
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 4, pp. 493–522. DOI:10.46586/tches.v2023.i4.493-522

Revisiting the Computation Analysis against
Internal Encodings in White-Box

Implementations
Yufeng Tang, Zheng Gong(�), Bin Li and Liangju Zhao

School of Computer Science, South China Normal University, Guangzhou, China
yuft@m.scnu.edu.cn,cis.gong@gmail.com

Abstract. White-box implementations aim to prevent the key extraction of the crypto-
graphic algorithm even if the attacker has full access to the execution environment. To
obfuscate the round functions, Chow et al. proposed a pivotal principle of white-box
implementations to convert the round functions as look-up tables which are encoded
by random internal encodings. These encodings consist of a linear mapping and a
non-linear nibble permutation. At CHES 2016, Bos et al. introduced differential
computation analysis (DCA) to extract the secret key from the runtime information,
such as accessed memory and registers. Following this attack, many computation
analysis methods were proposed to break the white-box implementations by lever-
aging some properties of the linear internal encodings, such as Hamming weight
and imbalance. Therefore, it becomes an alternative choice to use a non-linear byte
encoding to thwart DCA. At CHES 2021, Carlet et al. proposed a structural attack
and revealed the weakness of the non-linear byte encodings which are combined with a
non-invertible linear mapping. However, such a structural attack requires the details
of the implementation, which relies on extra reverse engineering efforts in practice.
To the best of our knowledge, it still lacks a thorough investigation of whether the
non-linear byte encodings can resist the computation analyses.
In this paper, we revisit the proposed computation analyses by investigating their
capabilities against internal encodings with different algebraic degrees. Particularly,
the algebraic degree of encodings is leveraged to explain the key leakage on the
non-linear encodings. Based on this observation, we propose a new algebraic degree
computation analysis (ADCA), which targets the mappings from the inputs to each
sample of the computation traces. Different from the previous computation analyses,
ADCA is a higher-degree attack that can distinguish the correct key by matching
the algebraic degrees of the mappings. The experimental results prove that ADCA
can break the internal encodings from degree 1 to 6 with the lowest time complexity.
Instead of running different computation analyses separately, ADCA can be used as
a generic tool to attack the white-box implementations.
Keywords: White-Box Implementation · Computation Analysis · Internal Encoding
· DIBO Function · Boolean Function

1 Introduction
In the classical setting of cryptanalysis, a cryptographic algorithm is evaluated in a black-
box attack context. The black-box adversary is capable of arbitrarily choosing the inputs
and receiving the corresponding outputs of the cryptographic primitive. However, in
practice, the adversary can access the side-channel information such as timing or power
consumption. In this gray-box model, the adversary can perform side-channel attacks,
such as power analysis during the execution of algorithms. For software implementations

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-04-15 Accepted: 2023-06-15 Published: 2023-08-31

https://doi.org/10.46586/tches.v2023.i4.493-522
mailto:yuft@m.scnu.edu.cn, cis.gong@gmail.com
http://creativecommons.org/licenses/by/4.0/

494 Revisiting the Computation Analysis against Internal Encodings

that suffer severe challenges in an untrusted execution environment, the adversary has full
access to the cryptographic implementation. It implies that the adversary can observe and
manipulate the executed primitive. Such a white-box attack context was introduced by
Chow et al. [CEJvO02a]. Table 1 illustrates the different attacker capabilities in various
attack models.

Table 1: The different attacker capabilities in black-box, gray-box, and white-box models.

Model Access to Example Attack MethodCryptographic Algorithm
Black-Box inputs and outputs differential and linear cryptanalysis
Gray-Box side-channel information statistical analysis of power traces
White-Box full access breakpoint instruction and memory dumps

To prevent the key extraction in the white-box model, Chow et al. proposed the first
white-box implementations of AES and DES [CEJvO02a, CEJvO02b]. The fundamental
idea behind them is to conceal the secret key in a network of look-up tables (LUTs). The
entries and outputs of these tables are protected by randomly generated bijective encodings.
This principle for generating the white-box implementation of a cryptographic algorithm
is called the CEJO framework. In particular, there are two kinds of encodings. Internal
encodings are applied within the implementation and can be canceled pairwise between the
successive tables. The use of linear encodings is to introduce diffusion while the application
of non-linear 4-bit (nibble) encodings is to ensure confusion. External encodings are applied
to the plaintext and ciphertext for protecting the inputs and outputs of the algorithm. The
cryptographic functionality is implemented as E′k = G ◦Ek ◦ F−1 instead of the standard
implementation Ek for the introduction of the external encodings F and G. Following
the CEJO framework, many white-box implementations have been proposed to protect
the block ciphers [LN05, BCD06, XL09, Kar10], but all these implementations have been
broken by structural attacks [BGE04, WMGP07, MWP10, MRP12, LRM+13]. In practice,
the white-box implementations are commonly protected with code obfuscation and binary
protection. Thus, structural attacks require extra reverse engineering efforts to reveal the
details of the internal encodings.

Inspired by the differential power analysis (DPA) [KJJ99], Bos et al. [BHMT16]
proposed the differential computation analysis (DCA) on white-box implementations.
DCA collects the runtime computed values as computation traces and recovers the secret
key by the attack model of DPA. Since external encodings will change the input/output
specification of the original cipher, DCA mainly focuses on internal encodings. Different
from structural attacks, DCA can be mounted automatically to gather noise-free leakage
information without the knowledge of encoding details and reverse engineering. Moreover,
as a gray-box attack, a DCA adversary does not exploit the full power in the white-box
attack context. It has been demonstrated that many published white-box implementations
are vulnerable to DCA. To explain the experimental success of DCA, Sasdrich et al.
[SMG16] proposed the spectral analysis (SA). It computes the Walsh transforms of the
cryptographic functions to distinguish the correct key candidate. Bock et al. [BBMT18,
BBB+19] provided the statistical analysis on the attack results of DCA and proposed an
improved DCA (IDCA). It has been pointed out that both the Hamming weight of a row
in the linear encoding and the use of non-linear nibble encodings cause the key leakage.
This observation inspires the countermeasures with non-linear byte encodings. Lee et al.
[LJK20] demonstrated that the key leakage depends on the imbalanced linear encodings,
which denies the impact of the Hamming weight of linear encodings. Banik et al. [BBIJ17]
proposed the zero difference enumeration (ZDE) attack to detect the equivalent values
of the intermediate states by choosing special pairs of plaintexts. At CHES 2019, Rivain

Yufeng Tang, Zheng Gong, Bin Li and Liangju Zhao 495

and Wang [RW19] proposed collision attack (CA) and mutual information analysis (MIA)
as the variants of DCA. Zeyad et al. [ZMAB19] proposed the bucketing computational
analysis (BCA) to attack white-box implementations. Similar to ZDE, BCA sorts the
computation traces based on key-dependent intermediate values. At CHES 2021, Carlet
et al. [CGM21] proposed a structural attack based on an improvement of SA (ISA) to
defeat non-linear byte encodings. The mapping of internal encodings is formalized as a
diffused-input-blocked-output (DIBO) function. DIBO consists of a linear mapping and
a non-linear function which is a concatenation of small permutations. The analysis of
ISA indicates that the combination of a non-invertible linear encoding and a non-linear
byte encoding cannot prevent the attack of ISA. Therefore, they suggested choosing an
invertible linear encoding instead of a non-invertible one to resist ISA.

Without loss of generality, DCA and other DCA-like attacks can be categorized
as computation analysis. These attacks perform statistical analysis on the collected
computation traces to recover the secret key. However, the proposed computation analyses
have various attack capabilities. Most of them focus on the properties of linear encodings,
such as Hamming weight [BBB+19], imbalance [LJK20], and invertibility [CGM21]. For
defeating the computation analysis, an intuition is to expand the non-linear nibble encodings
as byte encodings. As a structural attack, ISA demonstrated that the combined use of
non-invertible linear encoding is vulnerable to cryptanalysis. However, it is unclear whether
the non-linear byte encodings can defeat the computation analyses. A comparison among
the proposed computation analyses on their capabilities also has not been fully investigated.

Our Contribution. In this paper, our contribution is threefold:

1. Review of the computation analyses against internal encodings. To evalu-
ate the capabilities of the proposed different computation analyses, we revisit the
definitions of their various distinguishers. Moreover, the reasons behind their suc-
cesses against the internal encodings are also investigated. Especially, it is the first
time to formalize the time complexities and summarize the effectiveness of different
attacks.

2. New algebraic degree computation analysis. By leveraging the properties
of non-linear encodings, we investigate the impact of the algebraic degree of the
combined encodings against the computation analysis. We propose the algebraic
degree computation analysis (ADCA) as an automatic side-channel attack to break the
white-box implementations. ADCA is a higher-degree analysis that can distinguish
the correct key by matching the algebraic degrees of the mappings from the inputs
to each sample of traces. For 1 ≤ d ≤ 6, a degree-d ADCA can defeat the internal
encodings with an algebraic degree at most d. The theoretical analysis demonstrates
that the algebraic degree of encodings mainly causes the key leakage. Therefore,
the weakness of internal encoding depends on the algebraic degree of the combined
mapping instead of the properties of its linear part.

3. Experiment of breaking differently constructed encodings. To compare the
attack capabilities, we refine a structure from the DIBO function and mount the
different computation analyses to recover the secret key. The two target functions are
constructed by various (non-)linear encodings and random encodings with different
algebraic degrees, respectively. By a thorough experiment of breaking the internal
encodings with the published computation analyses, Table 2 summarizes the attack
results. The results demonstrate that SA and ISA can break the same maximal
cases as ADCA but with higher time complexities 227 and 232, respectively. We note
that ISA is a structural attack and SA does not reveal the weaknesses of different
combinations of (non-)linear encodings. Thus, ADCA can be a generalized tool

496 Revisiting the Computation Analysis against Internal Encodings

to break the most cases of encodings (degrees from 1 to 6) with the lowest time
complexity 221.32 ∼ 224.07. The source code of the experiment is publicly available 1.

Table 2: The comparison among the computation analyses on breaking the refined structure
based on 14 cases (refer to Table 11 in Section 5.2) of (non-)linear encodings and 7 cases
(refer to Table 12 in Section 5.2) of random encodings.

Computation Time The Number of Broken Cases
Analysis Complexity (Non-)Linear Degrees from 1 to 7

DCA [BHMT16] 222 3 0
IDCA [BBB+19] 227 9 2
CPA [RW19] 222 3 0
CA [RW19] 229 4 0
MIA [RW19] 222 3 0
SA [SMG16] 227 11 6
MSA [LJK20] 222 4 1
ISA [CGM21] 232 11 6

ADCA (Section 4) 221.32 ∼ 224.07 11 6

In particular, as the countermeasures against DCA, the masking scheme [SEL21] splits
the sensitive variables into secret shares while the shuffling implementation [BU21] shuffles
the location of sensitive variables. We note that these countermeasures rely on secret
designs without the application of the internal encodings. Hence, the higher-order DCA
attacks [TGCX23] on masking and shuffling implementations are out of the scope of this
paper. Moreover, we also do not consider the computation analysis on the dedicated
white-box ciphers [BI15, BIT16] which are also constructed without the internal encodings.

Organization. The remainder of this paper is organized as follows. Section 2 describes
the notions, notations, and definitions of computation analysis. In Section 3, an adaptive
white-box adversary model and a refined structure from the DIBO function are introduced
for the analysis. The distinguishers of different computation analyses are also revisited.
Section 4 proposes the new ADCA attack on white-box implementations. Section 5
illustrates the experimental results of different computation analyses on various internal
encodings. Section 6 concludes this paper.

2 Preliminaries
2.1 Basic Notions and Notations
Throughout this paper, the finite field with order 2 is represented by F2 while Fn

2 denotes
the n-dimensional vector space over F2. The bitwise addition modulo 2, i.e., exclusive-OR
(XOR) operation between two vectors is denoted by ⊕. An addition by a constant c is
represented as a function: ⊕c : x 7→ x ⊕ c. The symbol ‖ denotes the concatenation of
vectors. Let a = (a1, · · · , an) and b = (b1, · · · , bn) be elements of Fn

2 , the inner product of
them is a · b = a1b1 ⊕ · · · ⊕ anbn. The identity function is denoted as Fid. An (n,m)-bit
function represents a mapping from Fn

2 to Fm
2 . If n = m, it is called an n-bit function.

The composition of two functions F and G is denoted by F ◦G and the concatenation of
them is represented by (F,G)(x, y) = (F (x), G(y)). The intersection between two sets A
and B is defined by A ∩B = {x | x ∈ A and x ∈ B}, and they are disjoint if A ∩B = ∅.

1https://github.com/scnucrypto/Revisit_Computation_Analysis

https://github.com/scnucrypto/Revisit_Computation_Analysis

Yufeng Tang, Zheng Gong, Bin Li and Liangju Zhao 497

The union of two sets A and B is defined as A∪B = {x | x ∈ A or x ∈ B}. The following
paragraphs introduce the theoretical notions required for the description of computation
analysis. Without a specific description, the term degree represents the algebraic degree
and the non-linear internal encodings are shortened to nibble/byte encodings for simplicity
in the remainder of this paper.

Pearson’s Correlation Coefficient. Let Cov denote the covariance between two random
variables X and Y . The function E(X) is the expectation of X, and σX denotes the
standard deviation of X. Pearson’s correlation coefficient is a measure of the linear
correlation between X and Y and is defined by the following equation.

Cor(X,Y) = Cov(X,Y)
σX · σY

= E(XY)− E(X)E(Y)√
E(X2)− (E(X))2

√
E(Y 2)− (E(Y))2

The computed correlation coefficient satisfies −1 ≤ Cor(X,Y) ≤ 1. The correlation of X
and Y are negatively or positively linear if Cor(X,Y) = −1 or Cor(X,Y) = 1. X and Y
are linearly independent if Cor(X,Y) = 0.

Boolean function. A Boolean function f with n variables is an (n, 1)-bit function. The
weight of f is denoted by wt(f) = |{x ∈ Fn

2 : f(x) = 1}|, i.e., the Hamming weight (HW) of
its truth table. A Boolean function f is balanced if wt(f) = 2n−1. The imbalance of f is
defined as follows.

B(f) =
∑

x∈Fn
2

(−1)f(x) = 2n − 2 · wt(f)

Definition 1 (Algebraic Normal Form). Every Boolean function f has a unique algebraic
normal form (ANF) which can be represented as an n-variable polynomial over F2, of the
form

f(x1, · · · , xn) =
∑

I⊆{1,··· ,n}

aIx
I ,

where the monomial xI =
∏

i∈I xi and aI = 0 or 1.

Definition 2 (Algebraic Degree). The algebraic degree of a Boolean function f is the
maximal degree of the monomials of its ANF, which is denoted by

dalg(f) = max{|I| | I ⊆ {1, · · · , n}, aI 6= 0},

where |I| is the size of I. A zero function has an algebraic degree 0. A Boolean function f
is affine if its algebraic degree equals 1. An affine Boolean function is linear if f(0) = 0.

Let X be a set of variables over F2 such that X = {x1, x2, · · ·x|X |}. We define the d-th
degree closure of X to be a set obtained by composing any element of degree at most d
with elements from X :

Xd = {f ◦ (x1, x2, · · ·x|X |) | ∀f : F|X |2 7→ F2, dalg(f) ≤ d, xi ∈ X}.

For instance,

• X1 = {1} ∪ {xi | xi ∈ X},

• X2 = {1} ∪ {xixj | xi, xj ∈ X}, which also includes X (1) when i = j.

498 Revisiting the Computation Analysis against Internal Encodings

Boolean Correlation. Let f, g be two (n, 1)-bit functions, define

Nf
b = |{x ∈ Fn

2 , b ∈ F2 : f(x) = b}|,

Nf,g
b1b2

= |{x ∈ Fn
2 , b1, b2 ∈ F2 : f(x) = b1, g(x) = b2}|.

For a uniform random input x ∈ Fn
2 , the correlation coefficient between f(x) and g(x) can

be described as follows.

Cor(f, g) = Nf,g
11 N

f,g
00 −N

f,g
10 N

f,g
01√

Nf
1 N

f
0 N

g
1N

g
0

Vectorial Boolean Function. A vectorial Boolean function F is an (n,m)-bit function
which is also called multi-output Boolean function. The corresponding Boolean functions
F1, F2, · · · , Fm satisfying F (x) = (F1(x), F2(x), · · · , Fm(x)) are called coordinate functions
of F . The function F is balanced if each output y = F (x) ∈ Fm

2 has 2n−m preimages. A
balanced (n, n)-bit function is an n-bit permutation. The degree of F is defined to be the
maximal degree of its coordinate functions. In particular, if an n-bit permutation P has
the maximal degree n− 1, the degree of its inverse P−1 is also n− 1.

Walsh Transform. The Walsh transform of an n-variable Boolean function f maps every
element u ∈ Fn

2 to
Wf (u) =

∑
x∈Fn

2

(−1)f(x)⊕u·x.

A larger absolute value of Wf (u) implies a higher correlation between f(x) and u · x. The
Walsh transform of a (n,m)-bit function F maps every pair (u, v) ∈ Fn

2 × Fm
2 to the value

at u of the Walsh transform of the Boolean function, which satisfies

WF (u, v) =
∑

x∈Fn
2

(−1)v·F (x)⊕u·x.

Definition 3 (Correlation Immune). If the Walsh transform Wf of a Boolean function
f satisfies Wf (u) = 0, for 0 ≤ HW(u) ≤ m, it is called a balanced m-th order correlation
immune function. Let F be an (n,m)-bit function. The function F is correlation immune
at order t iff WF (u, v) = 0 for every u ∈ Fn

2 , HW(u) ≤ t and for every v ∈ Fm
2 .

Mutual Information. For two random variables X and Y , the mutual information is a
measure of the dependence between them. It quantifies the information obtained about X
by observing Y . It can be calculated as follows.

I(X;Y) =
∑
x∈X

Pr(X = x, Y = y) · log2

(
Pr(X = x, Y = y)

Pr(X = x) · Pr(Y = y)

)

2.2 Internal Encodings
By using input and output encodings I and O respectively, a table T can be transformed
into T ′ as follows.

T ′ = O ◦ T ◦ I−1

Because of the pairwise invertible encodings, the composition of two encoded tables T ′
and R′ yields a new mapping such that

R′ ◦ T ′ = (OR ◦R ◦ I−1
R) ◦ (OT ◦ T ◦ I−1

T) = OR ◦ (R ◦ T) ◦ I−1
T ,

Yufeng Tang, Zheng Gong, Bin Li and Liangju Zhao 499

where I−1
R ◦OT = Fid. In the case of AES, the first-round encryption starts by AddRoundKey,

SubBytes, and MixColumns. By means of matrix partitioning, the multiplication of
MixColumns M can be decomposed into four 32-bit vectors:

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

x0
x1
x2
x3

 = x0

02
01
01
03

⊕ x1

03
02
01
01

⊕ x2

01
03
02
01

⊕ x3

01
01
03
02

= M1(x0)⊕M2(x1)⊕M3(x2)⊕M4(x3).

Each Mj for 1 ≤ j ≤ 4 denotes an (8, 32)-bit mapping. For the sake of simplicity, we omit
the index of the function. Let S denote the Sbox. An (8, 32)-bit key-dependent T -box is
defined as follows.

T (x) = M ◦ S(x⊕ k)
By applying the internal encodings, a linear mapping φ and a non-linear permutation

B are used to protect the output of T -box. In particular, B can be represented by the
concatenation of small random permutations. Consequently, the obfuscated function Ok

can be defined by

x 7→ Ok(x) = B ◦ φ ◦ T (x) = B ◦ φ ◦M ◦ S(x⊕ k). (1)

Definition 4 (Diffused-Input-Blocked-Output Function [CGM21]). Let n and n0 denote
two positive integers such that n is a multiple of n0. The Diffused-Input-Blocked-Output
(DIBO) functions are defined as F : Fn

2 7→ Fn
2 : F = B ◦ φ, where φ is a linear permutation

of Fn
2 and B consists of n/n0 n0-bit functions B1, · · · , Bn/n0 such that

B(x1, · · · , xn) = (B1(x1, · · · , xn0), B2(xn0+1, · · · , x2n0), · · · , B n
n0

(xn−n0+1, · · · , xn)).

The definition of the DIBO function formalizes the internal encodings used in white-box
implementations. Considering the bit width of MixColumns, the dimension of φ is 32, i.e.,
n = 32. For the linear property of the decomposition of M , the outputs of the blocked
non-linear encodings are followed by XOR operations. A type of XOR tables is introduced
to XOR the encoded vectors without the exposure of encodings. The XOR table with two
inputs needs to be practical for the size of 22×n0 × n0 bits. Hence, most of the white-box
implementations utilize a nibble encoding for n0 = 4 or a byte encoding for n0 = 8. Figure
1 depicts the structure of the function Ok(x) for the nibble and byte encodings.

⊕𝑘

𝑆

𝑀

𝜙

𝐵1𝐵2𝐵3𝐵4𝐵5𝐵6𝐵7𝐵8

𝑥
8

4

𝑂𝑘(𝑥)

AddRoundKey

SubBytes

MixColumns

linear encoding

non-linear encoding

⊕𝑘

𝑆

𝑀

𝜙

8

8

𝑂𝑘(𝑥)

𝐵1 𝐵2 𝐵3 𝐵4

𝑥

DIBO function

T-box

Figure 1: The structure of T -box and DIBO function for nibble encoding (left) and byte
encoding (right).

500 Revisiting the Computation Analysis against Internal Encodings

2.3 Computation Analysis
Computation analysis is inspired by physical side-channel attacks. With the help of
dynamic binary instrumentation tools, such as Intel PIN, it collects the computation traces
by invoking the implementation several times. These traces consist of the accessed memory
addresses, data, and associated instructions. Indeed, this process aims to record the
patterns corresponding to LUTs. Let v = (v1, v2, · · · , vT) denote a computation trace that
is composed of T samples. The adversary collects N computation traces (v(1),v(2), · · ·v(N))
related to N inputs (x(1), x(2), · · · , x(N)). Due to the absence of external encodings, each
input x(t) for t ∈ [N] is a state of plaintext. By interpreting the traces as an N ×T matrix,
each row of it is a computation trace v(t) and each column of it consists of N intermediate
values for the same location over different computations. A distinguisher D which maps
the inputs {x(t)} and the traces {v(t)} to a distinguishing score, is defined as

δk = D
(

(x(1), · · · , x(N)), (v(1), · · ·v(N))
)
.

In this context, the adversary makes a key guess k to predict a sensitive intermediate
variable s = ϕk(x) and computes the dependency between the predictions and the traces.
The highest score δk∗ is selected as the candidate for the most likely correct key k∗. In the
literature, many distinguishers have been proposed in various computation analyses. The
following section revisits those proposals along with their time complexities and attack
capabilities.

3 Revisiting the Distinguishers of Computation Analysis
In the literature, many computation analyses have been proposed to reveal the weaknesses
of the internal encodings. However, these attacks depend on the different weaknesses of
linear encodings, such as HW and invertibility. Most of the computation analyses only
compare their capabilities to the original DCA. It lacks a thorough comparison of all the
proposals. Without detailed information on the internal encodings, an adversary needs
to mount the analyses separately. In this section, we revisit the adversary models and
target functions of the computation analyses. Moreover, the distinguishers, reasons for key
leakage, and time complexities of the published attacks are compared.

3.1 The Adversary Models
Most of the existing computation analyses focus on the key leakage of white-box imple-
mentations in a gray-box attack context. These attacks exploit the computation traces
including table lookups to analyze the correlation between the encoded sensitive variables
and the hypothetical key-dependent values. Rivain and Wang [RW19] introduce a passive
adversary for computation analysis. The assumed adversary can only record the runtime
information, such as accessed memory to recover the secret key. However, this attack
model seems too weak for white-box adversaries. Differential data analysis (DDA) [AH16]
assumes that the adversary can access the entire table lookups within the implementation
to perform the power analysis. Nevertheless, for the white-box implementations based
on Boolean circuits (without LUTs) [SEL21, BU21], DDA will be failed because it does
not collect the outputs of functions. Moreover, DDA collects all the intermediate values
of the implementation. We note that only the outputs of some specific tables/functions
are helpful for detecting key leakage. Thus, the recorded values of DDA are redundant
for analysis. Tang et al. [TGS+21] introduced an adaptive side-channel attack context to
break a masked white-box AES. It focuses on the abilities of an adversary to adaptively
choose inputs based on the pre-collected computation traces. Carlet et al. [CGM21]
considered the spectral analysis in a white-box context. The analysis computes the Walsh

Yufeng Tang, Zheng Gong, Bin Li and Liangju Zhao 501

transform by the outputs of tables instead of computation traces, which is a structural
attack on the DIBO function of white-box implementations. Hence, different analyses
might be assumed to be mounted in different contexts. To fairly evaluate the proposed
computation analyses, we propose an adaptive white-box adversary which is described as
follows.

• The adversary can invoke the white-box implementation many times by choosing
arbitrary inputs.

• The adversary is capable of collecting multiple intermediate values during each
execution with the ability of a white-box attacker. The recorded values consist of
output states of a specific table or a particular function.

• The adversary exploits the collected intermediate values as computation traces and
mounts the existing computation analyses to recover the secret key.

In this context, the adversary can pinpoint a specific table/function to recover its embedded
key by analyzing the structure of the obtained mapping. There are three reasons to inspire
such a new attack model as follows.

1. A precise simulation of the computation trace. The attack model focuses on analyzing
the table lookups or the outputs of functions, which are the primarily collected objects
for computation analysis. Thus, it is no need to record multiple traces.

2. A structural analysis of the internal encodings, such as nibble and byte encodings.
The obtained mapping from the inputs to the table lookups helps to mount a
structural attack to analyze the encodings and recover the secret key.

3. A combination of different attack contexts of different analyses. The attack model
helps us to compare the attack capability of different computation analyses in the
same context.

3.2 A Refined Structure from DIBO Function
As illustrated in Equation (1) in Section 2.2, an obfuscated key-dependent function Ok

is a mapping from F8
2 to F32

2 . A DIBO function B ◦ φ within Ok is a combined function
of linear and non-linear mappings from F32

2 to F32
2 . Most of the computation analyses

simultaneously evaluate all the 32-bit outputs of Ok to compute the correlation with the
sensitive variables. However, the blocked outputs of the DIBO function are independent of
each other since the non-linear encodings are randomly generated. Thus, we can refine
a smaller structure from Ok by its blocked outputs to reduce the length of computation
traces.

The linear layer M of the block cipher can be merged into the linear mapping φ of the
DIBO function, which can be defined by

(L1, L2, L3, L4) : F8
2 7→ (F8

2)4 : x 7→ (L1, L2, L3, L4)(x) = (φ1, φ2, φ3, φ4)(02x‖x‖x‖03x).

We note that each Li for 1 ≤ i ≤ 4 might not be bijective because the decomposed matrix
φi might not be invertible. Let Ni for 1 ≤ i ≤ 4 denote the non-linear encodings. Each Ni

is a byte encoding or a concatenation of two nibble encodings. The function Ni represents
both the byte and nibble cases in a DIBO function. Hence, the obfuscated function Ok

can be redefined as

Ok : F8
2 7→ (F8

2)4 : x 7→ Ok(x) = (N1 ◦ L1, N2 ◦ L2, N3 ◦ L3, N4 ◦ L4)(S(x⊕ k)).

The function Ok is a concatenation of four independent functions (Ok)i for 1 ≤ i ≤ 4 such
that

(Ok)i : F8
2 7→ F8

2 : x 7→ (Ok)i(x) = Ni ◦ Li ◦ S ◦ ⊕k.

502 Revisiting the Computation Analysis against Internal Encodings

By omitting the index, a refined structure of the key-dependent function Ok can be defined
by

Ok(x) = N ◦ L ◦ S(x⊕ k).
We note that there are two reasons for introducing such a new structure.

1. An adaptive white-box attacker can only collect the 1-byte output of Ok by randomly
choosing x to analyze its underlying key without recording the 4-byte outputs of Ok.

2. It is more practical to simulate and analyze the functions L and N over F8
2 than the

functions φ and B over F32
2 .

⊕𝑘

𝑆

𝑀

𝜙

8

8

𝑂𝑘(𝑥)

𝑥

⊕𝑘

𝑆

8

𝑥

𝐿

𝑁

8

linear function

non-linear function

𝑂𝑘(𝑥)

𝐵1 𝐵2 𝐵3 𝐵4

𝑥
8

⊕𝑘4⊕𝑘1

𝑆

⊕ 𝑘2

𝑆

⊕ 𝑘3

𝑆 𝑆

𝑀

𝜙1

𝐵1

𝜙2

𝐵2

𝜙3

𝐵3 𝐵4

𝜙4

8

𝑅1(𝑥)

Figure 2: A refined structure to transform the target functions Ok and R1 into an 8-bit
key-dependent function Ok.

The refined structure is depicted in Figure 2. In addition, Ok can also represent
the mapping from the inputs to the first-round outputs. Let (x1, x2, x3, x4) ∈ (F8

2)4

denote 4 inputs of an AES subround. The linear encodings of the outputs are denoted
by (φ1, φ2, φ3, φ4) : (F8

2)4 7→ (F8
2)4 and the non-linear encodings are represented by

(B1, B2, B3, B4) : (F8
2)4 7→ (F8

2)4. For 1 ≤ i ≤ 4, each non-linear encoding Bi is an 8-bit
permutation or a concatenation of two 4-bit permutations. By combining the LUTs in the
first round, a function of the subround R(k1,k2,k3,k4) : (F8

2)4 7→ (F8
2)4 is defined as follows.

R(k1,k2,k3,k4)(x) = (B1, B2, B3, B4)◦(φ1, φ2, φ3, φ4)◦M ◦(S◦S◦S◦S)◦(⊕k1 ,⊕k2 ,⊕k3 ,⊕k4)

Let Ri : (F8
2)4 7→ F8

2 denote the coordinate functions of R(k1,k2,k3,k4) such that

Ri(x1, x2, x3, x4) = Bi ◦ φi

 4⊕
j=1

Mi,j · S(xj ⊕ kj)

 ,

where Mi,j(1 ≤ i, j ≤ 4) are the coefficients of MixColumns. If the input bytes (x2, x3, x4)
are fixed to be constant values, R1 can be transformed as

R1(x1) = B1 ◦ φ1 (M1,1 · S(x1 ⊕ k1)⊕ c) ,

where c is an unknown constant value computed by the fixed inputs (x2, x3, x4). Hence, by
combining Mi,j and c into the linear encoding φi as an affine function L, one can obtain
a mapping N ◦ L ◦ S ◦ ⊕k. Since N ◦ L can represent a combined random encoding of a
linear mapping and a permutation, the mapping N ◦ L ◦ S ◦ ⊕k is similar to Ok.

Yufeng Tang, Zheng Gong, Bin Li and Liangju Zhao 503

3.3 The Proposed Computation Analyses and Their Distinguishers
We assume that the target function is Ok : F8

2 7→ F8
2 : Ok(x) = N ◦ L ◦ S(x⊕ k∗) for the

correct key k∗ ∈ F8
2. Based on the abilities of an adaptive white-box adversary, the attacker

can freely choose arbitrary N inputs x. The collected computation trace is denoted as
v = (v1, v2, · · · , vT) with T samples. The sensitive variables are defined as the 8 Sbox
outputs Si for 1 ≤ i ≤ 8. Particularly, since ZDE requires the detection of collisions
between multiple pairs of intermediate values, the target function is not applicable to the
analysis of ZDE. Moreover, BCA relies on the bijection of the nibble encodings, which will
fail to break the byte encodings. According to the same method of collision, the results
of ZDE and BCA can refer to CA. Although ISA is rather a structural attack than a
computation analysis, it is claimed that ISA improves the capability of breaking the byte
encodings. Thus, ISA is also included in the comparison of the proposed computation
analyses.

Differential Computation Analysis. DCA [BHMT16] is the software counterpart of DPA
to break the white-box implementations. It analyzes the execution traces by using the
difference of means method. For a key guess k, DCA divides the computation traces into
two distinct sets A0 or A1 based on the i-th output bit of the Sbox, i.e., b = Si(x⊕ k) as
follows.

For b ∈ {0, 1} Ab = {v(t)|1 ≤ t ≤ N,Si(x⊕ k) = b}

The mean trace is computed by

Ab =
∑

v∈Ab
v

|Ab|
.

And the difference of means is defined as

∆ = |A0 −A1|.

This difference of means is calculated for the target bit with the key hypothesis. DCA
then repeats the computation for 8 target bits of Sbox outputs and each key guess over
F8

2. The corresponding key k∗ of the obtained difference of means trace ∆k∗ with the
highest peak is the most possible correct key. Therefore, the time complexity of DCA is
O(|k| · |i| · T ·N).

Improved DCA. Since DCA has not fully revealed the reason behind its successful key
recovery, Bock et al. [BBMT18, BBB+19] studied the internal encodings against DCA
attack. They also introduced some improvements for DCA. Theorem 1 is recalled for the
property of linear encodings. It points out that an identity row in linear encoding is the
main cause of key leakage in DCA.

Theorem 1 ([BBB+19]). When S ◦ ⊕k is encoded via an invertible matrix A, the DCA
attack returns a difference of means value equal to 1 for the correct key guess if and only
if the matrix A has at least one row i with HW = 1. Otherwise, the DCA attack returns a
difference of means value equal to 0 for the correct key guess.

To counteract linear encodings, IDCA exhaustively searches all possible linear com-
binations LC of the Sbox output, i.e., to compute a target bit b = LC · S(x ⊕ k). The
following process is to sort the traces according to the result for each possible LC. Thus, it
can compute a high correlation between the computation traces and the recovered encoded
bit. Theorem 2 is recalled for the statistical analysis of nibble encodings. For the correct
key guess under nibble encodings, it turns out the difference of means curve only consists
of 5 possible values.

504 Revisiting the Computation Analysis against Internal Encodings

Theorem 2 ([BBB+19]). When S ◦ ⊕k is encoded via the nibble encodings, the difference
of means curve obtained for the correct key hypothesis k consists only of values equal to 0,
0.25, 0.5, 0.75 or 1.
Based on Theorem 2, IDCA selects the key hypothesis with an enough high peak value
(at least 0.3) to stand out from other candidates. Otherwise, IDCA looks for the values
converging to 0.25 or 0 and selects its corresponding key guess as the best one. Due
to the calculation of all linear combinations, the time complexity of IDCA has an extra
factor O(28). However, IDCA need not select a target bit of Sbox output since each linear
combination of the Sbox output is a predicted sensitive variable. Thus, the time complexity
of IDCA is O(28 · |k| · T ·N). Since the use of nibble encoding cannot prevent key leakage,
they suggested exploiting the byte encoding to protect LUTs.

Correlation Power Analysis. Rivain and Wang [RW19] formalized Correlation Power
Analysis (CPA) to attack white-box implementations. CPA assumes that the function
of an intermediate variable is a non-injection and the encodings are bijections. For
a key guess k, CPA computes the correlation between the predicted sensitive variable
ϕi(x) = Si(x ⊕ k), 1 ≤ i ≤ 8 and each sample of the computation traces vj ∈ v, j ∈ [T].
The CPA distinguisher is derived from the maximal absolute value of the correlation as
follows.

δCPA
k = arg max |Cor(ϕi(x), vj)|

In practice, CPA selects the key guess k∗ with the maximal value δk∗ by computing all the
correlations between every bit of the Sbox output and each sample of the traces. Hence,
the time complexity of CPA is O(|k| · |i| · T ·N).

Collision Attack. CA [RW19] computes a collision computation trace for each pair of
inputs (x(t1), x(t2)) where t1, t2 ∈ [N], t1 6= t2 and their related traces (v(t1),v(t2)) as

w(t1,t2) = (w(t1,t2)
1 , w

(t1,t2)
2 , · · · , w(t1,t2)

T).

Each sample w(t1,t2)
j = v

(t1)
j � v(t2)

j for j ∈ [T]. The operator � is defined as follows.

a� b =
{

1 if a = b

0 otherwise

The collision prediction for a key guess k is computed by
ϕk(x(t1), x(t2)) = ϕi(x(t1))� ϕi(x(t2)),

where ϕi(x) = Si(x⊕ k), 1 ≤ i ≤ 8 is a sensitive variable. The CA distinguisher computes
the maximal absolute value of the correlation between the collision prediction and each
sample of the corresponding collision traces, such that

δCA
k = arg max

∣∣∣Cor
(
ϕk(x(t1), x(t2)), w(t1,t2)

j

)∣∣∣ .
The main idea behind the CA distinguisher is that if some sensitive variables collide for a
pair of inputs, the collision can also be obtained between their encoded variables. The
time complexity of CA is O

(
|k| · |i| · T ·

(
N
2
))

. The phase
(

N
2
)
is the number of all the

pairs among N inputs.

Mutual Information Analysis. MIA [RW19] calculates the maximal mutual information
between the predicted sensitive variable ϕi(x) = Si(x⊕k) for 1 ≤ i ≤ 8 and each sample of
the computation traces vj ∈ v for j ∈ [T]. The time complexity of MIA is O(|k| · |i| ·T ·N).
The MIA distinguisher is defined as follows.

δMIA
k = arg max I(ϕi(x), vj).

Yufeng Tang, Zheng Gong, Bin Li and Liangju Zhao 505

Spectral Analysis. SA [SMG16] detects the key leakage by computing the Walsh trans-
form of functions. For a key guess k, SA derives a new function gk by choosing the inputs
x′ = S−1(x)⊕ k of the target function Ok, such that

gk(x) = Ok(x′) = N ◦ L ◦ S ◦ ⊕k∗ ◦ ⊕k ◦ S−1.

If the key candidate k = k∗, the function can be transformed to gk∗(x) = N ◦ L. The SA
distinguisher is defined as follows.

δSA
k = arg min

∑
u∈F8

2

8∑
i=1
|W(gk)i

(u)|

This distinguisher sums all the imbalances for each key candidate k and the inputs u. The
correct key is distinguishable among other candidates since it has more correlation immune
functions. In practice, SA computes the Walsh transform of the Boolean functions that map
the inputs to each sample of traces. Thus, the time complexity of SA is O(|k| · |u| · T ·N).

Modified Spectral Analysis. Lee et al. [LJK20] modified the SA distinguisher to only
choose u with HW(u) = 1. The modified spectral analysis (MSA) considers a mono-bit
model instead of a multi-bit one. It detects the correlation between a coordinate function
gi and an input bit of x. The MSA distinguisher is described as follows.

δMSA
k = arg min

∑
u=1,2,4,··· ,128

8∑
i=1
|W(gk)i

(u)|

Similar to SA, MSA calculates the Walsh transform of the mapping from the inputs to
each sample of the traces. Thus, the time complexity of MSA is also O(|k| · |u| · T ·N),
where u only has 8 different values without the space size of F8

2. Based on MSA, Lee
et al. demonstrated that the key leakage depends on the imbalance of linear encodings
instead of HW of it. The Walsh transform of (gk)i computes the imbalances of the function
h(x) = (gk)i(x)⊕ u · x, such that

B(h) =
∑
x∈F8

2

(−1)h(x) = 28 − 2 · wt(h).

We note that B(h) = 0 for a balanced linear encoding. This implies that wt(h) = 128.
However, MSA points out that the key-dependent distribution of the intermediate values
leads to wt(h) = 0. Thus, it results in the Walsh transform value 256 which helps to
distinguish the correct key.

Improved Spectral Analysis. ISA [CGM21] analyzes the correlation immune of the target
functions and computes the Walsh transforms. As a structural attack, ISA leverages the
maximum number of zeros in the Walsh transforms to distinguish the correct key. The
ISA distinguisher is defined as follows.

δISA
k = arg max#{W(gk)i

(u, v) = 0 | u, v ∈ F8
2}

Different from SA, ISA computes the Walsh transform of a vectorial Boolean function
instead of its coordinates. The introduction of v is to calculate the component functions
of gk. Moreover, ISA considers attacking the byte encodings. The time complexity of ISA
is O(|k| · |u| · |v| ·N). The analysis of ISA reveals that the success of ISA depends on the
rank of the linear encodings. If L is invertible with full rank, ISA will fail in attacking the
function gk. Contrarily, if L is non-invertible, ISA will succeed even with byte encodings.

506 Revisiting the Computation Analysis against Internal Encodings

3.4 Discussion
Computation analysis is inspired by the side-channel techniques to perform statistical
analysis on the intermediate values of white-box implementations. Hence, the assumed
attack context is a gray-box one. Particularly, as a structural attack, ISA counts the zero
values of Walsh transforms, which can only be mounted in a white-box attack context. To
explain the reasons for their success, some computation analyses focus on the ineffectiveness
of the internal encodings. Based on the collisions of encoded values, CPA, CA, and MIA
require that the target function is a non-injection and the encoding F = N ◦L is a bijection.
We note that the target function Ok can be an 8-bit injection because the linear part L
of the encoding F can be a non-invertible mapping. Hence, the assumptions do not hold
in our analysis. Besides, the properties of linear encodings are leveraged to explain the
key leakage. IDCA highlights the impact for HW of the rows in a linear encoding while
MSA reveals the weakness of the imbalance of linear encodings. Even with the presence of
byte encodings, ISA demonstrates that the non-invertible linear encoding L reduces the
security against cryptanalysis.

Table 3: The comparison among the published computation analyses.

Distinguisher Attack Method Analysis of Time
Context Key Leakage Complexity

DCA [BHMT16]

gray-box

correlation

- 222

IDCA [BBB+19] HW = 1 of L 227

CPA [RW19] computation non-injection of ϕ 222

CA [RW19] bijection of F 229

MIA [RW19] 222

SA [SMG16] spectral - 227

MSA [LJK20] analysis imbalance of L 222

ISA [CGM21] white-box non-invertibility of L 232

Table 3 summarizes the different attack contexts, methods, analyses of key leakage,
and time complexities of the published distinguishers. In the adaptive white-box context,
we do not restrict the ability of an attacker to invoke the implementation many times.
Thus, we consider N = 28 for the calculation of time complexity. In our experimental
results, ISA has the highest time complexity 232 while DCA, CPA, MIA, and MSA have
the lowest one 222. Based on their methods, the distinguishers can be classified into two
categories as follows.

1. Correlation computation, such as DCA, IDCA, CPA, CA, and MIA. These distin-
guishers compute the correlations between the samples of traces and the sensitive
variables based on some key guesses. The correct key can be selected by the first
rank of the computed correlations.

2. Spectral analysis, such as SA, MSA, and ISA. These distinguishers calculate the
Walsh transforms of the target functions by choosing the inputs which are related
to some key guesses. The correct key can be extracted by counting the maximal or
minimal Walsh transforms to detect the correlation immune functions.

4 Algebraic Degree Computation Analysis
The published computation analyses mainly focus on correlation computation and spectral
analysis of internal encodings. There are two reasons that motivate a novel distinguisher
based on a new method.

Yufeng Tang, Zheng Gong, Bin Li and Liangju Zhao 507

1. To reveal the vulnerability of the non-linear encodings. The previous attacks have
been proposed based on the properties of linear encodings, such as HW, imbalance,
and invertibility. Nevertheless, a comprehensive analysis of non-linear encodings is
missing. Besides, there is no analysis of a randomly generated encoding that is not
constructed by linear and non-linear parts.

2. A new distinguisher with a flexible time complexity for breaking different constructed
encodings and with a distinct computation for the number of required traces. The
previous attacks have a fixed time complexity which is not related to the construction
of encodings. Thus, the time complexities of breaking the nibble encodings and
the byte encodings are identical. They also do not reveal the number of required
computation traces.

This section introduces a new computation analysis that exploits the algebraic degree
of the combination of linear and non-linear encodings to distinguish the correct key.

4.1 An Overview of ADCA
By the composition of linear mapping L and non-linear permutation N , the encoding
F is defined as F = N ◦ L. We note that N is an 8-bit non-linear permutation or a
concatenation of two 4-bit ones. Thus, the target function with a correct key k∗ can be
transformed as

Ok∗(x) = F ◦ S ◦ ⊕k∗.

For each key hypothesis k ∈ F8
2, the attacker can construct a guess function Ak : F8

2 7→ F8
2

by choosing the inputs x′ = S−1(x)⊕ k of function Ok∗ , such that

Ak(x) = Ok∗(x′) = F ◦ S ◦ ⊕k∗ ◦ ⊕k ◦ S−1.

If k = k∗, one can obtain Ak∗(x) = F which is the function of internal encodings. The
differences between the guess functions Ak(x) and Ak∗(x) are depicted in Figure 3.

⊕𝑘∗

𝑆

8

𝑥

𝐹

8

chosen inputs

for a key guess 𝑘

𝑆−1

⊕𝑘

8

𝑂𝑘∗(𝑥)

𝑥
8

8

𝐹

𝐴𝑘(𝑥)
if 𝑘 ≠ 𝑘∗

𝐴𝑘∗(𝑥)
if 𝑘 = 𝑘∗

Figure 3: The construction of Ak if k 6= k∗ (left) and if k = k∗ (right).

We note that the attack strategy is to distinguish Ak∗(x) from Ak(x). De Mulder
[Mul14] discussed an algebraic degree attack (ADA) to defeat a white-box AES implemen-
tation without external encodings. It exploits a collision-based attack which is proposed
by Lepoint et al. [LRM+13]. We note that a 4-bit permutation has the maximal degree 3.
Thus, for the case of nibble encodings, the degree of Ak∗(x) will be 3 at most. Differently,

508 Revisiting the Computation Analysis against Internal Encodings

an AES Sbox has a degree 7. Hence, the degree of S(S−1(x)⊕ c) (for a non-zero constant
c) is greater than 3, which implies that the degree of Ak(x) will be greater than the one of
Ak∗(x). Thus, it can distinguish Ak∗(x) by a 4-th order derivative of the function Ak(x).
Following this method, the attacker can compute the degrees of Ak(x) for different key
candidates k ∈ F8

2. Therefore, the adversary can distinguish a function Ak∗(x) for its lower
degree. Without loss of generality, we propose a new computation analysis for white-box
implementations as algebraic degree computation analysis (ADCA). The main process of
ADCA consists of the following steps.

1. Collecting the computation traces by choosing inputs x′ = S−1(x)⊕k for a key guess
k ∈ F8

2. The obtained traces v = (v1, v2, · · · , vT) contain the outputs of coordinate
functions (Ak(x))i where 1 ≤ i ≤ 8.

2. For each Boolean function (fk)j : F8
2 7→ F2 : (fk)j(x) = vj where j ∈ [T] and k ∈ F8

2,
computing the degree of dalg ((fk)j).

3. For a given degree d, searching the correct key k∗ that has the maximum numbers
of dalg ((fk∗)j) ≤ d where j ∈ [T].

4.2 The Distinguisher of ADCA
For a correct key k∗, Ak∗ is transformed into a function of internal encodings, such that
Ak∗ = F . For an incorrect key guess k 6= k∗, the target function Ak = F ◦ S ◦ c ◦ S−1

where c is a non-zero constant. If dalg(F) < dalg(Ak), it implies dalg(Ak∗) < dalg(Ak).
Thus, Ak∗ can be distinguished from Ak with a lower degree. However, the different
constructions of L and N might result in various degrees of F , especially in each coordinate
of F . Moreover, the degree of a vectorial Boolean function cannot precisely represent each
coordinate function. Hence, ADCA needs to match the degree of each coordinate function.
It computes the degrees of coordinate functions (Ak)i : F8

2 7→ F2 where 1 ≤ i ≤ 8 instead
of the degree of a vectorial Boolean function Ak : F8

2 7→ F8
2.

For the case of nibble encodings, dalg(N) ≤ 3. Thus, each coordinate function of Ak∗
satisfies dalg ((Ak∗)i) < 7, which can be distinguished from Ak. Although dalg(N) = 7 for
most cases of byte encodings, ISA reveals that the combined non-invertible linear mapping
cannot resist ISA. Hence, dalg ((Ak∗)i) < 7 is also satisfied for the case of the non-invertible
linear encodings. The intuition is that the introduction of a non-invertible linear function
reduces the degree of the combined mapping. Theorem 3 illustrates the relation between
the invertibility of the linear part and the degree of the combined encodings.

Theorem 3. Let L denote an n-bit non-invertible linear mapping and N be an n-bit
permutation of which the coordinate functions Ni : Fn

2 7→ F2 have dalg (Ni) = n − 1 for
i ∈ [n]. Given the combined function F : Fn

2 7→ Fn
2 : F = N ◦ L, the algebraic degree of its

coordinate function Fi : Fn
2 7→ F2 satisfies dalg (Fi) ≤ n− 1.

Proof. For an n-bit non-invertible matrix L with rank m (1 ≤ m < n), there exist
n−m rows that can be represented by the linear combination of other rows. Let li,j for
1 ≤ i, j ≤ n be the entries of L, where i denotes the row and j is the column of the entry.
Let L[i] denote the i-th row of L. Without loss of generality, we suppose that L[n] can be
represented by the other n− 1 rows for the given scalars a1, · · · , an−1 ∈ {0, 1}, such that

L[n] =
∑

1≤i≤n−1
ai · L[i] =

∑
ai=1,1≤j≤n

li,j .

For the linear mapping y = L(x), each output coordinate yi for 1 ≤ i ≤ n can be computed
by

yi = L[i] · (x1, · · · , xn) =
∑

1≤j≤n

li,j · xj .

Yufeng Tang, Zheng Gong, Bin Li and Liangju Zhao 509

Hence, the n-th output yn can be represented as follows.

yn = L[n] · (x1, · · ·xn) =

 ∑
1≤i≤n−1

ai · L[i]

 · (x1, · · · , xn)

=
∑

ai=1,1≤i≤n−1
(L[i] · (x1, · · · , xn)) =

∑
ai=1,1≤i≤n−1

yi.

This indicates that yn is the sum of other output coordinates. For the non-linear permuta-
tion z = N(y), the coordinate functions are defined as

zi = Ni(y1, · · · , yn) = Ni(y1, · · · ,
∑

ai=1,1≤i≤n−1
yi).

Since each coordinate function Ni has the degree n− 1, the monomial with the maximal
degree of its ANF consists of n− 1 variables. Hence, when the (n− 1)-variable monomial
contains yn, its degree will be 0, n − 2, or n − 1. For example, when yn = y2 ⊕ y3 that
consists of an even number of variables without y1, the monomial y2y3 · · · yn−1yn can be
represented by

y2y3 · · · yn−1yn = y2y3 · · · yn−1(y2 ⊕ y3) = y2y3 · · · yn−1 ⊕ y2y3 · · · yn−1 = 0.

For yn = y2 that contains an odd number of variables without y1, we have

y2y3 · · · yn−1yn = y2y3 · · · yn−1y2 = y2y3 · · · yn−1.

For yn = y1 ⊕ y2 that includes y1, the representation is

y2y3 · · · yn−1yn = y2y3 · · · yn−1(y1 ⊕ y2) = y1y2y3 · · · yn−1 ⊕ y2y3 · · · yn−1.

As the ANF of each Ni contains multiple monomials with n− 1 variables, the resulting
degree of each Ni is most likely n − 2. In the matrix L with rank m, n −m rows can
be simultaneously represented by other m rows. Thus, n −m input variables of N can
be represented by other m variables. This indicates that each coordinate function Fi

(1 ≤ i ≤ n) has the degree (n− 1)− (n−m) = m− 1 < n− 1 with a high probability.

To further explore the probability of the degrees of different combined encodings, Table
4 illustrates the number of the coordinate functions with dalg(Fi) < 7 and dalg ((Ak)i) < 7.
The results are counted by 10, 000 tests of randomly generated L and N . The percentage
depicts the number of tests that satisfy the corresponding degrees.

• For the nibble encodings, Case 1 demonstrates that all the coordinate functions
satisfy dalg ((Ak∗)i) < 7. This indicates that the combined (non-)invertible and
nibble encodings have a degree lower than 7. For an incorrect key guess, nearly all
coordinates of Ak have a degree 7. Hence, the difference between the degree of each
coordinate of Ak and Ak∗ (k 6= k∗) can be helpful to distinguish the correct key k∗.

• For the combination of a non-invertible linear encoding and a byte encoding, Case 2
indicates that most of the coordinate functions satisfy dalg ((Ak∗)i) < 7. We note
that the correct key can be distinguished if the number of dalg ((Ak∗)i) < 7 is larger
than the number of dalg ((Ak)i) < 7. If #{dalg ((Ak∗)i) < 7} ≤ #{dalg ((Ak)i) < 7},
it implies for an incorrect key guess. Table 5 illustrates the probability of a failed key
recovery in Case 2. The results indicate that the probability of the indistinguishability
between Ak∗ and Ak is 0.37902%. Nevertheless, for a DIBO function to be attackable
by an ADCA distinguisher, at least one combined encoding F out of four ones have

510 Revisiting the Computation Analysis against Internal Encodings

Table 4: The number of coordinates satisfying dalg(Fi) < 7 or dalg ((Ak)i) < 7 for different
L and N .

Case Construction of L Construction of N dalg(Fi) < 7
dalg ((Ak)i) < 7

dalg ((Ak∗)i) < 7

1 (non-)invertible nibble 8 (100%)
2 (0.07%)
1 (3.15%)
0 (96.82%)

2 non-invertible byte

8 (18.19%)
7 (2.51%)
6 (8.69%)
5 (17.97%) 2 (0.04%)
4 (22.33%) 1 (2.66%)
3 (18.38%) 0 (97.30%)
2 (9.20%)
1 (2.42%)
0 (0.31%)

3 invertible byte
2 (0.05%) 2 (0.03%)
1 (3.12%) 1 (2.96%)
0 (96.83%) 0 (97.04%)

#{dalg ((Ak∗)i) < 7} > #{dalg ((Ak)i) < 7}. Hence, the proportion of vulnerable
construction is

1− (0.0037902)4 = 0.9999999998.
Thus, when using byte encodings combined with non-invertible linear ones, the
difference between the degrees of Ak∗ and Ak still helps to distinguish the correct
key with an overwhelming probability.

Table 5: The probability of an incorrect key guess for Case 2.

The Number of Coordinates Probability
dalg ((Ak∗)i) < 7 dalg ((Ak)i) < 7

2 2 9.2%× 0.04% = 0.00368%

1 2 2.42%× 0.04% = 0.000968%
1 2.42%× 2.66% = 0.064372%

0
2 0.31%× 0.04% = 0.000124%
1 0.31%× 2.66% = 0.008246%
0 0.31%× 97.30% = 0.30163%

Total 0.37902%

• For the combination of an invertible linear encoding and a byte encoding, Case 3
indicates that most of the coordinate functions have dalg ((Ak∗)i) = 7. It is hard
to distinguish the correct key k∗. However, there is a fraction of the distribution
satisfying #{dalg ((Ak∗)i) < 7} > #{dalg ((Ak)i) < 7}, which still can recover the
secret key. Table 6 illustrates the probability of a successful key recovery in Case 3.
The results indicate that the probability of a successful ADCA on breaking the byte
encoding combined with an invertible linear encoding is 3.077648%.

Computation of Algebraic Degree. For each sample of the computation traces v =
(v1, v2, · · · , vT), an ADCA attacker can obtain a mapping (fk)j : F8

2 7→ F2 : (fk)j(x) = vj

Yufeng Tang, Zheng Gong, Bin Li and Liangju Zhao 511

Table 6: The probability of a correct key guess for Case 3.

The Number of Coordinates Probability
dalg ((Ak∗)i) < 7 dalg ((Ak)i) < 7

2 1 0.05%× 2.96% = 0.00148%
0 0.05%× 97.04% = 0.04852%

1 0 3.12%× 97.04% = 3.027648%
Total 3.077648%

where j ∈ [T]. To compute the degree of (fk)j , ADCA constructs a system of lin-
ear equations based on ANF. Let X denote a set of the input variables such that
X = {x1, x2, · · · , x8} where each xi ∈ F2. Consequently, we consider that an at-
tacker collects N computation traces (v(1)), (v(2)), · · · , (v(N)) corresponding to N inputs
(x(1), x(2), · · · , x(N)) (either random or adaptively chosen). The coordinate bits of each
input x(t) for t ∈ [N] form its related set X (t) = {x(t)

1 , x
(t)
2 , · · · , x(t)

8 }. For 1 ≤ d ≤ 7, An
ADCA attacker computes the d-th degree closure of each set X (t)

d such that

X (t)
d = {1, x(t)

1 , x
(t)
2 , · · · , x(t)

9−d · · ·x
(t)
8 }.

The cardinality of the set X (t)
d is p =

(8
0
)

+
(8

1
)

+ · · ·+
(8

d

)
. We note that the ANF of each

function (fk)j can be represented as follows.

(fk)j(x1, x2, · · · , x8) = a1 ⊕ a2x1 ⊕ a3x2 ⊕ · · · ⊕ apx9−d · · ·x8,

where a1, a2, · · · , ap are the coefficients over F2. For a degree d and every key guess k ∈ F8
2,

an ADCA distinguisher can solve the following system of linear equations.
1 x

(1)
1 x

(1)
2 · · · x

(1)
9−d · · ·x

(1)
8

1 x
(2)
1 x

(2)
2 · · · x

(2)
9−d · · ·x

(2)
8

...
...

...
1 x

(N)
1 x

(N)
2 · · · x

(N)
9−d · · ·x

(N)
8

 ·

a1
a2
...
ap

 =

(fk)j

(
x(1))

(fk)j

(
x(2))
...

(fk)j

(
x(N))

 =

v

(1)
j

v
(2)
j
...

v
(N)
j

If the system is solvable for the degree d, then dalg ((fk)j) ≤ d. Otherwise, dalg ((fk)j) > d.
This linear system attempts to represent the function (fk)j by an ANF with degree d. If
d is lower than the correct degree d∗ of (fk)j , the linear system is unsolvable because it
lacks the corresponding monomials in degree-d∗ closure. If d = d∗, the resulting vector
(a1, a2, · · · , ap) is the coefficients of the ANF of (fk)j . If d > d∗, the linear system is also
solvable and the corresponding coefficients of the degree-d closure are equal to 0. Since a
solvable linear system has p unknown variables a1, · · · ap, it requires at least p equations.
Thus, the number of inputs and computation traces need to satisfy N ≥ p. For ADCA
with degrees from 1 to 7, the minimum number of required traces is depicted in Table 7.
We note that the number is computed equally to the value of p.

Table 7: The minimum number of required traces for ADCA with degrees from 1 to 7.

Degree 1 2 3 4 5 6 7
Minimum Number of Traces (p) 9 37 93 163 219 247 255

ADCA Distinguisher. Since v contains the outputs of Ak, the mappings (fk)j include
the coordinate functions (Ak)i for j ∈ [T] and 1 ≤ i ≤ 8. A degree-d ADCA distinguisher

512 Revisiting the Computation Analysis against Internal Encodings

δADCA
k can be defined as follows.

δADCA
k = arg max#{dalg ((fk)j) ≤ d | j ∈ [T]}

To distinguish the correct key, the attacker can select a degree d such that 1 ≤ d ≤ 6.
For Case 1 in Table 4, the function F has a degree at most 3 if the mapping N is a nibble
encoding. Therefore, the degree dalg ((fk)j) ≤ 3 can be used to distinguish Ak∗ and Ak.
To attack both Case 1 and Case 2, the ADCA distinguisher needs to be initialized with
d = 6. We note that if dalg(F) < 7, dalg ((Ak∗)i) < 7 might hold for the correct key
k∗ ∈ F8

2 and dalg ((Ak)i) = 7 might be valid for an incorrect key k ∈ F8
2. Namely, there are

many coordinate functions of fk∗ which have degrees at most 6, while there are almost no
coordinate functions of fk such that dalg(fk) < 7. Hence, the distinguisher will try to solve
the linear system of degree 6 for each key guess. For the correct key k∗, the corresponding
coordinates (fk∗)j have the maximum number of functions such that dalg ((fk∗)j) ≤ 6. To
enhance the attack ability of ADCA on breaking Case 2, we also propose the other two
distinguishers.

1. The first is to compute the total number of coordinate functions (fk)j which satisfy
dalg ((fk)j) ≤ d for every 1 ≤ d ≤ 6 and each key k ∈ F8

2. The key guess corresponding
to the maximum number turns out to be the correct key. Such an improved ADCA
distinguisher (δADCA

k)I1 is depicted as follows.

(δADCA
k)I1 = arg max

∑
1≤d≤6

#{dalg ((fk)j) ≤ d | j ∈ [T]}

2. Case 2 illustrates that the probability for at least one coordinate function of Ak∗

with dalg ((Ak∗)i) < 7 is 99.69%. For an incorrect key guess, at least one coordinate
function of Ak with dalg ((Ak)i) < 7 has a much lower probability 2.7%. Hence, for a
given degree d, the key guesses corresponding to dalg ((fk)j) ≤ d most likely contain
the correct key. The second enhanced ADCA distinguisher (δADCA

k)I2 is described as
follows.

(δADCA
k)I2 ∈ {dalg ((fk)j) ≤ d | j ∈ [T]}

Attack Complexity. The distinguisher δADCA
k constructs a system of linear equations to

detect the degree of each coordinate function (Ak)j for every key guess k ∈ F8
2 and j ∈ [T].

Let D denote an N × p (N ≥ p) matrix consisting of the closures of input variables, a
be the resulting vector for the coefficients of ANF, and v̄ denote the vector of the same
samples in different traces. The linear system can be simply represented as D · a = v̄.
For a selected degree d, the matrix D can be pre-computed by calculating the degree-d
closures for the variables of N inputs. This process does not involve the computation of
traces and the prediction of keys. To verify the solvability of the linear system, an ADCA
distinguisher can compute the rank of the matrix D and the one of the augmented matrix
(D | v̄). Let r(D) denote the rank of the matrix D. If r(D) ≥ r(D | v̄), then the linear
system is solvable. If r(D) < r(D | v̄), the linear system has no solution. Since the matrix
D is pre-computed, its rank can also be pre-computed. Moreover, the operational steps
for the row reduction to its echelon form can be pre-stored in the program. This process
has the time complexity of O(N · p2), which is the same as the Gaussian Elimination.

In the ADCA attack process, the attacker collects the computation traces and computes
v̄ based on every sample vj in different traces. We note that the row reduction of (D | v̄)
to its echelon form can be reduced to the row reduction on D. Since the operational steps
for computing r(D) are pre-stored, these steps can be operated on v̄. Let r denote the
operational steps for the row reduction on v̄. Based on the Gauss Elimination of D, r
has the maximal value N · p. Subsequently, the attacker can compute r(D | v̄) based

Yufeng Tang, Zheng Gong, Bin Li and Liangju Zhao 513

on the row reduced D and v̄. The solvability of the linear system can be verified by the
comparison between the ranks of D and (D | v̄). Thus, the theoretical time complexity of
ADCA is O(r · T · |k|) = O(N · p · T · |k|). Since p is the number of the degree-d closure,
the time complexity of ADCA is related to its degree. Particularly, we note that the
operational steps of the Gauss Elimination for v̄ are pre-computed. In practice, the values
r are fixed for different degrees, which are irrelevant to the collected traces. For attacking
the refined structure of a DIBO function, we have N = 28, T = 8, and |k| = 28. Table 8
illustrates the exact operating times r for the Gauss Elimination on the trace vector v̄ and
the resulting time complexities of ADCA with different degrees.

Table 8: The time complexities of ADCA with different degrees.

Degree 1 2 3 4 5 6 7

r
1, 277 3, 177 5, 474 7, 563 8, 426 8, 604 8, 792
≈ 210.32 ≈ 211.63 ≈ 212.42 ≈ 212.88 ≈ 213.04 ≈ 213.07 ≈ 213.10

Time 221.32 222.63 223.42 223.88 224.04 224.07 224.10
Complexity

4.3 ADCA against Internal Encodings
ADCA is a new analysis on the degrees of internal encodings. It matches the degrees of the
mappings from the inputs to the intermediate variables. Based on our analysis, the degree
of the target function Ak(x) = F ◦ S ◦ ⊕k∗ ◦ ⊕k ◦ S−1 dependents on the key guess k and
the construction of the encoding F . The detailed dependency is described as follows.

• If the key guess is correct (i.e., k = k∗), it implies that Ak∗(x) = F . Thus,
dalg (Ak∗) = dalg(F). This indicates that the degree of the function Ak∗ depends on
the encoding F . Due to 1 ≤ dalg(F) ≤ 7 based on different generations, the function
Ak∗ has the degree 1 ≤ dalg(Ak∗) ≤ 7.

• If the key guess is incorrect (i.e., k 6= k∗), the function Ak has a more complicated
structure which includes an Sbox and its inverse. Thus, the degree of Ak is most
likely 7.

To precisely detect the differences between the degrees of Ak∗ and Ak, ADCA computes
the degree of each coordinate function. ADCA distinguishes the function Ak∗ based on
the maximum number of dalg ((Ak∗)j) < 7. For the different degrees of the encoding F ,
the number of the coordinate functions with a degree less than 7 is illustrated in Table 9.
The results are counted by 10, 000 tests of randomly generated F with 1 ≤ dalg(Fi) ≤ 7.
The percentage describes the number of tests that satisfy the corresponding degrees. The
results demonstrate that if 1 ≤ dalg(F) ≤ 6, all coordinate functions of Ak∗ satisfying
dalg ((Ak∗)i) < 7 while almost all coordinate functions of Ak have degree 7. Thus, ADCA
can distinguish the functions Ak∗ and Ak if dalg(F) ≤ 6. However, if dalg(F) = 7, ADCA
might be failed since both Ak∗ and Ak have a similar number of degree-7 coordinate
functions. Thus, the essential condition for a successful computation analysis is that the
degrees of the internal encodings are less than 7. The different encodings might have
various degrees which lead to different security levels. If the white-box implementation is
protected by nibble encodings, the combined encoding F has a degree at most 3. ADCA
might defeat this implementation with an overwhelming probability. Although a randomly
generated byte permutation has dalg = 7, its combination with a non-invertible linear
mapping might reduce to a lower degree. Thus, it is still vulnerable to ADCA.

514 Revisiting the Computation Analysis against Internal Encodings

Table 9: The number of coordinates satisfying dalg(Fi) < 7 or dalg ((Ak)i) < 7 for different
degrees of F .

dalg(F) dalg(Fi) < 7
dalg ((Ak)i) < 7 Attack of ADCA

dalg ((Ak∗)i) < 7
1 8 (100%) 0 (100%) success

2 8 (100%)
2 (0.02%)

success1 (2.41%)
0 (97.57%)

3 8 (100%)
2 (0.05%)

success1 (2.90%)
0 (97.05%)

4 8 (100%)
2 (0.02%)

success1 (1.92%)
0 (98.06%)

5 8 (100%)
2 (0.01%)

success1 (2.12%)
0 (97.87%)

6 8 (100%)
2 (0.02%)

success1 (2.83%)
0 (97.15%)

7
2 (0.04%) 2 (0.05%)

failure1 (2.95%) 1 (3.06%)
0 (97.01%) 0 (96.89%)

5 Comparison and Experimental Results

5.1 The Comparison between ADCA and The Published Distinguishers

ADCA is a higher-degree computation analysis to match the degrees of each Boolean
function from the inputs to the samples of traces. Similar to DCA, an ADCA adversary
only needs to analyze the accessed memory during the execution without the knowledge of
encoding details. Any modification of the implementation is not necessarily required. Thus,
it is a gray-box attack to perform statistical analysis on the computation traces. ADCA
can also be mounted automatically without reverse engineering efforts. For the encodings
with degrees from 1 to 6, the time complexity of a successful ADCA ranges from 221.32

to 224.07. For instance, a degree-3 ADCA can break the CEJO framework consisting of
the nibble encodings with the time complexity 223.42. To defeat most cases of nibble/byte
encodings, a degree-6 ADCA is proposed as a general attack with the time complexity
224.07. Differently, the time complexities of SA and ISA are 227 and 232 respectively, which
are higher than ADCA. The summarized properties of ADCA are illustrated in Table 10.

Table 10: The properties of ADCA with degrees from 1 to 6.

Distinguisher Attack Method Analysis of Time
Context Key Leakage Complexity

ADCA gray-box detection of
dalg(F) ≤ 6 221.32 ∼ 224.07

(degree 1 to 6) algebraic degree

Yufeng Tang, Zheng Gong, Bin Li and Liangju Zhao 515

The main differences between ADCA and other computation analyses are described as
follows.

• ADCA defeats the internal encodings by leveraging their degrees. The previous
methods are based on correlation computation and spectral analysis. It is the first
computation analysis based on the detection of degrees. ADCA explores the combined
encodings without the partition of linear and non-linear parts. Thus, it focuses
on the nonlinearity of the encodings instead of the HW, imbalance, and invertibility
of linear encodings. Based on the theoretical analysis, ADCA can distinguish the
correct key of the white-box implementations if the encodings are constructed with
a degree lower than 7.

• ADCA is a higher-degree computation analysis. For 1 ≤ d ≤ 6, a degree-d ADCA can
defeat the internal encodings with a degree no more than d. It matches the degrees of
the mappings from the inputs to each sample of traces by solving a system of linear
equations. Moreover, the time complexity of ADCA is related to the attacking degree.
Thus, ADCA has a flexible time complexity. In addition, ADCA has an explicit
number of required traces for a practical attack on the encodings with different
degrees.

We note that ADCA pre-computes the coefficients of a linear system, which does
not depend on any key guess and trace sample. This process helps to reduce the time
complexity of the Gauss Elimination. Differently, the processes of SA/ISA depend on the
key guess and trace sample, which need to be calculated on-the-fly. Although ADCA is
similar to ADA, the attack contexts and the definition of distinguishers are different. For
ADA, it is a structural attack on the CEJO framework with the nibble encodings. ADA
focuses on the degree of a specific LUT and uses its higher-order derivative to distinguish
the correct key. However, the target function of ADCA is the mapping from the inputs
to each sample of the computation traces. An ADCA attacker does not need to pinpoint
a specific function and only focuses on the statistical analysis of traces. Furthermore,
ADCA verifies the degree of a Boolean function instead of a vectorial Boolean function. A
degree-d ADCA solves a system of linear equations to detect if the degree of the Boolean
function is no more than d. We note that this process is not a precise computation but an
estimate of the range of the degree.

Following the techniques of internal encodings, a countermeasure of ADCA is to combine
an invertible linear mapping and a byte encoding. Although this countermeasure is the
same as the proposed one of ISA, the core ideas behind ISA and ADCA are different.
ISA highlights the invertibility of linear encoding without revealing the impact of the
byte encoding. ADCA focuses on the degree of the combined encoding instead of the
properties of its (non-)linear part. Since the combined byte encoding with an invertible
linear mapping has degree 7, such an encoding can mitigate ADCA. Thus, we also propose
another countermeasure by only applying a random byte permutation and making sure
that the degrees of all the coordinate functions are 7.

ADCA constructs a system of linear equations to verify the degrees of Boolean functions.
This process of solving the linear system is similar to linear decoding analysis (LDA)
[GPRW20]. However, the target implementations of ADCA and LDA are different. LDA
is proposed to break the linear masking scheme. This white-box implementation is
implemented as a Boolean circuit without any LUT and internal encoding. The linear
masking splits each sensitive variable x into n shares satisfying x = x1⊕x2⊕ · · · ⊕xn. Let
(v1, v2, · · · , vN) denote a computation trace. LDA attempts to solve the following linear
system to recover the n linear shares of the sensitive variable x.

T⊕
i=1

ai · vi = x

516 Revisiting the Computation Analysis against Internal Encodings

The resulting vector (a1, a2, · · · , aT) indicates the locations of shares in the trace. If the
system is solvable, the key guess corresponding to x is most likely correct. Different from
LDA, ADCA defeats the internal encodings of white-box implementations. It constructs a
linear system by the closure of input variables and the same samples in different traces.
Moreover, the solvability of the linear system is related to the degrees of Boolean functions
instead of the shares of masking schemes.

5.2 The Experimental Results on Breaking Internal Encodings
To compare the attack capabilities of various distinguishers, we perform an experiment
to mount the different computation analyses on breaking different encodings. The target
function is the refined structure Ok (refer to Figure 2). The encodings are generated by the
optimized white-box matrix library WBMatrix [TGS+22]. Based on the proposed internal
encodings, we generate the linear encodings by different HW and invertibility whilst the
non-linear ones are constructed by the nibble or byte permutations. Simple linear and
non-linear encodings are also provided for the experiment. Each attack case is executed
over 1, 000 times on randomly generated encodings. The numbers of the broken tests for
different computation analyses are illustrated in Table 11. As a general attack, ADCA is
mounted with degree 6 in various cases. Moreover, to validate the influence of different
degrees of encodings, Table 12 depicts the results of various computation analyses against
the encodings with degrees from 1 to 7. Particularly, the attack degrees of ADCA are
equal to the corresponding degrees of encodings. From the attack results, we can classify
the distinguishers into two categories as follows.

• SA, ISA, and ADCA break the maximum number of attack cases (11 out of 14
and 6 out of 7, respectively in two tests) with various encodings. The broken cases
for different combinations include the constructions of (1) linear encodings with
nibble encodings, (2) non-invertible linear encodings with byte encodings, (3) linear
encodings, and (4) nibble encodings. The broken cases for different degrees contain
random encodings with degrees from 1 to 6. Thus, the encoding constructed by a
non-linear byte function with the combination of an invertible linear mapping, or a
degree-7 random permutation can resist SA, ISA, and ADCA attacks.

• Other computation analyses, such as DCA, IDCA, CPA, CA, MIA, and MSA, can
break no more than 9 and 2 cases, respectively in two experiments. Among these
attacks, IDCA has the maximum number of broken cases. The results also reveal
that the attack capabilities of DCA, CPA, CA, and MIA are equal since they have a
similar number of broken tests in each attack case.

The results of SA, ISA, and ADCA prove that the nibble encodings cannot prevent the
computation analysis. Moreover, the linear encodings with HW > 1 are still vulnerable to
ADCA. Thus, the analysis of HW cannot fully reveal the cause of key leakage. From the
failed attacks of CPA, CA, and MIA, even the nibble encoding introduces a non-injection of
the sensitive variable, these distinguishers also cannot defeat this type of internal encoding.
Hence, the models of CPA, CA, and MIA still cannot fully interpret the ineffectiveness
of internal encodings. The results of MSA support that the mono-bit model reduces the
capability of SA. Thus, the poor performance of MSA cannot validate the reason for key
leakage by the imbalance of linear encodings. Besides, the similar results of SA and ISA
demonstrate that the higher time complexity of ISA does not enhance the attack capability
of SA. The failed attack on the combined encodings (an invertible linear mapping with
a byte encoding) confirms the analysis of ISA on the invertibility of linear encodings.
Although an 8-bit random permutation has a degree 7, its combination of a non-invertible
linear mapping will reduce the degree of the coordinate functions with a high probability.

Yufeng Tang, Zheng Gong, Bin Li and Liangju Zhao 517

Table 11: The successful attacks (each out of 1,000 tests) for different distinguishers δ
against various internal encodings F .

δ
F

N
on

-L
in
ea
r
N
ib
bl
e

N
on

-L
in
ea
r
By

te
W

ith
ou

t
N
on

-L
in
ea
r

W
ith

ou
t
Li
ne

ar
In
ve
rt
ib
le

Li
ne
ar

N
on

-In
ve
rt
ib
le

Li
ne

ar
In
ve
rt
ib
le

Li
ne

ar
N
on

-In
ve
rt
ib
le

Li
ne
ar

In
ve
rt
ib
le

Li
ne

ar
N
on

-In
ve
rt
ib
le

Li
ne

ar
N
on

-li
ne

ar
HW

>
1

HW
=

1
HW

>
1

HW
=

1
HW

>
1

HW
=

1
HW

>
1

HW
=

1
HW

>
1

HW
=

1
HW

>
1

HW
=

1
N
ib
bl
e

By
te

D
C
A

60
5

95
9

59
0

97
1

6
7

18
2

21
5

17
3

1,
00

0
18

6
1,
00

0
10

00
2

[B
H
M
T
16

]
ID

C
A

1,
00

0
1,
00

0
1,
00

0
1,
00

0
2

0
51

1
49

3
1,
00

0
1,
00

0
1,
00

0
1,
00

0
1,
00

0
0

[B
BB

+
19

]
C
PA

60
1

95
9

58
2

96
4

5
8

17
8

21
4

17
3

1,
00

0
18

6
1,
00

0
1,
00

0
3

[R
W

19
]

C
A

60
1

95
9

58
2

96
4

5
8

17
8

21
4

17
3

1,
00

0
18

6
1,
00

0
1,
00

0
3

[R
W

19
]

M
IA

60
1

95
9

58
2

96
4

5
8

17
8

21
4

17
3

1,
00

0
18

6
1,
00

0
1,
00

0
3

[R
W

19
]

SA
1,
00

0
1,
00

0
1,
00

0
1,
00

0
2

3
1,
00

0
1,
00

0
1,
00

0
1,
00

0
1,
00

0
1,
00

0
1,
00

0
3

[S
M
G
16

]
M
SA

96
9

90
6

96
7

88
2

2
5

61
8

46
4

99
9

98
4

1,
00

0
87

2
0

5
[L
JK

20
]

IS
A

1,
00

0
1,
00

0
1,
00

0
1,
00

0
1

6
1,
00

0
1,
00

0
1,
00

0
1,
00

0
1,
00

0
1,
00

0
1,
00

0
5

[C
G
M
21

]
A
D
C
A

1,
00

0
1,
00

0
1,
00

0
1,
00

0
2

4
1,
00

0
1,
00

0
1,
00

0
1,
00

0
1,
00

0
1,
00

0
1,
00

0
5

(O
ur

Pr
op

os
al
)

518 Revisiting the Computation Analysis against Internal Encodings

Table 12: The successful attacks (each out of 1,000 tests) for various distinguishers δ
against the encodings F with degrees from 1 to 7.

δ

F Degree
1 2 3 4 5 6 7

DCA 223 827 535 530 579 170 8[BHMT16]
IDCA 1,000 977 951 925 1,000 478 2[BBB+19]
CPA 223 840 540 521 578 162 7[RW19]
CA 223 840 540 521 578 162 7[RW19]
MIA 223 840 540 521 578 162 7[RW19]
SA 1,000 1,000 1,000 1,000 1,000 1,000 3[SMG16]
MSA 1,000 968 712 786 835 438 1[LJK20]
ISA 1,000 1,000 1,000 1,000 1,000 1,000 3[CGM21]

ADCA 1,000 1,000 1,000 1,000 1,000 1,000 3(Our Proposal)

Thus, the analysis of ADCA on the degrees of internal encodings also explains the results
of ISA.

For the case of degree 7 in Table 12, the broken tests of ADCA are less than the ones
of DCA. To verify their capabilities, we mount DCA and ADCA extra 10,000 times for
breaking the degree-7 encodings. The results indicate that DCA (40 broken tests) can
break less than ADCA (44 broken tests). Due to the randomness of encodings, the results
of degree 7 are different in each experiment. Since ISA has a time complexity of nearly
242 for 1, 000 tests, it is not practical to run more than 1, 000 tests for ISA. We consider
that it is acceptable for the comparison among the proposed attacks with 1, 000 tests. As
the number of the broken tests is far less than 1, 000, the degree-7 encodings can be a
countermeasure against the computation analysis with a high probability. Although SA
and ISA can break the same maximal cases as ADCA, they have higher time complexities
227 and 232, respectively. We note that ISA might also require reverse engineering efforts
since it is a structural attack. For SA, it does not reveal the weaknesses of different
combinations of linear and non-linear encodings. Thus, ADCA can be a general attack to
break the most cases of encodings (degrees from 1 to 6) with the lowest time complexity
221.32 ∼ 224.07.

6 Conclusion
This paper revisits the proposed computation analyses on a refined structure from the
DIBO function. Besides, the flaws in the previous results on the weakness of internal
encodings are discussed. By leveraging the nonlinearity of encodings, we propose a new
ADCA attack. ADCA distinguishes the correct key by matching the degrees of the
mappings from the inputs to the samples of traces. The analysis of ADCA reveals that the

Yufeng Tang, Zheng Gong, Bin Li and Liangju Zhao 519

key leakage of internal encodings depends on their degrees. The encodings with a degree
7 can resist the computation analysis. To compare the attack capability, we mount the
various distinguishers on different encodings. The results prove that ADCA can break
the maximum number of encoding cases with the lowest time complexity. Moreover, the
impact of the degrees of internal encodings against ADCA is validated in the experiment.

To defeat the degree-7 encoding, an interesting case is to verify if the proposed
computation analyses are vulnerable to the F16

2 7→ F8
2 mapping which has a larger space

of inputs. It is also a challenge to find an internal encoding that can be provably secure
against all the proposed computation analyses.

Acknowledgments
We would like to thank Jian Guo and the anonymous reviewers for their valuable comments.
We are also grateful to Qunxiong Zheng for the helpful discussions on Theorem 3. This
work was supported by National Natural Science Foundation of China (62072192), Na-
tional Defense Technology 173 Basic Improvement Project (2121-JCJQ-JJ-0931), National
Cryptography Development Fund (MMJJ20180205), Guangdong Basic and Applied Basic
Research Foundation (2022A1515140090), and Natural Science Foundation of Jiangsu
Province, China (Grant No. BK20220075).

References
[AH16] Hyunjin Ahn and Dong-Guk Han. Multilateral white-box cryptanalysis: Case

study on WB-AES of CHES challenge 2016. IACR Cryptol. ePrint Arch.,
page 807, 2016.

[BBB+19] Estuardo Alpirez Bock, Joppe W. Bos, Chris Brzuska, Charles Hubain, Wil
Michiels, Cristofaro Mune, Eloi Sanfelix Gonzalez, Philippe Teuwen, and
Alexander Treff. White-box cryptography: Don’t forget about grey-box
attacks. J. Cryptol., 32(4):1095–1143, 2019.

[BBIJ17] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, and Martin Bjerregaard
Jepsen. Analysis of software countermeasures for whitebox encryption. IACR
Trans. Symmetric Cryptol., 2017(1):307–328, 2017.

[BBMT18] Estuardo Alpirez Bock, Chris Brzuska, Wil Michiels, and Alexander Treff.
On the ineffectiveness of internal encodings - revisiting the DCA attack on
white-box cryptography. In Bart Preneel and Frederik Vercauteren, editors,
Applied Cryptography and Network Security - 16th International Conference,
ACNS 2018, Leuven, Belgium, July 2-4, 2018, Proceedings, volume 10892 of
Lecture Notes in Computer Science, pages 103–120. Springer, 2018.

[BCD06] Julien Bringer, Herve Chabanne, and Emmanuelle Dottax. White box
cryptography: Another attempt. Cryptology ePrint Archive, Paper 2006/468,
2006. https://eprint.iacr.org/2006/468.

[BGE04] Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Cryptanalysis of a
white box AES implementation. In Helena Handschuh and M. Anwar Hasan,
editors, Selected Areas in Cryptography, 11th International Workshop, SAC
2004, Waterloo, Canada, August 9-10, 2004, Revised Selected Papers, volume
3357 of Lecture Notes in Computer Science, pages 227–240. Springer, 2004.

[BHMT16] Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen. Differen-
tial computation analysis: Hiding your white-box designs is not enough. In

https://eprint.iacr.org/2006/468

520 Revisiting the Computation Analysis against Internal Encodings

Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware
and Embedded Systems - CHES 2016 - 18th International Conference, Santa
Barbara, CA, USA, August 17-19, 2016, Proceedings, volume 9813 of Lecture
Notes in Computer Science, pages 215–236. Springer, 2016.

[BI15] Andrey Bogdanov and Takanori Isobe. White-box cryptography revisited:
Space-hard ciphers. In Indrajit Ray, Ninghui Li, and Christopher Kruegel,
editors, Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, October 12-16, 2015, pages
1058–1069. ACM, 2015.

[BIT16] Andrey Bogdanov, Takanori Isobe, and Elmar Tischhauser. Towards prac-
tical whitebox cryptography: Optimizing efficiency and space hardness. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology -
ASIACRYPT 2016 - 22nd International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Hanoi, Vietnam, December
4-8, 2016, Proceedings, Part I, volume 10031 of Lecture Notes in Computer
Science, pages 126–158, 2016.

[BU21] Alex Biryukov and Aleksei Udovenko. Dummy shuffling against algebraic
attacks in white-box implementations. In Anne Canteaut and François-
Xavier Standaert, editors, Advances in Cryptology - EUROCRYPT 2021 -
40th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings,
Part II, volume 12697 of Lecture Notes in Computer Science, pages 219–248.
Springer, 2021.

[CEJvO02a] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
White-box cryptography and an AES implementation. In Kaisa Nyberg and
Howard M. Heys, editors, Selected Areas in Cryptography, 9th Annual Inter-
national Workshop, SAC 2002, St. John’s, Newfoundland, Canada, August
15-16, 2002. Revised Papers, volume 2595 of Lecture Notes in Computer
Science, pages 250–270. Springer, 2002.

[CEJvO02b] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. A
white-box DES implementation for DRM applications. In Joan Feigenbaum,
editor, Security and Privacy in Digital Rights Management, ACM CCS-9
Workshop, DRM 2002, Washington, DC, USA, November 18, 2002, Revised
Papers, volume 2696 of Lecture Notes in Computer Science, pages 1–15.
Springer, 2002.

[CGM21] Claude Carlet, Sylvain Guilley, and Sihem Mesnager. Structural attack
(and repair) of diffused-input-blocked-output white-box cryptography. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):57–87, 2021.

[GPRW20] Louis Goubin, Pascal Paillier, Matthieu Rivain, and Junwei Wang. How to
reveal the secrets of an obscure white-box implementation. J. Cryptogr. Eng.,
10(1):49–66, 2020.

[Kar10] Mohamed Karroumi. Protecting white-box AES with dual ciphers. In
Kyung Hyune Rhee and DaeHun Nyang, editors, Information Security and
Cryptology - ICISC 2010 - 13th International Conference, Seoul, Korea,
December 1-3, 2010, Revised Selected Papers, volume 6829 of Lecture Notes
in Computer Science, pages 278–291. Springer, 2010.

Yufeng Tang, Zheng Gong, Bin Li and Liangju Zhao 521

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[LJK20] Seungkwang Lee, Nam-Su Jho, and Myungchul Kim. On the linear transfor-
mation in white-box cryptography. IEEE Access, 8:51684–51691, 2020.

[LN05] Hamilton E. Link and William D. Neumann. Clarifying obfuscation: Im-
proving the security of white-box DES. In International Symposium on
Information Technology: Coding and Computing (ITCC 2005), Volume 1,
4-6 April 2005, Las Vegas, Nevada, USA, pages 679–684. IEEE Computer
Society, 2005.

[LRM+13] Tancrède Lepoint, Matthieu Rivain, Yoni De Mulder, Peter Roelse, and Bart
Preneel. Two attacks on a white-box AES implementation. In Tanja Lange,
Kristin E. Lauter, and Petr Lisonek, editors, Selected Areas in Cryptography -
SAC 2013 - 20th International Conference, Burnaby, BC, Canada, August 14-
16, 2013, Revised Selected Papers, volume 8282 of Lecture Notes in Computer
Science, pages 265–285. Springer, 2013.

[MRP12] Yoni De Mulder, Peter Roelse, and Bart Preneel. Cryptanalysis of the xiao -
lai white-box AES implementation. In Lars R. Knudsen and Huapeng Wu,
editors, Selected Areas in Cryptography, 19th International Conference, SAC
2012, Windsor, ON, Canada, August 15-16, 2012, Revised Selected Papers,
volume 7707 of Lecture Notes in Computer Science, pages 34–49. Springer,
2012.

[Mul14] Yoni De Mulder. White-Box Cryptography: Analysis of White-Box AES
Implementations (White-Box Cryptografie: Analyse van White-Box AES
implementaties). PhD thesis, Katholieke Universiteit Leuven, Belgium, 2014.

[MWP10] Yoni De Mulder, Brecht Wyseur, and Bart Preneel. Cryptanalysis of a per-
turbated white-box AES implementation. In Guang Gong and Kishan Chand
Gupta, editors, Progress in Cryptology - INDOCRYPT 2010 - 11th Interna-
tional Conference on Cryptology in India, Hyderabad, India, December 12-15,
2010. Proceedings, volume 6498 of Lecture Notes in Computer Science, pages
292–310. Springer, 2010.

[RW19] Matthieu Rivain and Junwei Wang. Analysis and improvement of differential
computation attacks against internally-encoded white-box implementations.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):225–255, 2019.

[SEL21] Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz. A white-box masking
scheme resisting computational and algebraic attacks. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2021(2):61–105, 2021.

[SMG16] Pascal Sasdrich, Amir Moradi, and Tim Güneysu. White-box cryptography in
the gray box - - A hardware implementation and its side channels -. In Thomas
Peyrin, editor, Fast Software Encryption - 23rd International Conference,
FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers,
volume 9783 of Lecture Notes in Computer Science, pages 185–203. Springer,
2016.

522 Revisiting the Computation Analysis against Internal Encodings

[TGCX23] Yufeng Tang, Zheng Gong, Jinhai Chen, and Nanjiang Xie. Higher-order
DCA attacks on white-box implementations with masking and shuffling
countermeasures. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2023(1):369–
400, 2023.

[TGS+21] Yufeng Tang, Zheng Gong, Tao Sun, Jinhai Chen, and Fan Zhang. Adaptive
side-channel analysis model and its applications to white-box block cipher
implementations. In Yu Yu and Moti Yung, editors, Information Security and
Cryptology - 17th International Conference, Inscrypt 2021, Virtual Event,
August 12-14, 2021, Revised Selected Papers, volume 13007 of Lecture Notes
in Computer Science, pages 399–417. Springer, 2021.

[TGS+22] Yufeng Tang, Zheng Gong, Tao Sun, Jinhai Chen, and Zhe Liu. WBMatrix:
An optimized matrix library for white-box block cipher implementations.
IEEE Trans. Computers, 71(12):3375–3388, 2022.

[WMGP07] Brecht Wyseur, Wil Michiels, Paul Gorissen, and Bart Preneel. Cryptanalysis
of white-box DES implementations with arbitrary external encodings. In
Carlisle M. Adams, Ali Miri, and Michael J. Wiener, editors, Selected Areas
in Cryptography, 14th International Workshop, SAC 2007, Ottawa, Canada,
August 16-17, 2007, Revised Selected Papers, volume 4876 of Lecture Notes
in Computer Science, pages 264–277. Springer, 2007.

[XL09] Yaying Xiao and Xuejia Lai. A secure implementation of white-box AES. In
2009 2nd International Conference on Computer Science and its Applications,
pages 1–6. IEEE, 2009.

[ZMAB19] Mohamed Zeyad, Houssem Maghrebi, Davide Alessio, and Boris Batteux.
Another look on bucketing attack to defeat white-box implementations. In Ilia
Polian and Marc Stöttinger, editors, Constructive Side-Channel Analysis and
Secure Design - 10th International Workshop, COSADE 2019, Darmstadt,
Germany, April 3-5, 2019, Proceedings, volume 11421 of Lecture Notes in
Computer Science, pages 99–117. Springer, 2019.

	Introduction
	Preliminaries
	Basic Notions and Notations
	Internal Encodings
	Computation Analysis

	Revisiting the Distinguishers of Computation Analysis
	The Adversary Models
	A Refined Structure from DIBO Function
	The Proposed Computation Analyses and Their Distinguishers
	Discussion

	Algebraic Degree Computation Analysis
	An Overview of ADCA
	The Distinguisher of ADCA
	ADCA against Internal Encodings

	Comparison and Experimental Results
	The Comparison between ADCA and The Published Distinguishers
	The Experimental Results on Breaking Internal Encodings

	Conclusion

