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Abstract. Deep Learning (DL) based Side-Channel Analysis (SCA) has been extremely
popular recently. DL-based SCA can easily break implementations protected by
masking countermeasures. DL-based SCA has also been highly successful against
implementations protected by various trace desynchronization-based countermeasures
like random delay, clock jitter and shuffling. Over the years, many DL models have
been explored to perform SCA. Recently, Transformer Network (TN) based model
has also been introduced for SCA. Though the previously introduced TN-based model
is successful against implementations jointly protected by masking and random delay
countermeasures, it is not scalable to long traces (having a length greater than a few
thousand) due to its quadratic time and memory complexity. This work proposes
a novel shift-invariant TN-based model with linear time and memory complexity.
The contributions of the work are two-fold. First, we introduce a novel TN-based
model called EstraNet for SCA. EstraNet has linear time and memory complexity in
trace length, significantly improving over the previously proposed TN-based model’s
quadratic time and memory cost. EstraNet is also shift-invariant, making it highly
effective against countermeasures like random delay and clock jitter. Secondly, we
evaluated EstraNet on three SCA datasets of masked implementations with random
delay and clock jitter effect. Our experimental results show that EstraNet significantly
outperforms several benchmark models, demonstrating up to an order of magnitude
reduction in the number of attack traces required to reach guessing entropy 1.
Keywords: SCA · Transformer Network · Shift-invariance

1 Introduction
The power consumption or electromagnetic emission of a CMOS device depends on
the data being processed within the device. Side-Channel Analysis (SCA) exploits this
dependency to recover the secret key of a cryptographic device. Non-profiling SCA such
as differential power analysis (DPA) [KJJ99], correlation power analysis (CPA) [BCO04],
and mutual information analysis [GBTP08] perform attacks on a target device without
prior characterization of its leakage behavior. In contrast, profiling SCA assumes that the
adversary possesses a clone of the target device under his control. The attacker utilizes the
clone device to characterize the leakage behavior, learning an approximate leakage model
for the target device. This learned model is then used to perform actual attacks. Examples
of profiling attacks include template attack [CRR02] and stochastic attack [SLP05].

Profiling attacks have received significant attention in the SCA literature due to their
ability to provide worst-case evaluations of cryptographic devices against SCA. Classical
profiling attacks, such as the template attack, heavily rely on the selection of informative
sample points, commonly referred to as Points-of-Interests (POIs), before conducting the
attack. However, selecting POIs becomes challenging for implementations protected by
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countermeasures like masking [CG00], random delay, and clock jitter [WP20]. In recent
years, Deep Learning (DL) has emerged as a highly successful approach for profiling
SCA [MZ13, MPP16]. DL-based SCA (DLSCA) demonstrates remarkable performance
even without precise POI selection. Instead, approximately selecting an attack window
containing some POIs is sufficient for DLSCA to yield favorable results. Recent studies
[LZC+21, PWP21, KP22] have shown that the effectiveness of DL models can be signif-
icantly enhanced by conducting attacks on larger attack windows or full-length traces.
Utilizing a larger attack window increases the likelihood of including more POIs, thus
improving the performance by combining their leakages. Additionally, it is relatively easier
to find a larger attack window containing some POIs. This work aims to improve the
performance of DLSCA when applied to longer traces or larger attack windows.

Various deep learning (DL) models, including the Feed Forward Network (FFN) [MZ13,
MHM13, MPP16], Convolutional Neural Network (CNN) [MPP16, CDP17, BPS+20, ZS20,
PSK+18], and Recurrent Neural Network (RNN) [MPP16, Mag19, LZC+21], have been
extensively investigated for profiling SCA. Recently, a Transformer Network (TN)-based
model called TransNet was introduced in [HSAM22] for profiling SCA, demonstrating
successful attacks against implementations protected by masking and random delay coun-
termeasures. Since TNs are better at capturing the dependency among distant POIs
than other DL models like CNNs or RNNs [VSP+17], they are a natural choice for those
SCAs which requires combining leakages from distant POIs. Furthermore, it was shown in
[HSAM22] that TN could be made shift-invariant, making TransNet highly effective against
large trace desynchronizations. However, the quadratic time and memory complexity of
TransNet with respect to the trace length makes it impractical for traces having lengths
greater than a few thousand. This study introduces a novel TN-based model called Es-
traNet, which exhibits linear time and memory complexity. The linear complexity enables
EstraNet to scale effectively to traces with lengths exceeding 10K. Additionally, EstraNet
is shift-invariant, making it robust against countermeasures like random delay and clock
jitter. We conduct evaluations of EstraNet on three large-scale datasets, demonstrating
comparable or significantly better performance compared to three CNN and LSTM-based
benchmark models. More precisely, the contributions of the work are as follows:

1. We propose EstraNet1, a novel TN-based model for SCA. EstraNet has a linear time
and memory complexity in terms of trace length. EstraNet is also shift-invariant,
making it effective against countermeasures like random delay and clock jitter. Our
contributions in EstraNet architecture are two-fold:

(a) The self-attention layer is the major component of a TN. We propose a novel
self-attention layer, called GaussiP attention, with linear time and memory
complexity. The attention layer incorporates relative positional encoding making
it suitable for the shift-invariance of EstraNet.

(b) Due to the incompatibility of conventional normalization techniques, such as
batch normalization and layer normalization in TNs for SCA, we introduce a
novel normalization approach called layer-centering in EstraNet.

2. We conducted experimental evaluations of EstraNet on three datasets of masked
implementations. The main observations of our experiments are as follows:

(a) We compared the performance of EstraNet with three CNN and LSTM-based
benchmark models on the datasets. Additionally, we introduced random dis-
placements in the traces to assess the models’ robustness against random delay.
The results indicate that EstraNet performs similarly or significantly better
than the benchmark models. More precisely, it requires upto 90% less attack
traces to reach the guessing entropy 1 compared to the benchmark models.

1The Tensorflow implementation can be available at https://github.com/suvadeep-iitb/EstraNet.git



338 EstraNet

(b) We conducted additional comparisons between EstraNet and the benchmark
models on the datasets after adding clock jitter effect. The experiments demon-
strate that EstraNet can reach the guessing entropy 1 using fewer than 100
attack traces most of the time, while the benchmark models struggle to reach
the same using as many as 5K traces. Even in cases where the benchmark
models performs relatively well, they still required an order of magnitude more
attack traces compared to EstraNet.

(c) We conducted several studies to assess the influence of several hyperparameters
on the performance of EstraNet. Additionally, we performed an ablation study
to analyze the impact of different design choices and training setup.

The organization of the paper is as follows. In Section 2, we introduce the necessary
notations and SCA background. Section 3 briefly describes vanilla TN along with its prime
component, self-attention operation. The section also briefly outlines an approach to make
the self-attention and, thus, the TN models linear in time and memory complexity. In
Section 4, we propose a novel self-attention operation with relative positional encoding and
linear time and memory cost. Section 5 introduces the overall architecture of EstraNet.
In Section 6, we provide the experimental results. Section 7 discusses the limitations of
EstraNet and depicts some future work directions. Finally, in Section 8, we conclude the
work.

2 Preliminaries
2.1 Notations
We use the following notational conventions throughout the paper. We use a letter in
the capital (like X) to represent a random variable. The corresponding small letter (like
x) and calligraphic letter (like X ) are respectively used to represent an instantiation and
the domain of the random variable. Similarly, we use a capital letter in bold (like X) to
represent a random vector and the corresponding small letter in bold (like x) to represent
an instantiation of the random vector. A matrix is represented by a capital letter in Roman
style (like M). We represent the i-th elements of a vector x by x[i] and the element of i-th
row and j-th column of a matrix M by M[i, j]. We use the notation P[·] to represent the
probability mass/density function and E[·] to represent expectation.

2.2 Side-Channel Analysis
The power consumption or electromagnetic (EM) emission of a semiconductor device
depends on the values being manipulated within the device. SCA exploits this behavior
of semiconductor devices to gain information about some intermediate sensitive variables
of a cryptographic implementation and, hence, the device’s secret key. More precisely,
in an SCA, an adversary takes control of the target device, also known as Device Under
Test (DUT), and collects power or EM measurements, referred to as traces, by executing
the encryption (resp. decryption) algorithm multiple times with different plaintexts (resp.
ciphertexts). Then the adversary performs a statistical test to infer the device’s secret key.

SCA can be of two types: profiling SCA and non-profiling SCA. In a profiling SCA,
the adversary is assumed to possess a clone of the DUT under his control. Using the
clone device, he can build a profile of the DUT’s power consumption or EM emission
characteristic and use that profile for performing the actual attack. On the other hand, in
a non-profiling SCA, the adversary does not possess any clone device and, thus, cannot
build any power/EM profile of DUT. Instead, he tries to recover the secret key from the
traces of DUT only. In this paper, we consider profiling SCA only.
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2.3 Profiling SCA
A profiling SCA is performed in two phases. In the first phase, known as the profiling
phase, the adversary sets some known key in the clone device and collects a large number of
traces by executing the encryption (resp. decryption) operations on some known plaintexts
(resp. ciphertexts) using the device. For each trace, the adversary computes the value
of an intermediate secret variable Z = F (X,K), where X represents a component of the
random plaintext (or ciphertext), K represents a component of the (possibly random) key,
F (·, ·) is a cryptographic primitive. Then the adversary uses the traces to build a model
for

P[L|Z] = P[L|F (X,K)] (1)

where L represents a random vector corresponding to the traces. The conditional proba-
bilities P[L|Z] serve as the leakage templates in the second phase.

In the second phase, also known as the attack phase, the adversary collects several trace-
plaintext pairs {(̃li, p̃i)}Ta−1

i=0 , where l̃i, p̃i are the i-th trace and plaintext (or ciphertext)
respectively, and Ta is the total number of attack traces, executing the DUT for varying
plaintexts. For all the traces, the secret key k∗ is unknown but fixed. Finally, the adversary
computes the score for each possible key as

δ̂k =
Ta−1∑
i=0

log P[Z = F (p̃i, k)|L = l̃i] ∝
Ta−1∑
i=0

log
(
P[L = l̃i|Z = F (p̃i, k)]× P[F (p̃i, k)]

)
(2)

The key k̂ = argmaxk δ̂k is chosen as the predicted key. If k̂ = k∗ holds, the prediction is
said to be correct. The rank of the correct key in the list of all the possible keys sorted by
their scores δ̂k is used as a metric for the degree of success of the attack. This attack is
also called a Template attack as the estimated P[L|Z] in Eq. 1 can be considered as the
leakage template for different values of the sensitive variable Z.

2.4 Deep Learning based Profiling SCA
In Deep Learning (DL) based profiling SCA, the adversary trains a DL model which takes
a trace L as input and generates a probability distribution over all possible values of the
sensitive variable Z. More precisely, let f(·; θ∗) be the trained DL model with θ∗ be the
model parameters learned during training. Thus, the output of the DL model for a trace l
can be written as

p = f(l; θ∗) (3)

where p ∈ R|Z| such that p[i], for i = 0, · · · , |Z| − 1, represents the predicted probability
for the intermediate variable Z = i. During the attack phase, given the set of attack
trace-plaintext pairs {(̃li, p̃i)}Ta−1

i=0 , the score of each key k ∈ K is computed as

δ̂k =
Ta−1∑
i=0

log pi[F (p̃i, k)] (4)

where pi = f (̃li; θ∗) is the predicted probability vector for the i-th trace. Like template
attack, k̂ = argmaxk δ̂k is chosen as the guessed key. Alternatively, the rank of the correct
key in the list of all possible keys sorted by their scores δ̂k can be considered as a metric
for the degree of the attack’s success.

Various DL models (Feed Forward Network [MZ13, MHM13, MPP16], Convolutional
Neural Network [MPP16, CDP17, BPS+20, ZS20, PSK+18], Recurrent Neural Network
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[MPP16, Mag19, LZC+21]) have been used for SCA. Recently, [HSAM22] has introduced
a shift-invariant TN model, TransNet, for SCA. However, their proposed model only
applies to short traces (having lengths less than a few thousand) as the time and memory
complexity of the model is quadratic in trace length. This work introduces a shift-invariant
TN with linear time and memory complexity. Thus, in the next section, we describe the
architecture of TN. We also briefly outline the existing methods to make the TN models’
self-attention operation; thus, the TN models themselves shift-invariant and have linear
computational costs. Section 4 proposes a novel shift-invariant self-attention operation for
SCA having a linear cost.

3 Transformer Network
Like all other DL models, TN also has a layered structure. It consists of multiple
transformer layers stacked one after another. Each transformer layer takes an input
sequence X = [x0, . . . ,xn−1]T ∈ Rn×d of n feature vectors as input and transforms it into
another sequence Y = [y0, . . . ,yn−1]T ∈ Rn×d where n corresponds to the trace length
or sequence length and d is the dimension of each feature vector. The transformer layer
consists of the self-attention layer and position-wise feed-forward layer. More precisely, if
we denote the self-attention layer by the function fSA : Rn×d 7→ Rn×d and the position-wise
feed-forward layer by fP F F : Rn×d 7→ Rn×d, then the output Y of a transformer layer can
be computed as

Ŷ = fSA(X) + X
Y = fP F F (Ŷ) + Ŷ

The function fP F F independently transforms each feature vector using a feed-forward
network, thereby enhancing the non-linear characteristics of the model. In contrast, the
self-attention layer captures the interdependencies between input features by transforming
each feature based on its relation to other features. As a result, the self-attention layer
plays a critical role in TN’s ability to capture the dependency among the distant features.

In the context of SCA, the input X corresponds to the input of an intermediate layer,
where n represents the input length (which is equal to the trace length for the first layer),
and d represents the feature dimension of the preceding layer. Similarly, Y corresponds to
the output of the layer. The self-attention layer possesses the ability to combine leakage
information from multiple POIs, leading to higher SNR outputs. Specifically, it can
combine the leakages of different shares from a masked implementation to reconstruct the
unmasked secret in some output feature vectors.

In the following section, we present a brief description of the self-attention layer.

3.1 Self-attention Layer
Given the input sequence X = [x0, . . . ,xn−1]T ∈ Rn×d, the self-attention layer computes
the output sequence V̂ = [v̂0, . . . , v̂n−1]T ∈ Rn×dv as follows

v̂i =
n−1∑
j=0

softmax
(

qT
i kj√
d

)
vj =

n−1∑
j=0

exp
(

qT
i kj/

√
d
)

∑n−1
l=0 exp

(
qT

i kl/
√
d
)vj (5)

where

qi = Wqxi, ki = Wkxi, vi = Wvxi

for i = 0, . . . , n − 1, Wq,Wk ∈ Rdk×d and Wv ∈ Rdv×d. The final output of the self-
attention layer is computed as Ŷ = V̂WT

o + X where Wo ∈ Rd×dv is the projection matrix
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which projects the dv-dimensional v̂js back into d-dimensional vector space. The matrices
Wq,Wk,Wv and Wo are the parameters of the DL model which are learned during the
training and the dk and dv are two hyper-parameters known as the key and value dimension
respectively. The scalar softmax

(
qT

i kj√
d

)
can be thought of as the attention v̂i pays to the

input feature xj . This attention mechanism plays the major role in the TN’s ability to
capture long-distance dependency. If there exists some dependency between two input
features, say xi and xj , the attention from v̂i to xj can be large, making the i-th output
feature ŷi = Wov̂i + xi dependent on both xi and xj , thus, capturing the interrelations
between those. Moreover, unlike CNN and RNN, the self-attention layer can capture the
dependency between xi and xj in a constant number of steps even when the distance
between i and j is large. Indeed, in [VSP+17], it has been argued that TN is better than
CNN and RNN in capturing long distant dependency. [HSAM22] has demonstrated that
the TN’s ability of capturing long distant dependency can be utilized to make it highly
effective in attacking software implementation of masked countermeasure in which the
leakages of multiple shares (that can be far apart in time dimension) need to be combined
for a successful attack.

Multihead Self-Attention One self-attention operation with a set of the parameters
Wq,Wk and Wv is called one attention head. In practice, several attention heads are
parallelly used in the self-attention layer. Thus, an H-head self-attention layer is computed
as

V̂(i) = fSA(X; W(i)
q ,W(i)

k ,W(i)
v ), i = 0, . . . ,H − 1

V̂ = concat
(

V̂(0), . . . , V̂(H−1)
)
,

Ŷ = V̂WT
o + X

where, the operation concat
(

V̂(0), . . . , V̂(H−1)
)
denotes the row-wise concatenation of the

matrices V̂(0), . . . , V̂(H−1). Thus, in this new setting, V̂(i) ∈ Rn×dv , V̂ ∈ Rn×Hdv and
Wo ∈ Rd×Hdv . For simplicity, by self-attention, we will imply the single-head self-attention
layer only, though our observations can be easily extended to multihead self-attention.

One main drawback of the vanilla self-attention operation is that any parallel implemen-
tation of self-attention has quadratic memory and computation cost with respect to the
input length. In SCA, the trace length can be very large (in the order of 105). Quadratic
complexity of the self-attention layer prevents TN from being applied to very long traces
[HSAM22]. Several variations of self-attention operation have been introduced, which
operate in linear time and memory. In the next section, we describe one such approach.

3.2 Self-attention with Linear Complexity
Rewriting the last term of Eq. (5), the self-attention operation can be given by

v̂i =

∑n−1
j=0 exp

(
qT

i kj/
√
d
)

vj∑n−1
j=0 exp

(
qT

i kj/
√
d
) . (6)

In [KVPF20], Katharopoulos et al. have replaced the exponential function of the form
exp(qT k/

√
d) by a positive function k(q,k) such that k(q,k) is factorizable as φ(q)Tφ(k)

for some feature map φ : Rdk → Rd′k and k(q,k) ≥ 0 for all k,q ∈ Rdk . A function k(q,k)
which is factorizable as φ(q)Tφ(k) is known as (positive semi-definite) kernel function
[Wik22]. Thus, replacing the exponential function in Eq. (6) by a kernel k(·, ·) such that
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k(·, ·) ≥ 0, the vector v̂i can be computed as

v̂T
i =

∑n−1
j=0 k (qi,kj) vT

j∑n−1
j=0 k (qi,kj)

=
∑n−1

j=0 φ(qi)Tφ(kj)vT
j∑n−1

j=0 φ(qi)Tφ(kj)
=
φ(qi)T

∑n−1
j=0 φ(kj)vT

j

φ(qi)T
∑n−1

j=0 φ(kj)
. (7)

Since all v̂is share the terms
∑n−1

j=0 φ(kj)vT
j and

∑n−1
j=0 φ(kj) in Eq. (7), those can be

computed using linear time and memory2. However, since they have used a different kernel
k(q,k) than the exp(qT k), the resultant self-attention operation differs from the vanilla
softmax self-attention (i.e. Eq. (5)).

3.2.1 Feature Map for Softmax Self-attention

Recently, several works [PPY+21, CLD+21] have proposed self-attentions which approxi-
mate the softmax self-attention and works in linear time and memory. The theoretical
foundation of the works lies in the approximation of the Gaussian kernel, i.e., the kernel of
the form exp

(
−||q − k||22/2σ2) using random Fourier features [RR07, YSC+16, CRW17].

More precisely, the Fourier feature map defined as

φfr(x) = 1√
de

[
sin(wT

0 x), . . . , sin(wT
de−1x), cos(wT

0 x), . . . , cos(wT
de−1x)

]T
, (8)

where w0, . . . ,wde−1 are i.i.d (independent and identically distributed) samples from d
dimensional Gaussian distribution with zero mean and identity covariance matrix, can
approximate the Gaussian kernel as

exp(−||q − k||22/2) ≈ φfr(q)Tφfr(k).

Thus, φfr(x) is a feature map for the Gaussian Kernel. Peng et al. [PPY+21] have used
the above feature map for the Gaussian kernel to obtain a feature map for the kernel
exp

(
qT k

)
. Concretely, exp(qT k) can be written as

exp
(
qT k

)
= exp

(
||q||22

2

)
exp

(
−||q − k||22

2

)
exp

(
||k||22

2

)
Thus, using the feature map:

φtri(x) =
exp

(
||x||22/2

)
√
de

[
sin(wT

0 x), . . . , sin(wT
de−1x), cos(wT

0 x), . . . , cos(wT
de−1x)

]T
, (9)

we can approximate the kernel exp
(
qT k

)
as φtri(q)Tφtri(k) where de is a hyper-parameter

known as the dimension of the kernel feature map. However, in [CLD+21], Choromanski et
al. pointed out that φtri might lead to unstable behavior of self-attention due to potentially
negative components like sin(wT

j x)s and cos(wT
j x)s in φtri. They resolved the issue by

proposing positive random feature map:

φpos(x) =
exp

(
−||x||22/2

)
√
de

[
exp(wT

0 x), . . . , exp(wT
de−1x)

]T
, (10)

where w0, . . . ,wde−1 are as defined in Eq. (8). Since φpos(x) can have only positive
components, it solves the unstable behavior of φtri.

2Note that, with this reformulation of self-attention operation, the network’s ability to learn long-
distance dependency is not compromised as every input feature is still connected to every output feature by
a constant number of steps. However, such reformulation introduces some approximation errors [CLD+21].
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3.3 Relative Positional Self-attention with Linear Complexity
In self-attention of the form of Eq. (5), the attention an output feature v̂i pays to an input
feature xj does not depend on their positions i.e. the indices i and j. More precisely, the
attention paid by the output feature v̂i to the input feature xj is proportional to k(qi,kj)
which is a function of the vectors qi and kj not their positions i and j. Thus, if the input
sequence is permuted, the output sequence of the self-attention layer will also be permuted
similarly. However, in SCA, we want the attention to be more on the POIs rather than
all sample points having equal attention. Moreover, in the presence of countermeasures
like random delay and clock jitters, the distances between the POIs remain approximately
same though their absolute positions (the indices at which they appear) vary from trace
to trace. Thus, we want the attention an output feature v̂i pays to an input feature xj

to depend on their relative positions or i − j. Such modeling of attention probabilities
is referred to as relative positional encoding. In self-attention with relative positional
encoding, the terms of the form exp

(
qT

i kj

)
in Eq. (5) is generalized by a positive function

of the form f(qi,kj , i− j) [SUV18, DYY+19].
In self-attention with relative positional encoding and linear complexity, the kernel

k (qi,kj) in Eq. (7) is replaced by another kernel of the form kr (qi,kj , i− j) such that
the new kernel is (approximately) factorizable as kr (qi,kj , i− j) = φq(qi, i)Tφk(kj , j).
Thus, by replacing the terms k(qi,kj) in Eq. (7) by the relative position aware kernel, we
get self-attention with relative positional encoding, which can be performed in linear time
and memory as follows:

v̂T
i =

∑n−1
j=0 kr (qi,kj , i− j) vT

j∑n−1
j=0 kr (qi,kj , i− j)

=
φq(qi, i)T

∑n−1
j=0 φk(kj , j)vT

j

φq(qi, i)T
∑n−1

j=0 φk(kj , j)
. (11)

In literature, several self-attention with relative positional encoding which work in linear
time and memory have been introduced. For example, [LCW+21, LSL+21, SLP+21] have
used feature maps of the form φq(qi, i) = φ(Miqi) and φk(kj , j) = φ(Njkj) where the
matrix MT

i Nj is a function of i−j and φ(·) is given by Eq. (9) or (10). [LCW+21, LSL+21]
have further generalized the matrices Mi and Njs by some small DL models. In [Che21],
Chen et al. have used feature map of the form φq(qi, i) = Miφ̃q(qi) and φk(kj , j) =
Nj φ̃q(kj) such that MT

i Nj becomes a function of i− j. [LLC+21] has used the kernel of the
form k (qi,kj , i− j) = exp

(
qT

i kj + bj−i

)
. Here b−(n−1), . . . , b0, . . . , bn−1 are some relative

positional biases whose values are also learned during training. They have further shown
that the self-attention operation with the above kernel can be performed in O(nlog n)
time using Fast Fourier Transform (FFT). [HSGB21] has used a kernel of the form
k (qi,kj , i− j) = exp

(
qT

i kj + φr(i)Tφr(j)
)
where φr(·) is a feature map for the position

indices i and j satisfying φr(i)Tφr(j) to be a function of i− j.
In this next section, we propose a novel attention for SCA.

4 Self-attention in SCA
The informative sample points in power or EM traces are sparse. In other words, only
a few sample points in the traces are high SNR sample points, and the rest of those are
noisy. To see this, we plot the SNR of four secret shares on two very widely used SCA
datasets, namely ASCAD fixed key3 and ASCAD random key4 datasets in Figure 1. A
peak or a high value in the plots indicates the informative sample points. It can be seen
in the figures that the SNR at most of the sample points is close to zero, implying the
informativeness of only a few sample points. Thus, the self-attention operation should be

3https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
4https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_

key
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(a) Plots of the SNR of four secrete shares on ASCAD fixed key dataset.
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(b) Plots of the SNR of four secrete shares on ASCAD random key dataset.

Figure 1: Plots of the informative sample points on two widely used SCA datasets.
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Figure 2: Plots of the histogram of the attention values of the randomly initialized
self-attention scheme of [HSGB21] for three different scales.

able to put high attention to only a few sample points while putting close to zero attention
to the rest.

However, the existing self-attention with linear complexity like [LCW+21, LSL+21,
HSGB21] puts significantly non-zero attention to most of the input feature vectors making
the output feature vectors influenced by the noisy (low SNR) sample points. Figure 2 plots
the histogram of the attention scores of the randomly initialized self-attention scheme
of [HSGB21] for three different values of the scale hyper-parameter. As depicted in the
plots, the attention scores are centered around 1, indicating that the self-attention scheme
assigns attention close to 1 to the majority of input feature vectors. Similar observations
have been made for other self-attention schemes, such as the one proposed by Li et al.
[LSL+21]. Another disadvantage of those schemes is that their attention scores result from
complicated interactions among many parameters. Consequently, it is difficult to train the
network to generate sparse attention scores.

To address the aforementioned limitations of existing self-attention mechanisms, this
section introduces a novel attention that employs a Gaussian kernel on the relative positions
of input features to generate attention scores. The proposed self-attention produces sparse
attention scores, as discussed in Section 4.2. By utilizing relative positional encoding,
it achieves shift invariance. Additionally, the proposed method exhibits linear time and
memory complexity with respect to the trace length, enabling scalability to longer traces.
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4.1 GaussiP: Gaussian Positional Attention
This section introduces the proposed Gaussian Positional attention, also called GaussiP
attention. The GaussiP attention exhibits linear time and memory complexity with respect
to the input length, making it computationally efficient. The degree of sharpness and
sparseness in the attention scores can be controlled by adjusting a suitable parameter.
Furthermore, the attention mechanism enables high attention to be assigned to distant
features, facilitating the flow of information over long distances.

The subsequent sections delve into the details of the GaussiP attention. Firstly, we
describe the kernel function utilized in the GaussiP attention. Next, we introduce the
feature map employed for factorizing the kernel function, enabling efficient computation.
Lastly, we address a significant drawback of the proposed kernel function and present our
solution, which involves utilizing multiple heads in the attention.

4.1.1 Deciding the Kernel Function

Unlike most of the existing self-attention, we use a Gaussian kernel for our proposed
attention:

kr (qi,kj , i− j) = exp
(
−||φq(qi, i)− φk(kj , j)||22

2

)
(12)

with

φq(q, i) =
[
β1q
β2spWp(b + ip)

]
and φk(k, j) =

[
β1k
β2spWp(b + jp + cpnp)

]
(13)

for i, j = 0, 1, . . . , n− 1 where β1, β2 ∈ [0,+∞) are two hyperparameters, p,b ∈ Rdp are
two predefined constants, Wp ∈ Rdp×d is a matrix with entries drawn from a uniform
random distribution, and sp ∈ (0,+∞), cp ∈ [−1, 1] are two trainable parameters. Thus,
with the above defined φq and φk, the proposed kernel takes the form

kr(qi,kj , i− j) = exp
(
−
β2

1 ||qi − kj ||22 + β2
2s

2
p(i− j − cpn)2||Wpp||22
2

)
(14)

The part β2
1 ||qi − kj ||22 in the above equation influences the kernel scores based on the

contents of the input feature vectors while the part β2
2s

2
p(i− j − cpn)2||Wpp||22 influences

the scores based on the relative positions, i.e., i− j of the feature vectors. In our initial
set of experiments, we found that the first part does not positively effect the performance
of EstraNet. Thus, we set β1 = 0 in Eq. (13) which simplifies φq(q, i) and φk(k, i) as

φq(i) = β2spWp(b + ip) and φk(j) = β2spWp(b + jp + cpnp) (15)

resulting into the following simplified kernel:

kGP A(i− j) = exp
(
−||φq(i)− φk(j)||22

2

)
= exp

(
−
β2

2s
2
p(i− j − cpn)2||Wpp||22

2

)
(16)

The above equation shows several important properties of the proposed kernel function.
Firstly, it can be observed that the maximum value of the kernel output occurs when
i− cpn = j. In simpler terms, the i-th output feature vector assigns maximum attention
to the (i − cpn)-th input feature vector. Thus, the attention mechanism facilitates the
flow of information from the (i − cpn)-th index to the i-th index, enabling the learning
of long distant dependencies. Secondly, the precision of the attention can be controlled
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Figure 3: Plots of kGP A(i− j) vs. (i− j − cpn) for different values of s(= β2sp).

by appropriately setting the hyper-parameter β2 or learning an appropriate value for the
parameter sp during the training process. Let us denote s = β2sp. If the value of s is large,
the attention will be concentrated within a small region of the input traces. Conversely, if
the value of s is small, the attention will be spread over a larger region. To illustrate this,
Figure 3 displays the kernel scores for various values of s. It can be observed that as the
value of s increases, the kernel scores become more concentrated in smaller regions.

4.1.2 Deciding the Feature Map for the Kernel Function

Since, we are using a Gaussian kernel, following the work of [CLD+21], a feature map with
only positive entries can be given for the kernel as follows:

φ′(x) =
exp

(
−||x||22

)
√
de

[
exp(wT

0 x), . . . , exp(wT
de−1x)

]T
However, we have observed that the approximation error of φ′ significantly increases as
the norms of the input features x become larger. It should be noted that in order to
concentrate the attention scores on a smaller segment of the input traces, the norms of
the input features need to be sufficiently large. As an alternative, the Fourier features φfr
defined in Eq.. (8) can be used as the feature map for the kernel. However, as pointed
out in [CLD+21], the kernel scores kGP A(i − j) approximated by φfr(φq(i))Tφfr(φk(j))
can be potentially negative, causing the increase in the variance of the normalized kernel
score kGP A(i− j)/

∑n−1
k=0 kGP A(i− k), which, in turn, causes the unstable behavior of the

self-attention. To address this issue, we propose to approximate the normalizing factor of
the kernel given in Eq. (16) in a closed form as follows:

n−1∑
k=0

kGP A(i− k) ≈
∫ ∞

x=−∞
kGP A(x)dx ≈ 1

β2sp||Wpp||2
(17)

The justification for the approximation can be found in Appendix A. Using the above
approximation in the proposed attention, the expression of the output feature vectors v̂i

can be given as:

v̂T
i =

∑n−1
j=0 kGP A (i− j) vT

j∑n−1
k=0 kGP A (i− k)

≈ β2sp||Wpp||2

φfr(φq(i))T
n−1∑
j=0

φfr(φk(j))vT
j

 (18)

where φfr(·) is given by Eq. 8, and φq(i) = β2spWp(b + ip) and φk(j) = β2spWp(b + jp +
cpnp).
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Figure 4: Plots of the histogram of the unnormalized kernel scores approximated by the
Fourier feature map φtri. The histogram is plotted for three different values of s (i.e.
β2sp).

Table 1: The set of hyper-parameters of the proposed GaussiP attention.
Notation Description Notation Description

d model dimension dk key dimension
dv value dimension de dimension of kernel feature map
n input or trace length H number of heads
β2 distance based scaling

in attention kernel

4.1.3 Making the Attention Distribution Multi-modal

The major problem with the Gaussian kernel is that its attention scores follow a uni-modal
distribution. In other words, it puts high attention over a small contiguous segment of the
traces and assigns small attention scores to the rest of the parts (as seen in Figure 3). The
uni-modal attention distribution limits the flow of information from one region to a distant
region. To make the attention distribution multi-modal, we use multi-head attention
(kindly refer to Section 3.1 for a description of multi-head attention) with different heads
having different sp and cp parameters. Since different heads have different cp values, they
put high attention to different parts of the input traces allowing the flow of information
to an output feature vector from different regions of the input traces. Similarly, separate
sp for each head enables them to scale the attention independently. We found that the
proper initialization of cp and sp for each head is crucial for the successful training of
EstraNet. We initialize sp for all heads to the same value 1. However, we initialize cp for
h-th head to (1 + 2h)/2H for h = 0, 1, . . . ,H − 1. In other words, cps are initialized so
that different attention heads focus on different parts of the input sequence. Appendix B
plots the attention probabilities learned at the attention heads of a EstraNet model.

The set of hyper-parameters of the proposed GaussiP attention are shown in Table 1.

4.2 Difference with the Existing Alternatives
The functional distinctions between the proposed GaussiP attention and existing foremost
alternatives are summarized in Table 2. Notably, the attention scores in the GaussiP
attention exhibit sparsity. Figure 4 illustrates that, for significantly large values of s = β2sp,
the majority of attention scores are concentrated around zero, while only a few scores are
substantially greater than zero. This characteristic aligns well with the nature of side-
channel traces, where informative sample points are typically sparse. While methods such as
Luo et al. [LLC+21] offer greater flexibility in learning arbitrary probability distributions,
they require complex operations such as Fast Fourier Transform (FFT) for efficient
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Table 2: Differences between the proposed GaussiP attention and the foremost self-
attentions (with linear complexity and relative positional encoding) in TN literature.

Self-attention
Conventional Proposed

Attention form v̂T
i =

∑n−1
j=0

kr(qi,kj ,i−j)vT
j∑n−1

j=0
kr(qi,kj ,i−j)

v̂T
i = β2sp||Wpp||

∑n−1
j=0 kr(i− j)vT

j

Kernel form kr(qi,kj , i− j)
= exp

(
φq(qi, i)Tφk(kj , j)

) kr(i− j) = exp
(
−||φq(i)− φk(j)||2

)
Kernel feature
map φtri, φpos or φfr φfr

Positional
Encoding linear or trigonometric linear

implementation. The self-attention proposed by Guo et al. [GZL19] employs a Gaussian
prior over input features to bias the attention scores based on relative distances. However,
unlike our scheme, they utilize a softmax-based self-attention mechanism. Additionally,
their scheme emphasizes high attention to nearby features, whereas our scheme can put
high attention to distant features. Although the self-attention approach presented by
Liutkus et al. [LCW+21] can be represented as a Gaussian kernel with a Fourier feature
map for certain hyper-parameter configurations, their attention scores are maximized
for i − j = 0. In other words, in their scheme, each position or sample point assigns
maximum attention to itself, making the propagation of information from one region to
a distant region challenging. Conversely, in our proposed scheme, for sufficiently large
β2, the attention scores are maximized when i− j ≈ ncp, where n denotes the sequence
length and cp ∈ [0, 1] represents a trainable parameter. This allows each output feature
to allocate high attention to a distant region, enabling the flow of information over long
distances.

In the subsequent section, we present the architectural design of EstraNet.

5 EstraNet Architecture
This section provides a detailed overview of the EstraNet architecture. In Section 5.1, we
introduce a layering-centering normalization technique. Subsequently, in Section 5.2, we
present the structure of a single layer of EstraNet. Finally, in Section 5.3, we describe the
complete architecture of EstraNet.

5.1 Layer-Centering
In the conventional TN architecture, layer normalization is often employed to ensure
the stability of training [XYH+20]. However, it has been observed in [HSAM22] that
applying layer normalization to TN layers makes the network untrainable for the SCA
datasets. Our experiments also found that incorporating either layer normalization or
batch normalization in EstraNet layers makes its performance poor. Consequently, we
introduce a novel “layer-centering” operation as an alternative approach.

To understand the layer-centering operation, let us assume that [x0, . . . ,xn−1]T ∈ Rn×d

represents the input to the layer. Given the input, we start by computing the mean of
each vector in the input sequence:

µi = 1
d

d−1∑
j=0

xi[j], for i = 0, . . . , n− 1
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Figure 5: Figure 5a shows a single layer of standard TN with pre-layer normalization
[XYH+20]. Figure 5b shows a single layer of TransNet proposed in [HSAM22]. Figure 5c
depicts a single layer of the proposed EstraNet.

where x[j] denotes the j-th element of x and d is the model/feature dimension. Finally,
the input vectors are re-centered as

x̄i = xi − µi + clc, for i = 0, . . . , n− 1 (19)

where clc ∈ Rd is a trainable parameter. The resulting sequence [x̄0, . . . , x̄n−1] is the
output of the layer in the layer-centering operation. Specifically, each element of the input
sequence is first centered to 0 and then re-centered to clc, which is a parameter learned
during the training process. It is worth noting that while layer-normalization involves
re-centering and re-scaling each vector in the input sequence, layer-centering involves only
re-centering the elements without any re-scaling.

5.2 Single Layer of EstraNet

The EstraNet layer, as illustrated in Figure 5c, is similar to a standard TN layer depicted
in Figure 5a. However, it incorporates the proposed multi-head GaussiP attention from
Section 4.1 instead of the vanilla multi-head self-attention and the layer-centering instead
of the layer-normalization. Compared to the TransNet layer shown in Figure 5b, EstraNet
incorporates the novel multi-head GaussiP attention. The attention operation has a
linear time and memory complexity with respect to the input length. Conversely, the
multi-head self-attention employed in the TransNet layer exhibits quadratic memory and
time complexity. Furthermore, the TransNet layer lacks any normalization layer, whereas
the EstraNet layer utilizes layer-centering for input normalization.
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Figure 6: EstraNet Architecture.

5.3 EstraNet Architecture
EstraNet follows the general multilayer architecture of TN models with some notable
exceptions. The architecture is shown in Figure 6. The input to the EstraNet model is
a one-dimensional trace denoted as t = [t0, . . . , tn−1] ∈ Rn. However, the EstraNet layer
assumes the input to be two-dimensional. Thus, we pass each input trace through several,
say Lconv, convolutional and average-pooling layers, which convert the input traces t into
a sequence of vectors X = [x0, . . . ,xm−1]T ∈ Rm×d where m is the (possibly reduced)
length of the output sequence X and d is the dimension of its feature vectors. Note that
by setting a large value for the pool size, denoted as ps, of the average-pooling layers,
we can make m � n enabling the efficient processing of the sequence by the following
layers of the EstraNet. Then the output of the final convolutional layers X is passed
through several EstraNet layers resulting in the output Y = [y0, . . . ,ym−1]T ∈ Rm×d. The
output sequence Y of m d-dimensional feature vectors is then reduced into a single vector
ȳ ∈ Rd using a (multi-head) softmax-attention layer. The vector ȳ is then passed to the
classification layer to generate prediction probabilities.

In the following section, we present the results of our experiments.

6 Experimental Results
This section presents the experimental evaluation of EstraNet. We provide an overview
of the datasets used for the evaluation in Section 6.1. The methodology for selecting the
attack window is described in Section 6.2. We provide the detailed information about the
benchmark models used in this study in Section 6.3. The training process of EstraNet is
explained in Section 6.4. Section 6.5 elaborates on the experiment setup and evaluation
methods. A comparative study between EstraNet and the benchmark models in the
presence of a combinations of masking, random delay, and clock jitter countermeasures is
provided in Sections 6.6 to 6.8. In Section 6.9, we perform an ablation study to investigate
the impact of various design choices in EstraNet. Section 6.10 discusses the impact of
several hyperparameter choices in EstraNet’s performance. The training time of EstraNet
is compared with that of the benchmark models in Section 6.11. Finally, Section 6.12
investigates the impact of data augmentation in the shift-invariance of EstraNet.
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6.1 Dataset Details

For evaluating EstraNet, we select three datasets of software implementation of ciphers
protected by masking countermeasures. Since, in the software implementation of masking
countermeasures, different shares of the intermediate secret variable leak at different regions
of the power/EM traces, they are the ideal candidates for evaluating EstraNet’s ability
to capture long-distance dependency. Additionally, we have added random delay and the
clock jitter effect [WP20] in the traces to evaluate the shift-invariance of EstraNet. This
section provides the details of the datasets.

ASCAD Fixed Key (ASCADf) ASCAD fixed key dataset5 is a collection of 60K traces
of a first-order masked implementation of AES running on an 8-bit ATMega8515 mi-
crocontroller. We divided the entire dataset into three splits: profiling, validation, and
test containing 50K, 5K, and 5K traces, respectively. Following the common practice
in the literature [BPS+20], we attack the third S-box operation of the first round of the
cipher. We use the identity leakage model to generate the labels for the profiling traces
as it is found to perform better than Hamming weight leakage model in previous studies
[BPS+20].

ASCAD Random Key (ASCADr) As the ASCADf dataset, ASCAD random key dataset6
is a collection of traces of a first-order masked implementation of AES running on an 8-bit
ATMega8515 microcontroller. However, in the ASCADf dataset, the secret key is fixed
for all profiling traces, whereas in the ASCADr dataset, the secret key randomly varies
for each profiling trace. The profiling split of the dataset contains 200K traces, while the
attack split contains 100K traces. We created validation and test splits by selecting 10K
traces for each split from the 100K attack traces. Like the ASCADf dataset, we attack the
third S-box operation of the first round of the cipher. We use the identity leakage model
to generate the labels for the profiling traces on this dataset also.

CHES 2020 CTF SW3 (CHES20) Clyde-128 is a tweakable block cipher that supports
side-channel resilient and efficient bit-slicing implementation on 32-bit microprocessors
[BBB+20]. Spook SCA CTF7 is an SCA challenge for masked implementations of the
Clyde-128. The challenge consists of multiple datasets for different implementations of the
cipher. We select the dataset collected from a second-order masked implementation of the
cipher running on an ARM Cortex-M0 microcontroller. The dataset contains 200K and
500K profiling and attack traces. We select all 200K profiling traces as the train set and
10K traces for validation and test set each from the attack traces. Since Clyde-128 is an
LS design, it works on (4× 32)-bit state, with 4 being the size of the non-linear S-box and
32 being the size of the linear L-box. We target the four bits of the 17th column from the
left of the first round S-box operation. We chose the 17th column as we found the SNR for
these bits to be high. Since each bit of an S-box is processed separately in the bit-slicing
implementation of the cipher, we use a multilabel loss having a sigmoid function for each
output bit of the S-box (as introduced in [ZXF+19, ZXF+21]) to attack the four target
bits.

The statistics of all three datasets are summarized in Table 3.

5https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key
6https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_

key
7https://ctf.spook.dev/
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Table 3: Dataset statistics.
ASCADf ASCADr CHES20

Profiling dataset size 50000 200000 200000
Validation dataset size 5000 10000 10000
Test dataset size 5000 10000 10000
Trace length 20000 10000 10000

6.2 Attack Window Selection
The trace length of the above three datasets varies from 62500 (for the CHES20 dataset) to
250K (for the ASCADr dataset). Instead of performing the evaluation on the full-length
traces, we perform it on a selected attack window from the full-length traces. We consider
two sizes for the attack window: 10K and 40K. Thus, for the first set of experiments, we
select an attack window of size 10K for each of the three datasets and perform attacks on
the window. And for the second set of experiments, we use an attack window of size 40K.

Table 4: The selected attack windows on the three datasets.
Dataset Attack Window Size

10K 40K
ASCADf [40000, 50000] [30000, 70000]
ASCADr [78000, 88000] [70000, 110000]
CHES20 [46000, 56000] [20000, 60000]

The selected attack windows for the three datasets are given in Table 4. The attack
windows are selected using SNR-based methods. Thus, we calculated the SNR at each
sample point and selected a window of respective size such that the window contains the
most number of high SNR sample points. In many scenarios (e.g., in the presence of
countermeasures like masking, desynchronization, and clock jitter), the SNR-based method
may not work. However, note that one can still be able to identify the attack window
(with size in the order of 10K, which is significantly large) based on a combination of the
knowledge of the implementation and intelligent guess (such as in scheme-aware threat
model [MCLS23]). In the worst case, an adversary can iteratively repeat the attack by
selecting different attack window at different segments of the traces. For example, if the
first round of the cipher spans over 100K sample points, one can repeat the attack on
multiple windows of size 40K, such as [0, 40K], [20K, 60K], [40K, 80K], and [60K, 100K].
Note that, recent research [LZC+21] has demonstrated the possibility of directly performing
attacks on traces with a length in the order of 100K and achieving good results. However,
the results presented in Section 6.8 reveal that the performance of these models significantly
deteriorates in challenging scenarios, such as in the presence of clock jitter. Therefore,
EstraNet can be a better alternative for the worst-case security evaluation in such situations.
From now on, we will use the terms “window size” and “trace length” interchangeably to
refer to the size of the attack window.

6.3 Benchmark Models
This section briefly describes the (existing) DL models used as the benchmark models
in our experiments. Many DL models have been introduced in SCA literature over the
last few years. Among all those models, we have selected three models which have been
introduced to deal with long traces and/or large trace desynchronizations. The models are
briefly described below. The detailed architectures of the models are given in Appendix C.



Suvadeep Hajra, Siddhartha Chowdhury and Debdeep Mukhopadhyay 353

6.3.1 PolyCNN [MBC+20]

In [MBC+20], Masure et al. have proposed a CNN model to attack AES implementation
protected by code polymorphism. Using their proposed model, they successfully recovered
the secret key using less than 20 attack traces. Since their model is suitable for long traces,
we use it as a benchmark model. We trained the model on the three datasets for 10K
epochs using Adam optimizer and a constant learning rate of 1e-5.

6.3.2 EffCNN [ZBHV20]

In [ZBHV20], Zaid et al. have proposed a methodology for creating CNN models to
be effective against desynchronized traces. They have further demonstrated that their
methodology can be used to construct CNN models to perform successful attacks on
several datasets. Thus, their models are good candidates for being benchmark models. We
constructed three models for the three datasets and used those as the benchmark models.
The models have been trained for 2K epochs using Adam optimizer and a constant learning
rate of 2.5e-5.

6.3.3 LSTMNet [LZC+21]

In [LZC+21], Lu et al. proposed to use LSTM-based models to perform attacks on full-
length traces. Their experimental study demonstrated that the LSTM-based models could
be used to conduct successful attacks on both synchronized and desynchronized datasets.
Thus, we use their models as benchmark models. On the ASCADf and ASCADr datasets,
we took the respective models from their online repository8 and trained the models. Since
no LSTM-based model is available for the CHES20 dataset, we use their model for the
ASCADr dataset to train on the CHES20 dataset. The models were trained for 4K epochs
using Adam optimizer and a constant learning rate of 1e-4.

6.4 Training Details and Hyper-parameter settings of EstraNet
6.4.1 Training details

We use the cross-entropy loss and Adam optimizer to train EstraNet. For the learning
rate schedule, cosine-decay with linear warmup schedule [ZLLS20] has been used. More
precisely, we increase the learning rate linearly from 0 to 2.5e-4 for twarmup steps of gradient
update and then gradually decreases to 0.004 × 2.5e-4 following a cosine curve for the
remaining tmax − twarmup steps where tmax is the maximum training steps and twarmup

(satisfying twarmup < tmax) is the number of warmup steps. In Appendix D, we describe
the learning rate schedule in more detail.

6.4.2 Hyper-parameter settings

We adopted the common hyper-parameters like the number of EstraNet layers L, and
model dimension d from [HSAM22]. The value dimension dv and the number of heads
H in GaussiP attention have been set to 32 and 8, respectively. Following [BPS+20] and
[HSAM22], the kernel width of the first convolutional layer has been set to 11. The kernel
width of the subsequent convolutional layers has been set to 3 (as in [LZC+21]). Unless
stated otherwise, we set the number of convolutional layers and the pool size of each
average-pooling layer to 2 and 10, respectively. However, we found that, on the ASCADf
dataset, a pool size of 10 leads to poor performance as the sampling rate of the dataset is
comparatively low. Thus, we set it to a slightly smaller value, 8. The dimension of the
feature map of the GaussiP attention kernel (denoted as de) has been set to 512. We set

8https://github.com/lxj-sjtu/TCHES2021_Pay_attention_to_the_raw_traces
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Table 5: The minimum number of traces (lesser is better) required to reach guessing
entropy 1 by EstraNet and the benchmark models for trace length 10K. The models have
been evaluated on attack traces with attack desync 0 (no desync), 200 and 400. The
columns titled Best, Med., and Avg. respectively show the best, median and average results
of three independently trained models.

Dataset Model Attack Desync 0 Attack Desync 200 Attack Desync 400
Best Med. Avg. Best Med. Avg. Best Med. Avg.

PolyCNN 65 68 83.0 44 54 54.7 36 44 42.3
ASCADf EffCNN 40 42 44.7 24 26 26.0 18 28 24.7

LSTM 16 26 30.7 21 37 32.3 21 31 35.7
EstraNet 13 15 14.3 12 13 12.7 9 13 12.3

PolyCNN 21 28 28.0 9 10 10.7 9 9 10.3
ASCADr EffCNN 32 35 36.0 15 22 22.0 16 20 20.7

LSTM 5 6 7.7 6 9 9.0 6 7 7.7
EstraNet 5 5 5.0 5 6 5.7 4 5 5.0

PolyCNN 15 22 19.7 15 19 20.3 16 18 19.0
CHES20 EffCNN 34 58 58.0 36 74 62.3 30 90 74.0

LSTM 4 46 47.3 5 67 47.0 5 46 45.7
EstraNet 5 6 6.7 5 6 6.7 4 7 7.3

tmax, the maximum training steps, and twarmup, the warmup steps of EstraNet training to
4M and 1M for ACSADf and ASCADr datasets. However, using 1M as the warmup steps
(twarmup) leads to unstable training on the CHES20 dataset. Thus, we set it to 2M . We
found that the scaling hyper-parameter β2 influences the performance of EstraNet highly.
Therefore, we tuned it over three values: 10, 50, and 150 for each dataset. The rest of the
hyper-parameter values have been found based on some initial experiments. Section 6.10
discusses the influence of several important hyper-parameters in EstraNet’s performance.

6.5 Experimental Setup
Since we aim to evaluate the robustness of the models to misalignments in the traces, we
trained each model on desynchronized profiling traces. Data augmentation techniques were
also applied by introducing random displacements to each profiling trace on the fly during
training. Thus, in different epochs, the same profiling trace is shifted by different values.
It should be noted that this data augmentation was also implemented when training the
benchmark models. To reduce training time, early stopping of training was employed. In
other words, we evaluated the trained model at regular intervals during the progress of the
training and stopped the training when no significant improvement was observed on the
validation dataset. The intermediate model that exhibited the best performance on the
validation dataset was selected for the final evaluation on the test dataset.

The guessing entropy of each model on a dataset is computed by repeating the attack
100 times on randomly permuted traces of the dataset. For each experiment, we repeat
each model’s training (starting from the random initialization) three times. We report the
best, median, and average results of the repeated experiments.

6.6 Experimental Results for Trace Length 10K

This section presents a comparative analysis of EstraNet with the benchmark models
for the attack window size of 10K (refer to Section 6.2 for details on attack window
selection). To assess the robustness of the deep learning (DL) models against random
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delay countermeasures, we applied a profiling desynchronization of 200. In other words,
we independently desynchronized each profiling trace by a maximum displacement of
200. During training, we have used data augmentation. More precisely, we randomly
desynchronized each profiling trace by a maximum displacement of 200 on the fly (refer
to Section 6.5 for detailed description). The trained models were then evaluated on the
attack set with attack desynchronizations of 0, 200, and 400. Each DL model was trained
independently three times. Table 5 provides the best, median, and average values of TGE1
(the minimum number of traces required to achieve guessing entropy 1) obtained from the
three trained models for the three attack desynchronization scenarios.

Based on the observations from the table, it can be noted that on the ASCADf
dataset, EstraNet consistently outperforms the other three methods. It demonstrates an
improvement of more than 50% in the majority of cases in terms of all three metrics and
across all three attack desynchronization scenarios. On the ASCADr dataset, EstraNet
performs significantly better than EffCNN and similar to LSTMNet with respect to all
three metrics. For the dataset, while PolyCNN shows similar performance to EstraNet
for attack desynchronizations of 200 and 400, it performs poorly compared to EstraNet
for attack desynchronization of 0. Finally, on the CHES20 dataset, EstraNet showcases
more than 60% improvement over PolyCNN and EffCNN in terms of all three metrics.
Although LSTMNet has comparable results to EstraNet in terms of the best TGE1 on that
dataset, it requires 6 to 12 times more traces to achieve guessing entropy 1 according to
the median or average values. In summary, it can be concluded that EstraNet consistently
performs significantly better, with improvements of over 50%, compared to the benchmark
models in the majority of cases, though gains are marginal sometimes. Figure 8 plots the
median guessing entropy of the DL models with respect to the number of attack traces on
the three datasets for attack desync 400. The plots also support the above observations.

PolyCNN EffCNN LSTMNet EstraNet
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(c) CHES20 dataset.

Figure 8: Plots of the guessing entropy vs. the number of attack traces for the experiments
with trace length 10K. The attack traces are desynchronized by a maximum displacement
of 400.

6.7 Experimental Results for Trace Length 40K

This section presents a comparative analysis with the benchmark models for the attack
window size of 40K. In contrast to Section 6.6, where the trained models were evaluated
against smaller attack desynchronizations (0, 200, and 400), this section evaluates the
models in the presence of larger attack desynchronization (600 and 1000). For the
experiments, a profiling desynchronization of 600 was used, resulting in the random
shifting of each profiling trace by a maximum displacement of 600. Furthermore, data
augmentation was incorporated during training by additionally desynchronizing each
profiling trace on-the-fly with a maximum displacement of 400. For each dataset, we
independently trained each DL model three times. Table 6 provides the best, median, and
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Table 6: The minimum number of traces (lesser is better) required to reach guessing
entropy 1 by EstraNet and the benchmark models for trace length 40K. The models have
been evaluated on attack traces with attack desyncs 600 and 1000. The columns titled
Best, Med., and Avg. respectively show the best, median and average results of three
independently trained models. The ‘-’ entries in the table indicate that the average value is
not available as some of the independently trained models failed to reach guessing entropy
1 using 5K attack traces.

Dataset Model Attack Desync 600 Attack Desync 1000
Best Med. Avg. Best Med. Avg.

PolyCNN 343 534 − 548 553 −
ASCADf EffCNN 353 631 − 198 747 −

LSTM 42 72 242.3 30 84 164.7
EstraNet 21 22 23.0 22 26 25.3

PolyCNN 185 271 482.7 236 246 541.7
ASCADr EffCNN 41 72 63.7 49 85 76.3

LSTM 823 1158 1292 1260 1722 1794
EstraNet 23 36 55.7 28 31 62.0

PolyCNN > 5K > 5K − > 5K > 5K −
CHES20 EffCNN > 5K > 5K − > 5K > 5K −

LSTM 2 4 − 3 3 −
EstraNet 4 11 22.3 5 7 21.2

average values of TGE1 (the minimum number of attack traces required to achieve guessing
entropy 1) obtained from the three trained models.

In this scenario, some trained models failed to reach guessing entropy 1 using 5K attack
traces. Entries with a dash symbol (‘-’) in Table 6 indicate that the average TGE1 is not
available as some of the independently trained models failed to reach guessing entropy 1
using 5K attack traces. While comparing the results of EstraNet with the benchmark
models on the ASCADf dataset, EstraNet demonstrates a significant improvement of at
least 90% compared to PolyCNN and EffCNN. It also showcases improvements ranging
from 26 to 90% compared to LSTMNet. Moreover, in terms of training stability, EstraNet
performs better than the other models as PolyCNN and EffCNN fail to reach the guessing
entropy once out of the three training trials, and LSTMNet performs poorly in terms of the
average TGE1. On the ASCADr dataset, EstraNet exhibits substantial improvements of 85
to 90% compared to PolyCNN and LSTMNet for all three metrics. It also demonstrates
an improvement of 10 to 60% compared to EffCNN. In the CHES20 dataset, none of the
PolyCNN and EffCNN models could bring down TGE1 below 5K. Although EstraNet
performs slightly worse than LSTMNet in terms of the best and median TGE1 values
on this dataset, it demonstrates more stability with an average TGE1 of around 20. In
contrast, in one of the three training trials, LSTMNet failed to bring down the TGE1 below
5K. In summary, it can be concluded that EstraNet offers significant improvements (up
to 90%) over the benchmark models on the ASCADf and ASCADr datasets. Though
LSTMSNet performs slightly better than EstraNet in terms of the best and median TGE1
on the CHES20 dataset, its performance is significantly unstable compared to EstraNet.
Figure 10 visually depicts the median guessing entropy of different methods with respect
to the number of attack traces for attack desync 1000, further confirming the observations
of Table 6.
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Figure 10: Plots of the guessing entropy vs. the number of attack traces for the experiments
with trace length 40K. The attack traces are desynchronized by a maximum displacement
of 1000.
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Figure 11: Sample traces after adding clock jitter effect.

6.8 Experimental Results in the Presence of Clock Jitter Effect
This section presents a comparative analysis of EstraNet with the benchmark models
on three datasets with added clock jitter effect9. We pre-processed the traces using the
approach proposed in [CDP17, WP20] to introduce the clock jitter effect into the datasets.
Appendix E provides the details of the algorithm employed to add the clock jitter effect.
Figure 11 illustrates several sample traces after adding the clock jitter effect. As in the
previous experiments, the DL models in this section were trained with data augmentation,
where each profiling trace was independently desynchronized by a maximum displacement
of 200 during training. Also, as in the previous experiments, we independently trained
each DL model three times. Table 7 presents the best, median, and average of TGE1 (the
minimum number of attack traces required to achieve guessing entropy 1) values obtained in
the three training trials. It should be noted that the elastic alignment technique [vWWB11]
is a well-known method used to align traces affected by the clock jitter. Therefore, for each
dataset, we trained the benchmark models on the misaligned traces (i.e., traces obtained
after adding the clock jitter effect) and the traces obtained after aligning the misaligned
traces using elastic alignment. Both sets of results are presented in Table 7.

Analysis of the table reveals that on the ASCADf dataset, both PolyCNN and EffCNN
perform poorly on the misaligned traces, although their performance improves significantly
after elastic alignment. However, they still require 5 to 12 times more traces to reach
guessing entropy 1 compared to EstraNet. In contrast, none of the LSTMNet models are
able to reach guessing entropy 1 using 5K traces even after elastic alignment. On the
ASCADr dataset, both PolyCNN and LSTMNet exhibit poor performance. With one
exception, none of the models can reach guessing entropy 1 using 5K traces. Though
EstraNet fails to reach guessing entropy 1 in one of three training trials on the dataset, it

9It is worth noting that prior works [CDP17, WP20] have examined the effectiveness of DLSCA against
the clock jitter effect. However, the work of [WP20] assumes a slightly different attack setup where the
adversary possesses a clean trace alongside each noisy trace in the dataset. In contrast, we consider a
weaker adversary with no clean traces as in [CDP17].
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Table 7: The minimum number of attack traces (lesser is better) required to reach guessing
entropy 1 by EstraNet and the benchmark models on the datasets with the added clock
jitter effect. The column titled Elastic Alignment indicates whether the traces have been
aligned using elastic alignment [vWWB11] prior to perform the attack. The columns titled
Best, Med., and Avg. respectively show the best, median and average results of three
independently trained models. The ‘-’ entries in the table indicate that the average value is
not available as some of the independently trained models failed to reach guessing entropy
1 using 5K attack traces.

Dataset Model Elastic TGE1

Alignment Best Med. Avg.

PolyCNN No 610 > 5K −
Yes 219 412 350.3

EffCNN No 1814 2384 2327.7
ASCADf Yes 345 394 562.3

LSTM No > 5K > 5K −
Yes > 5K > 5K −

EstraNet No 42 42 48.3

PolyCNN No > 5K > 5K −
Yes 363 > 5K −

EffCNN No 1422 1540 2148.3
ASCADr Yes 405 458 449.0

LSTM No > 5K > 5K −
Yes > 5K > 5K −

EstraNet No 117 566 −

PolyCNN No > 5K > 5K −
Yes > 5K > 5K > 5K

EffCNN No 576 4651 −
CHES20 Yes > 5K > 5K > 5K

LSTM No > 5K > 5K −
Yes 3708 > 5K −

EstraNet No 26 28 32.0

shows an improvement of almost 70% over EffCNN in terms of the best TGE1. For the
CHES20 dataset, both PolyCNN and LSTMNet perform poorly, as all of their models
require either more than or close to 5K traces to reach the guessing entropy 1. Although
the best EffCNN model requires 576 traces to reach guessing entropy 1, its other models
require either close to or greater than 5K traces for the same. In contrast, all EstraNet
models require only 25 to 40 traces to reach the guessing entropy 1. In summary, the
benchmark models fail to reach guessing entropy 1 using 5K attack traces in the majority
of cases, and even in those cases they perform well, their performance is an order of
magnitude worse than that of EstraNet.

Finally, we would like to highlight that in the presence of clock jitter, the relative
distances between the POIs fluctuates significantly across different traces. Although the
design of GaussiP attention assumes constant relative distances between the POIs in all
traces, EstraNet demonstrates better robustness to such fluctuations compared to the
benchmark models. This robustness can be attributed to two key factors. Firstly, GaussiP
attention uses Gaussian attention which is resilient to minor variations in relative distances.
For instance, if an attention head assigns significant attention to a trace segment [s, t], the
attention output can remain almost same even if some POIs shift their positions within the
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Table 8: Comparison of the use of softmax-attention and global average-pooling in
EstraNet. Both models have been trained thrice on the ASCADf dataset using the setup of
Section 6.7. We report the number of attack traces required to reach the guessing entropy
1 in the three training runs of the two models.

Model Attack Desync 600 Attack Desync 1000
1 2 3 1 2 3

EstraNet with
Softmax-attention 22 26 21 26 28 22
EstraNet with global
average-pooling 36 101 1734 39 110 1327

segment. Secondly, in EstraNet, the input traces propagate though multiple convolutional
and average-pooling layers before reaching the first GaussiP attention layer. As a result,
some of the fluctuations in relative distances are absorbed during the propagation through
the average-pooling layers. Indeed, the above experimental results indicate that EstraNet
achieves superior robustness to fluctuations in the relative distances introduced by the
clock jitter effect compared to the benchmark models.

6.9 Ablation Study
The EstraNet model incorporates two novel layers: the GaussiP attention layer and the
layer-centering normalization layer. Additionally, EstraNet utilizes a softmax-attention
layer. This section aims to explore the impact of integrating these layers into EstraNet
and determine their contribution to its improved performance.

6.9.1 Ablation study of softmax-attention

In this section, we assess the performance of EstraNet without using any softmax-attention
altogether. Thus, we replace the softmax-attention with a global average-pooling layer,
keeping all other hyper-parameters same. Table 8 presents a comparison between EstraNet
with global average-pooling and the vanilla EstraNet (i.e., EstraNet with softmax-attention)
on the ASCADf dataset using an attack window size of 40K. Note that, as before, both
models were trained three times. The table displays the minimum number of attack traces
required to reach the guessing entropy of 1 (denoted as TGE1) obtained from the three
training runs for each model.

From the table, we observe that the TGE1 for EstraNet with softmax-attention ranges
from 21 to 28. In contrast, for EstraNet with global average-pooling, it reaches as high as
1734 in some training runs. This indicates that employing softmax-attention instead of
global average-pooling in EstraNet leads to a significant improvement in its performance.

6.9.2 Ablation study of layer-centering layer

This section focuses on assessing the impact of the newly introduced layer-centering layer
in EstraNet. Toward that goal, we conducted experiments using two other normalization
methods, namely layer normalization and batch normalization. We also included the
results of EstraNet without any normalization, as [HSAM22] reported its effectiveness in
TransNet. The pool size hyper-parameter was varied for each normalization method, and
the attack performance was evaluated. Each experiment was repeated three times, and
the results are presented in Table 9.

From the table, it can be observed that EstraNet with layer-centering maintains consis-
tent performance across different pool sizes. Conversely, for other normalization methods
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or without any normalization, the performance of EstraNet deteriorates significantly as the
pool size decreases from 8 to 4. Moreover, in the case of batch normalization, EstraNet fails
to achieve the guessing entropy of 1 using considerably fewer than 5K attack traces for all
pool sizes. These results highlight the robustness of EstraNet when using layer-centering
compared to other alternatives.

Table 9: Attack results of EstraNet using various normalization methods. All models have
been independently trained thrice on the ASCADf dataset using the setup of Section 6.7.
We report the number of attack traces required to reach the guessing entropy 1 in the
three training runs of each model.

Normalization Method Pool size Attack Desync 600 Attack Desync 1000
1 2 3 1 2 3

8 22 26 21 26 28 22
Layer Centering 6 23 28 17 23 27 17

4 25 23 35 24 22 35
8 33 34 29 42 28 21

No Normalization 6 18 51 313 37 33 381
4 117 899 > 5K 87 1045 > 5K
8 483 2380 53 274 1735 57

Layer Normalization 6 4635 67 3854 3612 80 3596
4 > 5K 140 > 5K > 5K 133 > 5K
8 > 5K > 5K > 5K > 5K > 5K > 5K

Batch Normalization 6 > 5K 4500 > 5K > 5K 4138 > 5K
4 > 5K > 5K > 5K > 5K > 5K > 5K

6.9.3 Ablation study of the proposed GaussiP attention layer

This section assesses the performance of EstraNet by substituting the proposed GaussiP
attention layer in EstraNet with alternative self-attention layers that incorporate relative
positional encoding and have linear complexity. In the TN literature, several such self-
attention layers have been introduced (as discussed in Section 3.3). Due to computational
constraints, it is not feasible to verify all of these options. Hence, we select the self-
attentions proposed in [LCW+21] and [HSGB21] as alternatives to GaussiP attention. We
employ the same training setup to train the modified EstraNet models with the GaussiP
attentions replaced by the ones proposed in [LCW+21] and [HSGB21]. Figure 12 displays
the training loss of the modified EstraNet models over the course of the initial 1.2 million
training steps. The figures demonstrate that the training loss of the EstraNet models
with alternative self-attention layers does not even start to decrease even after 1.2 million
training steps, indicating the challenge of training these models effectively. It is worth
noting that it might be possible to adopt the existing self-attention layers in the context
of SCA through non-trivial modifications. Nonetheless, the results presented in Figure 12
suggest that such adaptations is subject to intense research.

6.10 Choice of the Hyper-parameters
In our experiments, we found that setting most of the hyper-parameters of EstraNet to
their default values provides good results. However, selecting the appropriate value for
a few hyper-parameters is crucial for its good performance. This section illustrates the
choice of those hyper-parameters.
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(a) EstraNet models with self-attention of [HSGB21].
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(b) EstraNet models with self-attention of [LCW+21].

Figure 12: Training loss vs. training steps for EstraNet with its self-attention replaced by
the self-attentions proposed in [HSGB21] (Figure 12a) and [LCW+21] (Figure 12b).

6.10.1 Choice of number of heads in GaussiP attention layer

In all our previous experiments, we found that setting the number of heads, denoted as H,
in the GaussiP attention layer to the default value of 8 resulted in good performance. In
this section, we aim to evaluate the sensitivity of EstraNet’s performance to the choice
of H. To accomplish this, we trained EstraNet models using different values of H on the
ASCADf datasets while keeping the remaining hyperparameters at their default values.
Similar to earlier experiments, we trained three independent EstraNet models for each
value of H and report the TGE1 (the number of attack traces required to reach guessing
entropy 1) in Table 10.

The table shows that the performance of EstraNet is significantly unstable for smaller
values of H, such as 4 and 6. More precisely, for H = 4 and H = 6, EstraNet requires
up to 367 and over 5K attack traces, respectively, to reach guessing entropy 1, whereas,
for the default H = 8, it requires fewer than 30 traces in the all the three training trials.
This unstable behavior of EstraNet can be attributed to the limited flow of information to
distant sample points when using smaller values of H. Indeed, as explained in Section 4.1.3,
increasing the number of heads in the GaussiP attention layer allows for more information
flow from one sample point to distant sample points. Therefore, EstraNet performs very
well with significantly larger values of H, such as 8 and 10. However, the performance
slightly deteriorates for H = 12. We attribute this deterioration in performance to the
increased number of parameters in the GaussiP attention layer when using a very large
value of H. In conclusion, these experiments reveal that there exists an optimal range for
the choice of H in EstraNet. In our experiments, we have found that an H value within
the range of 8− 10 consistently performs well across the datasets.

Table 10: Attack results of EstraNet for the different values of H (the number of heads in
GaussiP attention) hyper-parameters. As before, for each value of H, the model has been
independently trained thrice on the ASCADf dataset using the setup of Section 6.7. We
report the number of attack traces required to reach the guessing entropy 1 in the three
training runs.

H Attack Desync 600 Attack Desync 1000
1 2 3 1 2 3

4 367 23 11 226 29 13
6 12 > 5K 29 14 > 5K 25
8 23 28 17 23 27 17
10 17 17 22 14 18 20
12 22 65 28 27 53 28
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Table 11: The minimum number of attack traces (lower is better) required to reach the
guessing entropy 1 on the ASCADf dataset with attack window size 10K by EstraNet
for different values of β2. For each experiment, the average result of three independently
trained models is reported.

β2 Attack Desync
0 200 400

300 > 5K > 5K > 5K
150 19.3 15.0 15.7
50 70.0 67.3 64.0
10 > 5K > 5K > 5K

6.10.2 Choice of distance based scaling in GaussiP attention

The selection of the distance-based scaling hyper-parameter, denoted as β2 in Table 1,
plays a critical role in achieving satisfactory performance with EstraNet. Table 11 presents
the experimental results of attacking the ASCADf dataset using an attack window size of
10K for four distinct values of β2 in EstraNet. The findings demonstrate the sensitivity of
EstraNet’s performance to the choice of β2. Specifically, for β2 = 10 and 300, EstraNet
fails to attain a guessing entropy of 1 even with as many as 5K traces, whereas it achieves
its optimal performance with β2 = 150. Notably, with a trace length (attack window
size) of 10K, EstraNet performs most effectively with β2 = 150 on the ASCADf and
CHES20 datasets. However, for the ASCADr dataset, the optimal performance is observed
with β2 = 50. In general, for the trace length 10K, we observed that EstraNet exhibits
favorable performance within the range of β2 values between 50 and 150. Furthermore,
our investigations reveal that as the trace length increases from 10K to 40K, the range
of β2 values associated with EstraNet’s optimal performance increases. For instance, for
the attack window size of 40K, the preferred β2 values on the ASCADr and CHES20
datasets are 200 and 450, respectively. Notably, these values are respectively 4 and 3 times
that of the optimal values obtained for the attack window size of 10K. In conclusion, we
recommend tuning the β2 hyper-parameter based on some validation data. We also want
to mention that the performance of EstraNet generally improves as the value of β2 gets
larger. However, setting β2 to a too-large value makes the EstraNet model untrainable.
In other words, while training an EstraNet model with a very large β2, the training loss
does not fall below the level of random loss. Therefore, we suggest gradually increasing
the value of β2 during the tuning process until the model becomes untrainable.

6.10.3 Choice of the feature map dimension of GaussiP attention kernel

In all previous experiments, we have utilized a feature map dimension of 512 for the
GaussiP attention kernel (referred to as de in Table 1), which is significantly large. However,
employing a large value of de significantly increases the memory and compute requirements
for training the EstraNet model. Therefore, this section aims to assess the performance of
EstraNet when using smaller values of de. Table 12 presents a performance comparison
between EstraNet with de = 512 and EstraNet with reduced feature map dimensions: 256
and 128. The experimental results indicate that the performance of EstraNet with reduced
feature map dimensions is comparable to that achieved with de = 512. These findings
suggest that the performance of EstraNet remains stable for a wide range of de, indicating
the possibility of making EstraNet more memory and compute efficient using a smaller de.
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Table 12: The minimum number of attack traces (lower is better) required to reach the
guessing entropy 1 on the ASCADf dataset by EstraNet for different values of de. The
columns titled Best, Med., and Avg. respectively show the best, median and average results
of three independently trained models.

de Attack Desync 0 Attack Desync 200 Attack Desync 400
Best Med. Avg. Best Med. Avg. Best Med. Avg.

512 14 22 19.3 8 18 15.0 9 17 15.6
256 13 15 16.3 9 11 13.0 12 14 14.3
128 12 14 14.0 11 12 11.7 12 14 13.7

Table 13: Training time of the benchmark models compared to EstraNet.
Dataset EstraNet PolyCNN EffCNN LSTMNet
ASCADf 1.0x 5.9x 7.0x 6.3x
ASCADr 1.0x 4.5x 12.8x 4.8x
CHES20 1.0x 3.0x 5.7x 0.9x

6.11 Training Time: Comparison with the Benchmarks
This section presents a comparative analysis of the training times between EstraNet and
the benchmark models. Table 13 provides the comparison for the trace length 10K. Upon
examining the table, it is evident that the training time of PolyCNN is three to six times
longer than that of EstraNet. Similarly, the training time of EffCNN is six to thirteen
times greater compared to EstraNet. On the other hand, the training time of LSTMNet
is approximately five to six times larger on the ASCADf and ASCADr datasets, while
it is almost the same on the CHES20 dataset. Hence, with few exceptions, the training
of EstraNet is approximately three to thirteen times faster than the benchmark models.
Note that training EstraNet may involve tuning certain hyperparameters (β2 in particular).
However, given that the training time of a single EstraNet model is significantly smaller
than that of the benchmark models, the hyperparameter tuning process can be completed
in a comparable time to the training time of the benchmark models.

6.12 Shift-invariance: Dependence on Data Augmentation
The shift-invariance of a DL model is defined for infinite-length input [HSGB21]. However,
when dealing with inputs of finite length, the model’s shift-invariance tends to break down
near the input boundaries. Additionally, incorporating subsampling layers (e.g., average-
pooling layer) into a DL model further diminishes its shift-invariance [Zha19, HSAM22].
The reduced shift invariance could lead to overfitting during the model’s training. Moreover,
a model that exhibits greater shift-invariance is inherently less reliant on desynchronization
in profiling traces and data augmentation [HSAM22]. This section evaluates the impact of
the employed data augmentation on the shift-invariance of EstraNet. Toward that goal,
we repeated the experiments of Section 6.6. However, this time, the models are trained
without any data augmentation. We compare the performance of EstraNet while trained
with and without data augmentation in Table 14.

The findings of Table 14 reveal that, on the ASCADr and CHES20 datasets, the
performance of EstraNet remains almost identical whether or not data augmentation
is used during training. Conversely, on the ASCADf dataset, the model’s performance
significantly declines when trained without data augmentation. This observed drop in
performance on the ASCADf dataset can be attributed to the relatively lesser number of
the profiling traces it contains, amounting to only 50K as opposed to the 200K profiling
traces present in both the ASCADr and CHES20 datasets. The limited training samples
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cause EstraNet to overfit while trained without data augmentation, resulting in significantly
poorer performance than the model trained with data augmentation.

Table 14: EstraNet’s performance with and without data augmentation. The rest of the
experimental setup is the same as in Section 6.6.

Dataset Attack w Data Augmentation w/o Data Augmentation
Desync Best Med. Avg. Best Med. Avg.

0 13 15 14.3 79 390 286.7
ASCADf 200 12 13 12.7 139 350 319.3

400 9 13 12.3 124 311 308.0
0 5 5 5.0 6 7 7.0

ASCADr 200 5 6 5.7 6 6 6.0
400 4 5 5.0 5 6 6.3
0 5 6 6.7 4 4 7.3

CHES20 200 5 6 6.7 3 6 7.0
400 4 7 7.3 4 4 6.3

Table 17 of Appendix F compares the shift-invariance of EstraNet with that of the
benchmark models. Like EstraNet, the performance of the benchmark models also vastly
deteriorates on the ASCADf dataset while the deterioration is marginal on the ASCADr
and CHES20 datasets. While comparing the performance of EstraNet to the benchmark
models in the absence of data augmentation, EstraNet performs significantly better on
the ASCADr and CHES20 datasets. On the ASCADf dataset, PolyCNN and LSTMNet
fail to reach guessing entropy 1 using 5K attack traces while EstraNet and EffCNN shows
similar performance.

7 Limitations and Future Works
Comparing the results for the trace length of 40K (Table 6) with those for the trace length
of 10K (Table 5), it is evident that the performance of EstraNet slightly deteriorates with
the increase in the trace length beyond 10K though the deterioration is significantly less
compared to the other DL models. To investigate the decline in EstraNet’s performance
on longer traces further, we conducted additional experiments utilizing the ASCADf
dataset with a trace length of 60K sample points. For the experiments, we employed the
attack setup of Section 6.7. The results of these experiments are provided in Table 15.
Upon examination of Table 15, it becomes evident that the performance of EstraNet
has deteriorated significantly as compared to the performance for the trace lengths of
10K (Table 5) and 40K (Table 6) though the performance is significantly better than the
benchmark DL models. Therefore, improving EstraNet’s performance further on longer
traces (e.g., with a trace length > 40K) can be an important research direction to explore.

The resilience of a DL model to low SNR traces constitutes a pivotal requirement for
ensuring the model’s efficacy across a wide spectrum of datasets. To assess the robustness
of EstraNet on low SNR datasets, we conducted further experiments on the ASCADf
dataset by adding Gaussian noise with standard deviations (std.) of 2 and 4. The addition
of Gaussian noise reduces the peak SNR by approximately 30% and 60%, respectively.
These experiments were conducted on traces of length 10K, employing the experimental
setup of Section 6.6. The resulting findings are presented in Table 16. By comparing the
results of EstraNet in Table 16 with those in Table 5, we observe that the performance
of EstraNet has deteriorated marginally for noise std. 2. However, the performance is
significantly deteriorated for noise std. 4, though the performance is remarkably better
than the benchmark models. Nonetheless, whether the performance of EstraNet can be
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Table 15: The minimum number of traces (lesser is better) required to reach guessing
entropy 1 by the DL models on the ASCADf dataset for trace length 60K. The columns
titled Best, Med., and Avg. respectively show the best, median, and average results of the
three independently trained models. The ‘-’ entries in the table indicate that the average
value is not available as some of the independently trained models failed to reach guessing
entropy 1 using 5K attack traces.

Model Attack Desync 600 Attack Desync 1000
Best Med. Avg. Best Med. Avg.

PolyCNN > 5K > 5K − > 5K > 5K −
EffCNN > 5K > 5K − > 5K > 5K −
LSTM 4809 > 5K − 4391 > 5K −

EstraNet 111 3342 − 131 3771 −

improved further on low SNR scenarios by using a better training method or improving
the model architecture can be an interesting future work.

Table 16: The minimum number of traces (lesser is better) required to reach guessing
entropy 1 by the DL models on the ASCADf dataset with added Gaussian noise. The
columns titled Best, Med., and Avg. respectively show the best, median, and average
results of the three independently trained models. The ‘-’ entries in the table indicate that
the average value is not available as some of the independently trained models failed to
reach guessing entropy 1 using 5K attack traces.

Noise Std. Model Attack Desync 0 Attack Desync 400
Best Med. Avg. Best Med. Avg.

PolyCNN 736 881 947.3 382 407 459.0
2 EffCNN 307 394 528.3 139 210 198.7

LSTM 342 935 1267.7 381 849 973.7
EstraNet 26 45 39.0 27 39 39.7
PolyCNN 3322 4080 3915.7 1847 3180 −

4 EffCNN 3509 3950 3862.7 2098 2360 2405.3
LSTM 3835 4878 − 2539 2716 −

EstraNet 341 624 731.0 482 559 630.0

The experimental results of Sections 6.6 and 6.7 reveal that EstraNet exhibits significant
performance improvements over the benchmark models when faced with random delay or
clock jitter countermeasure in combination with masking countermeasure. In the presence
of random delay or masking countermeasures, the relative distances between the POIs
remain approximately the same. However, in the presence of countermeasures such as
random delay interrupt [CK09] and shuffling [HOM06], the relative distances between
the POIs vary drastically. It would also be interesting to investigate the adaptation of
the TN-based model against these countermeasures. It is worth mentioning that existing
research [DRS+12, WP20] has demonstrated that these countermeasures can significantly
deteriorate the performance of DL models. However, they have also introduced the
Hidden Markov Model and autoencoder-based methods to denoise traces protected by
such countermeasures, albeit in weaker settings. Similar approaches could be explored in
conjunction with EstraNet to make it robust to these countermeasures.

When comparing EstraNet with the benchmark models in terms of their attack perfor-
mance on desynchronized traces, EstraNet demonstrates a remarkable improvement with
up to 90% reduction in the number of attack traces required to reach the guessing entropy
1. Additionally, EstraNet showcases significant improvements over the benchmark models
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on the datasets with clock jitter effects. On such scenarios, while the benchmark models
often struggle to reach the guessing entropy 1 even with 5K attack traces, EstraNet models
can reach it using less than 100 traces most of the time. However, it is important to note
that this does not imply that CNN-based and RNN-based models cannot be developed
to perform well on such scenarios. Thus, developing CNN and RNN-based DL models to
perform well against datasets with highly desynchronized traces and clock jitter effects
can be explored in the future.

8 Conclusions
Deep learning (DL) models have shown great success in SCA; however, selecting an
appropriate model architecture remains crucial in achieving good performance. This work
introduces a novel DL model called EstraNet for SCA. EstraNet exhibits linear time and
memory complexity, significantly improving quadratic time and memory complexity of the
previously proposed TN-based model, TransNet. This linear complexity makes EstraNet
applicable to traces with lengths exceeding 10K. Moreover, EstraNet is shift-invariant,
making it resilient to misalignments in the traces.

The EstraNet architecture incorporates two major contributions. First, we propose a
novel attention operation called GaussiP attention, which has linear time and memory
costs. By incorporating relative positional encoding within the attention operation,
EstraNet achieves shift-invariance. Additionally, the sparsity of attention probabilities in
GaussiP attention makes it particularly suitable for SCA. Second, due to the limitations of
standard normalization techniques, such as batch normalization and layer normalization for
EstraNet, we introduce a novel normalization method called layer-centering. The proposed
normalization method improves the stability of EstraNet training significantly.

We conducted extensive experimental evaluations of EstraNet on three datasets con-
sisting of masked implementations. We introduced random displacements to the datasets
to assess EstraNet’s robustness against random delay countermeasure. The results demon-
strate that EstraNet achieves up to 90% decrease in the number of attack traces required to
reduce the guessing entropy to 1 compared to three benchmark models. When comparing
the attack performance of EstraNet with the benchmark models on datasets incorporating
clock jitter effects, EstraNet provides up to an order of magnitude reduction in the number
of attack traces required to reach guessing entropy 1. Additionally, we investigated the
impact of various hyperparameters on EstraNet’s performance. Overall, the experimental
findings highlight EstraNet’s potential as a promising avenue for advancing SCA research.
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Appendices
A Approximation of GaussiP Attention’s Normalization Fac-

tor
In Eq (17), we have used the following approximation:

n−1∑
j=0

kGP A(i− j) =
n−1∑
j=0

exp
(
−
β2

2s
2
p(i− j − cpn)2||Wpp||22

2

)
≈ 1
β2sp||Wpp||

https://d2l.ai
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In this section, we provide a justification for the same. Toward that goal, let us define the
shifted kernel function as follows:

k̄(j) = kGP A(j + cpn) = exp
(
−
β2

2s
2
p||Wpp||22j2

2

)

Thus, the shifted kernel k̄(j) attains its maximum at j = 0 and decreases monotonically
as j goes to either +∞ or −∞. Thus, we have

n−1∑
j=0

kGP A(i− j) =
n−1∑
j=0

k̄(i− j − cpn) =
i−cpn∑

j=i−cpn−n+1

k̄(j)

≈
∞∑

j=−∞

k̄(j) = k̄(0) +
−1∑

j=−∞

k̄(j) +
∞∑

j=1

k̄(j)

≈ k̄(0) +
∫ 0

j=−∞
k̄(j) +

∞∑
j=0

k̄(j) = k̄(0) +
∫ ∞

j=−∞
k̄(j) = 1 +

∫ ∞
j=−∞

k̄(j)

≈
∫ ∞

j=−∞
k̄(j) =

√
2π

β2sp||Wpp||

≈ 1
β2sp||Wpp||2

In the above derivation, there are four steps of approximations. Note that, in the last
approximation step, we have ignored the constant factor

√
2π of

√
2π/β2sp||Wpp||2 as a

small constant factor like 2 and 3 can be consumed in the hyper-parameter β2. In the
third approximation step, we have ignored the additive term 1 of 1 +

∫∞
j=−∞ k̄(j). The

approximation can be justified as, for longer traces,
∫∞

j=−∞ k̄(j)� 1 holds. Similarly, the
approximations in the third approximation step are also quite tight for longer traces. How-
ever, the first approximation i.e. the approximation of

∑i−cpn
j=i−cpn−n+1 k̄(j) by

∑∞
j=−∞ k̄(j)

can be significantly loose in some scenarios. To justify the approximation, we will consider
two scenarios. In the first scenario, let us assume that i− cpn− n+ 1� 0� i− cpn. In
that case

i−cpn∑
j=i−cpn−n+1

k̄(j) =
∞∑

j=−∞

k̄(j)−

i−cpn−n∑
j=−∞

k̄(j) +
∞∑

j=i−cpn+1

k̄(j)


Since k̄(j) decays exponentially to 0 when j goes further away from 0,

∑i−cpn−n
j=−∞ k̄(j) +∑∞

j=i−cpn+1 k̄(j) remains close to 0 in this scenarios. In the second scenario, let us assume
that i− cpn� 0. Thus, in this scenario

i−cpn∑
j=i−cpn−n+1

k̄(j) ≈ 0

as each k̄(j) for j ∈ [−cpn− n+ 1,−cpn] is close to 0. However, note that normalizing
the attention scores by a value close zero can lead to the explosion of the attention
scores which may lead to the unstable behaviour of the model. On the other hand,
by approximating

∑i−cpn
j=i−cpn−n+1 k̄(j) by the upper limit

∑∞
j=−∞ k̄(j) ≈ 1/β2sp||Wpp||2

avoids such problem. Overall, we find that approximating the normalizing constant∑n−1
j=0 kGP A(i− j) by 1/β2sp||Wpp||2 leads to better stability of EstraNet.
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Figure 13: The contour plots of the attention scores learned at the eight different heads
of the first layer’s GaussiP attention operations of EstraNet on the ASCADf dataset. The
attention probabilities are represented as a 4K × 4K image A where A[i, j] represents the
attention from qi to kj .

B Plots of the Attention Probabilities in the GaussiP At-
tention Heads

Figure 13 plots the attention scores learned at different heads of the first layer’s GaussiP
attention operation of EstraNet on the ASCADr datasets. The value at i-th row and
j-th column of the images indicates the attention scores from qi to kj . From the plots,
we observe that the attention scores are the same for (i, j)-pairs having the same i − j,
implying that the attention scores are the function of the relative distance of the i and
j. Additionally, the attention scores at each attention head are high for a small range of
relative distances and close to zero for the rest showing the sparsity of the attention scores.

C Detailed Architecture of the Benchmark Models
PolyCNN The PolyCNN model is a CNN model proposed in [MBC+20]. It has six
convolutional blocks followed by a global average-pooling layer. Each convolutional
block is composed of a convolutional, a batch-normalization, a ReLU, and an average-
pooling layer. The number of features of the convolutional layers are respectively set to
10, 20, 40, 40, 80 and 100. The kernel width of the first convolutional layer is set to 10 and
to 11 for the rest. The pool size and stride of the average-pooling layer are set to 25 in the
first convolutional block and to 5 for the rest. We have used this model for trace length
40K. However, this model was not applicable to the smaller trace length 10K as the trace
length becomes 1 after the first 5 convolutional blocks. Thus, we removed the one (third)
convolutional block from the original PolyCNN model to use it for trace length 10K.

EffCNN In [ZBHV20], Zaid et al. proposed a methodology for constructing CNN models
robust to desynchronizations in the traces. Their models have three convolutional blocks
followed by a flattening layer and three fully-connected layers. Each convolutional block is
composed of a convolutional, a SELU activation, a batch-normalization, and an average-
pooling layer. The number of features in the convolutional layers are respectively set to
32, 64 and 128. The kernel widths of the layers are respectively set to 1, T/2, n/I where
n is the trace length, T is the maximum assumed amount of desynchronization, and I is
the assumed number of POIs in the traces. Similarly, the pool sizes and the strides in the
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Figure 14: Plots of learning rate vs. training step for cosine decay with linear warmup
learning rate schedule.

average-pooling layers are respectively set to 2, T/2, n/I. For all experiments, we set I to
10. For the experiments of Sections 6.6 and 6.8, we set T = 400 and for the experiments of
Section 6.7, we set T = 1000.

LSTMNet In [LZC+21], Lu et al. have proposed the LSTM-based models. The models for
the desynchronized ASCADf and ASCADr datasets have six convolutional blocks, followed
by bidirectional LSTM layers, followed by softmax-attention. Each convolutional block is
composed of a convolutional layer, a batch-normalization layer, an ELU activation, and an
average-pooling layer. The number of filters of the convolutional layers are respectively set
to 4, 8, 16, 32, 64 and 128. The pool sizes of the average-pooling layers are all set to 2. The
kernel width of all convolutional layers except the first one is set to 3. The kernel width of
the first convolutional layer is respectively set to 26 and 63 for the ASCADf and ASCADr
datasets. [LZC+21] has not provided any model for the CHES20 dataset. Thus, we use
the model of the ASCADr dataset to perform the attacks on the CHES20 dataset.

D Learning Rate Schedule for EstraNet
In cosine decay with linear warmup learning rate scheduling, the learning rate is first
linearly increased from 0 to some maximum value, say lmax over the first twarmup steps.
Then the learning rate is gradually decreased to some minimum value lmin over the
remaining tmax − twarmup steps where lmax and lmin are respectively the maximum and
minimum learning rate, tmax is the total number of training steps, and twarmup is the
number of warmup steps. Thus, the learning rate at t-th training step is given by

lt =

{
t

twarmup
× lmax for t ≤ twarmup

lmin + lmax−lmin
2 ×

(
1 + cos

(
t−twarmup

tmax−twarmup
× π
))

for t > twarmup

Figure 14 plots the learning rate vs training steps in cosine decay with linear learning
rate schedule for tmax = 100, twarmup = 10, lmax = 1 and lmin = 0.004.

E Adding Clock Jitter Effect
For adding clock jitter effect, we perform the pre-processing of each trace of the datasets
as follows. For each sample points in the original trace we perform one of the following
three actions each with one-third probability: a) we do not add it in the new trace, b)
simply add it or c) add it along with another additional sample points with magnitude
equal to the average of the sample point and the next sample point. Note that the above
pre-processing is equivalent to adding clock jitter effect using the algorithm of [WP20] with
the clock_jitters_level set to 1. However, after doing the above pre-processing, none of



374 EstraNet

Table 17: The minimum number of traces (lesser is better) required to reach guessing
entropy 1 by EstraNet and the benchmark models for trace length 10K. The models have
been evaluated on attack traces with attack desync 0 (no desync), 200, and 400. The
columns titled Best, Med., and Avg. respectively show the best, median, and average
results of three independently trained models. During the training of the models, no data
augmentation is used.

Dataset Model Attack Desync 0 Attack Desync 200 Attack Desync 400
Best Med. Avg. Best Med. Avg. Best Med. Avg.

PolyCNN > 5K > 5K − > 5K > 5K − > 5K > 5K −
ASCADf EffCNN 277 440 384.0 257 288 298.0 730 839 1064.3

LSTM > 5K > 5K − > 5K > 5K − > 5K > 5K −
EstraNet 79 390 286.7 139 350 319.3 124 311 308.0

PolyCNN 14 19 21.3 11 17 17.0 48 84 93.0
ASCADr EffCNN 13 16 17.7 13 14 15.0 42 75 64.3

LSTM > 5K > 5K − > 5K > 5K − > 5K > 5K −
EstraNet 6 7 7.0 6 6 6.0 5 6 6.3

PolyCNN 14 19 19.3 13 14 17.7 16 24 22.3
CHES20 EffCNN 12 22 23.0 13 27 23.0 22 26 28.3

LSTM 6 17 14.0 5 14 11.7 7 16 13.3
EstraNet 4 4 7.3 3 6 7.0 4 4 6.3

the DL models performed well10 as many informative sample points were getting removed
from the traces during the pre-processing making the informative sample points more
sparser in the pre-processed traces. We circumvented the loss of informative sample points
during the pre-processing as follows. Prior to adding the clock jitter effect in the traces,
we double the number of sample points in the traces by repeating each sample points twice.
Note that such pre-processing is equivalent to doubling the sampling rate of the trace
acquisition setup. Since, during the addition of clock jitter effect, at most one consecutive
sample point of the original traces gets removed, by repeating each sample point of the
original trace twice prior to adding clock jitter effect, we make sure that each sample point
of the original traces appears at least once in the pre-processed traces while having the
clock jitter affect at the same time.

F Ablation Study of Data Augmentation
In this Section, we investigate the impact of the data augmentation on the shift-invariance
of the DL models. Toward that goal, we performed the experiments of Section 6.6 without
any data augmentations. The resultant outcomes are detailed in Table 17. The findings
show a significant decline in the performance of all models on the ASCADf dataset while
the models are trained without data augmentations. Specifically, PolyCNN and LSTMNet
were unable to reach the guessing entropy 1 even using 5K attack traces. The performance
of EstraNet is similar to or significantly better than EffCNN on the dataset. The LSTMNet
model fails to reach the guessing entropy 1 on the ASCADr dataset, although it performed
closely to EstraNet on the CHES20 dataset. On the ASCADr and CHES20 datasets,
EstraNet demonstrated slightly superior performance compared to PolyCNN and EffCNN.
Overall, the better performance of EstraNet than the benchmark models suggests better
shift-invariance of EstraNet architecture.

10In fact, on one dataset, only EstraNet worked significantly well. The rest of the methods were not
working well.
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