
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 1, pp. 229–263. DOI:10.46586/tches.v2024.i1.229-263

StaTI: Protecting against Fault Attacks Using
Stable Threshold Implementations

Siemen Dhooghe , Artemii Ovchinnikov and Dilara Toprakhisar

COSIC, ESAT, KU Leuven, Leuven, Belgium
firstname.lastname@esat.kuleuven.be

Abstract. Fault attacks impose a serious threat against the practical implementations
of cryptographic algorithms. Statistical Ineffective Fault Attacks (SIFA), exploiting
the dependency between the secret data and the fault propagation overcame many
of the known countermeasures. Later, several countermeasures have been proposed
to tackle this attack using error detection methods. However, the efficiency of the
countermeasures, in part governed by the number of error checks, still remains a
challenge.
In this work, we propose a fault countermeasure, StaTI, based on threshold imple-
mentations and linear encoding techniques. The proposed countermeasure protects
the implementations of cryptographic algorithms against both side-channel and fault
adversaries in a non-combined attack setting. We present a new composable notion,
stability, to protect a threshold implementation against a formal gate/register-faulting
adversary. Stability ensures fault propagation, making a single error check of the
output suffice. To illustrate the stability notion, first, we provide stable encodings
of the XOR and AND gates. Then, we present techniques to encode threshold
implementations of S-boxes, and provide stable encodings of some quadratic S-boxes
together with their security and performance evaluation. Additionally, we propose
general encoding techniques to transform a threshold implementation of any function
(e.g., non-injective functions) to a stable one. We then provide an encoding technique
to use in symmetric primitives which encodes state elements together significantly
reducing the encoded state size. Finally, we used StaTI to implement a secure Keccak
on FPGA and report on its efficiency.
Keywords: Encoding · Fault Attacks · Masking · Side-Channel Analysis

1 Introduction
Cryptographic algorithms that are designed to resist cryptanalytic attacks are still prone to
physical attacks. These attacks target the implementations of the algorithms when deployed
in an embedded device. Such attacks can be grouped into two categories: (1) passive
observation of the device’s behavior (e.g., power consumption [KJJ99], timing [Koc96], and
electromagnetic emanation [GMO01]), and (2) inducing errors in the computation through
a physical means (e.g. clock/voltage glitching [AK97], electromagnetic waves [DDRT12],
and laser injections [Hab65]) and observing the device’s response to the induced errors.

Side-Channel Analysis (SCA) is a passive attack technique that exploits information
leakage from physical effects, such as timing and power consumption. Over the years,
numerous attacks have been proposed, and countermeasures protecting against these
attacks have been developed. Among the most prominent countermeasures employed to
protect against SCA is masking [CJRR99, ISW03,RBN+15,GMK16]. The idea of masking
is to split the secret input into a number of shares such that each share is statistically
independent of the secret. Consequently, observing all but one shares does not compromise

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-07-15 Accepted: 2023-09-15 Published: 2023-12-04

https://doi.org/10.46586/tches.v2024.i1.229-263
https://orcid.org/0000-0003-0591-7355
https://orcid.org/0000-0002-9035-523X
https://orcid.org/0000-0003-4551-6775
mailto:siemen.dhooghe@esat.kuleuven.be,artemii.ovchinnikov@esat.kuleuven.be,dtoprakh@esat.kuleuven.be
http://creativecommons.org/licenses/by/4.0/

230 StaTI

the privacy of the secret input. Threshold Implementations (TI) by Nikova et al. [NRR06]
is such a technique that is based on secret sharing and threshold cryptography. The
computation is performed by coordinate functions that operate on non-complete sets of
shares of the secret input. TI is designed for hardware implementations, making it effective
even when the circuit is affected by glitches.

In contrast to the passive nature of SCA, fault attacks actively disrupt the computa-
tion. Since the seminal work of Boneh et al. [BDL97] introducing fault attacks on RSA,
numerous attack techniques targeting the physical properties of the implementations of
cryptographic primitives have been developed. To mitigate these attacks, various coun-
termeasures have been designed, with redundancy emerging as an extensively employed
technique. Redundancy (in time, area, or information) is utilized to detect whether a fault
is injected into a circuit. Upon fault detection, these countermeasures either suppress or
infect the output, such that it is no longer exploitable by the adversary. Additionally,
redundancy can also be leveraged for error correction purposes, such as majority voting.
Another promising approach that has gained significant adoption is the combination of
redundancy and masking. These countermeasures, combining masking and redundancy,
were typically considered as secure against SCA and fault attacks. However, a novel attack,
Statistical Ineffective Fault Attacks (SIFA) [DEK+18] that is performed on non-faulty
(i.e., correct) ciphertexts has been proposed. The attack exploits the dependency between
the fault propagation to the output and the secret values, thereby circumventing simple
redundancy. Building upon this, Dobraunig et al. [DEG+18] used SIFA to overcome most
of the redundancy combined with masking based countermeasures proposed prior to the
introduction of SIFA. Examples of such combined countermeasures include, among others,
ParTI [SMG16], CAPA [RMB+18], Private Circuits II [IPSW06], M&M [MAN+19], Im-
peccable Circuits [AMR+20,SRM20,RSM21], and Transform-and-Encode (TaE) [SJR+19],
which were designed both before and after the introduction of SIFA. Taking a different
approach, Daemen et al. [DDE+20] proposed the use of reversible operations to ensure the
propagation of the fault to the output, and error detection methods to detect the faults at
the output. However, as noted in [DDE+20], the implementation of such countermeasures
becomes inefficient as the complexity of the protected functions increase.

Contributions. In this paper, we propose a fault attack countermeasure, StaTI, that
extends threshold implementations using linear encoding. In StaTI, extending the notions
of threshold implementations, we propose a new composable notion, stability, that ensures
the propagation of the injected faults to the output. As a result, the injected faults can be
detected using a single error detection circuit at the end. StaTI can be applied to any
threshold implementation following the respective technique proposed in this paper.

We formally define the gate/register-faulting adversary and the respective security
model. Based on these models, we present encodings for the basic building blocks XOR and
AND gates which propagate any injected fault to the output. Consecutively, we propose
general methodologies to encode the threshold implementation of any function that does
not propagate the faults, such that they become secure under the adversary and security
models we define. These methodologies ensure the fault propagation to the output in two
different ways:

• Explicitly detecting faults at the input of each encoded function.

• Mapping the faulty inputs of an encoded function to the faulty outputs.

These methodologies provide generic protection against the proposed adversary, meaning
we can defend a function against effective and ineffective faults at the same time, and the
methodology can be applied to any function.

On the basis of the stability notion, we present efficient encoding techniques for (t+ 1)
share and two share threshold implementations for any degree t function. Consecutively, to

Siemen Dhooghe , Artemii Ovchinnikov and Dilara Toprakhisar 231

assess the security and the efficiency of our methodology, we present the stable encodings
for the quadratic class Q4

12 and the Keccak S-box using duplication and the parity code.
The duplication of the Keccak S-box is then used for an FPGA implementation of Keccak-
f [1600]. To assess their security, we make use of VerMFI [ANR18, AWMN20]. Our
assessment shows that StaTI achieves first-order gate/register-faulting security in addition
to the probing security of threshold implementations. Moreover, it brings no additional
latency, and roughly a factor of two overhead in area cost compared to regular threshold
implementations. Lastly, following the encoding techniques for S-boxes, we provide state-
wide encodings to be employed in a symmetric primitive. This technique groups state
elements and encode them together reducing the encoded state size compared to encoding
state elements separately.

Outline. In Section 2, we discuss the adversary and security models that StaTI assumes,
and the masking and linear code concepts that StaTI makes use of. Additionally, we
introduce statistical ineffective faults and go over some countermeasures against it. In
Section 3, we describe a new property, stability, that allows efficient encodings while
protecting against statistical ineffective faults. Then, we present stable encodings of the
XOR and AND gates in Section 4 based on the security assumptions made in Section 2.
Next, we present general methodologies to implement stability for unstable functions in
Section 5. We provide a methodology to obtain stable encodings of t+ 1-shared threshold
implementations of degree t functions in Section 6, and examples of two-shared threshold
permutations in Section 7. Then, in Section 8 we provide state-wide encodings that would
be employed in a symmetric primitive. Finally, in Section 9 we evaluate the security and
the performance of the t + 1 and two share encodings of 4-bit quadratic functions and
the 5-bit Keccak S-box presented in the appendix. Moreover, we present a security and
performance evaluation of Keccak−f [1600] protected with StaTI.

2 Preliminaries
In this section, we introduce the probing and the gate/register-faulting adversaries to-
gether with their respective security models assumed in this work. We then introduce
Boolean masking and linear codes as a countermeasure against the two adversaries, re-
spectively. Finally, we introduce threshold implementations protecting the computation
against side-channel attacks by masking, and the fault attack countermeasure proposed by
Daemen et al. [DDE+20] protecting the computation on masked and encoded data using
permutations.

2.1 Adversary and Security Models
We consider an adversary with probing and faulting capabilities. The attack surface is
considered as a Boolean circuit that is a directed acyclic graph whose vertices are Boolean
gates, and whose edges are wires. The Boolean circuit takes an input, has an internal
state, and produces an output where the state corresponds to the sharing of the secret
data stored in the registers.

Wire Probing. To capture an attacker performing side-channel analysis, we consider the
d-probing model as introduced by Ishai et al. [ISW03]. This adversary can observe at most
d wires of the Boolean circuit and these wires are specified before the circuit is computed.
Specifically in this work, we consider the first-order probing security.

In order to capture the physical effect of glitches on a hardware platform, we extend the
probing model to the glitch-extended robust probing model from Faust et al. [FGP+18].

https://orcid.org/0000-0003-0591-7355
https://orcid.org/0000-0002-9035-523X
https://orcid.org/0000-0003-4551-6775

232 StaTI

In this extended model, a glitch-extended probe allows obtaining all the registered inputs
leading to the gate/wire which is probed.

Considering the security against the probing adversary, we follow a simulation model
as first proposed by Ishai et al. [ISW03]. In order to prove security, a simulator is created
which needs to simulate the probed wire values of the circuit without having the secret
input of the circuit (e.g. the key and the plaintext of a block cipher). Such a simulation can
be successful in case the circuit uses randomness as a countermeasure. This randomness is
not given to the adversary and, as a result, the simulator can use it to fool the adversary.
In practice, a proof of simulation security comes down to showing the distribution of the
probed wires is independent of the input of the circuit.

Gate/Register Faulting. To capture an attacker performing a fault attack, we consider
a k-gate/register-faulting adversary which can replace the outputs of a total of k gates or
registers in the circuit. When considering Boolean circuits, this means that the adversary
can replace a total of k gates or registers to either: output zero (reset faults); output
one (set faults); or flip the output (bitflip faults). While there is currently no standard
adversary model in the literature, the gate/register-faulting adversary is used in many
different works [AMR+20,SRM20,RSM21]. These works assume an adversary that can fault
a number of wires in a clock cycle. As each wire is an output of a gate or register, the faults
are modeled as modifications on gates or registers. Nevertheless, in this work we consider
the first-order gate/register-faulting security. That is, we consider an adversary which is
capable of replacing one gate or register in the circuit during the whole computation.

Considering the security models tied to the gate/register-faulting model, we require
that the circuit is correct and private. A circuit is correct against a k-gate/register-faulting
adversary when, over all possible faults, the circuit always gives back a correct output
or an abort signal. A circuit is called private when, for every fixed injected fault, the
probability of the abort signal does not depend on the secret inputs of the circuit. In fact,
similar to the probing model, we consider a simulation game where the simulator is given
the faults and needs to simulate the abort signal.

2.2 Masking and Encoding
In order to thwart probing and faulting adversaries, we make use of masking and encoding
techniques. Boolean masking is a technique based on splitting each secret variable x ∈ F2
in the circuit into sx shares x̄ = (x0, x1, . . . , xsx−1) such that x =

∑sx−1
i=0 xi over F2. A

random Boolean masking of a fixed secret is uniform if all sharings of that secret are
equally likely. Before moving on to encoding a circuit to protect against faults, we describe
some linear code notions that we use in this work.
Definition 1 (Binary linear code). A binary linear [n, k, d]-code C is a vector subspace over
Fn

2 , where n denotes the length, k denotes the rank, and d denotes the minimum distance
of the code which is the minimum Hamming distance between two distinct codewords of C.

An [n, k, d]-code C maps messages x ∈ Fk
2 to codewords c ∈ C ⊂ Fn

2 and its error
detection capability (i.e., the number of faults which can be detected) is determined by d.
Definition 2 (Generator matrix and encoding). A matrix G ∈ Fkxn

2 is said to be a
generator matrix for the binary linear [n, k, d]-code C if it consists of k basis vectors of C
with length n. Then, C has an encoding map C : Fk

2 7→ Fn
2 which is a linear transformation

of the form x 7→ xG.
More specifically, in this work, we consider systematic codes.

Definition 3 (Systematic code). A linear code C is a systematic code if its generator
matrix G is of the form [Ik|P] where Ik is the k × k identity matrix, and P is some
k × (n− k) matrix.

Siemen Dhooghe , Artemii Ovchinnikov and Dilara Toprakhisar 233

A systematic [n, k, d]-code, denoted by C, is used to encode x ∈ Fk
2 to 〈x, x′〉 ∈ Fn

2
where x is the message, and x′ is the check bits such that x′ = xP . Then, we call 〈x, x′〉 a
codeword of C. In order to transform 〈x, x′〉 to another correct codeword, at least d bits
need to be flipped. Consider an element y ∈ Fn

2 , in case y 6∈ C, we call y “faulty”. We make
use of the parity check matrix to detect if a received codeword is faulty or not.

Definition 4 (Parity check matrix). A matrix H ∈ F(n−k)×n
2 is said to be a parity check

matrix of the [n, k, d]-code C such that HcT = 0 if and only if c ∈ C.

When encoding and masking are combined to thwart probing and faulting adversaries,
the order of encoding and masking is important. That is, first encoding the state of the
cipher and then sharing it, versus first sharing the state of the cipher and then encoding it
are interpreted differently. In this work, we first share the state of the cipher (denoted by
x̄) and then encode the shares (where the parity bits are denoted by x̄′). For example,
a bit x ∈ F2 is first shared into x0, x1 ∈ F2 such that x0 + x1 = x, and then encoded to
〈x0, x1, x0, x1〉 meaning that each share is duplicated. In the rest of the work, x̃ denotes
the shared and encoded variables, and F̃ denotes the shared and encoded functions.

2.3 Threshold Implementations
In this paper, we use the notions of threshold implementations as introduced by Nikova
et al. [NRR06]. As such, we introduce the notions of correctness, non-completeness and
uniformity.

Correctness ensures that the sum of the output shares yields the desired output. A
shared function is non-complete if each of its coordinate functions fi operate on data
independent from the input secret. This notion has been extended by Bilgin et al. [BGN+14]
to capture each set of d coordinate functions being jointly non-complete.

Definition 5 (dth-order non-complete [NRR06,BGN+14]). A shared function is dth-order
non-complete if any d coordinate functions fi jointly work on data independent from the
input secret.

The above notion was created as a necessary property to secure maskings against
higher-order univariate attacks including the effect of glitches. The notion still holds for
when the input is linear encoded and masked.

We call, for a fixed secret x, a shared variable X̄ that is assigned to a sharing x̄
depending on the randomness, is uniform if it is uniformly distributed over the set of all
sharings of x denoted Sh(x).

Definition 6 (Uniform sharing). A shared variable X̄ is uniform when

Pr[X̄ = x̄ | x̄ ∈ Sh(x)] = 1/|Sh(x)| .

A shared function is called uniform if, when given a uniform input sharing, it outputs
a sharing which is uniform.

Definition 7 (Uniformity [NRR06]). A shared function F̄ (x̄) = ȳ is uniform if ∀x ∈ F,
∀ȳ ∈ Sh(F (x)) : ∣∣ {x̄ ∈ Sh(x)

∣∣ F̄ (x̄) = ȳ
} ∣∣ = |Sh(x)|

|Sh(F (x))| .

Note that in order to verify whether an encoded function is uniform, we perform the
verification only over the correct codewords. In other words, for encoded and shared
variables, Sh(x) is the set of all correct codewords of share vectors of x.

https://orcid.org/0000-0003-0591-7355
https://orcid.org/0000-0002-9035-523X
https://orcid.org/0000-0003-4551-6775

234 StaTI

2.4 Statistical Ineffective Faults and Countermeasures
In this section we summarize Statistical Ineffective Fault Attacks (SIFA) by Dobraunig
et al. [DEK+18,DEG+18] and introduce the strategy proposed by Daemen et al. [DDE+20]
to protect circuits against it on which we base our countermeasure.

SIFA. SIFA [DEK+18] exploits the dependency between the propagation of an injected
fault and the secret value. Following the initial attack, Dobraunig et al. exploited SIFA on
implementations protected using masking together with simple error detection [DEG+18],
and showed that the combined countermeasures based on simple redundancy and masking
are not sufficient to protect against SIFA. We distinguish these two attacks as done
by Saha et al. [SJR+19]: SIFA-1 and SIFA-2. SIFA-1 assumes an attacker injecting
a statistically biased fault (i.e., set or reset) to the state variable or linear operations.
Whereas, SIFA-2 assumes an attacker injecting an unbiased fault (i.e., bit flip) in the
nonlinear operations like an S-box. With respect to the gate/register fault model, we can
model SIFA-1 and SIFA-2 adversaries as faulting a register that stores the cipher state, or
a (gate/register in a) linear operation using set or reset faults, and faulting a (gate/register
in a) nonlinear operation using a bit flip, respectively. Dobraunig et al. apply SIFA-2 to a
TI of AND gate with four shares to show the impact of SIFA-2 on TI:

q0 = (x2 + x3)(y1 + y2) + y1 + y2 + y3 + x1 + x2 + x3

q1 = (x0 + x2)(y0 + y3) + y0 + y2 + y3 + x0 + x2 + x3

q2 = (x1 + x3)(y0 + y3) + y1 + x1

q3 = (x0 + x1)(y1 + y2) + y0 + x0

A bitflip to the input x0 will be ineffective if only if the shares y0, y1, y2, and y3 are
zero which indicates that the secret input y is zero. That is, the fault causes a fault-free
ciphertext depending on a secret value. Therefore, the dependence of the fault propagation
to a secret value harms the privacy of the circuit.

Combined Countermeasures. Masking and redundancy have been the main building
blocks in countermeasures defeating both fault attacks and side channel analysis both prior
to and after the introduction of SIFA-1 and SIFA-2. Impeccable Circuits I [AMR+20] and
ParTI [SMG16] employ masking and error detection. Impeccable Circuits II [SRM20] and
III [RSM21], DOMREP [GPK+21], the countermeasure from Breier et al. [BKHL20], and
Combined Private Circuits [FGM+23] employ masking and error correction codes to output
correct ciphertexts despite the fault injection. Impeccable Circuits III combines error
detection and correction to relax the high cost of error correction codes. TaE [SJR+19]
introduces a different approach which consists of two phases: domain transformation that
randomizes the state in each cipher execution, and using a repetition code to correct errors.
Masking and majority voting are the techniques used in the countermeasure for both
phases, respectively. CAPA [RMB+18] employs a multiparty computation protocol using
MAC tags that performs intermediate checks to ensure the circuit is not disturbed by a
fault injection. Despite its effectiveness against SIFA, CAPA has a high implementation
cost in practice. On the other hand, M&M [MAN+19] being inspired by CAPA in terms
of employing MAC tags, does not protect against ineffective faults despite the efficiency
gain compared to CAPA. We mention other countermeasures that protect against both
fault attacks and side channel analysis such as RS-mask [RAD20] which randomizes the
computation, Bringer et al. [BCC+14] utilizes orthogonal direct sum masking, Patranabis
et al. [PRC+19] uses fault space transformation, Bhasin et al. [BDF+09] uses dual rail with
precharge logic styles, and Breier et al. [BH17] uses error correction codes. In the work by
Daemen et al. [DDE+20] a different approach is followed which makes use of Toffoli gates

Siemen Dhooghe , Artemii Ovchinnikov and Dilara Toprakhisar 235

as basic primitives to implement nonlinear functions. We base our work on [DDE+20] and
explain it further.

Protecting against Statistical Ineffective Faults [DDE+20]. The countermeasure by
Daemen et al. protects against circuit faults which modify the circuit such that it returns a
faulty output for at least one input using Toffoli gates and masking. The authors propose
two countermeasures to achieve protection against SIFA:

• A circuit is recursively split into interconnected subcircuits which consist of simple
operations such as addition and multiplication. Then, each subcircuit is required
to be a permutation such that the injected fault to a subcircuit needs to propagate
to the output of that subcircuit. As a result, due to the interconnected nature of
subcircuits, a single error check at the end of the composite circuit is enough to
detect the fault. In addition, each subcircuit is required to be non-complete such
that the injected fault causing a wrong output does not depend on any secret value.

• A fault detection circuit for arbitrary circuits is added. Namely, the inputs of
nonlinear nodes are error checked.

The first method bears resemblance to the properties of threshold implementations as a
Boolean function property, namely the requirement for the encoding to be a permutation.

In order to secure a circuit using their methodology, the circuit is separated in linear
functions and Toffoli gates (the gate mapping (a, b, c) ∈ F3

2 to (a, b, c + ab) ∈ F3
2). Each

linear function and Toffoli gate is then masked and encoded using a duplication code.

3 Stability
In this section, we tweak the notions of security from [DDE+20] to allow more efficient
encodings and thereby, introduce the stability notion that ensures the propagation of the
injected faults to the output.

As a first step, we consider a different adversary model compared to the model by
Daemen et al. In their original model, a fault is modeled at the circuit level as a deviation
of the circuit instance from the fact that its output is fully determined by only its input. A
circuit being described as a composition of basic circuits (i.e., circuits consisting of simple
operations such as addition and multiplication), an adversary can target the entire basic
circuit. Then, the fault modifies the circuit such that it returns a faulty output for at least
one input. On the other hand, in this work as discussed in Section 2.1, we consider faults
which are injected to the output of a gate or a register. We emphasize that the model we
use has been used in many other works such as [AMR+20,SRM20,RSM21].

Since we are discussing threshold implementations, we consider their circuit representa-
tion such that each shared function (register to register) is non-complete and the functions
are jointly uniform. Each input share is given to several non-complete coordinate functions
as depicted in Figure 1.

However, we require an additional property from the circuit representation of a threshold
implementation when considering fault attacks. Namely, we require that no gate is shared
between two coordinate functions, i.e., the coordinate functions are a partition of the gates
used in that stage of the computation. We call this property fault non-completeness.

Definition 8 (Fault non-completeness). A circuit is called fault non-complete when, per
register stage, each gate of the circuit drives only a non-complete set of output shares.

Fault non-completeness ensures that a fault in a gate only targets one output share.
Thus, the propagation of a fault to the output does not depend on a secret value. However,

https://orcid.org/0000-0003-0591-7355
https://orcid.org/0000-0002-9035-523X
https://orcid.org/0000-0003-4551-6775

236 StaTI

x0

x1

x2

y0

y1

y2

f0

f1

f2

Figure 1: Example circuit model in hardware for a three shared non-complete function.
Each combinational gate is part of exactly one coordinate function fi.

as shown in 2.4, this structure alone is not sufficient to secure the composition of encoded
functions.

For a second step, we look at the secure composition of encoded functions. Recall from
the work by Daemen et al. that a circuit can be secured against SIFA by adding error
checks to the circuit or having each subcircuit being a permutation. We adopt these two
methods for Boolean functions similar to the properties of threshold implementations. We
propose a new property, stability, that provides security against a gate/register-faulting
adversary when combined with correctness, non-completeness, fault non-completeness, and
uniformity, (see Theorem 1) and generalizes the two methods by Daemen et al. into a
single notion.

Definition 9 (Stability). Consider a shared and encoded register-to-register function
F̃ : Fn

2 → Fn
2 and a code C ⊂ Fn

2 . We call F̃ stable if for any x̃ ∈ C and e 6∈ C, F̃ (x̃+ e) 6∈ C.

Stability states that any incorrect input codeword is mapped to an incorrect output
codeword. In particular, a correct and injective shared function (e.g., permutations) is
stable as it does not map any incorrect codeword to the correct ones. It is important
to note that a stable implementation of a correct and injective shared function can be
considered as a specific instance of TaE [SJR+19]. This is due to the stability naturally
exhibited by such functions, and therefore, they do not require additional measures other
than simple masking and encoding to ensure stability. In this instance, the “Transform”
phase is implemented with TI, and the “Encode” phase is implemented with linear codes.

The above definition is naturally extended when the number of outputs is different
from the number of inputs. In this case, the output linear code differs from the input one.
We cover this case in Section 7 which requires additional measures besides masking and
encoding making it differ from an instance of TaE.

This notion together with the TI notions additionally provides security over the serial
composition of shared and encoded functions.

Theorem 1. The serial composition of correct, stable, non-complete, fault non-complete,
and uniform shared functions is secure against a probing adversary and a single gate/register-
faulting adversary in a non-combined attack scenario.

Proof. The security against a probe placed in the design follows from the non-completeness
and uniformity properties of threshold implementations and was proven by Dhooghe
et al. [DNR19].

We then consider a single gate/register-faulting adversary. We analyze gate and register
faults separately. From the circuit representation, we know that each gate belongs to
exactly one coordinate function of F̃ (fault non-completeness). As a result, we allow the
adversary to arbitrarily change (fault) this coordinate function using a gate fault. Since the
coordinate function is non-complete, the output F̃ (x̃) is faulted by an additive difference
e which does not depend on the secret value x. Due to the interconnected nature of the
circuit, this faulty output is either the output of the whole circuit, or an input to the next
function. Being the output of the whole circuit does not pose any security problems as

Siemen Dhooghe , Artemii Ovchinnikov and Dilara Toprakhisar 237

we already proved that the fault does not depend on the secret. If the output is an input
to the next function, then we can model it as a single register fault on this function. As
only one share is affected by the fault, we safely assume that e 6∈ C as a single share fault
cannot craft a valid encoding. Additionally, a single register fault does not depend on any
secret. Since the circuit is the serial composition of stable functions, and e 6∈ C, the fault
is propagated to the circuit output. As a result, the fault is independent of any secret and
is detected at the end of the composite circuit making the circuit abort.

Stability is an independent notion that ensures the propagation of the faults present in
the input to the output in a shared and encoded register-to-register function. However,
Theorem 1 establishes the necessity of additional notions (e.g., TI notions) for probing and
gate/register-faulting security. For instance, non-completeness ensures that the injected
gate faults do not harm the privacy of the circuit. Consequently, stability cannot be readily
extended to other masking schemes to provide the desired security. That is, additional
implementation constraints should be considered to ensure that any injected gate fault
yields an incorrect output codeword, and its propagation is independent of the secret data.
For example, this can be ensured by utilizing forced independence [AMR+20], where no
gate is shared by two distinct output bits.

Considering the security model presented in Section 2.1, Theorem 1 states that a
stable threshold implementation of a function is correct and private against a single
gate/register-faulting adversary. This implies that the implemented circuit always gives
back a correct output or an abort signal over all possible single gate/register faults.
Additionally, for every fixed injected single fault, the probability of the abort signal
does not depend on the secret inputs of the circuit. Consequently, a stable threshold
implementation of a function is secure against the attacks exploiting the wrong outputs,
such as DFA [BS97] or SFA [FJLT13], as the circuit is correct and does not give wrong
outputs. Similarly, a stable threshold implementation of a function is secure against the
attacks exploiting the data dependency of fault activation/propagation to the output, such
as SIFA [DEK+18,HPB22], FTA [SBR+20] or SEFA/SHFA [VZB+22]. This is attributed
to the fact that the implementation is private and the abort signal is independent of the
secret data.

4 Stable Encodings of XOR and AND Gates
The XOR and AND gate comprise the two basic operations over the field F2. As a result,
they are the corner stones in cryptographic circuits (such as in block ciphers). Nevertheless,
these gates (similar to the other basic gates such as OR or NAND gates) have a fan-in
of two and a single output. Thus, it would not be possible to secure such gates in the
framework by Daemen et al. without increasing the output size or performing intermediate
error checks as the masking and encoding of it can never be injective.

In this section, we show that with the notion of stability (Definition 9) it is possible
to secure basic gates without resorting to error checks or adding additional output wires.
More specifically, we provide masked functions for the XOR and the AND gates encoded
with a duplication code.

Consider a naive XOR gate encoded with a duplication code. Take the encoded input
(a, b, a′, b′) where a = a′ and b = b′ if the input is correctly encoded (i.e., the input is
a valid codeword). Then, the naive XOR gate computes (a + b, a′ + b′). This encoding
of the XOR is not stable as an injected fault vector e = (1, 1, 0, 0), which is not a valid
codeword as (1, 1) 6= (0, 0), to the input yields an output which is still a valid codeword
as a+ 1 + b+ 1 = a+ b = a′ + b′. In fact, an XOR gate will always propagate the error
to the output as long as e 6= (1, 1, 0, 0), (0, 0, 1, 1). Therefore, we propose the following

https://orcid.org/0000-0003-0591-7355
https://orcid.org/0000-0002-9035-523X
https://orcid.org/0000-0003-4551-6775

238 StaTI

encoded XOR gate with a duplication code which modifies the output if and only if
e = (1, 1, 0, 0) or (0, 0, 1, 1):

z = a+ b+ (a+ a′)(b+ b′)
z′ = a′ + b′

For the other injected fault vectors that are invalid codewords, no modification is
done as the naive XOR gate already propagates them to the output. Therefore, this
encoding maps every invalid input codeword to an invalid output codeword while leaving
the correctness of the function unaltered, which makes it stable.

Similarly, consider a naive AND gate encoded with a duplication code. Given the
input (a, 0, a′, 0), a valid codeword, the gate computes (a · 0, a′ · 0) = (0, 0). Considering
an injected fault vector e = (1, 0, 0, 0), which is not a valid codeword as (1, 0) 6= (0, 0), to
the input, the output of the gate is still a valid codeword as (a+ 1) · 0 = 0 = a′ · 0. In fact,
if one of the inputs is zero, a fault injected to the other input will not propagate to the
output. Therefore, we propose the following encoded AND gate with a duplication code
which propagates the fault only if one or two of the inputs are zero:

z = ab+ (a+ a′)(b′ + 1) + (b+ b′)(a′ + 1)
z′ = a′b′

For the other injected fault vectors that are invalid codewords, no modification is
done as the naive AND gate already propagates them to the output. Therefore, this
encoding maps every invalid input codeword to an invalid output codeword while leaving
the correctness of the function unaltered, which makes it stable.

The stable encoding of the XOR gate is trivially extended to work over shared inputs
and keep its stability. However, the case of a stable shared and encoded AND gate is more
complex and is provided for two-shared threshold implementation in Section 7.

5 General Methodologies for Stability
In this section, we provide methodologies that transform unstable (Definition 9) encodings
into stable encodings without affecting the non-completeness, uniformity, and correctness
of the sharings.

5.1 Error Detection of Unstable Functions
Finding a stable encoding for an injective function is trivial using a simple linear code.
However, finding stable encoding for a non-injective function is relatively challenging. The
simplest examples are the XOR and AND gates. In Section 4, stable encodings for these
gates were presented. This is a notable advancement, but it does not provide us guidance
on securing an arbitrary non-injective encoding. In this section, we present a general
solution to transform an unstable sharing F̃ to a stable one.

Consider a correct, non-complete, and uniform encoded sharing F̃ of F . We add a single
value to the design denoted by R which holds the current state of the circuit. Meaning, if
R = 0, the state of the circuit is correct and no faults are present. If R 6= 0 then a fault
was detected. In other words, R expands our encoded state with additional parity bits.
In case these bits are non-zero, then the state is not a valid codeword. At the end of the
circuit’s computation, the decoder verifies the value of R and aborts in case R 6= 0. Given
this extra value, making a stable sharing F̃ from F is straightforward. Namely, one can
update the error status of the circuit R, which is initially set to zero, by error checking

Siemen Dhooghe , Artemii Ovchinnikov and Dilara Toprakhisar 239

the input of F̃ using the parity check matrix H and ORing the result to R. Consider an
encoded value x̃ with its parity check matrix H and the output error state Rnext, then the
following sharing is stable:

F̃ (x̃) = ỹ

Rnext = R ∨Hx̃T

It is clear that the above sharing is stable as any input error or R 6= 0 causes Rnext 6= 0
which means that the output is not a valid codeword of the expanded linear code.

We note that it is also possible to combine this method with the changing of the guard’s
construction by Daemen [Dae17]. In this case, the construction ensures both uniformity
and stability of a sharing.

5.2 Interpolation
Considering a shared and encoded value x̃ and a function F , we show that via interpolation
it is possible to find a map F̃ which is correct and stable for F .

Consider the list of F ’s correct encoded inputs and outputs, namely (x̃, ỹ) ∈ C2 such
that ỹ = F̃ (x̃). Then, consider all invalid input codewords x̃ 6∈ C and map them to a fixed
invalid output codeword α 6∈ C. Thus, for every x̃ 6∈ C, we add (x̃, α) to the previous list of
correct input and outputs. The resulting list goes over all possible encoded inputs. Thus,
via interpolation, there exists a function F̃ which maps every valid codeword x̃ ∈ C to a
valid codeword of F̃ (x̃). In addition, F̃ maps every “faulty” input to a fixed faulty output
α. As a result, F̃ is correct and stable.

There are multiple ways to generate F̃ , namely by mapping incorrect inputs to different
incorrect outputs. The encoded XOR and AND gates from Section 4 are examples of this
approach.

Moreover, given a correct and uniform sharing F̄ of F , we can make a stable encoding of
F which remains uniform by mapping the correct shared inputs to the shared outputs of the
uniform function and by mapping the incorrect input sharings to an incorrect output sharing.
However, this method is not guaranteed to keep non-completeness. The interpolation
technique might create a high-degree function that is not non-complete. Nevertheless, in
Section 6, we provide a methodology that does ensure the non-completeness when working
with t+ 1 shares for a degree t function.

6 Stable t+ 1 Threshold Implementations
In this section, we present a methodology to provide stable encodings of the traditional t+1
shared threshold implementations of degree t functions. As opposed to the methodologies
from Section 5, we are now also concerned with ensuring the threshold implementation
properties such as uniformity and non-completeness.

Linear Functions We consider the case of an invertible linear function L. Consider a
systematic linear code C, with G = (I|P) its generator matrix and H = (−PT |I) its parity
check matrix. Using these notations, we transform L to its stable encoded version L̃. Let
P (x) = xP = x′ be the matrix calculating the parity bits of a message. Then,

L̃ =
(

L 0
P + (P ◦ L) I

)
.

https://orcid.org/0000-0003-0591-7355
https://orcid.org/0000-0002-9035-523X
https://orcid.org/0000-0003-4551-6775

240 StaTI

First, the map L̃ is correct since if a message x is encoded as 〈x, P (x)〉 then L̃(〈x, xP 〉) =
〈L(x), P (x) + (P ◦ L)(x) + x′〉 which is equivalent to the correct encoding of the output
〈L(x), (P ◦ L)(x)〉 if there is no fault injected. Second, the map L̃ is stable since it is
a permutation as L is invertible. If a fault is injected to a gate, then due to the non-
completeness, L̃ outputs an invalid encoding which will be propagated by the next stable
function.

The above map is trivially extended to a shared and encoded map by applying it
share by share. As a result, the encoding of linear layers is easy which allows us to use
affine equivalences to classify nonlinear functions where it suffices to provide non-complete,
uniform, and stable sharings of each class.

Invertible Nonlinear Functions We extend the above method for linear functions to
nonlinear ones. Given a permutation F and its uniform and non-complete sharing F̄ .
Because F is a permutation and F̄ is uniform, F̄ is a permutation itself. We encode F̄ as

F̃ =
(

F̄ 0
P̄ + (P̄ ◦ F̄) I

)
,

where P̄ is the parity check function which works share by share.
The above function is still correct since F̃ (〈x̄, P̄ (x̄)〉) = 〈F̄ (x̄), P̄ ◦ F̄ (x̄)〉. Similarly, the

function is stable since it is invertible, namely

F̃−1 =
(

F̄−1 0
(P̄ ◦ F̄ + P̄) ◦ F̄−1 I

)
.

Moreover, since F̃ maps correct encoded inputs to correct encodings of F̄ ’s outputs, the
map is still uniform. Finally, F̃ is non-complete since F̄ is non-complete and, since P̄
works share-wise, P̄ + (P̄ ◦ F̄) + I is also non-complete.

The above method allows us to find stable encodings of threshold implementations
with t + 1 shares of a function of degree t for any systematic linear code. We provide
non-complete, uniform, and stable sharings for Q4

12 encoded with a duplication code and
commonly used extended Hamming code in Appendix A. However, when using fewer
shares, a sharing which is both non-complete and uniform can not be found and thus more
specific encodings and sharings are required. We additionally note that due to the S-box
usually being a permutation, simple duplication does not necessarily require the above
method to be implemented, unlike the case with other codes.

7 Stable Two-Share Threshold Implementations
Unlike the t+ 1 shared encodings of threshold implementations, we can not achieve non-
completeness and uniformity at the same time with an equal number of outputs and inputs
while operating on two shares. Therefore, we start with the work of Shahmirzadi and
Moradi [SM21a] proposing uniform sharings of the four-bit quadratic classes which are
first-order probing secure, but operate over two cycles.

We first elaborate on the security requirements of an encoded function over multiple
cycles. Similar to the work of Shahmirzadi and Moradi, a masked function is required to
be first-order probing secure independent of the number of cycles. Additionally, a masked
function is required to be secure against a first-order register/gate faulting adversary. To
guarantee the composability of the design against probing adversaries, we require that the
masked function (over two cycles) is uniform. Similarly, for the composability against fault
attacks, we require that the encoded function is stable considering both its intermediate
and final outputs.

Siemen Dhooghe , Artemii Ovchinnikov and Dilara Toprakhisar 241

To encode masked functions with stability, we start by providing an example of a
stable masked AND gate. First, we recall the two shared AND gate from Shahmirzadi and
Moradi that is performed in two cycles where a0, a1, b0, b1 are the input shares, and z0, z1
are the output shares:

Stage 1 Stage 2
x0 = a0b0 + b0
x1 = a0b1 z0 = x0 + x1
x2 = a1b1 z1 = x2 + x3
x3 = a1b0 + b0

(1)

We encode this function with a duplication code by replacing the AND and XOR gates
in Eq. (1) with the stable encodings of them given in Section 4. Then, the stable two
shared AND gate is given as follows.

Stage 1 Stage 2
x0 = a′0b

′
0 + b0 + (a0 + a′0)(b0 + b′0 + 1)

x1 = a′0b1 + (a0 + a′0) + (b1 + b′1)(a0 + 1) z0 = x0 + x1 + (x0 + x′0)(x1 + x′1)
x2 = a′1b1 + (a1 + a′1) + (b1 + b′1)(a1 + 1) z1 = x2 + x3 + (x2 + x′2)(x3 + x′3)
x3 = a′1b

′
0 + b0 + (a1 + a′1)(b0 + b′0 + 1)

x′0 = a′0b
′
0 + b′0

x′1 = a′0b
′
1 z′0 = x′0 + x′1

x′2 = a′1b
′
1 z′1 = x′2 + x′3

x′3 = a′1b
′
0 + b′0

We encoded the stable two shared AND gate using the stable encodings of the regular
XOR and AND gates. As a result, for any injected fault vector e that is not a valid
codeword, the above function will propagate the fault to the output which is not a valid
codeword1.

We provide non-complete, uniform, and stable two shared masked encodings for Q4
12

using a duplication code and the [8, 4, 4] extended Hamming code in Appendix B.

8 State-wide Encodings
Until this section, the focus point of this work was to encode small functions such as
S-boxes. In this section, we investigate encoding the entire state of the primitive to reduce
the overall state size compared to encoding all state elements separately. We note the
experimental work by Bartkewitz et al. [BBM+22] shows that there is a direct relation
between the number of parity bits and the practical security of a design against a laser fault
injection. We emphasize that in this work, we focus on protection against the adversary
introduced in Section 2.1 and find techniques to improve the efficiency of the encodings
without losing this protection.

Consider the linear layer (or a part thereof) of a symmetric primitive represented as a
matrix M . For example, the AES MixColumns matrix is

M =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 .

1The stability of the encoded two shared AND gate is verified for all input and fault combinations.

https://orcid.org/0000-0003-0591-7355
https://orcid.org/0000-0002-9035-523X
https://orcid.org/0000-0003-4551-6775

242 StaTI

We encode the state using a systematic linear code C with generator matrix G = (I|P). In
case (xMT)(I|P) = x(MT |P) or when MTP = P , then the encoded state still consists
of valid parity bits after the linear operation. That means using a code where the P
matrix consists of eigenvectors of the transposed diffusion layer MT with eigenvalue one.
Equivalently, P consists of vectors in the nullspace of (MT − I). If such a code is found,
we can encode the state where the cost of the linear layer comes for free (over the regular
shared cost).

As an example, we consider symmetric primitives with a four-by-four state which shift
the rows and applies a linear layer M per column. This structure is used in a lot of ciphers
such as AES [AES01], SKINNY [BJK+16], Midori [BBI+15], PRINCE [BCG+12], and
LED [GPPR11]. We start by considering a four-by-four state over some vector space Fn

2 :x[0, 0] . . . x[0, 3]
...

. . .
...

x[3, 0] . . . x[3, 3]

 .

Let the state be encoded by applying a linear code C over Fn
2 (such as duplication or a

parity code) with generator matrix G and consider the encoded statex[0, 0] . . . x[0, 3] p[0]
...

. . .
...

...
x[3, 0] . . . x[3, 3] p[3]

 ,

where p[i] =
∑3

j=0 x[i, j]G. That is, the state is encoded using the sum of the encodings of
the elements in a single row. Using this encoding, an encoded ShiftRows operation has no
additional overhead as the parity bits do not need to change. The MixColumns operation
also has a reduced cost as it can be directly applied to the column p[i]. Moreover, the
number of parity bits in the state is reduced by 75% over encoding each cell in the state
by C.

It is possible to reduce the above encoding further by finding codes which commute
with the entire linear layer of primitives. Specifically the MixColumns operation from
PRINCE, SKINNY, MIDORI, the Keccak permutation2, and AES has the property that

(3,3)∑
(i,j)=(0,0)

x[i, j] =
(3,3)∑

(i,j)=(0,0)

y[i, j] ,

with y = xMT , the state after the application of the MixColumns diffusion layer. More
specifically, their MixColumns matrix has the eigenvector (1, 1, 1, 1). As a result, for a
linear code C with generator matrix G,

G

(3,3)∑
(i,j)=(0,0)

x[i, j] = G

(3,3)∑
(i,j)=(0,0)

y[i, j] .

This allows us to encode the entire state using only one extra cell of parity bits which
ensures the encoded ShiftRows and MixColumns operations come at no additional cost
over their shared version.

Unlike the linear layer, getting a linear encoding through a nonlinear bricklayer function
is trickier and needs a different approach. We consider the case when working with t+ 1
shares for a degree t function F . Given a non-complete and uniform sharing F̄ , the

2For the Keccak permutation, we abuse the name and consider θ as a “MixColumns” operation.

Siemen Dhooghe , Artemii Ovchinnikov and Dilara Toprakhisar 243

following function is a non-complete, uniform, and stable masking of a row of the state
(where the state is encoded row-by-row via a parity check code)

F̃ =


F̄ 0 0 0 0
0 F̄ 0 0 0
0 0 F̄ 0 0
0 0 0 F̄ 0

P̄ + (P̄ ◦ F̄) P̄ + (P̄ ◦ F̄) P̄ + (P̄ ◦ F̄) P̄ + (P̄ ◦ F̄) I

 ,

with P̄ (·) the parity check function of C, the code over one element of the state. The
above structure is secure, but it does not significantly reduce the cost of the encoded S-box.
Instead, the encoding reduces the state size and eases the cost of the symmetric primitive’s
linear layer. For the case of nonlinear functions over two shares, we did not find a general
construction and thus leave the computation of the nonlinear layers over two shares as
interesting future work.

9 Practical Application to Keccak
In this section, we discuss the stability of the proposed encodings (Appendix A-D), and
their performance.

9.1 Architecture
Keccak [BDPA13] is a cryptographic primitive based on the sponge construction that
allows to absorb and process an input of arbitrary length producing an arbitrary length
output. The core of the algorithm is a permutation function usually referred as Keccak-f [b],
where b is a variable state size. The permutation consists of a number of rounds including
four linear layers and one nonlinear layer (known as χ). We focus on two versions of
Keccak-f with state lengths of 1600 and 200 bits for the area benchmarks and floorplanning,
respectively. The larger design consists of 24 rounds, while the lightweight version requires
18 rounds to complete.

To implement Keccak-f , we applied the duplication code to the entire state. Since all
the functions except for χ are linear permutations, a simple duplication of those layers
satisfies the stability notion regardless of the number of shares used for the threshold
implementations, approximately doubling the area. Combining the linear layers with the
encodings from Appendices C and D, we obtained stable threshold implementations of
Keccak-f [1600] and Keccak-f [200] with four and two shares. Additionally, for the following
experiments, we implemented a duplicated two-shared version without stability resulting in
a single change in the χ compression step. The constructions with two shares require three
register stages to ensure non-completeness, whereas it is sufficient to have only one for the
four-shared design. As a result, we have triple the latency overhead for the two-shared
design. The architectures of all the designs are described in Verilog.

Finally, we note that the designs were implemented using the KEEP_HIERACHY option
to avoid further circuit optimizations performed by the synthesizer to achieve fault non-
completeness.

9.2 Formally Verifying Fault Security
We perform a tool-assisted verification to ensure our encodings are stable (Definition 9).
Considering the other tools such as Danira [HPB22], we decide to make use of VerMFI, an
open-source tool 3 by Arribas et al. [ANR18,AWMN20] for the formal verification against

3https://github.com/vmarribas/VerMFi

https://orcid.org/0000-0003-0591-7355
https://orcid.org/0000-0002-9035-523X
https://orcid.org/0000-0003-4551-6775

244 StaTI

the register/gate-faulting adversary from Section 2.1. The tool receives an HDL design or
the netlist of a design. If an HDL design is given, then the tool obtains its netlist. Then,
the tool either verifies the TI properties (i.e. non-completeness, uniformity), or performs
a fault evaluation of the design using a user specified fault configuration file. After the
evaluation, the tool reports all non-detected faults per input test vector, as well as the
ineffective faults. Note that the tool has a straightforward definition of ineffective faults,
i.e., any fault that causes no change in the ciphertext, whereas we additionally require a
dependency on a secret value.

To verify the stability (i.e., security against register faults), we go over all incorrect
codewords for the input and verify that the faults are propagated to the output which
then can be detected. Using VerMFI, we go over all gate faults in the design and verify
that each fault’s output state (ineffective or not) does not depend on the input secrets. To
confirm this, we simply compare the number of ineffective faults for each input test vector
(i.e. all possible sharings of an input). If we obtain the same number of ineffective faults
for each unshared input, then we verify the independence of the faults on the secret values.

We verified the security of the HDL designs of the encodings presented in Ap-
pendix A B, C, and D which includes the nonlinear layer4 of the protected Keccak
implementation described in Verilog using VerMFI. All designs were verified to be secure
against a single register/gate fault.

Verification via Attack Simulation. In addition to the formal verification, we performed
an attack simulation on both the stable and fault non-complete Keccak S-box, and a simple
(unstable) duplication of the two-share threshold implementation by Shahmirzadi and
Moradi [SM21a] to demonstrate the security advantages of the stability notion. Specifically,
we performed a SIFA-2 simulation on both implementations. Using VerMFI, we went
through all the gates/registers in the obtained netlist covering all possible inputs and
injected bit flip faults with effectiveness probability equal to one. Only one gate was found
to be susceptible to SIFA-2 in the unstable two-shared Keccak implementation in which
the propagation of the fault to the S-box output is dependent on one of the unmasked
input bits. Meaning, given that a bit flip fault is injected to the “insecure” gate, one
can perform a successful SIFA-2 attack that reveals the value of one of the unmasked
input bits with a success probability one. In other words, if the “insecure” gate out of
169 gates is hit by the fault injection, then one can perform a successful SIFA-2 attack.
Assuming the fault location is randomly chosen, the success probability of a SIFA-2 attack
is 1/169, independent of the inputs. Conversely, as mentioned earlier in this section, we
did not detect any single susceptible gate in the netlist of the stable fault non-complete
two-shared Keccak implementation. Interestingly enough, we found that enforcing the
fault non-completeness notion on the simple duplication (enforcing each combinatorial
gate drives a non-complete set of output shares) was enough to prevent the SIFA attack.
We note that this is due to the permutation structure of the Keccak S-box and its masking.
More precisely, since the composition of the two cycles of the duplicated masked S-box is
a permutation, it is also stable. The transition from the first to the second stage of the
masked S-box is unstable, however, since this is a simple compression layer (consisting
only of XORs), it remains secure against a single gate-fault. As a result, similar to the
observations by Shahmirzadi and Moradi [SM21a] that the notion of uniformity does not
need to hold each cycle, but that it suffices to re-gain uniformity after a number of cycles,
we believe it is possible to relax stability to hold only every couple of cycles and still ensure
the security against a single fault adversary.

4We note that only the nonlinear layer of the Keccak was verified since its linear layer (or larger parts
of the state) would require too much computational complexity from VerMFI.

Siemen Dhooghe , Artemii Ovchinnikov and Dilara Toprakhisar 245

9.3 Floorplan Results
We deploy the stable two-shared threshold implementation of Keccak based on the encoding
from Appendix D on FPGA and report on its floorplan. Since the complexity of compiling
the floorplan is expensive, we only provide the floorplan of the encoded and masked
Keccak-f [200]. We then compare this floorplan with that of a simple two-shared threshold
implementation of Keccak, where the masking is simply duplicated.

We used a Xilinx Sakura-X board equipped with a Kintex-7 XC7K160T-1FBGC FPGA.
The floorplan was generated using the Xilinx PlanAhead tool with no placement constraints
applied during the "Placement and Routing" step. We note that the implementations were
synthesized using only the KEEP_HIERACHY option. The results are shown in Figure 2.

The floorplan results demonstrate that the simply duplicated two-shared design neatly
separates the state from the duplicated state, whereas the stable two-shared design mixes
both components, because they are interconnected. Following the work from Bartkewitz
et al. [BBM+22], this could mean that a single laser fault can potentially break the stable
design when a multi-bit fault is injected, whereas it would be more difficult to do so with
the simple duplicated design.

To demonstrate that stability does not necessarily affect the placement of the duplicated
state, we show that the four-shared stable Keccak design (Figure 2, bottom) has a floorplan
similar to the unstable duplicated design (Figure 2, top-right). Namely, the four-shared
design would be secure against SIFA and provide more protection against laser faults.
A further study into SIFA resistant designs which properly split the placement of its
code-coordinates is left as interesting future work.

Figure 2: The floorplan results of the two-shared stable (top-left), the two-shared unstable
(top-right) and the four-shared stable (at the bottom) Keccak-f [200]. In red we report
the used logic elements working on the regular state and in green we report the elements
working on the duplicated state.

https://orcid.org/0000-0003-0591-7355
https://orcid.org/0000-0002-9035-523X
https://orcid.org/0000-0003-4551-6775

246 StaTI

9.4 Benchmarks
In this section, we elaborate on the costs of the protected Keccak which is detailed in
Tables 1, 2, 3. With respect to the overhead in time, our countermeasure does not increase
the latency of the unencoded TI. With respect to the overhead in area, our countermeasure
brings roughly a factor of two to three overhead compared to the unencoded TI depending
on the used linear code, plus a single detection circuit at the end.The costs of the unencoded
TI of the Keccak S-box (i.e., where no linear codes are applied), and the encoded TIs of
the Keccak S-box using StaTI are shown in Table 1. Section 6 refers to the encoded TI of
the Keccak S-box with four shares, and Section 7 refers to the encoded TI of the Keccak
S-box with two shares. We note that the cost calculation does not take an error detection
circuit into account.

Table 1: Benchmarks for different protected Keccak S-box implementations using Nangate
45nm Open Cell Library

Method Cycles # Shares Area (GE) # XORs # ANDs
Daemen et al. 10 2 96 10 8
Unencoded TI 1 4 194.7 78 30
Section 6 + duplication 1 4 389.3 156 60
Section 6 + parity code 1 4 338 145 44
Unencoded TI 2 2 212 36 20
Section 7 + duplication 2 2 497.3 102 50
Section 7 + parity code 2 2 470 96 30

We compare our countermeasure with the one proposed by Daemen et al. [DDE+20]
applied on hardware implementations of the Keccak S-box. In the work by Daemen et al. it
is reported that five masked Toffoli gates ((a, b, c) 7→ (a, b, c+ ab) ∈ F3

2) and two XORs are
required to implement the two share Keccak S-box which consists of 20 AND/AND-NOTs
and 22 XORs (Section 3.5 in [DDE+20]). We adopt this implementation to hardware
considering the authors reported that one shared Toffoli gate requires two cycles in order
not to be affected by glitches (Section 6.4 in [DDE+20]). Therefore, without any parallelism,
this pipelined implementation takes 10 cycles with the area cost of one shared Toffoli gate
and one XOR. However, with careful parallelism, we predict the implementation to take
four cycles in the best case scenario. These Toffoli gates are then duplicated to implement
the redundancy. Then, the implementation takes 10 cycles and is expected to require 10
XORs and 8 AND/AND-NOTs.

We then consider the implementation of the Keccak S-box protected using our counter-
measure for both the duplication and the [6, 5, 2]-code from Appendix C for four shares,
and Appendix D for two shares. The four share implementation of the Keccak S-box
takes one cycle, and requires 78 XORs and 30 ANDs. With simple duplication these
numbers increase to 156 XORs and 60 ANDs which satisfies the stability. The four
share implementation using the [6, 5, 2]-code takes again one cycle, and in total requires
145 XORs and 44 ANDs. This implementation also refers to the technique proposed
in Section 8 as all five state elements are encoded in one element in the encoded state.
The two share implementation of the Keccak S-box takes two cycles, and requires 20
ANDs and 36 XORs. Using the duplication code, these numbers increase to 50 ANDs
and 102 XORs in total. Likewise, the two share implementation using the [6, 5, 2]-code
takes two cycles, and requires 30 ANDs and 96 XORs in total. This implementation again
refers to the technique proposed in Section 8 due to the encoding. We compare all these
results in Table 1. Our countermeasure comes at a lower latency cost (tenfold smaller
for four shares, fivefold smaller for two shares), whereas there is an increase in the area
cost (fourfold larger for four shares, sevenfold larger for two shares) when compared to

Siemen Dhooghe , Artemii Ovchinnikov and Dilara Toprakhisar 247

the countermeasure from [DDE+20]. Moreover, there is a trade-off when different TIs of
Keccak S-box are encoded. Two share implementations come with higher latency and
lower combinational area cost when compared to four share implementations. However, as
the two share TI implementations take two cycles, in addition to the combinational area,
they bring additional non-combinational area which makes the total area larger than the
four share TI implementations.

Additionally, we consider the implementation of the state-wide encodings (from Sec-
tion 8) and compare it with a simple duplication in terms of the overhead in state size
and area in Table 2. We limit our implementation to the χ function of the Keccak-f [1600]
state. When compared to the countermeasure from Daemen et al., state-wide encoding
comes at a fourfold larger area cost and tenfold smaller latency cost. As already discussed
in Section 8, state-wide encodings do not provide great improvement with respect to the
area costs for the nonlinear layer. However, the state-wide encodings allow a reduction of
the encoded state size and a reduction in the cost of the linear layer.

Table 2: Benchmarks for different encodings of the χ function applied to the Keccak-f [1600]
state using Nangate 45nm Open Cell Library

Method Cycles # Shares State Size (bits) Area (kGE)
Daemen et al. 10 2 3200 30.7
Unencoded TI 1 4 6400 62.3
Section 6 + duplication 1 4 12800 124.6
Section 8 1 4 6500 110

We also consider the complete Keccak-f [1600] implementation from Section 9.1 to
elaborate on the advantages of StaTI over simple duplication. To this end, we compare the
performance numbers (latency and area) for simple duplicated threshold implementations
and threshold implementations protected using StaTI for four and two shares in Table 3.
While simple duplication offers protection against attacks exploiting wrong outputs (e.g.,
DFA), the incorporation of StaTI further offers protection against attacks exploiting the
data dependency of fault activation/propagation. Simple duplicated threshold implemen-
tations can also be perceived as instances of TaE [SJR+19]. As previously discussed,
a duplicated threshold permutation (also as a TaE instance) is inherently stable, and
secure against single gate/register-faulting adversary. In case of a two-share threshold
implementation, the compression layer of the S-box necessitates the utilization of stable
XOR gates. Nevertheless, Table 3 shows that in the stable threshold implementation
of the two-share Keccak, there is only a 7.8% increase in the area when compared to
simple duplication. That is, StaTI offers protection against ineffective faults (i.e., data
dependency of the fault) in addition to effective faults with limited additional costs. For
the two-shared threshold implementation, we can consider an implementation with three
repetitions on bit level as an instance of TaE that would provide security against SIFA-2.
Excluding error detection/correction circuits, StaTI would offer more efficient security
against gate/register-faulting adversary.

10 Conclusion
In this paper, we extended threshold implementations with the stability notion that
addresses the serial composable security against formal gate/register-faulting adversaries.
We proved that an encoding of a threshold implementation is secure against a gate/register
fault if it is serially composed of functions such that for every wrong codeword addition
to the input of a function, the function outputs a wrong codeword. That is, an encoding
of a threshold implementation is secure if it propagates any fault to the output. Based

https://orcid.org/0000-0003-0591-7355
https://orcid.org/0000-0002-9035-523X
https://orcid.org/0000-0003-4551-6775

248 StaTI

Table 3: Benchmarks for complete masked Keccak-f [1600] using the Nangate 45nm Open
Cell Library.

Fault Countermeasure # Shares Stable Cycles Area (kGE)
Unprotected [BDN+13] 4 7 24 139.4
Unprotected [SM21b] 2 7 72 125.4
Simple duplication 4 3 24 246.9
Simple duplication 2 7 72 249.5
Section 7 + duplication 2 3 72 271.9

on stability, we provided stable encodings for XOR and AND gates that would allow
us to build secure encodings for more complex functions. Consecutively, we presented
general methodologies to transform any unstable encoding to a stable one. We provided
efficient specific methodologies for t+1 and two-share threshold implementations of S-boxes.
Next, we provided an efficient encoding technique by encoding state elements together
depending on the state structure. Following these methodologies, we provided encodings
for the quadratic class Q4

12 and the Keccak S-box. We then provided a StaTI protected
Keccak-f [1600] implementation on FPGA and reported on their security and performance
evaluation. Comparing the Keccak implementation with the one from [DDE+20], we
improved their encodings in terms of latency with the trade-off in area cost. Concerning
formal security, our designs were verified to be secure against a single gate/register fault
by the VerMFI tool.

To defeat fault attacks exploiting the data dependency of the fault propagation, we
designed StaTI such that an injected fault is always propagated to the output regardless
of the secret data. Following a different approach, most of the state-of-the-art counter-
measures employ masking and redundancy, albeit without ensuring fault propagation,
which subsequently necessitates intermediate error checks/corrections. In contrast, we
show that by ensuring the fault propagation, we can omit the need for intermediate checks.
Furthermore, compared to threshold implementations providing provable security against
SCA encoded with duplication to protect against wrong output attacks, StaTI offers
protection against ineffective faults with a low overhead in area cost.

While claiming no security against combined attacks, we note that the stability notion
can prove advantageous in defeating FTA-SCA [SBJ+21] when combined with the TI
notions (i.e., StaTI) for some cases. For example, the stable two-shared masked encoding
for the AND gate (Section 7) exhibits security against FTA-SCA. This is attributed to the
stable encodings of the XOR and AND gates that are utilized in both cycles, which ensures
that any injected fault is propagated to the masked output. On the other hand, the stable
two-shared masked encoding with duplication for Q4

12 (Appendix B) is not secure against
FTA-SCA. This is because the first cycle of the two-shared TI of Q4

12 does not require
the stable encodings of XOR and AND gates to be utilized, as it already exhibits a stable
behavior, i.e., any injected fault is propagated to at least one of the output bits. Therefore,
when the shares are recombined in the second cycle, the fault is still ineffective in some
output bits which makes it susceptible to FTA-SCA. However, we believe that replacing
the XOR and AND gates with their stable encodings would yield implementations secure
against FTA-SCA.

In this work, we have focused on first-order fault attacks where the adversary injects a
fault in a single gate or register. Regarding higher-order fault attacks, where multiple gates
are attacked, StaTI’s share-wise error detection would be effective as long as the the faults
are injected in a single cycle and do not generate valid codewords (i.e. by using codes
with a larger minimal distance). However, to secure the case where faults are injected in
different cycles, we think that intermediate error checks (e.g., after each S-box) would be

Siemen Dhooghe , Artemii Ovchinnikov and Dilara Toprakhisar 249

essential to detect these faults before they become undetectable. Nevertheless, we consider
higher-order fault attacks as future work. Additionally, we have explored the theoretical
security of StaTI and verified this on implementations using tools. However, we leave
the practical verification of our countermeasure against various fault attacks such as laser
faults or glitch injections as future work.

Acknowledgements.
We thank Svetla Nikova for the helpful discussions. This work was supported by CyberSe-
curity Research Flanders with reference number VR20192203.

References
[AES01] Advanced Encryption Standard (AES). National Institute of Standards and

Technology (NIST), FIPS PUB 197, U.S. Department of Commerce, November
2001.

[AK97] Ross J. Anderson and Markus G. Kuhn. Low cost attacks on tamper resistant
devices. In Bruce Christianson, Bruno Crispo, T. Mark A. Lomas, and Michael
Roe, editors, Security Protocols, 5th International Workshop, Paris, France,
April 7-9, 1997, Proceedings, volume 1361 of Lecture Notes in Computer
Science, pages 125–136. Springer, 1997.

[AMR+20] Anita Aghaie, Amir Moradi, Shahram Rasoolzadeh, Aein Rezaei Shahmirzadi,
Falk Schellenberg, and Tobias Schneider. Impeccable circuits. IEEE Trans.
Computers, 69(3):361–376, 2020.

[ANR18] Victor Arribas, Svetla Nikova, and Vincent Rijmen. Vermi: Verification
tool for masked implementations. In 25th IEEE International Conference on
Electronics, Circuits and Systems, ICECS 2018, Bordeaux, France, December
9-12, 2018, pages 381–384. IEEE, 2018.

[AWMN20] Victor Arribas, Felix Wegener, Amir Moradi, and Svetla Nikova. Crypto-
graphic fault diagnosis using verfi. In 2020 IEEE International Symposium
on Hardware Oriented Security and Trust, HOST 2020, San Jose, CA, USA,
December 7-11, 2020, pages 229–240. IEEE, 2020.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
block cipher for low energy. In Tetsu Iwata and Jung Hee Cheon, editors, Ad-
vances in Cryptology - ASIACRYPT 2015 - 21st International Conference on
the Theory and Application of Cryptology and Information Security, Auckland,
New Zealand, November 29 - December 3, 2015, Proceedings, Part II, volume
9453 of Lecture Notes in Computer Science, pages 411–436. Springer, 2015.

[BBM+22] Timo Bartkewitz, Sven Bettendorf, Thorben Moos, Amir Moradi, and Falk
Schellenberg. Beware of insufficient redundancy an experimental evaluation of
code-based FI countermeasures. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2022(3):438–462, 2022.

[BCC+14] Julien Bringer, Claude Carlet, Hervé Chabanne, Sylvain Guilley, and Houssem
Maghrebi. Orthogonal direct sum masking - A smartcard friendly computation
paradigm in a code, with builtin protection against side-channel and fault
attacks. In David Naccache and Damien Sauveron, editors, Information

https://orcid.org/0000-0003-0591-7355
https://orcid.org/0000-0002-9035-523X
https://orcid.org/0000-0003-4551-6775

250 StaTI

Security Theory and Practice. Securing the Internet of Things - 8th IFIP WG
11.2 International Workshop, WISTP 2014, Heraklion, Crete, Greece, June
30 - July 2, 2014. Proceedings, volume 8501 of Lecture Notes in Computer
Science, pages 40–56. Springer, 2014.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE - A low-latency block cipher for pervasive computing applications
(full version). IACR Cryptol. ePrint Arch., page 529, 2012.

[BDF+09] Shivam Bhasin, Jean-Luc Danger, Florent Flament, Tarik Graba, Sylvain
Guilley, Yves Mathieu, Maxime Nassar, Laurent Sauvage, and Nidhal Selmane.
Combined SCA and DFA countermeasures integrable in a FPGA design
flow. In Viktor K. Prasanna, Lionel Torres, and René Cumplido, editors,
ReConFig’09: 2009 International Conference on Reconfigurable Computing
and FPGAs, Cancun, Quintana Roo, Mexico, 9-11 December 2009, Proceedings,
pages 213–218. IEEE Computer Society, 2009.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance
of checking cryptographic protocols for faults (extended abstract). In Walter
Fumy, editor, Advances in Cryptology - EUROCRYPT ’97, International Con-
ference on the Theory and Application of Cryptographic Techniques, Konstanz,
Germany, May 11-15, 1997, Proceeding, volume 1233 of Lecture Notes in
Computer Science, pages 37–51. Springer, 1997.

[BDN+13] Begül Bilgin, Joan Daemen, Ventzislav Nikov, Svetla Nikova, Vincent Rijmen,
and Gilles Van Assche. Efficient and first-order DPA resistant implementations
of keccak. In Aurélien Francillon and Pankaj Rohatgi, editors, Smart Card
Research and Advanced Applications - 12th International Conference, CARDIS
2013, Berlin, Germany, November 27-29, 2013. Revised Selected Papers,
volume 8419 of Lecture Notes in Computer Science, pages 187–199. Springer,
2013.

[BDPA13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak.
In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology
- EUROCRYPT 2013, 32nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Athens, Greece, May 26-30,
2013. Proceedings, volume 7881 of Lecture Notes in Computer Science, pages
313–314. Springer, 2013.

[BGN+14] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. Higher-order threshold implementations. In Palash Sarkar and Tetsu
Iwata, editors, Advances in Cryptology – ASIACRYPT 2014, Part II, volume
8874 of Lecture Notes in Computer Science, pages 326–343, Kaoshiung, Taiwan,
R.O.C., December 7–11, 2014. Springer, Heidelberg, Germany.

[BH17] Jakub Breier and Xiaolu Hou. Feeding two cats with one bowl: On designing
a fault and side-channel resistant software encoding scheme. In Helena Hand-
schuh, editor, Topics in Cryptology - CT-RSA 2017 - The Cryptographers’
Track at the RSA Conference 2017, San Francisco, CA, USA, February 14-17,
2017, Proceedings, volume 10159 of Lecture Notes in Computer Science, pages
77–94. Springer, 2017.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The

Siemen Dhooghe , Artemii Ovchinnikov and Dilara Toprakhisar 251

SKINNY family of block ciphers and its low-latency variant MANTIS. In
Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, volume 9815 of
Lecture Notes in Computer Science, pages 123–153. Springer, 2016.

[BKHL20] Jakub Breier, Mustafa Khairallah, Xiaolu Hou, and Yang Liu. A countermea-
sure against statistical ineffective fault analysis. IEEE Trans. Circuits Syst.,
67-II(12):3322–3326, 2020.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Burton S. Kaliski Jr., editor, Advances in Cryptology - CRYPTO
’97, 17th Annual International Cryptology Conference, Santa Barbara, Cali-
fornia, USA, August 17-21, 1997, Proceedings, volume 1294 of Lecture Notes
in Computer Science, pages 513–525. Springer, 1997.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Michael J. Wiener,
editor, Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999,
Proceedings, volume 1666 of Lecture Notes in Computer Science, pages 398–412.
Springer, 1999.

[Dae17] Joan Daemen. Changing of the guards: A simple and efficient method for
achieving uniformity in threshold sharing. In Wieland Fischer and Nao-
fumi Homma, editors, Cryptographic Hardware and Embedded Systems –
CHES 2017, volume 10529 of Lecture Notes in Computer Science, pages
137–153, Taipei, Taiwan, September 25–28, 2017. Springer, Heidelberg, Ger-
many.

[DDE+20] Joan Daemen, Christoph Dobraunig, Maria Eichlseder, Hannes Gross, Florian
Mendel, and Robert Primas. Protecting against statistical ineffective fault
attacks. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems, 2020(3):508–543, 2020. https://tches.iacr.org/index.php/TCHES/
article/view/8599.

[DDRT12] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and Assia Tria. Elec-
tromagnetic transient faults injection on a hardware and a software imple-
mentations of AES. In Guido Bertoni and Benedikt Gierlichs, editors, 2012
Workshop on Fault Diagnosis and Tolerance in Cryptography, Leuven, Belgium,
September 9, 2012, pages 7–15. IEEE Computer Society, 2012.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Stefan Mangard, Flo-
rian Mendel, and Robert Primas. Statistical ineffective fault attacks on masked
AES with fault countermeasures. In Thomas Peyrin and Steven D. Galbraith,
editors, Advances in Cryptology - ASIACRYPT 2018 - 24th International
Conference on the Theory and Application of Cryptology and Information
Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part II,
volume 11273 of Lecture Notes in Computer Science, pages 315–342. Springer,
2018.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard, Flo-
rian Mendel, and Robert Primas. SIFA: exploiting ineffective fault inductions
on symmetric cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2018(3):547–572, 2018.

https://orcid.org/0000-0003-0591-7355
https://orcid.org/0000-0002-9035-523X
https://orcid.org/0000-0003-4551-6775
https://tches.iacr.org/index.php/TCHES/article/view/8599
https://tches.iacr.org/index.php/TCHES/article/view/8599

252 StaTI

[DNR19] Siemen Dhooghe, Svetla Nikova, and Vincent Rijmen. Threshold implementa-
tions in the robust probing model. In Begül Bilgin, Svetla Petkova-Nikova,
and Vincent Rijmen, editors, Proceedings of ACM Workshop on Theory of
Implementation Security, TIS@CCS 2019, London, UK, November 11, 2019,
pages 30–37. ACM, 2019.

[FGM+23] Jakob Feldtkeller, Tim Güneysu, Thorben Moos, Jan Richter-Brockmann,
Sayandeep Saha, Pascal Sasdrich, and François-Xavier Standaert. Combined
private circuits - combined security refurbished. Cryptology ePrint Archive,
Paper 2023/1341, 2023. https://eprint.iacr.org/2023/1341.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable masking schemes in the presence
of physical defaults & the robust probing model. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2018(3):89–120, 2018. https:
//tches.iacr.org/index.php/TCHES/article/view/7270.

[FJLT13] Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard. Fault
attacks on AES with faulty ciphertexts only. In Wieland Fischer and Jörn-
Marc Schmidt, editors, 2013 Workshop on Fault Diagnosis and Tolerance in
Cryptography, Los Alamitos, CA, USA, August 20, 2013, pages 108–118. IEEE
Computer Society, 2013.

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection order.
In Begül Bilgin, Svetla Nikova, and Vincent Rijmen, editors, Proceedings of
the ACM Workshop on Theory of Implementation Security, TIS@CCS 2016
Vienna, Austria, October, 2016, page 3. ACM, 2016.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
analysis: Concrete results. In Çetin Kaya Koç, David Naccache, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems - CHES 2001,
Third International Workshop, Paris, France, May 14-16, 2001, Proceedings,
volume 2162 of Lecture Notes in Computer Science, pages 251–261. Springer,
2001.

[GPK+21] Michael Gruber, Matthias Probst, Patrick Karl, Thomas Schamberger, Lars
Tebelmann, Michael Tempelmeier, and Georg Sigl. Domrep-an orthogonal
countermeasure for arbitrary order side-channel and fault attack protection.
IEEE Trans. Inf. Forensics Secur., 16:4321–4335, 2021.

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED block cipher. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic
Hardware and Embedded Systems - CHES 2011 - 13th International Workshop,
Nara, Japan, September 28 - October 1, 2011. Proceedings, volume 6917 of
Lecture Notes in Computer Science, pages 326–341. Springer, 2011.

[Hab65] D. H. Habing. The use of lasers to simulate radiation-induced transients in
semiconductor devices and circuits. IEEE Transactions on Nuclear Science,
12(5):91–100, 1965.

[HPB22] Vedad Hadzic, Robert Primas, and Roderick Bloem. Proving SIFA protection
of masked redundant circuits. Innov. Syst. Softw. Eng., 18(3):471–481, 2022.

[IPSW06] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David A. Wagner. Private
circuits II: keeping secrets in tamperable circuits. In Serge Vaudenay, editor,

https://eprint.iacr.org/2023/1341
https://tches.iacr.org/index.php/TCHES/article/view/7270
https://tches.iacr.org/index.php/TCHES/article/view/7270

Siemen Dhooghe , Artemii Ovchinnikov and Dilara Toprakhisar 253

Advances in Cryptology - EUROCRYPT 2006, 25th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, St.
Petersburg, Russia, May 28 - June 1, 2006, Proceedings, volume 4004 of
Lecture Notes in Computer Science, pages 308–327. Springer, 2006.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, Advances in Cryp-
tology - CRYPTO 2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume
2729 of Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Neal Koblitz, editor, Advances in Cryptology
- CRYPTO ’96, 16th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of
Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

[MAN+19] Lauren De Meyer, Victor Arribas, Svetla Nikova, Ventzislav Nikov, and
Vincent Rijmen. M&m: Masks and macs against physical attacks. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2019(1):25–50, 2019.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold imple-
mentations against side-channel attacks and glitches. In Peng Ning, Sihan
Qing, and Ninghui Li, editors, ICICS 06: 8th International Conference on
Information and Communication Security, volume 4307 of Lecture Notes in
Computer Science, pages 529–545, Raleigh, NC, USA, December 4–7, 2006.
Springer, Heidelberg, Germany.

[PRC+19] Sikhar Patranabis, Debapriya Basu Roy, Anirban Chakraborty, Naveen Nagar,
Astikey Singh, Debdeep Mukhopadhyay, and Santosh Ghosh. Lightweight
design-for-security strategies for combined countermeasures against side chan-
nel and fault analysis in iot applications. J. Hardw. Syst. Secur., 3(2):103–131,
2019.

[RAD20] Keyvan Ramezanpour, Paul Ampadu, and William Diehl. Rs-mask: Random
space masking as an integrated countermeasure against power and fault
analysis. In 2020 IEEE International Symposium on Hardware Oriented
Security and Trust, HOST 2020, San Jose, CA, USA, December 7-11, 2020,
pages 176–187. IEEE, 2020.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In Rosario Gennaro and
Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part I, volume 9215 of Lecture Notes in Computer Science, pages
764–783. Springer, 2015.

[RMB+18] Oscar Reparaz, Lauren De Meyer, Begül Bilgin, Victor Arribas, Svetla Nikova,
Ventzislav Nikov, and Nigel P. Smart. CAPA: the spirit of beaver against

https://orcid.org/0000-0003-0591-7355
https://orcid.org/0000-0002-9035-523X
https://orcid.org/0000-0003-4551-6775

254 StaTI

physical attacks. In Hovav Shacham and Alexandra Boldyreva, editors, Ad-
vances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I,
volume 10991 of Lecture Notes in Computer Science, pages 121–151. Springer,
2018.

[RSM21] Shahram Rasoolzadeh, Aein Rezaei Shahmirzadi, and Amir Moradi. Impecca-
ble circuits III. In IEEE International Test Conference, ITC 2021, Anaheim,
CA, USA, October 10-15, 2021, pages 163–169. IEEE, 2021.

[SBJ+21] Sayandeep Saha, Arnab Bag, Dirmanto Jap, Debdeep Mukhopadhyay, and
Shivam Bhasin. Divided we stand, united we fall: Security analysis of some
SCA+SIFA countermeasures against sca-enhanced fault template attacks.
In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptology
- ASIACRYPT 2021 - 27th International Conference on the Theory and
Application of Cryptology and Information Security, Singapore, December
6-10, 2021, Proceedings, Part II, volume 13091 of Lecture Notes in Computer
Science, pages 62–94. Springer, 2021.

[SBR+20] Sayandeep Saha, Arnab Bag, Debapriya Basu Roy, Sikhar Patranabis, and
Debdeep Mukhopadhyay. Fault template attacks on block ciphers exploiting
fault propagation. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia,
May 10-14, 2020, Proceedings, Part I, volume 12105 of Lecture Notes in
Computer Science, pages 612–643. Springer, 2020.

[SJR+19] Sayandeep Saha, Dirmanto Jap, Debapriya Basu Roy, Avik Chakraborti,
Shivam Bhasin, and Debdeep Mukhopadhyay. Transform-and-encode: A
countermeasure framework for statistical ineffective fault attacks on block
ciphers. IACR Cryptol. ePrint Arch., page 545, 2019.

[SM21a] Aein Rezaei Shahmirzadi and Amir Moradi. Re-consolidating first-order
masking schemes. IACR Transactions on Cryptographic Hardware and Embed-
ded Systems, 2021(1):305–342, 2021. https://tches.iacr.org/index.php/
TCHES/article/view/8736.

[SM21b] Aein Rezaei Shahmirzadi and Amir Moradi. Second-order SCA security with
almost no fresh randomness. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2021(3):708–755, 2021.

[SMG16] Tobias Schneider, Amir Moradi, and Tim Güneysu. Parti - towards combined
hardware countermeasures against side-channel and fault-injection attacks.
In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology
- CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, volume 9815 of
Lecture Notes in Computer Science, pages 302–332. Springer, 2016.

[SRM20] Aein Rezaei Shahmirzadi, Shahram Rasoolzadeh, and Amir Moradi. Impec-
cable circuits II. In 57th ACM/IEEE Design Automation Conference, DAC
2020, San Francisco, CA, USA, July 20-24, 2020, pages 1–6. IEEE, 2020.

[VZB+22] Navid Vafaei, Sara Zarei, Nasour Bagheri, Maria Eichlseder, Robert Primas,
and Hadi Soleimany. Statistical effective fault attacks: The other side of the
coin. IEEE Trans. Inf. Forensics Secur., 17:1855–1867, 2022.

https://tches.iacr.org/index.php/TCHES/article/view/8736
https://tches.iacr.org/index.php/TCHES/article/view/8736

Siemen Dhooghe , Artemii Ovchinnikov and Dilara Toprakhisar 255

A Three Sharing of Q4
12

The quadratic class Q4
12 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 10, 11] is given as follows in

its algebraic normal form.

Q4
12(a, b, c, d) = x, y, z, w

x = f0(a, b, c, d) = a

y = f1(a, b, c, d) = ac+ b

z = f2(a, b, c, d) = ab+ ac+ c

w = f3(a, b, c, d) = d

Duplication Code For the duplication code, we denote the encoding (x, x′) with x the
original value and x′ its duplicate. Similarly, we denote (x̄, x̄′) the shared message bits
with x̄′ their corresponding parity bits (encoded share-by-share). Since Q4

12 is a quadratic
function, we have t = 2 and thus use three shares to find a non-complete and uniform
sharing. The correct, non-complete, uniform, and stable sharing Q̄4

12(ā, b̄, c̄, d̄, ā′, b̄′, c̄′, d̄′) =
(x̄, ȳ, z̄, w̄, x̄′, ȳ′, z̄′, w̄′) is given below.

x0 = a0

x1 = a1

x2 = a2

y0 = a0c0 + a0c1 + a1c0 + a0 + a1 + c0 + c1 + b0

y1 = a1c1 + a1c2 + a2c1 + a1 + a2 + c1 + c2 + b1

y2 = a2c2 + a2c0 + a0c2 + a0 + a2 + c0 + c2 + b2

z0 = a0b0 + a0b1 + a1b0 + a0c0 + a0c1 + a1c0 + c0

z1 = a1b1 + a1b2 + a2b1 + a1c1 + a1c2 + a2c1 + c1

z2 = a2b2 + a2b0 + a0b2 + a2c2 + a2c0 + a0c2 + c2

w0 = d0

w1 = d1

w2 = d2

x′0 = a′0

x′1 = a′1

x′2 = a′2

y′0 = a′0c
′
0 + a′0c

′
1 + a′1c

′
0 + a′0 + a′1 + c′0 + c′1 + b′0

y′1 = a′1c
′
1 + a′1c

′
2 + a′2c

′
1 + a′1 + a′2 + c′1 + c′2 + b′1

y′2 = a′2c
′
2 + a′2c

′
0 + a′0c

′
2 + a′0 + a′2 + c′0 + c′2 + b′2

z′0 = a′0b
′
0 + a′0b

′
1 + a′1b

′
0 + a′0c

′
0 + a′0c

′
1 + a′1c

′
0 + c′0

z′1 = a′1b
′
1 + a′1b

′
2 + a′2b

′
1 + a′1c

′
1 + a′1c

′
2 + a′2c

′
1 + c′1

z′2 = a′2b
′
2 + a′2b

′
0 + a′0b

′
2 + a′2c

′
2 + a′2c

′
0 + a′0c

′
2 + c′2

w′0 = d′0

w′1 = d′1

w′2 = d′2

https://orcid.org/0000-0003-0591-7355
https://orcid.org/0000-0002-9035-523X
https://orcid.org/0000-0003-4551-6775

256 StaTI

Extended Hamming Code We consider the systematic [8, 4, 4] extended Hamming code
with the following generator matrix

G[8,4,4] =


1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

 .

For the Hamming code, we again denote (x, x′) with x the message bits and x′ the
corresponding parity bits. Similarly, we denote (x̄, x̄′) the shared message bits with x̄′ their
corresponding parity bits (encoded share-by-share). The correct, non-complete, uniform
and stable sharing of Q̄4

12(ā, b̄, c̄, d̄, ā′, b̄′, c̄′, d̄′) = (x̄, ȳ, z̄, w̄, x̄′, ȳ′, z̄′, w̄′) is given below.

x0 = a0

x1 = a1

x2 = a2

y0 = b0 + a0c0 + a0c1 + a1c0 + a0 + a1 + c0 + c1

y1 = b1 + a1c1 + a1c2 + a2c1 + a1 + a2 + c1 + c2

y2 = b2 + a2c2 + a2c0 + a0c2 + a0 + a2 + c0 + c2

z0 = c0 + a0b0 + a0b1 + a1b0 + a0c0 + a0c1 + a1c0

z1 = c1 + a1b1 + a1b2 + a2b1 + a1c1 + a1c2 + a2c1

z2 = c2 + a2b2 + a2b0 + a0b2 + a2c2 + a2c0 + a0c2

w0 = d0

w1 = d1

w2 = d2

x′0 = a0 + a1 + c0 + c1 + a0b0 + a0b1 + a1b0 + a′0

x′1 = a1 + a2 + c1 + c2 + a1b1 + a1b2 + a2b1 + a′1

x′2 = a0 + a2 + c0 + c2 + a2b2 + a2b0 + a0b2 + a′2

y′0 = a0 + a1 + c0 + c1 + a0c0 + a0c1 + a1c0 + b′0

y′1 = a1 + a2 + c1 + c2 + a1c1 + a1c2 + a2c1 + b′1

y′2 = a0 + a2 + c0 + c2 + a2c2 + a2c0 + a0c2 + b′2

z′0 = a0b0 + a0b1 + a1b0 + a0c0 + a0c1 + a1c0 + c′0

z′1 = a1b1 + a1b2 + a2b1 + a1c1 + a1c2 + a2c1 + c′1

z′2 = a2b2 + a2b0 + a0b2 + a2c2 + a2c0 + a0c2 + c′2

w′0 = a0 + a1 + c0 + c1 + a0b0 + a0b1 + a1b0 + d′0

w′1 = a1 + a2 + c1 + c2 + a1b1 + a1b2 + a2b1 + d′1

w′2 = a0 + a2 + c0 + c2 + a2b2 + a2b0 + a0b2 + d′2

Siemen Dhooghe , Artemii Ovchinnikov and Dilara Toprakhisar 257

B Two Sharing of Q4
12

We again consider the Q4
12 quadratic class as defined in Appendix A.

Duplication Code The correct, non-complete, uniform, and stable sharing of the Q4
12

function Q̄4
12(ā, b̄, c̄, d̄, ā′, b̄′, c̄′, d̄′) = (x̄, ȳ, z̄, w̄, x̄′, ȳ′, z̄′, w̄′) is given over two cycles below.

Stage 1 Stage 2
k0 = a0 x0 = k0
k1 = a1 x1 = k1
l0 = b0 + a0c0
l1 = a0c1 y0 = l0 + l1 + (l0 + l′0)(l1 + l′1)
l2 = a1c1 y1 = l2 + l3 + (l2 + l′2)(l3 + l′3)
l3 = b1 + a1c0
m0 = c0 + a0b0 + a0c0
m1 = a0b1 + a0c1 z0 = m0 +m1 + (m0 +m′0)(m1 +m′1)
m2 = a1b0 + a1c0 z1 = m2 +m3 + (m2 +m′2)(m3 +m′3)
m3 = c1 + a1b1 + a1c1
n0 = d0 w0 = n0
n1 = d1 w1 = n1

k′0 = a′0 x′0 = k′0
k′1 = a′1 x′1 = k′1
l′0 = b′0 + a′0c

′
0

l′1 = a′0c
′
1 y′0 = l′0 + l′1

l′2 = a′1c
′
1 y′1 = l′2 + l′3

l′3 = b′1 + a′1c
′
0

m′0 = c′0 + a′0b
′
0 + a′0c

′
0

m′1 = a′0b
′
1 + a′0c

′
1 z′0 = m′0 +m′1

m′2 = a′1b
′
0 + a′1c

′
0 z′1 = m′2 +m′3

m′3 = c′1 + a′1b
′
1 + a′1c

′
1

n′0 = d′0 w′0 = n′0
n′1 = d′1 w′0 = n′1

https://orcid.org/0000-0003-0591-7355
https://orcid.org/0000-0002-9035-523X
https://orcid.org/0000-0003-4551-6775

258 StaTI

Extended Hamming Code The correct, non-complete, uniform, and stable sharing
Q̄4

12(ā, b̄, c̄, d̄, ā′, b̄′, c̄′, d̄′) = (x̄, ȳ, z̄, w̄, x̄′, ȳ′, z̄′, w̄′) is given over two cycles below.

Stage 1
k0 = a0
k1 = a1
l0 = b0 + a0c0
l1 = a0c1
l2 = a1c1
l3 = b1 + a1c0
m0 = c0 + a0b0 + a0c0
m1 = a0b1 + a0c1
m2 = a1b0 + a1c0
m3 = c1 + a1b1 + a1c1
n0 = d0
n1 = d1

k′0 = k0 + l0 +m0 + a0 + b0 + c0 + a′0
k′1 = k1 + l1 +m1 + a1 + b1 + c1 + a′1
l′0 = k0 + l0 + n0 + a0 + b0 + d0 + b′0
l′1 = k1 + l1 + n1 + a1 + b1 + d1 + b′1
l′21 = l2 + a0 + a′0 + b′0 + c′0
l′22 = c1 + a′1 + c′1 + d′1
l′31 = l3 + a1 + a′1 + b′1 + c′1
l′32 = c0 + a′0 + c′0 + d′0
m′0 = k0 +m0 + n0 + a0 + c0 + d0 + c′0
m′1 = k1 +m1 + n1 + a1 + c1 + d1 + c′1
m′21 = m2 + b1 + b′1 + c1 + c′1
m′22 = a0 + a′0 + b′0 + c′0
m′31 = m3 + b0 + b′0 + c0 + c′0
m′32 = a1 + a′1 + b′1 + c′1
n′0 = l0 +m0 + n0 + b0 + c0 + d0 + d′0
n′1 = l1 +m1 + n1 + b1 + c1 + d1 + d′1

Stage 2
x0 = k0
x1 = k1
y0 = l0 + l2 + (l0 + k′0 + l′0 + n′0)(l2 + l′21 + l′22)
y1 = l1 + l3 + (l1 + k′1 + l′1 + n′1)(l3 + l′31 + l′32)
z0 = m0 +m2 + (m0 + k′0 +m′0 + n′0)(m2 +m′21 +m′22)
z1 = m1 +m3 + (m1 + k′1 +m′1 + n′1)(m3 +m′31 +m′32)
w0 = n0
w1 = n1

x′0 = x0 + k0 + k′0 + l′21 + l′22 +m′21 +m′22
x′1 = x1 + k1 + k′1 + l′31 + l′32 +m′31 +m′32
y′0 = x0 + w0 + k0 + n0 + l′0 + l′21 + l′22
y′1 = x1 + w1 + k1 + n1 + l′1 + l′31 + l′32
z′0 = x0 + w0 + k0 + n0 +m′0 +m′21 +m′22
z′1 = x1 + w1 + k1 + n1 +m′1 +m′31 +m′32
w′0 = w0 + l0 + n′0 + l′21 + l′22 +m′21 +m′22
w′1 = w1 + n1 + n′1 + l′31 + l′32 +m′31 +m′32

Siemen Dhooghe , Artemii Ovchinnikov and Dilara Toprakhisar 259

C Four Sharing of χ
The χ function which is the nonlinear operation in Keccak is given as follows in its algebraic
normal form

χ(a, b, c, d.e) = x, y, z, w, q

x = f0(a, b, c, d, e) = de+ a+ d

y = f1(a, b, c, d, e) = ae+ b+ e

z = f2(a, b, c, d, e) = ab+ a+ c

w = f3(a, b, c, d, e) = bc+ b+ d

q = f4(a, b, c, d, e) = cd+ c+ e .

Duplication Code The correct, non-complete, uniform, and stable sharing of the χ
function χ̄(ā, b̄, c̄, d̄, ē, ā′, b̄′, c̄′, d̄′, ē′) = (x̄, ȳ, z̄, w̄, q̄, x̄′, ȳ′, z̄′, w̄′, q̄′) is given below.

x0 = a0 + c0

x1 = a1 + c1 + (b1 + b2 + b3)(c1 + c2 + c3)
x2 = a2 + c2 + b0(c2 + c3) + c0(b2 + b3) + b0c0

x3 = a3 + c3 + b0c1 + c0b1

y0 = b0 + d0

y1 = b1 + d1 + (c1 + c2 + c3)(d1 + d2 + d3)
y2 = b2 + d2 + c0(d2 + d3) + d0(c2 + c3) + c0d0

y3 = b3 + d3 + c0d1 + d0c1

z0 = c0 + e0

z1 = c1 + e1 + (d1 + d2 + d3)(e1 + e2 + e3)
z2 = c2 + e2 + d0(e2 + e3) + e0(d2 + d3) + d0e0

z3 = c3 + e3 + d0e1 + e0d1

w0 = d0

w1 = d1 + (1 + e1 + e2 + e3)(a1 + a2 + a3)
w2 = d2 + a0 + e0(a2 + a3) + a0(e2 + e3) + e0a0

w3 = d3 + e0a1 + a0e1

q0 = e0 + b0

q1 = e1 + b1 + (a1 + a2 + a3)(b1 + b2 + b3)
q2 = e2 + b2 + a0(b2 + b3) + b0(a2 + a3) + a0b0

q3 = e3 + b3 + a0b1 + b0a1

x′0 = a′0 + c′0

x′1 = a′1 + c′1 + (b′1 + b′2 + b′3)(c′1 + c′2 + c′3)
x′2 = a′2 + c′2 + b′0(c′2 + c′3) + c′0(b′2 + b′3) + b′0c

′
0

x′3 = a′3 + c′3 + b′0c
′
1 + c′0b

′
1

y′0 = b′0 + d′0

y′1 = b′1 + d′1 + (c′1 + c′2 + c′3)(d′1 + d′2 + d′3)
y′2 = b′2 + d′2 + c′0(d′2 + d′3) + d′0(c′2 + c′3) + c′0d

′
0

y′3 = b′3 + d′3 + c′0d
′
1 + d′0c

′
1

https://orcid.org/0000-0003-0591-7355
https://orcid.org/0000-0002-9035-523X
https://orcid.org/0000-0003-4551-6775

260 StaTI

z′0 = c′0 + e′0

z′1 = c′1 + e′1 + (d′1 + d′2 + d′3)(e′1 + e′2 + e′3)
z′2 = c′2 + e′2 + d′0(e′2 + e′3) + e′0(d′2 + d′3) + d′0e

′
0

z′3 = c′3 + e′3 + d′0e
′
1 + e′0d

′
1

w′0 = d′0

w′1 = d′1 + (1 + e′1 + e′2 + e′3)(a′1 + a′2 + a′3)
w′2 = d′2 + a′0 + e′0(a′2 + a′3) + a′0(e′2 + e′3) + e′0a

′
0

w′3 = d′3 + e′0a
′
1 + a′0e

′
1

q′0 = e′0 + b′0

q′1 = e′1 + b′1 + (a′1 + a′2 + a′3)(b′1 + b′2 + b′3)
q′2 = e′2 + b′2 + a′0(b′2 + b′3) + b′0(a′2 + a′3) + a′0b

′
0

q′3 = e′3 + b′3 + a′0b
′
1 + b′0a

′
1

Parity Code The systematic [6, 5, 2] parity code computes the one bit parity for each
5-bit chunk with the following generator matrix

G[6,5,2] =


1 0 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1

 .

We denote the parity bit of the input p which is defined as p = a + b + c + d + e.
Similarly, the parity bit of the output is denoted o such that o = x + y + z + w + q.
The correct, non-complete, uniform, and stable sharing χ̄(ā, b̄, c̄, d̄, ē, p̄) = (x̄, ȳ, z̄, w̄, q̄, ō)
encoded with the [6, 5, 2] code is given below.

x0 = a0 + c0

x1 = a1 + c1 + (b1 + b2 + b3)(c1 + c2 + c3)
x2 = a2 + c2 + b0(c2 + c3) + c0(b2 + b3) + b0c0

x3 = a3 + c3 + b0c1 + c0b1

y0 = b0 + d0

y1 = b1 + d1 + (c1 + c2 + c3)(d1 + d2 + d3)
y2 = b2 + d2 + c0(d2 + d3) + d0(c2 + c3) + c0d0

y3 = b3 + d3 + c0d1 + d0c1

z0 = c0 + e0

z1 = c1 + e1 + (d1 + d2 + d3)(e1 + e2 + e3)
z2 = c2 + e2 + d0(e2 + e3) + e0(d2 + d3) + d0e0

z3 = c3 + e3 + d0e1 + e0d1

w0 = d0

w1 = d1 + (1 + e1 + e2 + e3)(a1 + a2 + a3)
w2 = d2 + a0 + e0(a2 + a3) + a0(e2 + e3) + e0a0

w3 = d3 + e0a1 + a0e1

q0 = e0 + b0

q1 = e1 + b1 + (a1 + a2 + a3)(b1 + b2 + b3)

Siemen Dhooghe , Artemii Ovchinnikov and Dilara Toprakhisar 261

q2 = e2 + b2 + a0(b2 + b3) + b0(a2 + a3) + a0b0

q3 = e3 + b3 + a0b1 + b0a1

o0 = p0 + b0 + c0 + d0 + e0

o1 = p1 + b1 + c1 + d1 + e1 + (a1 + a2 + a3 + d1 + d2 + d3)(e1 + e2 + e3)+
(b1 + b2 + b3 + d1 + d2 + d3)(c1 + c2 + c3) + (a1 + a2 + a3)(b1 + b2 + b3 + 1)

o2 = p2 + a0 + b2 + c2 + d2 + e2 + (a0 + d0)(e2 + e3) + (c0 + e0)(d2 + d3)+
(b0 + e0)(a0 + a2 + a3) + (b0 + d0)(c0 + c2 + c3) + (a0 + c0)(b2 + b3) + d0e0

o3 = p3 + b3 + c3 + d3 + e3 + a0(b1 + e1) + b0(a1 + c1) + c0(b1 + d1)+
d0(c1 + e1) + e0(a1 + d1)

https://orcid.org/0000-0003-0591-7355
https://orcid.org/0000-0002-9035-523X
https://orcid.org/0000-0003-4551-6775

262 StaTI

D Two Sharing of χ

Duplication Code The correct, non-complete, uniform, and stable sharing of the χ
function χ̄(ā, b̄, c̄, d̄, ē, ā′, b̄′, c̄′, d̄′, ē′) = (x̄, ȳ, z̄, w̄, q̄, x̄′, ȳ′, z̄′, w̄′, q̄′) is given below.

Stage 1 Stage 2
k0 = d0e0 + a0 + d0
k1 = d0e1 x0 = k0 + k1 + (k0 + k′0)(k1 + k′1)
k2 = d1e0 + a1 + d1 x1 = k2 + k3 + (k2 + k′2)(k3 + k′3)
k3 = d1e1
l0 = a0e0
l1 = a0e1 + b0 y0 = l0 + l1 + (l0 + l′0)(l1 + l′1)
l2 = a1e0 + e0 y1 = l2 + l3 + (l2 + l′2)(l3 + l′3)
l3 = a1e1 + b1 + e1
m0 = a0b0
m1 = a0b1 + a0 + c0 z0 = m0 +m1 + (m0 +m′0)(m1 +m′1)
m2 = a1b0 + a1 + c1 z1 = m2 +m3 + (m2 +m′2)(m3 +m′3)
m3 = a1b1
n0 = b0c0 + a0 + d0
n1 = b0c1 + a0 + b0 w0 = n0 + n1 + (n0 + n′0)(n1 + n′1)
n2 = b1c0 w1 = n2 + n3 + (n2 + n′2)(n3 + n′3)
n3 = b1c1 + b1 + d1
p0 = c0d0 + e0
p1 = c0d1 + c0 q0 = p0 + p1 + (p0 + p′0)(p1 + p′1)
p2 = c1d0 + a1 + b1 + e1 q1 = p2 + p3 + (p2 + p′2)(p3 + p′3)
p3 = c1d1 + a1 + b1 + c1

k′0 = d′0e
′
0 + a′0 + d′0

k′1 = d′0e
′
1 x′0 = k′0 + k′1

k′2 = d′1e
′
0 + a′1 + d′1 x′1 = k′2 + k′3

k′3 = d′1e
′
1

l′0 = a′0e
′
0

l′1 = a′0e
′
1 + b′0 y′0 = l′0 + l′1

l′2 = a′1e
′
0 + e′0 y′1 = l′2 + l′3

l′3 = a′1e
′
1 + b′1 + e′1

m′0 = a′0b
′
0

m′1 = a′0b
′
1 + a′0 + c′0 z′0 = m′0 +m′1

m′2 = a′1b
′
0 + a′1 + c′1 z′1 = m′2 +m′3

m′3 = a′1b
′
1

n′0 = b′0c
′
0 + a′0 + d′0

n′1 = b′0c
′
1 + a′0 + b′0 w′0 = n′0 + n′1

n′2 = b′1c
′
0 w′1 = n′2 + n′3

n′3 = b′1c
′
1 + b′1 + d′1

p′0 = c′0d
′
0 + e′0

p′1 = c′0d
′
1 + c′0 q′0 = p′0 + p′1

p′2 = c′1d
′
0 + a′1 + b′1 + e′1 q′1 = p′2 + p′3

p′3 = c′1d
′
1 + a′1 + b′1 + c′1

Parity Code The [6, 5, 2] encoded correct, non-complete, uniform, and stable sharing
χ̄(ā, b̄, c̄, d̄, ē, t̄) = (x̄, ȳ, z̄, w̄, q̄, ō) is given below.

Siemen Dhooghe , Artemii Ovchinnikov and Dilara Toprakhisar 263

Stage 1 Stage 2
k0, k

′
0 = d0e0 + a0 + d0

k1, k
′
1 = d0e1 x0 = k0 + k1 + (k0 + k′0)(k1 + k′1)

k2, k
′
2 = d1e0 + a1 + d1 x1 = k2 + k3 + (k2 + k′2)(k3 + k′3)

k3, k
′
3 = d1e1

l0, l
′
0 = a0e0

l1, l
′
1 = a0e1 + b0 y0 = l0 + l1 + (l0 + l′0)(l1 + l′1)

l2, l
′
2 = a1e0 + e0 y1 = l1 + l3 + (l2 + l′2)(l3 + l′3)

l3, l
′
3 = a1e1 + b1 + e1

m0,m
′
0 = a0b0

m1,m
′
1 = a0b1 + a0 + c0 z0 = m0 +m1 + (m0 +m′0)(m1 +m′1)

m2,m
′
2 = a1b0 + a1 + c1 z1 = m2 +m3 + (m2 +m′2)(m3 +m′3)

m3,m
′
3 = a1b1

n0, n
′
0 = b0c0 + a0 + d0

n1, n
′
1 = b0c1 + a0 + b0 w0 = n0 + n1 + (n0 + n′0)(n1 + n′1)

n2, n
′
2 = b1c0 w1 = n2 + n3 + (n2 + n′2)(n3 + n′3)

n3, n
′
3 = b1c1 + b1 + d1

p0, p
′
0 = c0d0 + e0

p1, p
′
1 = c0d1 + c0 q0 = p0 + p1 + (p0 + p′0)(p1 + p′1)

p2, p
′
2 = c1d0 + a1 + b1 + e1 q1 = p2 + p3 + (p2 + p′2)(p3 + p′3)

p3, p
′
3 = c1d1 + a1 + b1 + c1

t′0 = k0 + l0 +m0 + n0 + p0+ o0 = k1 + l1 +m1 + n1 + p1 + t′0
a0 + b0 + c0 + d0 + e0 + t0

t′1 = k3 + l3 +m3 + n3 + p3+ o1 = k2 + l2 +m2 + n2 + p2 + t′1
a1 + b1 + c1 + d1 + e1 + t1

https://orcid.org/0000-0003-0591-7355
https://orcid.org/0000-0002-9035-523X
https://orcid.org/0000-0003-4551-6775

	Introduction
	Preliminaries
	Adversary and Security Models
	Masking and Encoding
	Threshold Implementations
	Statistical Ineffective Faults and Countermeasures

	Stability
	Stable Encodings of XOR and AND Gates
	General Methodologies for Stability
	Error Detection of Unstable Functions
	Interpolation

	Stable t+1 Threshold Implementations
	Stable Two-Share Threshold Implementations
	State-wide Encodings
	Practical Application to Keccak
	Architecture
	Formally Verifying Fault Security
	Floorplan Results
	Benchmarks

	Conclusion
	Three Sharing of Q12
	Two Sharing of Q12
	Four Sharing of X
	Two Sharing of X

