
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2024, No. 1, pp. 180–206. DOI:10.46586/tches.v2024.i1.180-206

SEV-Step
A Single-Stepping Framework for AMD-SEV
Luca Wilke, Jan Wichelmann, Anja Rabich and Thomas Eisenbarth

University of Lübeck, Lübeck, Germany
{l.wilke,j.wichelmann,a.rabich,thomas.eisenbarth}@uni-luebeck.de

Abstract. The ever increasing popularity and availability of Trusted Execution
Environments (TEEs) had a stark influence on microarchitectural attack research
in academia, as their strong attacker model both boosts existing attack vectors and
introduces several new ones. While many works have focused on Intel SGX, other
TEEs like AMD SEV have recently also started to receive more attention. A common
technique when attacking SGX enclaves is single-stepping, where the system’s APIC
timer is used to interrupt the enclave after every instruction. Single-stepping increases
the temporal resolution of subsequent microarchitectural attacks to a maximum. A
key driver in the proliferation of this complex attack technique was the SGX-Step
framework, which offered a stable reference implementation for single-stepping and
a relatively easy setup. In this paper, we demonstrate that SEV VMs can also be
reliably single-stepped. To lay the foundation for further microarchitectural attack
research against SEV, we introduce the reusable SEV-Step framework. Besides reliable
single-stepping, SEV-Step provides easy access to common attack primitives like page
fault tracking and cache attacks against SEV. All features can be used interactively
from user space. We demonstrate SEV-Step’s capabilities by carrying out an end-to-
end cache attack against SEV that leaks the volume key of a LUKS2-encrypted disk.
Finally, we show for the first time that SEV is vulnerable to Nemesis-style attacks,
which allow to extract information about the type and operands of single-stepped
instructions from SEV-protected VMs.
Keywords: TEE · Confidential VM · Side-channel · Single-Stepping

1 Introduction
Microarchitectural side-channel security of computer systems has been one major pillar of
computer security research in recent years. In microarchitectural attacks, the adversary
aims to infer/extract secret information through observations of the system’s microarchi-
tectural state. With the ever increasing popularity and availability of Trusted Execution
Environments (TEEs), side-channel attacks are more relevant than ever, as the attacker
model of TEEs includes powerful system-level attackers. Naturally, such an attacker has
more capabilities to observe the system’s microarchitectural state, extending the potential
attack surface. While attacks targeting TEEs build on a variety of data sources, like cache
state, microarchitectural buffers or power reporting interfaces, they share the property
that they have to synchronize their data sampling with the execution flow of the victim.
For example, monitoring the cache state only leaks meaningful information if the victim is
about to perform a vulnerable memory access. An increased temporal or spatial resolution
of the attacker’s ability to infer the victim’s execution state often drastically improves the
amount/quality of leaked data.

One commonly used technique with both Intel SGX and AMD SEV is disabling certain
memory pages, such that the victim is forced to handle a page fault when it tries to access
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those pages [WWME20, MHHW18, LZLS19, MBH+20, SLM+19, MOG+20]. This allows
the attacker to synchronize with the victim’s execution flow on a page-granular level. For
Intel SGX, researchers tried to further increase the resolution by interrupting the SGX
enclave with a high frequency, e.g., by using the system’s APIC timer. Eventually, Van
Bulck et al. demonstrated in SGX-Step [BPS17] that an attacker can even achieve the
maximum temporal resolution of interrupting the victim after every single instruction.
However, besides this technical improvement over prior work that was only able to
interrupt SGX enclaves every few instructions, they were also the first to introduce a
reusable framework. Now, at the time of writing this paper, SGX-Step has been used in
33 publications [Bul], clearly showing the benefits of reusable building blocks in a research
area where the technical challenges and nuances are ever increasing.

While, for example, page fault tracking is also commonly used in SEV, most prior
work has either not released any artifacts at all [LZW+21, MPR+21, LZL21, LZLS19,
WMA+19, DYM+17] or artifacts that are highly specific to the demonstrated attack
[WWME20, WWSE21]. Exceptions to this are [MHHW18] and [LWW+22]. The frame-
work from [MHHW18] allows to track pages accessed by the SEV VM as well as remapping
pages, but only applies to the first two versions of SEV. In addition, it does not allow
to interactively react to page faults in a synchronous manner, making it unsuitable for
many types of side-channel attacks. While the framework from [LWW+22] offers such
interactivity, it also is restricted to page fault granularity.

Our Contribution
is twofold: First, we introduce reliable single-stepping in the context of SEV(-SNP).

The second contribution is making interactive single-stepping, page fault tracking and
eviction set-based cache attacks available in a single, reusable framework. Our framework
shifts most of the complex attack logic from kernel space into user space, allowing the
development of new attacks entirely with user space code. In the hope that the framework
inspires a similar community as SGX-Step, we dubbed it SEV-Step. Concurrent to our
work, PwrLeak [WLZL23] also uses single-stepping, but only with plain SEV VMs, which
are insecure anyways due to the unencrypted register state [HB17, WMA+19]. They do
not provide a rich framework and do not analyze the reliability.

Furthermore, to showcase the capabilities of our framework as well as its academic
relevance, we demonstrate an end-to-end key extraction attack against a SEV VM and
utilize SEV-Step to detect and quantify instructions based on their execution time. The
end-to-end cache attack succeeds in extracting a LUKS2 disk encryption key from a
SEV-protected VM using a single trace. The SEV-Step-based instruction latency analysis
confirms that an attacker can leak information about the type and operands of certain
instructions in SEV by measuring the time required for single-stepping them. Such
classification was previously shown for SGX by Van Bulck et al. in Nemesis [BPS18a].
In summary, this work

• introduces reliable single-stepping against SEV VMs;

• provides a reusable framework facilitating future attack research against SEV;

• steals disk encryption keys in an end-to-end cache attack; and

• shows SEV’s vulnerability to Nemesis-style [BPS18a] attacks.

The remainder of the paper is organized as follows: Section 2 provides background about
relevant x86 system architecture and SEV. Section 4 starts with a general overview over
the SEV-Step framework, before explaining its implementation in detail. Next, Section 5
evaluates the single-stepping and cache attack features of the framework. Finally, Section 6
demonstrates an end-to-end cache attack stealing disk encryption keys and shows that
SEV is vulnerable to Nemesis-style [BPS18b] attacks.
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Figure 1: Basic control flow of a hypervisor using hardware assisted virtualization on
AMD. After some initial setup (1), the hypervisor enters the main control loop. The VMRUN
instruction takes care of performing the context switch into the VM (3). Afterwards, the
VM is running until a VMEXIT event occurs (4), upon which the hardware restores the host
context and resumes the execution immediately after the VMRUN instruction where the exit
is handled, (5) before the VM is entered again.

2 Background

This section is structured as follows: First, we provide general background information on
relevant x86 (micro)architecture and AMD’s virtualization technology. Next, we introduce
AMD SEV. Finally, we discuss related work.

2.1 AMD SVM

AMD Secure Virtual Machines (SVM) is AMD’s instruction set extension for hardware-
accelerated virtualization. It introduces the concepts of guest mode and host mode. Both
modes have the full set of privilege levels of the x86 architecture. However, in guest mode
certain instructions have slightly different semantics in order to enable the virtualization
concept. As shown in Figure 1, from host mode, we can enter the guest mode using the
VMRUN instruction. The CPU runs in guest mode until an intercepted event occurs, which
leads to a VMEXIT, returning the execution flow to the instruction immediately following the
VMRUN instruction used to enter the VM. For both, VMRUN and VMEXIT, the hardware
takes care of storing/restoring the current context, like the register values.

The host mode can pass a configuration struct called VMCB to the VMRUN instruction
to configure, among other things, which events lead to a VMEXIT. This interception
mechanism enables the host/hypervisor (HV) to transparently simulate certain behavior to
the guest. Furthermore, the mechanism enables the HV to ensure that it stays in control
of the hardware by causing periodic VMEXITs through APIC timer interrupts. Interrupt
handling is discussed in detail in the next section.

SVM also introduces the concept of nested page tables (NPT) easing the virtualization
of memory. With NPT, VM can no longer address real physical memory with its page
tables. Instead the memory subsystem uses a second set of page tables, the hypervisor-
controlled NPT, to translate the so-called Guest Physical Addresses (GPA) of the VM’s
page table to real physical addresses.
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2.2 APIC and APIC Timer
According to the AMD Programmer’s Manual [AMD23, Sec. 16], the Advanced Pro-
grammable Interrupt Controller (APIC) is located between the CPU core and the rest of
the system. It is responsible for providing the CPU core(s) with interrupts. Those inter-
rupts can either originate from sources local to the APIC, like the APIC timer interrupt,
or from sources remote to the APIC, e.g., from the IOAPIC.

The APIC timer is part of the APIC Controller. It is a counter that is decremented
with a configurable frequency. Once it reaches zero, it generates an interrupt. It can
either be used in oneshot mode or in periodic mode. The latter restarts the timer once it
reaches zero, while the former does not. The APIC timer is commonly used by the OS to
implement periodic jobs like process scheduling [AMD23, Sec. 16.4.1].

2.3 Interrupt Handling in AMD SVM
Under the x86 architecture, the delivery of interrupts is controlled via the EFLAGS.IF field.
If set to 0, interrupt delivery is suppressed. This is called masking an interrupt. Masked
interrupts are held waiting/pending until EFLAGS.IF is set to 1 again[AMD23, Sec. 8.1.4].

In contrast to exceptions or traps, interrupts are inherently asynchronous to the
currently executing program. However, instead of immediately aborting program execution,
they are only processed on instruction boundaries, meaning that the currently executing
instruction will still be retired before the interrupt is handled [AMD23, Sec 8.2.24].

When using AMD’s SVM to run a virtual machine, we distinguish between physical
interrupts and virtual interrupts. Physical interrupts are interrupts that are actually
generated by the hardware. As discussed in the previous section, the HV can configure
the VMCB such that certain interrupts lead to a VMEXIT, returning control from the
guest mode to the HV. However, to facilitate virtualization, the HV may decide to “pass
on” the interrupt to the VM as a virtual interrupt. This mechanism is called interrupt
injection and is performed via configuration fields in the VMCB.

To ensure that the VM cannot simply mask all physical interrupts using its version of
the EFLAGS.IF register, the HV can configure the VMCB such that the VM’s EFLAGS.IF
flag only affects virtual interrupts. This way, the VM cannot prevent actual physical
interrupts from being delivered [AMD23, Sec. 15.21].

2.4 AMD SEV
AMD Secure Encrypted Virtualization (SEV) [DK16] is a Trusted Execution Environment
(TEE) protecting whole virtual machines from a malicious HV and to some extent against
physical attackers. It builds on the AMD SVM hardware acceleration for virtualization.
These kinds of TEEs are also known as confidential VMs. With SEV, each VM’s memory
content is encrypted with AES-128 using the XOR-Encrypt-XOR (XEX) [Rog04] mode
before leaving the main processor. A dedicated co-processor, the AMD Platform Security
Processor (PSP), forms the root of trust of the system. It takes care of securely handling
the memory encryption keys and offers an API to the HV to setup and manage SEV VMs.
While located inside the main processor, for example in the cache, each VM’s data is
assigned a different tag, called Address Space Identifier (ASID) to ensure isolation. After
the initial release of SEV, there were two iterative enhancements called SEV-ES [Kap17]
and SEV-SNP [AMD20a], the latter being the latest version.

2.5 Attacks on AMD SEV
Since its release, there has been a long line of attacks against AMD SEV.
Unencrypted VMCB: In [HB17, WMA+19] the authors exploit the unencrypted VM
register state inside the VMCB, which has been mitigated with SEV-ES.
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Nested Page Tables: In [HB17, MHHW18, MPR+21, MHH19] the authors exploit the
HV’s control over the nested page tables to remap pages either leaking data or injecting
code. These attacks are mitigated with SEV-SNP.
Encryption Mode: In [BGN+17] the attacker exploits the unauthenticated encryption
to fault computations inside the VM by flipping ciphertext bits. [DYM+17, WWME20]
reverse engineer the encryption mode together with the tweak values and show how this
can be used to leak or inject data into the VM. However, on more recent EPYC CPUs, the
updated XOR-Encrypt-XOR (XEX) [Rog04] mode prevents the tweak reverse engineering,
and SEV-SNP additionally prohibits writes to the VM’s memory. [LZLS19] show that
the bounce buffers required for I/O interaction between HV and VM in combination with
the insufficient binding of ciphertext to its memory location prior to the XEX mode can
be used to leak/inject data. Finally, [LZW+21, LWW+22] demonstrate than even with
SEV-SNP, the attacker can still exploit the fact that the memory encryption mode is
deterministic to leak data through a side-channel.
Miscellaneous: In [WLZL23] the authors exploit the software-accessible power reporting
features on AMD CPUs to unveil the type of executed instructions. However, the attack
was only demonstrated with plain SEV, and the applicability to more recent versions
is uncertain. In [BWS19, BJKS21] Buhren et al. show hardware-based power glitching
attacks against SEV’s root of trust, the Platform Security Processor (PSP), granting them
custom code execution on the PSP. Further attacks on SEV versions prior to SEV-SNP also
exploited flaws in the ASID-based isolation [LZL21], in the calculation of the attestation
value [WWSE21], as well as in the software interface between HV and VM [RM20].

2.6 Interrupt-Based Single-Stepping
The idea of improving the temporal resolution of microarchitectural attacks via triggering
frequent interrupts was first explored in the context of SGX. There are several works [MIE17,
HCP17, LSG+17] that significantly improved the temporal resolution from the page fault
level down to a few instructions. However, reliable single-stepping was only achieved with
SGX-Step [BPS17].

While the general techniques for single-stepping SGX enclaves and SEV VMs are
similar, the technical implementation is quite specific to the targeted platform. For SGX,
the Asynchronous Enclave Exit (AEX) mechanism can conveniently be used to place the
attacker framework code close to the enclave entry/exit. For SEV, we need to modify
the KVM kernel module and thus also need to implement a communication mechanism
between the kernel space and user space part of our implementation. Furthermore, we
need to modify the virtual interrupt delivery logic to prevent the injection of virtual APIC
timer interrupts while single-stepping the SEV VM. Finally, SEV VM’s usually run a fully
fledged OS consisting of the Linux kernel and dozens of user space applications while SGX
enclaves are more narrowly scoped. Thus, targeting a specific program inside a SEV VM
is more involved.

The idea of APIC timer-based stepping was first applied to SEV in Cipherleaks [LZW+21].
However, they did not achieve reliable single-stepping (c.f. Figure 3 in [LZW+21]) and
did not publish any code artifacts. Concurrent to our work, PwrLeak [WLZL23] also uses
APIC timer-based single-stepping. However, they only performed their experiments on
the outdated, plain SEV variant (not on SEV-ES or SEV-SNP) and do not provide a
comprehensive framework. They also do not discuss reliability.

2.7 Cache Attacks
Since CPUs are much faster than main memory, they use caches to store recently accessed
data in order to minimize latency. Modern CPUs usually use set-associative caches, where
each memory address maps to a specific location in the cache, called the cache set. Each
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cache set has a limited amount of slots to store data, called ways. If all ways of a cache set
are used, new data will evict one of the older entries. Each cache entry is identified via a
unique tag value. Cache attacks use timing to infer whether a certain address is currently
cached or not. As shown in many works [Per05, DJ05, LYG+15, AES15], an attacker can
use this to leak secrets from other processes/entities on the system.

In Prime+Probe [OST06, LYG+15], the attacker accesses a specifically crafted set of
memory addresses, a so-called eviction set, to fill up a cache set. Next, the attacker waits
for the victim to perform a memory access. Finally, the attacker accesses the eviction set
again, measuring the required time. A long access time indicates that the victim’s memory
access mapped to the same set, and thus evicted one of the attacker’s entries.

The Load+Reload [LHS+20] attack is a more recent variation of the Prime+Probe
attack. It exploits a specific behavior of the way predictor present on AMD CPUs since
the Bulldozer microarchitecture: Accesses to the same physical address but with different
virtual addresses always encounter a L1 data cache miss. This allows an attacker to perform
the Prime+Probe step using only a single memory access for each step, irrespective of the
number of ways the cache has.

Another popular cache attack is Flush+Reload [YF14]. Like with the Load+Reload
attack, Flush+Reload requires shared memory between the attacker and the victim. First,
the attacker uses an architectural flush command, like clflush, to remove the shared
data/code from the cache. As with the other techniques, the attacker waits for the victim
to execute. To probe if the victim has accessed the memory location, the attacker finally
measures the time required to access the flushed data with his mapping.

3 Attacker Model
In this paper, we assume a software-level attacker with full system-level privileges, which
matches the threat model of AMD SEV. Using these capabilities, the attacker acts as
a malicious hypervisor running a modified Linux kernel. Furthermore, the attacker can
freely tweak nearly all system settings, like fixing the CPU frequency or disabling hardware
cache prefetchers. However, a few features, like the availability of simultaneous multi
threading (SMT) or the firmware version of the root of trust are part of the attestation
report [AMD22b]. Thus their configuration status is visible to the VM owner. The attacked
VMs are protected with AMD SEV-SNP. Due to SEV’s attestation feature, the software
inside the VM is assumed to be benign and under the VM owner’s control.

4 SEV-Step Design
In this section, we first motivate the design of SEV-Step and its components, and then de-
scribe each component in-depth. The framework consists of the following main components:
Single-stepping, page fault tracking and eviction set-based cache attacks.

4.1 Design Goals
We identified two major design goals for SEV-Step: Interactivity and reusability.

Interactivity: One key component for side-channel attacks in general is to precisely link
the (micro)architectural observations with the victim’s execution state. In the context of
TEEs, like Intel SGX or AMD SEV, this is commonly achieved by interrupting the victim
at defined points in its execution state, allowing the attacker to either prepare or sample
the (micro)architectural state. Thus, the SEV-Step framework should not only allow the
attacker to interrupt the VM, but also notify the attacker about the interruption, keeping
the VM paused until the attacker signals that they are ready for the VM to resume.
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Figure 2: Overview of the kernel space and user space parts of the SEV-Step framework.
There are two communication channels: An ioctl API, and communication over shared
memory. Sending and acknowledging (single-stepping) events is done over shared memory.
Upon sending an event, the kernel space part blocks until the event is acknowledged,
delaying the next VMRUN. Both waiting for new events and for acknowledgments are
implement via active polling to reduce latency. As changes to the VM can only be made
upon the next exit, the ioctl API only updates a central configuration struct, deferring the
application of the changes to the next exit. However, in combination with the blocking
event handling, the user space library can synchronize these changes to the VM state.

Reusability: Since features like page fault tracking or programming the APIC timer
require the use of certain privileged OS resources, it is natural to implement them directly
inside the OS kernel. However, patching the kernel comes with several downsides. Small
errors can easily lead to system crashes or hard-to-debug instabilities. Furthermore,
the programming environment is limited to C, without any external libraries. Finally,
recompiling the Linux kernel is quite resource-intensive, leading to long iteration times
during development. Thus, we aim for a design that only implements the basic primitives
that are dependent on privileged OS resources inside the kernel. These primitives are then
made available to a user space library via an API allowing the development of complex
attack logic in the richer and less error-prone programming environment available to user
space code. Given our first goal of interactivity, this requires us to build a synchronous,
bidirectional channel between the kernel space and the user space components. In addition,
bundling the API in a separate library also makes it easy to separate attack specific logic
from the framework code itself. This is showcased in the end-to-end attack in Section 6.1,
which is a completely separate code base that only links to the SEV-Step library.

4.2 User Space API
We built SEV-Step on top of AMD’s reference hypervisor implementation for SEV, which
is based on the Linux KVM kernel module and QEMU.

Figure 2 shows an overview of the interaction between user space and kernel space
in SEV-Step, as well as the basic workflow of the framework. The left-hand side shows
the kernel space part, while the right-hand side shows the user space part. There are two
communication channels between the kernel space and the user space part: ioctls and
shared memory.

Ioctls are a commonly used approach to implement kernel space to user space APIs.
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An ioctl is a basically a wrapper system call, that can be filled with custom behavior.
However, being a system call, they require a full user space to kernel space context switch.
In addition ioctls do not allow the kernel space to push events to user space. Thus, we
only use ioctls for low-frequency operations, like initialization or configuration. For the
high-frequency page fault and single-step event notifications, we use a custom, lightweight
protocol over shared memory.

As explained in Section 2.1, the core part of the KVM hypervisor kernel module is a
control loop around the VMRUN instruction. For the SEV-Step framework, we mainly add
additional control logic before and after the VMRUN instruction, that, e.g., primes/probes
the cache or starts the APIC timer. In addition, we also need to patch KVM’s page fault
handling code and overwrite the default APIC timer handling. This additional control
logic can be configured via the ioctl API. As we can only reconfigure the VM between
VMRUNs, the ioctl API inherently is not synchronized with the control loop, i.e., changes
only take effect on the next entry/exit from the VM. While this seems to contradict the
interactivity design goal, the situation can be resolved by the blocking event notification
mechanism explained in the next paragraph.

When a VMEXIT occurs due to a single-step or page fault event, the kernel space
part uses the shared memory channel to deliver an event to the user space counterpart.
However, after sending the event, the kernel space does not continue the execution of the
VM, but instead waits for the user space to acknowledge the event, keeping the VM in
a paused state. This enables the user space part to make configuration changes via the
ioctl API that immediately take effect on the next VMRUN. In addition, the semantics
conveyed by the page fault/single-step events allow the user space application to deduce
the internal state of the VM, as required by the interactivity design goal.

To synchronize the memory accesses to the shared memory area, both sides actively
poll a spin-lock. Compared to, e.g., mutexes, which might lead to an immediate reschedule
when encountering an already taken lock, this results in lower overhead.

4.3 Single-Stepping

This section describes how single-stepping is implemented in the SEV-Step framework.
We start by describing the basic mechanism before giving more details on tweaking the
mechanism to achieve reliable single-stepping.

First, the HV uses the VCMB configuration structure, which is passed to the VMRUN
instruction when entering the VM, to ensure that an APIC timer interrupt leads to a
VMEXIT (c.f. Section 2.3). Next, the HV programs the APIC timer and enters the VM
with the VMRUN instruction. Once the timer expires, the resulting interrupt results in
a VMEXIT, handing control back to the HV. This workflow is part of the HV’s regular
operations, as it uses the APIC timer anyway to implement a periodic tick/callback. Next,
we discuss how to use this mechanism to achieve single-stepping.

As explained in Section 2.3, the hardware does not immediately trigger a VMEXIT
upon receiving, e.g., a timer interrupt. Instead, the interrupt handling, and thus the
VMEXIT, is postponed until the next instruction boundary is reached. As shown in
Figure 3, to achieve single-stepping, we need to configure the timer such that the interrupt
is triggered before the first instruction in the VM’s execution flow is finished. However,
the timer interval also needs to be long enough for the first instruction of the VM to be
issued into the execution pipeline. Otherwise, the VM would exit without having executed
a single instruction. If the APIC timer interval is too large, multiple instructions are
executed. We call these events, single-, zero- and multi-step, respectively.
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Figure 3: Timeline of the executed instructions during a HV to VM context switch. As
the APIC timer interrupt is only processed at instruction boundaries, we get timing
windows instead of discrete points in time, at which the interrupt leads to zero-, single-
or multi-steps. The bottom row depicts that, internally, the execution of an instruction
consists of several stages.
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As shown in the bottom half of Figure 3, the execution of an instruction can be decomposed
into multiple parts. While the time between issuing and retiring an instruction might be
very short, e.g., when executing a nop instruction, the other steps still require some time.
This is the case especially when the CPU needs to fetch the instruction from memory and,
if applicable, resolve other memory addresses used by the instruction. In our experiments,
we found that the size of the single-step window is not dominated by the instruction’s
type itself, but rather by the instruction-agnostic execution stages (fetch, decode, . . . ). To
enable reliable single-stepping, an attacker must ensure that the execution of the VMRUN
instruction always takes roughly the same amount of time and that the single-step window
never drops below a certain threshold.

In order to maximize the time required for the first instruction executed inside the
VM, we explored flushing the VM’s Translation Lookaside Buffer (TLB) entries as well as
resetting the “accessed” bit [AMD23, Sec. 5.4.1] of the page containing the first instruction
that would be executed after the VMRUN. By flushing the VM’s TLB entries, we ensure
that accessing the code page that contains the first instruction always requires a time-
consuming page table walk to translate the address. The same applies to all memory
operands used by the instruction. The intention behind resetting the “accessed” bit is
similar. If cleared, the hardware has to set the accessed bit again [AMD23, sec. 5.4.2].
According to the Intel SGX-specific AEX-Notify [CBC+23] paper, this requires substantial
time and is one of the key factors for reliable single-stepping on Intel SGX. We evaluate
the effects in Section 5.1.

Finally, we tweak the system configuration as follows to ensure a stable execution
speed. We pin the kernel thread running the VM to a dedicated CPU core, that does
not run any other tasks. This is implemented via the isolcpus, nohz_full, rcu_nocbs
and rcs_nocb_poll Linux kernel parameters [Lin]. In addition, we ensure a stable CPU
frequency by either disabling dynamic frequency scaling altogether (if the BIOS permits
it), or by pinning the CPU frequency using the Linux cpufreq subsystem [Wys17]. Finally,
we disabled hardware cache prefetchers in the BIOS. Since SEV aims to protect against a
privileged system-level attacker, all of these changes are within the threat model.

Preventing Virtual Timer Interrupts

As explained at the start of Section 4.3, the Linux OS uses the APIC timer to implement
a periodic tick/callback. Thus, while the HV handles the physical APIC timer interrupts,
it also needs to emulate the interrupt for the VM. As explained in Section 2.3, AMD’s
hardware assisted virtualization offers the concept of virtual interrupts to achieve this.
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Thus, whenever the APIC timer interrupts the VM, the KVM hypervisor would usually
inject a virtual timer interrupt into the VM upon the next VMRUN. As a consequence,
the Linux OS in the VM jumps to its corresponding interrupt handler. As a result, an
attacker would not single-step any user code, but only the VM’s APIC timer interrupt
handler. Thus, we need to modify this part of KVM’s logic to prevent any virtual timer
interrupt injection while we single-step the VM. For our attacks, we did not observe any
instabilities in the VM’s execution due to the inhibited interrupt. As a workaround for
potential issues with very long single-step phases, we could periodically allow the injection
of the virtual timer interrupt.

Determining the Step Size

To properly determine the APIC timer timeout value, we need a feedback channel enabling
us to observe the amount of instructions executed by the guest. In SGX-Step [BPS17] the
“accessed” bit of the page table entry corresponding to the page containing the current
instruction is used to differentiate single-steps and zero-steps. However, it cannot be used
to detect multi-steps, which is only possible by running the enclave in debug mode to
observe its instruction pointer. While these two methods also work in SEV, we additionally
have access to the VM’s performance counter events. As demonstrated in [LWW+22],
there is a performance counter for retired instructions that can be configured to only
consider instructions executed by the VM. Thus, evaluating the counter before and after
entering the VM immediately reveals the step size.

4.4 Page Fault Tracking
For page fault tracking, SEV-Step uses the well-known control of the HV over the nested
page tables [MHHW18, LZL21, WWME20]. By modifying the present, no-execute and
read/write bits of a page, the HV can force the VM to encounter a page fault that also
reveals the type of access. While being more coarse-grained than single-stepping, page
fault-based tracking is significantly faster. Thus, for many attack scenarios, it is beneficial
to rely on the coarse-grained page fault mechanism as much as possible before enabling
single-stepping. For example, an attacker could use page fault tracking to get notified
when the VM is about to execute a code page containing a series of secret-dependent
memory lookups. Only then, the attacker activates single-stepping, allowing them to, e.g.,
perform a cache attack against each individual memory access.

4.5 Cache Attacks
To use SEV-Step’s cache attack capabilities, the attacker first needs to perform some
initial configuration like locating and defining the cache attack targets. Afterwards, while
single-stepping the VM, the attacker can request that a cache attack is performed for the
next single-step. The resulting step event is enriched with the measured data.

In the remainder of this section, we discuss how we measured execution times on our
system as well as the applicability of the Prime+Probe, Load+Reload and Flush+Reload
(c.f. Section 2.7) cache attacks in the context of SEV.

Measuring Access Times

As, e.g., discussed in [LHS+20], the rdtsc and rdtscp instructions return very coarse-
grained timing data on AMD CPUs since the Zen microarchitecture. This makes them
unsuitable for cache attacks without averaging over several iterations. Prior work suggests
either using a so-called counting thread [LGS+16] or the rdpru instruction [AMD22a,
LGS22, LHS+20]. While the latter could be disabled for unprivileged users, we assume an
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attacker with kernel-level privilege. In the following sections, we use the rdpru instruction
due to the lower footprint on the microarchitectural state compared to the counting thread.

In addition to measuring the access time, we can also use performance counters to
gather information about the cache state. As described earlier (c.f. Section 4.3), SEV
does not offer protection/isolation for performance counters. For the level 2 (L2) cache,
there are performance counters for “L2 Cache Miss from L1 Data Cache Miss” and “L2
Cache Hit from L1 Data Cache Miss” [AMD21, Sec. 2.1.17.2]. However, as there is no
performance counter for L1 data cache hits or misses, we still require the access time to
infer the L1 result in order to interpret the L2 events. E.g., if we have a L1 cache hit,
the difference in both counters would be zero, leaving us with an inconclusive result until
evaluating the access time.

Flush+Reload

The HV can easily obtain a mapping to any of the VM’s memory pages by using the nested
page tables. However, as explained in [LZL21], in SEV the cache tag is extended with
the current ASID and the encryption status of the corresponding page (C-Bit), effectively
allowing the same data to reside in the cache multiple times. As the HV has a different
ASID than the VM (as discussed in [LZL21] the HV could technically change its ASID,
but this would basically prevent it from executing any further code), it cannot get a hit on
the data brought into the cache by the VM, when accessing the data via its own mapping.
Thus, the HV cannot perform the reload part of the Flush+Reload attack.

Load+Reload

As flush-based attacks do not work with SEV, we need to look at eviction-set based
approaches. One particularly efficient method is the AMD-specific Load+Reload attack,
as it only needs a single memory access in each stage. In the original paper [LHS+20], the
authors only demonstrated the Load+Reload attack in the context of one user space process
attacking another. We were able to reproduce the attack with a malicious hypervisor
attacking a regular (non-SEV) VM. However, when targeting any type of SEV VM (plain,
ES, SNP), the observed effect on the cache changes. Instead of getting an L1 data cache
miss and an L2 hit for the evicted address, we observed RAM access times for the whole
memory page to which the evicted address refers. We were not able to conclusively verify
the cause for this behavior. However, we suspect that this is related to the “Cache
Coherency across encryption Domains” feature [AMD23, Sec 15.34.9] available on our
CPU. The manual states that without this feature, the HV is required to manually flush a
data page of the VM before accessing it, if it wants to read the latest data. Thus, it is
possible that the HV’s access to the aliased mapping also internally triggers a cache flush.

Prime+Probe

As the specialized eviction-set technique of the Load+Reload attack does not work with
SEV, we opted for the generic Prime+Probe attack. To reduce cache noise, we chose to
implement the prime and probe steps in the kernel space. This way, they can be placed
immediately before and after the VMRUN instruction. The eviction set finding itself is
implemented in user space, to allow for maximal flexibility. We found that on our CPU
the first 24 bits of the page frame number need to be equal for two pages to be mapped to
the same L2 cache set. Next, the user space application passes the virtual addresses of
the eviction set(s) to the kernel space component, which will create internal mappings to
the used pages. The additional kernel mappings are required as the address space of the
user space application will not be mapped during the prime and probe steps performed
immediately before and after the VMRUN instruction.
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Table 1: Results of single-stepping the same nop slide program while: Resetting the
“accessed” bit before each step (A-Bit), flushing the guest TLB before each step (TLB),
doing both (TLB + A-Bit). For the rows with multi-steps, the timer value is the smallest
value that did not only produce zero-steps. � M-Step denotes the average amount of
instructions executed during a multi-step.

Timer 0-Step 1-Step M-Step � M-Step
Baseline 0x31 6401 1534 32 37
A-Bit 0x31 6399 1548 50 34
TLB 0x33 1158 4000 0 0
TLB + A-Bit 0x33 1116 4000 0 0

5 Evaluation
We evaluated SEV-Step on a Dell PowerEdge R6515 Server with a 3rd generation EPYC
7763 CPU. The attacked VM was protected with SEV-SNP, running Ubuntu 22.10 with an
unmodified Linux 5.19.0-26 kernel (starting with 5.19, the mainline Linux kernel supports
running as a SEV-SNP guest). The attacker-controlled host is running our modified
SEV-Step kernel that is based on AMD’s patched Linux 5.14 kernel. The SEV-Step
framework, as well as the code for the evaluation and attacks presented in this paper, is
available at https://github.com/sev-step/sev-step.

5.1 Single Step Reliability
For the reliability evaluation, we analyzed four different scenarios, based on the ideas
described in Section 4.3. The results are shown in Table 1. We define reliability as “not
performing multi-steps” while still performing some single-steps. Starting with an initial
guess for the timer value, we iteratively decrease it until any further decrease would result
in only performing zero-steps. For all scenarios, we try to single-step a code block consisting
of 4000 nop instructions.

In the baseline scenario, we try to achieve single stepping only using the APIC timer,
i.e., without combining it with other (micro)architectural tweaks. As depicted in the table,
this approach fails. Setting the timer value to 0x30 results in only zero-steps but 0x31
already gives us 32 multi-steps.

Next, we analyze the effect of resetting the “accessed” bit as well as flushing the VM’s
TLB entries. As explained in Section 4.3, the intention behind these tweaks is to increase
and homogenize the timing window leading to a single-step. Resetting the “accessed” bit
does not have any significant effect. However, flushing the VM’s TLB drastically improves
the situation, enabling us to execute the targeted program without any multi-steps. As
expected, combining both methods does not yield a significant improvement.

In addition to the slide of nop instructions discussed here, in Section 6.1, we single-step
the real world Linux kernel AES encryption and decryption code as well as a more diverse
set of instruction microbenchmarks.

5.2 Event Handling Performance
To evaluate the performance of the event sending mechanism, we compare handling all
events in kernel space with sending them to user space. As both page faults and single-steps
use the same basic mechanism, we restrict our analysis to the code path sending single-step
events. For simplicity, we again use the nop slide program introduced in Section 5.1. Note
that the performance of the event mechanism is independent of the stepped instructions.
Without sending events to user space, we require on average 1.007 ms per single-step

https://github.com/sev-step/sev-step
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event, with a standard deviation of 0.0054 ms. Sending events to user space requires an
average 1.616 ms per single-step event, with a standard deviation of 0.01548 ms. While
the user space event handling requires roughly 60% more time, we believe this overhead is
acceptable given the substantial improvements in usability and attack development.

5.3 Cache Attack
We now evaluate SEV-Step’s Prime+Probe attack implementation. As discussed in
Section 4.5, the Load+Reload and Flush+Reload attacks do not work with SEV. We tested
the Prime+Probe attack against both the first level data cache (L1D) and the level two
cache (L2). However, as the L1D showed a high amount of noise, we only evaluate the L2
variant here.

For the experiment setup, we assume that the guest physical addresses of both the test
program and a given lookup table have already been recovered by the attacker, e.g., by using
the page fault side-channel in combination with the “retired instructions” performance
counter [LWW+22]. Next, we use page fault tracking to detect when the code is about
to be executed, and then start single-stepping to interrupt the code immediately before
and after each memory access to the lookup table. We analyze two variants of a crafted
assembly snippet that alternates between accessing offset 64 (byte) and 960 (byte) in a
cache line-aligned 16 · 64 byte lookup table (similar to the T-tables attacked in Section 6.1).
In the first variant, we placed a lfence instruction between the memory accesses, while for
the second variant, the memory accesses are performed back-to-back. Then we classify the
data using a previously determined timing threshold. In the first variant, we get a success
rate of 0.94, while for the second variant we only get a success rate of 0.13. While the
second variant does indeed have higher cache noise, upon closer examination, one of the
“noisy” cache sets is often related to the next upcoming memory access, i.e., despite the
fact that we are single-stepping, future memory accesses are already fetched out-of-order
and thus leave a cache trace. We discuss these effects in more detail in Section 6.1, where
we demonstrate an end-to-end cache attack against the Linux kernel’s AES implementation.
We did not observe any cache trace when zero-stepping an instruction, indicating that the
context switch needs to fully complete before any instructions from the VM are issued to
the execution pipeline.

6 Case Studies
To demonstrate the capabilities of the SEV-Step framework, we performed two case studies.
In the first one, we explore the common workflow of using a SEV VM in combination
with an encrypted disk image. We show how an attacker can use the cache attack and
single-stepping features of SEV-Step to recover the AES volume key of a disk encrypted
with LUKS2. In the second case study, we analyze to which degree SEV-protected VMs
are vulnerable to Nemesis-style attacks [BPS18a]. For this, we enrich the single-step events
with precise time measurements. To the best of our knowledge, these kinds of attacks were
not explored in the context of SEV before.

6.1 Cache Attack on Disk Encryption
We show an end-to-end, single trace cache attack that is able to steal the volume key of
a disk encrypted with cryptsetup+LUKS2, which is a disk encryption system commonly
used with Linux. First, we briefly introduce disk encryption, which is a highly relevant
workflow for SEV and confidential VMs in general. Next, we describe how we can force
the disk encryption system to decrypt the disk using a cipher implementation vulnerable
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to cache attacks. Finally, we explain the technical details required for gathering the cache
traces and how we recovered the volume key from them.

Linux Disk Encryption

A common approach for deploying SEV VMs is providing the HV with an encrypted disk
image and a bootloader. The bootloader is attested through the SEV API and receives
the disk password from the user. It then opens the disk image, loads the kernel binary into
memory, and transfers control to the kernel. Finally, the kernel unlocks the disk image
again and mounts the contained file system. This workflow allows to keep the attested
initial code image small, improving performance and reducing the attack surface.

Under Linux, the disk encryption infrastructure [MV] is split into a user space and a
kernel space part. The kernel contains the disk driver and implementations for several
ciphers that can be consumed by user space applications via an API. An example for this
is the popular full disk encryption suite cryptsetup.

The kernel crypto infrastructure provides a flexible architecture of basic ciphers
and so-called “templates”. The former are plain block ciphers (or message digests), the
latter implement additional logic on top of existing ciphers. This is commonly used to
represent block cipher modes like CBC or XTS. Part of the kernel crypto API is the CAPI
specification format, that allows to describe composed ciphers in a structured manner.
For example, capi:xts(ecb(aes))-plain64 invocates the XTS driver with AES in ECB
mode and a sector number-based IV generator.

Since Linux supports a wide range of architectures, there may be different variants of a
cipher, each optimized for a certain architecture version. Each implementation is assigned
two names: The cra_name, which is equal for all implementations of a given primitive,
and the cra_driver_name, that uniquely identifies a specific implementation. The CAPI
format supports both names. If a cra_name is provided, a static scoring system is used to
select the best implementation for the current system. If a cra_driver_name is specified,
the kernel uses that specific implementation if available.

The LUKS2 [Bro22] format commonly used with cryptsetup allows specifying the
block cipher for the encrypted disk in the CAPI format. As this value is neither encrypted
nor authenticated, it can be arbitrarily manipulated, as, e.g., shown in [Tea15]. The CAPI
string is directly passed to the kernel crypto API. We discovered that the Linux kernel
shipped with Ubuntu 22.10 contains several symmetric cipher implementations that are
highly vulnerable to cache attacks. In the next section, we show two approaches how a
malicious hypervisor can combine these weaknesses, by first tricking the VM into using its
secret disk encryption key with a vulnerable algorithm and then extracting the key from
the resulting leakage via a cache attack.

Forcing Vulnerable Ciphers

On our test systems, cryptsetup defaults to capi:xts(ecb(aes))-plain64 for LUKS2
encrypted disks. XTS [iee08] is a tweaked block cipher mode commonly used for disk
encryption. It uses two keys: The first key is used to generate a so-called tweak value
by encrypting the current disk sector number. This tweak value, multiplied with a
number representing the current offset inside the disk sector, is then XORed to the actual
payload data before and after encrypting/decrypting it using the second key. Using the
weaknesses described in the previous section, the malicious HV changes the disk header to
capi:xts(ecb(cast6))-plain64 before passing the disk to the VM, tricking the VM into
using the vulnerable CAST6 implementation. As the disk content was initially encrypted
with AES, this does not yield meaningful plaintext, preventing the disk from being mounted
properly. Nevertheless, the decryption routine is still invoked roughly 66k times before the
mount operation eventually fails, providing sufficient opportunity to leak the key.
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A second, more stealthy approach, is exploiting the ability to force a specific cipher
implementation. The attacker replaces the capi:xts(ecb(aes))-plain64 specification by
capi:xts(ecb(aes-generic))-plain64, such that the AES cipher is instantiated with
a leaky T-table based implementation. While we verified that such substitutions work
for “templates”/composed ciphers, there is one remaining problem when applying it to
the XTS implementation in Linux. Only the cipher instantiation for the payload data
encryption/decryption is selected based on the exact value specified in the CAPI string.
The cipher instantiation for the tweak generation always uses the priority-based cra_name
to select the best implementation. As all SEV-enabled systems support AES-NI, this
prevents us from leaking the tweak encryption key. Thus, during the key recovery, we
cannot recompute the tweak value which is a prerequisite for recovering the second key,
used for encrypting the actual payload data. However, as shown in the next paragraph, a
malicious HV can suppress the availability of AES-NI altogether, forcing the VM to use
the vulnerable implementation for both instances of AES.

The VM uses the cpuid instruction to determine whether AES-NI is available. As
the HV can intercept this instruction, it can arbitrarily manipulate the reported features.
All versions prior to SEV-SNP cannot detect such manipulations. With SEV-SNP, a new
mechanism was added to provide trustworthy cpuid information [AMD22b]. During the
attestation process, the HV has to commit to a set of cpuid bits, that are additionally
verified by the AMD Platform Security Processor (PSP). Depending on the specific cpuid
entry, the PSP enforces different policies. Some entries are required to match the value on
the host, but the AES-NI feature is allowed to be disabled [AMD21, Sec. 2.1.5.3]. Thus,
the VM owner has to be aware of the subtle security implications of disabling AES-NI and
ensure that their expected attestation value enforces enablement of AES-NI.

As the technical aspects of the cache attack are similar and the AES key recovery
is more interesting, we opted for AES in our end-to-end attack. This also leaves the
possibility that the VM owner remains unaware of the attack, as the disk mount succeeds.

Performing the Cache Attack

In preparation for the cache attack, we need to solve three challenges: We have to À
locate the AES code and detect its execution, Á locate the instructions accessing the AES
T-tables, and Â locate the AES T-tables.

Similar to prior work [MHHW18, LWW+22, LZW+21], we solve À through the page
fault controlled channel. As explained in the previous section, the decryption of a single
XTS-encrypted data block consists of two AES invocations using different keys. To build
the page fault sequence fingerprint, we trace all of the kernel’s page accesses while triggering
disk decryption operations. By manual analysis we found that the page fault sequence in
Table 2 uniquely identifies the execution of the relevant AES functions. While KASLR
randomizes the location of the kernel’s .text section at each boot, the contents and order
of the .text section itself are not randomized. Furthermore, there are several techniques
to break KASLR in the SEV context [MPR+21, WWME20]. Thus, we encode the page
fault sequence relative to the start of the .text section instead of using absolute addresses,
allowing its usage across reboots. Note that for the final attack, it suffices to track the
pages of the sequence one by one, i.e., we no longer need to trigger a page fault on every
memory access as we did while generating the fingerprint.

For Á, we first analyze the assembly code of the AES functions in an offline phase.
This allows us to build a list of all instructions accessing the T-table, each annotated
with the number of instructions executed since the start of the function. Then, during
the attack, we single-step the VM’s execution once we reach the targeted AES functions.
By comparing the number of executed steps with the information gathered in the offline
phase, we know whether we need to perform the cache attack for the next instruction.

To Â locate the AES T-tables, we “sacrifice” the first memory access instruction of
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Table 2: Page fault sequence uniquely identifying the execution of the AES encrypt and
decrypt operations performed during the decryption of a single payload data block of the
VM’s disk. Accesses with the “Marker” role don’t correspond to an operation that we want
to observe, but are required to accurately track the execution flow. The “PFN Offset” field
states the offset of the page containing the function relative to the start of the kernel’s
.text section (measured in 4096 byte pages).

Name PFN Offset Role
xts_decrypt 0x65c Marker
crypto_cipher_encrypt_one 0x64b Marker
crypto_aes_encrypt 0x65f Tweak generation
crypto_aes_encrypt 0x660 Tweak generation
crypto_ecb_decrypt 0x65b Marker
crypto_aes_decrypt 0x660 Payload decryption
crypto_aes_decrypt 0x661 Payload decryption

the encrypt/decrypt AES functions: Instead of performing the cache attack, we mark
all pages as not present, yielding a list of all pages accessed during the execution of the
instruction. We empirically verified that the final page fault before the instruction’s
retirement corresponds to the page of the T-table.

With the preparation done, we can now single-step the encryption/decryption functions,
and perform a L2 Prime+Probe attack on each T-table access. As a T-table has 256 4-byte
entries and thus covers 16 cache lines, we need to measure 16 cache sets for each access.

Recovering the AES Key

Given the cache measurements, we now conduct an offline analysis to recover the two
AES keys used by the AES-XTS disk encryption. First, we discuss how we overcame the
challenge of out-of-order accesses in our cache traces. Afterwards, we describe our key
recovery algorithm.

Although the VM’s execution is single-stepped during the cache attack, we still observe
a high amount of cache noise, as shown in Figure 4. Upon closer examination, most
of the cache noise is correlated to future (out-of-order) memory accesses to the same
T-table. While those are not actually retired due to the APIC timer interrupt used for
single-stepping being processed immediately after the current instruction, their cache
traces persist. This reasoning is supported by our experiment in Section 5.3, where we
analyzed a synthetic cache attack victim with and without lfences between the memory
accesses and found that the version with fences does not show this behavior. For our
attack, a given memory access usually influences up to four preceding accesses to the same
lookup table. This matches the round structure of AES, where each T-table is accessed
four times with a data dependency between the accesses of different rounds.

As we also have actual cache noise, as well as occasional accesses to the same cache set
within four memory accesses, separating the actual access from the noise proved challenging.
We opted for a machine learning-based approach with a sequential neural network model
consisting of 3 dense layers with 182, 64 and 16 neurons, respectively, as well as two
dropout layers to enhance generalization by preventing overfitting. For the input encoding,
we map each memory access to a binary vector, containing the cache traces of the access
that we want to classify as well as for the 8 preceding and subsequent accesses. We use
8 instead of 4 accesses in each direction to better improve handling of situations where
two close-by memory accesses use the same cache set. We label each input with a one
hot encoding of the expected memory access. For the first and last 8 accesses, we use
zeroes to fill up the missing preceding/subsequent accesses. Table 3 shows the accuracy of
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Figure 4: First 10 accesses to the first T-table of crypto_aes_encrypt. The X axis shows
the cache sets covering the T-table, indexed from 0 to 15. The bars on the Y axis show
if the cache set is considered high or low for that access. For each memory access, the
actually expected cache set is striped and colored red. Due to out-of-order execution, each
expected cache set leaves a trail of high cache sets in the preceding accesses.

the classifier in our experiments. The cache traces for crypto_aes_decrypt classification
contain a significantly higher amount of noise, leading to a worse classification.

For our key recovery, we use XTS decryptions for disk offsets that have known or
easily guessable plaintext and that are always accessed during a mount operation. This
includes certain magic offsets that are searched for file system headers, and the file system
structures themselves. In the first step, we break the key that is used for encrypting the
IVs (sector numbers), yielding the tweak. In the second step, we remove the tweak from
the ciphertext and then break the key used for decrypting the payload. To break a key,
we first guess a number of bits and then check whether that guess is consistent with the
T-table measurements, before guessing the next bits. This way, we can discard enough
candidates to avoid searching the entire key space. By ordering the candidate cache sets by
the probability that is returned by the classifier and discarding measurements with more
than 7 candidates, the time needed for finding the correct key can be further reduced.

End-to-End Attack

To test our attack implementation, we created a LUKS2 disk with an ext4 filesystem and
a random encryption key. We manipulated the header as described to call the vulnerable
aes-generic implementation in the kernel, and disabled AES-NI in the VM. When the
kernel running inside the SEV VM starts mounting the encrypted disk, we execute steps
À to Â to locate the relevant instructions and data structures. We continued with tracing
70 XTS decryptions, from which 34 involved a known plaintext, applied the classifier to
the measured cache accesses, and then invoked the key recovery. Due to the cache noise
issues described in the previous section, our key recovery requires roughly 13 hours on
the 96-core EPYC 7763 CPU that we used throughout the evaluation. Thus, while not
computationally trivial, the attack is feasible. Note that our attack required a single mount
operation, making the attack hard to detect and evade.
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Table 3: Accuracy of the ML-based classifier for the recorded AES cache traces. We trained
a dedicated model for each T-table. For crypto_aes_encrypt we used approximately 60k
training and 11k testing samples. For crypto_aes_decrypt we used approximately 74k
training and 14k testing samples. The varying amount is due to outlier removal.

Target Accuracy
crypto_aes_encrypt - Lut 0 0.9050
crypto_aes_encrypt - Lut 1 0.9037
crypto_aes_encrypt - Lut 2 0.8971
crypto_aes_encrypt - Lut 3 0.8610
crypto_aes_decrypt - Lut 0 0.6771
crypto_aes_decrypt - Lut 1 0.6860
crypto_aes_decrypt - Lut 2 0.6919
crypto_aes_decrypt - Lut 3 0.2545

6.2 Instruction Latency Attack
As a second case study, we analyzed whether the interrupt timing-based Nemesis at-
tack [BPS18a] also applies to SEV. The core idea of the Nemesis attack is to use the time
between single-steps to infer the type of instruction executed, or extract information about
its operands. The correlation between the time required for a single-step and the executed
instruction stems from the fact that the interrupt used to drive the single-stepping is only
processed on instruction boundaries. Thus, the single-step timing correlates to the time
required by the executed instruction. The Nemesis paper analyzed this attack vector for
Intel SGX and the Sancus enclave on a TI MSP430 microcontroller. To the best of our
knowledge, we are the first to analyze this attack vector on AMD SEV.

Measuring Latency

For measuring the latency of a single-step, we use the rdpru instruction to read the Actual
Performance Frequency Clock Count (APERF) MSR, as discussed in Section 4.5. For older
Zen processors (prior to Zen 2), the APERF MSR can be read with rdmsr instead of rdpru.
As depicted in Figure 5, we obtain a timestamp as close as architecturally possible before
and after the VMRUN instruction. The sti instruction in line 14 is required by the
virtualization interface and sets RFLAGS.IF to 1, enabling maskable external interrupts.
However, it only takes effect after the next instruction has executed, thus our timing
measurement cannot be disturbed by interrupts before entering the VM. When leaving
the VM, the hardware automatically sets the global interrupt flag (GIF) to 0. This flag
disables external interrupts and thus no such interrupt can trigger between line 15 and
16. As a result, our timestamp code runs in line 19 even before the handler for the APIC
timer interrupt that caused the VM exit is executed. The measurement code itself imposes
a minimal overhead by storing the timestamps prior to executing VMRUN.

Differentiating Instructions

To empirically test the distinguishability of individual x86 instructions based on their
latencies, i.e., the difference between the timestamp prior to and directly after VMRUN, we
perform experiments in the form of microbenchmarks similar to those of Nemesis [BPS18a].
We execute an instruction slide of 1,000 assembly instructions and collect the latencies of
each single-step. We repeat this procedure 100 times for a total of 100,000 measurements.
Unlike with SGX-Step, we do not need to check the “accessed” bit in the page table entry
to filter for zero-steps, but can directly use performance counters to evaluate the number
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1 ; start APIC timer
2 movl %edx, (%r8)
3 ; timestamp before VMRUN
4 lfence
5 movl $1, %ecx
6 rdpru
7 shl $32, %rdx
8 or %rdx, %rax
9 lfence

10 ; save timestamp to stack
11 push %rax
12 ; Prepare VMCB arg
13 ; and enable interrupts
14 mov %rdi, %rax
15 sti

16 ; Enter VM
17 vmrun %rax
18 ; Execution resumes here
19 ; after VMEXIT
20 cli
21
22 ; timestamp after VMRUN
23 lfence
24 movl $1, %ecx
25 rdpru
26 shl $32, %rdx
27 or %rdx, %rax
28 lfence
29 ...

Figure 5: Assembly code for measuring the time for a single-step event. To reduce system
noise to a minimum, we place the time measurement directly inside the kernel space
hypervisor code and as close as possible to entering and leaving the VM.

of zero, single- and multi-steps, as described in Section 5.3. For our analysis, we pick
instructions with a range of latencies based on benchmarks done by Abel et al. [AR19].

Figure 6a shows the latency distributions of a selection of x86 instructions. Using
SEV-Step, we can distinguish low-latency instructions such as add or mul from high-latency
instructions such as rdrand or lar. We also note that, while instructions such as nop,
add or mul are harder to discern due to their similar latencies and micro-ops, we can still
distinguish the average execution time given sufficient repetitions.

6.2.1 Differentiating Data Operands

For determining the distinguishability of data dependent operations, we replicate the
experiments of Nemesis regarding unsigned integer division div with the divisor rbx fixed
to 0xffffffffffffffff while varying the dividend rdx:rax. According to the AMD
hardware optimization manual, the “hardware integer divider unit has a typical latency of
8 cycles plus 1 cycle for every 9 bits of quotient” [AMD20b, p. 36]. This suggests that
there should also be a correlation between the significant bits of the dividend and the
measured latencies. As can be seen in Figure 6b, while the median latencies for div64-1,
div64-2 and div64-3 increase with the size of the dividend, div64-0 does not follow this
trend. We also observe that the latency differences between the divs are significantly less
prominent than those reported for SGX in the Nemesis paper.

7 Discussion
7.1 Zero/Single-Step Countermeasures
There are several works that try to protect SGX enclaves against single-stepping-based at-
tacks [CZRZ17, LWM+22, LBA22, OTK+18, SLKP17], but none of them found widespread
adoption. In 2022 Intel in collaboration with researchers [CBC+23] from the academic
community released the AEX-Notify extensions [Int22a] [Int22b, p. 199-204] for SGX
that make the enclave interrupt-aware, allowing it to execute custom handler code before
resuming at the interrupted instruction. The AEX-Notify paper [CBC+23] uses this
interrupt awareness to execute a code gadget that aims to ensure that the first payload
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(a) Latency distribution of a selection of x86 instruc-
tions.

(b) Latency distribution of the x86 div instruction with
varying dividend operands and the divisor rbx fixed to
0xffffffffffffffff.

Figure 6: Latency microbenchmarks with 100,000 executions of each instruction.

instruction of the enclave will execute fast by ensuring that the instruction as well as its
operands are fully cached. This way they aim to prevent reliable zero-/single-stepping.

According to the Intel TDX Module Spec [Int23b, Sec 17.3], TDX has been designed
with countermeasures for zero-/single-stepping attacks. To prevent single-stepping attacks,
a trusted domain (equivalent to SEV VM) can still execute a small randomized amount of
instructions if it gets interrupted within approximately 4k cycles after being entered. To
additionally prevent zero-steps via missing page table permissions, the TDX module limits
the number of page faults that may occur without forward progress and thus forces the
HV to ensure proper page table configuration before it can resume the trusted domain.

Given the novelty of single-stepping attacks against AMD SEV, we are not aware of
any countermeasures. In contrast to the AEX-Notify countermeasure that has to cope with
the architectural limitations of SGX, the TDX approach seems more principled. However,
in contrast to the TDX design, for SEV there is no trusted layer between the HV and the
VM that could e.g. prevent the VM from being entered after a certain amount of faults
without forward progress. We leave the design of countermeasures to future work.

7.2 Preventing Vulnerable Algorithm Selection

As demonstrated in Section 6.1, an attacker can exploit the unmodified LUKS2 header in
combination with the Linux kernel’s expressive CAPI specification language, to trick the
VM into decrypting its disk using cryptographic implementations vulnerable to side-channel
attacks. One possible solution is to remove all vulnerable implementations from the Linux
kernel, and replace them by constant-time code. If this is deemed unpractical, the API
should flag all vulnerable implementations as such and provide a way to allow its users to
explicitly disallow their usage. Another strategy would be to add a checksum preventing
the LUKS2 header manipulation. However, that case would require to explicitly specify
an implementation for the crypto algorithm. Otherwise, the kernel’s priority-based system
might still select a vulnerable implementation under certain system configurations.

We used a side-channel leakage analysis tool [WSPE22] in combination with a custom
QEMU plugin to analyze the Linux kernel’s crypto primitives for the secret oblivious
memory access and constant time properties. Due to limitations of QEMU, we were not
able to analyze AVX-based implementations. We found significant leakages in many other
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symmetric ciphers, for example aes-generic, aes-fixed-time1, blowfish-asm, blowfish-generic,
camellia-asm, camellia-generic, cast5-generic and cast6-generic.

We disclosed our findings regarding the LUKS2 header manipulation and its impact
on using LUKS2 in the context of confidential VMs to the cryptsetup/LUKS2 team2. As
a result, they changed the CAPI parsing part of cryptsetup to disallow the selection of
specific implementations. However, this does not help if all implementations known to the
Linux kernel are vulnerable, as it is the case for the blowfish cipher.

8 Conclusion
In this paper, we have demonstrated that SEV-SNP VMs can be reliably single-stepped,
which greatly increases their vulnerability against a wide range of microarchitectural
side-channel attacks. In the hope to ease future research in this direction, we introduced
SEV-Step, a reusable framework allowing the development of complex attacks from user
space. We have demonstrated the framework’s capabilities with two in-depth case studies.
The cache attack against the Linux disk encryption infrastructure revealed that even
with SEV-SNP, the implementation of protected VMs remains brittle due to continuing
prevalence of vulnerable code. The clash between the attacker model for which these
systems have been designed with their usage in the context of confidential VMs exposes
them to powerful software-level attacks in virtualized environments. Given that not only
AMD SEV but also Intel TDX [Int23a] and ARM CCA [ARM22] employ the confidential
VM model, their security under this new threat model should be analyzed with more
scrutiny. Finally, in the second case study, we have demonstrated that SEV is vulnerable
to timing-based instruction classification. Like the Nemesis attack on SGX, we were able
to confirm that instruction sequences can be reconstructed in SEV. While the timing
variation is smaller than in SGX, repeat measurements can reveal even small variations
due to data-dependent execution time of instructions such as div.
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