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Abstract. The microarchitectural behavior of modern CPUs is mostly hidden from
developers and users of computer software. Due to a plethora of attacks exploiting
microarchitectural behavior, developers of security-critical software must, e.g., ensure
their code is constant-time, which is cumbersome and usually results in slower
programs. In practice, small leakages which are deemed not exploitable still remain in
the codebase. For example, sub-cache-line leakages have previously been investigated
in the CacheBleed and MemJam attacks, which are deemed impractical on modern
platforms.
In this work, we revisit and carefully analyze the 4k-aliasing effect and discover that
the measurable delay introduced by this microarchitectural effect is higher than found
by previous work and described by Intel. By combining the rediscovered effect with a
high temporal resolution possible when single-stepping an SGX enclave, we construct
a very precise, yet widely applicable attack with sub-cache-line leakage resolution.
To demonstrate the significance of our findings, we apply the new attack primitive
to break a hardened AES T-Table implementation that features constant cache line
access patterns. The attack is up to three orders of magnitude more efficient than
previous sub-cache-line attacks on AES in SGX. Furthermore, we improve upon the
recent work of Sieck et al. which showed partial exploitability of very faint leakages
in a utility function loading base64-encoded RSA keys. With reliable sub-cache-line
resolution, we build an end-to-end attack exploiting the faint leakage that can recover
4096-bit keys in minutes on a laptop. Finally, we extend the key recovery algorithm
to also work for RSA keys following the standard that uses Carmichael’s totient
function, while previous attacks were restricted to RSA keys using Euler’s totient
function.
Keywords: Side-Channels · Microarchitectural Attacks · Trusted Execution Envi-
ronments

1 Introduction
Performance and functionality of modern processors evolve in short intervals and improve-
ments over previous generations are usually significant. To allow for this rapid development,
microarchitectural features like caching and speculative execution have been pushed to
their limits, often favoring speed over security. As a result, numerous microarchtectural
attacks have been found that exploit non-constant-time behavior caused by caches, branch
predictors etc. [OST06, AKS07, LYG+15, IAES15]. These attacks were followed by exploits
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of out-of-order and speculative execution [KHF+19, LSG+18, vSMÖ+19, CGG+19]. In the
meantime, CPU designers have introduced new security features. One prominent example
is Trusted Execution Environments (TEEs) such as AMD SEV [KPW16, Adv18] and
Intel Software Guard Extensions (SGX) [MAB+13, HLP+13], which can enhance overall
system security if properly used. The introduction of TEEs has led to an increased interest
in microarchitectural attacks [XCP15, MIE17, BPS17, BMW+18, BMS+20, CCX+19].
While protecting code and data from direct access, TEEs do not protect against microar-
chitectural leakages. Instead, the operating system (OS) and/or hypervisor are untrusted
and thus allow for a much more powerful adversarial model. The malicious OS scenario
has enabled the development of various new attack techniques, with improved attack
resolution [MBH+20, SBWE21].

The most common strategy to prevent these microarchitectural attacks is by ensuring
that protected code is constant-time. That is, the code should contain neither secret-
dependent control flows nor data accesses as well as avoiding instructions with data-
dependent execution behavior. Implementation of constant-time code, however, is not
trivial. As a result, a broad range of tools utilizing various analysis methods has been
proposed. A comprehensive overview of constant-time verification tools is provided in
a recent study, which showed that correctly using these tools is a challenge to code
developers [JFB+22]. One possible pitfall is the level of leakage granularity assumed by
these tools. While some of these tools assume cache line resolution for attacks [DFK+13,
WWL+17], others such as Microwalk [WMES18, WSPE22] and DATA [WZS+18] keep the
resolution configurable, leaving the choice to the developer.

Deciding the right level of granularity for a constant-time assumption can be quite
tricky. It is widely accepted that cache line granularity can be observed by sophisticated
microarchitectural attacks. Thus, security-critical code like cryptographic implementations
must ensure constant-time behavior at the cache line level. The case of more fine granular
sub-cache-line leakage is less obvious and contested. The quite powerful and generic
CacheBleed attack [YGH17] has sub-cache-line resolution, but it has been fixed in the
SkyLake processor generation and is no longer applicable. Other sub-cache-line resolution
attacks such as MemJam [MWES19] are more difficult to perform and apply to fewer
scenarios. In MemJam, the attacker introduces data-dependent timing behavior in a
victim via 4k-aliasing, which is then exploited by measuring the execution time of the
victim code. Hence, MemJam has much lower temporal resolution and is much noisier
than other modern microarchitectural attacks. As timing variations are statistical and
small, the application scenarios are limited. In fact, MemJam only targeted block cipher
implementations. As a result, many cryptographic libraries have decided to ignore sub-
cache-line leakages, as the cost for constant time at the byte level can be high in terms of
performance loss.

In this work, we pose two questions on the limits of the spatial and temporal resolution
for microarchitectural attacks on trusted execution environments. As of now, there are many
attacks on TEEs with a very high temporal resolution down to instruction level [MIE17,
CGYZ22, BPS18]. Most of these attacks use the SGX-Step framework [BPS17] to achieve
a high temporal resolution. However, the spatial resolution of these attacks so far is limited
by a cache line granularity and combinations of single-stepping and cache attacks on the
last-level cache exist [SBWE21]. As explained above, a sub-cache-line spatial resolution by
a software-based side-channel attack was achieved by MemJam and CacheBleed [YGH17,
MWES19], but these attacks achieve only a very low temporal resolution. In fact, due to
the attacker model, timing in MemJam is always observed over complete executions of
the victim’s program. A natural question is thus whether this tradeoff between temporal
and spatial resolution is inherent, i.e., whether there is a bound on a combined temporal
and spatial resolution for software-based side-channels when attacking software running in
trusted execution environments and whether future attacks will be limited by this bound.
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In this work, we show how to achieve a spatial resolution far beyond cache line granularity
while keeping a temporal resolution on instruction level.

However, achieving this observation granularity does not necessarily imply that the
obtained data can be used to construct attacks, as this might, e.g., be hindered by high
noise levels rendering the measurements unreliable. Hence, we are also interested in the
question whether the observed fine-granular spatial and temporal information can be used
to exploit previously unexploitable implementations.

In summary, the research questions to be answered in this work are:

RQ1 Can an attack be designed which surpasses current bounds on the combination
of spatial and temporal resolution for observations on software running in trusted
execution environments? Meaning, can a temporal resolution as fine as single-stepping
be combined with a sub-cache-line spatial granularity?

RQ2 Can the instruction-wise temporal and sub-cache-line spatial resolution be used to
construct new attacks?

To answer RQ1 and RQ2, we revisit and comprehensively analyze the 4k-aliasing effect
on modern Intel CPUs. Our careful analysis reveals that, if properly tuned, the delay effect
already observed in MemJam can be significantly amplified, making the leakage exploitable
with much fewer observations. In fact, the observed leakage is greater than reported in
MemJam, and also exceeds the delays described in the Intel Optimization Reference
Manual [Int15] due to the 4k-aliasing effect. We note that the 4k-aliasing effect can lead
to significant delays is already explicitly mentioned in the Reference manual. Furthermore,
by single-stepping through the victim application, the induced leakage no longer needs
to be detected over the full execution, as done in MemJam. Instead, our new attack,
which we call TeeJam, can exploit data-dependent leakage for a single instruction, thus
significantly improving the level of temporal resolution achieved by the attack. TeeJam
can observe every victim memory read at a granularity of 4 bytes—achieving sub-cache-line
resolution—even if the victim is executed inside the context of Intel SGX.

To showcase the power of TeeJam, we apply this new side-channel to exploit the
base64 decoding of RSA private keys in the OpenSSL library. This leakage was previously
exploited in Util::Lookup [SBWE21], which managed to degrade the security level of the
targeted RSA implementation, making recovery of short RSA keys practical. However,
the leakage is not sufficient to completely recover keys of larger sizes, such as 2048- or
4096-bit keys. TeeJam can observe the exploited key decoding process with up to 16 times
higher resolution. Due to the additional leakage, TeeJam succeeds in reconstructing
4096-bit keys with ease, highlighting the danger of the discovered sub-cache-line leakage
and demonstrating for the first time that the 4k-aliasing effect can be used to exploit
vulnerable public-key cryptography, not just block ciphers as done by MemJam.

In order to implement a full end-to-end attack for reconstructing RSA private keys
generated with OpenSSL [CT23], we extend the Heninger-Shacham key reconstruction
algorithm [BPS18] with the ability to reconstruct RSA keys not only with Euler totient as
defined in the original publication [RSA78], but also with Carmichael totient as defined in
the recent RSA standard [MCK+16], which is used in many recent implementations such
as OpenSSL [CT23][rsa_sp800_56b_gen.c] and sometimes required, e.g., by the FIPS
standard for digital signatures [KR13].

Moreover, we further extend the generalization of the Heninger-Shacham algorithm
from Util::Lookup [SBWE21]. The reconstruction algorithm from Heninger-Shacham
requires side-channel information to be available as an array of bits. Util::Lookup allows
the usage of observation partitions instead of an array of bits. We extend the algorithm to
support missing observations and unaligned start and end partitions.

Compared to previous work, the generalization of the key reconstruction algorithm
presented here necessitates guessing more information in the lower bits of the secret RSA
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parameters. While the increased uncertainty requires a higher fraction of known bits to be
available in the side-channel traces, it enables the reconstruction of keys with Carmichael
totient. Our experiments demonstrate that the high-resolution TeeJam attack yields
sufficient information for the reconstruction of these keys.

Additionally, we present the recovery of a 128-bit AES key with a last-round known-
ciphertext attack using TeeJam’s high resolution. The attacked implementation is
protected against cache attackers and cannot be exploited with cache-line resolution. We
show that the combined high temporal and spatial resolution provided by TeeJam enables
the reconstruction of the full key while we reduce the number of required encryption traces
by three orders of magnitude compared to previous work MemJam [MWES19].

1.1 Contribution
In short, our contributions are:

• A thorough analysis and improvement of the MemJam 4k-aliasing effect on modern
chip architectures and in various scenarios with and without Intel SGX.

• Introduction of the TeeJam attack, which provides sub-cache-line leakage of memory
accesses in SGX, with high temporal resolution.

• An efficient end-to-end attack which recovers 4096-bit RSA keys from the base64
decoding process, whose leakage was believed to be practically unexploitable for
larger key sizes. Notably, we show for the first time that 4k-aliasing effect can be
used to target public-key cryptography as well.

• An extension of the Heninger-Shacham algorithm to support private keys with
Carmichael totient and improvements that enable the reconstruction of keys from
observation traces with missing information and unaligned partitions.

• Recovery of an AES secret key with an attack on a T-Table based AES encryption
with effective protection against cache line level attackers. We reduce the number of
required encryption traces by multiple orders of magnitude compared to previous
work.

The source code is available on https://github.com/UzL-ITS/teejam and https:
//github.com/UzL-ITS/rsa-key-recovery.

1.2 Responsible Disclosure
The vulnerability in OpenSSL’s base64 decoding was reported by the author’s of Util::
Lookup. We informed the authors of WolfSSL about our findings concerning their cache
attack resistant AES T-Table implementation. They acknowledged our findings and added
an AES bitsliced implementation.

2 Background
The TeeJam effect is based on microarchitectural details of Intel processors and functions
of SGX. This section gives a short overview of the necessary background.

2.1 4K-Aliasing and MemJam
Most Intel processors support out-of-order execution for load and store operations. These
operations are tracked by the load and store buffers respectively, while the Memory Order

https://github.com/UzL-ITS/teejam
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Buffer (MOB) maintains the order of these operations. According to the Intel memory-
ordering model, a load operation can be executed earlier than program order as long as it
does not execute earlier than a store to the same physical address.

To avoid waiting for address resolution and allow loads to execute early, the processor
performs partial matching using the virtual addresses. Recall that during address trans-
lation, bits [11:0] of the virtual address are preserved, i.e., they are not changed by the
translation. Thus, to test for potential overlap, the processor first matches bits [11:5] of
the virtual addresses and if matched, it compares the offsets for overlap. We use the term
4k-aliasing to refer to a situation where two addresses are determined to be potentially
overlapping based on this test. The Intel Optimization Reference Manual describes the
precondition for 4k-aliasing as follows: two addresses are said to be affected by 4k-aliasing
when the “... load and store have the same value for bits 5–11 of their addresses and the
accessed byte offsets ... have partial or complete overlap.” [Int15][Section 15.8].

When the processor detects 4k-aliasing, it delays the load operation until the physical
addresses of both operations have been determined. Conversely, when no 4k-aliasing is
detected, the load is not delayed and instead can be executed before the store. It is
important to note that the conflicting offsets do not have to be actual conflicts, i.e., they
do not have to be on the same physical page. The Intel Optimization Manual specifies a
five-cycle penalty for 4k-aliasing.

This delay can be used by an active attacker to obtain sub-cache-line leakage as
presented in MemJam [MWES19]. The 4k-aliasing leakage, however, is statistical, i.e.,
several measurements are necessary to reliably observe the delay specified by Intel. The
effect is statistical in the sense that both load and stores have to arrive in a short time
frame to cause the conflict. Especially, with an attacker trying to induce the delay from a
hyper-thread this is not always given. Additionally, the 4k-aliasing effect can be easily
disguised by noise and its amplitude depends on the number of conflicting stores in the
MOB, which is also not deterministic in a scenario where the conflict is caused by attacking
hyper-thread. Consequently, averaging over repeated executions is necessary to obtain
reliable results.

2.2 Intel SGX
Intel Software Guard Extensions (SGX) is a Trusted Execution Environment (TEE) tar-
geting at isolating and protecting sensitive workloads in untrusted environments. It
consists of several processor instructions and hardware extensions within the proces-
sor [HLP+13, MAB+13]. Intel SGX protects the memory by encrypting all data which
leaves the processor. The Memory Management Unit (MMU) transparently takes care of
encrypting the data in RAM. Furthermore, software is measured and the result is compared
against a pre-computed signed measurement before the enclave is started, also allowing
for remote attestation [AGJS13, SJBZ18]. To ensure proper isolation, SGX provides
specific instructions for entering (EENTER), resuming (EERESUME), leaving (EEXIT) and
asynchronously exiting (AEX) an enclave. When leaving an enclave, SGX stores the current
register file in a secure state save area and restores this state when resuming [CD16].
Furthermore, on exit, SGX flushes the L1 data cache and the TLB [CD16, Int23d].

SGX-Step: SGX-Step [BPS17] is a framework which uses precise APIC timer interrupts
to single-step the execution of an SGX enclave. For that, the APIC timer is reconfigured
after every “step” before the enclave is resumed, such that the interrupt triggers when the
ERESUME instruction finishes and the first instruction within the enclave is executed. The
interrupt routine will only be executed after the current instruction is committed. If the
interrupt arrives slightly early, i.e., within the ERESUME, it results in a “zero-step” which
can be easily detected by observing page accesses. A more difficult issue are “multi-steps”
which execute more than one instruction in the enclave. To avoid this behavior, the timer
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interrupt can be tuned to rather cause “zero-steps”. Taking timer values before the enclave
resumes and directly after the AEX in the interrupt handler allows to measure the time of
a single-step [BPS18]. This time is dominated by the duration of ERESUME and AEX, still
allows to infer some information about the protected program [BPS18].

Memory Management: The management of memory allocations and mapping of memory
pages used within SGX remains in control of the host operating system (OS). While the
content of the pages is fully under the control of SGX and can only be decrypted by the
owning enclave, the host OS allocates the pages and assigns the virtual to physical page
mapping. As such, the OS can control meta information of the page table entries like the
page access bit or read / write / execute permissions. All pages, however, are allocated
within the Enclave Page Cache (EPC), a processor reserved memory region only accessible
from within SGX. To ensure that there are no manipulations of the address translation,
SGX keeps track of the page mapping in the Enclave Page Cache Map.

2.3 Reconstructing RSA Keys from Partial Information

A common scenario in side-channel attacks is that the side-channel only reveals partial
information about the sensitive values. The attacker thus needs to reconstruct the complete
sensitive value from partial information. For the case of RSA private keys, Heninger and
Shacham [HS09] presented an iterative algorithm that reconstructs RSA keys if some of the
bits of the key are flipped. The algorithm makes use of the fact that RSA keys are typically
stored in a highly redundant format to allow for faster decoding via the Chinese remainder
theorem. Using the relations between the variables stored in the secret key, one can set up
a set of conditions to relate the single bits of these variables to each other. By starting
with few candidates, the algorithm expands these candidates using these conditions and
prunes all candidates that are not compatible with their observations (e.g., because too
many bits are flipped). This algorithm was extended by Henecka et al. and Paterson et
al. [HMM10, PPS12] to allow for more bit flips. Recently, Sieck et al. [SBWE21] extended
the algorithm to a different type of observation where the only information gained from
the side-channel is whether a continuous block of b bits belongs to a certain set. Sieck et
al. showed that this information is sufficient to drop the security level of the observed RSA
keys by at least one level, i.e., the attack costs are reduced by a factor of about 230.

2.4 Attacker Model

In this work, we assume a system level attacker with full control over the OS and firmware,
i.e. BIOS and UEFI, of the target machine. Thus, the attacker is capable of reading and
manipulating the memory page mapping, isolating cores from the OS scheduler, fixing the
processor frequency, disabling processor features like Intel Speed-Step and cache prefetching
and starting and stopping enclaves at will as well as configuring interrupts and load custom
kernel modules. Thereby, controlled channel attacks, such as SGX-Step [BPS17], which
allows single-stepping enclaves, are enabled. Additionally, the attacker has read access to
the binary of the targeted program. SGX only protects the program at runtime but does
not encrypt the binary itself. The attacker does not execute any code within the victim’s
enclave and cannot modify the enclave binary. In the context of TEEs, as e.g. SGX, these
are reasonable assumptions as the goal is to allow users to securely execute software on
untrusted machines in, e.g., cloud environments. Similar attacker models are followed by
comparable works [BPS18, MBH+20, SBWE21]. Additionally, hyper-threading is enabled.
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3 4K-Aliasing Effect Analysis
To answer our first question about natural limits on the temporal and spatial resolution
of attacks, we now take a closer look at known attacks with high spatial resolution. Two
of the most prominent such attacks are MemJam [MWES19] and CacheBleed [YGH17].
Due to removed cache bank conflicts which only affected older Intel Ivy Bridge and Sandy
Bridge CPUs, CacheBleed is not applicable anymore and we thus focus our study on
MemJam. Our goal is to understand the underlying vulnerability exploited by MemJam
and related attacks in depth and how to use it to obtain maximum leakage. Taking a closer
look at these attacks shows that the 4k-aliasing effect caused by false read-after-write
(RaW) dependencies was used in MemJam [MWES19] and also in Microarchitectural
Minefields [SAMJ18]. Both attacks demonstrate that 4k-aliasing delays the load operation
issued after a store operation; however, a detailed analysis on the preconditions and effect
of 4k-aliasing on the performance penalty is missing.

We investigate the cause and effect of 4k-aliasing in detail. Therefore, we start by
verifying Intel’s documentation for a conflicting offset, specifically, “... load and store have
the same value for bits 5–11 of their addresses and the accessed byte offsets should have
partial or complete overlap” [Int15]. Then, we show how the number of store operations
executed within a loop on the sibling thread affects the delay caused by 4k-aliasing.

3.1 Measurement Setup
We analyze the effect of 4k-aliasing across hyper-threads with the code listed in Listing 1 and
Listing 2. We refer to two sibling logical cores as Thread 0 and Thread 1. Thread 0 measures
the execution time of one load operation from a given address, as shown in Listing 1.
Thread 1 performs 100 consecutive stores to a given address in an endless loop as shown
in Listing 2. For every experiment in this section, we specify the number of repetitions for
calculating the average delay. We explore how the operand size, the memory access offset
and the number of stores in the loop impact the 4k-aliasing effect. Finally, we present
the delay introduced by a 4k-conflict on different processors. Unless otherwise specified,
the evaluations in this section are executed on an Intel Core i7-10710U processor with six
cores, running Ubuntu 20.04. We configure the processor to run at maximum frequency of
4700 MHz by setting the CPU governor to performance.

Listing 1: Measuring a load op-
eration on Thread 0.
mfence
rdtsc
mov r11b , [r10]
mfence
rdtsc

Listing 2: Performing 100 store
operations to the same address
on Thread 1.
mov word [%
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Figure 1: Precondition of 4k-aliasing in terms of ad-
dress overlaps between conflicting stores and loads. The
average time in cycles measured for the memory loads
is encoded by color as shown on the right-hand side.
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3.2 Bits Overlapping and 4k-Aliasing
In this section, we investigate the overlapping bits of load and store addresses that cause
4k-aliasing. First, we verify 4k-aliasing occurs when bits [11:5] of the load and store
addresses are identical, and bits [4:2] are partially or completely overlapping. In the
experiment, Thread 0 measures a one-byte load operation from a given address 1,000
times (Listing 1) while Thread 1 infinitely executes 100 two-byte store operations in a
loop (Listing 2). We use a two-byte store to show the effect of overlap in bits [4:2]. The
load and store addresses are initially pointing to the first byte of two different pages, thus
having identical lower 12 bits. We then vary the offset of load and store addresses from
byte 0 to byte 31. For each load offset, the average execution time is computed over the
1,000 measurements. The result is shown in Figure 1.

Technically, when storing two bytes to 0x0 on Thread 1 and loading one byte from 0x3
on Thread 0, both operations affect disjunct memory areas. However, as shown in Figure 1,
a load operation at offset 0x3 is delayed by a store operation at offset 0x0, which indicates
a 4k-aliasing performance penalty. Similarly, a one-byte load at offset 0x0 is delayed by a
two-byte store at offset 0x3 although the loaded value is not affected by the stored value.
We hypothesize that this effect is caused by the MOB always assuming four-byte aligned
load and store operations. For example, a two-byte store to offset 0x3 is treated as if it
modifies all data from 0x0 to 0x7 which can also be observed in Figure 1.

Due to the four-byte alignment policy, a load and an earlier store to addresses that share
bits [11:5] are considered to be 4k-aliasing if they overlap in bits [4:2]. The results from
Microarchitectural Minefields [SAMJ18] do not show any alignments above the two bytes
stored in their experiment. However, we run our experiments on newer microarchitectures,
confirming the leakage features a 4-byte granularity as shown in MemJam.

3.3 Number of Conflicting Store Operations
In this section, we demonstrate that 4k-aliasing does not introduce a constant performance
penalty, but that the delay is related to the number of conflicting store operations on the
sibling logical core. We show that with a proper number of conflicting store operations,
4k-aliasing performance penalty can be increased to 20 cycles under highest processor
frequency.

We reuse the code shown in Listing 1 and Listing 2. In this experiment, Thread 1
uninterruptedly executes a certain number of stores to offset 0x0 in an endless loop, while
Thread 0 loads an eight-byte value from addresses from the offsets 0x0 and 0x8 alternatingly.
The load operation at offset 0x0 will be delayed because of 4k-aliasing. We measure the
timing difference between the conflicting and non-conflicting load and change the number
of store operations on Thread 1. To reduce measurement noise, we use the average of 500
timed load operations for each address.

First, we investigate the relationship between the performance penalty and the number
of stores. Figure 2a shows the increase of the delay when the number of stores is gradually
raised from 0 to 400. Around 100 to 200 stores in the loop, the delay is maximal with
about 20 cycles difference between the conflicting and non-conflicting load. When further
increasing the number of stores in the endless loop, the performance penalty decreases at
approximately 4,600 stores as shown in Figure 2b.

As described in Section 2, to re-order a load operation, all older store operations are
checked for dependency until a real conflict or 4k-aliasing is detected. In the case that
a load operation is 4k-aliasing with a directly preceding store operation, the MOB stops
checking the dependency of the load operation with other previous store operations. When
the physical addresses of both load and store operations are available and 4k-aliasing turns
out to be a false dependency, the MOB starts re-ordering the load operation again and it
checks the dependency of the load operation with other store operations. Consequently,
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Figure 2: Performance penalty of the 4k-aliasing effect in cycles depending on the number
of store operations in the loop of Thread 1. Increasing the number of stores in the loop
first raises then reduces the penalty. Figure 2b shows the measurements up to 10,000 stores
in the loop of Thread 1, while Figure 2a shows a closer investigation of the range from 0
to 400 stores.

Table 1: 4k-aliasing on different processors. Delay is shown for the base frequency (BF)
and the maximum frequency (MF). The latter is measured by setting the Intel pstate
driver’s governor to “performance”.

Intel Processor BF
(MHz)

Delay BF
(Cycles)

MF
(MHz)

Delay MF
(Cycles)

Core i5-6260U 1800 36 2900 23
Xeon E-2286M 2400 53 5000 26
Core i5-10210U 1600 70 4200 27
Core i7-10710U 1100 78 4700 18

fewer store operations in the MOB lead to a smaller delay caused by 4k-aliasing. Thus,
the increase of the 4k-aliasing effect shown in Figure 2a can be explained by an increase in
the number of address dependency checks. When the MOB is entirely filled with store
operations, the effect of 4k-aliasing is maximized. We hypothesize that too many store
operations in the loop on the sibling thread cause a slow down in filling the MOB with
4k-aliasing store operations as the front-end is busy with fetching and decoding new store
operations. Thus, the number of dependency checks decreases.

3.4 MemJam on Different Processors
Finally, we present the delay caused by the 4k-conflict on different processors in Table 1
and show a comparison between the timings for loads with and without a 4k-conflict
in Figure 3 on an Intel Core i5-10210U at base frequency.

For the results shown in Table 1 and Figure 3 we measure 500,000 times, each conflicting
and non-conflicting load. In Table 1 the delay is shown for the processor’s base frequency
and the processors maximum single-core frequency. On modern Intel processors, the
rdtsc instruction measures against a fixed frequency which corresponds to the processor’s
maximum frequency or the maximum core-clock to bus-clock ratio [Int23e][Vol. 3B, 18.17].
Therefore, a delay measured at lower frequencies appears higher, but in fact remains the
same in terms of cycles. Only the temporal measurement resolution is increased compared
to the processors running frequency. We show the delay at the maximum frequency as
reference and additionally show the base frequency as baseline for a comparison against
measurements in Section 4.

Figure 3 shows the distribution of timing measurements for loads with and without
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Figure 3: “Conventional” MemJam timing measurements with 12 conflicting bits. The
measurement is repeated 500,000 times for conflicting (attacked) and non-conflicting
(benign) loads.

4k-conflict at the processor’s base frequency of 1600 MHz. At this frequency, the average
delay is approximately 70 cycles.

4 TeeJam: Amplifying 4k-aliasing Leakage with Enclave
Interruption

To construct an attack that combines the high spatial resolution of 4k-aliasing leakage
with the temporal leakage of single-stepping, we now move the 4k-conflict experiments
from Section 3 to the SGX single-stepping context. Many workloads today are executed in
trusted execution environments allowing for a stronger attacker model. Our findings show
that this combination yields a powerful attack, which we call TeeJam. TeeJam inherits
the 4-byte intra cache line spatial resolution due to the 4k-aliasing leakage and combines
it with the single-instruction temporal resolution of single-stepping, thereby answering our
first question positively.

We describe the combination of a 4k-conflict based attack with asynchronous exits from
an SGX enclave. As explained in Section 2.1, 4k-aliasing causes the CPU to detect a false
read-after-write dependency if a load accesses an aliasing address affected by a preceding
store on the same physical core, even across hyper-threads. Thus, in a straightforward
attack an adversary could determine the addresses of conflicting stores by loading 4k-
aliasing addresses. As secret-dependent store locations are extremely rare in cryptographic
implementations, the effect direction needs to be reversed in order to build a useful attack.
In MemJam the attacker thread performs conflicting stores to affect secret-dependent
loads by the victim on the neighboring hyper-threads.

In fact, MemJam provides a sub-cache-line resolution by slowing down loads to
specific offsets within a specific cache line. All that is left is measuring the caused delay,
which is possible but requires millions of observations in a free-running target on the
neighboring hyper-threads [MWES19]. MemJam thus measured the execution time of
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entire encryptions, causing the attack to require millions of observations to recover secret
keys from block ciphers. We show that by exploiting the 4k-aliasing leakage in combination
with single-stepping the target produces a new attack, achieving both maximal temporal
resolution of single-stepping while achieving a 4-byte intra cache line resolution, which can
thwart implementations that only consider cache-line granularity with ease. We further
show that the 4k-aliasing effect is actually amplified by single-stepping into SGX. The
delay caused by the false read-after-write dependency is doubled when observed across
SGX boundaries, improving the efficiency of the attack. While TeeJam achieves highest
temporal and spatial resolution for a microarchitectural attack, we will show that the
4k-aliasing effect remains a statistical one, requiring a low number of repetitions. Yet, we
show that single-stepping and the SGX-based leakage amplification allow us to succeed
with thousands of observations instead of millions of observations that were necessary in
the MemJam attack.

In what follows, we describe the measurement setup for determining the amplification of
the MemJam effect when applied to enclaves and analyze the results on different machines.

4.1 Measurement Setup
We run the basic experiments for evaluating the 4k-aliasing effect on an Intel Xeon E-2286M
@2.4 GHz (Coffee Lake) and on an Intel Core i5-10210U @1.6 GHz (Comet Lake). All
processors feature Intel SGX. Hyper-threading is enabled and the CPU frequency is fixed
to the processor’s base frequency. Additionally, to avoid noise in the measurements, we
isolate the logical cores used for the measurements from the OS scheduler.

Listing 3: Code for Thread 1: load from
#Offset and #Offset + 8.
void access_for_4k_conflict (

int pos1 , int pos2) {

for (int i = 0; i < 100; ++i) {
mem_read (

( uintptr_t ) (mem + pos1),
( uintptr_t ) (mem + pos2 ));

}
}

...

[ global mem_read ]
mem_read :

mov rax , qword [rdi]
mov rax , qword [rsi]

ret

Listing 4: Code for Thread 2: store to
#Offset.
int main () {

...

while (1) {
write_conflict ( target );

}
}

...

[ global write_conflict ]
write_conflict :

mov qword [rdi], 100

ret

The experimental setup is depicted in Figure 4. The findings of Moghimi et al. in
MemJam [MWES19] show that the 4k-conflict is highest and best measurable with Read-
after-Write (RaW) conflicts, meaning load after store. We transfer MemJam RaW conflicts
to a TEE scenario. Therefore, load and store operations to pseudo-conflicting offsets are
separated onto two threads, as shown in Figure 4a and Figure 4b. Both threads are running
on the same physical core but on two different logical cores.

Thread 2, as depicted in Listing 3b, stores continuously and uninterruptedly to a
virtual address with page offset #Offset. On Thread 1, shown in Listing 3a, alternating
loads from the offsets #Offset and #Offset + 8 are implemented and executed within
an SGX enclave. Both addresses are located within the same cache line. We repeat the
experiment 10,000 times for each offset. A histogram of the measured single-stepping
times for each experiment as well as mean and standard deviation computed over 10,000
experiments are shown in Figure 5. As shown in Figure 4a, the enclave is single-stepped
with SGX-Step [BPS17] and for every step we measure the single-stepping time, i.e., the
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(a) Measurement flowchart for Thread 1.
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Figure 4: Setup for measuring the effect of 4k-conflict on SGX enclave exits. Thread 1
and Thread 2 are running on sibling logical cores. The enclave accesses alternatingly an
address with page offset #Offset and #Offset+8 while it is single-stepped and the time
between AEX and ERESUME is measured. Thread 2 continuously stores to an address with
page offset #Offset.

time between the call to EERESUME and the return of AEX [BPS18]. The single-steps that
belong to the monitored load instructions are filtered by monitoring and manipulating the
access bit of the page holding the accessed data.

4.2 Measurement Results
This section presents our measurement results on the Intel Core i5-10210U. Figure 5 shows
the results of the TeeJam effect when single-stepping an enclave with memory loads while
simultaneously running a hyper-thread which executes memory stores, as described in
Section 4.1.

12500 12750 13000 13250 13500 13750 14000 14250 14500
0

100

200

300

400

500

600

700

800

Mean: 13573.07
Stdev: 203.92

Mean: 13443.69
Stdev: 127.93

TeeJam on an Intel i5-10210U

Cycles

Co
un

t

conflicting
non-conflicting

Figure 5: TeeJam measurements with 10,000 measurements of the single-stepping time
for each the conflicting and non-conflicting load.

When averaging over 10,000 measurements, we obtain results with a distinguishable
difference of about 130 cycles in the mean single-stepping time between single-steps with
non-conflicting and conflicting loads. For a comparison, the MemJam effect, as shown
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in Figure 3, causes a delay of 70 cycles on the same processor at its base frequency. Thus,
the delay caused by 4k-aliasing is almost twice as big in the SGX setting. The results of
the same experiment on the Xeon E-2286M are shown in the Appendix (Figure 16).

Finally, we repeat the experiment in 4-byte aligned steps over a full memory page to
cover all address bits which can be subject to the TeeJam effect. We proceed in 4-byte
chunks since we determined in Section 3.2 that this is the maximum spatial resolution
achievable with the 4k-aliasing effect. For mapping the influence of the TeeJam effect
over a whole page, the experiment from Figure 4 is executed with 90,000 instead of 10,000
measurements on the Intel Core i5-10210. For the evaluation, we compute the difference
of the means of the conflicting and non-conflicting loads for each 4-byte chunk. The
measurement results are shown in the heatmap in Figure 6 that depicts one cache line
per row subdivided into 4-byte chunks. We show larger differences in brighter and smaller
differences in darker colors. A black field thus depicts a difference of 0.

Of the 1024 executed offsets, the measurements were successful for 852. For the
remaining offsets, we were not able to collect proper measurements due to either (i)
excessive zero-stepping or (ii) the measurements resulted in two to three times higher
single-stepping times accompanied by a very high variance. Since both effects render the
corresponding offsets unusable for side-channel attacks, we assigned them a difference of 0.

A close inspection of the heatmap reveals the existence of some cache lines completely
unusable for side-channel measurements, especially in the beginning and end, but also
isolated throughout the page. Nevertheless, the majority of the cache lines is suitable for
TeeJam.
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Figure 6: Mapping the TeeJam effect over a full memory page. The experiment is
repeated in 4-byte aligned steps. The difference between the mean timing measurement of
the conflicting and non-conflicting memory accesses are depicted. Dark colors show small
differences, while brighter colors depict large differences. We set “unmeasurable” offsets
to 0.
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4.3 Evaluation
In this section, we evaluate the results from the previous section in more details to conclude
that a high temporal and spatial resolution is possible simultaneously, thus answering
RQ1 in the positive. The results from the previous section show an increase in the delay
by a factor of approximately two between MemJam and TeeJam. This amplification
and the large delay of TeeJam in general allow us to measure 4k-aliasing for memory
accesses within enclave execution in a single-stepped fashion, despite the high variance
in the single-stepping time. Note, that the original MemJam attack measures the delay
introduced by a 4k-conflict over the full execution of a program. With TeeJam, we can
measure 4k-conflict on a per-instruction basis and thus drastically increase the timing
resolution.

We suspect the reasons for the high variance in the single-stepping time to be at-
tributable to the behavior of the Asynchronous Enclave Exit (AEX) and EERESUME instruc-
tion as well as the continuously running hyper-thread that executes the conflicting store
instructions. Van Bulck et al. [BPS17] found the ERESUME instruction to be “relatively
deterministic”. However, in a more recent work, Constable et al. [CVBC+23] describe the
ERESUME with “... whose execution time itself varies greatly and can take thousands of
CPU cycles” and stating that single-stepping is only possible because of a forced microcode
assist associated with the first enclave instruction which might take several hundreds of
cycles. Additionally, the relatively complex Asynchronous Enclave Exit, which has to
cleanup the enclave state and was subject to changes such as flushing the L1 data cache to
counteract attacks such as Foreshadow [BMW+18], introduces additional noise. Finally,
measuring the 4k-conflict requires running application on the hyper-thread co-located with
the target enclave. Since both threads share microarchitectural components, the core’s
pipeline additional noise is introduced and the enclave thread is slightly slowed down.
In our experiments, this reflects in a higher APIC timer interrupt time for SGX step
compared to an execution without hyper-thread and less reliable single-stepping, meaning
more frequent zero-stepping with an appropriatley configured APIC timer.

We suspect that the amplification of the MemJam effect in SGX is caused by SGX
first waiting for all requests in the store and load buffer to be completed before flushing
the L1 data cache and TLB. Due to many pseudo-conflicting stores in the store buffer, this
process is delayed causing SGX to wait many cycles before flushing the caches and buffers.

As for the applicability of TeeJam to different offsets, we assume that the difference
in the amplitude for most of the working offsets can be explained with measurement noise,
i.e. other effects like fetching from last-level cache instead of the second-level cache, which
obscures some of the effects. For those offsets, which show excessive zero-stepping or very
high single-stepping times and variance, we hypothesize that the 4k-aliasing writes conflict
with memory involved in SGX’s context switching or the memory translation process
during enclave enter and exit [ZMFT22]. A too high variability or the occurrences of such
large effects render the timing measurements of these impractical for side-channel attacks.
However, the majority of offsets remains fruitful.

RQ1 is answered positively: Single-stepping attacks that achieve a per-instruction tem-
poral resolution can still achieve a sub-cache-line spatial resolution for loads.

4.4 Discussion
In the following we discuss limitations of and potential countermeasures against TeeJam.

Intel SGX and Hyper-Threading: Intel recommends to disable hyper-threading when
running secure workloads in Intel SGX [Int23c]. The reasons are attacks like Fore-
shadow [BMW+18], which can only be fully mitigated by disabling hyper-threading.
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Disabling hyper-threading, however, is not desirable in many situations, especially for
cloud providers who want to optimize the usage of their resources. Obtaining trusted
information about hyper-threading state at runtime is a difficult problem for an en-
clave [CWC+18, OTK+18] since the CPUID instruction is not available within the SGX
context. However, the hyper-threading state is verified in some attestation scenarios. For
Intel’s Enhanced Privacy ID (EPID) attestation scheme, the hyper-threading state is
reported as part of the attestation report by returning a code which states that further
hardening is required if hyper-threading is enabled [Int23c]. In case of the newer Data
Center Attestation Primitives (DCAP) attestation scheme, however, the attestation state
is only part of the signed attestation data for multi socket systems [Int23a, Section 3.7].
Attestation, however, is only a one-time check of the system configuration and is not
necessarily repeated for every initialization of an enclave after keys were exchanged.

Chen et al. [CWC+18] propose an instrumentation-based technique to detect hyper-
threading and AEX side-channel attackers. However, for the hyper-threading counter-
measure they require a running trusted hyper-thread on the co-located core. For shared
machines offering trusted execution services to customers on all cores, this essentially
reduces to disabling hyper-threading as only half of the logical cores remain available. Fur-
thermore, their approach increases overhead to the target program due to frequent checks
for asynchronous enclave exits and trusted validation of a running co-located hyper-thread.
Moreover, this countermeasure must be preemptively taken by every enclave, especially in
the case of vulnerable library code this poses a problem for practical security. Chen et
al. also state that their countermeasure can detect an attacker that applies asynchronous
enclave exits, however, to mitigate data-flow leakage this requires many AEX checks which
will in turn further increase the overhead.

Single-Stepping Countermeasures: Single-stepping SGX enclaves has become a major at-
tack vector. For many years, a plethora of attacks have been enabled by SGX-Step [BPS17].
Thus, it seems only natural that attempts are and were made to reduce the attackers
capabilities to mount such attacks. Pridwen [SSL+22] is a tool designed to simplify the
application of different attack countermeasures to enclave code. However, it only works
with enclaves written in WebAssembly and still requires manual application for each enclave.
Among others, Pridwen includes the SGX side-channel countermeasure Varys [OTK+18].
Varys works in very similar manner to the work of Chen et al. It counteracts AEX based
attacks by observing the enclaves state save area and hyper-threading based attacks by co-
locating a second enclave thread, thus incurring comparable overheads, essentially blocking
all logical cores on systems which are used for trusted workloads in shared environments
like clouds and requiring manual application to every SGX enclave.

Finally, Intel recently published a revised version of the SGX specification that specifies
the AEX-Notify architectural extension [CVBC+23, Int22, Int23b]. This extension enables
a hardware assisted single-stepping detection and is implemented in microcode and software.
However, a target enclave has to enable this feature and register and implement the response
to the detected AEX itself by implementing a trusted handler. Thus, while introducing less
overhead due to a push mechanism, AEX-Notify still depends on every enclave handling
the countermeasures against single-stepping themselves.

Practical Relevance of TeeJam: While countermeasures against single-stepping and
hyper-threading based attacks against SGX exist, most of these incur significant overhead
and all of them require the enclave developer to apply these mechanisms to their enclave
themselves. Especially the latter is a problem for vulnerabilities in commonly used
cryptographic libraries, which have also been used to construct enclaves. The libraries
are general-purpose and thus do not contain such countermeasures. Instead, enclave
developers would have to include countermeasures when integrating the library for enclave
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usage, resulting in a practical risk that either the countermeasures are not applied at all,
applied incorrectly or are incomplete and can be circumvented by sophisticated attackers.
Disabling hyper-threading significantly reduces the available computing power and thus
increases costs for infrastructure providers which in turn is not desirable. Moreover, a
misconfiguration on the server side or a missing or flawed attestation check could lead to the
inadvertent activation of hyper-threading. As such, single-stepping and hyper-threading
based attacks remain a practical problem, providing further evidence that countermeasures
should be applied by default without requiring the developer’s intervention.

5 Recovering RSA Private Keys with TeeJam
The TeeJam effect described in Section 4 introduces a novel way to implement an
attack achieving high temporal and spatial resolution simultaneously. In this section, we
investigate RQ2 and aim to find suitable targets that could not be fully exploited before
(due to a lack of spatial or temporal resolution).

In the scenario studied here, we apply TeeJam to the decoding of a base64 encoded
RSA private key with OpenSSL and demonstrate how the fine granular resolution allows for
reconstructing even 4096-bit private keys. This scenario was considered in Util::Lookup
but due to a lack of sub-cache-line resolution, it was not possible to reconstruct private
keys of length more than 512 bits or 1024 bits without specialized hardware [SBWE21].
Besides significantly extending the range of keys that can be recovered, we also adapt
the key reconstruction from Util::Lookup to work with unaligned partitions, missing
information, and Carmichael’s totient function, allowing us to implement a full end-to-end
key recovery attack.

We begin with describing the state of the art RSA key recovery from side-channel
leakage obtained from the key file’s base64 decoding process, continue with the general idea
of how to extract information from base64 decoding in Section 5.3 and then describe the
actual attack on the decoding process with TeeJam in Section 5.4. Finally, we elaborate
on the key reconstruction in Section 5.5 and Section 5.6.

5.1 State of the Art RSA Key Recovery from Base64 Decoding
The recovery of RSA private keys from side-channel information gathered during base64
decoding was previously attempted in Util::Lookup [SBWE21]. The attacker in Util::
Lookup exploits that in most cryptographic libraries base64 decoding is implemented
with table lookups, translating from base64 symbols to binary. They run a cache attack,
specifically a Prime+Probe attack, on a single-stepped enclave. Meaning, they first create
eviction sets for the cache lines they want to observe, start the enclave and then, after
every step, probe and prime the cache sets. The attack runs in a single trace, meaning
in the optimal case it only requires one repetition. More repetitions will not increase the
amount of recovered information. However, the obtained information or in other words the
maximum leakage is only one bit per access to the lookup table and thus per translated
symbol. Due to the uneven distribution of symbols to the cache lines, the real leakage
is even below one bit per access. The private key is stored in a heavily redundant way
to speed up the decryption operation. Hence, the private key contains five values that
are closely related to each other and the attack obtains one bit for each of these five
values. The authors of Util::Lookup used this knowledge to employ a combination of
the Heninger-Shacham RSA key reconstruction algorithm [HS09] and the lattice algorithm
small_roots in Sagemath based on Coppersmith’s method [Cop97] for reconstructing the
complete key from this small leakage.

The Heninger-Shacham reconstruction algorithm expects observations on single bits of
the key. The information from the Util::Lookup attack, however, delivers information on
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Figure 7: Overview of the attack to reconstruct RSA private keys from execution traces
recorded during the key’s base64 decoding process.

blocks of size 6 bits. Therefore, the authors generalize the algorithm to work with blocks
of variable size. Due to the small leakage, so far only keys with a maximum size of 512 to
1024 bits could be reconstructed with the information from the side-channel attack. The
reconstruction of a 512-bit key already requires more than 4,000 CPU hours on commodity
hardware and realistic key lengths are thus out of reach for Util::Lookup.

In the next sections, we will show how TeeJam can be used to significantly increase
the amount of leaked information and how this information can then be used to reconstruct
even keys with a size of 4096 bits on commodity hardware. Additionally, we will show how
RSA keys with Carmichael totient can be reconstructed, which is not possible with the
reconstruction algorithm from Util::Lookup.

5.2 Applying TeeJam to Table Lookups
Classical cache attacks provide a maximum spatial resolution of cache-line granularity,
i.e., of 64 bytes on modern Intel processors. In the case of base64 decoding where the
relevant information in most cases only spreads over two cache lines, the attacker is limited
to distinguish between only two sets or partitions of symbols which are translated with
the observed steps. Using TeeJam, the attacker can launch a statistical attack on the
victim enclave by provoking 4k-conflicts from a hyper-thread with a granularity of as little
as four bytes, potentially splitting a lookup table of 128 bytes into up to 32 partitions.
Since TeeJam is a statistical effect, the decoding has to be observed repeatedly while the
attacker provokes conflicts to the same partition. After sufficiently many observations,
the same process can be repeated with the next partition. To determine whether the
attacked partition was accessed during a table lookup, the attacker computes the average
single-stepping time of each observed single-step corresponding to a lookup table access over
all observations for which they attacked the same partition. If the average single-stepping
time is higher than those of the preceding and following steps, the attacked partition was
accessed by the victim.

5.3 Information Retrieval From Base64 Decoding
To reconstruct RSA keys from the information gathered during the decoding of a base64
encoded RSA private key, we proceed in several steps. Figure 7 shows an overview of the
complete attack and reconstruction process. First, we collect single-stepping timing traces
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Figure 8: OpenSSL’s base64 decoding lookup table. The boxes indicate the partitions
observable with the TeeJam attack. The partitions are identified by the numbers on their
right. The comments list the ASCII representations contained within each partition.

for every partition shown in Figure 8. From these traces, we filter those timings which are
related to decoding lookups. The filtered traces for each partition are then analyzed to
identify those load operations that accessed the observed partition, meaning the partition
attacked with 4k-conflicts. Finally, the results for all partitions are merged and used as
input for the RSA key reconstruction algorithm.

The decoding of base64 in many cryptographic and utility libraries is implemented
with lookup tables [SBWE21]. There are minor differences in the implementations, but in
general the ASCII code of each base64 symbol is used as the index to an array which holds
the associated binary values. As each base64 symbol corresponds to log2(64) = 6 bits of
information, the base64 decoding algorithm proceeds by concatenating the information
from four table lookups into three bytes.

Exemplarily, the lookup table (LUT) used by OpenSSL [CT23] is shown in Figure 8.
It has a size of 128 bytes, potentially holding all ASCII characters, and replaces unneeded
bytes with 0xff. During the translation of a private key Privacy-enhanced Electronic
Mail (PEM) file, OpenSSL parses every base64 symbol twice. First, it collects 64 symbols
and translates them to verify their validity, then it iterates over the same chunk of 64
bytes again for the actual decoding.

With a cache attack, the maximum information which can be gathered per lookup
is one bit, assuming an equal distribution of symbols per cache line. For the OpenSSL
LUT the mutual information is approximately I(B,P ) = 0.696 bit for 64-byte alignment
of the LUT or I(B,P ) = 0.974 bit for 32-byte alignment [SBWE21], where I is the mutual
information and the random variables B and P denote the base64 symbol and the partition,
respectively. For a cache attack, the partition size is a 64-byte cache line. Util::Lookup
shows that this information is enough to reconstruct small keys with a size of 512 bytes or
1024 bytes with sufficient computing resources as well as to decrease the security level of
larger keys.

Figure 8 shows the partitioning of the OpenSSL LUT we chose for a sub-cache-line
attack with TeeJam. As shown in Section 3, TeeJam offers a resolution of up to four
bytes. However, we settle, as a tradeoff, for partitions of eight bytes to reduce the amount
of necessary observations by 50% and still obtain more than sufficient leakage to reconstruct
the decoded keys from the observed side-channel information. Each of the chosen partitions
consists of two to eight symbols, depending on the symbol distribution corresponding to
the ASCII encoding, as some of the symbols can only occur in certain special positions.
More concretely, the symbol ‘-’ does not appear in the base64 standard, but only in some
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Figure 9: Attack setup for retrieving traces which yield the accessed lookup table (LUT)
partitions. Logical core (LC) 0 and 1 are hyper-threads on the same physical core.

variants. Furthermore, the symbol ‘=’ is only ever used for padding and thus cannot
appear in arbitrary positions. Hence, we have two partitions in which 2 symbols are
possible, five partitions with 8 symbols, two partitions with 7 symbols, and two partitions
with 3 symbols. The entropy is maximized by considering the uniform distribution in each
partition, yielding mutual information of
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for each correctly detected lookup table access. This is more than half of the total available
information of 6 bits and by far enough to reconstruct the decoded private key from the
captured leakage, even with imperfect traces that miss some observations. Choosing smaller
partitions would require to collect more traces, thus complicating the attack without any
real gain for the attacker.

5.4 Lookup Table Trace Recovery
To extract all the information as described in Section 5.3, we design an attack based on
TeeJam. We run the following experiment on an Intel Core i5-10210U. The attack is
depicted in Figure 9. The victim, i.e., the decoder of the private RSA key, is running
on a fixed logical core in an SGX enclave while part 1 of the attacker is running on
the other logical core (hyper-thread) of the same physical core. Part 1 of the attacker
constantly writes to a pseudo-conflicting 4k-aliasing address of one of the partitions from
the victim’s LUT. Part 2 of the attacker runs on the same thread as the enclave and
uses SGX-Step [BPS17] to single-step the enclave, measure the single-stepping time and
observe the page access bits of the pages holding the LUT and decoding routine. The
single-stepping time is defined as described in Section 2.2.

For every partition, as shown in Figure 8, the attacker observes 1,000 decodings while
continuously executing stores to the corresponding 4k-aliasing address. They store the
recorded traces of single-stepping times and page accesses to the LUT and decoding
routines. Afterwards, the page access bits are used to filter only the steps with access to
the LUT. Then, only traces with the same length are considered. In all our experiments,
traces with the correct length were the clearly dominating share of all traces, thus allowing
to identify the correct length easily.

As described in Section 5.3, OpenSSL has a special way of parsing a PEM file twice.
Knowing the underlying algorithm, it is simple to select either the first or second pass for
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Figure 10: base64 decoding in OpenSSL works by parsing every line of 64 symbols in the
PEM file twice: first pass for writing all symbols to a buffer and checking for correctness,
second for the actual translation. We depict the first pass for the third line of a 1024-bit
key for two different attack offsets into the lookup table (LUT), partition 8 and 1 as defined
in Figure 8. Comparing with the symbols in the partitions reveals longer single-stepping
latencies when these are decoded. The correctly detected accesses to the partitions are
marked in blue, yellow highlights accesses which could not be detected or for which we
detected accesses for multiple partitions.

each 64 symbol block from the trace. We use the first pass, which checks each symbol for
validity, as the measurement results are clearer to interpret.

For illustration purposes, Figure 10 shows the measurement results for two selected
offsets for the third block of 64 symbols of a 1024-bit key decoded with OpenSSL. The
single-stepping times are depicted in a box plot, which shows the median and quantiles
for each decoded symbol when superimposing all traces of correct length. Comparing the
attacked offset to the corresponding symbols in the offset’s partition (Figure 8) reveals a
distinguishable higher single-stepping time for nearly all symbols in the attacked partition.

For the automated analysis performed in our end-to-end attack, we use the average A
instead of the median for each symbol’s single-stepping time. In order to automatically
detect attacked LUT accesses, we use a symmetric moving window of size 15 on the traces
of average single-stepping times. Let s be the standard deviation, and a be the average over
the current window. We detect an access to a partition if A− a ≥ 1.5 · s and A− a ≥ 20
cycles.

As to be expected from noisy side-channel measurements, not every access can be reliably
determined. Additionally, a drift over time can be observed in the overall trace. This
prevents detecting attacked offsets with a simple threshold and requires the classification
within a moving window. While most of the LUT accesses in the example in Figure 10 can
be clearly determined, few like the yellow marked symbols in the lower box plot cannot
clearly be distinguished from their surrounding measurement values and are false negatives.
We choose conservative parameters for the selection algorithm, meaning rather rejecting
the detection of a memory access than risking false positives. Even with this approach that
results in missing true positives, enough information is readily available due to the high
sub-cache-line resolution. With a proper amount of repetitions and selection threshold, we
did not encounter any false positives during our experiments.

Due to the good results, it was not necessary to determine whether one of the unusable
offsets, as described in Section 4.2, had to be excluded from the measurements. However,
we left out those offsets of the LUT that do not contain information used for the base64
decoding.

Figure 11 shows the merged classification results of all partitions for a full 4096-
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Figure 11: Result of the trace recording with 1,000 repetitions for each attacked offset
during the attack on a 4096-bit key with Euler totient function. Classification was chosen
to be “conservative” as described in Section 5.4 to avoid undetectable errors. Missing and
invalid observations: 1117

bit private key. It shows whether a step or rather LUT access was classified with the
correct partition. It also shows whether we did not detect any LUT access for any of the
partitions (“no classification”), whether multiple partitions were detected, in which case
we interpret the measurement as missing as well, or whether a false positive access was
detected (“wrong classification”). Performing 1,000 repetitions for each attacked offset and
choosing conservative parameters, our experiment contains no false positive and about
65% of the bits are correctly detected. We leave further optimization of the detection
algorithm’s parameters to future work, as the current results provide sufficient information
for reconstructing the key.

RQ2 is answered positively: Attacks with high temporal and high spatial resolution al-
low to attack implementations that are explicitly hardened against side-channel attacks.

5.5 Key Recovery
While the previous discussion already shows the applicability of TeeJam when load-
ing and decoding the private key, it does not constitute a complete end-to-end attack.
Similarly, Util::Lookup also omitted several steps needed for a complete end-to-end
attack [SBWE21]. In order to present a complete end-to-end attack, we now fill the
remaining gaps of the attack, including dealing with missing partition classifications, trace
alignment, and handling keys using the Carmichael totient instead of Euler’s totient.

The obtained trace as described in Section 5.4 is a base64 representation of the key’s
binary blob that is composed of the parameters (N, e, p, q, d, dp, dq, qp−1) in Abstract
Syntax Notation One (ASN.1) encoding. We modify and generalize the algorithm from
Util::Lookup that is based on the algorithm by Heninger and Shacham [HS09]. In
Util::Lookup, an idealized and aligned trace is generated for evaluation of the reconstruc-
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tion algorithm. In contrast, we implement a full end-to-end attack; however, this requires
to handle missing classifications and to identify the correct base64 symbols corresponding
to the private key parameters which we discuss at the end of Section 5.5.

The Key Recovery Algorithm of Util::Lookup: The main idea of the key recovery
algorithm is to reconstruct the different bits of the secret key sk? = (p?, q?, d?, d?p, d?q , q?p−1)
iteratively by building up a set of candidates. Each candidate corresponds to a potential
RSA secret key compatible with our observations. In the first step, we find all possible
values k, kp, and kq such that

e · d = k(N − p− q + 1) + 1
e · dp = kp(p− 1) + 1
e · dq = kq(q − 1) + 1.

Due to our observations, the number of such possible triples, denoted by obs, is typically
very low, i.e., usually two. Then, we initialize the set of candidates with a few candidates
(described later) where a few bits are already set. The depth of a candidate s̃k corresponds
to the number of bits already reconstructed. Next, we apply the expand operation on
each candidate s̃k to obtain two candidates s̃k1 and s̃k2. Whenever possible, we compare
the set of current candidates to our observations via the check operations and discard
candidates not matching the observations obs. A short description following [SBWE21] of
the complete algorithm is presented in Figure 12.

Input: Observation obs, target depth D
1 : find valid triples (k, kp, kq)
2 : for each possible triple (k, kp, kq):
3 : initialize empty stack S

4 : add initial candidates s̃k(k, kp, kq) to S
5 : while S is not empty:

6 : let s̃k = S.pop()
7 : let s̃k1, s̃k2 = expand(s̃k)
8 : for β ∈ {1, 2}:

9 : if depth of s̃kβ ≥ D: output s̃kβ
10 : if depth of s̃kβ = j · b and check(obs, s̃kβ):

11 : S.push(s̃kβ)

12 : else if depth of s̃kβ 6= j · b : S.push(s̃kβ)

Figure 12: Concise description of our adapted key-reconstruction algorithm

Adapting the Algorithm: The original reconstruction algorithm assumes private keys
with the Euler totient function ϕ(N) = (p− 1) · (q − 1) for the derivation of the equations
used in the check operation. However, OpenSSL generates private keys with Carmichael
totient function as defined by the standard [MCK+16]. The Carmichael totient function
uses λ(N) = lcm((p− 1), (q− 1)) = ϕ(N)

gcd((p−1),(q−1)) instead of ϕ(N), which complicates the
equations used in the expand operation. Since p and q are prime, it holds gcd((p− 1), (q−
1)) ≥ 2. Consequently, λ(N) < ϕ(N) for all N . However, if the Euler totient function
is used and d < λ(N) holds for the private exponent d, then the keys generated with
OpenSSL are compatible with Euler’s totient function. However, this is not guaranteed
and we thus need to adapt the key recovery algorithm. We analyze the state of the art
from Util::Lookup and adapt the algorithm to handle both types of keys in Section 5.6
by adapting the expand operation.
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Figure 13: ASN.1 DER encoded key bytes with their representation in base64 encoded
PEM files. For determining the overlap of bits from one byte into the next base64 symbol
it is only necessary to analyze a partition of 24 bits (as the least common multiple of 6
and 8 is 24).

Missing Classifications: Dealing with missing partition classifications is a rather simple
endeavor due to the amount of observed information. Our key recovery algorithm is based
on the algorithm by Heninger and Shacham [HS09]. The algorithm from Util::Lookup
generalizes the available information to be provided in partitions of variable size (here: six
bits) instead of single bits. To compensate for the missing partition information, we omit
the corresponding checks against the missing information from the side-channel observation
and thus continue with a “non-pruned” set of initial candidates.

Trace Alignment: ASN.1 or for cryptographic purposes more specifically Distinguished
Encoding Rules (DER) encoded private keys follow a strict structure [ITU23a, ITU23b].
For the sake of simplicity, it suffices to say that the keys start with some meta information
of fixed and known length and that every parameter or variable is prefixed with information
about its type and length. However, the length of the parameters themselves can vary
within a rather bounded range. As (N, e) are public key parameters, we can derive the
maximum length of (p, q, d, dp, dq, qp−1) from them. Nevertheless, the parameters might
also be shorter than their maximum possible length by a few bits. For example, dp is
clearly in the range {0, . . . , p− 1} and thus can be represented by log2(p) bits, but about
half of the values in this range only need at most log2(p) − 1 bits, a quarter only need
log2(p)− 2 bits and so on. Hence, it is unlikely (but not impossible) that the length of any
parameter is eight bits shorter than expected. Since the parameters in ASN.1 are byte
aligned, a variation of up to eight bits introduces only two possible lengths in bytes for each
parameter. Still, per parameter, two lengths in bytes are possible because ASN.1 inserts a
zero byte in the most significant position if a parameter has its most significant bit set. For
the key reconstruction algorithm, we proceed by assuming parameter lengths in previously
explained boundaries. With a maximal parameter length variation of eight bits, there
are at most 85 = 32, 768 variations. But as we know the file size of the complete key, we
can use this knowledge to reduce the number of variations significantly, especially if many
parameters have full length and thus a leading zero byte. Since this is only a rather small
factor and reconstruction with the available information from the fine grained TeeJam
attack is very fast (see Section 5.6), we assume the parameters’ length to be known. Having
the correct (or assumed) parameter length, one can determine the corresponding elements
from the partition trace created as explained in Section 5.4.

However, a base64 symbol or trace element itself does not align with the bytes from
the DER representation as depicted in Figure 13. To use the correct information for the
key reconstruction, we cannot simply use the first trace element that overlaps with a
parameter’s start and end byte. Instead, we create four new partition tables with partitions
which contain only the information about the lower two and four bits as well as the upper
two and four bits from the original partitions. Additionally, we adapt the algorithm to
accept these “sub-partitions” as observations for checking the least and most significant
bits of the candidates. Since usually not all parameters are aligned in the same way, we
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compare the single parameters against their observation at different points during the
reconstruction.

5.6 Reconstructing Carmichael Keys
In the following, we describe how to adapt the key recovery algorithm by Heninger and
Shacham [HS09] to also recover RSA keys where the private exponent d is determined
by the congruence e · d ≡ 1 (mod λ(N)) where λ(N) = lcm(p− 1, q − 1). We denote the
secret key by sk? = (p?, q?, d?, d?p, d?q , q?p−1), but will ignore the variable q−1

p from now
on (as described in [SBWE21], the variable q−1

p behaves quite differently from the other
variables).

To perform the expand operation, we make use of four equations that can be derived
from the structure of the secret key for the three integers k, kp, and kq, namely

N = p · q,
e · d = k · λ(N) + 1,
e · dp = kp · (p− 1) + 1,
e · dq = kq · (q − 1) + 1.

Heninger and Shacham only consider RSA keys with regard to Euler’s totient func-
tion ϕ(N) instead of the Carmichael function λ(N) [HS09], As the algorithm rewrites the
above equations into polynomials, this allows them to write ϕ(N) = (p − 1) · (q − 1) =
N − p− q + 1. For the Carmichael function, the situation is more complicated, as λ(N)
cannot be expressed simply as a sum of N and its prime factors. However, as λ(N) always
divides ϕ(N), we know that λ(N) = ϕ(N)/r holds for some integer r. Furthermore, with
high probability, this integer r is quite small [MvOV96, Note 8.5]. To accommodate for this,
we introduce another integer γ and multiply both sides of the relation e · d = k · λ(N) + 1
with it to obtain (with a redefinition of k) the relation γ · e · d = k · (N − p− q + 1) + γ.
Note that this relation holds as long as γ is divided by r. More formally, Diaconis and
Erdős showed that the expected size of the greatest common divisor of two random x bit
numbers is 6/π2 · log(x) +O(log(x)/

√
x) [DE04]. Hence, even for primes consisting of 2048

bits, we only need to test at most 2.000 values for γ with sufficiently high probability. In
the following, we suppose that our choice of γ is correct. In our implementation, we simply
choose γ as a small factorial, i.e., γ ∈ {2!, 3!, 4!} to capture the most likely values of r.

By slightly adapting the ideas of Heninger and Shacham, the values of k, kp, and kq
can be found efficiently. It is easy to see that k ≤ γ · e and for each candidate k, we can
find a value d̂(k) = b(k′ · (N + 1) + γ)/(γ · e)c that agrees with d on the upper half of
the most significant bits. Due to our observations, this allows us to determine k uniquely.
From k, we can set up a quadratic polynomial where the roots are exactly kp and kq. See
Appendix C.1 for a more thorough discussion.
Finding the initial candidates: After we have determined k, kp, and kq, we can now
describe the first few candidates for the secret key. For an integer x, let τ(x) be the
largest integer such that 2τ(x) divides x. For reasons shown later, we need to initialize the
first τ(γ) bits of p and q, the first τ(k) bits of d, the first τ(kp) + τ(γ) bits of dp, and the
first τ(kq) + τ(γ) bits of dq. As described in [HS09], we can deduce the corresponding bits
for d, the τ(kp) LSBs of dp, and the τ(kq) LSBs of dq, but only know the least significant
bit of p and q. We thus need to enumerate the remaining τ(γ)− 1 bits of p, the remaining
τ(γ) − 1 bits of q, the remaining τ(γ) bits of dp, and the remaining τ(γ) bits of dq via
brute-force. Hence, we initialize our list of candidates with 24τ(γ)−2 candidates for each
valid triple (k, kp, kq).
Expanding a candidate: Now, we only need to describe the expand operation. To do
so, we denote the i-th least significant bit of x by x[i]. The least significant bit of x is
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thus x[0]. In the following, we will focus only on a single candidate s̃k = (p′, q′, d′, d′p, d′q)
that we want to expand. Suppose that variable p′ has length i + τ(γ), variable q′ has
length i+τ(γ), variable d has length i+τ(γ)+τ(k), variable dp has length i+τ(kp)+τ(γ),
and variable dq has length i+ τ(kq) + τ(γ). The goal is to construct all possibilities to
extend each variable by a single bit, i.e., by the bits p[i+τ(γ)], q[i+τ(γ)], d[i+τ(γ)+τ(k)],
dp[i+ τ(kp) + τ(γ)], and dq[i+ τ(kq) + τ(γ)]. Using Hensel’s Lemma, we can derive the
following check equalities that need to be fulfilled for the expand operation:

p[i+ τ(γ)] + q[i+ τ(γ)] ≡ (N − p′q′) [i+ τ(γ)] (mod 2) (1)
(p[i+τ(γ)]+q[i+τ(γ)]+d[i+τ(k)]) ≡ (k(N+1)+γ−k(p′+q′)−γed′)

[i+τ(γ)+τ(k)] (mod 2) (2)
p[i+τ(γ)]+dp[i+τ(kp)+τ(γ)] ≡

(
kp(p′−1)+1−e · d′p

)
[i+τ(kp)+τ(γ)] (mod 2) (3)

q[i+τ(γ)]+dq[i+τ(kq)+τ(γ)] ≡
(
kq(q′−1)+1−e · d′q

)
[i+τ(kq)+τ(γ)] (mod 2). (4)

For a detailed derivation of these equalities, we refer to Appendix C.2.

5.7 Experimental Evaluation
Complexity: It can easily be seen from the analysis in Util::Lookup that our key recovery
algorithm will run in polynomial time, as the amount of partial information derived from
our attack is sufficiently high. Clearly, for each candidate generated in the run of the
algorithm, the operations run in polynomial time. We thus only need to bound the total
number of candidates and, as there is only a single correct key, this approximates the
number of incorrect candidates. More formally, we make use of the following theorem
implied by Theorem 1 and Theorem 2 in [SBWE21] to bound the number of incorrect
candidates generated by single initial candidate. Here, b denotes the block length of the
observations (which is equal to 6 in our application), H2(pr) denotes the entropy of the
observations (which is equal to 3.3 bits in our application), and 〈N〉 denotes the key length.

Theorem 1. For each initial candidate, the expected number of incorrect candidates
produced by the algorithm is 2b ·

∑d〈N〉/be
i=0 (2b−5·H2(pr))i.

As (2b−5·H2(pr)) ≤ 1 due to the large number of information gained by our attack (we
have H2(pr) ≥ 3), we expect at most 2b · (〈N〉/b + 2) incorrect candidates per initial
candidate. As we start with 24τ(γ)−2 initial candidates, the total number of expected
incorrect candidates is at most 2b+4τ(γ)−2 ·(〈N〉/b+2). For example, in the case of 4096-bit
RSA keys, we only generate about 43,840 incorrect candidates per initial candidate. For
γ = 4! = 24, we have τ(γ) = 3, as 24 is divisible by 23 = 8 and the number of initial
candidates is thus 24τ(24)−2 = 210 for each valid triple (k, kp, kq). Hence, we generate
about 216 · 43,840 = 2,873,098,240 incorrect candidates for each such triple.

Reconstruction from Experimentally Collected Data: In Section 5.5 we describe how
we use TeeJam to obtain the “partition trace” of a 4096-bit RSA private key shown in
Figure 11. We use our reconstruction algorithm to successfully reconstruct the key in 13
seconds with γ = 1 and 124 seconds with γ = 2 on an AMD Ryzen 7950X with 16 cores.

Evaluation of the Extended Reconstruction Algorithm: To further demonstrate the
practical feasibility of the generalization to keys using Carmichael’s totient function, we
generated ten such keys each with log2(N) = 4096 and artificially generate traces that
exactly correspond to traces created by our side-channel analysis. Since the trace from the
side-channel measurements include measurement noise of about 35%, we also randomly
remove this portion from the artificial traces. The corresponding values for gcd(p−1, q−1)
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were 2, 6, and 8. We then used our algorithm for γ ∈ {1, 2, 6, 24}, i.e., some keys were only
recovered for γ = 24. The main difference between the two types of keys is the number of
starting candidates produced due to the additional brute-force step. The maximal numbers
of such initial candidates were 90 (γ = 1), 2,352 (γ = 2), 3,920 (γ = 6), and 4,428,288
(γ = 24). Even in the slowest configuration, our algorithm needed at most 57 minutes
total computation time to reconstruct the complete key. In more detail, the maximal total
running time for γ = 1 was 18 seconds, for γ = 2 was 54 seconds, for γ = 6 was less than 2
minutes and finally, for γ = 24, the maximal time was less than 57 minutes. All of these
computations were performed on a Intel(R) Xeon(R) Gold 6438Y+ dual socket machine
with in total 128 logical cores on 2 CPUs, each consisting of 32 physical cores. Due to
the very high parallelity of the algorithm (see [SBWE21]), the complete computation for
the case with 4,428,288 initial candidates (γ = 24) takes less than seven minutes on an
off-the-shelf server using 128 threads.

6 AES
AES is the most widely used symmetric cipher, included in almost all modern crypto
libraries. Over time, different implementation variants have emerged, from plain software
implementations using S-Boxes or T-Tables to hardware assisted variants supported
by vector extensions, to full hardware implementations like AES-NI. WolfSSL [wol23a]
provides multiple implementations for AES. While supporting AES-NI, WolfSSL does not
yet support AES-NI for SGX compilation [wol23b].

Recent analysis revealed that the WolfSSL AES T-Table implementation is not constant-
time [WPS+23]. This issue was fixed in WolfSSL version 5.6.2 [wol23d] by always accessing
every cache line of a T-Table when one of its entries is looked up. All cache lines are
accessed at the same offset corresponding to the entry which is looked up. The correct
value is arithmetically selected after being read into a buffer. Hence, the approach as a
constant access pattern at cache line resolution, preventing classic cache attacks.

In this section, we shortly present the current implementation and countermeasure of
WolfSSL’s AES T-Table implementation and show how to use the TeeJam effect to slow
down memory access to specific offsets in each T-Table. To demonstrate how the leakage
introduced by the TeeJam effect can be exploited, we present a known-ciphertext attack
targeting the offset leakage of the last round that successfully recovers the entire AES key.
The resulting attack demonstrates that TeeJam can be used to overcome implementations
that only consider cache line leakage. By exploiting fine-grain single-instruction leakage
rather than the aggregate execution time of the full AES encryption, we manage to reduce
the number of observations needed for full key recovery by three orders of magnitude when
compared to MemJam [MWES19].

6.1 WolfSSL AES T-Table Implementation
First, we shortly describe WolfSSL’s AES T-Table implementation [wol23c] which does
not feature exploitable leakage at cache line resolution, effectively thwarting classic cache
attacks such as Flush+Reload or Prime+Probe. As presented in Listing 5, in the last
AES round, the T-Table is accessed using the function GetTable_Multi. In preceding
rounds, both GetTable_Multi and the almost identical function XorTable_Multi are used.
Both functions behave the same, except for the final assignment, which is replaced with a
xor and assign in the latter function. We will use both function names synonymously.
GetTable_Multi retrieves all entries from a T-Table required for a round and is called
four times per round for AES128. Within GetTable_Multi for every T-Table entry, a
for-loop accesses the same offset of every cache line of that T-Table and selects the correct
entry in constant time. As every T-Table has a size of 1024 bytes and a cache line on



Florian Sieck et. al. 483

x86 systems is of size 64 bytes, the mitigation requires 16 accesses per table lookup. An
attacker with cache line resolution will not be able to differentiate between these accesses,
leaving them with no information to be obtained.

6.2 Applying TeeJam to AES Encryption
With the sub-cache-line resolution provided by TeeJam, we demonstrate that the cache
attack mitigation applied by WolfSSL AES can be broken:

First, we determine the offset of the T-Tables in the enclave binary. Then we use the
results shown in Figure 6 to determine those indices or respectively page offsets which are
suitable for an attack. As there are four T-Tables with 1024 bytes each, we search for four
offsets, one per table, which show good delays when applying the TeeJam attack. For
simplicity, we decide to attack the same index in each table, meaning we filter the results
for 4-tuple of offsets which are always 1024 bytes apart. We select one of the tuples with
the best average delay induced by TeeJam and configure the attacker code to change
the attacked address, based on the progress of the victim enclave. Therefore, the attacker
synchronizes with the target enclave by employing a page access side-channel and by using
their general knowledge of the algorithm the victim is executing.

The attacker single-steps the enclave and removes the page access bits of the pages
holding the T-Table and T-Table lookup routines after every step and waits until these
are accessed to recognize the beginning of the AES encryption. Next, it is a simple
matter of counting the steps with access to the T-Table and T-Table lookup routines
and updating the attacked address in the second attacker thread after each 16 · 4 = 64
accesses as this is the number of accesses performed in the GetTable_Multi function. The
attacker constantly writes four bytes to the selected address, matching the size of the
T-Table entries, which are also four byte words. If a 4k-conflict occurs, it means that the
victim enclave performed a lookup of one of the 16 T-Table entries at the corresponding
cache line offset. Even though the cache line is not known (just the offset within), the
attacker obtains the same information a cache attack would obtain from an unprotected
T-Table implementation, since there are 16 possible offsets which can be distinguished
with TeeJam.

In the meantime the first attacker thread that single-steps the enclave measures the
TeeJam effect as before. The correctness of a trace can be verified by the total number of
T-Table accesses determined by the enclave’s page accesses. For AES128, these are 2,560
with 10 rounds and 256 lookups per round.

We run the experiment on an Intel Core i5-10210U at base frequency (1.6 GHz) on
Ubuntu 22.04 with the WolfSSL master branch from June 08, 2023 that already contains
the AES cache line attack mitigation that was published with version 5.6.2 on June 21,
2023.

6.3 AES Last-Round Known-Ciphertext Attack
To obtain the secret key we run a last-round known-ciphertext attack. We observe the
encryption of up to 100,000 distinct blocks, where each block has a size of 16 bytes,
with the attack described above and store the publicly accessible ciphertext. We then
use the recorded data in an offline step to retrieve the last round’s round key with a
Difference-of-Means based distinguisher [AIES14, GIA+15]:

For each of the 16 last-round table lookups, we iterate over all 256 key byte guesses g
and calculate the expected result res = g xor c of the table lookup based on the recorded
ciphertext c and key byte guess g. As T-Table lookups are bijective, we calculate the
index idx corresponding to res and compare it to all indices which would result in a
4k-conflict with the attacked address (remember that for each looked up index the T-Table
is accessed 16 times and the attacker does not know which access is selected). If the key
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Listing 5: WolfSSL cache line granular cache line attacker resistant implementa-
tion [wol23c] (slightly simplified and reformatted). The listing shows the primitive
that executes all four access to one T-Table per AES round (GetTable_Multi) and
its usage in the last round.
1 # define WC_CACHE_LINE_BITS 4
2 # define WC_CACHE_LINE_MASK_HI 0xf0
3 # define WC_CACHE_LINE_MASK_LO 0x0f
4 # define WC_CACHE_LINE_ADD 0x10
5
6 static void GetTable_Multi ( const word32 * t, word32 * t0 , byte o0 ,
7 word32 * t1 , byte o1 , word32 * t2 , byte o2 , word32 * t3 , byte o3)
8 {
9 word32 e0 = 0; word32 e1 = 0; word32 e2 = 0; word32 e3 = 0;

10
11 byte hi0 = o0 & WC_CACHE_LINE_MASK_HI ;
12 byte lo0 = o0 & WC_CACHE_LINE_MASK_LO ;
13 ...
14 byte hi3 = o3 & WC_CACHE_LINE_MASK_HI ;
15 byte lo3 = o3 & WC_CACHE_LINE_MASK_LO ;
16
17 for (int i = 0; i < 256; i += (1 << WC_CACHE_LINE_BITS )) {
18 e0 |= t[lo0 + i] & (( word32 )0 - ((( word32 )hi0 - 0x01) >> 31));
19 hi0 -= WC_CACHE_LINE_ADD ;
20
21 // Accesses for e1 and e2
22 ...
23
24 e3 |= t[lo3 + i] & (( word32 )0 - ((( word32 )hi3 - 0x01) >> 31));
25 hi3 -= WC_CACHE_LINE_ADD ;
26 }
27
28 *t0 = e0; *t1 = e1; *t2 = e2; *t3 = e3;
29 }
30
31 ...
32
33 word32 u0 , u1 , u2 , u3;
34
35 s0 = rk [0]; s1 = rk [1]; s2 = rk [2]; s3 = rk [3];
36
37 GetTable_Multi (Te [2] , &u0 , GETBYTE (t0 , 3), &u1 , GETBYTE (t1 , 3),
38 &u2 , GETBYTE (t2 , 3), &u3 , GETBYTE (t3 , 3));
39 s0 ^= u0 & 0 xff000000 ; s1 ^= u1 & 0 xff000000 ;
40 s2 ^= u2 & 0 xff000000 ; s3 ^= u3 & 0 xff000000 ;
41
42 // Last round access for Te [3] and Te [0]
43 ...
44
45 GetTable_Multi (Te [1] , &u0 , GETBYTE (t3 , 0), &u1 , GETBYTE (t0 , 0),
46 &u2 , GETBYTE (t1 , 0), &u3 , GETBYTE (t2 , 0));
47 s0 ^= u0 & 0 x000000ff ; s1 ^= u1 & 0 x000000ff ;
48 s2 ^= u2 & 0 x000000ff ; s3 ^= u3 & 0 x000000ff ;
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1 : for t in t_table_accesses:
2 : for g in key_byte_guesses:
3 :
4 : st = select_single_step(t, attacked_address)
5 :
6 : for o in observations:
7 : c = get_cipher_text_byte(t, o)
8 : res = g ⊕ c
9 : idx = reverse_t_table_lookup(t, res)

10 :
11 : st_time = get_single_step_time(o, st)
12 : if idx in attacked_indexes:
13 : set_attacked.append(st_time)
14 : else:
15 : set_benign.append(st_time)
16 :
17 : differences_in_means.append( average(set_attacked) - average(set_benign))
18 :
19 : select_correct_key_guess(differences_in_means)

Figure 14: Pseudocode illustrating the recovery of the last round AES key bytes with a
Difference-of-Means method on the observed single-stepping times.

guess g is correct and the expected index idx is in the list of T-Table indices which would
result in a 4k-conflict, we should observe a delay in the access time of the single-step
corresponding to the T-Table access that conflicts with the attacked address. Since the
attacker naturally knows the attacked address and the victim always accesses the T-Table
and the T-Table’s cache lines in the same sequence, we can easily determine the correct
single-steps that have to be observed.

For every T-Table access and key byte guess, the attacker iterates over all observations
of encrypted blocks, selects the correct single-step and creates a hypothesis whether the
lookup is delayed by the 4k-conflict caused by the attacker. This hypothesis is used to sort
the single-stepping time of the selected single-step in one of two sets.

Assuming a uniform distribution, the ratio between the set representing the stepping-
times of attacked lookups and the set with benign stepping times is 1 : 16. Finally, the
attacker calculates the difference between the average single-stepping times of both sets for
every key byte guess and T-Table lookup. If the hypothesis was correct, the difference of the
means diverges from 0 and grows while a wrong hypothesis results in a difference of means
approach 0 with a growing number of observations. In other words, the correctly recovered
round key byte can be identified by a higher difference in the average single-stepping time
compared to all other key guesses for the same table lookup. A simplified version of the
algorithm is shown in Figure 14.

Figure 15 shows the recovery of four last-round key bytes, one byte for each T-Table. For
the full result, please refer to Figure 17 in the Appendix. The experiment run on an Intel
Core i5-10210U and the attacked offsets are {0x738, 0xB38, 0xF38, 0x338} corresponding
to the index 142 into each T-Table. For more than half of the lookups, the correct key byte
guess can already be separated from the remaining guesses after the observation of 10,000 to
20,000 encryptions, which is in line with previous cache attacks on AES [IAES15, MIE17],
enabling a direct key reconstruction. The remaining key bytes require 40,000 to 60,000
observations due to either a weaker TeeJam effect or more noise.

MemJam [MWES19] requires 40 to 50 million observations to recover 14 out of 16
bytes in their SGX experiment which always observes the full execution of one encryption.
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Figure 15: AES128 key recovery results. The last round of AES128 encryption consists
of 16 T-Table lookups, 4 from each table. In this graphic the recovery of one key byte
for each T-Table is depicted (the access count starts from 0). The attacked offsets were
{0x738, 0xB38, 0xF38, 0x338} corresponding to the index 142 into each T-Table. The
experiment was executed on an Intel Core i5-10210U@1.6 GHz.

Still about 20 million observations are required to recover half of the key bytes. In their
non-SGX experiment they require 2 million observations to recover 15 out 16 key bytes and
200,000 to recover half of the key bytes. Thus with TeeJam we require a factor 1,000 fewer
observations in the SGX case due to the high temporal resolution. When comparing our
attack against a protected enclave with the attack on an unprotected victim in MemJam,
we still require a factor of 10 to 100 fewer repetitions.

6.4 Countermeasures
To mitigate the vulnerable T-Table implementation in software without setting in place
any specific hardware requirements, it is necessary to write true constant-time code. A
simple but slow variant would access every entry of a T-Table for every lookup and
select the correct entry in constant-time. This, however, results in 256 memory loads per
lookup. Another option are bitsliced implementations [BP10, KS09] as, e.g., offered in
BearSSL [Bea23a, Bea23b] and BoringSSL [Goo23]. These implementations use circuits
to define the S-Box computations instead of table lookups. Their performance can be
improved by encrypting up to four blocks in parallel [Bea23a].

7 Related Work
Several prior works have also analyzed microarchitectural effects similar to the 4k-aliasing
effect we have used in TeeJam.

In CacheBleed [YGH17] cache bank conflicts are exploited on a Sandy Bridge processor
to achieve a sub-cache-line resolution and successfully attack RSA decryption. Cache bank
conflicts are, however, no longer exploitable on modern microarchitectures.

The authors of MemJam [MWES19] develop a technique to exploit 4k-aliasing in the
load after store scenario and obtain a sub-cache-line leakage. In MemJam [MWES19] the
authors measure a 10-cycle penalty on load operations delayed by 4k-aliasing stores on the
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sibling thread. The processor frequency is not specified and the experiment is only executed
on one processor with Kaby Lake architecture. We evaluate the 4k-aliasing on multiple
CPUs. The delays presented in Section 3 are higher, indicating a stronger MemJam effect;
however these differences might be caused by the different microarchitectures and mobile
CPUs used in this work. While the authors of MemJam also apply 4k-aliasing to extract
keys from symmetric cryptosystems in SGX, they measure the full execution trace and
need at least tens of thousands of observations. TeeJam instead shows how to amplify
the observed leakage and measures the delay of individual loads, gaining a much higher
temporal resolution than MemJam.

In Microarchitectural Minefields [SAMJ18] 4k-aliasing is used to build a simultaneous
multithreading 4k-aliasing covert channel where a sender fills or flushes the store buffer.
The channel is used to achieve multi tenancy detection in the cloud. The work exploits
the 4k-aliasing effect on read-after-write with addresses sharing all 12 LSBs and show
a statistical 5-cycle delay on the measurement of a 4k-aliasing reading. By increasing
the number of loads, they obtain delays up to 15 to 17 cycles. These delays, however,
are taken in single threaded measurements on the same hyper-thread and with older
microarchitectures and are thus difficult to compare to the results from Section 3. We
investigate the preconditions for 4k-aliasing in more detail, discover higher delays and
apply TeeJam to trusted execution environments, which allows us to develop a precise,
high resolution attack.

Binoculars [ZMFT22] relies on 4k-aliasing to create a false dependency on addresses
loaded during a page walk. The sub-cache-line leakage in Binoculars focuses on a victim
executing stores, which is the opposite scenario to our work and rarely occurs as a secret-
dependent leakage. While Binoculars potentially causes delays of up to 20,000 cycles, their
work has a low time resolution as they measure the slow down of page walks to infer the
victim’s activity. The page walk, however, is inherently slow.

SPOILER [IMB+19] exploits address aliasing as well. However, they focus on specu-
lative load hazards with 1MB (20 bits) aliasing to gain information about the virtual to
physical address mapping. The effect is not exploitable for a direct inference attack.

Ragab et al. [RBBG21] shortly study 4k-aliasing in the context of the memory dis-
ambiguation on a single thread. The work shows that incorrect memory ordering results
in a machine clear and the load buffer re-issues the impacted loads. In our work, we do
not observe a machine clear when the load is 4k-aliasing with an older store as the load
operation is delayed until the 4k-conflict is resolved. Thus no machine clear is necessary
to correct a false state.

Finally, there are other works [SBWE21, MLSS20] which also attack RSA key encodings.
However, while Util::Lookup [SBWE21] also attacks the key decoding of RSA private
keys, they cannot reconstruct keys of 2048- or 4096-bit length. Medusa [MLSS20] focuses
on the transient domain and attacking the rep mov instruction.

8 Conclusion
In this work, we studied the 4k-aliasing effect and its potential to implement powerful
side-channel attacks against TEEs when combined with single-steppinig primitives like
SGX-Step. To show the significance of our findings, we focused on Intel SGX and showed
that we are able to obtain side-channel leakage with a per instruction, sub-cache-line
resolution. The high resolution and information content of the leakage caused by TeeJam
enabled us to improve the attack presented in Util::Lookup to construct an end-to-end
attack that is able to reconstruct RSA keys of at least 4096 bits. To implement the
end-to-end attack, we extended the key recovery algorithm of Util::Lookup to also handle
unaligned partitions and RSA keys with Carmichael’s totient function. Moreover, we show
that TeeJam can also be used to break symmetric cryptographic implementations protected
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against classic cache attacks by recovering an AES key from the induced single-stepping
delay with a Difference-of-Means distinguisher.

Our results emphasize that the assumption of an attacker model with cache line attack
resolution is not sufficient to consider a software secure. Through combination of high
temporal and sub-cache-line spatial resolution even tiny leakages, which could previously
only be exploited to a limited extend, are fully exploitable. Thus, cryptographic libraries
to be used in SGX must ensure to use truly constant-time implementations.
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A Experiments on the Intel Xeon E-2286M (Coffee Lake)
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Figure 16: TeeJam measurements with 10,000 measurements of the single-stepping time
for each the conflicting and non-conflicting loads.
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B AES Last Round Key Recovery
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Figure 17: The last round of AES128 encryption consists of 16 T-Table lookups, four
from each table. This graphic shows the recovery results for all last-round key bytes
from Section 6.3. The attacked offsets were {0x738, 0xB38, 0xF38, 0x338} corresponding
to the index 142 into each T-Table. The experiment was executed on an Intel Core
i5-10210U@1.6 GHz.
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C Details About the Key Recovery Algorithm
C.1 Initial Candidates
In the following, we describe how to find the first initial candidates for the secret key. In
order to do so, we will first determine the integers k, kp, and kq.

Finding k: To find the integer k used in the relation γ · e · d = k · (N − p− q+ 1) + γ, we
follow the approach of [HS09], first described by Boneh, Durfee and Frankel [BDF98] to
show that k has small size: First, it is easy to see that d < ϕ(N). If k > γ · e, this means
that k · ϕ(N) + γ > k · ϕ(N) > γ · e · d, which is a contradiction to the relation. Hence, we
have k ≤ γ · e. We can thus enumerate all possibilities of k, as e = 216 + 1 is by far the
most used choice for the public exponent.

Now, we need to determine whether our choice of k is correct. To do so, we define

d̂(k′) =
⌊
k′ · (N + 1) + γ

γ · e

⌋
.

For the correct choice of k, we have

d̂(k)− d ≤ k · (N + 1) + γ

γ · e
− k · ϕ(N) + γ

γ · e

= k · (N + 1− ϕ(N))
γ · e

= k · (p+ q)
γ · e

≤ p+ q,

where the last inequality follows from the fact that k ≤ γ · e. Hence, d̂(k) and d agree on
half of their most significant bits, if p+ q ≤ 3

√
N . Comparing d̂(k) to our observation of d

thus allows us determine k, as only one choice of k will agree with our observation of d on
this many bits.

Finding kp and kq: Knowledge of k allows us also to deduce kp and kq. We reduce the
relations modulo e and obtain

N ≡ p · q (mod e) (5)
0 ≡ (k · ϕ(N) + γ) (mod e) (6)
0 ≡ (kp · (p− 1) + 1) (mod e) (7)
0 ≡ (kq · (q − 1) + 1) (mod e) (8)

Using the relations 0 ≡ (kp · (p− 1) + 1) (mod e), we know (p− 1) ≡ −1/kp (mod e) and
(q − 1) ≡ −1/kq (mod e) and can conclude that

0 ≡ (k · ϕ(N) + γ) ≡ (k · (p− 1)(q − 1) + γ) ≡ (k · (−1/kp)(−1/kq) + γ) (mod e).

This is equivalent to −γ · kp · kq ≡ k (mod e). Replacing k with this term thus gives

0 ≡ (k · ϕ(N) + γ)
≡ (k · (N − 1)− k · (p− 1 + q − 1) + γ)
≡ (k · (N − 1) + (γ · kp · kq)(−1/kp − 1/kq) + γ)
≡ (k · (N − 1)− γ(kp + kq) + γ) (mod e).
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Rewriting kq = −k/(γkp) gives

0 ≡ (k · (N − 1)− γkp + (k/kp) + γ) (mod e)

and multiplication with kp and rewriting thus results in

(γk2
p − kp(k(N − 1) + γ)− k) ≡ 0 mod e.

If e is prime, this quadratic congruence has two efficiently computable solutions, namely
kp and kq. We thus just need to try these two possibilities for the values of kp and kq.

C.2 Expanding the Key
We consider the following variant of Hensel’s Lemma described in [HS09] and [KKY11]:

Lemma 1. Let f(x1, x2, . . . , xn) ∈ Z[x1, x2, . . . , xn] be a multivariate polynomial with
integer coefficients and π be a positive integer. Let r = (r1, . . . , rn) be such that f(r) ≡ 0
(mod πi) for some i. Then f(r + b) ≡ 0 (mod πi+1) for b = (b1π

i, b2π
2, . . . , bnπ

i) with
0 ≤ bj ≤ π − 1 if

f(r) +
n∑
j=1

bjπ
ifxj (r) ≡ 0

(
mod πi+1).

Here, fxj is the partial derivative of f with respect to xj.

Using this lemma, Heninger and Shacham were able to derive the following conditions
for keys using Euler’s totient function that need to be fulfilled:

p[i] + q[i] ≡ (N − p′q′) [i] (mod 2) (9)
p[i] + q[i] + d[i+ τ(k)] ≡

(k · (N + 1) + 1− k · (p′ + q′)− e · d′) [i+ τ(k)] (mod 2) (10)
p[i] + dp[i+ τ(kp)] ≡(

kp(p′ − 1) + 1− e · d′p
)

[i+ τ(kp)] (mod 2) (11)
q[i] + dq[i+ τ(kq)] ≡(

kq(q′ − 1) + 1− e · d′q
)

[i+ τ(kq)] (mod 2). (12)

In order to adapt to the Carmichael function, we introduced the variable γ and thus
also need to adapt these equations. Equations (9), (11), and (12) can be used without
much modification (besides a small shift in the indices of p[i], q[i], and d[i+ τ(k)]). But
Equation (10) needs to be derived from scratch by making use of Lemma 1. We thus need
to re-derive the corresponding condition for the relation γ · e · d = kϕ(N) + γ. We define a
polynomial f(p, q, d) = k · (N + 1) + γ − k · (p+ q)− γ · e · d. Now, due to our assumptions,
we have f(p′, q′, d′) mod 2i+τ(γ)+τ(k) = 0. We now want to extend these suffixes by some
bits b1, b2, and b3 such that

f
(
p′ + b12i+τ(γ), q′ + b22i+τ(γ), d′ + b32i+τ(k)

)
≡ 0

(
mod 2i+τ(γ)+τ(k)+1

)
.

Computing the partial derivatives gives fp(p, q, d) = fq(p, q, d) = −k and fd(p, q, d) = −γ ·e
and Lemma 1 thus implies the following condition

f(p′, q′, d′)− (b1 + b2) · k · 2i+τ(γ) − b3 · γ · e · 2i+τ(k) ≡ 0
(

mod 2i+τ(γ)+τ(k)+1
)
.
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Now, we know that k = 2τ(k) · k′ for some odd integer k′ and γ = 2τ(γ) · γ′ for some odd
integer γ′. Hence, the condition can be written as

f(p′, q′, d′)− (b1 + b2)k′2i+τ(γ)+τ(k) − b3γ
′e2i+τ(γ)+τ(k) ≡ 0

(
mod 2i+τ(γ)+τ(k)+1

)
.

As k′, γ′, and e are odd integers, reducing everything modulo 2i+τ(γ)+τ(k) gives the
condition

f(p′, q′, d′)[i+ τ(γ) + τ(k)]− b1 − b2 − b3 ≡ 0 (mod 2)

or, in simplified form

p[i+ τ(γ)] + q[i+ τ(γ)] + d[i+ τ(k)]
≡ (k(N + 1) + γ − k(p′ + q′)− γed′) [i+ τ(γ) + τ(k)] (mod 2).

Summing up the above discussion, we can extend our candidate s̃k by the bits p[i+τ(γ)],
q[i+ τ(γ)], d[i+ τ(γ) + τ(k)], dp[i+ τ(kp) + τ(γ)], and dq[i+ τ(kq) + τ(γ)] if the following
conditions hold:

p[i+ τ(γ)] + q[i+ τ(γ)] ≡ (N − p′q′) [i+ τ(γ)] (mod 2) (13)
(p[i+ τ(γ)] + q[i+ τ(γ)] + d[i+ τ(k)])
≡ (k(N + 1) + γ − k(p′ + q′)− γed′) [i+ τ(γ) + τ(k)] (mod 2) (14)

p[i+ τ(γ)] + dp[i+ τ(kp) + τ(γ)]
≡
(
kp(p′ − 1) + 1− e · d′p

)
[i+ τ(kp) + τ(γ)] (mod 2) (15)

q[i+ τ(γ)] + dq[i+ τ(kq) + τ(γ)]
≡
(
kq(q′ − 1) + 1− e · d′q

)
[i+ τ(kq) + τ(γ)] (mod 2). (16)
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