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Abstract. Lightweight cryptography is an emerging field where designers are testing
the limits of symmetric cryptography. We investigate the resistance against side-
channel attacks of a new class of lighter blockciphers, which use a classic substitution–
permutation network with slow diffusion and many rounds.
Among these ciphers, we focus on SKINNY, a primitive used up to the final round of
NIST’s recent lightweight standardisation effort. We show that the lack of diffusion
in the key scheduler allows an attacker to combine leakage from the first and the last
rounds, effectively pincering its target. Furthermore, the slow diffusion used by its
partial key-absorption and linear layers enable, on both sides, to target S-Boxes from
several rounds deep.
As some of these S-boxes leak on the same part of the key, full key recovery exploiting
all leakage requires a clever combining strategy. We introduce the use of cluster
graph inference (an established tool from probabilistic graphical model theory) to
enhance both unprofiled or profiled differential power analysis, enabling us to handle
the increase of S-Boxes with their intertwined leakage.
We evaluate the strength of our attack both in the Hamming weight model and
against two implementations running on an STM32F303 ARM Cortex-M4 hosted on
a ChipWhisperer target board, showing that our attack reduces the number of traces
required to attack SKINNY by a factor of around 2.75.

Keywords: Lightweight Cryptography · SKINNY · Belief Propagation · Differen-
tial Power Analysis · Cluster Graphs

1 Introduction
The last decades have seen the emergence of the Internet-of-Things (IoT), an ever-increasing
number of appliances, sensors, and control systems communicating wirelessly with their
networks. This influx of highly constrained, often low powered devices has prompted the
rise of a new research topic: lightweight cryptography. As existing standards are too
“heavy” for IoT devices, lightweight cryptography aims to design new algorithms that
provide adequate security while being cheaper to run. This objective motivated their
designers to explore exciting alternative design strategies to, for instance, the current
standard AES [AES01].

In 2018, the National Institute of Standards and Technology (NIST) started a standard-
isation process for lightweight Authenticated Encryption with Additional Data (AEAD)
schemes [NIS18]. The first rounds of this process focused on traditional cryptanalysis.
However, in the final round, NIST gave particular attention to Side-Channel Attacks (SCA)
and their countermeasures [NIS22]. Several candidates relied on (for example) lightweight
blockciphers [BCI+21, GIK+21, BJK+20], raising the question of how these ciphers fare
against SCA.
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Heuser et al. [HPGM20] showed that various lightweight S-Boxes have an SCA resilience
comparable to that of the AES S-Box. Yet, they also observed that the lack of a proper key
schedule in the LED cipher [GPPR12] does lead to a trivial security degradation: an attacker
can combine S-Box leakage from the first and the last round, potentially granting it twice
as many S-Boxes to target. Many lightweight ciphers keep the Substitution–Permutation
Network (SPN) paradigm of AES, but with lighter, less conservative components, including
the aforementioned S-boxes, as well as the diffusion layer, the key schedule and even key
injection. Consequently, more rounds are needed to achieve security against linear and
differential cryptanalysis [BKL+07, GPPR12, BPP+17]. A natural follow-up question is
how these lightweight aspects, especially slow diffusion and simplified key-scheduling, can
be exploited by an SCA attacker, and which existing and new techniques are beneficial to
leverage those lightweight aspects.

SCA and Blockciphers Side-channel attacks can be categorized depending on whether
they are profiled or not, where the profiling refers to an adversary’s ability to learn
about a device with full control over its inputs, including those inputs that are usually
secret or internal, such as keys and randomness used for masking. Profiling attacks are
more powerful (and the default for certification), yet non-profiled attacks remain relevant.
Azouaoui et al. [ABB+20] make a further classification between simple approaches and
advanced ones.

Simple approaches include well-understood divide-and-conquer distinguishers (and
their extend-and-prune generalization), where an adversary partitions the full key into
smaller subkeys (typically bytes for AES-128) and recovers each subkey independently of
the others. These distinguishers can be either profiled (e.g. template attacks based on the
maximum likelihood principle) or non-profiled (e.g. correlation power analysis) and benefit
from being very efficient, even for large numbers of traces, with low memory consumption.
However, their downside is that they only exploit leakage from intermediates that rely on
those smaller subkeys. Consequently, these simple approaches can typically only target
the input and output of the S-Boxes either in the first or last round, making them less
suited to exploit slow diffusion (which only manifests itself for later rounds).

Advanced approaches can look deeper into the cipher and include for instance algebraic
attacks [RS10] and attacks utilizing belief propagation [VGS14]. For these attacks, an
adversary tries to predict, for every trace, the values of a large number of interconnected
intermediates and subsequently consolidate the belief of all those intermediates across
the traces to derive the full key. The downside is that accurate prediction of all the
intermediates ostensibly requires profiling. Moreover, the consolidation across traces
and intermediates tends to be more memory and computationally intensive than the
aforementioned simple approaches.

Lightweight ciphers with slow diffusion will lead to an abundance of leakage and cur-
rently the simple approaches cannot exploit said leakage, whereas the advanced approaches
require profiling and are resource intensive. Thus, a natural question is whether an attacker
can make optimal use of additional leakage while scaling even to a large number of traces,
and possibly without the need to profile.

Our Contribution We propose a novel approach that fills the gap between the simple and
advanced approaches. Our approach retains the computational complexity of traditional
DPA, scaling linearly in the number of traces with constant memory, and works for
both profiled and non-profiled attacks. Following the direction of multi-target DPA
introduced by Mather et al. [MOW14], we start by building score vectors for each S-Boxes
before combining them. We then reframe the problem of combining scores using the
concept of factors and especially cluster graphs, known from probabilistic graphical model
theory [KF09]. This reframing allows us to leverage that field’s established tools for Cluster
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Graph Inference (CGI), specifically clique trees and a max-product algorithm, to obtain
the maximum a posteriori distinguisher on the key from our scores.

To confirm the practicality of our CGI enhancement, we focus on SKINNY, the
underlying primitive of a NIST finalist [BJK+16, IKMP20a]. SKINNY is a cipher that
pushes the slow diffusion approach to the envelope, making it a good choice to study how
well our CGI enhancement takes advantage of lightweight features. Its designers chose
a “very sparse diffusion layer and a very light key-scheduler” with “locally non-optimal
internal components”. It has been extensively evaluated against traditional and differential
cryptanalysis, but so far has received little attention from the SCA community.

We start by analysing SKINNY from the point of view of an SCA attacker (Section 3).
Its tweakey schedule is so light that it completely lacks diffusion between rounds: every
byte of every round key depends only on a single byte of the master key. This characteristic
leads to a situation similar to LED, where an attacker with access to both plaintext and
ciphertext can combine leakage from the first and last few rounds, effectively pincering the
cipher to recover the full key.

For the permutation layer, our attention remains on diffusion. SKINNY’s MixColumns
operation uses a sparse binary matrix, contrasting with the maximum distance separable
approach used by AES. As only the top two rows of the internal state receive some round
key material, the diffusion of the key into the state is shallow. The practical consequence
for SCA is that many intermediate variables over multiple rounds depend on fewer than 32
bits of the master key. If the attacker can deal with subkeys of this size, then 70 S-Boxes
from 6 different rounds can be targeted. In this work, we limit ourselves to S-Boxes that
depend on at most 16 bits of the key, giving us 44 S-Boxes to use.

For experimental validation, we use CGI to combine scores in six distinct scenarios
involving unprotected SKINNY, varying both the trace acquisition and the distinguisher
producing the raw scores. Specifically, we consider a maximum-likelihood-estimate (MLE)
distinguisher against the noisy Hamming weight (HW) model [MOP07, 3.3.2], for two
different noise levels. Furthermore we run both a profiled MLE “template” distinguisher
and an unprofiled correlation “CPA” distinguisher [BCO04] against two different imple-
mentations of SKINNY running on an ARM-Cortex M4 (Section 5). To illustrate the
efficacy of our attack, in all cases we compare it to a corresponding attack that uses
only one S-Box per key byte (as textbook DPA against AES would). Figure 1 shows,
for the four different MLE scenarios, the reduction in the number of traces required to
reach a target success rate compared to the baseline of exploiting leakage of only one
S-box per key byte. Some of the graphs are only partial as the number of traces required
for the baseline to reach a higher success rate exceeded our available resources. For the
same reason, we excluded CPA from Figure 1, as the baseline never reached a meaningful
success rate. Before running the attack, we reckoned that the ratio of the number S-Boxes
targeted, namely 44/16 = 2.75, could be indicative of our new attack’s potency. Our
experiments confirm this value (within experimental margins) both for the HW model and
the implementation that uses lookup tables (LUT) for the S-Box computation. The other
implementation is a clear outlier, as discussed in Section 5.

Our results demonstrate that slow diffusion can be exploited by an SCA attacker. Thus,
if SCA is part of the threat model, ciphers using a light design strategy (similar to SKINNY)
might require more protection than less light ciphers and a rigorous, fair comparison of
protected design is necessary, as the lightness of a cipher may not automatically carry over
to a protected implementation.

Related Work Several works have already examined the strength of lightweight ciphers
against SCA and highlighted some of their exciting features. Banciu et al. [BOW15]
investigate three ciphers (PRESENT, LED and KLEIN) and compare them to AES using
pragmatic simple power analysis [Man03] (essentially key enumeration exploiting leakage
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Figure 1: Reduction in the number of traces to reach a target success rate for CGI-
enhanced DPA exploiting 44 S-boxes in different scenarios (for each scenario, the baseline
without inference exploits only 16 S-boxes)

from a single trace). They notice that the lighter diffusion in the round function and
especially the key schedule leads to more powerful attacks, as it leads to more intermediate
variables whose leakage can be effectively exploited in a key enumeration effort.

Heuser et al. [HPGM20] focus on the substitution layer and compare the S-boxes of
13 different ciphers, including both nibble- and byte-oriented ones. Using both confusion
coefficient and success rate as their metrics, they conclude that in the HW model, nibble-
oriented S-Boxes, and more compact S-Boxes in general, are not noticeably weaker than
byte-oriented ones. In contrast to our work, their results point toward lightweight ciphers
being about as resilient as AES. This contrast highlights the importance of looking at the
entire design when evaluating the overall resilience of a cipher against SCA.

Evaluating lightweight designs requires looking at a wide range of indicators and imple-
mentation choices that all affect the security and performance of the final cryptosystems.
De Meyer [De 20] looked at the round 2 NIST candidates using metrics relevant to masking
in hardware and software such as multiplicative complexity and depth. For each of those
candidates, Belaïd et al. [BDM+20] generated masked implementations with guaranteed
probing security, allowing a fair performance comparison taking into account countermea-
sures. Finally, Bellizia et al. [BBC+20] analysed the same candidates at a higher level by
classifying the various components (key generation function, message computation, tag
verification) based on the number of traces an adversary would realistically get access to,
informing the level of protection needed.

When it comes to combining leakage from multiple sources, our work follows in the
footsteps of multi-target DPA, as studied by Mather et al. [MOW14]. They combine the
scores of various (non-profiled) distinguishers against AES, including ones that involve
16-bit or 32-bit key hypotheses (emanating from the MixColumns computation). However,
their combinations are cleanly segregated by AES’s internal columns, in the sense that
the full 128-bit key can be partitioned into four 32-bit subkeys and all exploited leakage
from S-boxes and MixColumns only ever affects a single of those large subkeys. In contrast,
SKINNY leakage is far more interconnected, necessitating our more general approach
involving cluster graphs.

Probabilistic graphical models were already introduced in the context of side-channel
analysis for the recovery of passwords based on keystroke timings [SWT01] using Hidden
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Markov Models (HMMs). HMMs were subsequently instrumental to mount simple power
analysis attacks against elliptic curve scalar point multiplication based on randomized
addition–subtraction chains, efficiently recovering the private exponent given a single trace
of additions and doublings. The techniques evolved from simple linear algebra [Osw03],
via a max-product algorithm [KW03], to loopy belief propagation inspired by factor
graphs [GNS05].

Later, the potential of belief propagation in factor graphs was realized for profiled
differential power analysis against blockciphers [VGS14] as well as profiled simple power
analysis against the number-theoretic transform [PPM17]. Despite the superficial similari-
ties, our approach using belief propagation in cluster graphs is conceptually quite different;
we provide a more detailed comparison in Section 4.4.

Finally, beyond standard DPA, other methods are known that combine leakage em-
anating from multiple rounds of SPN ciphers. For instance, leakage from AES’s second
round can be exploited using collisions [BGL09] or higher-order attacks [LPdH10]. In
principle, deep learning’s name and heuristic nature could give the impression it might
exploit the low diffusion of SKINNY, going deeper into the cipher. Yet, the typical DL-SCA
workflow [BPS+20] provides no evidence it would, as we elaborate upon in Section 4.4.

2 Preliminaries
2.1 Substitution–Permutation Networks
SPN Ciphers A Substitution–Permutation Network (SPN) is one of the main paradigms
to design a blockcipher [KR11]. An SPN cipher encrypts a plaintext by iterating a round
function composed of a round-key addition, a substitution layer and a permutation layer.

First, a round-key derived from the master key is mixed with the input, typically using
exclusive-OR. The substitution layer then splits the input into shorter blocks and applies
to each block a fixed permutation, called S-Box. The resulting (short) blocks are finally
mixed in the permutation layer using a carefully chosen linear function. The substitution
and permutation layers achieve confusion and diffusion, respectively.

The existing standard AES [AES01] is an SPN cipher, where both the substitution and
permutation layers are chosen to produce high levels of confusion and diffusion fast. In
contrast, for lightweight ciphers the substitution and permutation layers are often much
simpler and lighter, resulting in much slower diffusion.

Fast and Slow Diffusion Although the properties of diffusion and confusion date back
to Shannon [Sha49] and Feistel [Fei70], the concept of fast or slow diffusion was not part
of their original work. Yet, with the development of differential cryptanalysis it became an
integral part of designing cryptographic primitives. Properties like differential branching,
the minimal amount of active S-Boxes, or how many rounds are needed for full diffusion in
the state, are now closely looked at by designers and standards organizations [NIS18, 4.1].

Our focus will be on SKINNY [BJK+16], part of a group of ciphers [BKL+07, BPP+17]
that use very slow diffusion components, such as a sparse permutation layer and a simple
key schedule. These lightweight ciphers compensate their slow diffusion with more rounds,
allowing for instance SKINNY’s designers to argue that their cipher still resists differential
attacks. Our interest lies in how light diffusion impacts SCA and DPA in particular.

2.2 Differential Power Analysis on SPN Ciphers: AES-128
Template Attacks as Divide-and-Conquer Maximum Likelihood Estimates In a power
analysis attack, an adversary tries to recover a secret key by exploiting information obtained
through power measurements, usually called a trace, of a device running a cipher on known
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inputs. As the power consumption of a running processor depends on the operations and
the values it computes, a trace of an encryption or decryption will contain points where
the key leaks, i.e. points where the power depends on the value of the key.

A well-known strategy to exploit said leakage is differential power analysis (DPA),
introduced by Kocher et al. [KJJ99] and subsequently refined, including template at-
tacks [CRR03]. Below we give a brief run through a typical divide-and-conquer template
attack against AES-128 from a more modern perspective, simultaneously introducing the
notation that will facilitate our new attacks against SKINNY.

An AES-128 key consists of 16 bytes, which we treat as individual random variables
K1, . . . ,K16. The full key K is the set of all 16 random variables. Suppose an adversary
is concentrating on the 16 first-round S-boxes, observing M traces with random known
plaintexts. We use random variable X to denote the entire collection of plaintexts, Lj for
the leakage (across all the traces) on S-box j ∈ [16] and L for the combined leakage on all
16 S-boxes, so L = (L1, . . . , L16). Instantiations are denoted with the corresponding lower
case, e.g. x, `j , `.

An adversary trying to optimize its success rate, would output the most likely key, also
known as the Maximum-A-Posteriori (MAP) estimate

arg max
k

Pr[K = k |L = `, X = x ] ,

where x and ` are the actually observed plaintexts, respectively traces, by the adversary.
Bayes’s theorem allows transformation of the MAP into the Maximum-Likelihood

Estimate (MLE)
arg max

k
p(L = ` |K = k, X = x ) ,

as
Pr[K = k |L = `, X = x ] = p(L = ` |K = k, X = x ) · Pr[K = k |X = x ]

p(L = ` |X = x ) ,

where we use that AES-128 keys are chosen uniformly at random and we assume that
the plaintexts X to be encrypted are independent from the key. Consequently, the
probability Pr[K = k |X = x ] = 2−128 does not depend on the key guess k, nor does
p(L = ` |X = x ) 6= 0, so neither influences the arg max calculation. To reflect that leakage
is usually modelled using continuous distributions, we use a probability density function
(pdf) p(·) instead of a probability Pr[·].

As we mentioned, we suppose that the leakage is composed of that of the 16 individual
first-round S-boxes. A common modelling approximation is to assume that an S-box’s
leakage only depends on its input and, conditioned on that input, is independent of any
other randomness in the system. Although real-world leakage is seldom so neat, we will
use this approximation as well. Specifically, the leakage on different S-boxes is considered
independent of each other conditioned on the full key and plaintexts, so we may instead
concentrate on

arg max
k

∏
j∈[16]

p(Lj = `j |K = k, X = x ) .

A further simplification is possible by realizing that, for AES-128, the input to the jth
S-box only depends on the corresponding key-byte, leading to

arg max
k=(k1,...,k16)

∏
j∈[16]

p(Lj = `j |Kj = kj , X = x )

(one could also isolate the relevant bytes from the plaintexts, however as there is no
conceptual benefit in doing so, we forgo introducing the notational overhead to do so).

So far, our description of DPA has been fairly standard using well-known mathemat-
ical notation common in the SCA literature. Next, we restate the final simplification



466 Pincering SKINNY by Exploiting Slow Diffusion

using terminology from probabilistic graphical models [KF09]. A key concept in that
domain is that of a factor φ for a set of random variables. A factor is a map from
the values over which the random variable is defined to the non-negative real numbers.
For instance, a factor φ1(K1) maps any possible value k1 ∈ {0, 1}8 to a real. Define
φj(Kj) = p(Lj = `j |Kj = kj , X = x ) for j ∈ [16] and let Φ be the set of φj and set

P̃Φ(K1, . . . ,K16) = φ1(K1)× . . . φ16(K16)

then the optimization problem the distinguisher is trying to solve is

arg max
k

P̃Φ(k) = arg max
k=(k1,...,k16)

∏
j∈[16]

φj(kj) ,

which equals (
arg max

k1

φ1(k1), . . . , arg max
k16

φ16(k16)
)
,

given that each ki only appears in a single factor φj (namely for j = i). This last
step makes explicit the divide-and-conquer nature of a typical template or MAP attack
against AES-128 as each subkey byte can be recovered independently of the others (by
concentrating on the leakage of a single, relevant S-box), after which recombination is
straightforward.

A common metric to evaluate how good an DPA attack works is its success rate [PGA+23]:
the probability that it recovers the actual key. In that sense, the MLE is optimal, as long
as all the assumptions used to derive it are met [CRR03, HRG14]. Moreover, the success
rate for full key recovery equals the product of the success rates for the individual key
bytes and an evaluator can easily estimate these success rates by the fraction of successful
key recoveries over a sufficiently large number of experiments. We will use the success rate
throughout this work to compare attacks against each other.

Another useful evaluation metric is key ranking [PGA+23] where, for a single experiment,
the key rank corresponds to the position of the correct key among all key candidates (ranked
from most to least likely). A global key rank histogram paints a more complete picture
of an implementation’s security against SCA than success rate and it can be obtained
experimentally by (repeatedly) running a suitable key rank evaluation algorithm [MOOS15,
YMO22] on the combined distinguishing scores for the individual subkeys (histograms for
individual subkey bytes are less informative [MMOS16]). For scores emanating from SCA
attacks relying on graph inference a further complication arises, as the graph inference itself
could be run such that it enumerates the full keys directly (see also Step 3 of the attack
outline in Section 4.4.3), which is potentially more efficient than standard enumeration
based on (essentially marginalized) distinguishing scores. To the best of our knowledge,
the corresponding ranking problem has not yet been studied.

Distinguishing Scores as Factors Evaluating a factor φj(Kj) given `j and x corre-
sponds to the known process of calculating distinguishing scores. We can generalize this
interpretation of distinguishing scores as factors as follows. A distinguisher typically
targets a specific intermediate value vj , say the output of the jth first-round S-box (as
above). However, one can also target other intermediate values, for instance Mather et
al. [MOW14] exploit leakage from AES’s MixColumns operation, targeting as intermediate
value vj = GFm2(statei ⊕ statei′), the doubling (in AES’s finite field F28) of the sum of
the outputs of first round S-boxes i and i′. In this case, the intermediate value vj depends
on both key bytes Ki and Ki′ ; whereas Mather et al. talk about distinguishing scores on
16-bit subkeys, we would instead consider those same scores as a factor φj(Ki,Ki′) instead,
where φ’s subscript indicates which intermediate value is targeted and the argument which
key variables are leaked upon. (In later sections, we often omit φ’s subscript and simply
identify different factors by the different key variables they leak upon.)
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As factors are essentially abstracting distinguishing scores, their evaluation is stan-
dard, as it matches that of the distinguisher. We will consider the classic maximum-
likelihood (MLE) and correlation (CPA) distinguishers, for which efficient algorithms are
known [BB17]. In essence, for each key candidate and each trace, the known plaintext
(and ciphertext) are used to predict the intermediate value and that prediction is sub-
sequently coupled with the observed leakage to update the score for the key candidate.
The time complexity of both the MLE and CPA distinguishers against byte-wise SKINNY
is O

(
M · 28·W ) per factor, where M is the number of traces and W is the (maximum)

number of key bytes a factor may depend upon. The memory complexity is dominated by
the storage needs of the factors, so it is O

(
28·W ) per factor. Crucially, as both the MLE

and CPA distinguishers allow online evaluation, the number of traces only affects the data
complexity, but not the memory complexity. Previous works have evaluated factors up to
32-bits subkeys [MKP12, MOW14]. Henceforth, we will call an intermediate variable (or
operation) enumerable if its corresponding factor depends on a subkey sufficiently small to
enumerate (with 32-bit subkeys or W = 4 as our upper limit) in order to evaluate said
factor.

3 An Analysis of the SKINNY Cipher

3.1 The SKINNY Blockcipher Specification
The SKINNY Family SKINNY is a tweakable blockcipher family [BJK+16] that follows
the “tweakey” framework [JNP14]. Instead of the usual key state, a tweakey state, denoted
TK , contains both tweak and key. We will concentrate on the SKINNY-128 subfamily,
where the tweakey state can be 128, 256 or 384 bits with 128 bits of key material, and
for now, we will focus on SKINNY-128-128, meaning that TK = key. In Section 6,
we will review the susceptibility to our attack of other variants of SKINNY, including
SKINNY-128-384+ (as used by the latest version of Romulus [GIK+21]).

Specification SKINNY uses an SPN construction with a round function consisting of
five operations: SubCells, AddConstants, AddRoundTweakey, ShiftRows and MixColumns.
For SKINNY-128-128, this round function is iterated 40 times. Following the general
description of an SPN cipher (Section 2), we divide the round function of SKINNY into
key addition, substitution layer and permutation layer. Similar to AES, SKINNY-128’s
state is viewed as a bytewise 4× 4 array.

The SubCells operation performs the substitution layer and uses an 8-bit S-Box applied
to every byte of the state. The permutation layer uses three operations: AddConstants is
an XOR of 3 constants (one fixed, two changing every round) to the first three bytes of
the first column of the state; ShiftRows is similar to the AES ShiftRows, albeit shifting to
the right instead of the left; finally, MixColumns is a multiplication of every state column
by the binary matrix M (respectively M−1 for the decryption), where

M =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 and M−1 =


0 1 0 0
0 1 1 1
0 1 0 1
1 0 0 1

 .

For its key addition, SKINNY-128-128 only takes the top two rows of its tweakey state
and XORs them to the top two rows of the cipher state. (In contrast, AES-128 XORs the
full round key with the full state.) Subsequently, SKINNY-128-128 uses a very light key
schedule to update the tweakey state: the position of each byte in the state is shuffled
using the permutation
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PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7] .

The choice of PT has several interesting consequences. Its period is 16, so every 16
rounds TK = key, which will play a role when we will look at different versions of SKINNY
later on. Yet more importantly, PT keeps the first and last 8 bytes of the key separated:
K1 to K8 participate in odd-numbered rounds and K9 to K16 in the even-numbered ones.

3.2 SCA Perspective of SKINNY
Key Observations SKINNY contains various features that provide opportunities.

(i) Firstly, the combination of only partial tweakey absorption into the state and PT ’s
property of keeping the two halves of the key artificially separated allow an attacker
to recover the first and last half of the key independently by targeting the first and
last rounds, respectively (technically, this observation also relies on an even number
of rounds, which is the case for all variants of SKINNY).

(ii) Secondly, the key schedule completely lacks internal diffusion: the individual bytes in
TK never interact (their positions change, but they never mix). Consequently, any
given byte of any round-tweakey depends only on a single byte of the master key.

(iii) Finally, slow diffusion of MixColumns. SKINNY’s designers indicate that six rounds
are necessary to diffuse the key to the state fully. Unsurprisingly, such diffusion leads
to multiple S-Boxes in early rounds to depend on only a few key bytes, consequently
becoming enumerable. Furthermore, the two earlier features imply that the same is
true for the late rounds (for an adversary with knowledge of the ciphertexts).

As we will demonstrate, the three observations above combine to allow an SCA attacker
to exploit S-box leakages from both sides of the trace several rounds deep. Similar to
AES-128, when attacking the first rounds, we exploit knowledge of the plaintexts, whereas
when attacking the last rounds, we use the ciphertexts. As there are some subtle differences
between the first and last rounds, we will consider them separately up to three rounds
deep. However, our final attack will only exploit leakage from S-Boxes two rounds deep,
so from 4 rounds in total (2, 3, 39 and 40).

A Look at the First Few Rounds As SKINNY starts with SubCells without whitening,
the first round S-Boxes do not depend on the key and, consequently, only leak on the
plaintext. Instead, we start by exploiting the S-Boxes in the second round, after the
ShiftRows and MixColumns operations. Here the slow diffusion of SKINNY helps us.
Consider the structure of the matrix M :

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

×

a
b
c
d

 =


a+ c+ d

a
b+ c
a+ c


and recall that only the top two rows (a and b) receive some key material (so we can
imagine c, d = 0). Then MixColumns results in the a key bytes being spread out over three
rows, gifting us multiple S-Boxes all leaking on the same a key bytes. This behaviour
already constitutes a significant departure from AES, where each key byte only leaks
during a single S-Box evaluation.

The light diffusion carries over to subsequent rounds, as illustrated by Figure 2.
Restricting to 32-bit subkeys, all the S-Boxes in round 3 and one hapless S-Box in round 4
would be enumerable, resulting in 33 exploitable S-boxes in the first rounds. However, for
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Figure 2: Key diffusion for SKINNY’s first few rounds

our main attack, we limit ourselves to 16-bit subkeys, thus we can only exploit 4 S-Boxes
from round 3 (in addition to the 16 from round 2, for a total of 20).

A Similar Tour of the Last Few Rounds For the exploitation of the last few rounds, it
helps to think of the cipher in reverse order, almost as if it were decrypting. Indeed, for
the following we will refer to cipher operations by their inverse and exploit rounds starting
from the last, continuing towards the first.

The last round (40) finishes with the permutation layer, so when attacking the S-Boxes
of the last round, there are no operations between AddRoundTweakey and SubCells. Since
only the top two rows are affected, the two bottom rows of the state are fully determined
by the ciphertext and do not yield exploitable leakage. We therefore get 8 S-Boxes that
leak on K9 to K16, with each S-Box depending on a single key byte.

Similarly to the first rounds, the slow diffusion leads to exploitable S-Boxes in the
‘following’ two rounds. However, reversing the order of the operations results in a different
pattern of how the S-boxes depend on the various key bytes. Following the SubCells from
round 40, the inverse MixColumns in round 39 produces:

0 1 0 0
0 1 1 1
0 1 0 1
1 0 0 1

×

a
b
c
d

 =


b

b+ c+ d
b+ d
a+ d

 .

Here again, only a and b contain key material, so MixColumns this time spreads out the
b key bytes over three rows. However, there is an AddRoundTweakey before the SubCells.
Thus for round 39 the S-boxes in the top two rows will each depend on two key bytes; the
S-Boxes in the bottom two rows still depend on a single key byte each.

Figure 3 illustrates how the key propagates through the last rounds. For the 32-bit
subkeys limit, there are 37 exploitable S-Boxes in those last three rounds. When limiting
ourselves to 16-bit subkeys, we only get 24.

Initial Damage Assessment The combination of a very light key schedule and slow
diffusion makes SKINNY a fascinating target for SCA, with many S-boxes depending on
relatively few key bytes, as shown in Figure 4. In total, 70 S-Boxes each depend on 32
bits of the master key (or less). Even an attacker restricted to 8-bit subkeys could still
use 32 S-Boxes, twice as many as for AES. For our attacks, we will exploit 44 S-boxes: 32
depending on a single key byte and 12 depending on two key bytes.

However, identifying those structural weaknesses of SKINNY does not mean that
exploiting all those S-Boxes in a single attack is trivial. While a straightforward divide-and-
conquer attack works for AES, and for SKINNY when restricting to 8-bit subkeys, once
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Figure 3: Backwards key diffusion for SKINNY’s last few round
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Figure 4: Key-byte dependency of each S-Box in the first and last rounds of SKINNY

16-bit subkey S-Boxes enter the fray, the same key byte can feature in multiple factors and
combining those factors in an efficient and effective manner is no longer straightforward.

4 Combining Factors Using Cluster Graph Inference (CGI)
To exploit the leakage from all the S-Boxes in Section 3 we need a new strategy. For
each S-Box, its leakage across traces is captured in a factor. As we restrict ourselves to
S-boxes that depend on at most a 16-bit subkey, each factor depends on either one or two
key bytes. Table 1 surveys which key byte combinations occur for SKINNY-128-128 and
their multiplicities. We will refer to the factors from column 1 as mono-dependent factors,
those from column 2 as bi-dependent factors, and finally those from columns 3 and 4 as
hi-dependent factors.

In Section 2 we rephrased the key recovery task as finding arg maxk P̃Φ(k) where Φ is
the set of all factors and P̃Φ(K) is the product of all factors (with the random variables
K1, . . . ,K16 ∈ K correctly spread out over the factors). For AES-128, combining the
factors obtained from the first round S-Boxes allowed the customary divide-and-conquer
approach where each key byte is recovered independently of the others. We will next delve
into how to evaluate arg maxk P̃Φ(k) for three new scenarios, depending on whether Φ only
contains mono-dependent factors (Section 4.1), also bi-dependent factors (Section 4.2), or
even hi-dependent ones (Section 4.3).

4.1 Combining Mono-Dependent Factors (8-bit Subkeys)
If we limit ourselves to S-Boxes that depend on a single key byte, i.e. the ones listed in the
first column of Table 1, computing the MAP distinguisher is straightforward: we are still
in a divide-and-conquer scenario. The only difference is that some key bytes leak across
multiple independent S-Box computations.

Instead of having 16 factors φj(Ki) with j = i, we now have 32 factors, so some Ki feed
into multiple factors, say {φj(Ki), φj′(Ki), φj′′(Ki)}. As each S-Box just depends on a
single key byte, we are still guaranteed that each factor only depends on a single key byte.
We can then easily combine all factors that depend on the same subkey by computing
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Table 1: Summary of all available S-Box leakages up to 32-bit subkeys
8-bit subkey 16-bit subkey 24-bit subkey 32-bit subkey
byte # bytes # bytes # bytes #
K1 3 K1,K10 1 K1,K6,K10 1 K1,K2,K6,K10 1
K2 3 K1,K13 1 K1,K7,K11 1 K1,K4,K5,K14 2
K3 3 K2,K9 1 K1,K13,K15 1 K2,K3,K7,K16 1
K4 3 K2,K16 1 K1,K13,K16 1 K3,K4,K8,K9 1
K5 1 K3,K9 1 K2,K7,K16 1 K3,K10,K13,K14 1
K6 1 K3,K10 1 K2,K8,K15 1
K7 1 K4,K14 1 K2,K9,K11 1
K8 1 K4,K16 1 K2,K9,K12 1
K9 2 K5,K13 1 K3,K5,K13 1
K10 2 K6,K9 1 K3,K8,K9 1
K11 2 K7,K16 1 K3,K10,K14 2
K12 2 K8,K10 1 K4,K5,K14 1
K13 2 K4,K6,K12 1
K14 2 K4,K11,K12 1
K15 2 K5,K12,K13 1
K16 2 K6,K9,K14 1

K7,K12,K16 1
K7,K13,K16 1
K8,K10,K15 1

Total 32 12 20 6

ψ(Ki) = φj(Ki)× φj′(Ki)× φj′′(Ki). Simply put, we can compute scores for each S-Box
independently and multiply them together to obtain 16 factors for 16 key bytes.

In essence, this observation was already used by Mather et al. [MOW14], although they
took the extra step of transforming their factors (or scores) into posterior probabilities. It
shows that exploiting the leakage of 16 additional S-Boxes is easy for SKINNY and, as a
rule of thumb, we would expect that leaking on twice as many S-Boxes means we only
need half the number of traces.

4.2 Combining Bi-Dependent Factors (16-bit Subkeys)

Problem Description Combining our previous 32 S-Boxes with the 12 that depend on
two different key bytes is challenging. We could exploit factors derived from such S-Boxes
with marginalisation. Despite factors not being actual conditional probabilities, we can
still eliminate a variable by max marginalising it. For example, imagine that we have a
factor φ(K1,K2), and we wish to transform it to a factor only depending on K1, essentially
transforming a map from {0, 1}16 → R to {0, 1}8 → R. What we can do is, for every
k1 ∈ {0, 1}8, select the maximum of φ(k1, k2) over k2 ∈ {0, 1}8. As a factor depending on
two variables can be represented as a matrix, this maximization is equivalent to picking the
max for each column (or row, depending on which variable to eliminate), and we denote it
by φ(K1) = max

k2
φ(K1, k2).

We could use this operation to exploit our additional S-Boxes. For each Ki, pick all
the factors that depend on Ki, use the max-marginalisation to eliminate the other key
bytes for the 16-bit subkey factors, and multiply all the resulting factors as we did before.
However, this local process loses a lot of global information, and we can do much better
by recovering all the key bytes simultaneously.
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Figure 5: Example of a clique tree

Cluster Graphs and Clique Trees However, the problem we are trying to solve, namely
finding arg maxk P̃Φ(k), can be solved much more conveniently using probabilistic graphical
model theory. In particular, we will use what is called a cluster graph, adapted for factor
manipulation [KF09, 10.1.1]. For a set of factors Φ over the set of variables K, we can
construct a graph where each node in the graph is associated with a subset, or cluster,
Ci ⊆ K. Factors are assigned to clusters such that all variables feeding into the factor are
in Ci. For two clusters with non-empty intersections, we may draw an edge, labeled with
said non-empty intersection.

For example, one can build the cluster graph given in Figure 5 for the set of factors

Φ = {φ(K1,K2), φ(K2), φ(K2,K6), φ(K2,K14), φ(K14,K5), φ(K5)} .

Crucially, a given set of factors Φ might be represented by different cluster graphs.
Firstly, there is a non-displayed choice of how factors are assigned to clusters. For the
16-bit factors there is no option but their corresponding clusters. However, an 8-bit factor
can go in any cluster that contains its subkey. Concretely, for φ(K5), only one cluster
is available, but φ(K2) could go in any of the other three (whichever is chosen does not
impact the structure of the graph or our subsequent analysis and attacks).

More importantly, edges between nodes may be drawn, but there is no obligation (as
long as the reduced cluster graph does not have more components than the full cluster
graph). Thus, even the structure of the cluster graph is not unique, and in our example
not all edges are displayed. For instance, we could have drawn the edge between (K1,K2)
and (K2,K6), as they have a non-empty intersection of their clusters in K2.

Typically, the way to construct a cluster graph is to draw all the edges initially and
then remove enough edges to turn the graph into a tree. Cluster graphs are particularly
efficient at solving the MAP problem if they are trees that satisfy the running intersection
property (Definition 1). In that case, we call the graph a clique tree.

Definition 1 (Running intersection property (copied from [KF09, Definition 10.2])). Let
T be a cluster graph and C its clusters. T has the running intersection property if,
whenever there is a variable K such that K ∈ Ci and K ∈ Cj , then K is also in every
cluster in the (unique) path in T between Ci and Cj .

Given a cluster graph, checking whether it is a clique tree is easy; for instance, Figure 5’s
graph is a tree and has the running intersection property, making it a clique tree.

A Clique Tree for SKINNY Remarkably, the 44 bi-dependent S-Boxes of SKINNY,
corresponding to columns 1 and 2 of Table 1, comprise a factor set that also allows for a
clique tree, as shown in Figure 6. Subkeys K11, K12 and K15 are missing from the graph
as they do not appear in any of the 12 S-Boxes with a 16-bit subkey. Essentially, for those
subkeys the classical divide-and-conquer approach still works and their optimal guess can
be recovered independently of the other subkeys (in extremis, a forest of clique trees each
consisting of a single node yields the AES-128 situation).
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Figure 6: Clique tree formed by the 16-bit dependent leakages of SKINNY

It might seem a bit magical that the S-Boxes of a cipher arrange so nicely in a tree.
Picking pairs of key bytes at random would probably lead to a loop somewhere in the
graph. However, the 12 pairs are not random. From the analysis in Section 3, we recall
that SKINNY’s key scheduler splits the key bytes into two sets and uses them alternatingly
for the round key. All our 16-bit subkeys come from round 3 and round 39 and are
composed of one key byte from each set. While this construction does not guarantee that
the resulting graph is a tree (for example, an extra factor φ(K2,K10) would break the
running intersection property), it certainly helps.

The Max-Product Algorithm As our cluster graph is a clique tree, we can use the
so-called max-product algorithm (Algorithm 1) to efficiently return the exact answer to
our MAP problem and effectively combine the leakage of our 44 S-Boxes. We provide a
detailed explanation of how the algorithm works below, for a more in-depth explanation of
why it works, see the reference work of Koller and Friedman [KF09, Algorithms 10.1, 10.2
and 10.3].

Algorithm 1 takes as input a set of factors Φ, a set of clusters C, and a mapping α
from the factors to the clusters (where the convention is that the clusters are indexed
by natural numbers). In the case of our attack on SKINNY, the set of factors are the
distinguishing scores resulting from the mono- and bi-dependent S-boxes (first two columns
of Table 1) and each factor over two subkeys (second column of said table) goes into its
own cluster, where the assignment of the factors over a single cluster to any cluster having
that subkey in its scope can be arbitrary (it will not affect the result of the algorithm).
The algorithm additionally takes as input a clique tree T (Figure 6 for SKINNY) with one
arbitrary cluster Cr in the clique tree designated as root (again, the choice does not affect
the eventual result).

During initialization, for each cluster Ci, the initial belief βi for its variables is set as
the non-empty product of the factors assigned to it:

βi ←
∏

φ : α(φ)=i

φ ,

where the product is essentially a Hadamard-style product. For instance, in the case
of SKINNY, imagine the root cluster Cr has the three factors φ1(K1,K10), φ2(K1) and
φ3(K10) assigned to it (so α(φ1) = α(φ2) = α(φ3) = r). Then for all k1, k10 ∈ {0, 1}8, we
would calculate βr(k1, k10) = φ1(k1, k10) · φ2(k1) · φ3(k10).
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As the algorithm uses message passing, each edge (i, j) in the clique tree T is associated
with a message previous µi,j that was sent over that edge. All messages µi,j are initialized
to 1, the neutral element under multiplication. As edges have no direction, we stipulate
that µi,j = µj,i by convention. Yet, when new messages are sent, they do flow from one
cluster to another, as indicated by the notation δi→j (see below).

The algorithm proper proceeds in two phases of message passing: in the upwards pass,
belief is coagulated towards the root and in the subsequent downwards pass, it is spread
back across the tree to ensure consistent beliefs throughout. During the upwards pass, each
non-root cluster Ci will transmit once, and it can do so once all-but-one of its neighbours
have transmitted, when Ci’s message will be to that exceptional neighbour Cj that has
not transmitted yet. Thus, the upwards pass starts at the leaves of the tree and ends at
the root (which does not send a message in the first phase).

The message transmitted between Ci and Cj , denoted δi→j , is the current belief held
by Ci max-marginalized by the subkey in Ci not on the edge of transmission, i.e. the
subkey not in the intersection of Ci and Cj :

δi→j ← max
Ci−Ci∩Cj

βi .

For instance, for SKINNY’s clique tree, when the cluster Ci with only the factor φ1(K8,K10)
messages the cluster Cj with factor φ2(K1,K10), the max-marginalization ensures that
the message sent is about the belief Ci holds about K10, as is relevant to Cj . Specifically,
for each k8, k10 ∈ {0, 1}8 we have that δi→j(k10) ← maxk8 φ1(k8, k10), where βi = φ1 as
Ci contains only that single factor.

The receiving cluster then incorporates the message in its belief with the product

βj ← βj ×
δi→j
µi,j

.

For the example above, Cj would compute, for each k1, k10 ∈ {0, 1}8, βj(k1, k10) ←
βj(k1, k10) · δi→j(k10), where we omitted the division by µi,j = 1.

Finally, µi,j ← δi→j reflects that the last message transmitted on the edge (i, j) has
changed. As a small aside, as each µi,j is only used once in the upwards pass, one
could dispense with its initialization, omit the division by µi,j = 1 when calculating δi→j
and instead rely on the µi,j ← δi→j update to have well-defined µi,j for the subsequent
downwards pass; we opted for the current write-up to highlight the symmetry between
both passes.

Once the root is the only cluster left transmit a message, the downwards pass begins. A
cluster is called informed if it has received the information from all the other clusters, and at
this stage, the only informed cluster is the root cluster. A second phase of message passing
begins, from informed clusters to non-informed, ending when each cluster has received one
message. As soon as a cluster receives a message in the second phase (necessarily from an
informed cluster), it can broadcast to all its neighbouring non-informed cluster (thereby
informing those clusters). The messages being passed are constructed in the same way as
in the first phase. When all clusters have received one message, we can extract the scores
for any Ki from any cluster containing this subkey using max-marginalization.

Another, similar algorithm combines factors using summation instead of maximization
when marginalising variables. This so called sum-product algorithm is more suited for
probability queries (e.g. to enable subsequent key enumeration) whereas the max-product
algorithm is exact for MAP-queries (and hence optimal for success rate). Out of curiosity,
we tried both, and we could hardly see a difference, except for very low success rates where
the sum-product algorithm seemed to give a better rank. Since we use success rate as our
metric, we stick with the max-product algorithm.
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Algorithm 1 Max-Product Algorithm for Full Key Recovery
Input:

Φ a set of factors
T a clique tree over Φ, with C its clusters
α initial assignments of factors to clusters
Cr an arbitrarily selected root cluster

Output:
Updated scores S(Ki = ki) for each Ki

// Initialize T
for each cluster Ci do

// Initial factor values of each cluster is the product of their asssigned factors
βi ←

∏
φ : α(φ)=i φ

for each edge (i, j) ∈ T do
µi,j ← 1 // Setting the initial value of previous message

// Start upward pass
// A cluster is ready when all of its neighbours but one have sent a message
while There is a cluster ready in C− Cr do

Pick i, j such that i is ready to transmit to j
δi→j ← max

Ci−Ci∩Cj

βi

βj ← βj × δi→j

µi,j

µi,j ← δi→j

// Start downward pass, Cr is the only informed cluster
while There exist an uninformed cluster do

Pick i, j such that i is informed and j is a non-informed neighbour
δi→j ← max

Ci−Ci∩Cj

βi

βj ← βj × δi→j

µi,j

for i ∈ [16] do
Pick any Cj such that Ki ∈ Cj
S(Ki = ki)← max

Cj−Ki

βj

Cluster Graph Inference Enhanced DPA in Full To conclude, the final workflow of our
attack is as follows.

1 (Compute Distinguishing Scores) First compute the raw factors for each S-Box
by running any distinguisher targeting individual S-boxes, making the attack quite
flexible as it allows both non-profiled and profiled attacks (including based on deep
learning, see Section 4.4)

2 (CGI Enhancing) Use cluster graph inference to combine the factors, creating a
unified, global perspective on what are the most likely key byte candidates. One can
switch to the min-sum algorithm for combination if the scores are additive rather
than multiplicative.

3 (Recover Full Key) Use marginalization on the factors to determine the most
likely key byte for each subkey and return it. Optionally, perform key enumeration
based on the marginalized subkey scores, possibly switching to the sum-product
algorithm for the cluster graph inference.

The factor evaluation dominates the complexity of the attack, in particular the ones
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with a 16-bit subkey. For every attack trace, 216 values need to be updated, which accounts
for most of the work. However, since the S-Boxes have only 256 output values, the amount
of pdfs to evaluate does not grow with the subkey.

To give an estimate of the cost of running the max-product algorithm, our non-
optimised python implementation (of its min-sum incarnation) on the SKINNY graph runs
in approximately ten milliseconds. This runtime is independent of the number of traces,
trace acquisition, or distinguisher, as it only combines the scores. Given this low overhead,
calculating factors and combining them can be interleaved if need be, retaining the online
nature of most existing distinguishers.

4.3 Combining Hi-Dependent Factors (24-bits and Beyond)
So far, we have explained how to combine the bi-dependent factors, thus exploiting the
leakage of 44 S-Boxes. We leave the exploitation of all 70 S-Boxes identified in Table 1 as
future work, for which there are two challenges to overcome.

The first one is purely computational and relates to factor evaluation. Evaluating scores
on 24- and 32-bit subkeys requires a significant amount of computing power. Although,
there is precedent for computing these kinds of scores [MOW14, MKP12], it was beyond
our resources.

The second one is more technical and relates to the cluster graph inference itself. We
mentioned earlier three key bytes were missing from the clique tree. These could be inte-
grated using, for example, the factors φ(K2,K9,K11), φ(K2,K9,K12) and φ(K1,K13,K15)
from column 3 of Table 1. Adding any more than those three factors of column 3 to the
graph would break the running intersection property. Although there do exist (loopy)
variants of the max-product algorithm [KF09, 11.3, 13.4], these are neither guaranteed to
converge, nor to return the exact result (cf. the use of loopy belief propagation for factor
graph inference, see below).

4.4 Cluster Graphs versus Factor Graphs
4.4.1 Large Factor Graph Approximate Inference (LFGAI)

The use of factors and belief propagation to extract keys from leakage is also possible
by using factor graphs instead of cluster graphs. In general, factor graphs can represent
information in a more fine-grained way than cluster graphs. They are unidirectional
bipartite graphs with on the one hand variable nodes and on the other hand factor nodes.
A factor node and variable node are connected by an edge if and only if the given factor
depends on the respective variable.

Concept Veyrat-Charvillon et al. [VGS14] suggest the use of factor graphs for profiled
side-channel analysis as follows. As its variables, they use not only the byte-wise subkeys,
but also the byte-wise intermediate values that are leaked upon (plus any additional
byte-wise auxiliary values necessary to reach those leaky intermediates). The factors
themselves either represent leakage on a given variable, or the relationship between two or
three variables according to the cipher’s specification (e.g. that one variable is the XOR of
two other ones). Notably, for each trace a fresh set of auxiliary and intermediate values is
added to the factor graph, thus the full factor graph consists of a central component of
common subkey variables to which M identical per-trace subgraphs are connected.

Given a factor graph, belief is propagated along the edges based on two types of
messages. Both types encode belief related to the variable connected to that edge, so a
single message appears as a score vector (encoding a score for each possible value the
variable can take). The messages from variables to factors are simply Hadamard products
of the messages (score vectors) received by that variable on the other edges in the previous
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iteration on the other edges, whereas the messages from the factors to the variables are of
the sum-product type (also based on messages received in the previous round).

The factor graph inference can be initialized by a combination of non-informative
priors (for variables without leakage) and initial beliefs for the intermediate values for
each trace. The only realistic way of forming these initial beliefs is using some form of
profiled distinguisher for the various leaky intermediate, be it a classical template-style
distinguisher or a more advanced one, e.g. based on deep learning.

If the factor graph does not contain any loops, then the belief propagation is guaranteed
to converge to the exact solution of the inference problem (where the number of steps
needed is at most the diameter of the graph). However, if the factor graph does contain
loops, the belief propagation becomes loopy and is no longer guaranteed to converge (e.g. it
might oscillate) and even if it does, it might only be to an approximate solution [MWJ99].
In the context of side-channel attacks, the relevant large factor graphs are almost always
loopy, which makes LFGAI a heuristic approach.

Discussion As mentioned, LFGAI requires profiling of the intermediate variables and
it replaces, rather than enhances, how a distinguisher would deal with a large number
of traces. As all traces are represented in the large graph and inference can only take
place subsequently, LFGAI inherently conflicts with online processing of traces. A related
downside of LFGAI are its time and memory complexities, as detailed below (restricting
to byte-wise variables).

The main cost in representing the graph itself are the beliefs on the leaky variables
(typically stored as a vector of 28 floats). When exploiting the same 44 SKINNY S-boxes
as we do, LFGAI would lead to a memory complexity of roughly 44 · 256 ·M floats, i.e. a
memory cost linear in the number of traces M .

Calculating the messages for a variable connected to d factors can be done in d·(d−1)·28

operations. However, the messages from the factors to the variables are of the sum-product
type and, if a factor is connected to d variables, naïvely computing all the messages has
complexity d · 28(d−1). For SKINNY, the factors with d = 3 will hence be dominating the
computation. These are the XOR operations, whose number in the large factor graph is
linear in the number of traces M .

In contrast, CGI can enhance any distinguisher, including non-profiled ones and relies
on the distinguisher to process the traces. Thus, for CGI memory complexity is typically
independent of the number of traces (as most distinguishers such as CPA and MLE
have fixed memory costs), with only the time complexity linear in the number of traces.
Moreover, the max-product based post-processing of factors is fast enough that online
processing of traces remains an option when the underlying distinguisher supports it.

4.4.2 Independent Factor Graph Approximate Inference (iFGAI)

Green et al. [GRO19] suggested two modifications to factor graph inference. Firstly, in
order to reduce the memory complexity, they recommend to create separate, smaller factor
graphs for each trace and only combine the beliefs on the key variables across factor graphs
towards the end. As this final combination can be done by simply adding or multiplying
scores, it can easily be done on-the-fly instead. Thus, this modification allows online
processing of traces again and reduces the memory requirements to essentially one small
factor graph at a time, making memory consumption independent of the number of traces.
Secondly, they propose a method to identify the most informative variables in the factor
graph and suggest to remove less informative edges and variables in order to remove any
loops and make the factor graph a tree. Although this approach makes the subsequent
inference exact, the overall method is still heuristic due to choice of which nodes and edges
to remove from the full factor graph. Although Green et al.’s suggestions make factor
graph inference more practical, the downside is that the overall attack becomes less potent;
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for various of their experiments more traces are needed to reach the same overall success
rate as for the large factor graph original.

Discussion Both Veyrat et al. and Green et al. concentrated on AES-128 and identified
loops in the factor graph as a potential problem. From that perspective, we can perform
a cursory investigation into the likely sources of loops when creating a factor graph to
exploit the same leakage for SKINNY as we do.

When considering a factor graph representing only a single trace (as for iFGAI), we
observe that the very lightweight features that we exploit, also delays the introduction
of loops. Firstly, SKINNY’s light key-schedule can be represented in the factor graph as
simply variable nodes for each of the key bytes without any further processing. In contrast,
for AES, the key schedule itself could introduce loops, e.g. when expressing the relationship
between the first and last round keys. Secondly, SKINNY’s low-diffusion linear layer can
be encoded into a factor graph without inevitably creating loops. In contrast, for AES,
already the scalar multiplication by ‘3’ as part of the MixColumns operation created loops
in prior work (while that might appear needless, for the overall MixColumns loops do seem
inevitable). The consequence for SKINNY is that the creation of loops in the factor graph
can be largely be traced back to the same key byte variable contributing to an intermediate
in two different ways. Thus, including all the bi-dependent S-boxes will not result in any
loops, whereas including all tri-dependent S-boxes definitely will (we did not investigate
the maximum number of S-boxes that can be included without incurring loops).

In stark contrast, when considering the large factor graph original, including a single
bi-dependent S-box will create a loop as soon as a second trace is included.

Overall, there are indications that factor graph inference will also benefit from SKINNY’s
lightweight features. Although LFGAI and CGI seem competing ideas with clear qualitative
differences (namely LFGAI’s dependence on profiling and large memory complexity), we
can envision a situation where iFGAI and CGI are complementary, as we explain below.
We leave a detailed quantitative comparison an open project (cf. the comparison of LFGAI
with algebraic SCA and key enumeration [GS15]). Especially our approach’s compatibility
with non-profiled attacks raises the fascinating prospect that the earlier factor graph
inference might also be mounted in a non-profiled fashion, which we leave as an open
problem.

4.4.3 Digging Deeper with Deep Learning

Ever since the introduction of deep learning (DL) to mount side-channel attacks [MPP16],
its use has rapidly gained popularity [PPM+23, AGF23]. Against AES-128, a DL-based
SCA typically adheres to the classical divide-and-conquer approach, in the sense that each
subkey byte is recovered by a separate DL-distinguisher. Furthermore, a DL-distinguisher
follows the same two stages as a template attack. During the first stage, traces with known
keys and inputs are labelled and used to train a neural network (similar to the profiling
stage). In the second stage, target traces with a fixed unknown key are fed to the neural
network, receiving scores for each of the possible values for the subkey bytes and scores for
a given subkey are accumulated outside the neural network. In our parlance, the output of
a given neural network is a factor for the subkey that neural network is trained for; each
trace thus leads to a factor and these factors can be combined easily as they are all on the
same subkey.

A natural question is to what extent deep learning will be able to exploit deeper
structures within a cipher (which is what CGI so neatly achieves). Benadjila et al. [BPS+20,
Remark 3] argue that, in the context of AES-128, it makes more sense to train the neural
network to learn an intermediate value more closely related to the actual leakage, such as
a first round S-box output, rather than the subkey byte that that intermediate leaks upon.
The idea is that this change in training target might save the neural network from having



N. Costes and M. Stam 479

to learn the inverse of the S-box, which can easily be taken care of by an attacker during
postprocessing. This perspective indicates that the neural network is mainly exploiting
leakage relatively local to a specific intermediate value, as opposed to trying to learn about
multiple related intermediate values (e.g. all those related to a single MixColumns column).

Discussion While deep learning is very capable of combining leakage locally, for instance
when leakage on a single intermediate variable is spread out due to masking, we are aware
of only a few works providing further insight into how neural networks used for SCA might
exploit leakage more globally, say by combining S-Box leakage with MixColumns leakage
in AES or, more pertinently to our problem, combining leakage from multiple S-boxes.

For instance, Hetwerr et al. [HGG19] used standard explainability techniques from
deep learning to attribute the leakage being exploited in a side-channel setting. Here,
the application of a saliency map unveiled that a specific attack on an unprotected
hardware implementation of AES exploited not only the intended leakage target, but
also an additional signal that could subsequently be traced to unintended properties of
the hardware implementation of the MixColumns operation. Elsewhere, to test whether a
distinguisher uses local or non-local features, Gohr et al. [GJS20] compared the performance
of a neural network trained on either real traces or on artificially spliced traces. They found
no evidence that their neural network used non-local features, even though an alternative,
namely a simple affine extractor on their target, did use non-local features (without those
features necessarily being useful).

Finally, when attacking an implementation of Clyde, Gohr et al. [GLS22] observe
that their neural network appears to exploit L-box leakage. They express some surprise,
as the neural network was trained to predict S-box outputs. From our perspective, the
exploited L-box leakage is still relatively local, after all the S-box output is the L-box
input; the main challenge was to extract sufficiently useful information from a single trace
notwithstanding the masking. Furthermore, to enable the extraction (irrespective of where
the leakage emanates), they introduce a simple linear transformation of the labels, dubbed
a scattershot encoding; they voice the suspicion that this encoding facilitates the extraction
of bits for which a neural network might otherwise face logical difficulties (e.g. when trying
to learn a linear function).

In contrast, for our CGI-enhanced DPA against SKINNY, the final marginal distribution
of a single subkey depends on the leakage of 44 S-boxes: would a neural network trying to
recover a single subkey be able to do the same, would clever labelling of the data help and,
if so, would (trained) neural networks for different subkeys hence have a certain overlap
or similarity? It appears that, even independent or our work, there are many fascinating
open problems left in the domain of DL-SCA beyond divide-and-conquer, especially in
scenarios where advanced approaches such as belief propagation are known to outperform
simple divide-and-conquer.

Without further investigation, we see DL-SCA as primarily complementary to our work.
Indeed, we can even envision a side-channel attack that uses ideas from deep learning,
factor graph inference, cluster graph inference, and key enumeration. In the context of
SKINNY, such an attack could look roughly as follows.

0 (Profiling or Training) For each of the 44 mono- and bi-dependent S-boxes, train
a separate neural network to recover the relevant S-box intermediate for any given
trace.

1 (Target Trace Processing) For each target trace,

(a) (Deep Learning) For each of the S-boxes, run the respective neural network to
create beliefs for the intermediate values of that trace.

(b) (Factor Graph Consolidation) Use iFGAI based on the neural networks belief
to consolidate a global belief for that single trace.
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(c) (Key factor Update) Use the iFGAI-consolidated beliefs for the intermediate
values to update beliefs for the subkey factors used by CGI, where the update
is local (just a simple multiplication or addition).

2 (CGI Enhancement) Run CGI to re-consolidate global beliefs about the subkeys
using the factors created above.

3 (Key Enumeration) Use the marginalized subkey beliefs to enumerate keys. Al-
ternatively, it might be possible to adapt and run a form of list-CGI to enumer-
ate the keys, in a manner similar to list Viterbi or more general N -best algo-
rithms [SC90, NG01].

5 Evaluation of CGI Enhanced DPA
With the theory of CGI enhancement established, we want to determine how effective
it is. To this end, we will quantify the security degradation of SKINNY when the extra
leakage available to an attacker is combined using CGI. For evaluation purposes, we will
stick to the usual metric of the success rate of recovering the key. However, in contrast to
the literature, we consider the success rate of recovering the full key, as opposed to the
more common success rate of recovering a single key byte only. Our rationale here is that
CGI enhancement necessarily involves the full key and even if all S-boxes leak the same
(as for the noisy HW scenario), the recovery rates per key byte differ considerably. These
differences between various key bytes recovery rates are exacerbated for real traces where
S-boxes can leak quite distinctly.

We will compare three different attacks on SKINNY: the naïve divide-and-conquer
distinguisher using a single S-Box per key byte, a more evolved version that combines all
mono-dependent factors and finally the CGI enhanced attack that exploits all mono- and
bi-dependent factors. For the naïve distinguisher, the S-Boxes used are the ones in the top
two rows of round 2 and the top two rows of round 40.

We will consider these three attacks in various situations: firstly in the noisy Hamming-
Weight (HW) model, and secondly against two real implementations, where we examine
both a profiled MLE distinguisher and a non-profiled CPA one. For the HW model we
will use noises of σ2 = 1 and σ2 = 4, respectively, as these values are representative of a
low and a high noise regime and roughly match the noise levels we observed for the two
real implementations.

5.1 Hamming Weight Model
We start by analysing our attack in the noisy HW model, where initial rounds leak on
their S-box outputs and final rounds on their S-box inputs; this model was previously used
to compare the leakage of individual lightweight S-boxes [HPGM20, 2.2]. Specifically, a
first round S-Box produces leakage ` such that:

` = Hw(SBox[Input]) +Nσ2 ,

where Nσ2 is sampled from a Gaussian distribution centered on 0 with variance σ2 and
Input depends on the plaintext and part of the key. In contrast, a last round S-Box
produces leakage ` such that:

` = Hw(SBox−1[Output]) +Nσ2 ,

where Output depends on the ciphertext and part of the key.
The results for the three attacks in the noisy HW model are presented in Figure 7,

demonstrating that the exploitation of additional factors (32, resp. 44, instead of only 16)
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(a) Noisy HW model with σ2 = 1.0
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(b) Noisy HW model with σ2 = 4.0

Figure 7: Comparison of success rates of full key recovery on synthetic SKINNY traces ex-
ploiting 16 (standard divide-and-conquer), 32 (multi-target, mono-dependent), respectively
44 (CGI-enhanced, bi-dependent) S-boxes using MLE distinguishers for the factors.

provides considerable benefits to an attacker. To get a better impression of the benefits,
we can compare the number of traces to reach a given success rate across the attacks (see
Figure 1 in the Introduction). It turns out that the benefit of CGI enhancing is slightly
more advantageous for the higher noise level (σ2 = 4) and appears to decrease ever so
slightly for increasing success rates. For instance, for σ2 we see that the trace reduction
granted by CGI enhancing ranges from around 2.7 down to roughly 2.4, slightly below the
“theoretical” ratio of number of S-boxes exploited (namely 2.75), yet clearly confirming
both the benefits of CGI enhancement and the susceptibility of SKINNY’s low diffusion to
further SCA exploitation.

5.2 Practical Validation

We established that against SKINNY-128-128 and in the Hamming weight model, the CGI
enhanced attack effectively combines the leakage of 44 S-Boxes. We will now show the
practicality of the CGI enhanced attack against two real implementations of SKINNY-
128-384, which features 56 rounds and a 384-bit tweakey state. This SKINNY variant was
used by Romulus in Round 2 of NIST’s lightweight standardization process [IKMP20b],
although for Round 3, Romulus switched to SKINNY-128-384+ [GIK+21] (which uses
only 40 rounds instead of 56; the change should not affect our attack, see also Section 6).

For SKINNY-128-384 as used by Romulus (Round 2), TK1 and TK2 are used for the
tweak and TK3 contains the key. We collected traces on a ChipWhisperer platform, target-
ing a Cortex-M4 running two different implementations of SKINNY-128-384, one based on
lookup tables (LUT) and another circuit-based one. We used the same device for profiling
and attacking, which intuitively gives a worst-case scenario for the defender [BCH+20]. For
both implementations, we collected 50 000 profiling traces with varying key and plaintext
for every trace, and 50 000 attack traces with a single fixed key and randomly varying
plaintexts for every trace. Tweakeys TK1 and TK2 were set to fixed known values, distinct
for the profiling and attack traces. The attack traces were split in 500 experiments of 100
attack traces each for the circuit implementation and 1000 experiments of 50 attack traces
each for the LUT one.

Both implementations, integrated with the ChipWhisperer code, are available at https:
//github.com/Simula-UiB/CGI-DPA, along with the code used to run the experiments.

https://github.com/Simula-UiB/CGI-DPA
https://github.com/Simula-UiB/CGI-DPA
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5.2.1 Experimental Setup

Targeted Implementations We target two software implementations of SKINNY, both
written in ARM assembly. In both implementations, the round keys are precomputed and
stored row-wise in blocks of 32 bits. Similarly, the cipher state is stored row-wise in 4
registers, so each register holds an entire state row. Using assembly code ensures that the
state does not leave those registers during the computation, thus avoiding any unwanted
load or store operations. As SKINNY’s linear layer and tweakey schedule boil down to a
couple of xor, rot and round key load operations, the only difference between the two
implementations is the S-Box computation.

The first implementation comes directly from the FELICS framework [DBG+15] and
uses a precomputed lookup table to evaluate the S-Boxes. It computes each S-Box using
the following assembly snippet:

and r7, r2, #0xff //selecting the first byte of the state
ldrb r7, [r6,r7] //loading the corresponding SBOX output in r7
bfi r2, r7, #0, #8 //inserting back in the state the result value

where r7 is a temporary usage register, r2 points to a row of the state and r6 points to the
address of the S-Box lookup table. As the load is performed on the output of the S-Box,
we expect the implementation to match the Hamming weight model (with high SNR).

In the second implementation, we replaced the lookup table with a circuit implemen-
tation, casting the S-Box as an efficient boolean circuit using eight NOR and eight XOR
operations (taken from the SKINNY specification).

Since we store four bytes of the state per register, we can compute this circuit in a
SIMD fashion on an entire row. The exact implementation of this circuit was directly
taken from skinny-c [Wea18], compiled using the -O3 flag and inserted manually into
the assembly. In contrast to the first implementation, this one avoids load and store
operations on the S-Box outputs; moreover, it computes four S-Box simultaneously, thus
reducing the SNR by introducing algorithmic noise. However, the circuit evaluation takes
longer, giving rise to more points of interest.

For a simple comparison between the two implementations, we can look at an SNR
plot (Figure 8). As expected, the LUT implementation leaks much more and during a
shorter time window, with a peak SNR of around 2.3, which roughly matches σ2 = 1.0
in the HW model. The circuit version leaks across multiple points with a peak SNR of
approximately 0.35, comparable to the HW model with σ2 = 4.0.

Trace Acquisition We collected traces for both implementations on an STM32F303,
which uses a Cortex-M4. More specifically, we used the ChipWhisperer platform and its
onboard power measurement setup. During the acquisition, the MCU ran at 7.37MHz,
and the ADC ran at 4 × 7.73MHz, sampling four timestamps per clock cycle. As our
entry level ChipWhisperer can only capture 5000 timestamps per trace, we recorded the
first few and last few rounds separately for every input, merging corresponding front
and end traces in post-processing. All our recorded traces are available online (see
https://github.com/Simula-UiB/CGI-DPA’s README).

Template Attacks We first exploit those traces with a template attack [CRR03]. A
template is a multivariate Gaussian distribution that characterizes power traces for a
particular intermediate variable. We use the 50 000 profiling traces to build templates for
each of the 44 targeted S-Boxes, following the standard two steps of point selection and
subsequent estimation of multivariate Gaussian distributions [MOP07]. The attack then
uses template matching to obtain our factors. Subsequently, we combine these factors
using the max-product algorithm as explained in Section 4,

https://github.com/Simula-UiB/CGI-DPA
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Figure 8: SNR of a 1st round S-Box on a Cortex-M4 for two SKINNY implementations
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(b) Success rate for circuit implementation

Figure 9: Success rate of individual S-Boxes on SKINNY on the simple template attack

For point selection we opted for the Sum of Difference method [RO05]. It selects points
of interest (PoIs) by partitioning the traces by the value of a targeted intermediate variable,
computing the mean power consumption for every partition and summing the pairwise
difference between those means. The timestamps which maximize the sum indicate the
most interesting PoIs. For this approach, the number of PoI is a parameter, that we set to
4 for both implementations (more points requires more profiling traces).

For the Gaussian distributions, we estimated a separate covariance matrix for each
possible value of the targeted intermediate, leading to 256 covariance matrices for each
S-Box (we did not encounter numerical stability issues).

Correlation Power Analysis We also exploit our traces using the unprofiled Pearson
correlation coefficient distinguisher [BCO04] to demonstrate the robustness of our attack.
We only use the attacking traces this time, as no profiling is required. Contrary to template
attacks, we also do not select PoIs. However, we define a “window of interest” of 400
timestamps for each S-Box. This windowing was made using SNR computations but could
be done by visually inspecting the traces.

We attack each S-Box using the standard Correlation Power Analysis (CPA): we assume
that the power consumption follows the HW model and compute the correlation between
this hypothetical power model and each timestamp in our window of interest. After which,
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the score for each subkey value is the maximum correlation value obtained across all
timestamps. We then plug those scores into CGI.

As correlation-based scores are additive [LPR+14, Proposition 2], we use the additive
version of the Max-Product algorithm, incorporating all the necessary changes (such as
initialization to 0 instead of 1 etc.).

5.2.2 Results

Profiling Distinguisher Figure 10 provides the success rates as a function of the number
of traces when running the three different attacks (exploiting 16, 32, resp. 44 S-boxes) on
either the LUT (left) or circuit (right) implementation. We use the same comparison as
previously with the noisy HW model. For the LUT implementation, our CGI-enhanced
attack reduces the number of traces required to break SKINNY by a factor of 2.75 (Figure 1),
matching the noisy HW model.

The circuit implementation has even higher efficacy, between 5 and 6. This efficacy is
due to the success rate of the attack using 16 S-Boxes being unreasonably low compared to
what we would expect. While it is not shown in Figure 10, as all the S-Boxes are combined,
it is the last round S-Boxes which are responsible for that low success rate (individual
success rates for each S-Box are available in Figure 9). While we know that last-round
S-Boxes tend to have a lower success rate [HPGM20], this discrepancy is more than what
we see in the LUT implementation and thus probably stems directly from the leakage.

We reckon that the circuit implementation leaks primarily on the output of the S-Box
computation and not much on the input. This type of leakage can create a situation
where attacking a single S-Box gives leakage that is linearly related to the ciphertext and
makes it hard to recover the key, whereas combining two different S-Boxes can surpass this
problem. It speaks in favour of our attack, showing that it can combine S-Boxes despite
their poor success rate.

Non-Profiling Distinguisher Using the same set of traces as for the template attacks, we
present the results of using an unprofiled CPA distinguisher in Figure 11. As CPA tends
to be less potent than a template attack, the number of traces available was too low for
the baseline CPA attack to recovering the full key (recall that we report the success rate of
recovering all key bytes, not just one). The CPA attack that uses all mono-factors performs
slightly better, particularly for the circuit version. However, CGI-enhanced CPA does
recover the entire key effectively, with 60% and 85% success rates for the two respective
implementations.

Those results demonstrate the potency of our attack compared to some of the other
advanced attacks we discussed earlier in Section 4.4. It does not require profiling and
hence, allows the attacker to choose their best distinguisher available without constraints.
In conclusion, our attack is practical and effectively exploits SKINNY’s low diffusion.

6 Conclusion, Impact and Mitigations
6.1 Applying CGI-DPA to Different Variants of SKINNY
The original SKINNY paper describes six different SKINNY variants, to which a seventh
(SKINNY-128-384+) was later added. The differences between the variants are the block
size (a nibble-oriented 64-bit or a byte-oriented 128-bit), the size of the tweakey state
(1, 2 or 3 times the block size) and the number of rounds (32, 36, 40, 48 or 56). When
the tweakey size is 2 or 3 times the block size, the tweakey state is divided into blocks
denoted TK i. During the tweakey addition, the top two rows of each TK i are XORed to
the top two rows of the state. Subsequently, each block is updated using PT (as described
in Section 3), and an LFSR is applied to each byte of TK2 and TK3.
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Figure 10: Comparison of success rates of full key recovery on real SKINNY traces exploit-
ing 16 (standard divide-and-conquer), 32 (multi-target, mono-dependent), respectively 44
(CGI-enhanced, bi-dependent) S-boxes using profiled MLE distinguishers for the factors.
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Figure 11: Comparison of success rates of full key recovery on real SKINNY traces ex-
ploiting 16 (standard divide-and-conquer), 32 (multi-target, mono-dependent), respectively
44 (CGI-enhanced, bi-dependent) S-boxes using CPA distinguishers for the factors.

For the byte-oriented variants of SKINNY, adding multiple TK i allows for different
key layouts and lengths. All known schemes using SKINNY keep the 128-bit key laid out
in a single TK i (TK3 for Romulus). In that case, our initial analysis of SKINNY-128-128
still applies. The extra LFSRs of TK2 and TK3 apply to each byte individually: the bytes
in each TK i still do not mix.

The number of rounds can impact our attack, as it affects the number of iterations of
the key schedule permutation PT before the last rounds and, by extension, the clique tree
for the cluster graph inference. Fortunately, as we briefly touched on in Section 3, PT has
a period of 16, so the clique trees for 40 rounds (SKINNY-128-128 or SKINNY-128-384+)
and 56 rounds (SKINNY-128-384) are identical. For SKINNY-128-256 (48 rounds), the
factors obtained in the penultimate round differ and produce a different clique tree.

For the nibble-oriented variants, the 128-bit key is spread over multiple tweakey blocks,
presenting an extra set of challenges. On the one hand, 32-bit subkeys now correspond to 4
key nibbles, so hi-dependent S-boxes become enumerable, yet on the other hand effectively
and efficiently combining the factors to reconstruct the full key is still an open problem.

6.2 CGI-DPA in the Presence of Countermeasures
We attacked unprotected implementations in the Hamming weight model and on an ARM
Cortex-M4. As we saw for the CPA examples against the ARM implementations, as
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long as there exists a distinguisher targeting individual S-Boxes and producing scores
for the underlying subkeys, these scores—or factors—can be combined using CGI. More
realistic implementations will be protected by countermeasures, such as masking. For
masking, higher order DPA can still target individual S-boxes, resulting in scores that we
can interpret as factors, and our attack still applies, in the sense that we can exploit the
extra S-boxes.

Of course, when attacking a masked implementation, we would expect to need more
traces and the per-trace cost evaluation of the factors will likely go up, yet the cost of
subsequent combination using CGI will not. We expect that the same rule of thumb will
still apply: that the increase in the number of exploitable S-boxes leads to a commensurate
reduction in the number of traces needed. We leave verification of this conjecture an open
problem.

6.3 Slow Diffusion Considered Harmful?
SKINNY is not the only lightweight cipher to feature the new paradigm of slow diffusion with
many rounds. We mentioned LED, which allows for a much simpler pincering [HPGM20],
but also GIFT [BPP+17], a blockcipher for another round-three candidate [BCI+21], and
ASCON [DEMS21], a keyed sponge that was recently selected by NIST for lightweight
standardization, appear susceptible to CGI-enhanced DPA. Both share some CGI-friendly
features with SKINNY: a slow diffusion with a very slim permutation layer and a very
straightforward relationship between the first and last round keys. However, both schemes
differ from SKINNY as they are far more bit-oriented, which could complicate CGI.

GIFT features a Present-style bit-level permutation and nibble-size S-Boxes. Further-
more, the key is added at bit-level, with a key schedule such that any given bit of any
round key depends only on a single bit of the master key. Consequently, factors will be over
selections of key bits, dispensing the neat byte-structure of the factors that we found so
useful for SKINNY. When considering GIFT-128, the first round S-boxes do not consume
any key material; the second round S-boxes consume half of the key with each (nibble)
S-box depending on two key-bits; and the third round S-boxes each depend on two bits
of the second half of the key plus, through the state, on eight bits of the first half of the
key. For the final rounds the situation is reversed, in the sense that the last round S-boxes
depend on two bits of the second half of the key and the penultimate round S-boxes on
two bits of the first half plus eight from the second half. While these (128) S-boxes are all
eminently enumerable, the resulting cluster graph will be considerably more complicated
and—we did not check—unlikely to be a clique tree, thus combination of factors might
have to rely on loopy belief propagation instead. For GIFT-64, only a fourth of the master
key is consumed per round, and as a consequence the same four rounds only leak on half
of the key once and on the other half five times and again, (loopy) CGI appears the ideal
tool to combine all this leakage.

Similarly, for ASCON, the key is injected, unchanged, both during the initialization
and the finalization of the encryption process. The knowledge of the nonce can be used
to mount an attack in the first round of the initialization [SD17] while the knowledge of
the tag allows to mount an attack on the last round of the finalization [YKSH22]. Like
GIFT, combining the two sides might require a more complicated (loopy?) cluster graph
but again we leave it as an open problem.

Our results highlight a tension in lightweight design. A key scheduler that completely
lacks diffusion allows an SCA attacker to combine leakage from the first and last rounds.
Furthermore, combined with slow diffusion within the cipher’s state, it increases the
number of S-Boxes that only depend on a small number of key bits (say fewer than 32),
likely resulting in more exploitable leakage.

On the other hand, while slow diffusion does not provide a defensive advantage, a
lighter key schedule makes for cheaper re-keying potentially creating a trade-off. As
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re-keying more frequently diminishes the amount of traces an attacker can use to mount
an attack, it might outweight the gains of the better analytical attack enabled by the
lighter key-scheduler. We leave as an open problem the systematic comparison of the
cost and benefits of different key-scheduling strategies in the context of belief propagation
based side-channel attacks, such as CGI-enhanced DPA. Furthermore, we believe that slow
diffusion within the cipher state should be avoided when possible as it creates issues when
SCAs are taken into account. While the key-scheduler gave us an initial edge on SKINNY,
it was the slow diffusion that we leveraged the most in our attack.
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