorithms are fundamentally unsuitable
for modeling PUFs. Consequently, we propose a unique genotype representation that is
specifically tailored for delay-based PUFs, and introduce a new variant of Particle Swarm
Optimization (PSO) algorithm called CalyPSO, inspired by the natural process of amoebic
asexual reproduction.
3 Demonstrate modeling of k-XOR APUF (upto k = 20) and other delay PUFs:
Empirically, CalyPSO outperforms both machine learning as well as prior ES based attack
vectors on PUFs. CalyPSO, to the best of our knowledge, is the first attempt to model
higher order k-XOR PUFs (as high as 20-XOR PUFs) using far less number of challenge-
response pairs than reported in literature. We also show high modeling accuracy on noisy
simulations as well as hardware implementations of different variants of k-XOR APUFs
(hardware implementations for 4-XOR to 12-XOR and noisy simulations for 13-XOR to 20-XOR).
We further demonstrate attacks on delay-based PUFs that derive their security from input
transformations. One prime example is LP-PUF, which has not been successfully modelled
yet in literature.
4 CalyPSO++ - enhanced framework for cross-architecture modeling: Addi-
tionally, the genotype representation we propose for PUFs, combined with the specification
of CalyPSO, allows us to investigate a previously unexplored class of attacks on PUFs:
cross-architectural attacks. We propose an enhanced version of our framework, called
CalyPSO++, which introduces a novel attack strategy that allows us to model target PUFs
of one architecture using the mathematical model of other PUF architectures. Specifically,
we demonstrate the reduction of security of a k-XOR APUF to a (k − 1)-XOR APUF as
well as bypass complex input transformations such as substitution permutation networks,
enabling us to successfully model k-LP-PUF by reducing it to a k-XOR APUF. Using
CalyPSO++, we demonstrate successful modeling of hardware implementations of BR-PUF,
(11, 11) i-PUF and 4 LP-PUF using different variants of k-XOR APUFs.

1.4 Organisation
The rest of the paper is organised as follows. We provide a brief background on APUF
delay model, evaluation metric, ML modeling and newly proposed LP-PUF in Sec. 2. Next,
in Sec. 3 we provide a deeper insight into learning approaches of ML attacks and Sec. 4
discussed the pitfalls of known ES algorithms in context of PUFs. In Sec. 5, we introduce
a novel evolutionary search algorithm named CalyPSO to model delay based PUFs. We
enhance the framework in Sec. 6 and propose CalyPSO++ that shows PUF modeling
through cross-architectural learning. Sec. 7 shows the experimental results across different
families of delay PUFs. Finally, we provide a discussion on the future of delay-based PUFs
and conclude in Sec. 8.

2 Preliminaries
In this section, we present the background information on Arbiter PUFs, including their
delay model. We discuss the non-linear design approaches undertaken in literature to make
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APUFs resistant against ML-based modeling attacks.

2.1 Additive delay model: Case study of an Arbiter PUF
Additive Delay Model. Arbiter Physical Unclonable Function (APUF), originally
proposed in [GLC+04], is the first delay-based PUF design upon which many modern delay-
based PUF designs are based. An APUF takes a single challenge c = (c1, c2, c3, ..., cn) ∈
{−1, 1}n as input (where n is the challenge length) and outputs a single bit response
r ∈ {−1, 1}. In digital logic, the algebraic representation of 1 and −1 corresponds to the
LOW and HIGH states respectively. Structurally, each stage of APUF receives two input
pulses from its previous stage, propagates those pulses through a challenge dependent
path, and adds additional “stage delay” depending on stage delay parameter δ (which
mathematically quantifies the stage’s internal nanoscale level variations). The final response
r is the outcome of the “additive delay” ∆, which is the cumulative delay effect from all n
stage delays. The additive delay model is defined as

∆ =
n∑

i=1

δ(i)
ci

n∏
j=i

cj

 =
n∑

i=1
ωiΦi, (1)

where ci and cj denote the challenge bits, and δ(i)
1 and δ(i)

−1 represent the delay parameters
for the i-th stage when ci = 1 and ci = −1, respectively. The arbiter in this process is the
D flip-flop which generates the final response. The behavior of the flip-flop is abstracted
using the sgn function G : G(∆) = r. This notation is consistently used throughout the
rest of the paper.
Unintentional linearity. From a ML perspective, the additive delay model of the APUF
(and its behavior) has a vulnerability that can be exploited. Note that δ (c.f. Eq 1)
captures the stage delay of the i-th stage given input challenge bit ci. As a result, the
cumulative delay at the i-th stage depends on the cumulative delays up to (i− 1)-th stage
and the stage delay of the i-th stage [WGM+17]. Mathematically therefore, Eq. 1 can be
rewritten as

n∑
i=1

ωiΦi, where ωi = 1
2 (δi
−1 + δi

1 − δi−1
−1 + δi−1

−1 ). Here δx
y represents the delay

parameter corresponding to the x-th stage and input challenge bit y (for y ∈ {−1, 1}).
Additionally, Φi =

∏n
j=i cj is termed as the parity vector and is derived from the publicly

known input challenge c. It should be noted that Φi =
∏n

j=i cj is publicly known to the
adversary, making Eq. 1 linear in ω, thereby leading to successful ML modeling.

2.2 Non-linear design variants: defences against ML modeling
An effective defense strategy against such attacks would involve “de-linearizing” ∆ =

n∑
i=1

ωiΦi, i.e., breaking the linear relationship between ∆ and ω to make it more difficult

for machine learning algorithms to learn a separable decision hyperplane on G(∆). This
can be achieved through two approaches: 1© introducing explicit non-linearity, and 2©
input transformation.
Explicit introduction of non-linearity. To introduce explicit non-linearity [NSJ+18],
XOR APUFs are designed by combining several APUF chains with a non-linear XOR function,
which is known to be challenging for machine learning algorithms. Specifically, a k-XOR
APUF consists of k arbiter chains that compute the XOR of k individual responses. Each
APUF in the chain is given an input challenge c = (c1, c2, c3, ..., cn) ∈ {−1, 1}n, and the
XORed output from each chain is the response r. Mathematically, a k-XOR APUF can be
represented by the following equation: r = G(∆1) ⊕ G(∆2) ⊕ G(∆3) ⊕ · · · ⊕ G(∆k). The
equation can be interpreted as a series of k-XOR chains, where the i-th chain is represented
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by delay ∆i and the corresponding response generated is given by G(∆i). To further
elaborate, substitution of Eq. 1 (additive delay model ∆) gives the following arrangement:

r = G

 n∑
i=1

(δ1)(i)
ci

n∏
j=i

cj

 ⊕ · · · ⊕ G
 n∑

i=1

(δk)(i)
ci

n∏
j=i

ci

 (2)

It is worth noting that each individual APUF in the k-XOR APUF has its own delay
parameter set δi, where 1 ≤ i ≤ k. From a ML perspective, a higher value of k makes it
more challenging for ML models due to the increased non-linearity introduced by the XOR
operation among the responses.
Input transformations. An alternative approach to achieve the same objective is to
adopt design principles from block ciphers to hide the publicly available challenge bits
through input transformations [MKP08, SAS+19, Wis21b, PCA+22]. Specifically, these
defense mechanisms employ a one-way function fs(c) that is parameterized by a secret
key s, which transforms the original challenge c = {c1, c2, · · · , cn} into a private challenge
c′ = {c′1, c

′

2, c
′

3, ..., c
′

n}. This transformed challenge is then used as input to the PUF. In a
generic k-XOR equation with input transformations, we can write it as follows:

r = G(
n∑

x=1
(δ1)(x)

fs(c)x

n∏
y=x

fs(c)y) ⊕ ...⊕ G(
n∑

x=1
(δk)(x)

fs(c)x

n∏
y=x

fs(c)y) (3)

Any ML modeling attack on such PUFs implementing input transformations has to learn
both fs as well as the non-linear XOR.

2.3 PUF Evaluation Metrics
Given a set of challenge-response pairs, there exist metrics which allow quantifying the
behaviour correctness of the PUF. We define the most important of such metrics here:
1. Uniformity: It estimates the distribution of response bits (either 1 or −1) against a

challenge set. Ideally, for a PUF, the likelihood of either response bit should be no
better than an random unbiased coin toss.

2. Uniqueness: This property describes the difference in responses obtained when an
identical challenge set is given as input to a pair of PUF instances (ideally 50%).

3. Reliability: A PUF is said to be reliable when the responses are reproducible for an
identical challenge over time and operating conditions. The ideal value is 100%. However,
a maximum error rate of 5% is tolerable and can be corrected using Error-Correcting
Codes (ECC) [RYV+17].

3 A deeper look into ML attacks and the learning process
We note that certain delay-based PUFs such as higher XOR APUFs (more than 12-XOR)
and PUFs utilizing input transformations (like LP-PUF) have been effective in resisting
machine learning modeling attacks1. Consequently, in this section, we summarize the ML
attack strategy for better comparison with alternative modeling strategies, particularly
evolutionary search techniques. We begin with the following observation:
X O1. For an arbitrary PUF specification, challenge set C ∈ UC , and original response

set R ∈ UR, a machine learning algorithm dwells on a search space of functions
P : UC → UR and tries to learn a decision hyperplane solving the binary classification
problem on R. Here, U represents the universal set notation.

1For the rest of the paper, we exclude discussions on use of additional side-channel information.



Nimish Mishra et. al. 507

The observation O1 directly motivates the two design approaches employed to counter
machine learning (ML) attacks (c.f. Sec. 2.2). Literature indicates that beyond a certain
threshold, the 1© induced non-linearity with increasing k-XORs and 2© input transformations
distort the decision hyperplane (i.e. make the decision hyperplane increasingly inseparable)
to a point where classic as well as state-of-the-art ML attacks struggle. This observation
raises an intriguing question: can alternative approaches, such as evolutionary search, be
optimized for modeling delay-based PUFs in order to explore PUF families known to be
resilient against ML attacks in existing literature? To address this, we conduct a closer
examination of the intrinsic design and architectural principles of delay-based PUFs, and
formulate a dedicated modeling strategy.

An alternate modeling strategy

It is well-established in literature that the nanoscale structural variances of a delay-based
PUF can be approximated by a normal distribution with an appropriate variance, which
includes both the inherent delays of CMOS circuitry [HA06] and additional noise that
arises in hardware [DV13]. We leverage this information to adopt a new perspective
towards modeling delay-based PUFs. Instead of treating the problem of modeling PUFs as
a decision hyperplane learnability problem, as commonly done in machine learning (ML),
we focus on the combined effect of the individual stage delays in the PUF.

Our representation of PUFs is a set of normal random variables δ = {δ1, δ2, δ3, . . . , δn}
where δi ∼ N (0, σ2)∀ 1 ≤ i ≤ n for standard deviation σ. This vector δ characterizes the
individual stage delays in a PUF (c.f. Eq 1). The core idea is that every delay-based PUF
generates responses based not on individual stage delays, but rather on the combined effect
of those delays. Formally, this combined effect phenomenon can be expressed as r = G(∆),
where ∆ represents the cumulative delay arising from the operations of the individual
delay parameters δ = {δ1, δ2, δ3, . . . , δn}. This observation forms the basis of our attack
strategy proposed in this paper.

X O2. A successful strategy to model a PUF would require approximating the combined
effect ∆ by constructing another set of normal variables δ

′
= {δ′1, δ

′

2, δ
′

3, ..., δ
′

n} such
that for δ′i ∼ N (0, σ2) ∀ 1 ≤ i ≤ n, and thus another combined delay ∆′ such that
r = G(∆) = G(∆′). Since this strategy does not explicitly require finding out the
decision hyperplane solving the binary classification problem on the PUF’s responses,
it is able to subvert the popular defence strategies in design of traditional delay-based
PUFs, which rely on convoluting the decision hyperplane.

A logical claim from observation O2 is that G(∆′) serves as a model of the target PUF
G(∆) due to the relationship r = G(∆) = G(∆′). Hence, instead of learning the decision
hyperplane, our strategy is to search through the space of all PUFs parameterized by δ

′

to find a PUF with a cumulative delay ∆′ such that | ∆ −∆′ |≤ ε (where ε represents
an acceptable error). Furthermore, approaching the problem of modeling PUFs from
evolutionary search perspective allows us to launch innovative cross-architectural attacks-
approximating a target delay ∆ in a search space of simpler PUFs (see Sec. 6). In this study,
we demonstrate cross-architectural attacks on two use-cases: 1© reducing the security of a
k-XOR APUF to a (k − 1)-XOR APUF, thereby reducing the degrees of non-linearity; and
2© reducing the security of a k-LP-PUF to an equivalent k-XOR APUF, thereby nullifying
the input transformations. These cross-architectural attacks highlight our perspective of
viewing PUF modeling as a search problem on the delay parameter set δ, which allows for
a more extensive search space. Thereby, we make the following observation, which serves
as the foundation for designing our attack:
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Figure 1: An iteration of the genetic algorithm on the genotype suggested in this work.

X O3. Specifically, as the 1© non-linearity increases or as 2© input transformations
achieve more diffusion (we use the term diffusion in the same context as block
ciphers), the decision hyperplane becomes more and more convoluted. However, both
the defences 1© and 2© have no effect whatsoever on ∆, which is where we attack.

To summarize, in this section we suggest an alternative modeling strategy for searching
through the victim PUF’s parameter space. In the subsequent sections, we further develop
observation O2 to create an evolutionary search algorithm based modeling framework
called CalyPSO, while observation O3 forms the basis for CalyPSO++ for cross-architecture
modeling. However, for brevity, we first discuss the limitations and pitfalls of prior ES-
based works on PUFs in the next section. This analysis helps us conceive an improved
strategy to eventually culminate our search-based modeling framework.

4 Towards PUF-aware evolutionary algorithm design
While the literature reports a significant number of ML based modeling attacks, the
use of Evolutionary Search (ES) techniques as an alternate strategy has been relatively
less explored. Although some attempts have been made in the literature using a small
subset of evolutionary algorithms, specifically genetic algorithms [VPPK16, KB15], the
reported modeling accuracy did not exceed 60% when defense mechanisms like increased
non-linearity and input transformations were introduced. Furthermore, recent literature
that uses evolutionary search algorithms has not been successful in modeling higher order
XOR APUFs or PUFs with input transformations, such as LP-PUF. Therefore, it is crucial
to analyze the approaches and strategies employed in prior works in order to develop better
strategies for the search objective based on the observation O3 (cf. Sec. 3).

In general, Evolutionary Search (ES) algorithms are a class of algorithms used to
solve computational problems with well-defined search spaces [BS93, YG10, PBH17].
Theoretically, with infinite computational resources, it would be possible to exhaustively
search the entire search space using brute force or randomized search strategies. However,
ES algorithms prevent exploration of the entire search space by making intelligent choices
using a defined fitness function that quantifies the progress of the search with respect to
a global optimum. The algorithm balances two opposing forces [Whi01]: 1© exploration,
and 2© exploitation. Too low exploration can result in the algorithm getting stuck in local
optima, while overly large exploration is akin to a completely random search. Too much
exploitation can lead to the algorithm getting trapped in local optima, while too little
exploitation is essentially a random search of the search space.

Previous research on using evolutionary algorithms for modeling Physical Unclonable
Functions (PUFs) has primarily focused on a limited subset of ES algorithms, specifically
genetic algorithms, to attack delay-based PUFs such as APUF, 4-XOR APUF, Feed-Forward
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APUFs, and analog PUFs [VPPK16, KB15, RSS+10]. Genetic algorithms are inspired by
the process of gene evolution in nature and are based on the principle of survival of the
fittest, aiming to mimic nature’s strategy. Every genetic algorithm is a composition of the
following four sub-parts [For96]: 1© Genotype, 2© Selection operator, 3© Crossover
operator, and 4© Mutation operator. The genotype represents the genetic encoding
of the problem being studied. The selection operator determines which members of the
population will reproduce in a given generation. The crossover operator controls how
the genotypes of two individuals in the population are mixed to create offspring, mainly
influencing the exploitation phase of the genetic algorithm. Lastly, the mutation operator
introduces random mutations into the population as it evolves, controlling the exploration
phase of the genetic algorithm. Application of a genetic algorithm in the case of PUFs
requires the knowledge of the following:
• Genotype representation: PUF representation used by genetic algorithm.
• Hyperparameters: parameters for selection, crossover and mutation.

Previous works [VPPK16, KB15, RSS+13] on standard genetic algorithms choose the
hyperparameters based on the default settings of genetic algorithms. However, the genotype
representation requires careful consideration when applied to PUFs. In [VPPK16, KB15],
the genotype representation is a set of table entries. While [KB15, RSS+13] focuses on
Feed-Forward APUF designs and do not explore XOR-based designs, [VPPK16] explicitly
acknowledges the limitations of genetic algorithms in breaking PUFs.

Drawback in textbook genotype representation

We now summarize the associated problems with genetic algorithms (GA) for PUFs. As
shown in Fig. 1, the GA chooses two PUF instances (technically called the parents) from
the population of all available instances and performs a crossover [Hil04]. The newly
formed PUF instance (or the child instance) undergoes mutation in order to evolve. Finally,
the fittest members of the population undergo similar evolution in later iterations of the
algorithm. Concretely, the fitness of every member of the population is computed as:
fitness = accuracy− bias, where accuracy abstracts the % of correct predictions that the
child PUF does for the victim PUF’s responses (for the same challenge set). Likewise, bias
abstracts the victim PUF’s likelihood to generate a certain response (either 1 or −1) more
than the other bit.

Traditional GA’s approach of combining two PUF parameters to create new PUF
parameters does not necessarily guarantee a fitter PUF than the previous population. This
is because the delay parameters δa = {δa

1 , δ
a
2 , · · · , δa

n} and δb = {δb
1, δ

b
2, · · · , δb

n} have
been learnt based on the collective behaviour of the parent PUFs. Mixing the halves of
each parent into new children does not take into account the aggregate effect of the other
half in the parent PUF instance. Moreover, such a child instance effectively destroys the
relationship between the different stages in the parent instances.

A PUF-aware genotype representation

In this work, we propose a novel genotype representation for PUFs that eliminates the need
for crossover operations in evolutionary algorithms. We also extend our search beyond
traditional genetic algorithms (GAs), which are just one type of evolutionary search
(ES) algorithm, to explore other classes of ES algorithms that do not require genotype
crossover. Specifically, we leverage the concept of de-linearization defenses and input
challenge transformations to enhance the security of PUFs. However, even in the presence
of such defenses, the functionality of delay-based PUFs still relies on the ω vector (as
discussed in Sec. 2.1 and observation O3) that is used to evaluate ∆. In our work, we utilize
an evolutionary search technique with our improved genotype representation to directly
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estimate ∆ and model the PUF. Formally, our ES algorithm’s genotype representation is a
normally distributed delay parameter set δ = {δ1, δ2, δ3, · · · , δn}, and the objective of the
search is to converge towards ω.

5 CalyPSO: A PUF-aware evolutionary optimizer
With the newfound intuition for an improvised genotype representation, we now proceed
to introduce a novel Particle Swarm Optimization variant named CalyPSO. CalyPSO is
inspired by the biomimicry [HYZ23] of amoebic reproduction as it allows for an intuitive
evolutionary strategy on the PUF-aware genotype representation introduced in Sec. 4. We
note that CalyPSO is based on the ideas of swarm optimizers, which are fundamentally
different from the previously explored genetic algorithms in PUF literature. Unlike gene
intermixing based genetic algorithms, swarm algorithms [PKB07] draw upon the efficiency
of various available swarms in the animal kingdom that allow them to achieve an objective
of collective interest, thereby relying on collective behaviour rather than genetic intermixing.
One textbook example is classical PSO, which is inspired by the behaviour of a swarm of
birds foraging for food. PSO works upon a swarm of particles in a search space with a
single food source. The exploration phase of the algorithm allows the particles to move
randomly (or heuristically) in the search space. As soon as a path to the food source
is expected to be discovered, the swarm/exploitative behaviour kicks in, wherein other
particles in the search space also try to move along the newly discovered path in order to
get a better convergence to the global optimum.

Following the rationale of swarm optimizers, CalyPSO also needs to delicately balance
between two equally important yet competing strategies: 1© exploration, and 2© ex-
ploitation. Exploration controls how much the algorithm explores for new solutions in
the search space. Exploitation, on the other hand, focuses on developing on previously
found solutions in order to make them even better. Too much of either is disastrous for
the convergence of the algorithm. Overdoing exploration shall be no better than a blind
random search, while overdoing exploitation risks being caught in local extremums. Ca-
lyPSO incorporates the evolutionary approach of amoebic reproduction into the traditional
PSO strategy using our improvised genotype representation. In the rest of the section, we
elaborate on the design intuition and provide a detailed description of our algorithm.

5.1 Algorithm design intuition
... ...
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Race winning path

Figure 2: Each δa
i affects the i-th stage.

The combined effect ∆ is obtained by
the combined effects of each of δi which
allow one path to win the race.

For brevity, let us consider the PUF’s delay pa-
rameters δa = {δa

1 , δ
a
2 , δ

a
3 , · · · , δa

n} learnt over a
period of several generations of the evolutionary
learning algorithm. Unlike the changes a ge-
netic algorithm does, we do not want to discard
half of the parameters learnt and replace them
with parameters of another PUF (this is a bad
design decision since no two PUFs are compa-
rable). Rather, we want to perturb a small set
S ⊆ δa in-place. Based on the idea of race
between cross/straight paths (c.f. Fig. 2), this
perturbation may cause the behaviour of few stages of the PUF to change. For example,
perturbing δa

i to (δ′)a
i (for a specific i where 1 ≤ i ≤ n) may cause the originally winning

criss-cross path to now lose the race to straight path, leading to a change in overall
PUF response, leading to a change in accuracy on target response set. The new PUF
genotype shall then be (δ

′
)a = {δa

1 , δ
a
2 , δ

a
3 , · · · , (δ

′)a
i · · · , δa

n}. If (δ
′
)a improves upon the

performance of δa, then all future generations will now build upon (δ
′
)a instead of δa
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to improve even further. The major difference between this approach and the genetic
algorithm approach is that by choosing to update δa

i and evaluating the correctness of the
newly generated PUF, the algorithm allows (δ

′
)a to be still influenced by parameters from

the previous generation (i.e. {δa
1 , δ

a
2 , δ

a
3 , · · · , δa

i−1, δ
a
i+1, · · · , δa

n}), while also focusing on
improving overall accuracy on target response set. This allows the algorithm to evaluate
the effect of this mutation on the combined delay model ∆ =

n∑
i=1

(δa
i Φi) by changing a

single parameter δa
i to (δ′)a

i and preserving all other parameters in δa. Over time, the
algorithm converges to approximate the correct behaviour of each stage (i.e. winning
either the cross or the straight race) that is reminiscent of the stage-wise behaviour of
the target PUF. It is noteworthy that when modeling a PUF instance, it may not be
necessary to learn the individual delay parameters for all the stages. If a modeling strategy
can accurately capture the behavior of each stage, such as the probability of the cross
or straight path winning, the overall behavior of the PUF for any given challenge can be
effectively modelled with high probability.

5.2 Algorithm design decisions

Food source Amoebic population

Low height Medium height Peak

Figure 3: Initial amoebic population
with a food source in the landscape
defined by contours. It is assumed
that the food source is at the highest
peak in the landscape.

In this work, we develop a novel evolutionary
search algorithm named CalyPSO. We derive the
motivation and design decision of our algorithm by
mapping the PUF search problem (cf. Sec. 3) to the
following problem in nature: how does a population
of amoeba move towards a food source (i.e. an ob-
jective)? Consider the adjoining Fig. 3. There is a
landscape with hills and valleys of varying heights.
The objective (i.e. the food source) is the highest
peak of the landscape. Initially, we have a popula-
tion of amoebas randomly scattered in the landscape.
Based on its fitness, each member of the population
takes one step towards the direction which takes
that member closer to the food source. Here the
fitness of an individual member of the population
can be adjudged as the remaining distance from the
food source. Intuitively, the higher the peak is in
the landscape, the more fit an amoeba becomes when it reaches there.

However, each member of the population does not have the complete view of the
landscape. Hence, every step an amoeba takes is according to the local best decision it
can make. Hence, we have our first challenge C1 that the algorithm needs to solve:

• C1. Ensure the amoebic population escapes local extremums, over a sufficient
iterations of the algorithm.

Secondly, a generic PSO would involve swarm behaviour, in which a single amoeba, as
soon as it finds a new optimal path to the food source, will broadcast this information
to other members of the population. Henceforth, other population members can use the
findings of one member to their advantage. However, such a broadcast does not benefit
the search process in the context of PUFs. As discussed in Sec. 4, any two instances of
PUF must evolve independently without influencing one another. In other words, every
member of the population shall find its own path to the global optimum. Mixing different
solutions in the context of PUFs is likely to be no better than a random search. Thus, we
have a second challenge:
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Food source Amoebic population Low height Medium height Peak

Landscape

 Evolution

Figure 4: An example of landscape evolution. Arrows indicate the directions in which the
population advances. Note how the contours change as the landscape evolves.

• C2. A generic PSO approach is not much helpful in context of PUFs as we cannot
use one PUF instance to evolve another PUF instance.

5.2.1 Solving C1: Landscape evolution

The generic landscape (as depicted in Fig. 3) represents the initial configuration of the
search space and is dependent on the particular search problem and the initial input
parameters/conditions. In our context, this landscape is the target PUF mapping P
(c.f. Sec. 1.2). Ideally, a landscape with a large amount of data extracted from P
would be smooth, allowing particles to converge towards the final objective. However, in
practical scenarios, the available data for the algorithm is often limited, resulting in a
more challenging landscape for the particles to navigate.
Solution to C1. We adapt the concept of evolving landscapes [Jon95, Pai11] into our
algorithm. Given limited data from P , we construct partial landscapes from subsets of the
overall data. Over a sufficient number of generations, the members of the population will
have evolved over varying landscapes. Since a false optimum will not occur in all subsets
used in landscape evolution (otherwise it would not be a false optimum), a member of
the population stuck in such a false optimum in one generation will become unstuck in
subsequent generations. Eventually, using landscape evolution, the false optimums will
smooth out, leaving the global optimum visible for convergence.

Consider the illustration in Fig. 4. Since we are utilizing only a subset of the total
available data, it is possible for false contours to emerge. Such contours may contain false
optimums that would trap the algorithm’s convergence. However, as the landscape evolves
during the algorithm’s execution, these false contours will not occur in every sampled
subset. Therefore, over multiple runs of the algorithm, the population members that may
have become trapped in false contours will also gradually converge towards the global
optimum. Hence the solution to challenge C1 is:

• S1. Using landscape evolution as an essential portion of the algorithm allows it
to prevent from being caught up in local extremums.

5.2.2 Solving C2: Asexual reproduction

In a generic PSO, the following two orthogonal forces balance out the convergence:
• Search space exploration: This is captured by the particle behaviour of the PSO.

Given a member of the population, the algorithm will attempt to move it in a random
direction and check how close the member moved towards the global extremum.

• Search space exploitation: Once a path to the global extremum is found, the swarm
behaviour kicks in. Every member then follows closely the discovered optimal path to
the global extremum.
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However, as challenge C2 points out, we cannot utilize the swarm behaviour of a generic
PSO in case of PUFs because that would require mixing genotypes from two members
of the population (which does not perform any better than the crossover operator in
genetic algorithms). This means that search space exploration is no longer possible without
altering the generic PSO as every member of the population will simply keep on doing a
random search in their own specific directions.

Food source Amoebic population

Low height Medium height Peak

Figure 5: An example of amoebic re-
production applied in the algorithm.

Solution to C2: We merge the generic concept
of a PSO with amoebic reproduction. We get two
advantages from this design. 1© Amoebic reproduc-
tion, being asexual, prevents the need to merge two
PUF solutions into one (as genetic algorithm does),
thereby avoiding the pitfalls that genetic algorithm
has in the context of PUFs (c.f. Sec. 4). And, 2©
it is able to reproduce progressively fitter amoebas
because the parents themselves are getting fitter by
each generation. Point 2© is in stark contrast with a
genetic algorithm’s reproduction step, which has no
control over where in the landscape the populated
children will spawn 2, thereby risking bad solutions
in the search process. Consider Fig. 5. Every iter-
ation of the algorithm, in addition to moving in the
locally optimal direction, also (asexually) reproduces to generate a progeny population.
This population inherits the same representation as the parent, but takes its own path
across the landscape. In short, we solve challenge C2 as:

• S2. Using amoebic reproduction in place of swarm optimisation helps reproduce
fitter progeny through a more PUF-aware evolutionary strategy.

5.3 Algorithm description
With attack intuition and solutions S1 and S2 in place, we now proceed to develop our
framework CalyPSO, as detailed in Algo. 1. The algorithm is invoked with ATTACK_WRAPPER
which does essential initializations: 1© the victim PUF’s challenge-response tuple (C,R)
that needs to be modelled (line 20), 2© the target_puf_arch which abstracts the details of
the architecture of the victim PUF (line 21), 3© le_parameter which dictates the frequency
of landscape evolution (line 22), 4© delay_param in line 23 which controls the number of
delays in the set δ to perturb in one generation (c.f. Sec. 5.1), and 5© population_list
in (line 24) which holds an initial population of 500 randomly sampled elements of the
genotype detailed in Sec. 4. The random sampling of initial population is abstracted in
line 6 by RANDOM(target_puf_arch), wherein we randomly sample n normally distributed
stage delays to construct the set δ for each PUF in the initialized population.

Then begins the evolutionary search. In every iteration (alternatively, in every gener-
ation), three main operations take place. First, 1© compute_population_fitness (line
26) is invoked on the entire population to compute fitness of every member of the popu-
lation (c.f. Sec. 4). Intuitively, fitness quantifies how close a member of the population
is to the objective of successfully modeling the victim PUF’s behaviour. Secondly, 2©
AMOEBIC_REPRODUCTION (line 29) is invoked which kicks in the amoebic reproduction part.
Finally, 3© STEP (line 30) uses delay_param to perturb the delay set δ of every member
of the population. Apart from these, we use helper functions SORT (line 27) and TRIM
(line 28) to remove the less fitter members of the population and maintain the size of
population_list at population_size.

2because the children are produced by intermixing two parent genotypes
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Algorithm 1 CalyPSO
1: procedure initialize_population(target_puf_arch)
2: set population_size ← 500
3: set population_list ← NULL
4: while population_list.size() != population_size do
5: /* Randomly generate an instance of target_puf_arch*/
6: population_list.append(RANDOM(target_puf_arch))
7: return population_list
8: procedure compute_population_fitness(C, R, population_list)
9: for member in population_list do

10: predicted_responses = member.evaluate(C)
11: member.fitness = /*compare similarity between R and predicted_responses*/
12: return population_list
13: procedure amoebic_reproduction(population_list)
14: population_list.append(CLONE(population_list))
15: procedure step(population_list, delay_param)
16: for member in population_list do
17: /*Add normal noise to each member’s delay parameters contained in the list de-

lay_param*/
18: procedure attack_wrapper
19: set GENERATION ← 0
20: (C, R) ← challenge-response tuple of the target PUF
21: set target_puf_arch
22: le_parameter ← landscape evolution hyperparameter
23: set delay_param ← 1 . delays to perturb in one generation.
24: population_list ← initialize_population(target_puf_arch)
25: while True do
26: call compute_population_fitness(C, R, population_list)
27: population_list.sort() . Sort based on fitness
28: population_list.trim() . Trim population to size 500
29: call amoebic_reproduction(population_list)
30: call step(population_list, delay_param)
31: if not GENERATION % le_parameter then
32: /*randomly sample a new challenge set C

′*/
33: R ← target PUF response on C

′

CalyPSO unveils the power of search algorithms by adopting two design decisions - 1©
instead of learning delay parameters, it tries to model the behaviour of the target PUF
and 2© uses bio-mimicry to solve the inherent challenges of ES algorithms in the context
of PUFs. Using CalyPSO, we have been able to model different variants of delay PUFs,
including higher order XOR APUF (k > 12) and LP-PUF with reasonable number of CRPs
(more details in Sec. 7). One important point to note here is that the framework relies on
a mathematical model (c.f. Sec. 2.1) of same family of PUF in order to model the victim
PUF. In other words, to model a specific PUF P belonging to a certain PUF architecture
family, CalyPSO requires a mathematical model to simulate PUF instances that belong
to the same architecture and eventually converge into one instance P ′, such that both P
and P ′ behave in a similar fashion (albeit with negligible error margin). At this juncture,
we ask a fascinating question: can a PUF belonging to a certain architectural family be
modelled using instances belonging to a different architectural family? In the next section,
we answer this question in the affirmative. We enhance our framework as CalyPSO++ that,
for the first time in PUF literature, demonstrate cross-architecture modeling using ES.
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6 CalyPSO++: Cross-Architectural modeling of PUFs
The success of ML attacks against certain classes or families of APUFs (and lower-order
XOR variants) can be attributed to the linear to lower-order non-linear complexity of the
function ∆ = f(ω) which is exploited by ML models. By introducing non-linearity and
input transformations, researchers have been able to resist state-of-the-art ML attacks
on complex PUF architectures [WTM+22, Wis21b]. Whereas, CalyPSO has been able to
bypass both the defence strategies by transforming PUF modeling problem into a search
problem and using a novel evolutionary algorithm and crafted genotype representation.
However, it is important to highlight that CalyPSO has its own limitations as it requires a
mathematical model of the targeted family. In this section, we alleviate this restriction
by introducing CalyPSO++, a cross-architectural PUF modeling framework that allows
modeling of PUFs belonging to an architectural family by approximating simulations
from another architectural family. The approach of perceiving PUF modeling as a search
problem presents a unique advantage. The PUF search space (cf Sec. 5.2) not being defined
by the mathematical model of the target PUF allows cross-architectural modeling where
instances from a different family can be used to search for the approximate behaviour of
the target PUF.

6.1 Modeling k-XOR APUF using (k − 1)-XOR APUF
To model a k-XOR APUF using a (k−1)-XOR variant, we use the idea of FORMULA-SATISFIABILITY.
A FORMULA-SATISFIABILITY problem instance is composed of the following:

• n boolean variables: x1, x2, . . . , xn
• m boolean connectives: ∧, ∨

Given a formula F composed of the aforementioned components, FORMULA-SATISFIABILITY
asks whether there is an assignment to {x1, x2, ..., xn} such that F = 1. It is well estab-
lished that FORMULA-SATISFIABILITY is an NP-complete problem [CLRS22]. XOR APUFs
achieve de-linearization of the relationship between ∆ and ω (cf. Eqn. 1 in Sec. 2.1) by in-
creasing the number of XORs; thereby, increasing the non-linearity in modern PUF designs
(c.f. Sec 2.2). In order to reduce degrees of freedom, we model the problem of learning a
k-XOR APUF as a FORMULA-SATISFIABILITY problem. Concretely, at the hardware level
k APUF outputs (0, 1) are XORed, which can be represented by the function:

R = f1(C, δ1)⊕ f2(C, δ2)⊕ · · · ⊕ fk(C, δk) (4)
where C is the input challenge and individual arbiter chains are represented by δ1, δ2,
. . . , δk delay vectors and fi functions generating the response R. Eq. 4 comprises of a
commutative/associative operation with k variables, each of which can be represented by
a Boolean function implemented using AND and OR gates. In the case of PUFs, since the
adversary has access to R, this equation in k variables has actually just k − 1 degrees of
freedom. Formally, Eq. 4 can be re-written as:

R = f1(C, δ1)⊕ f2(C, δ2)⊕ . . . fk−1(C, δk−1)⊕ b (5)
where the final bit b is a deterministic constant ∈ {0, 1} that can be evaluated from the
other variables. Therefore, given a response set R, Eq. 5 reduces the effect of the last
Arbiter chain to a deterministic bit. From the point of an adversary, it no longer needs to
learn the behaviour of the last Arbiter chain. Hence, we draw the following observation:
X O4. Any k-XOR APUF fulfils the FORMULA-SATISFIABILITY equation in k variables

and k − 1 degrees of freedom. In the context of our algorithm, an adversary only
needs to learn k − 1 arbiter chains. The contribution of the final k-th arbiter change
can be evaluated from the final response, thereby allowing us to reduce the security
of a k-XOR APUF to a (k − 1)-XOR APUF.
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The observation O4 forms the basis of our cross-architectural framework CalyPSO++.
While the core algorithm uses the idea of Algorithm. 1, CalyPSO++ does not require
the mathematical model of the target PUF architecture as one of the inputs. It starts
with one of the known mathematical models (for eg. additive delay model of (k − 1)-XOR
APUF to model k-XOR APUF) and proceeds as usual. Using CalyPSO++, we have been
able to model 1 LP-PUF from APUF and 2-XOR from 1-XOR APUF (APUF). Other that
XOR APUFs, which are basically variants of APUF, CalyPSO++ is able to model entirely
different architecture, like Bistable Ring (BR) PUF [CCL+11, XRHB15] from 4-XOR APUF,
which demonstrate true cross-architectural prowess (more details in Sec. 7).

6.2 Bypassing input transformations

One of the benefits of viewing PUF modeling as a search problem is that the input
transformation used in some PUF architectures to protect against ML attacks does not
impact the evolutionary search process within the PUF search landscape. As an example,
we leverage the input transformation of LP-PUF, which utilizes a substitution-permutation
network (SPN) for diffusion [Wis21b]. LP-PUF is a delay-based PUF that applies an
SPN to transform the input challenge set C into C ′ before passing it to a standard k-XOR
APUF. The SPN’s parameters are generated by a series of k APUFs, making the SPN’s
security tied to the hardware itself. This transformation hides the actual challenge input
to the innermost k-XOR layer from adversaries and ML models, providing the required
non-linearity to resist ML-based attacks. To the best of our knowledge, no ML-based or
evolutionary algorithm (ES)-based attack has been successful against LP-PUF, as mapping
C directly to the response set R would require learning the SPN without knowledge of C ′ ,
which is a challenging problem. However, CalyPSO++ is capable of attacking LP-PUF’s
SPN because it considers both the structure of the SPN and the k-XOR APUF components
of LP-PUF as part of its genotype, allowing the PUF population to converge towards a
solution that models both components. We make the following observation with respect to
PUFs that employ input transformations:

X O5. Any input transformation-based PUF (like LP-PUF) converts the actual challenge
C into C ′. The PUF operates on the transformed tuple (C ′, R). CalyPSO++ aims
not to learn both 1© C → C

′ mapping as well as 2© the k-XOR mapping C
′ → R, but

rather randomly sample the input transformation function (i.e. derive a C → C
′′)

and learn a k-XOR mapping C
′′ → R.

Using observation O5, CalyPSO++ makes the spawned members of the population
implement their own unlearned transformation (i.e. C → C

′′) and then learn some other
k-XOR mapping from C

′′ to R. Note that, given a random C
′′ , it is not always possible

to find such a mapping, our empirical results show that for sufficient size of input data,
the probability of this event is negligible. Therefore, our algorithm (which launches an
exploration in the search space of all PUFs of a given architecture) is able to find some
PUF which maps C ′′ to R, and by extension models the target PUF.

7 Experimental results and analysis

In this section, we provide details about our experimental setup, hyperparameters used for
CalyPSO and CalyPSO++ and modeling results of different PUF architectures, along with
a comparison with state-of-the-art.
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Table 1: Experimental results for different PUF architectures from simulations on PyPUF.
Here K = 103 and M = 106. The table captures three different independent experiments.

PUF arch Train Time taken Run 1 Acc. #generations Run 2 Acc. #generations Run 3 Acc. #generations
CRPs Time taken (Run 1) (Run 2) (Run 3)

APUF 5K ∼ 15 min. 99.13 % 363 98.86 % 462 99.36 % 638
2-XOR 30K ∼ 1 hour 97.81 % 2043 97.13 % 2714 98.05 % 1953
3-XOR 30K ∼ 3 hours 98.38 % 8953 97.42 % 9373 96.63 % 8737
4-XOR 100K ∼ 8 hours 94.50 % 17213 94.62 % 17742 96.37 % 18253
5-XOR 100K ∼ 8 hours 98.21 % 16843 99.42 % 18935 95.83 % 14948
6-XOR 100K ∼ 1 day 96.72 % 12695 91.27 % 10538 94.35 % 11464
7-XOR 100K ∼ 1 day 97.12 % 11442 93.73 % 9583 87.37 % 10547
8-XOR 200K ∼ 1.5 days 92.61 % 24253 89.63 % 27284 94.61 % 28352
9-XOR 200K ∼ 2 days 83.12 % 24142 81.24% 21321 76.43% 19631
10-XOR 2M ∼ 2 days 84.21% 15413 81.52% 17312 82.84% 14251
11-XOR 2M ∼ 2 days 81.44 % 8376 81.85 % 7866 80.84 % 7115
12-XOR 2M ∼ 2 days 81.14 % 7827 81.17 % 7273 80.57 % 6928
13-XOR 2M ∼ 2 days 82.5 % 7414 82.5 % 6988 81.8 % 6340
14-XOR 2M ∼ 2 days 83.04 % 6962 82.54 % 6343 83.17 % 6050
15-XOR 2M ∼ 2 days 83.28 % 6608 82.80 % 5868 83.49 % 5709
16-XOR 2M ∼ 2 days 83.58 % 5282 83.69 % 4900 83.13 % 4761
17-XOR 2M ∼ 2 days 83.10 % 5968 83.23 % 5714 82.57 % 5487
18-XOR 2M ∼ 2 days 83.44 % 5690 83.08 % 5138 83.54 % 4954
19-XOR 2M ∼ 2 days 83.59 % 5423 83.75 % 5053 83.18 % 4787
20-XOR 2M ∼ 2 days 84.83 % 5205 84.60 % 4865 85.02 % 4573

3-3 iPUF 500K ∼ 4 hours 94.27 % 10057 91.42 % 9734 97.21 % 13152
1 LP-PUF 50K ∼ 6 hours 97.42 % 9935 96.62 % 12157 98.24 % 9731
2 LP-PUF 100K ∼ 5 hours 74.36 % 3842 78.52 % 3616 76.53 % 5623

FF-APUF (10 loops) 200K ∼ 1 day 93.13 % 9629 95.21 % 9315 91.24 % 8941

7.1 Experimental Setup and Hyperparameter tuning
Our experiments include simulations on PyPUF [WGM+21] (both noisy and noiseless)
as well as validation on actual hardware data. As the procedure in CalyPSO (Algo. 1)
depicts, we start by providing a challenge-response set (which may originate from ei-
ther PyPUF’s challenge generator or may come from actual hardware runs) as input.
We divide this set into training and validation sets, with the latter never being used
in COMPUTE_POPULATION_FITNESS at any point in the run of the algorithm. The next
important function in the algorithm is the STEP function, which is responsible to move the
population towards the global optimum. We implement the STEP function by a round-robin
updation scheme. For instance, if target_puf_arch is a 4-XOR APUF and the size of chal-
lenges is 64 bits, then we have 256 learnable delay parameters δ = {δ1, δ2, δ3, δ4, ..., δ256}.
For one GENERATION, STEP will randomly pop one parameter δi from this list, and add a
normal noise N (0, 1

4 ). Further generations will repeat this process, but on the parameter
set δ′ = {δ1, δ2, δ3, δ4, ..., δi−1, δi+1..., δ256}. This strategy allows all delay parameters of δ
to get an equal chance at evolution. Next important hyper-parameter is le_parameter
that controls landscape evolution (c.f. Sec 5.2.1). Too low value of le_parameter will
change (C,R) too fast for the algorithm to learn anything useful. And too high a value of
le_parameter risks the population getting caught in a local optimum. Through empirical
evidence, we placed the value of this parameter’s value at 500 generations. That is, if
the algorithm fails to find a new solution for 500 consecutive generations, we invoke
landscape evolution and give new paths to the global optimum by changing (C,R). All
our experiments were conducted on Intel(R) Xeon(R) Gold 6226 CPU @ 2.70 GHz with
96 cores, 2 threads per core, 12 cores per socket and 256GB DRAM. Each experiment
was spread across 4 physical cores through Python’s multiprocessing.Pool. Rest of the
implementation has no dependence on any high-level evolutionary algorithm package. The
source code for CalyPSO/CalyPSO++ and CRP dataset for hardware implementations are
available at https://github.com/SEAL-IIT-KGP/calypso.

7.2 Noiseless simulations on PyPUF
In order to evaluate the functional capability of our attack, we first mount both versions
of the attack (i.e. CalyPSO and CalyPSO++) on noiseless versions of respective PUF

https://github.com/SEAL-IIT-KGP/calypso


518 CalyPSO

Table 2: Results for cross-architectural attack. A x → y entry signifies an experiment
where a PUF architecture x is modelled with architecture y. Here, K = 103 and M = 106.

PUF arch Train Time taken Run 1 Acc. #generations Run 2 Acc. #generations Run 3 Acc. #generations
CRPs Time taken (Run 1) (Run 2) (Run 3)

2-XOR → 1-XOR 50K ∼ 1 day 78.42 % 7630 73.25 % 7261 75.45 % 7541
3-XOR → 2-XOR 50K ∼ 1 day 77.72 % 12704 77.59 % 12306 77.68 % 11937
4-XOR → 3-XOR 100K ∼ 1 day 77.5 % 11452 77.47 % 10808 77.15 % 9929
5-XOR → 4-XOR 100K ∼ 1 day 79.65 % 10479 79.59 % 9870 79.53 % 9583
6-XOR → 5-XOR 100K ∼ 1 day 79.04 % 7859 78.932 % 7639 78.76 % 7239

1 LP-PUF → APUF 50K ∼ 5 hours 79.97 % 15421 80.21 % 13452 81.75 % 13773
2 LP-PUF → 2-XOR 100K ∼ 9 hours 82.74 % 2767 81.35 % 2525 84.25 % 2953
4 LP-PUF → 4-XOR 2M ∼ 3 days 66.03 % 29284 59.21 % 27361 63.74 % 31527

architectures. Table 1 summarizes our results on PyPUF simulations of actual PUF
architectures. Likewise, Table 2 summarizes the results of cross-architectural attacks.
Each experiment’s accuracy is reported on a test set of 1 million challenge-response pairs
from the target PUF. Note that this test set is newly sampled every time CalyPSO finds
a new fittest member in the population; the table captures the latest captured accuracy.
This allows a better evaluation of CalyPSO’s convergence since a newly sampled test set
prevents an overly optimistic view of CalyPSO’s ability because of a fixed test set. One
point to note is that in all cases, the simulations were noiseless. This means all PUF
instances created by PyPUF had 100% reliability and 50% uniqueness/uniformity. This is
because we wanted to evaluate CalyPSO’s ability without having any aid from external
sources. Interestingly, as the non-linearity increases (with increasing value of k-XOR), the
accuracy obtained by CalyPSO in modeling the PUFs decreases in Table 1. A similar
trend is observed in Table 2 as input transformations become more involved. This is
because as PUF architectures become more and more complex, the modeling algorithms
need to deal with increasingly expanded search space. However, one must also note that
CalyPSO and CalyPSO++ are essentially randomized algorithms with random sampling
of PUF instances and random decision-making undertaken at every iteration. Therefore,
the accuracy achieved, CRPs required and number of generations reported in each run
for any particular PUF architecture signify the random choice of parameters selected
by the algorithm for that particular run. This randomization explains certain deviation
contrary to this general decreasing trend in accuracy with increased complexity, like lesser
achieved accuracy for 11-XOR and 12-XOR than that of higher XOR PUFs in Table 1, or
better accuracy for cross-architectural attack on 2 LP-PUF than on 1 LP-PUF in Table 2.

7.3 Exploring effect of noise on CalyPSO and CalyPSO++

In order to better evaluate the performance of CalyPSO and CalyPSO++ in presence
of noise, we perform a number of experiments on real-world hardware implementations
(both on publicly available dataset [MTZ+20] as well as in-house constructions) and noisy
simulations of various PUF architectures.

We first detail results on hardware instantiations. For 4-XOR to 9-XOR APUF variants,
we use the publicly available CRP dataset from hardware implementations on Artix-7
FPGA [MTZ+20, Wis21a]. The dataset is collected for 1 million challenges for 4, 5, and 6
XOR variants and for 5 million challenges in case of 7, 8, and 9 XOR variants, with challenge
length of 64 bits. In addition, we also created in-house hardware designs on FPGAs. It is
worth mentioning that creating hardware designs for all PUF variants is impractical and
not necessary. Moreover, since we already test our attack algorithm on publicly available
hardware data for 4 to 9 XOR variants, we picked one smaller XOR variant (i.e. 4-XOR
APUF) and three large XOR variants (i.e. 10, 11, and 12-XOR APUFs) for our hardware
designs. This, in turn, ensures that we have tested our framework on hardware-based data
for 4 to 12 XOR APUFs. We implemented the designs across four Nexys-4 DDR boards
(Artix-7 FPGA) for 300K challenges of length 64-bits each with five measurements for each
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Table 3: Performance evaluation of CalyPSO/CalyPSO++ against various PUF archi-
tectures in the presence of noise. A x → y entry signifies an experiment where a PUF
architecture x is modelled with architecture y.

Instance Data Source CRPs Uniformity Uniqueness Reliability Accuracy Generations Algorithm
4-XOR In-house hardware 100K 49.798 % 50.13 % 87.79 % 85.12 % 12632 CalyPSO
4-XOR Hardware data [MTZ+20] 500K 48.5% • • 92.942 % 23310 CalyPSO
5-XOR Hardware data [MTZ+20] 500K 49.84% • • 92.893 % 22970 CalyPSO
6-XOR Hardware data [MTZ+20] 1M 49.8% • • 87.327% 23185 CalyPSO
7-XOR Hardware data [MTZ+20] 1M 50.13% • • 92.655 % 22895 CalyPSO
8-XOR Hardware data [MTZ+20] 5M 49.92% • • 89.41 % 20474 CalyPSO
9-XOR Hardware data [MTZ+20] 5M 50.02% • • 85.93 % 18489 CalyPSO
10-XOR In-house hardware 300K 48.415% 43.69% 95.854% 82.58% 27731 CalyPSO
11-XOR In-house hardware 300K 50.09% 50.68% 85.27% 81.52% 25784 CalyPSO
12-XOR In-house hardware 300K 49.93% 46.94% 79.53% 77.85% 19352 CalyPSO
12-XOR PyPUF ⊗ 5M 50.05% 49.96% 78.26% 75.54% 23512 CalyPSO
13-XOR PyPUF † 5M 49.89% 49.94% 87.21% 82.62% 34612 CalyPSO
14-XOR PyPUF † 5M 50.01% 49.91% 86.61% 83.85% 39636 CalyPSO
15-XOR PyPUF † 5M 49.96% 50.01% 85.882% 81.87% 34842 CalyPSO
16-XOR PyPUF † 5M 49.97% 49.94% 85.21% 79.63% 35713 CalyPSO
17-XOR PyPUF † 5M 49.92% 49.92% 84.78% 78.83% 37527 CalyPSO
18-XOR PyPUF † 5M 50.05% 50.11% 83.99% 79.83% 35285 CalyPSO
19-XOR PyPUF † 5M 50.02% 50.07% 83.57% 77.62% 35527 CalyPSO
20-XOR PyPUF † 5M 49.92% 50.05% 83.18% 75.62% 34587 CalyPSO
20-XOR PyPUF ⊗ 5M 49.83% 50.02% 75.92% 73.84% 19157 CalyPSO

BR-PUF → 4-XOR In-house hardware 200K 46.88 % 52.52 % 91.77 % 75.38% 36752 CalyPSO++
4 LP-PUF → 4-XOR In-house hardware 300K 49.81 % 47.81% 80.57 % 74.29 % 36742 CalyPSO++

(11, 11) i-PUF → 11-XOR In-house hardware 300K 46.227% 56.24% 91.8304 % 84.83 % 34168 CalyPSO++
•: Not possible to compute since the public data had single measurement for a single PUF instance.
†: The noise for the noisy simulation was drawn from a normal distribution of mean 0 and standard deviation 0.03.
⊗: The noise for the noisy simulation was drawn from a normal distribution of mean 0 and standard deviation 0.09.

challenge. Finally, we used temporal majority voting3 to create the overall golden responses
for each PUF architecture. The PUF metrics and their corresponding modeling accuracy
are summarized in Table 3. Our validations on challenge-response data from these in-house
implementations on FPGAs as well as with publicly available PUF datasets [MTZ+20]
corroborate with the results on noiseless simulations (c.f. Table 1).

For higher XOR PUFs (≥ 13-XOR variants), we note that these designs show a marked
decrease in reliability (< 75%) when instantiated on hardware. Hence, for ≥ 13-XOR
variants, we tested CalyPSO against noisy simulations. PyPUF simulates noise by incor-
porating an additional Gaussian variable N (0, σ) of mean 0 and user-defined standard
deviation σ. However, the choice of this user-defined standard deviation must be such that
the simulation behaves functionally as close to the hardware as possible. To explore this
further, we instantiated over 1000 simulated PUF instances of each architecture mentioned
in Table 4, and compared the standard deviation for the noise for which the software
instances produced almost similar distributions of responses as the hardware. Concretely,
we varied the standard deviation of simulation noise from 0.01 to 0.15 in steps of 0.01
and instantiated 1000 PUF simulations for each standard deviation. In Table 4, we then
noted the observed noise distribution for each XOR PUF architecture which gave response
distribution as close as possible to the response distribution observed in hardware. We
note that the software simulations were run against the same set of challenges for which
the hardware was instantiated. The golden response set from software simulations was
computed by temporal majority voting over 15 measurements. From our experiments, we
observed the simulation noise’s standard deviation to be in range 0.3-0.9. Hence, in our
simulations of XOR PUF variants for which we do not have hardware implementation (i.e.
≥ 13-XOR), we ran the simulations (from 13-XOR to 20-XOR) with noise standard deviation
set to 0.03. We also chose two variants (one medium 12-XOR and one high 20-XOR) for
which we also attack simulations with higher end (i.e. 0.9) of the noisy spectrum reported
in Table 4. It is important to note that the randomized nature of CalyPSO/CalyPSO++
prevents any direct correlation between achieved accuracies for a k-XOR and a (k + 1)-XOR
PUF (similar to noiseless simulations in Sec. 7.2). For instance, in Table 3, the accuracy

3A single challenge is repeated for multiple measurements on the same board, and the response of the
PUF (named golden response) is given as the majority of responses obtained over all measurements.
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Table 4: Exploration of simulation noise for different XOR variants which produces almost
similar distribution of responses as the hardware. Here, h and s represent the biases of
responses from the hardware and the software simulations respectively, while #C represents
the number of challenges [MTZ+20] for which software simulations were run. The equation
(| h− s | ×#C) quantifies the difference in response distribution between the software and
the hardware for a certain standard deviation of simulation noise.
Instance Noise standard deviation Bias (Hardware data) : h Bias (Software simulation) : s #C | h− s | ×#C

4-XOR 0.08 0.03 0.02 100000 999
5-XOR 0.09 0.003164 0.003184 100000 2
6-XOR 0.03 0.002576 0.002568 100000 1
7-XOR 0.03 -0.002716 -0.00276 100000 4
8-XOR 0.06 0.001432 0.001464 100000 3
9-XOR 0.04 -0.000456 -0.000436 100000 2

trends for simulations of 12-XOR and 13-XOR PUFs cannot be directly compared because
of their different noise levels. For 12-XOR PUF, we chose noise level 0.09 that gave ap-
proximately the same reliability as 12-XOR hardware, while 13-XOR PUF was simulated
with gentler noise level 0.03 (c.f. Table 4). Moreover, we note that in experiments on
either noisy simulations or hardware data, reliability plays an essential role in determining
convergence. By definition, reliability refers to the % of times, the PUF responses are
reproducible for an identical challenge over time, under varying operating conditions. More
specifically, the reliability value provides the theoretical upper limit achievable by any
modeling approach for any given PUF. Therefore, we consider a PUF to be successfully
modeled once the accuracy metric reported by the modeling algorithm reaches close to the
target PUF’s reliability value.

Finally, to evaluate the resilience of CalyPSO++ in presence of noise, we implemented
three different kinds of PUF architectures on hardware: BR-PUF, 4 LP-PUF, and (11, 11)-
i-PUF. Table 3 shows cross-architectural attacks of CalyPSO++ on these architectures. We
implemented each design onto three Nexys DDR 4 boards for 300K CRPs and performed
temporal majority voting upon five measurements for each challenge. We note that for
BR-PUF, PyPUF mandates the passing of predetermined weights because of its inability
to represent physical intrinsics of bistable rings. In other words, BR-PUF does not have a
functional mathematical model which can be simulated accurately in PyPUF. However, as
noted in Table 3, CalyPSO++ is still able to show significant cross-architectural learning
capability, thereby showing its attack potency. Furthermore, we also note that this is the
first attack in literature on a hardware implementation of LP-PUF. From an adversarial
point of view, the success of CalyPSO++ in modeling hardware instantiations of these
PUF variants notes the promise of cross-architectural attacks on strong PUFs.

7.4 A note on rate of convergence of CalyPSO
CalyPSO/CalyPSO++ are randomized algorithms in the sense that the initialization of the
population pool and the generational mutations are driven by random decisions. As such,
for the same target PUF instance, two separate runs of CalyPSO are expected to converge
differently (i.e. differ in the number of generations CalyPSO takes to model the target PUF).
However, the fact that the mutation strategy is round-robin ensures that every arbiter
stage of every member of the population gets at least one chance of evolution in number of
generations upper bounded by the total number of stages. This places a tight upper bound
on the likelihood of evolution of one delay stage. For instance, in a k-XOR PUF working on
n-bit challenges, each delay stage evolves once in at most (k×n) generations. Moreover, the
rate of convergence is not constant across all generations. Initially, exploration phase (c.f.
Sec. 5) dominates, and the algorithm takes more abrupt random steps, thereby showing a
higher rate of convergence. However, as the population matures, exploitation phase (c.f.
Sec. 5) starts to dominate. Finally, the algorithm converges as the exploitation phase
saturates when the accuracy achieved is near the value of reliability of the target PUF.
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Table 5: Comparison Table for modeling accuracy across several PUF designs
State of the Art Works Our Work (simulation) Our Work (Hardware)

PUF architecture Accuracy CRPs Additional Accuracy CRPs Accuracy CRPs
(%) (×1000) Information (%) (×1000) (%) (×1000)

APUF 98.3 [Bec15a] 20 Reliability - -
99 [RSS+13] 2.5 NA 99.36 5

k=2 99.3 [SBC19] 32 NA 98.05 30 - -
k=3 99.2 [SBC19] 36.8 NA 98.38 30 - -

94.6 [Bec15a] 150 Reliability
k=4 99 [RSS+13] 12 NA 96.37 100 95.12 500

98.27 [SC20] 40 NA
95 [MRMK13] 40 Power side channel

k=5 99 [RSS+13] 80 NA 99.42 100 92.893 500
98.09 [SC20] 80 NA
95 [MRMK13] 80 Power side channel
84 [TAB21] 40 Reliability

k=6 99 [RSS+13] 200 NA 96.72 100 87.33 1000
97.39 [SC20] 320 NA
95 [MRMK13] 200 Power side channel

k=7 99 [RSS+13] 500 NA 97.12 100 92.65 1000
97.78 [SC20] 560 NA
95 [MRMK13] 500 Power side channel
89 [Bec15a] 300 Reliability

k=8 99 [FKMK22] 2000 NA 94.61 200 89.41 5000
97.42 [SC20] 2700 NA
98.5 [RXS+14] 26 Timing side channel
98.1 [RXS+14] 26 Power side channel

k=9 98.1 [WTM+22] 45000 NA 83.12 200 85.95 5000
89 [TAB21] 200 Reliability

k=10 97.9 [WTM+22] 119000 NA 84.21 2000 82.58 300
k=11 98.1 [WTM+22] 325000 NA 81.85 2000 81.52 300

XOR-APUF k=12 98.1 [RXS+14] 39 Timing side channel 81.17 2000 77.85 300
98.3 [RXS+14] 39 Power side channel

k=13 NR NA 82.5 2000 82.62 5000
k=14 NR NA 83.17 2000 83.85 5000
k=15 NR NA 83.49 2000 81.87 5000

80.2 [Bec15a] 500 Reliability
k=16 98 [RXS+14] 52 Timing side channel 83.69 2000 79.63 5000

98 [RXS+14] 52 Power side channel
k=17 NR NA 83.23 2000 78.83 5000
k=18 NR NA 83.54 2000 79.83 5000
k=19 NR NA 83.75 2000 77.62 5000
k=20 NR NA 85.02 2000 75.62 5000

i-PUF (3-3) 98 [TAB21] 300 NA 97.21 500 - -
k=1 NR NA 98.24 50 - -

LP-PUF k=2 80 [Wis21b] 500 NA 84.25∗ 100 - -
k=4 50 [Wis21b] 50000 NA 66.03∗ 2000 74.29∗ 200

FF-APUF (10 loops) k=1 93 [WTM+22] 630 NA 95.21 200 - -
BR-PUF k=1 98.32 [GTFS16] 1 NA † † 75.38∗ 200

∗ Accuracy values are reported with CalyPSO + +; NR: Not Reported; NA: Not Applicable (works use ML model)
† Does not have an accurate simulation in PyPUF.

7.5 Comparison with State-of-the-art attacks
In Table 5, we compare the PUF modeling accuracy using CalyPSO and CalyPSO++ along
with the required number of training challenge-response pairs (CRPs) with state-of-the art
approaches. It can be seen that CalyPSO requires a lower number of CRPs to perform
a successful attack in contrast to attacks requiring additional information and neural
network (NN) attack striving to learn all the PUF representational parameters. Therefore,
our proposed approach can be applied for approximating the delay parameters even on
higher complexity XOR APUFs with k > 16, which hasn’t been demonstrated before in
the literature. Furthermore, we also successfully attack (3-3)i-PUFs despite its increased
non-linearity with respect to (1-4) i-PUF which have been demonstrated to break using
reliability attacks [TAB21, Bec15b]. One must note that we do not use the PUF reliability
information in our attacks and yet achieve a high modeling accuracy. Lastly, in regard to
the much coveted LP-PUF 4 construction that claims to have high security [Wis21b], we
see that our proposed cross-architectural attack strategy obtains an accuracy of 98.24%,
84.25% and 66.03% for 1, 2 and 4 LP-PUF construction respectively (in a noiseless setting).
This is due to the fact that our attack strategy successfully nullifies the impact of input

4LP-PUFs are secure against the recently proposed cryptanalytic attack strategies [KMP+22] due to
the hardware derived randomness induced in the challenge transformation.
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transformation in the case of LP-PUFs and thereby achieves better than random prediction
for LP-PUFs. Furthermore, one can also see in Table 5, that a FF-APUF with 10 loops
can be easily modelled with much lesser CRPs than the state-of-the-art approaches using
CalyPSO. Lastly, we are also the first ones to propose successful cross-architectural modeling
of BR-PUFs with an accuracy of 75.38%.
Limitations of ML approaches: One might observe that in comparison to approaches
where no additional information (like reliability values or power side-channel traces) were
used, our approach requires significantly less number of CRPs than traditional Machine
Learning approaches. This is due to the fundamentally different approach we take as
compared to ML techniques in the context of modeling PUFs. For instance, increasing
non-linearity causes ML algorithms to struggle at separating hyperplanes. As such,
the modeling performed by ML becomes difficult (without additional information like
reliability or side-channel traces) with increasing values of k. Empirically, it is observed in
the literature (cf. Table 5) that state-of-the-art ML techniques struggle to model PUFs
beyond k = 12. We attribute this observation to the fundamental attack principle of ML
(i.e. separable hyperplanes), wherein for higher k values, the hyperplane becomes too
convoluted to be linearly separable. Briefly, these results reinforce the fact that by not
relying on the separation of convoluted decisional hyperplanes, our evolutionary-based
approach is able to model various PUF architectures without the need for additional (side
channel or reliability) information.

8 Conclusion

This work proposes an alternative approach for modeling delay-based PUFs by developing
a novel evolutionary algorithm named CalyPSO instead of using machine learning. CalyPSO
successfully modelled k-XOR APUFs (with k as high as 20), as well as LP-PUF instances
where no prior attacks have been reported (on both noiseless and noisy versions). We
also propose CalyPSO++ to mount novel cross-architectural modeling attacks on PUFs.
Concretely, we 1© reduce the security of a k-XOR APUF to a (k − 1)-XOR APUF, and 2©
successfully model PUFs relying on input transformations for security. To the best of our
knowledge, this work is the first of its kind to propose a new class of cross-architectural
modeling attacks on delay-based PUFs. The novel attack vectors introduced in this work
raise the question: How should we design the next generation delay PUFs? One way would
be to study the information acquisition done in the evolutionary learning process and
develop PUF instances for which the fitness remains lesser than a threshold [FM93]. This
work motivates the search for PUF compositions which are not closed in its set. Concretely,
when two PUFs are composed together, the resultant PUF would never realize Boolean
mappings which belong to the set of Boolean functions realized by the individual PUFs
(an idea already explored in context of block ciphers [PHS13, DR02]). Borrowing such
ideas while defining PUF compositions could be an exciting future direction of research.
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