
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 1, pp. 398–432. DOI:10.46586/tches.v2024.i1.398-432

Quasi-linear masking against SCA and FIA,
with cost amortization

Claude Carlet1,2 Abderrahman Daif3, Sylvain Guilley4,5 and Cédric
Tavernier6

1 University of Bergen, Bergen, Norway,
2 LAGA, Department of Mathematics, University of Paris 8 (and Paris 13 and CNRS),

Saint–Denis Cedex 02, France,
3 BULL SAS, Les Clayes-sous-Bois, France,

4 Secure-IC S.A.S., Paris, France,
5 Telecom Paris, Institut Polytechnique de Paris, Palaiseau, France,

6 Hensoldt France, Plaisir, France,

Abstract. The implementation of cryptographic algorithms must be protected against
physical attacks. Side-channel and fault injection analyses are two prominent such
implementation-level attacks. Protections against either do exist. Against side-
channel attacks, they are characterized by SNI security orders: the higher the order,
the more difficult the attack.
In this paper, we leverage fast discrete Fourier transform to reduce the complexity of
high-order masking. The security paradigm is that of code-based masking. Coding
theory is amenable both to mask material at a prescribed order, by mixing the
information, and to detect and/or correct errors purposely injected by an attacker.
For the first time, we show that quasi-linear masking (pioneered by Goudarzi, Joux
and Rivain at ASIACRYPT 2018) can be achieved alongside with cost amortisation.
This technique consists in masking several symbols/bytes with the same masking
material, therefore improving the efficiency of the masking. We provide a security
proof, leveraging both coding and probing security arguments. Regarding fault
detection, our masking is capable of detecting up to d faults, where 2d + 1 is the
length of the code, at any place of the algorithm, including within gadgets. In addition
to the theory, that makes use of the Frobenius Additive Fast Fourier Transform, we
show performance results, in a C language implementation, which confirms in practice
that the complexity is quasi-linear in the code length.
Keywords: Side-channel analysis (SCA) · Fault injection analysis (FIA) · Strong
Non Interference (SNI) · Code-Based Masking (CBM) · Fault Detection · Frobenius
Additive Fast Fourier Transform (FAFFT) · Cost amortization.

1 Introduction

In this article we are interested in the security of block ciphers, such as the AES. Such
algorithms encrypt and decrypt data using a key, which must remain secret. Nonetheless,
the implementation of cryptographic algorithms is subject to several attacks, amongst
which side-channel and fault injection attacks are especially powerful. Side-channel attacks
consist in correlating guessed (key-dependent) variables with some information leakage,
whereas fault injection attacks consist in correlating sensitive variables with the fault
outcomes. Both attacks try exhaustively all values of a subkey, and carry out a sufficient
amount of attacks so as to rebuild the complete key with a divide-and-conquer approach.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-07-15 Accepted: 2023-09-15 Published: 2023-12-04

https://doi.org/10.46586/tches.v2024.i1.398-432
http://creativecommons.org/licenses/by/4.0/

Claude Carlet Abderrahman Daif, Sylvain Guilley and Cédric Tavernier 399

It is therefore paramount to protect implementations against those attacks. The pro-
tection against side-channel analysis is often based on “masking”: it consists in computing
with randomized intermediate variables in order to provably deter attempts from an
attacker to correlate on the randomized leakage. The protection against fault injection
can typically rely on provable mathematical techniques, such as error detection codes.

Recently, the “code-based masking” (CBM) paradigm has been introduced: it leverages
codes to achieve protection against the two threats at the same time. A pair of linear
complementary codes allows to linearly combine sensitive information with digital random
numbers in such a way the randomness has maximal decorrelation power whilst ensuring
the demasking remains possible at all times. The ability to handle faults is based on
redundancy kept by codes, ensuring their length is large enough to enable a detection or
correction capability meeting the requirements in terms of fault injection attacks coverage.

1.1 Background on masking

Masking, from a historical perspective. A consensual protection against side-channel
analyses consists in randomizing data representation and computations. This method is
commonly referred to as masking. Several masking schemes have been proposed already.

Let us recap briefly the different milestones this technique has passed over the years.
First of all, a proof-of-concept leveraging data randomization has been introduced by the
seminal work of Kocher et al. [KJJ99]. Some early implementations have been proposed,
and it has soon become clear that high-order attacks could defeat lower order masking
schemes. Hence the research for provable protections against higher-order attacks. Formal
definitions have been put forward by Blömer et al. in [BGK04]. A constructive scheme has
been proposed by Ishai et al. [ISW03] on bits. This scheme has been subsequently extended
to words (e.g., bytes) by Rivain and Prouff [RP10]. Some tools to perform automatic
proofs for such schemes have been developed, for instance by Barthe et al. [BBD+15].

Minimizing the number of multiplications. The bottleneck in terms of performance is the
number of nonlinear multiplications (that is, multiplications of x by an element different
from a linear combination of powers of x whose exponents are of the form 2j − 1), since
the addition and linear multiplications pose no problem and all S-boxes over finite fields
being polynomial, the global complexity of masking directly depends on the number of
nonlinear multiplications in the unprotected algorithm.

Then, a great deal of research has been devoted to reducing the number of multiplications
in cryptographic operations, as for instance [CPRR15]. According to the before 2020,
it seemed difficult to mask one element of the field Fq` in a way ensuring a dth-order
probing security, with a better complexity than O(d2) multiplications over Fq` . Recently,
leveraging Karatsuba multiplication, Maxime Plançon [Pla22] introduced RTIK masking
scheme. This masking style manages to get reduced complexity down to O(dlog2(3)), i.e.,
O(d1.59), for limited values of d only (namely d being an extension order of the field where
computations takes place, when this field happens to be an extension).

Cost amortization and fault detection capability. In order to get the most from masking
schemes, from a performance standpoint, some attempts have been made. One direction
has been the simultaneous masking of several bytes, referred to as “cost amortization”,
as demonstrated constructively by Wang et al. [WMCS20]. Formerly, the same idea has
been applied in the field of multiparty computation, under the name of “packed secret
sharing” [DIK10]. It has required to make a difference between the number of shares
(n) and the masking order (d). Moreover, our masking is compatible with builtin fault
detection capability, tightly intertwined with the CBM design.

400 Quasi-linear masking against SCA and FIA, with cost amortization

Quasi-linear masking complexity. Another direction for reducing the cost due to multipli-
cations is in reducing the cost of each multiplication by leveraging spectral representations,
such as the Number Theoretic Transform (NTT) as put forward first by Goudarzi, Joux
and Rivain (GJR [GJR18]). Quasi-linear masking enables significant performance im-
provements on masking schemes which considerably ease their adoption by the industry.
Unfortunately the NTT works only for prime fields with odd characteristics and large orders
which is not convenient in practice. Recently, the authors of [GPRV21] extended the GJR
scheme of [GJR18] to the even characteristic by replacing the NTT by a Discrete Fourier
Transform (abridged “DFT” in the sequel), namely the additive fast Fourier transform of
Gao et al. [GM10]. (Notice that this DFT is “general” in that it operates on finite fields.)
The novel masking scheme is dubbed “GJR+”.

The initial proposal of [GJR18] (GJR) and the modification of [GPRV21] (GJR+)
considerably improved upon the state of the art, since they allowed to reduce the complexity
of multiplications from quadratic (O(d2)) to quasi-linear (O(d log d)). This improvement
is significant because the multiplication is the bottleneck in terms of computational
complexity.

But the “DFT” in general (and NTT in particular) have a drawback: the linear
operations (in the field) are no longer transparent. Instead of having a complexity O(n)
(linear in the number n of shares), because each share is applied the linear transformation
on itself, individually, an operation of quasi-linear complexity shall be applied. Still, the
overall complexity remains quasi-linear.

Code-Based Masking (CBM). Besides, CBM has been introduced as a new paradigm to
capture the security properties of masking. It describes the masking scheme as the (vector
space) sum of an encoded information taken from a code C, with an encoded mask taken
from a code D, that is “disjoint” from C. The main advantage of CBM is that the security
order is simple to determine: namely, the masking order is equal to the dual distance
of the masking code minus the number one [PGS+17]. Computing in CBM, including
multiplications, has been put forward in [WMCS20]. Advantageously, CBM has been
proven in the same article relevant to describe the capability to detect faults on top of
a masking scheme: indeed, when the two vector spaces C and D are in direct sum but
such that dim(C) + dim(D) < n where n is the length of C (or D), the information can
be encoded in a redundant manner, enabling detection or even correction. Notice that
CBM class includes as special cases Boolean masking and inner product masking.

1.2 Analysis of the state of the art
We begin in this subsection with a comparison with state-of-the-art of combined side-
channel and fault injection attacks. The efficiency of side-channel analysis is captured by
the masking complexity and the ability to mask several symbols at the same time (denoted
“cost am.” for “cost amortization”). Only our proposal enjoys this cost amortization
capability. The efficiency of the protection against fault injection is qualified according to:

1. whether the detection is end-to-end throughout the algorithm;

2. whether the detection needs to be performed at pre-defined checkpoints set at design
time or whether no detection is required (e.g., when faults are infective thereby
preventing an attack to exploit them). Notice that checkpoints may be placed at
strategic waypoints during the execution of the algorithm, or only at the end prior
to disclosing the demasked result.

Most known masking countermeasures apply either to binary fields or to prime fields,
whereas our masking can handle both binary and prime fields (and actually any finite field
in general).

Claude Carlet Abderrahman Daif, Sylvain Guilley and Cédric Tavernier 401

Table 1: Comparison of our masking scheme with the state of the art

Scheme name Side-channel protection Fault protection Field
Complexity Cost am. End-to-end Detection

ParTI [SMG16] Quadratic (O(d2)) No Yes At checkpoints F2

CAPA [RMB+18] Quadratic (O(d2)) No Yes At checkpoints F2

GJR [GJR18] Quasi-linear (O(d log d)) No No N/A Fp

M&M [MAN+19] Quadratic (O(d2)) No Yes Infective F2

DOMREP [GPK+21] Quadratic (O(d2)) No Yes At checkpoints F2

GJR+ [GPRV21] Quasi-linear (O(d log d)) No No N/A Fq

CINI MINIS [FRSG22] Quadratic (O(d2)) No Yes At checkpoints F2

RTIK [Pla22] Polynomial (O(dlog2 3)) No No N/A F2

SotA / laOla [BEF+23] Quadratic (O(d2)) No Yes At checkpoints Fq

Our work Quasi-linear (O(d log d)) Yes Yes At checkpoints Fq

The comparison is given in Tab. 1. Regarding the applicable field, the different fields
are denoted by F2 vs Fq, where q stands for any prime power. Masking schemes compatible
with Fq are thus more versatile.

We analyze now the drawbacks of existing quasi-linear masking, in particular [GPRV21].

No cost amortization nor fault detection capability. Despite the advantages in terms of
performance of quasi-linear masking ([GJR18] and [GPRV21] as well), the technique
described in these papers does not unleash the full potential in terms of masking efficiency
and fault attack protection. Regarding the efficiency, none of these papers addresses how
to encode multiple bytes of information in one go. Besides, these papers do not show how
to correct errors (it would require to encode redundant information, as for instance put
forward in [CCG+20]).

Non-practical masking order. It is hinted in [GPRV21] that their quasi-linear masking
“improves the efficiency of the masked cipher for a masking order n ≥ 64 for the MiMC
block cipher and n ≥ 512 for the AES”. These masking orders are non-practical. Indeed,
in real life, masking order is rather low, such as 1, 2 or maximum 3.

Complex implementation. The technique of [GPRV21] involves a randomized Fourier
transform. Namely, the primitive root of unit which defines the Fourier transform must
be chosen at random (see page 602). This is an obvious limitation in terms of efficiency:
the DFT operations must be pre-computed prior to any cryptographic masked operation
(whereas our scheme does not require any pre-computation).

Abstract specification. In [GPRV21], the DFT is not instantiated, which limits the ability
to compare with other schemes, apple to apple, in terms of actual performances (actually
[GPRV21] only provides data complexities). As a side-effect, this negatively impacts the
clarity of the security proof (which requires cumbersome hypotheses, such as leaving the
DFT out of the scope of the security analysis).

1.3 Our contributions
In this paper, we introduce a practical masking scheme, with quasi-linear complexity, and
fault detection/correction.

Proofs of security against SCA and FIA based on code properties. Our masking algorithm
is described as a CBM. Therefore, not only side-channel security order is related to a

402 Quasi-linear masking against SCA and FIA, with cost amortization

dual distance, but also the capability to detect & correct faults is also related to codes
minimum distance. Namely, we show that our scheme features side-channel security order
of d+ 1− t, detects d faults and corrects b(d− 1)/2c faults, where 2d+ 1 is the encoding
length and t is the information size (t ≥ 1, and t > 1 when cost amortization is enforced).

Cost amortization. Our masking algorithm allows to mask jointly several bytes, based on
a proof leveraging coding theory (within the CBM paradigm). Former works involving
quasi-linear masking are only concerned by masking individual bytes. Notice that cost
amortization also has an advantage in terms of the efficiency of fault detection capability.

Practical and efficient DFT. We thoroughly studied several DFT algorithms, and deploy
an efficient one. It offers improved efficiency owing to optimization from a numeric
standpoint. Namely, it relies on a sparse representation with small & simple coefficients
(e.g., most often, “1”s). This DFT can be leveraged in the same time for the computation
of the masking and the error detection.

Implementation and performance validation. We show that our quasi-linear masking is
easily implementable. Namely, we provide performance characterization in C language.
In particular, it supports the effectiveness of cost amortization. Our benchmarks are on
the block cipher AES, but our masking can apply as well to lattice-based post-quantum
cryptographic algorithms (such as Crystals Kyber and Dilithium, as explained in Sec. 8).
We compare our performance results to others but rare are the papers on masking which
actually indicated them with enough precision for allowing comparison.

1.4 Outline
Preliminary notions are given in Sec. 2. They focus on DFT computation as it is the
most complex operation in our masking. We propose in Sec. 3 to consider an original
DFT method proposed by Wang and Zhu in [WZ88] which is particularly adapted to both
software and hardware implementation. Indeed, the Gao and Cantor methods that we
mentioned could give similar theoretical complexity but would require a huge effort of
implementation in practice. We show in Sec. 4 how to extend this masking to the case of
simultaneous protection of several symbols. We propose in a second phase, in Sec. 5 to
detect or correct errors and erasures of any codeword present anywhere in the process of
the ciphering algorithm, including within gadgets. The security rationale is detailed in
Sec. 6, where we provide formal proofs in the CBM and SNI models. Implementation in C
language is given in Sec. 7, along with performance results. Some discussions are available
in Sec. 8. Conclusions and perpectives are in Sec. 9.

Examples of quasi-linear DFT constructions adapted to handling bytes are given in
App. A. We show the efficiency of this method on all platforms; our method definitively
complies with hardware and software implementation and has a very low complexity.
Namely, in App. A.1 (resp. App. A.2), we investigate the case of d = 2 (resp. d = 7).
Those two values represent regular and substantial/high security levels.

2 Preliminaries

2.1 Finite fields
In this article, we are interested in data represented as elements from finite fields. We
denote by Fq the field of q elements. We recall that when q is a power of two, Fq is said of
characteristic two; in this case, subtraction and addition are the same operation, simply
denoted by “+”. A finite field of characteristic two can be seen as a polynomial extension

Claude Carlet Abderrahman Daif, Sylvain Guilley and Cédric Tavernier 403

of degree ` of F2, where q = 2`. In this case, the addition boils down to the `-bit parallel
XOR operation. In this article, we illustrate our results on F256 (i.e., ` = 8), which is the
natural field within AES. Let ν be a primitive element of Fq, that is a generator of the
multiplicative group F∗q . Let n be a positive integer. We assume that n divides q − 1, then
we have that the field element ω = ν

q−1
n is a primitive root of the unity (i.e. ωn = 1). By

construction, n is odd with q is power of two. We denote n = 2d+ 1.

2.2 Reed-Solomon codes
We denote by Fnq the vector space of n field elements. A vector subspace of Fnq is also
called a linear code of length n. The Reed-Solomon code of length n, dimension k and
minimal distance n − k + 1 is an evaluation code for which a generator matrix can be
defined as that of the evaluation of the polynomial basis 1, X,X2, . . . , Xk−1 over the set
1, ω, ω2, . . . , ωn−1. We denote this code by RS[n, k, n− k + 1].

The dual C⊥ of a linear code C is the linear code equal to the kernel of the generator
matrix of C. It is well-known that the dual code of RS[n, k, n−k+1] is a RS[n, n−k, k+1]
code.

As a consequence, we know that the matrix (ωij)0≤i≤n−1,0≤j≤n−1, known as the
Vandermonde matrix defined over 1, ω, ω2, . . . , ωn−1, is a generator matrix of the RS[n, n, 1]
code. We have also that the inverse of the Vandermonde matrix corresponds to the generator
matrix of the RS[n, n, 1] code defined over 1, ωn−1, ωn−2, . . . , ω1.

2.3 Multiplication of polynomials and DFTs in finite fields
We are interested in the multiplication of two polynomials P and Q on Fq of degree less
than or equal to d. The result is PQ, a polynomial of degree less than or equal to 2d.

The naive computation has complexity O(d2). However, a less complex method can be
implemented.

Every polynomial is evaluated over {1, ω, . . . , ωn−1}. The evaluation of PQ is the
pairwise product of the evaluation of P and Q. Thus, PQ is given by the interpolation of
its truth table.

Now, it is well-known that the evaluation of a polynomial is precisely its Discrete
Fourier Transform (DFT). Reciprocally, the interpolation of a polynomial is given by the
inverse DFT (IDFT) [Knu11, Vol 2]. Notice that the definition of the DFT (and of the
IDFT) is relative to the value of ω. Whenever there can be ambiguity, we shall write
DFTω (resp. IDFTω) instead of DFT (resp. IDFT).

Besides, the evaluation of polynomial P on its support is equivalent to multiplying
the row (p0, p1, . . . , pd−1) made up of coefficients of P =

∑d−1
i=0 piX

i by the Vandermonde
matrix. Reciprocally, the interpolation of a polynomial P is given by the multiplication by
the row (P (1), P (ω), . . . , P (ωn−1)) with the inverse of the Vandermonde matrix.

Thus, for any vector (p0, . . . , p2d) ∈ F2d+1
q , we can associate the polynomial P (X) =

p0 + p1X + . . .+ p2dX
2d and the discrete Fourier transform is defined by:

DFT(p0, . . . , p2d) =
(∑2d

i=0 piω
ij
)
j∈{0,...,2d}

=
(
P (ωj)

)
j∈{0...2d} .

Then the DFT inverse is defined by:

IDFT(P (1), . . . , P (ω2d)) =
(∑2d

i=0 P (ωi)ω−ij
)
j∈{0,...,2d}

= (p0, . . . , p2d).

According to [Gao03], these operations (DFT and IDFT) can be computed using
O(n log(n) log log(n)) operations in Fq operations. The details of these algorithms can be
found in Chapters 8-11 of [vzGG13].

404 Quasi-linear masking against SCA and FIA, with cost amortization

Multiplicative DFT (see [Gao03]). The usual DFT requires that its support (n points,
named ai) form a multiplicative group of order n, concretely, the polynomial Xn + 1 has n
distinct roots in the underlying field. In this case we say that the field supports DFT, and
we call such a DFT multiplicative. A multiplicative DFT has time complexity O(n log(n))
and can be implemented in parallel time O(log(n)), where the implicit constants are small.
For such abovementioned fields, we can take n+ 1 to be a power of 2 with n|(q − 1) and
a1, . . . , an to be all the roots of Xn + 1. Then a DFT and its inverse at these points can be
computed using O(n log(n)) operations in Fq. By using DFTs, polynomial multiplication
and division can also be computed using O(n log(n)) operations. The implicit constants in
all these running times are very small, so these algorithms are practical for n ≥ 256.

Additive DFT (see [GM10]). Unfortunately multiplicative DFTs are not supported by
many finite fields, especially fields of characteristic two which are preferred in practical
implementations. Cantor [Can89] finds a way to use the additive structure of the underlying
field to perform a DFT over a finite field of order p` where ` is a power of p. This method
is generalized by von zur Gathen and Gerhard [vzGG96] to arbitrary `. Their additive
DFTs (for p = 2) uses O(n log2 n) additions and O(n log2 n) multiplications in Fq. For
fields of characteristic two and for n = 2`, Gao and Mateer [GM10] recently improved on
Cantor’s method. When ` is a power of 2, the above time complexity can be improved
to O(n log(n) log log(n)). For arbitrary `, there is an additive DFT using O(n log2(n))
additions and O(n log(n)) multiplications in Fq. These DFTs are highly parallel and can
be implemented in parallel time O(log2(n)).

2.4 Quasi-linear DFT in practice
All DFT methods presented and discussed in the previous section 2.3 can be implemented
in a pragmatic manner. Namely, first, a polynomial decomposition binary tree is computed
off-line, once for all. Second, for each invocation of DFT or IDFT, a butterfly algorithm is
executed on the pre-computed tree.

Preparation of a polynomial decomposition tree. We leverage the method put forward by
Wang and Zhu in [WZ88]. Their idea consists in remarking that P (νi) = P (X) mod (X +
νi), then it is shown that the polynomial Xn+1 + X can be decomposed, as discussed
below.

Let us design a binary tree of polynomials qi,j , where i is the depth and j is an index for
the breadth. Let n be the size of the DFT, then 0 ≤ i ≤ dlog2(n)e, and 0 ≤ j ≤ 2dlog2(n)e−i.
The tree is defined recursively as follows:

• The root is denoted by qdlog2(n)e,0 = Xn+1 +X;

• intermediate nodes are denoted by qi,j and defined as qi,j =
∏1
k=0 qi−1,2j+k, with

degree(qi,j) = 2i;

• Eventually, the leaves are q0,j = X − βj , where βj are elements of Fq.

By convention, the first leaf q0,0 = X. In fact intermediate divisors are completely
determined once the ordering of the bottom divisors qi,0 is fixed.

Example 1. We illustrate in this example such a binary tree, obtained from the Frobenius
Additive Fast Fourier Transform (FAFFT) put forward in [LCK+18]. We remind that
X4 +X = X(X + 1)(X2 +X + 1). The polynomial X2 +X + 1 is the minimal polynomial
whose zero is ω (recall that ω is defined throughout the article as a root of the unity of
Xn + 1). Then we have the following binary tree:

Claude Carlet Abderrahman Daif, Sylvain Guilley and Cédric Tavernier 405

q2,0 = X4 + X

q1,0 = X2 + X q1,1 = X2 + X + 1

q0,0 = X q0,1 = X + 1 q0,2 = X + ω q0,3 = X + ω + 1

With the construction of [WZ88], it is possible to show that all qi,j are either linearized
or affine polynomials [MS77] (that is: qi,j(X1 + X2) + qi,j(0) = qi,j(X1) + qi,j(X2)).
Consequently, polynomials qi,j are sparse with at most i+ 1 coefficients.

Computation of an efficient DFT. Based on such a pre-computed binary tree, we can now
introduce an algorithm to efficiently compute the DFT. It is given in Alg. 1.

Algorithm 1: Quasi-linear (i.e., fast) Discrete Fourier Transform
Data: Pre-computed binary tree qi,j
Input: a = (a0, a1, . . . , an−1)
Output: (b0, b1, . . . , bn−1) the DFT of a

1 Pdlog2(n)e,0 ←
∑n−1
i=0 aiX

i

2 for i ∈ {dlog2(n)e − 1, dlog2(n)e − 2, . . . , 0} do
3 for j ∈ {1, . . . , 2dlog2(n)e−i} do
4 Pi,j ← Pi+1,bj/2c mod qi,j

5 return (P0,j)0≤j≤n−1) = (b0, b1, . . . , bn−1)

The last step in Alg. 1 (for i = 0) consists in a reduction modulo q0,j , which are
polynomials of degree 1. Thus, the modulo operations yield a value in Fq.

3 Quasi-Linear Masking without Cost Amortization

In this section, we introduce our high-order CBM algorithm, without cost amortization.
That is, we consider only the masking of t = 1 element (byte). The purpose of this
particular case is to explain simply the DFT-based masking with fault detection capability.

3.1 Masking construction

We define now the Reed-Solomon code RSq[n, n, 1] whose generator matrix is given by
the Vandermonde Matrix M ∈ Fn×nq where Mi,j = ωij . Let x ∈ Fq be a sensitive
variable. To mask it, we pick randomly r0, . . . , rd−1 in Fq and encode the vector ~a =
(x, r0, . . . , rd−1, 0, . . . , 0) ∈ Fnq with the Vandermonde matrix. We define:

mask(x) := DFT(~a) =
(∑d

i=0 aiω
ij
)
j∈{0,...,2d}

= ~a ·M .

Unmasking corresponds to the computation of the inverse DFT. Namely, let us denote
~z = mask(x) (i.e. zj =

∑d
i=0 aiω

ij). We have ~a = IDFT(~z). The sensitive data is x = a0,
thus we get:

unmask(~z) = IDFT(~z)0 =
(
~z ·M−1)

0 .

406 Quasi-linear masking against SCA and FIA, with cost amortization

3.2 Masking addition and scaling
Let us denote: ~z = mask(x) and ~z ′ = mask(x′). The following properties are satisfied:

• mask(x+ x′) = ~z + ~z ′,
• mask(λx) = λ · ~z for any λ ∈ Fq.

3.3 Masking the multiplication
The multiplication is not a linear operation, so the question is how to compute mask(xx′)
without unmasking x or x′. We denote ~y = ~z ∗ ~z ′ := (zjz′j)j∈{0,...,2d} where “∗” is the
term-to-term product between two vectors. For j ∈ {1, . . . , 2d}, we have:

yj = zjz
′
j =

(
x+

∑d
i=1 riω

ij
)(

x′ +
∑d
i=1 r

′
iω
ij
)

= xx′ +
∑2d
i=1 r

′′
i ω

ij

=⇒ ~y = DFT(xx′, r′′1 , . . . , r′′2d).

The coefficients r′′i are obtained from the multiplication between Z(X) = x+
∑d
i=1 riX

i

and Z ′(X) = x′ +
∑d
i=1 r

′
iX

i. Namely,

r′′i =
{∑

1≤k,l≤d, s.t. k+l=i rkr
′
l + xr′i + x′ri when 1 ≤ i ≤ d,∑

1≤k,l≤d, s.t. k+l=i rkr
′
l when d+ 1 ≤ i ≤ 2d.

The multiplication between Z(X) and Z ′(X) of degree d gives a polynomial Y (X) =
xx′+

∑2d
i=1 r

′′
i X

i of degree 2d. Thus, to get mask(xx′) we need to eliminate the coefficients
r′′i for i ∈ {d+ 1, . . . , 2d}.

3.3.1 Extracting the last coefficients

We have:

Y (X) = xx′ +
∑2d
i=1 r

′′
i X

i = xx′ +
∑d
i=1 r

′′
i X

i +
∑2d
i=d+1 r

′′
i X

i .
=⇒ ~y = DFT(xx′, r′′1 , . . . , r′′d , 0, . . . , 0) + DFT(0, . . . , 0, r′′d+1, . . . , r

′′
2d) .

= mask(xx′) +DFT (0, . . . , 0, r′′d+1, . . . , r
′′
2d) .

=⇒ mask(xx′) = ~y +DFT (0, . . . , 0, r′′d+1, . . . , r
′′
2d) .

Now to construct DFT(0, . . . , 0, r′′d+1, . . . , r
′′
2d) we must come back to the definition of

IDFT. We remind that:

IDFT(~y) =
(∑2d

i=0 yiω
−ij
)
j∈{0,...,2d}

= (xx′, r′′1 , . . . , r′′2d).

But in our case we are interested only by the coefficients r′′j for j ≥ d+ 1, thus we have to
evaluate:

r′′j =
2d∑
i=0

yiω
−ij with d+ 1 ≤ j ≤ 2d.

For 0 ≤ j ≤ d− 1 we have:

r′′j+d+1 =
∑2d
i=0 yiω

−i(j+d+1)

r′′j+d+1 =
∑2d
i=0 yiω

−i(d+1)ω−ij

=⇒ ~r ′′ = IDFT(~w)

where ~w = (yiω−i(d+1))0≤i≤2d.

Claude Carlet Abderrahman Daif, Sylvain Guilley and Cédric Tavernier 407

Algorithm 2: ExtractLastCoefficients Complexity: n+ n log(n)
Input: a vector ~y ∈ Fnq
Output: ~r ′′ ∈ Fnq

1 Build the vector ~w = (yiω−i(d+1))0≤i≤2d
2 return ~r ′′ = IDFT(~w)

Table 2: Complexity of operations involved in the masked multiplication

Variable Cost
~y n
~r ′′ n+ n log(n)
mask(xx′) 2n(1 + log(n))

3.3.2 Algorithm for the masked multiplication

We get:
mask(xx′) = ~y + DFT(0, . . . , 0, ~r ′′) .

This computation is summarized in Alg. 3.
A tedious calculation of the complexity of this algorithm in terms of the number of

multiplications in Fq is given in Tab. 2.

Algorithm 3: oneElementMultiplication Complexity: n(d+ 1 + log(n))
Input: two masked elements ~z = mask(x), ~z ′ = mask(x′) ∈ Fnq
Output: mask(xx′) ∈ Fnq

1 ~y ∈ Fnq
2 for 0 ≤ i ≤ n− 1 do
3 yi ← ziz

′
i

4 ~r ′′ = ExtractLastCoefficients(~y) // Call to routine of Alg. 2
5 return ~y + DFT(0, . . . , 0, ~r ′′)

In conclusion, the complexity of addition is linear, that of multiplication is quasi-linear.
Besides, masking and demasking each costs n log(n) multiplications [TL20] over Fq, hence
is quasi-linear as well. As a conclusion, all operations can be computed in quasi-linear
complexity.

4 Quasi-linear Masking with Cost Amortization
Let us now extend our quasi-linear masking to several information elements (e.g., bytes)
simultaneously. This allows to explore a tradeoff between side-channel order (namely
d+ 1− t) and the amount of information processed simultaneously (namely t).

We propose then to translate this procedure in term of error correcting codes. We
consider a set {u0, u1, . . . , u2d} ∈ Fd+1

q with ui 6= uj ∀i, j ∈ {0, . . . , 2d} and such that

{u0, u1, . . . , u2d} ∩ {1, ω, ω2, . . . , ωn−1} = ø. (1)

We want now to mask the vector ~x = (x0, . . . , xt−1) ∈ Ftq with 1 ≤ t < d. (the case t = 1
has been addressed in previous section 3.)

408 Quasi-linear masking against SCA and FIA, with cost amortization

4.1 Encoding procedure
First we pick randomly ~r = (rt+1, rt+2, . . . , rd+1) in Fd+1−t

q . By Lagrange interpolation,
there exists a vector ~a = (a0, a1, . . . , ad) and the associated polynomial P~x(X) = a0 +
a1X + · · ·+ adX

d of degree at most d that satisfies P~x(ui) = xi for i ∈ {0, . . . , t− 1} and
P~x(ui) = ri for i ∈ {t, . . . , d}.

Let us define the matrix A ∈ F(d+1)×(d+1)
q , where Ai,j = uij for any i, j ∈ {0, . . . , d}.

This matrix is a Vandermonde matrix which is invertible since ui 6= uj for i 6= j. Then we
have:

~a = (~x | ~r)×A−1 .

The second step of encoding consists in computing DFTω(a0, . . . , ad, 0, . . . , 0). Thus:

mask(~x) = DFTω(a0, . . . , ad, 0, . . . , 0) = DFTω
(
(~x | ~r)×

[
A−1|0

])
.

In this equation, (~x | ~r) is the row obtained by the concatenation of row vectors ~x and ~r,
and

[
A−1|0

]
is the vertical concatenation of the matrices A−1 and 0.

This method is a O((d+1)2) complexity encoding procedure, but we can do better with
the following one. We can construct P (X) = P ′(X) +P ′′(X) by first picking randomly the
polynomial P ′′(X) = atX

t+· · ·+adXd, then we evaluate P ′(X) = a0+a1X+· · ·+at−1X
t−1

over u0, u1, . . . , ut−1 which costs t(d− t) multiplications over Fq.
We want now to construct P ′(X) which allows to solve the following linear system:[
a0 . . . at−1

]︸ ︷︷ ︸
~a ′

×A′ =
[
x0 + P ′′(u0) . . . xi + P ′′(ui) . . . xt−1 + P ′′(ut−1)

]
= ~x+

[
P ′′(u0) . . . P ′′(ui) . . . P ′′(ut−1)

]
= ~x+

[
at . . . ad

]︸ ︷︷ ︸
~a ′′

×A′′ = ~x+ ~a ′′ ×A′′ ,

where:

• A′ ∈ Ft×tq , and A′i,j = Ai,j for any 0 ≤ i, j < t;

• A′′ ∈ F(d+1−t)×t
q , A′′i,j = Ai+t,j for any 0 ≤ i < d+ 1− t and 0 ≤ j < t;

• ~a ′′ ∈ Fd+1−t
q is a random vector.

Thus, the calculation of ~a = (~a ′ | ~a ′′) =
(
(~x+ ~a ′′ ×A′′)×A′−1 | ~a ′′

)
costs t(d+ 1)

multiplications over Fq (we note that A′′ and A′−1 may advantageously be pre-computed).
Again, the second step of encoding consists in computing DFTω(~a | ~0) of complexity
O(n log(n)).

The overall masking procedure is given in Alg. 4. Decoding procedure follows the
same tracks: we use the inverse discrete Fourier transformation to get ~a, then we have:
~x = ~a ′ ×A′ + ~a ′′ ×A′′ which has the same complexity as the masking operation.

Algorithm 4: mask Complexity: t(d+ 1) + n log(n)
Input: a sensitive vector ~x ∈ Ftq
Output: mask(~x) ∈ Fnq

1 ~a ′′ = (at, at+1, . . . , ad)
$← Fd+1−t

q

2 ~a ′ ← (~x+ ~a ′′ ×A′′)×A′−1

3 return DFTω(~a ′ | ~a ′′ | ~0)

Claude Carlet Abderrahman Daif, Sylvain Guilley and Cédric Tavernier 409

The masking refresh allows to update the random part of the masked word, it consists
of adding mask(~0), namely

refresh(mask(~x)) = mask(~x) + mask(~0). (2)

4.2 Masking the multiplication
Let us denote ~z = mask(~x) and ~z ′ = mask(~x ′). Obviously,

~z ∗ ~z ′ = DFTω(a0, . . . , ad, 0, . . . , 0) ∗DFTω(a′0, . . . , a′d, 0, . . . , 0),

where the ‘∗’ operation stands for the pairwise product.
The polynomial obtained by performing DFT−1

ω (DFTω(P~x)×DFTω(P~x′)) = P~x(X)×
P~x′(X) = C(X) =

∑2d
i=0 ciX

i is a 2d degree polynomial, which satisfies C(ui) = P~x(ui)×
P~x′(ui) = xix

′
i for any i in {0, . . . , t− 1}.

Now we have to propose a method that associates a degree d polynomial D(X) to C(X).
This polynomial must satisfy the same properties: D(ui) = C(ui) for all 0 ≤ i ≤ t− 1.

The authors of [GJR18] proposed the following construction for t = 1:

D(X) = c0 + c1X + . . .+ cdX
d + ud0(cd+1X + . . .+ c2dX

d)
= c0 + (c1 + αdcd+1)X + · · ·+ (cd + αdc2d)Xd .

Obviously, in this case D(u0) = C(u0) = x1x
′
1. We propose to generalize this construction.

Let:
Uj(X) = udj

(X − u0) · · · (X − uj−1)(X − uj+1) · · · (X − ut−1)
(uj − u0) · · · (uj − uj−1)(uj − uj+1) · · · (uj − ut−1) .

Hence, by construction, Uj(uj) = udj and Uj(ui) = 0 for any i in {0, . . . , t− 1}\{j} and
deg(Uj(X)) = t− 1. Then we set:

D(X) = c0 + c1X + · · ·+ cdX
d +

∑t−1
j=0 Uj(X)(cd+1X + · · ·+ c2d−t+1X

d−t+1)
+

∑t−1
j=0 Uj(X)

∑t−1
i=1 c2d−t+1+iu

d−t+1+i
j .

The degree d polynomial D(X) satisfies D(ui) = C(ui) = xix
′
i of any i ∈ {0, . . . , t− 1}.

In order to build efficiently DFTω(D(X)), let us write:

D(X) = c0 + c1X + · · ·+ cdX
d + (cd+1X + · · ·+ c2d−t+1X

d−t+1)
∑t−1
j=0 Uj(X)

+
∑t−1
i=1 c2d−t+1+i

∑t−1
j=0 Uj(X)ud−t+1+i

j .

Thus:
DFTω(D(X)) = DFTω(C(X))

+ DFTω(cd+1X
d+1 + · · ·+ c2dX

2d)
+ DFTω(cd+1X + · · ·+ c2d−t+1X

d−t+1) ∗ ~U
+

∑t−1
i=1 c2d−t+1+i ·Gi

= mask(~x ∗ ~x ′)

whereGi = DFTω(
∑t−1
j=0 Uj(X)ud−t+1+i

j) for i ∈ {1, . . . , t−1} and ~U = DFTω(
∑t
j=1 Uj(X))

are pre-computed values, and we define now how to build the last coefficients cd+1, . . . , c2d
without revealing some sensitive information. If we denote ~y = (C(ωi))i∈J0..2dK, then we
have IDFTω(y) = (c0, . . . , cd, . . . , c2d) and by definition, for 0 ≤ j ≤ d− 1,

cj+d+1 =
∑2d
i=0 yiω

−i(j+d+1)

=
∑2d
i=0

(
yiω
−i(d+1)

)
ω−ij

410 Quasi-linear masking against SCA and FIA, with cost amortization

where ~w = (yiω−i(d+1))0≤i≤2d. Then we can calculate:

~c =
(
cd+1, . . . , c2d, . . .

)
=
(
IDFT(~w)

)
. (3)

This computation is formalized as a routine in Alg. 2, which indeed extracts the coefficients
of largest degree (from d+ 1 to 2d).

If we denote

φ(C,ω) = DFTω(cd+1X
d+1 + · · ·+ c2dX

2d)
+DFTω(cd+1X + · · ·+ c2d−t+1X

d−t+1) ∗ ~u
+
∑t−1
i=1 c2d−t+1+i ·Gi

,

we get
mask(~x ∗ ~x′) = mask(~x) ∗ mask(~x′) + φ(C,ω).

Algorithm 5: severalByteProduct Complexity: n(3 + t+ 4 log(n))
Input: two vectors ~z = mask(~x) ∈ Fnq and ~z ′ = mask(~x ′) ∈ Fnq
Output: mask(~x ∗ ~x ′) ∈ Fnq

1 ~y ∈ Fnq
2 for i ∈ {0, . . . , n− 1} do
3 yi ← ziz

′
i

4 ~c ′′ = ExtractLastCoefficients(~y) = (cd+1, . . . , c2d)
5 ~c← (0, . . . , 0 | ~c ′′) = (0, . . . , 0, cd+1, . . . , c2d) ∈ Fnq .
6 ~v ← ~0 ∈ Fnq
7 for 0 ≤ i < t− 1 do
8 for 0 ≤ j < n do
9 vj ← vj +Gi+1,j · c2d−t+2+i

10 ~c ′ ← ~0 ∈ Fnq
11 for i ∈ {1, . . . , d− t+ 1} do
12 c′i ← cd+i

13 ~w ′ ← DFT(~c ′) ∈ Fnq
14 for i ∈ {0, . . . , n− 1} do
15 w′i ← wiui

16 return refresh(~y + DFT(~c) + ~w ′ + ~v)

4.3 Matrix product masking
It is necessary to also define the matrix product operation, as this type of operations is
essential to calculate MixColumns or ShiftRows for example, with t ∈ {4, 8, 16}. Let us
denote by L ∈ Kt×t a public matrix, we need to construct an algorithm MatrixProduct
such that:

MatrixProduct(mask(~x), L) = mask(~x · L) .

Let us recall that the masking operation is a combination between 2 FFTs, that can be
represented as a matrix product as follows:

mask(~x) = (~x,~r,~0) ·N . (4)

Claude Carlet Abderrahman Daif, Sylvain Guilley and Cédric Tavernier 411

where:

N =
[
A−1 0

0 0

]
×M ∈ Fn×nq .

Let us denote L′ = N−1 ·
[
L 0
0 I

]
·N , we have:

mask(~x) · L′ = (~x,~r,~0) · (N · L′)

= (~x,~r,~0) · (N ·N−1 ·
[
L 0
0 I

]
·N)

= (~x · L,~r,~0) ·N
= mask(~x · L) .

Thus:
MatrixProduct(mask(~x), L) = mask(~x) · L′ .

4.4 Exponentiation algorithm

Let e be a power of 2, we denote ~x e = (xe1, . . . , xet+1) ∈ Ft+1
q . In order to calculate

SubBytes transformation efficiently we need to calculate mask(~x e) (see for instance [RP10,
Alg. 3]). We have:

mask(~x)e = (~x,~r,~0)e ·Ne (where (Ne)i,j = (Ni,j)e)
=⇒ mask(~x)e · ((Ne)−1 ×N) = (~x,~r,~0)e ·N = mask(~xe) .

In this case, the order of the operations is very important. As a matter of fact, the
mask(~x)e · (Ne)−1 can divulge the sensitive data if it has been done as indicated above.
This is why it is mandatory to pre-compute ((Ne)−1 ×N) first (once for all), and only
then calculate mask(~x)e · ((Ne)−1 ×N).

5 Detecting/correcting fault injections

5.1 Error correcting code interpretation

We note that by construction, there exists an invertible matrix R that satisfies:

a0
...

at−1
at
...
ad

= R×

x0
...

xt−1
P (ut)

...
P (ud)

.

We note that this DFT computation corresponds to the encoding in the Reed-Solomon
code defined by the evaluation of 1, X, . . . ,Xd over 1, ω, ω2, . . . , ω2d, and represented by a
matrix V . Hence, we get that mask(y) = yR>V . We deduce that our masking algorithm
corresponds to an encoding procedure with a generalized Reed-Solomon code of minimal
distance d+ 1, dimension d and length 2d+ 1.

412 Quasi-linear masking against SCA and FIA, with cost amortization

5.2 Error detection method
We have seen previously that our masking technique corresponds to an encoding in a
Reed-Solomon code of parameters [n = 2d+1, k = d+1, d+1]q. We propose in this section
to describe a known method based on syndrome decoding [Pet60, Mas69, Jr.65, BHP98]
that does not leak sensitive information.

Our information on t words is included inside of d+ 1 words which are then encoded in
the Reed-Solomon code of length 2d. Next we assume that a reasonable number of faults
is injected on this codeword c. This codeword is in correspondence with a degree k− 1 = d
polynomials c(X) = IDFTω(c) in Fq[X].

It corresponds to the classic problem of error correction in a noisy channel. The error
can be interpreted as a vector e = (e0, e1, . . . , en−1) = DFT−1

ω (e(X)) where e(X) is a
degree n− 1 polynomial over Fq. We denote by ε the weight of the non-zero coefficients
(positions) in e(X). Hence, we study the vector y = c+ e = (ej)j∈J0,n−1K.

To detect or correct the errors, we calculate a syndrome from y, which only depends on
the error word e and not on the codeword c. We recall that the dual code of the RS[n, k]
is the RS[n, n− k] code. A basis of this code is given by the monomials 1, X, . . . ,Xn−k−1

which are evaluated over the set 1, ω, . . . , ωn−1.

Proposition 1 (Fast syndrom evaluation). Let S = (S0, S1, . . . , Sn−k−1). It is a syndrome
sequence which satisfies

S = (Sj)j∈J0,n−k−1K =
(
n−1∑
i=0

yjω
ij

)
j∈J0,n−k−1K

= DFTω(y).

Since deg(c(X)) < k, S = DFTω(y) = DFTω(e) which does not depend of c. We deduce
that detecting the presence of faults injection (i.e. checking whether S 6= 0) can be computed
in O(n log(n)) multiplications.

To correct these faults, we need to construct the error locator polynomial. We introduce
the vector λ = (λj)j∈J0,n−k−1K such that λj = 0 whenever the corresponding coefficient
ej of e is non-zero, and λj 6= 0, whenever ej = 0. In this way, we have λj · ej = 0 for all
j ∈ {0, . . . , n− 1}. If we denote Λ(X) = DFTω(λ) and E(X) = DFTω(e) = S, then, due
to the well-known convolution theorem of the DFT, we have

E(X)Λ(X) = 0 mod Xn − 1. (5)

The ε roots ω−j1 , . . . , ω−jε of the polynomial Λ(X) correspond to the locations j1, . . . , jε
of the erroneous positions in y. Therefore Λ(X) = Λ0 + Λ1X + · · · + ΛεX is called the
“error locator polynomial”.

Without loosing in generality, Λ(X) can be normalized by setting λ0 = 1. Equation (5)
gives rise to a linear system of n equations. From these equations, n− k− t equations only
depend on the n−k coefficients from E(X), which coincide with the elements S0, . . . , Sn−k−1
of the syndrome, and the unknown coefficients of the error locator polynomial λ(X). Hence,
we extract a linear system of n− k − er equations and ε unknowns:

S0 S1 . . . Sε−1
...

Si Si+1 . . . Sε+i−1
...

Sn−k−er−1 Sn−k−ε . . . Sn−k−2

︸ ︷︷ ︸

S

×

Λε
...

Λi
...

Λ1

︸ ︷︷ ︸

Λ

=

−Sε
...
−Si
...

−Sn−k−1

︸ ︷︷ ︸

T

. (6)

Claude Carlet Abderrahman Daif, Sylvain Guilley and Cédric Tavernier 413

Table 3: Side-channel security order versus fault detection / correction, in F256

n d t SCA order
(d+ 1− t)

Nb. of detected
faults

Nb. of corrected
faults

5 2 1 2 2 02 1

15 7

1 7

7 32 6
...

...
7 1

17 8

1 8

8 32 7
...

...
8 1

Obviously, a unique solution exist as long as ε ≤ n−k
2 which means than we can correct

not more than n−k
2 = d−1

2 faults.
To avoid a large complexity to solve the system of equations (6), due to specific form

of it, we can use the well-known Berlekamp-Massey algorithm that solves this system with
a linear complexity.

At this point we have located the errors by constructing Λ(X). Reconstructing the
errors can be done by the Forney algorithm. It consists in calculating the error evaluator
polynomial

Ω(X) = Sp(X)Λ(X) mod 2er,

where Sp(X) is the partial syndrome polynomial:

Sp(X) = s0 + s1X + s2X
2 + . . .+ s2er−1X

2er−1.

Finally the error is given by evaluating the quantity for Xj = ωij :

ej =
Ω(X−1

j)
Λ′(X−1

j)
,

where Λ′ is the first derivative of Λ. These quantities can be again evaluated by using the
DFT transform, hence correcting fault injection can be done with a linear complexity.

Exemplary tradeoffs are given in table 3.

5.3 Positive effect of cost amortization on fault detection capability
Let us fix a field Fq and a minimal distance d. Then, it is more efficient from the code
length point of view to mask two (resp. 2k) symbols together than each one (resp. each k)
independently. Formally, let BLLC the BestLengthLinearCode function in Magma [Uni],
which yields the minimal length of a code on Fq of a given dimension and minimum
distance. We have that:

BLLC(Fq, 2× k, d) ≤ 2× BLLC(Fq, k, d). (7)

For instance, on F256, RS codes are minimum distance separable (MDS) and thus
BLLC(Fq, k, d) = k + d− 1. Thus Eqn. (7) rewrites 2k + d− 1 ≤ 2(k + d− 1) ⇐⇒ d ≥ 1
which is always true.

414 Quasi-linear masking against SCA and FIA, with cost amortization

6 Security proof
The security of our scheme depends of our encoding procedure, our multiplication gadget
and our capacity to detect fault injections during the computation steps of the encryption
algorithm.

6.1 The encoding procedure
We remind that our encoding procedure of a vector ~x = (x0, . . . , xt−1) has been defined in
subsection 4.1. It consists in picking randomly ~r = (rt+1, rt+2, . . . , rd+1) in Fd+1−t

q and
performing the operation:

mask(~x) = DFTω
(
(~x | ~r)×

[
A−1|0

])
.

We also recall that the matrix A = (uji)i,j∈J0..dK. A first approach consists in showing that
our masking method corresponds to a special case of DSM scheme, then we propose to
translate this operation in a generic encoder as defined in [WMCS20] (page 137, definition
13). Applying DFTω corresponds to a multiplication by one Vandermonde matrix. This
matrix happens to be the generator matrix of the Reed-Solomon code RS[n, n, 1] defined
over Fq. A generator matrix of this code is defined by the evaluation of the monomials
(Xi)i∈{0,n−1} over 1, ω, . . . , ωn−1. The multiplication by

[
A−1|0

]
leads to cancel the last

rows of the generator matrix of this RS[n, n, 1] code which becomes a Reed Solomon code
RS[n, d+ 1, n− d]. We denote R a generator matrix of this code. Hence,

mask(~x) = (~x,~r)×A−1 ×R

Remark 1. Our first remark at this point it that A−1 ×R is still a RS[n, d+ 1, n− d] code
that can detects n− d− 1 errors. We propose consequently later in this section a method
to detect errors without revealing sensitive information.

We can rewrite our encoding procedure as follows:

mask(~x) =
(
(~x,~0)×A−1 ×R

)
⊕
(
(~0, ~r)×A−1 ×R

)
= ~xG⊕ ~rH,

where G = (Idt, 0)A−1R and H = (0, Idd+1−t)A−1R.

Proposition 2. The masking operation mask(~x) is a generic encoder.

Proof. We have seen that mask(~x) = ~xG⊕~rH. By construction, rank(G) = t and rank(H) =
d+1− t. If we denote CG, CH and CHperp the codes respectively generated by the generator
matrix G, H and the kernel of H, then CG ∩ CH = {0}. If we denote B =

(
G
H

)
, then

we have:
mask(~x) = (~x,~r)×B

and the B satisfies the definition of a generic encoder denoted encB .

If we denote by d′ the minimal distance of CHperp : d′ = dmin(CHperp), then, as explained
in [WMCS20], a direct consequence is that the encoding procedure encB is d′-private. Our
task consists now in evaluating d′ and we propose to demonstrate the following theorem:

Theorem 1. Let an integer t, 1 ≤ t ≤ d, a Vandermonde matrix A of the form (uij)i,j∈J0,dK
with ui 6= uj . Let R the generator matrix of the Reed-Solomon code RS[2d+ 1, d+ 1, n− d]
of the form (ωij)i∈J0,dK,j∈J0,2dK. We denote

H = (0t, Idd+1−t)×A−1 ×R.

Let CH the code generated by H, then, dmin
(
C⊥H
)
the minimal distance of C⊥H satisfies

d+ 1− t ≤ dmin
(
H⊥
)
≤ d+ 2− t.

Claude Carlet Abderrahman Daif, Sylvain Guilley and Cédric Tavernier 415

Proof. We denote by K the matrix which corresponds to the last d+ 1− t rows of A−1,
then

H = (0, Idd+1−t)A−1R = K ×R

where R = RS[n, d + 1, n − d]. By construction, H is (d + 1 − t) × n matrix since
(0, Idd+1−t)A−1 is a full rank matrix.

It is well known that the parity check matrix of R that we can denote T is a Reed-
Solomon code RS[n, d, n− d+ 1] and we have HtT = 0. Hence, HtT = K ×R× tT = 0
and the subspace generated by the rows of T are included in the kernel of H.

Study of K: We remind that K = (0, Idd+1−t)A−1. First of all, A−1 is a Reed-
Solomon generator matrix as any invertible square matrix because it is equivalent (up to
an invertible matrix) to a Reed-Solomon code. Hence K is a generator matrix of a sub
code of a RS[d+ 1, d+ 1] code. We would like to determine now the dual code of K and
we observe the equation A−1 ×A = Idd+1. By setting

A−1 =
(

K ′t×(d+1)
K(d+1−t)×(d+1)

)
and A =

(
B(d+1)×t, B

′
(d+1)×(d+1−t)

)
,

we get that(
K ′t×(d+1)

K(d+1−t)×(d+1)

)
×
(
B(d+1)×t, B

′
(d+1)×(d+1−t)

)
=
(

Idt 0t×(d+1−t)
0(d+1−t)×t Idd+1−t

)
.

We deduce that K(d+1−t)×(d+1) ×B(d+1)×t = 0(d+1−t)×t and we know that

K = K(d+1−t)×(d+1) and B = Kernel(K) = B(d+1)×t = (uji)i∈J0..dK,j∈J0..t−1K.

By construction t(B(d+1)×t) = tB is a generator matrix of a code generated by the
polynomials 1, X,X2, . . . , Xt−1 defined over the set u0, . . . , ud: this is a Reed-Solomon
code RS[d + 1, t, d + 2 − t] of minimal distance d + 2 − t. We deduce that the encoder
(x, r) 7→ (x, r)A−1 is a generic encoder of probing order d+ 1− t.

We want now to describe the kernel of K ×R. We can repeat the same construction
for R. If we denote Vω the Vandermonde matrix associated to DFTω:

Vω × V −1
ω =

(
R(d+1)×(2d+1)
R′d×(2d+1)

)
×
(
Ri(2d+1)×(d+1), Ri

′
(2d+1)×d

)
, and

Vω × V −1
ω =

(
Idd+1 0(d+1)×d

0d×(d+1) Idd

)
.

We deduce that R(d+1)×(2d+1) × Ri(2d+1)×(d+1) = Idd+1 with R = R(d+1)×(2d+1). The
matrix V −1

ω is Vandermonde matrix associated to IDFTω, then Ri = Ri(2d+1)×(d+1) =
(ω−ij)i∈J0..2dK,j∈J0..dK. We remark thatK×R×tT = 0 andK×R×Ri×B = K×Id×H = 0.
Hence we can build a vector space included in the kernel of H = K ×R with T which is
the generator matrix of a RS[2d+ 1, d] code and D = tB × tRi.

We note that tRi = (ω(n−i)j)i∈J0..dK,j∈J0..2dK is a generator matrix of a code generated
by d+ 1 polynomials of degree more than d+ 1. Then tB = (uji)i∈J0..t−1K,j∈J0..dK. Hence
the code generated by D is an evaluation code generated by t independent polynomials
of degree more than d + 1 whereas T is a generator matrix of a code generated by d
polynomials of degree strictly less than d, then these two codes are linearly independent

416 Quasi-linear masking against SCA and FIA, with cost amortization

and we deduce that we have built the kernel of H. We have now to evaluate the minimal
distance of this code (T ∪D).

Hence, we have

D = tB × tRi =
(

d∑
k=0

uki ω
(2d+1−k)j

)
i∈J0..t−1K,j∈J0..2dK

.

Let

Di,j =
d∑
k=0

uki ω
(2d+1−k)j = ω(d+1)j

d∑
k=0

uki ω
(d−k)j

and

Di,j = ω(d+1)j
d∑
k=0

u
(d−k)
i ωkj .

Then

Di,j = udiω
(d+1)j

d∑
k=0

(
ωj

ui

)k
= udiω

(d+1)j
1−

(
ωj

ui

)d+1

1− ωj

ui

.

For i = 0 (i.e t = 1), it means that the vector D0 corresponds to the evaluation of the
fraction

ud+1
0 Xd+1 +X

u0 +X
(8)

over {1, ω, . . . , ω2d} and we are looking for a degree d polynomial P (X) that cancels the
maximum of positions of D0, i.e. such that Q(X) = (X+u0)P (X)+X+ud+1

0 Xd+1 admits
the maximum of zeros. We remark that degree(Q) ≤ d+ 1, then the number of zero is less
than d+ 1 which is equivalent to a minimal distance greater than 2d+ 1− (d+ 1) = d. In
the same time, the Singleton bound states that dmin(T ∪D0) ≤ 2d+ 1− (d+ 1) + 1 = d+ 1.
We deduce that for D = D0,

d+ 1− t ≤ dmin(T ∪D) ≤ d+ 2− t.

for t = 2, the Singleton bound states that dmin(T ∪D0 ∪D1) ≤ 2d+ 1− (d+ 2) + 1 = d =
d+ 2− t. We want to evaluate now the minimal distance of a codeword built from a linear
combination of D0,j , D1,j and T . It means that for a fixed element θ ∈ Fq we are looking
for a degree d polynomial P (X) such that for a maximum of input we have

P (X) = ud+1
0 Xd+1 +X

u0 +X
+ θ

ud+1
1 Xd+1 +X

u1 +X
.

This is equivalent of studying the number of zero of the function T (X) = (X + u0)(X +
u1)P (X) + (X + u1)(ud+1

0 Xd+1 +X) + θ(X + u0)(ud+1
1 Xd+1 +X). The degree of T (X)

is less or equal to d + 2 then T (X) has d + 2 roots maximum which is equivalent to a
minimal distance greater than 2d+ 1− (d+ 2) = d− 1 and we deduce:

d+ 1− t ≤ dmin(T ∪D) ≤ d+ 2− t.

By induction we have that for any t, d+ 1− t ≤ d′ ≤ d+ 2− t and the probing security
order is between d− t and d+ 1− t, thus we have demonstrated Theorem 1.

Claude Carlet Abderrahman Daif, Sylvain Guilley and Cédric Tavernier 417

In this Theorem 1, we prove the security of the multiplicative gadget, including the
transformation of the shares into the spectral domain (back and forth). This was left out
of the scope of former work GJR+ [GPRV21]; we thus offer a comprehensive, end-to-end,
security proof of the whole computation. Notice that in the section entitled “Discussion
on Hypothesis 1”, page 620 of [GPRV21], the announced security orders (obtained by
exhaustive search, for some examplary small orders) are lower than our bound d+ 2− t.
The reason is that examples in [GPRV21] do not satisfy condition (1).

Corollary 1. Let 0 ≤ i ≤ d− 1. If ui is such that ud+1
i

Xd+1+X
ui+X is a degree d polynomial,

i.e ui +X divides ud+1
i Xd+1 +X, then we have d′ = d+ 2− t.

Proof. Without losing in generality, we can assume that i = 0. For t = 1 this is exactly
the same proof than the previous one. For t > 1, we must evaluate the number of zeros of
the function:

T (X) = ud+1
0 Xd+1 +X

u0 +X
+ θ1

ud+1
1 Xd+1 +X

u1 +X
+ . . .+ θt−1

ud+1
t−1X

d+1 +X

ut−1 +X
.

As ud+1
0 Xd+1+X
u0+X is a degree d polynomial, then (X+u1) · · · (X+ut−1)T (X) is a polynomial

of degree less than d + t − 1 which implies that the minimal distance is greater than
2d+ 1− d− t+ 1 = d+ 2− t and the singleton bound states that it is less than d+ 2− t
thus it is equal.

This corollary shows that our masking scheme does reach the same masking order
as [BEF+23].
Example 2. If u0 = 0, we get D0,j = 1 and the property is satisfied.

As summary, we have proven in this section that given a Vandermonde matrix A =
V (u) = (uji)i,j∈J0..dK, the encoder

x 7→ (x, r) 7→ (x, r)A−1

is d+ 1− t probing secured and if R is the generator matrix R of a Reed-Solomon code
RS[2d+ 1, d+ 1, d+ 1] with support in {1, ω, . . . , ωn−1}, then the composed encoder

x 7→ (x, r) 7→ (x, r)A−1R

is at least d− t probing secure.

6.2 NI and SNI criteria
Definition 1 ([MZ22]). A function f is t-NI if, when given a total of s outputs and
internal probes, s ≤ t implies a dependency with maximum s input shares. A function f is
t-SNI if s ≤ t implies a dependency with maximum i input shares, where i is the number
of internal probes.
Corollary 2 ([WMCS20, Theorems 2 and 3]). The scalar multiplication gadget is t-SNI
and the addition gadget masking is t-NI.
Proof. We remind that for complexity reason, we have replaced the classical Vandermonde
matrix by the DFT algorithm. Our chosen DFT has a particular structure, it is an
iterative DFT et each step corresponds to a matrix multiplication, then totally, our DFT
corresponds to a classical encoder by a (sparse) matrix. Therefore, Theorems 2 and 3 of
[WMCS20] apply verbatim.

Remark 2. The refresh gadget of [GPRV21] is obviously compliant with our procedure and
it is (d− t)-SNI.

To claim that the complete encoder with its associate gadgets is (d− t)-probing secured,
we must prove the property for the multiplication gadget.

418 Quasi-linear masking against SCA and FIA, with cost amortization

6.3 The multiplication gadget
The security of the masking representation is immediate owing to the number of shares.
However, to be comprehensive, we have to show now that operations are also secure.
Namely, the masked multiplication procedure offer also the same level of protection.
Regarding the security of this gadget. We remind that the authors of [GPRV21] made a
strong hypothesis that we convert in a theorem:

Theorem 2 (Hypothesis (FFT Probing Security)). The circuits processing

DFTω(x‖0) 7→ r and DFT−1
ω

are tDFTn -probing secure with tDFTn ≥ d− t.

Proof. In fact the application DFTω(~x‖0) 7→ r corresponds exactly to our masking opera-
tion mask(~x) = (~x,~r)×A−1 ×R except that A is more general than simply a Matrix of
the form (αij)i,j . We deduce that tDFTn ≥ d − t in this case since it corresponds to the
theorem 1.
Regarding DFT−1

ω : u′ 7→ tt: if fact, u′ = refresh(mask(~x) ∗ mask(~y)) where ∗ represents
here the multiplication term by term and not the mask multiplication. In our masking, by
definition, we have u′ = mask(~0) + mask(~x) ∗ mask(~y). mask(~0) = ~rH where ~r is a d+ 1− t
dimension vector which is random, then building ~r requires at least d+ 1− t positions from
the vector ~rH. By construction, DFT−1

ω (mask(~0)) = (a0(r), a1(r), . . . , ad(r), 0, . . . , 0) =
(0, r)A−1. Then DFT−1

ω (mask(~x) ∗ mask(~y)) = (c0, . . . , c2d). We deduce that:

tt = (c0 + a0(r), c1 + a1(r), . . . , cd + ad(r), cd+1, . . . , c2d).

We prove below this proof that we cannot construct a sensitive information from
(cd+1, . . . , c2d). The coefficients ai of the vector (c0 + a0(r), c1 + a1(r), . . . , cd + ad(r))
depends linearly of r. We have already proven that the encoder (x, r)A−1 is d + 1 − t
probing secured, thus getting information from (c0 + a0(r), c1 + a1(r), . . . , cd + ad(r))
requires to capture at least d+ 1− t positions. We deduce the final result, the hypothesis
is correct with tDFTn = d− t.

Then, due to the the previous demonstrated hypothesis, we deduce the following lemma:

Lemma 1. [GPRV21] The circuit processing (mask(x), mask(y)) 7→ u = mask(x) ∗ mask(y)
is (d− t)-probing secured.

We provide here-after a proof by reduction of our Lemma 1 to the result formulated in
[GPRV21, Lemma 1].

Proof. The authors of [GPRV21] have proven (page 619, lemma 1) that the following
circuit processing

(x, y) 7→ u = DFT(x ‖ 0) ∗DFT(y ‖ 0)
is tFFTn probing secure (In fact, we proved that the encoder x 7→ (x, r)A−1 is d + 1 − t
probing secure which implies that tFFTn = d in [GPRV21] context) and we have proven
that mask(x) = DFT((x, r)A−1 ‖ 0) is at least d − t probing secure, then we can now
apply the same proof, with tFFTn = (d − t): either a probe gives some information
about mask(x) or about mask(y). Finally, each position Mt[i] = mask(x)[i] × mask(y)[i]
depends symmetrically of mask(x)[i] and mask(y)[i] which are independent and uniformly
distributed, thus less than d− t probes cannot give information about x and y.

Remark 3 (Typographic mistake correction). The proof of lemma 1 in [GPRV21] contains
twice the argument “w is added to W1”, whereas the second occurrence should read “w is
added to W2”.

Claude Carlet Abderrahman Daif, Sylvain Guilley and Cédric Tavernier 419

We remind that the inner product mask(x) ∗ mask(y) here is not the gadget multiplication
mask(x)× mask(y). Unfortunately, we cannot claim that (mask(x), mask(y)) 7→ mask(x) ∗
mask(y) is (d− t)-NI or SNI secured because the function (x, y) 7→ x · y does not satisfies
the t-NI property and we cannot use the composition theorem.
The mask multiplication (gadget) is obtained from the following computation

DFTω(D(X)) = DFTω(C(X))
+ DFTω(cd+1X

d+1 + · · ·+ c2dX
2d)

+ DFTω
(

(cd+1X + · · ·+ c2d−t+1X
d−t+1) ∗ ~U

)
+

∑t−1
i=1 c2d−t+1+i ·Gi

= mask(~x ∗ ~x ′)

where Gi = DFTω(
∑t−1
j=0 Uj(X)ud−t+1+i

j) for i ∈ {1, . . . , t− 1} and ~U =
∑t
j=1 Uj(X) are

a pre-computed values. Then, it is clear that the computation of DFTω(cd+1X
d+1 + · · ·+

c2dX
2d), DFTω

(
(cd+1X + · · ·+ c2d−t+1X

d−t+1) ∗ ~U
)
and

∑t−1
i=1 c2d−t+1+i · Gi involves

only the variables cd+1, . . . , c2d−t+1 related to the sensitive information. Hence, the
weakest side is obtained with the vector

(cd+1, . . . , c2d) = ExtractLastCoefficients(~z ∗ ~z′).

Then the question is: can we get information from d−t position of the vector (cd+1, . . . , c2d).
Our claim is that our gadget is at least d− t probing secured, then we must assume that in
the model of attack, maximum d− t values can be guessed from some measures. From d− t
pieces of knowledge from the vector (cd+1, . . . , c2d), x = unmask(z) and x′ = unmask(z′)
cannot be reconstructed: if an attacker has access to the following system of equations

c2d = ada
′
d

c2d−1 = ad−1a
′
d + ada

′
d−1

c2d−2 = ad−2a
′
d + a′d−2ad + a′d−1ad−1

...
c2d−k =

∑k
i=0 ad−ia

′
d−(k−i)

...
cd+1 =

∑d−1
i=0 ad−ia

′
i+1.

We can evaluate the number of potential solutions for (ai)i∈Jd..2dK: by assuming that c2d 6= 0,
then the equation c2d = ada

′
d admits 2m − 1 solutions. If c2d = 0, then ada′d admits 2m

solutions. By setting ad 6= 0 and a′d 6= 0 we get the equation c2d−1 = ad−1a
′
d + ada

′
d−1

admits 2m solutions. By induction, we get the same property at any step k ≤ d. Thus
totally this system admits at least 2m(d−1)(2m−1) solutions for d variables ai. This result is
obviously worst with less equations, thus this system of equation does not give information
from d+ 1− t values of (ai) solutions.

We conclude that the gadget multiplication is d− t probing secured.
Remark 4. It seems that our encoding method has similar properties than this one defined
in [GPRV21] then it would be interesting to investigate if the region probing security still
holds here.

6.4 Fault detection/correction
Fault attacks are very efficient in general [JT12]. Some fault attacks, such as Statistical
Ineffective Fault Attacks (SIFA [DEG+18], inheriting from the seminal work of [YJ00]) can

420 Quasi-linear masking against SCA and FIA, with cost amortization

be applied despite masking against side-channel analysis and fault detection mechanisms
are in place.

First of all, we cannot claim that our method is fully resilient against fault attack
because we did not study the impact of generating a fault on the checker itself (the
syndrome calculation), however, we show in this paper that we harden considerably the
resilience against fault injection.

We considered two representative fault models, namely one where the attacker has no
control over the fault (random model), and one where the attacker can inject targeted low
weight faults. We recall that, in front of uniformly random faults, the detection capability
is only characterized by the minimal distance.

Furthermore, we assume that the attacker has the ability to inject a certain number
of simultaneous faults which is less than the correction capacity of the considered code,
especially the Red-Solomon code involved in the gadget multiplication. We consider also
that all codewords present in the implementation are corrected/checked. If not, we face an
open problem: the impact of the error propagation in the cipher algorithm design and this
is out of the scope of this paper.

We recall that by construction, each masked element belongs to the code RS[n, d+1, n−
d]. Intentional or accidental errors can disturb the symmetric cipher implementation. If an
error appears during the first rounds of the considered cipher, then its propagation shall
affect dramatically the rest of calculation, making the final result wrong and non-correctible
due to the excessive number of errors. It can then give information that may compromise
the key. Such scenarios appear for example in case of radiation or in case of intentional
fault attacks. We are also aware that such channel perturbation can lead to the presence
of erasures, which means that information simply disappears. As we consider the problem
of decoding Reed-Solomon codes, erasures can simply be considered as errors. Hence, a
decoding algorithm that works for Reed-Solomon codes can correct erasures. Of course it
is essential that our counter-measure against FIA does not weaken the counter-measure
against SCA, hence we propose to show in the next subsections that our error detection
based on the syndrome decoding is secured and efficient.

We recall that we have:

mask(~x ∗ ~x ′) = mask(~x) ∗ mask(~x ′)
+ DFTω(cd+1X

d+1 + · · ·+ c2dX
2d)

+ DFTω(cd+1X + · · ·+ c2d−t+1X
d−t+1) ∗ ~U

+
∑t−1
i=1 c2d−t+1+i ·Gi

where (cd, . . . , c2d) = ExtractLastCoefficients(mask(~x) ∗ mask(~x ′)), with ~Uk and Gi
that are precomputed and we have denoted

mask(~x ∗ ~x ′) = mask(~x) ∗ mask(~x ′) + φ(C,ω).

Obviously, introducing errors in the gadget multiplication may be a problem for
the following reason: mask(~x) ∗ mask(~x ′) equals DFTω(C(X)) where C is a degree 2d
polynomial thus faults on the vector DFTω(C(X)) cannot be detected in the RS[2d +
1, 2d + 1] code. However, we remark that the first d coefficients of the polynomials
involved in DFTω(cd+1X

d+1 + · · · + c2dX
2d) + DFTω(cd+1X + · · · + c2d−t+1X

d−t+1) ∗
~U +

∑t−1
i=1 c2d−t+1+i ·Gi are null by construction. We deduce that injecting a fault inside

these vectors can be detected simply by a syndrome calculation (IDFT). An error may be
injected in the coefficient cd+1, · · · , c2d, but in this case the resulting vector mask(~x ∗ ~x ′)
does not belong to the RS[2d + 1, d] code and the error will be detected. An attacker
may inject simultaneously errors in both vectors, but in this case we are no longer in the
random injection model and we face an open problem out of scope of this paper.

Finally this leads us to propose below some improvement.

Claude Carlet Abderrahman Daif, Sylvain Guilley and Cédric Tavernier 421

6.5 Detecting faults in the gadget
We propose in this case to slightly modify the parameters of our encoder x 7→ (~x,~r) 7→
A−1R with x ∈ Ftq and ~r ∈ Fd+1−t

q . We propose to consider some ~r ∈ Fd+1−t−h
q with

h < d + 1 − t. Hence the resulting polynomial has degree d − h instead of d. This
modification implies that the vector mask(~x) ∗ mask(~x ′) = DFTω(C(X)) can be checked:
C(X) has degree 2d− 2h in this case and consequently, the vector DFTω(C(X)) belongs
to the RS[2d+ 1, 2d− 2h+ 1, 1 + 2h] code of minimal distance 1 + 2h, thus 2h errors can
be detected. We remind that the error detection on a codeword can be done by computing
its syndrome, and computing its syndrome corresponds with our parameters to perform
the IDFT algorithm: the computation of IDFT (mask(~x) ∗ mask(~x′)) states whether it
corresponds to a degree d− h polynomial or not.

An attacker may inject faults in the vector φ(C,ω), however, by construction this vector
belongs to RS[2d+1, 2d−2h+1, 1+2h] because φ(C,ω) = mask(~x)∗mask(~x ′)+mask(~x∗~x ′)
and for this error correcting code, up to 2h errors can be detected.

Regarding the consequences for the SCA security, the probing order is clearly modified
because the dimension of ~r is less than in the original encoder. By analysing carefully the
proof of probing order, we observe that this modification does not modify the proof, only
the security order is modified, passing from d− t order to d− t− h order. We can now
summarize in the following algorithm the step of detection inside the gadget multiplication:

Algorithm 6: severalByteProduct with detection Complexity:
n(3 + t+ 4 log(n))
Input: two vectors ~z = mask(~x) ∈ Fnq and ~z ′ = mask(~x ′) ∈ Fnq
Output: mask(~x ∗ ~x ′) ∈ Fnq

1 ~y ∈ Fnq
2 for i ∈ {0, . . . , n− 1} do
3 yi ← ziz

′
i

4 ~c ′′ = ExtractLastCoefficients(~y) = (cd+h, . . . , c2d, c0, . . . , cd+h−1)
5 Check that (c2d−2h+1, . . . , c2d) equals the null vector
6 If not, launch a security procedure
7 Else
8 Compute ~y + φ(c2d−2h+1, . . . , c2d, ω)
9 Check that degree(IDFT(~y + φ(c2d−2h+1, . . . , c2d, ω))) ≤ d− h

10 If not, launch a security procedure
11 Else
12 return refresh (~y + φ(c2d−2h+1, . . . , c2d, ω))

6.5.1 About syndrome computation leakage

It is essential that our counter-measure against FIA does not weaken the counter-measure
against SCA, thus we propose to show in this section that syndrome decoding cannot leak
information.

Namely, we consider the possibility of either detecting or even correcting errors and
erasures anywhere in the calculation process where codewords are available. In general,
decoding errors leads to unmasking the sensitive information, which is of course not
desired between the first and last round of the algorithm that we must protect. For
example, Sudan [GS99] and Berlekamp-Welch [RR86] algorithms return directly the
sensitive information, while syndrome decoding does not.

Decoding generalized Reed-Solomon codes is classic, but we are particularly interested in
syndrome decoding which does not reveal any sensitive information. The algorithm [Sha07,

422 Quasi-linear masking against SCA and FIA, with cost amortization

McE77, KB10] that uses the Euclidean algorithm is a syndrome decoding algorithm. It
consists in building the polynomials that correspond to the error evaluator and error
locator as explained in Theorem 4.3 of [Sha07] and also, as explained at the beginning
of the current section 5.2. Hence, this algorithm returns the vector corresponding to the
error, that allows to return the corrected codeword belonging to the Reed-Solomon code.
Never the sensitive information has been exposed during the process of decoding because
the first step consists in cancelling the codeword coming from the encoded information in
order to construct the error as we will show later in this section.

In the previous subsection regarding the encoding procedure, we have seen that masking
a vector ~x consists in performing

mask(~x) = (~x,~r)×A−1 ×R.

Hence ~z = mask(~x) is simply a codeword belonging to the RS(n, d+ 1, d+ 1) code. If we
denote by V the parity check matrix of R, we have by construction R × V = 0 and in
particular mask(~x)× V = 0. Thus, by a simple syndrome calculation, if we suppose ~z was
modified by a fault injection attack or a radiation, then we get ~z ′ = ~z + ~e, and we have:

~ε = ~z ′ × V = ~z × V + ~e× V = ~e× V.

Obviously the syndrome calculation does not bring any information since by definition a
codeword corresponds to information that has been masked and we have assumed that the
potential attacker has not more than d′ probes, thus no linear transformation can provide
any information on the sensitive information.

We note however that determining the efficiency of this method when faults take place
in the decoding algorithm itself remains an open problem. But the method is efficient when
the fault injections are directed on the masked design of the ciphered algorithm. Then each
variable being encoded by our generalized Reed-Solomon code, we may potentially check
all variables (this has of course a non negligible cost). The attacker may inject faults on
the matrices G and H to disturb the multiplication; then either the number of constructed
errors is too large and the algorithm cannot correct it, but it simply detects and alerts (to
enable key zeroization for instance), or the number of errors is reasonable and the error
correction algorithm can correct the disturbed multiplication.

Eventually, it is up to the security policy to consider the best strategy between detecting
and launching a countermeasure or correcting.

6.6 Comparison with [BEF+23]
Recently, the authors of [BEF+23] proposed a similar solution based on polynomial
encoding. Their solution gives a strong resilience against SCA and simultaneously protects
against a huge number of fault injections. We propose to compare the solutions here. We
note that our solution works for a fixed length n (number of shares) which is given by
the possibility of implementing a DFT instead of multiplying by a Vandermonde matrix
whereas their solution has a free length (number of shares) depending on the number of
detected errors e: either n = 2d + e + 1 in a first version (SotA) or n = d + e + 1 for
the improved version (laOla). In order to make easier the comparison, we describe our
performances with a Vandermonde matrix instead of a DFT and finally, we describe our
performances with a trick used for laOla [BEF+23].

Table 4 compiles performance figures and/or complexities of [BEF+23] and our work.
This table shows that our scheme is faster, owing to the quasi-linearity complexity of
our multiplicative gadget. The difference of complexity also holds for the error detection
(and correction) capability, namely quasi-linear in our case versus quadratic for [BEF+23].
Moreover, our scheme supports cost amortization, which allows for further speed-up and

Claude Carlet Abderrahman Daif, Sylvain Guilley and Cédric Tavernier 423

Table 4: Comparison between [BEF+23] and our work.

Algorithm SotA
[BEF+23]

This work
(genuine, i.e.,
with DFT)

This work
(with Van-
dermonde
matrix)

This work
(with DFT
and the trick
of [BEF+23])

laOla
[BEF+23]

Nb of shares 2d + e + 1 2d + 1 2d + e + 1 2d + 1 d + e + 1
Cost amort. No (1) Yes (t) Yes (t) Yes (t) No (1)
Security order d d + 1− t− e/2 d + 1− t d + 1− t d
Detected
errors e e e d e

Amount of
randomness
in secure
multiplication

d2 d + 1− t d + 1− t d + 1− t d2

Multiplication
gadget com-
plexity

2d2 + d(e + 1) (2d+1)(3+t+
4 log(2d + 1)) 2d(d + e + 1) 3(2d+1)(3+t+

4 log(2d + 1)) 3d2 +2d(e+1)

Error detec-
tion (and
correction)
complexity

O(d2) (2d +
1) log(2d + 1) 2d(d + e + 1) (2d +

1) log(2d + 1) O(d2)

huge memory saving. Namely, we can process t sensitive elements altogether whereas
[BEF+23] requires to repeat t times the computation.

The only advantage we see for [BEF+23] scheme stems from its flexibility. The fault
detection capability can be fine-tuned leveraging the parameter e.

Nonetheless, we attempted to compare our work with [BEF+23] in the context of
parametric fault detection capability. In this respect, we had to intentionally degrade our
scheme to turn the (quasi-linear) DFT into a (quadratic) multiplication by a Vandermonde
matrix. Indeed, DFT is rigid (of fixed size) whereas matrix multiplication is naturally
scalable. Despite this handicap, one can notice that our performance are similar (of same
quadratic complexity) to that of SotA. Also the error detection (or correction) capability is
the same in those conditions. Remarkably, our scheme with “inefficient” Fourier transform
still enjoys the advantage to allow for cost amortization.

We note that the authors of [BEF+23] use an extra trick to reduce the degree of the
polynomials while t < d/2: indeed, we can set:

Px(X) = IDFTω(mask(~x))
= P0(X) +Xd/2P1(X),

and
Px′(X) = IDFTω(mask(~x′))

= P ′0(X) +Xd/2P ′1(X).

The Pi and P ′i can be computed because we have proven in section 6 that the encoder
x 7→ (x, r)A−1 is d+ 1− t probing secure. We have:

Px′(X)Px(X) = P0(X)P ′0(X) +Xd/2 (P ′0(X)P1(X) + P0(X)P ′1(X)) +XdP1(X)P ′1(X),

with:

T (X) = P ′0(X)P1(X) + P0(X)P ′1(X)
= T0(X) + xd/2T1(X).

424 Quasi-linear masking against SCA and FIA, with cost amortization

Then we observe that d errors can be detected on the vectors:
~C0 = DFTω(P0(X)P ′0(X)),
~C1 = DFTω(Xd/2T0(X)),
~C2 = DFTω(XdT1(X)), and
~C3 = DFTω(XdP1(X)P ′1(X)),

just by remarking that at least d identified coefficients must be zero for each corresponding
polynomial, which enables error detection by syndrom computation.

Finally we underline that our cost amortization capability can be applied for each
vectors ~li, i ∈ {0, 1, 2, 3} in order to get 4 degree d polynomials D0, D1, D2 and D3 that
satisfy D = D0 +D1 +D2 +D3. Hence we avoid the degree 2d polynomial in C(X) and
consequently, d errors can be detected.

Interestingly, this trick is compliant with our scheme. Thus, our work is also empowered
to detect d faults, anywhere in any gadget, where 2d + 1 is the dimension of the codes.
This is reflected in the last-but-one column of Table 4. Our value of the security order
benefits from Corollary 1 (i.e., it attains its maximum value d+ 1− t), thereby equating
the probing security order of [BEF+23] schemes (SotA and laOla).

7 Software implementation
The implementation of a masked AES-128 allowed us to accurately measure the gain in
time and memory space that can be obtained with parallel masking (that is, t > 1). Indeed,
as we can see in Fig. 1, the computation time decreases linearly according to the size of
the sensitive data (t), consistently across values d (masking order). We can also witness
the quasi-linearity of the computation time (this quasi-affine function depending on the
value of d), and the non-linearity (namely, the “quadricity”) of RP masking [RP10]:

• the RP masking (in log-log scale) computation time curve grows by two decades
when d grows by one decade,

• whereas for our scheme, the slope is less than two (and the value also is less).

The need for randomness is represented in Fig. 2, and same observations can be done. All
values of d are represented for which there exists a DFT (namely d ∈ {1, 2, 7, 8, 25, 42}),
under the condition d > t.

We had to represent speed and randomness for large values of d not because practical
applications requires very high masking order, but to show the asymptotic complexity.

We used the C code from Jean-Sébastien Coron’s github project [Cor] to implement
RP. But we replaced the optimized log-table based multiplication by a constant-time one.
Namely, hardcoded tables sq, taffine, tsmult in file “aes_rp.c” have been replaced
by their algorithmic counterparts. The rationale is that masking is pointless if applied
on a non-constant time implementation, because timing leakage is exploitable at 1st
order [BGV21]. Obviously, we have adopted the same constant-time implementation to
our schemes, hence the comparison is fair. Such implementation of field multiplication is
used alike in both schemes (RP and ours).

These statistics concern the calculation of 50 times an AES-128 encryption, imple-
mented with C, compiled with gcc, with a refresh after each multiplication (SMult) or
exponentiation, and executed on an Intel(R) Core(TM) i7-8550U, CPU 1.80 GHz processor,
16 GB of RAM, with different configurations of our scheme compared to Rivain and Prouff
(RP) scheme [RP10].

Masking with cost amortization also reduces memory usage. Indeed, with t = 16, the
total cost to mask a block of 16 bytes is n instead of 16n. In general, the size of a masked
word for AES is 16n/t.

Claude Carlet Abderrahman Daif, Sylvain Guilley and Cédric Tavernier 425

 0.001

 0.01

 0.1

 1

 10

 10 100

Ti
m

e
 i
n
 s

e
co

n
d

s

Masking order d

Our masking scheme with t = 4
Our masking scheme with t = 8

Our masking scheme with t = 16
RP scheme

Figure 1: Computation time for 50 times AES calculation, with pre-calculated multiplica-
tion.

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1 10 100

A
m

o
u
n
t

o
f

ra
n
d

o
m

n
e
ss

 i
n
 b

y
te

s

Masking order d

Our masking scheme with t = 4
Our masking scheme with t = 8

Our masking scheme with t = 16
RP scheme

Figure 2: The amount of randomness generated in terms of bytes

426 Quasi-linear masking against SCA and FIA, with cost amortization

8 Limitations and Future Work
Side-channel security order. One drawback of our masking scheme is that the order of
masking cannot be freely chosen. Namely n shall divide q − 1 (recall Sec. 2.1) and the
choice of n is further limited by Eqn. (1) (which precludes in particular that n = q − 1).
For instance, for the cases of:

• AES (q = 256), the values of n are {3, 5, 15, 17, 51, 85}, i.e. d ∈ {1, 2, 7, 8, 25, 42}
(recall n = 2d+ 1);

• Crystals Kyber (q = 3329), the values of n are {2i, 2 ≤ i ≤ 8} ∪ {13 · 2i, 0 ≤ i ≤ 7},
i.e. d ∈ {2, 4, i8, 16, 32, 64, 128, 6, 13, 26, 52, 104, 208, 416, 832} (note that n = 2d+ 1
if n is odd but n = 2d if n is even).

9 Conclusions and perspectives
Code-based masking (CBM) can implement arbitrary computations based on additions
and multiplications, whist ensuring arbitrary chosen side-channel security order. Besides,
in terms of complexity, it has already been shown that those operations can be carried out
in quasi-linear time.

In this article, we show for the first time that such properties can be extended to the
case of multiple bytes concomitantly masking (construction known as cost amortization).
We also show how such masking is compatible with error detection and/or correction, that
can be nested within the code-based masking representation.

Furthermore, we detail the computation of the required Discrete Fourier Transform
(DFT) involved in these operations. We show how it can be implemented efficiently for
some specific DFT algorithms, which have a small implementation-level complexity.

We show actual implementation complexity results in software and detail our gain in
terms of performance.

As a perspective, we intend to show results in hardware and show the gain of our
masking in terms of gate size and power consumption as well.

Acknowledgments
The research of the first author is partly supported by the Norwegian Research Council.
The two last authors declare that this work has partly benefited from the funding by French
Bank for Innovation (BPI), through the project X7PQC (project call “Cryptographie
post quantique”, held by the National Quantum Strategy “Develop the post-quantum
cryptographical offering” and the National Cyber Strategy “Development of innovative
and critical cyber technologies”).

Claude Carlet Abderrahman Daif, Sylvain Guilley and Cédric Tavernier 427

References
[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-

jamin Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order masking.
In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT, volume 9056
of Lecture Notes in Computer Science, pages 457–485. Springer, 2015.

[BEF+23] Sebastian Berndt, Thomas Eisenbarth, Sebastian Faust, Marc Gourjon, Maxi-
milian Orlt, and Okan Seker. Combined fault and leakage resilience: Compos-
ability, constructions and compiler. IACR Cryptol. ePrint Arch., page 1143,
2023.

[BGK04] Johannes Blömer, Jorge Guajardo, and Volker Krummel. Provably secure
masking of AES. In Helena Handschuh and M. Anwar Hasan, editors, Selected
Areas in Cryptography, 11th International Workshop, SAC 2004, Waterloo,
Canada, August 9-10, 2004, Revised Selected Papers, volume 3357 of Lecture
Notes in Computer Science, pages 69–83. Springer, 2004.

[BGV21] Antoine Bouvet, Sylvain Guilley, and Lukas Vlasak. First-Order Side-Channel
Leakage Analysis of Masked but Asynchronous AES. In Pantelimon Stănică,
Sihem Mesnager, and Sumit Kumar Debnath, editors, Security and Privacy,
pages 16–29, Cham, 2021. Springer International Publishing.

[BHP98] Richard E Blahut, W. Cary Huffman, and Vera Pless. Decoding of cyclic codes
and codes on curves. Handbook of coding theory, 2:1569–1633, 1998.

[Can89] David G Cantor. On arithmetical algorithms over finite fields. Journal of
Combinatorial Theory, Series A, 50(2):285–300, 1989.

[CCG+20] Claude Carlet, Wei Cheng, Kouassi Goli, Jean-Luc Danger, and Sylvain Guilley.
Detecting Faults in Inner Product Masking Scheme IPM-FD: IPM with Fault
Detection (Extended version). Journal of Cryptographic Engineering, page 15,
May 30 2020. DOI: 10.1007/s13389-020-00227-6.

[Cor] Jean-Sébastien Coron. HTable countermeasure against side-channel attacks —
reference implementation for the masking scheme presented in [Cor14]. Source
code available from: https://github.com/coron/htable.

[Cor14] Jean-Sébastien Coron. Higher Order Masking of Look-Up Tables. In Phong Q.
Nguyen and Elisabeth Oswald, editors, EUROCRYPT, volume 8441 of Lecture
Notes in Computer Science, pages 441–458. Springer, 2014.

[CPRR15] Claude Carlet, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche. Alge-
braic decomposition for probing security. In Rosario Gennaro and Matthew
Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Pro-
ceedings, Part I, volume 9215 of Lecture Notes in Computer Science, pages
742–763. Springer, 2015.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Stefan Mangard, Florian
Mendel, and Robert Primas. Statistical ineffective fault attacks on masked
AES with fault countermeasures. In Thomas Peyrin and Steven D. Galbraith,
editors, Advances in Cryptology - ASIACRYPT 2018 - 24th International
Conference on the Theory and Application of Cryptology and Information
Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part II,
volume 11273 of Lecture Notes in Computer Science, pages 315–342. Springer,
2018.

https://github.com/coron/htable

428 Quasi-linear masking against SCA and FIA, with cost amortization

[DIK10] Ivan Damgård, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty
computation and the computational overhead of cryptography. In Henri
Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, 29th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Monaco / French Riviera, May 30 - June 3, 2010. Proceedings,
volume 6110 of Lecture Notes in Computer Science, pages 445–465. Springer,
2010.

[FRSG22] Jakob Feldtkeller, Jan Richter-Brockmann, Pascal Sasdrich, and Tim Güneysu.
CINI MINIS: domain isolation for fault and combined security. In Heng Yin,
Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, pages 1023–1036.
ACM, 2022.

[Gao03] Shuhong Gao. A new algorithm for decoding reed-solomon codes. In Commu-
nications, information and network security, pages 55–68. Springer, 2003.

[GJR18] Dahmun Goudarzi, Antoine Joux, and Matthieu Rivain. How to Securely
Compute with Noisy Leakage in Quasilinear Complexity. In Thomas Peyrin
and Steven D. Galbraith, editors, ASIACRYPT, volume 11273 of Lecture Notes
in Computer Science, pages 547–574. Springer, 2018.

[GM10] Shuhong Gao and Todd D. Mateer. Additive Fast Fourier Transforms Over
Finite Fields. IEEE Trans. Inf. Theory, 56(12):6265–6272, 2010.

[GPK+21] Michael Gruber, Matthias Probst, Patrick Karl, Thomas Schamberger, Lars
Tebelmann, Michael Tempelmeier, and Georg Sigl. Domrep-an orthogonal
countermeasure for arbitrary order side-channel and fault attack protection.
IEEE Trans. Inf. Forensics Secur., 16:4321–4335, 2021.

[GPRV21] Dahmun Goudarzi, Thomas Prest, Matthieu Rivain, and Damien Vergnaud.
Probing security through input-output separation and revisited quasilinear
masking. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(3):599–640, 2021.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of reed-solomon
and algebraic-geometry codes. IEEE Trans. Inf. Theory, 45(6):1757–1767,
1999.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, Advances in Cryptol-
ogy - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa
Barbara, California, USA, August 17-21, 2003, Proceedings, volume 2729 of
Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

[Jr.65] G. David Forney Jr. On decoding BCH codes. IEEE Trans. Inf. Theory,
11(4):549–557, 1965.

[JT12] Marc Joye and Michael Tunstall, editors. Fault Analysis in Cryptography.
Information Security and Cryptography. Springer, 2012.

[KB10] Sabine Kampf and Martin Bossert. The euclidean algorithm for generalized min-
imum distance decoding of reed-solomon codes. In Marcus Greferath, Joachim
Rosenthal, Alexander Barg, and Gilles Zémor, editors, 2010 IEEE Information
Theory Workshop, ITW 2010, Dublin, Ireland, August 30 - September 3, 2010,
pages 1–5. IEEE, 2010.

Claude Carlet Abderrahman Daif, Sylvain Guilley and Cédric Tavernier 429

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[Knu11] Donald E. Knuth. The Art of Computer Programming. Addison Wesley, March
2011. ISBN-13: 978-0201038040.

[LCK+18] Wen-Ding Li, Ming-Shing Chen, Po-Chun Kuo, Chen-Mou Cheng, and Bo-
Yin Yang. Frobenius Additive Fast Fourier Transform. In Manuel Kauers,
Alexey Ovchinnikov, and Éric Schost, editors, Proceedings of the 2018 ACM
on International Symposium on Symbolic and Algebraic Computation, ISSAC
2018, New York, NY, USA, July 16-19, 2018, pages 263–270. ACM, 2018.

[MAN+19] Lauren De Meyer, Victor Arribas, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. M&m: Masks and macs against physical attacks. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2019(1):25–50, 2019.

[Mas69] James L. Massey. Shift-register synthesis and BCH decoding. IEEE Trans.
Inf. Theory, 15(1):122–127, 1969.

[McE77] Robert J. McEliece. Encyclopedia of mathematics and its applications. The
Theory of Information and Coding: A Mathematical Framework for Communi-
cation, 1977.

[MS77] Florence Jessie MacWilliams and N. J. A. Neil James Alexander Sloane.
The theory of error correcting codes. North-Holland mathematical library.
North-Holland Pub. Co. New York, Amsterdam, New York, 1977. Includes
index.

[MZ22] Maria Chiara Molteni and Vittorio Zaccaria. A relation calculus for reasoning
about t-probing security. J. Cryptogr. Eng., 12(1):1–14, 2022.

[Pet60] W. Wesley Peterson. Encoding and error-correction procedures for the bose-
chaudhuri codes. IRE Trans. Inf. Theory, 6(4):459–470, 1960.

[PGS+17] Romain Poussier, Qian Guo, François-Xavier Standaert, Claude Carlet, and
Sylvain Guilley. Connecting and improving direct sum masking and inner
product masking. In Thomas Eisenbarth and Yannick Teglia, editors, Smart
Card Research and Advanced Applications - 16th International Conference,
CARDIS 2017, Lugano, Switzerland, November 13-15, 2017, Revised Selected
Papers, volume 10728 of Lecture Notes in Computer Science, pages 123–141.
Springer, 2017.

[Pla22] Maxime Plançon. Exploiting algebraic structures in probing security. Cryp-
tology ePrint Archive, Paper 2022/1540, 2022. https://eprint.iacr.org/
2022/1540.

[RMB+18] Oscar Reparaz, Lauren De Meyer, Begül Bilgin, Victor Arribas, Svetla Nikova,
Ventzislav Nikov, and Nigel P. Smart. CAPA: the spirit of beaver against
physical attacks. In Hovav Shacham and Alexandra Boldyreva, editors, Ad-
vances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I,
volume 10991 of Lecture Notes in Computer Science, pages 121–151. Springer,
2018.

https://eprint.iacr.org/2022/1540
https://eprint.iacr.org/2022/1540

430 Quasi-linear masking against SCA and FIA, with cost amortization

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking
of AES. In Stefan Mangard and François-Xavier Standaert, editors, CHES,
volume 6225 of Lecture Notes in Computer Science, pages 413–427. Springer,
2010.

[RR86] Welch Lloyd R and Berlekamp Elwyn R. Error correction for algebraic block
codes, December 1986. US Patent 4,633,470.

[Sha07] Priti Shankar. Decoding reed-solomon codes using euclid’s algorithm. Reso-
nance, 12(4):37–51, 2007.

[SMG16] Tobias Schneider, Amir Moradi, and Tim Güneysu. ParTI - Towards Combined
Hardware Countermeasures Against Side-Channel and Fault-Injection Attacks.
In Matthew Robshaw and Jonathan Katz, editors, CRYPTO, volume 9815 of
Lecture Notes in Computer Science, pages 302–332. Springer, 2016.

[TL20] Nianqi Tang and Yun Lin. Fast Encoding and Decoding Algorithms for Arbi-
trary (n, k) Reed-Solomon Codes Over F2m . IEEE Commun. Lett., 24(4):716–
719, 2020.

[Uni] University of Sydney (Australia). Magma Computational Algebra System.
http://magma.maths.usyd.edu.au/magma/, Accessed on 2022-08-22.

[vzGG96] Joachim von zur Gathen and Jürgen Gerhard. Arithmetic and Factorization
of Polynomial over F2 (Extended Abstract). In Proceedings of the 1996
International Symposium on Symbolic and Algebraic Computation, ISSAC ’96,
page 1–9, New York, NY, USA, 1996. Association for Computing Machinery.

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra (3.
ed.). Cambridge University Press, 2013.

[WMCS20] Weijia Wang, Pierrick Méaux, Gaëtan Cassiers, and François-Xavier Standaert.
Efficient and private computations with code-based masking. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2020(2):128–171, 2020.

[WZ88] Yao Wang and Xuelong Zhu. A fast algorithm for the Fourier transform
over finite fields and its VLSI implementation. IEEE J. Sel. Areas Commun.,
6(3):572–577, 1988.

[YJ00] Sung-Ming Yen and Marc Joye. Checking Before Output May Not Be Enough
Against Fault-Based Cryptanalysis. IEEE Trans. Computers, 49(9):967–970,
2000. DOI: 10.1109/12.869328.

A Case of the Galois field F28

The symmetric encryption algorithm AES is a byte-oriented block cipher. It design leverages
the irreducible polynomial X8 +X4 +X3 +X+1. The Sbox is based on the inverse function
defined over the finite field F28 = F2[X]

(X8+X4+X3+X+1) . The canonical basis is given by α = X

in F28 and 1 + α is a primitive element of this field. Then X256 −X = X(X255 − 1) and
255 = 3× 5× 17. We can consider DFT with n = 3, 5, 15, 17, 51, 85. The case n = 3 has
been described in a previous section.

We note that we have not a large choice for n if we keep this method. We will see in the
next section that we can construct a DFT and its associate inverse by observing the different
trees. The SAGE code and the executable source code in C language of our implementations
are provided in a GitHub: https://github.com/daif-abde/FFT_masking.git.

http://magma.maths.usyd.edu.au/magma/
https://github.com/daif-abde/FFT_masking.git

Claude Carlet Abderrahman Daif, Sylvain Guilley and Cédric Tavernier 431

A.1 AES example with d = 2
The case n = 2d+ 1 = 5 corresponds to d+ 1− t = 3− t order masking. The case n = 5 is
not a power of two but we can propose a decomposition that leads to very low complexity
and we consider ω = (1 + α) 255

5 = (1 + α)51, then

X6−X = X(X−1)(1+X+X2 +X3 +X4) = X(X−1)(X−ω)(X−ω2)(X−ω3)(X−ω4).

Hence, we can propose the polynomial decomposition tree displayed in Fig. 3.

X + ω2X + ω3X + ω4X + ωX + 1X

X2 + (ω3 + ω2)X + 1X2 + (ω + ω4)X + 1X2 + X

X4 + X3 + X2 + X + 1X4 + X3

X6 + X

Figure 3: Polynomial decomposition tree for X6 +X on F256.

We propose to evaluate precisely here the complexity of the ~r ′′ calculation with

~r ′′ =
(
IDFT(~µ, 0, . . . , 0) + ~θ + ~w ∗ IDFT(~λ, 0, . . . , 0)

)
.

Hence this computation leads to consider a maximum degree 3 polynomial P (X) that we
have to evaluate over {1, ω, . . . , ω4}.

The Euclidean division of P (X) by X2 +X costs 2 additions over F28 . The Euclidean
division of P (X) by X2 + (ω + ω4)X + 1 costs 2 multiplications and 4 additions over F28 .
We obviously get the same number for X2 + (ω + ω4)X + 1. The last step consists in
performing the Euclidean division by all monomials except X which costs: 5 additions
and 4 multiplications. Hence totally the DFT cost 6 multiplications and 9 additions. For
comparison, 11 > 6 ln(6) > 10 and 20 > 6 ln2(6) > 19.

A.2 AES example with d = 7
The case n = 2d+ 1 = 15 corresponds to d+ 1− t = 8− t-order masking maximum. The
case n = 15 corresponds to a power of two and we can propose a decomposition that lead
to very fast complexity. Let ω = (1 + α) 255

15 = (1 + α)17 = 1 + α5 + α6 + α7. Then we get:

1 + ω2 = ω8;
1 + ω = ω4;
1 + ω7 = ω9;
1 + ω3 = ω14;
1 + ω5 = ω10;
1 + ω11 = ω12;

thus, according to [WZ88], we get the following decomposition tree depicted in Fig. 4.
This tree is rotated so that it fits in the page limits.

Regarding AES, block size is 16 bytes then we can apply three Fourier transforms over
respectively 5 bytes, 6 bytes and 5 bytes. It means that we encode polynomials of degree
at most 7. Hence in the diagram, we start from evaluating the division by a degree 4
polynomials.

432 Quasi-linear masking against SCA and FIA, with cost amortization

X + ω12

X + ω11

X + ω14

X + ω3

X + ω13

X + ω6

X + ω9

X + ω7

X + ω8

X + ω2

X + ω4

X + ω

X + ω10

X + ω5

X + 1

X

X2 + X + ω8

X2 + X + ω2

X2 + X + ω4

X2 + X + ω

X2 + X + ω10

X2 + X + ω5

X2 + X + 1

X2 + X

X4 + X + ω10

X4 + X + ω5

X4 + X + 1

X4 + X

X8 + X4 + X2 + X + 1

X8 + X4 + X2 + X

X16 + X

Figure 4: Polynomial decomposition tree for X16 +X on F256.

	Introduction
	Background on masking
	Analysis of the state of the art
	Our contributions
	Outline

	Preliminaries
	Finite fields
	Reed-Solomon codes
	Multiplication of polynomials and DFTs in finite fields
	Quasi-linear DFT in practice

	Quasi-Linear Masking without Cost Amortization
	Masking construction
	Masking addition and scaling
	Masking the multiplication

	Quasi-linear Masking with Cost Amortization
	Encoding procedure
	Masking the multiplication
	Matrix product masking
	Exponentiation algorithm

	Detecting/correcting fault injections
	Error correcting code interpretation
	Error detection method
	Positive effect of cost amortization on fault detection capability

	Security proof
	The encoding procedure
	NI and SNI criteria
	The multiplication gadget
	Fault detection/correction
	Detecting faults in the gadget
	Comparison with DBLP:journals/iacr/00010FGOS23

	Software implementation
	Limitations and Future Work
	Conclusions and perspectives
	Case of the Galois field F28
	AES example with d=2
	AES example with d=7

