
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 4, pp. 420–459. DOI:10.46586/tches.v2023.i4.420-459

Provable Secure Parallel Gadgets
Francesco Berti1, Sebastian Faust2 and Maximilian Orlt2

1 Bar-Ilan University, Ramat-Gan 529002, Israel francesco.berti@biu.ac.il
2 Department of Computer Science, TU Darmstadt, Darmstadt, Germany

{sebastian.faust,maximilian.orlt}@tu-darmstadt.de

Abstract. Side-channel attacks are a fundamental threat to the security of cryp-
tographic implementations. One of the most prominent countermeasures against
side-channel attacks is masking, where each intermediate value of the computation is
secret shared, thereby concealing the computation’s sensitive information. An impor-
tant security model to study the security of masking schemes is the random probing
model, in which the adversary obtains each intermediate value of the computation
with some probability p. To construct secure masking schemes, an important building
block is the refreshing gadget, which updates the randomness of the secret shared
intermediate values. Recently, Dziembowski, Faust, and Zebrowski (ASIACRYPT’19)
analyzed the security of a simple refreshing gadget by using a new technique called
the leakage diagram. In this work, we follow the approach of Dziembowski et al. and
significantly improve its methodology. Concretely, we refine the notion of a leakage
diagram via so-called dependency graphs, and show how to use this technique for
arbitrary complex circuits via composition results and approximation techniques. To
illustrate the power of our new techniques, as a case study, we designed provably
secure parallel gadgets for the random probing model, and adapted the ISW mul-
tiplication such that all gadgets can be parallelized. Finally, we evaluate concrete
security levels, and show how our new methodology can further improve the concrete
security level of masking schemes. This results in a compiler provable secure up to a
noise level of O(1) for affine circuits and O(1/

√
n) in general.

Keywords: Random Probing Model · Masking · Composability · Leakage Diagram

1 Introduction
Context. Proving the security of cryptographic schemes is the de-facto standard of
modern cryptography. The most widely used security model is the black-box model, where
the adversary has access to the inputs and outputs but has no knowledge or control over
the algorithm’s inner workings. It is well known, however, that real-world implementations
may reveal information about the inner workings, and in particular about the secret key
of a cryptographic scheme. Multiple side-channel attacks exploit physical phenomena
such as power consumption [KJJ99], cache accesses [BM06], acoustic signals [GST14], or
timing [Koc96].

Masking schemes. A popular countermeasure against power analysis attacks is masking.
At a high-level, the idea is to conceal sensitive intermediate values through secret sharing.
A masking scheme relies on an encoding function that takes as input a value on a wire x
and shares it over multiple wires that carry the shares x0, . . . , xn−1. The encoding function
we consider in this work samples x0, . . . , xn−1 uniformly at random such that x =

∑
i xi,

where n is called the order of the masking scheme. If x ∈ F2, then such masking schemes
are called Boolean masking. The main challenge in designing secure masking schemes is
to develop operations – often called gadgets – that securely compute on shared values.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-04-15 Accepted: 2023-06-15 Published: 2023-08-31

https://doi.org/10.46586/tches.v2023.i4.420-459
mailto:francesco.berti@biu.ac.il
mailto:sebastian.faust@tu-darmstadt.de, maximilian.orlt@tu-darmstadt.de
http://creativecommons.org/licenses/by/4.0/

Francesco Berti, Sebastian Faust and Maximilian Orlt 421

Security here means that even if the adversary learns information on the internals of the
gadget, such information does not reveal sensitive information. In addition, we need a
method to compose gadgets without violating security. This is often done via the refreshing
algorithm, which takes as input a sharing x0, . . . , xn−1 that encodes x, and outputs a fresh
sharing x′0, . . . , x′n−1 of the same secret value. Here, for security, we have to guarantee
that even given leakage from the refreshing procedure, the output x′0, . . . , x′n−1 is a fresh
encoding of x.

Security analysis of masking countermeasure. As the design of the masking scheme
is complex, we analyze their security using security proofs. To this end, we require a
leakage model to describe the leakage emitting from a masked device formally. The most
widely used leakage model is the t-threshold probing model originally introduced in the
seminal work of Ishai, Sahai, and Wagner (ISW) [ISW03]. In this model, cryptographic
computation is described as a Boolean (sometimes arithmetic) circuit, where the adversary
is allowed to probe up to t wires and learn the values carried on these wires during the
computation.

Although a security analysis in the threshold probing model provides the first evidence
of the soundness of a masking scheme, it does not accurately model the quantitative nature
of leakage, thereby excluding important types of attacks [Wal01, CFG+10]. To address this
problem, Prouff and Rivain introduced the noisy leakage model [PR13]. In this model, the
adversary obtains a noisy version of each wire, where the noise is sampled from a certain
distribution (e.g., the Gaussian distribution). Noisy leakages accurately model physical
leakage from power consumption and, in particular, allow for quantitative statements about
the noise required to conceal sensitive information – crucial information for cryptographic
engineers. In detail, they define the noise as a set of probabilistic leakage functions that
are restricted by an upper bound using the Euclidean Norm (or statistical distance) as a
metric. An important shortcoming of the noisy leakage model, however, is that it is very
hard to work with. Concretely, in comparison to the threshold probing model, security
proofs are highly cumbersome, and proving the security of natural constructions often
requires to rely on unrealistic assumptions (e.g., the use of leak-free gates). To resolve these
problems, somewhat surprisingly, Duc et al. [DDF19] showed that noisy leakages and the
seemingly much weaker threshold probing model of ISW are related. For their proof, they
considered an intermediate model – the p-random probing model – and showed that security
in this model directly implies security against noisy leakages. The p-random probing
model considers a particular noise distribution, where each wire leaks with probability
p, while the adversary obtains no knowledge of the wire’s value with probability 1 − p.
The security in the random probing model only implies security in the noisy model with
a loss of the field size. There are two approaches to avoiding the security loss. The first
approach was presented by Dziembowski et al.[DFS15] who proposed the average random
probing model, a modified version of the random probing model. However, security proofs
in this model are still rather complex for two reasons. First, they assume a more powerful
class of leakage functions because the adversary can choose leakage functions where only
the average leakage probability is p. In other words, for any possible input value, the
leakage probability p can be different (up to p times the field size). Second, the adversary
also learns the internal randomness used by the leakage function to decide whether a
value leaks or not. Hence, the adversary even learns something about the values when the
leakage function does not output the value. An alternative approach is given by Goudarzi
et al. [PGMP19]. They eliminate the field size by using an alternative metric for the noisy
model. In other words, they do not modify the probing model where the actual proof is
done, but the noisy model that should model the natural leakage. In detail, they use a
worst-case metric called (Average) Related Error and show that security in the random
probing model tightly implies security in the modified noisy model. Since the result of

422 Provable Secure Parallel Gadgets

Goudarzi et al. and Duc et al., security in the random probing model has been studied
intensively by the research community [ADF16, BCP+20, BRT21a, CFOS21, DFZ19].
There are two important goals in this research area. First, we aim to design masking
schemes that obtain security for values of p independent of the order n of the masking
scheme and are, in particular, close to 1. This is important as it implies that the masked
computation remains secure in the presence of larger amounts of leakage. Second, the
masking schemes that we design need to be efficient, where efficiency is typically measured
in terms of circuit and randomness complexity. In particular, since all of our gadgets
have low depth, the latency of the compiled circuits is significantly improved. Our main
contribution is to improve on both of these goals for certain classes of masked computation.

1.1 Contribution
Improved analysis of refreshing gadgets. As discussed above, the main ingredient of
any masked computation is a secure refreshing gadget. It is typically placed throughout
the masked computation to ensure composition. In addition, refreshing gadgets also have
applications for key refreshing, e.g., as part of a masked AES, where the secret key has
to be refreshed periodically to ensure security. There is a large body of literature on
designing secure refreshing schemes. For our work, the most important is the work of
Dziembowski et al. [DFZ19], who gave a security analysis of a very simple and efficient
refreshing. Their scheme essentially uses only n randomness and n operations, which is
optimal for a refreshing gadget of order n masking. Dziembowski et al. show that this
simple refreshing gadget surprisingly is O(√pn)-secure. Our first contribution is to improve
their construction and show that it achieves asymptotically better security of O(pn).

Improved analysis of affine masked computation. As a second contribution, we extend
our analysis of the refreshing gadget to protect affine computation. Affine computation
(i.e., addition and multiplication by a constant) is frequently used in cryptographic schemes
since it is less costly than non-linear operations. This is the reason why, for instance, many
symmetric cryptographic schemes make massive use of affine computation. In our work, we
give an improved analysis for simple masked affine computation. In particular, we consider
a very simple addition gadget, which computes the addition of two sharings a0, . . . , an−1
and b0, . . . , bn−1 by adding the shares component-wise, i.e., ci = ai + bi followed by a
refreshing of c0, . . . , cn−1. We can show that this gadget remains O(pn)-secure, where
earlier works either require significantly more randomness (namely, [BCP+20] with O(n2.4)-
randomness required, while ours needs O(n)-randomness to refresh the inputs) or require
more noise (namely [DFZ19], O(√pn)).

We also show how to extend our results to the masked computation of non-linear
operations. Our multiplication gadget is essentially the widely used and analyzed ISW
multiplication. While it is known that asymptotically, there are more advanced con-
structions that achieve security for a constant p, we improve the asymptotic analysis of
the ISW. Concretely, we can prove the security up to p = O(1√

n
), instead of p = O(1

n)
as in [ISW03, DFZ19, BCP+20]. We believe that this is a worthwhile goal due to the
following two reasons. First, it was shown [CFOS21] that the ISW-multiplication achieves
better security than more advanced constructions for small values of n. Second, the ISW
multiplication is widely used in many masking schemes, and hence it is important to better
understand its security in the random probing model.

Parallel computation. Finally, we note that all our constructions are highly parallelizable.
Parallel gadgets [CPRR13, BDF+17] are particularly interesting for masked circuits as
they are faster due to executing many operations at the same time. In addition, it is also
more challenging to perform a side-channel attack against a parallel implementation than

Francesco Berti, Sebastian Faust and Maximilian Orlt 423

against a serial one. The basic idea is that parallel computations can increase the noise in
the attacks, as shown in [MSJ12].

1.2 Related Work
Proof techniques. Analyzing leakage resilience of circuits via graphs was already proposed
in [RBN+15] at Crypto 2015. They described a transformation of circuits based on
graphs to generalize the ISW Multiplication and showed that it is closely related to
Threshold Implementations [NRR06] and the Trichina gate [Tri03]. In particular, they
give a generalized graph for the multiplication gadget using different layers, such as linear
and non-linear layers, and compare the security of the different multiplication gadgets. In
contrast to the work in [RBN+15], the work of [DFZ19] did not use the graph to analyze
a gadget but a full circuit in the random probing model. They also use a graph based
approach that is in particular useful to analyze the linear layers of circuits. We formalized
the approach of [DFZ19], and give tighter security proves in the random probing model.
Further, we propose gadgets with lower latency. Alternative approaches to analyze the
security in the random probing model were proposed in [ADF16, BCP+20, BRT21a, BIS19].
They introduce definitions for random probing composability based on counting the number
of probes at the inputs and outputs of gadgets that are needed to simulate the leakage. To
improve this approach, we could follow the recent work of Cassiers et al. [CFOS21] and
tighten the analysis. Concretely, in [CFOS21], the authors use a definition, which they call
the Probe Distribution Table (PDT). The PDT allows a tighter analysis since it considers
the concrete wires that the simulator needs. The drawback of the PDT approach is that
the table grows exponentially with the number of shares of the gadgets, and thus a generic
analysis is not possible. The work of [BCP+20, BRT21a, BMRT22a] allows analysis for
generic order, but it only provides security proofs for circuits with special structures. For
this reason, the constructions are typically less efficient, as discussed above.

Compiler. As mentioned in Section 1.1, many compilers produce masked circuits with
provable security in the random probing model. At Eurocrypt 2016, Andrychowicz et
al. [ADF16] presented a compiler with constant leakage probability using expander graphs.
This rather is a feasibility result since expander graphs require a high number of shares.
Two years later, Goudarzi et al. [GJR18] gave a compiler for polynomial sharing requiring
noise p = O(1/ log(n)). Here, they presented an NTT-based secure multiplication with
complexity O(n log(n)). The compiler was further improved in [GPRV21] to allow more
general fields F and complexity Θ(n log(n)). They use the additive FFT algorithm proposed
by Gao and Mateerin 2010 [GM10] to avoid the limitations of the classical NTT. With self-
folding bases, a generalization of Cantor bases, they further optimized the gadget. However,
the field size still restricts the number of shares n < |F| due to the share-wise different
support points of poly sharings. Considering affine circuits, our compiler is more efficient.
For example, our refresh gadget has linear complexity and does not use multiplication gates,
while the one in [GPRV21] uses n log(n)/2 multiplications. Further, our compiler allows
a leakage rate of O(1) for affine circuits instead of O(1/ log(n)). Regarding non-affine
circuits, their construction has better complexities with respect to efficiency and security
due to their NTT-based multiplication. However, for our compiler, we slightly modified
the ISW multiplication such that it is parallelizable.

To allow security for a constant leakage probability p, Ananth et al. [AIS18] proposed
a modular approach how to compose a secure compiler multiple times. Finally, several
follow-up works further improved this approach [BCP+20, BRT21b, BMRT22b]. However,
as described in Section 1.1, this approach leads to relatively costly circuits with randomness
complexity of at least O(n2.4) for affine and non-affine circuits, while our compiler only
requires O(n) and O(n2), respectively. In particular, our work analyzes the widely used
ISW multiplication that is still promising for reasonable share number (2 ≥ n ≥ 32) and

424 Provable Secure Parallel Gadgets

noise parameters [CFOS21]. For this reason, we try to close the gap between practice and
theory and give a tighter security analysis in the random probing model. In detail, we prove
that the ISW multiplication tolerates a leakage rate O(1/

√
n) instead of O(1/n) [GPRV21].

For this reason, we re-consider the ISW-based compiler of [DFZ19] and improve its compiler
regarding running time and security.

2 Background
Notations. Let [n] := {0, 1, . . . n− 1}. Let (F,+, ·) be a finite field with its addition and
multiplication (and let − be its subtraction). We denote with x and (xi)i∈[n] vectors with
coefficients in the field xi ∈ F. Let X0, X1 be two random variables over a set X . Their
statistical distance is: ∆(X0;X1) := 1

2
∑
x∈X
|Pr[X0 = x]− Pr[X1 = x]| . If ∆(X0;X1) ≤ ε,

we say that X0 and X1 are ε-close.

Directed graphs. A directed graph is a pair G = (V,E) with a set of vertices/nodes
V and a set of edges E ⊆ {(x, y)|(x, y) ∈ V 2 and x 6= y}, which are ordered tuples of
vertices. Further, we write (x, y) to refer to such edges. We call x its source node and
y its destination node. When we draw our graphs, we represent the edge (x, y) with
an arrow from x pointing to y. We write −(x, y) := (y, x) to exchange destination and
source. A sub-graph G′ ⊂ G is a graph G′ = (V,E′) with E′ ⊂ E. This allows us to
define unions of sub-graphs G′ = (V,E′), G′′ = (V,E′′) with G′ ∪ G′′ := (V,E′ ∪ E′′).
Note that all sub-graphs also have all nodes V . In our work, we are only interested
in the edges and assume that each sub-graph still consists of all nodes. Further, if we
consider graphs G′ = (V ′, E′), G′′ = (V ′′, E′′) with different nodes V ′ 6= V ′′, we also write
G = G′ ∪ G′′ := (V ′ ∪ V ′′, E′ ∪ E′′). Hence, G is a graph consisting of two (sometimes
unconnected) sub-graphs G′ and G′′. Let G be a graph. A path is the image of continuous
functions f : [0, 1] ⊂ R→ G. A loop is a path s.t. f(0) = f(1). We consider only loops s.t.
f|(0,1) is injective to avoid loops of type (x, y),−(x, y) or containing it as a sub-loop.

Circuits. An arithmetic circuit over a finite field F is a labeled acyclic graph. Its edges
are the wires, and its vertices are the gates. The edges pointing to a gate are the input
wires of the gate, while those coming from it are the output wires. We use the following
gates: addition + : with fan-in 2 and fan-out 1, outputting the addition of the 2 input
variables; subtraction − : as the addition one, outputting the subtraction; multiplication
. as the addition, outputting the multiplication; constant a : with fan-in 0 and fan-out
1, outputting the constant value a; random R : with fan-in 0 and fan-out 1 outputting a
uniform random variable; copy C : with fan-in 1 and fan-out 2, outputting 2 copies of
the input variable ; input I: with fan-in 1 and fan-out 1, outputting the input variable;
output O: with fan-in 1 and fan-out 1, outputting the output variable. The last two gates
(I and O) are added for syntactic reasons. A complete circuit is a circuit where there is an
I gate at every input wire of the circuit and an O gate at every output wire; otherwise,
the circuit is incomplete. The completion of an incomplete circuit is the addition of I and
O whenever needed to make the circuit complete. An affine circuit is a circuit without
multiplication gates. We denote with W(C) the set of wires of the circuit C.
A wire carries a variable. We say that two variables, x and y, are the same variable if the
wires carrying x and y are connected only via copy gates. The value of a variable x is
the value that is carried on the wire carrying x during an execution with fixed inputs and
randomness.

Masking. One of the most common countermeasures against side-channel attacks is
masking. The idea is to split the sensitive variables into n shares and then perform the

Francesco Berti, Sebastian Faust and Maximilian Orlt 425

computations on these shares and finally recover the output. We use an encoding scheme
(Enc, Dec) to encode variables, gadgets to perform computations on encoded variables, and
a refreshing gadget to securely compose multiple gadgets. We discuss these individual
components below in more detail.

Encoding/decoding schemes. An encoding scheme Enc is a probabilistic algorithm that
takes as input x ∈ F and outputs an n-tuple (x0, ..., xn−1) = Enc(x), where n is the
masking order. The decoding scheme Dec takes as input an n-tuple (x0, ..., xn−1) and
outputs x = Dec(x0, ..., xn−1). For correctness, we want that for any x ∈ F it holds that
Dec(Enc(x)) = x. For security, we need that any subset of n − 1 shares of Enc(x) are
independent of x. We use arithmetic encoding. Enc(x) provides a randomized n-tuple

x0, ..., xn−1 s.t.
n−1∑
i=0

xi = x , and Dec(x0, ..., xn−1) =
n−1∑
i=0

xi. In the following, we will often

denote an encoding of x by (xi)i∈[n].

Gadgets. To perform computations on encoded variables, we construct gadgets. Gadgets
are made out of simple gates such that even if the internals of the gadgets leak, the
adversary will not learn any “useful” information. Suppose we have a gate implementing
the function f : Fl → Fk (e.g.,l = 2 and k = 1, for +). The corresponding gadget Gf is
composed of many gates and performs the same operation where the input wires hold l
encodings and the output wires carry k encodings of the outputs. We require soundness
from the gadgets, i.e., gadgets that perform the same operation as the underlying gate,
just in the encoded domain. Formally, we have ∀x = (x0, ..., xl−1) ∈ Fl,

f(x0, ..., xl−1) = (Dec(y0
i)i∈[n], . . . , Dec(yk−1

i)i∈[n])

with ((y0
i)i∈[n], . . . , (yk−1

i)i∈[n])← Gf (Enc(x0), . . . , Enc(xl−1)).

Refreshing schemes. Refreshing schemes (or refreshing gadgets) are gadgets Gf where
f is the identity.1 The scheme takes as input an encoding (xi)i∈[n], and outputs a re-
randomized encoding (yi)i∈[n], such that Dec((xi)i∈[n]) = Dec((yi)i∈[n]). In this work, we
consider refreshing schemes using a linear number of random gates R .

In Figure 1a the simple refresh sRef of [DFZ19] is depicted, initially introduced in
[RP10]. The gadget adds a random value to each input yi ← xi + ri with i = 0, . . . n− 2
and subtracts each random value from the last input yn−1 ← xn−1 − (r0 + · · ·+ rn−2).

This work considers an alternative to sRef that we call pRef; see Figure 1b. This
gadget was initially introduced in [BDF+17] and has the key feature that it is highly
parallelizable. pRef takes as an input (xi)i∈[n] with n random values ri and processes them
in two parallel steps. In the first step, it computes bi ← xi + ri, and in the second step, it
subtracts ri−1 from bi such that yi ← bi − ri−1 (mod n) for all i ∈ [n], obtaining (yi)i∈[n].

Circuit compilers. Given the components from above, we can transform circuit C into a
masked circuit Ĉ. This is done via the concept of a circuit compiler CC. CC works as follows:
First, CC replaces each wire carrying x with a bundle of n-wires carrying an encoding of x,
(xi)i∈[n]. Next, it replaces all gates in C with the corresponding sound gadgets, input I
gates with Î input encoders (which encodes the input), and output O gates with Ô output
decoders. Finally, between every two gadgets, the compiler CC adds a refreshing gadget to
ensure secure composition. The masked transformation Ĉ of a complete circuit C is sound
if Ĉ(x) = C(x) for every possible input x of C. For an incomplete circuit C, we say that

1We emphasize that this does not imply that Gf is also the identity. Since the gadget can be probabilistic,
the encoding of the outputs can be re-randomized.

426 Provable Secure Parallel Gadgets

the transformation Ĉ is sound if the transformation of its completion is sound. A compiler
CC is sound if for all circuits C the transformation Ĉ = CC(C) is sound.

Random probing model. As discussed in the introduction, we use the p-random probing
model, originally introduced in [ISW03] to model side-channel leakage of the transformed
circuit Ĉ. In the p-random probing model, each wire leaks the value that it carries with
probability p. Following [ISW03], we assume that the wires of the input encoders Î and
output decoders Ô do not leak. Notice that, as in [ISW03], this is without loss of generality
when we move from stateless to stateful circuits. To make it explicit what wires leak, we
will denote in the following with W ′(Ĉ) ⊂ W(Ĉ) the set of wires of the circuit Ĉ that can
leak. The definition below formalizes security in the p-random probing model.

The transformed circuit is private if its leakage reveals nothing about its inputs and
outputs. We can define this with a security experiment.

Definition 1 (Privacy [DFZ19]). Let C be a circuit with fan-in k with input x = (x1, ..., xk).
Further, let Ĉ be a sound transformation of C and p ∈ [0, 1] its leakage probability. The
leakage experiment Leak(Ĉ,x, p) is defined as follows:

• We fed x to Ĉ resulting in some assignments of the wires of Ĉ. If C is incomplete, the
input bundle corresponding to the input wire containing x is fed with an encoding
(xi)i∈[n] of x.

• Each wire w of W ′(Ĉ) is added to Lp(Ĉ) with probability p.
• Output: (Lp(Ĉ), A|Lp(Ĉ)), where A is the set of the values carried by the wires of W

during the circuit evaluation of Ĉ on input x.
Ĉ is (p, ε)-private if there is a simulation algorithm that, not knowing x, outputs a random
variable that is ε-close to the actual output of Leak(Ĉ,x, p)

In other words, the masked circuit Ĉ is (p, ε)-private if the leakage in experiment
Leak(Ĉ,x, p) can be simulated independently from the inputs up to ε statistical distance.
More precisely, if for any two inputs x,x’ of the circuit, the distributions Leak(Ĉ,x, p)
and Leak(Ĉ,x’, p) are ε-close, then Ĉ is (p, ε)-private. This observation was used to prove
security in [DFZ19]. Therefore, they defined Extended Leakage Shiftability to describe when
the leakage is independent of the input. In particular, shiftability accurately describes
the fact that we can change the input of a circuit so that the observed leakage does not
contradict the new input.

Definition 2 (Leakage Shiftability [DFZ19]). Let Ĉ be a sound transformation of a circuit
C. We say that an output L of the experiment Leak(Ĉ,x, p) is shiftable to x’ if it can be
output of the experiment Leak(Ĉ,x’, p).

In other words, let L ← Leak(Ĉ,x, p) be the leakage with L = A|Lp(Ĉ), where A is
the set of the values carried by the wires during the circuit evaluation of Ĉ on input x.
Then, L is shiftable if there is an assignment A′ with the same probability during the
circuit evaluation of Ĉ on input x’ s.t. it still holds for both leakages L = A′

|Lp(Ĉ)
. In this

case, we can shift the values of the variables from A to A′ without modifying the values
of the variables leaked. This technique allows more fine-grained security analyzes than
simulatability since we show where we can modify the input encodings of each gadget
(without ignoring where exactly, as done for simulatability). So, if the leakage is shiftable
and the leakage of the shifted encoding has the same distribution as the unshifted one,
the leakage is independent of the encoding. Hence, the leakage can be simulated without
knowing the encoded value. This property was also used in [DFZ19] to prove their compiler
security.

Francesco Berti, Sebastian Faust and Maximilian Orlt 427

Corollary 1 ([DFZ19]). Let Ĉ be the sound transformation of a circuit C via Dziembowski
et al.’s compiler [DFZ19]. If

Pr[Leak(Ĉ,x, p) is not shiftable to x’, for any x’] ≤ ε,

for any input x,x’ then Ĉ is (p, ε)-secure.

To compute the shift probability, the authors give a new technique to transform this
problem into a graph path problem. Next, we present the class of graphs they consider.

sRef((xi)i∈[n])

for j ∈ {0 . . . n− 2}
rj ←$ F

c0 ← 0
for j ∈ {0 . . . n− 2}
cj+1 ← cj + rj

yj ← xj + rj

yn−1 ← xn−1 − cn−1

return (yi)i∈[n]

(a) Simple refresh gadget [RP10].

pRef((xi)i∈[n])

for j ∈ {0 . . . n− 1}
rj ←$ F

for j ∈ {0 . . . n− 1}
bj ← xj + rj

yj ← bj − rj−1 (mod n)

return (yi)i∈[n]

(b) Parallel refresh gadget [BDF+17].

Figure 1: Refresh gadgets with linear random complexity.

Original leakage diagram. Dziembowski et al. [DFZ19] introduced the concept of leakage
diagrams. They represent all the variables on a graph and those variables whose values are
leaked in a sub-graph called the leakage diagram. For example, they represent multiple
consecutive executions of sRef (depicted in Figure 2a) with the diagram depicted in
Figure 2b. The edges of the diagram represent the intermediate values that are computed
during the execution of this circuit. The intermediate values of each sRef execution are
represented by two consecutive rows and by the vertical edges between these two rows.
On the lower row, there are n edges that represent the input shares (one edge per share),
while on the upper row, there are n edges representing the output shares of a refreshing
gadget. The vertical edges between two rows represent the partial sum cij of the random
values used during that execution. Since cij+1 = cij + rij , the variable rij is represented by
both the edges cij and cij+1. They also add the edges corresponding to the variable cin.
These cin are defined similarly to the others as follows cin = cin−1 + xin−1 − xi−1

n−1. Thus, it
always holds cin = 0 because cin = cin−1 +xin−1−xi−1

n−1 = cin−1 + (xi−1
n−1− cin−1)−xi−1

n−1 = 0.
During k executions of sRef the adversary receives a leakage Lp (see Def. 1). The

leakage diagram corresponding to Lp is the subgraph of Fig. 2b composed by all the edges
corresponding to the variables belonging to Lp (and all ci0 and cin since they are always
equal to 0. Thus their values are always known by the adversary). Further, Dziembowski
et al. [DFZ19] proved that the leakage can be simulated independently from the input
x = Dec((x0

i)i∈[n]) if there is no path from the left to the right of the leakage diagram.
The technique was extended to analyze more complex masked circuits where each gadget’s
output is refreshed with the sRef gadget. Further, they show that the security can be
bounded with the probability that there is such a path.

428 Provable Secure Parallel Gadgets

sRef0

sRef1

sRef2

x0
0 x0

1 x0
2 x0

3 x0
4

x1
0 x1

1 x1
2 x1

3 x1
4

x2
0 x2

1 x2
2 x2

3 x2
4

x3
0 x3

1 x3
2 x3

3 x3
4

(a) Simple refresh gadget [DFZ19].

x0
0 x0

1 x0
2 x0

3 x0
4

c0
0 c0

1 c0
2 c0

3 c0
4 c0

5

x1
0 x1

1 x1
2 x1

3 x1
4

c1
0 c1

1 c1
2 c1

3 c1
4 c1

5

x2
0 x2

1 x2
2 x2

3 x2
4

c2
0 c2

1 c2
2 c2

3 c2
4 c2

5

x3
0 x3

1 x3
2 x3

3 x3
4

(b) The graph of the simple refresh used for
the leakage diagram [DFZ19].

Figure 2: Refresh gadgets with linear random complexity.

3 Parallel Compiler
The circuit compiler we present in this paper has the key feature that its operations
are highly parallelizable. It uses the standard gadgets for addition (cf. Fig. 3a), copy
(cf. Fig. 3b), random (cf. Fig. 3d), and constant (cf. Fig. 3c) operations. When considering
their circuit representation, the gadgets have a low depth; hence, they can be executed
highly parallelly. The more interesting gadgets are the ones for the multiplication of two
encoded inputs (cf. Fig. 3e) and for refreshing an encoding (cf. Fig. 1b). The multiplication
gadgets with input encodings (ai)i∈[n] and (bi)i∈[n] computes the tensor product aibj of
all shares. As in the ISW multiplication, this results in n2 products aibj that we need to
compress to a random encoding of the output by appropriately adding up these values and
blinding the intermediate results by injecting fresh randomness. In contrast to the ISW
multiplication that has depth n, we change the way in which this final addition is done to
reduce the depth to log(n). This significantly reduces the latency of the gadget from n
to log(n). The refresh gadget re-randomizes an encoding such that it still decodes to the
same value. The refresh gadget of our compiler has the key feature that it only has depth
2 in contrast to the simple refreshing from [DFZ19], which has an asymptotic depth of n.

Compiler CCp. The parallel compiler CCp takes as input an arbitrary circuit C using the
gates + , − , . , a , R and C and replaces each gate with the corresponding gadget
from Figure 3 in Ĉ. Note that the gadget for − works by slightly modifying the Add
gadget such that the second input is first share-wise transformed to its additive inverse,
i.e., by setting −bi ← bi. At the high level, the topology of C and Ĉ is the same, i.e.,
if two gates are connected by wires in C, then the corresponding gadgets are connected
in the same way through wire bundles in Ĉ. These wire bundles carry the encodings of
the variables corresponding to the wires in C. Finally, to guarantee composability, the
compiler CCp inserts refresh gadgets between each computational gadget to inject further
randomness. By applying the compiler to a circuit C, we get a parallelizable masked circuit
that we denote with Ĉ← CCp(C). We start by showing the soundness of the compiler CCp

in the following corollary.
Corollary 2. Let C : Fs → Ft be an arbitrary circuit and Ĉ ← CCp(C). For any
x0, . . . , xs−1 ∈ F, we have:

((y0
i)i∈[n], . . . (yt−1

i)i∈[n])← Ĉ(Enc(x0), . . . , Enc(xs−1))

with C(x0, . . . , xs−1) = (Dec((y0
i)i∈[n]), . . . , Dec((yt−1

i)i∈[n])).

Francesco Berti, Sebastian Faust and Maximilian Orlt 429

Add((ai)i∈[n], (bi)i∈[n])

for i ∈ {0 . . . n− 1}
ci = ai + bi

return (ci)i∈[n]

(a) The addition gadget Add for + and
− with bi ← −bi.

Copy((ai)i∈[n])

for i ∈ {0 . . . n− 1}
bi = ai

ci = ai

return (bi)i∈[n], (ci)i∈[n]

(b) The copy gadget Copy for
C .

Consta

return (ai)i∈[n]

(c) The constant gadget Consta for a

with (ai)i∈[n] ← Enc(a).

Rand()

for i ∈ {0 . . . n− 1}
rj ←$ F

return (ri)i∈[n]

(d) The random gadget Rand for
R .

Mult((ai)i∈[n], (bi)i∈[n])

for i ∈ {1, ..., n− 1}
for j ∈ {0, ..., i− 1}

z0,i,j ←$ F
for i ∈ {0 . . . n− 1}

for j ∈ {i+ 1, ..., n− 1}
wi,j = ai · bj − z0,j,i

z0,i,j = wi,j + aj · bi

for i ∈ {0, ..., n− 1}
z0,i,i = ai · bi

L = log2(n+ 1)
for i ∈ {0, n− 1}

for l ∈ {1, ..., L}
for j ∈ {0, ..., 2L−l − 1}
zl,i,j = zl−1,i,2j + zl−1,i,2j+1

for i ∈ {0, ..., n− 1}
ci = zL,i,0

return (ci)i∈[n]

(e) The multiplication gadget Mult for
. .

Figure 3: Parallel gadgets.

Proof. The proof of the corollary immediately follows from the soundness of the gadgets
depicted in Figure 3.

Our compiler has similar features to the compiler of [DFZ19]. More precisely, we can
show that Corollary 1 also holds for our compiler.

Corollary 3. Let Ĉ be the sound transformation of a circuit C via our compiler, CCp. If

Pr[Leak(Ĉ,x, p) is not shiftable to x’, for any x’] ≤ ε,

for any input x,x’ then Ĉ is (p, ε)-secure.

Proof. This proof is similar to the one in [DFZ19]. According to Definition 1, we need to
simulate Leak(Ĉ,x, p) independently from the input x up to ε statistical distance. There-
fore, we prove that the distribution of Leak(Ĉ,x’, p)-experiment is ε-close to Leak(Ĉ,x, p)-
experiment for any x,x’ if it is shiftable. This immediately gives the required simulator2.

2The simulator takes a random input x’ and outputs Leak(Ĉ, x’, p).

430 Provable Secure Parallel Gadgets

So, we are left with the proof that shiftability for any x,x’ implies that the outputs of
the experiments Leak(Ĉ,x, p) and Leak(Ĉ,x’, p) are ε-close. Let n be the number of shares
used by Ĉ. We will follow a sequence of Games where the first game represents the circuit
with input x and the last one with input x’:

Game 0: The leakage experiment Leak(Ĉ,x, p).

Game 1: The modified Game 0, where we have modified how pRef gadgets pick the
randomness. Instead of picking the randomness uniformly at random, pRef picks uniformly
at random a new encoding of x, (x∗0, ..., x∗n), then, via the randomness reconstructor
RandR(pRef) (described in Fig. 4), it computes the internal randomness. Hence, the
output shares (xi0, ..., xin) are the random encoding (x∗0, ..., x∗n).
Transition between Game 0 and Game 1: We show that the randomness reconstructor
RandR(pRef) outputs randomness indistinguishable from that used by pRef of Game 0.
In both cases, r0 is picked uniformly at random, and hence, r0 is picked in the same way.
Since it holds rj = xj − yj − rj−1 and all yj are picked uniformly at random, all rj have
the same distribution as if they are picked uniformly at random. Since Game 0 and Game
1 only differ in how the randomness is used, and the randomness in Game 0 and Game 1
is indistinguishable. Hence, both games are indistinguishable.

Game 2: It is the modified Game 1, where we have replaced the non-leaked intermediate
values of the variables in such a way that Ĉ has the input x’. Note that this is possible due
to the shiftablity assumption, and hence, we can apply shiftabilty without giving further
details.
Transition from Game 1 to Game 2: Since an outcome of the Leak(Ĉ,x, p)-experiment can
be shifted to an outcome of the Leak(Ĉ,x’, p)-experiment except with probability ε, we
can do this shift with probability 1 − ε. Due to the ε, this is the only game hop in the
proof with a loss.

Game 3: Game 3 is the modified Game 2, where we have replaced the input and output
encodings of all gadgets with random encodings of the same value as we did in Game 1.
In other words, every input/output encoding is again replaced with a random encoding
that still decodes to the same value (the one that we got in Game 2).
Transition between Game 2 and Game 3: Since the inputs and outputs of both games are
still random encodings, we cannot distinguish Games 2 and 3. Note that the encodings in
Game 2 are still random because the shiftability depends only on the leaked variables and
not on the values that this variable assumes.

Game 4: The leakage experiment Leak(Ĉ,x’, p).
Transition between Game 3 and Game 4: It is the inverse of the transition between Game
0 and Game 1. Thus, using RandR(pRef), we can prove that these two games are indis-
tinguishable.

As mentioned in the transition from Game 1 to Game 2, this is the only step with a
security loss of ε. This proves the claim since it immediately flows that Game 0 and Game
4 are ε-close.

3.1 Dependency Graph for our Gadgets
The values carried by the wires of a masked circuit can be considered as a set of random
variables randomized by the random input encodings and the internal random gates.
When we analyze such random variables X and Y representing intermediate wires, they

Francesco Berti, Sebastian Faust and Maximilian Orlt 431

Input: (x0, ..., xn), (y0, ..., x
i+1
n)

rn−1 ←$ F
for j = 1, ..., n− 1
rj = xj − yj − rj−1
endfor
Return (r0, ..., rn)

Figure 4: The Randomness Reconstructor Rand(pRef) for (yi)i∈[n] ← pRef((xi)i∈[n]).

can carry values x, y ∈ F with Pr[X = x] ≥ 0 and Pr[Y = y] ≥ 0. When we analyze
the leakage resilience of circuits, we can distinguish two cases (i) intermediate values
are independent Pr[X = x, Y = y] = Pr[X = x] · Pr[Y = y] or (ii) they are dependent
Pr[X = x, Y = y] 6= Pr[X = x] · Pr[Y = y]. To describe the dependencies of such a set of
random variables T occurring as intermediate values during the computation of a masked
circuit, we use a dependency graph (DG), represented as a directed labeled graph where all
edges have a source and destination node. Further, each edge has a label containing at
least one variable x ∈ T . For any subset of random variables S ⊂ T , we get a subgraph
consisting of all edges whose labels contain at least a variable in S. Further, the edges of
the dependency graph are linked so that any subset S of variables describes a subgraph
with no loops (a loop is a path with the same starting and ending point) if the set S
consists of random variables that are independent of the decoded inputs or outputs of the
circuit.

Definition 3. Let C be a masked circuit C with intermediate values T , and G a labeled
graph with k edges e0, e1, . . . , ek−1 each labeled with Ti such that

⋃
i∈[k] Ti = T . G is a

dependency graph if for each sub graph G′ ⊂ G with edges ei i ∈ I ⊂ [k], it holds

G′ has no loop ⇒
⋃
i∈I Ti is independent of the unmasked inputs.

Dependency graphs are helpful for three reasons: First, when we consider the leakage
as a subset S of the random variables T , we can represent the leakage as a subgraph,
the so-called leakage diagram, LD (see Definition 5). Second, using the graph property
that all subsets with elements dependent on the decoding of the inputs are structured as
loops; we can classify leakage diagrams as “good” or “bad” (see Section 4.1). All “good”
leakage diagrams correspond to leakages that can be simulated without knowing sensitive
values. Third, with the classification, we can upper bound the probability that the leakage
corresponds to a “bad” leakage diagram if all wires leak their values with probability p.
Hence, we can analyze the leakage resilience of a circuit (Sec. 5). In the following, we
describe the dependency graphs of a simple encoding and for each gadget used by our
compiler. Then, we show how to compose the dependency graphs of our gadgets to get
the dependency graph for any output of our compiler.

Dependency graphs of masked values. Let us consider an encoding of a secret x, with
(xi)i∈[n] ← Enc(x). The corresponding set of random variables is

T = {x0, x1, . . . , xn−1} .

We represent this with the dependency graph depicted in Figure 5a with Ti = {xi}. There
are n edges, each labeled with one of the variables of T . For simplicity, we call the edge
labeled with {xi} the xi-edge. All n edges form a loop, which we can see as a “circle” 3. It
is easy to see that this “circle” is the only loop in the graph, and any strict subset of the n

3In the following, when we use circles and rectangles for the elemental geometrical shapes, while loops
for the graph loops defined before. Clearly, “circles” and “rectangles” are loops if they are defined only
with the edges of a graph.

432 Provable Secure Parallel Gadgets

edges does not form a loop. This describes the abovementioned property that dependent
random variables form a loop. The variables x0, x1, . . . , xn−1 describe a loop because they
depend on the secret with Dec((xi)i∈[n]) = x. However, any strict subset S ⊂ T is a set of
independent random variables due to the security property of the secret sharing, and that
is why they do not form a loop in the dependency graph.

Further, the dependency graph is a directed graph, and the xi-edge connects the
destination node of the xi−1-edge with the source node of the xi+1-edges.4 The direction
of an edge represents the sign of the edges labels. Thus, we can also think that there is an
edge labeled −xi which connects the source node of the xi+1-edge with the destination
node of the xi−1-edge. In detail, the path ove rall xi’s can be considered as the sum
over all xi’s. If the path also consists of edges with opposite directions, we subtract
the variables represented as an edge with the opposite direction instead of adding them.
Since the random variables of the Rand and Const gadget only consist of output variables,
their dependency graphs are simple dependency graphs of maskings. Next, we give the
dependency graph of pRef.

Dependency graph for pRef. Let pRef refresh an input (xi)i∈[n] with random values
(ri)i∈[n]. As intermediate variables it computes (bi)i∈[n] with bi = xi + ri and outputs
(yi)i∈[n] with yi = bi − ri−1. This leads to the set of random variables

TpRef = {x0, x1, . . . , xn−1, r0, r1, . . . , rn−1, b0, b1, . . . , bn−1, y0, y1, . . . , yn−1}.

The dependency graph of pRef is depicted in Figure 5b. Each edge is labeled by a single
value of TpRef. Thus, we can use the same convention as before, and the edge labeled with
{x} is the x-edge for all x ∈ TpRef. The dependency graph (Fig. 5b) forms a skeleton of a
cylinder. The x0, ..., xn−1-edges form a loop, which is the bottom circle of the cylinder,
while the y0, ..., yn−1-edges form a loop, which is the top circle of the cylinder. These two
loops are identical to the dependency graph of masked values described in the previous
paragraph. The remaining edges form the lateral surface of the cylinder. More precisely,
this lateral surface consists of n rectangles defined by the xi, ri, yi, ri−1-edges. The loops
defined by those rectangles describe the subset {xi, ri, yi, ri−1} of dependent random
variables because xi + ri − ri−1 = yi. Here it becomes clear why the dependency graph
is a directed graph because the ri−i has the opposite direction when we consider the
alternative path ri−1, xi ri that connects the same nodes as yi. Hence we only add xi
and ri but subtract ri−1 to compute yi. Further, the n rectangles each have a diagonal
edge: the bi-edges that describe the remaining intermediate values bi. We add them to
the graph such that they fulfill the same additive properties as the n rectangles. In detail,
an alternative path for the edge bi is ri−1, yi or xi, ri because it holds bi = ri−1 + yi and
bi = xi + ri. This construction fulfills the property again that all subsets S ⊂ TpRef that
depend on the decoding of the input (or output) form a loop in the graph. More precisely,
they form a loop that orbits the lateral surface of the cylinder structure of the graph. In
Proposition 6 (Sec. 4.2), we give the formal proof.

Dependency graph for Copy. The copy gadget Copy (Fig. 3b) takes as input an encoding
(ai)i∈[n] and outputs two encodings (bi)i∈[n] and (ci)i∈[n] with ai = bi = ci for all i. Note
that the dependency graph only considers the random variables carried by the wires, and
ai, bi, and ci represent the same variable. Thus,

TCopy = {a0, ..., an−1, b0, ..., bn−1, c0, ..., cn−1} = {a0, . . . , an−1}

results in the same dependency graph as the usual masking described above. The depen-
dency graph is the graph depicted in Figure 5a, with Ti = {ai, bi, ci} = {ai}. Again, it is

4To simplify the notion, we omit the (mod n) in all the operations with the index of variables, as for
i− 1.

Francesco Berti, Sebastian Faust and Maximilian Orlt 433

clear that the graph is a dependency graph because any set of possible leaked values is a
set of independent values if the set does not describe a subgraph with a loop.

Dependency graph for Add. The addition gadget Add (Fig. 3a) is a share-wise addition.
It takes as input two encodings (ai)i∈[n] and (bi)i∈[n] and outputs an encoding (ci)i∈[n]
with ci = ai + bi for all i ∈ [n]. This leads to

TAdd = {a0, ..., an−1, b0, ..., bn−1, c0, ..., cn−1}.

A possible dependency graph is depicted in Figure 5a with Ti = {ai, bi, ci}. Compared with
the graphs presented before, the difference is that each edge represents multiple different
variables. More precisely, we map all values of each share-wise computation to a single
edge. However, it holds again that any strict sub-graph has no loop and describes a subset
that is independent of the decoded input or output (see Sec. 4.2 Prop. 5). Note that this
fact immediately follows with the same argument as the one for dependency graphs of
usual masking when we consider the approximation that an adversary learns all variables
ai, bi, ci if at least one is leaked.

Dependency graph for Mult. The Mult gadget takes as input two encodings (ai)i∈[n],
and (bi)i∈[n], and outputs an encoding (ci)i∈[n] with

Dec((ci)i∈[n]) = Dec((ai)i∈[n]) · Dec((bi)i∈[n]) .

Therefore, the gadget computes the intermediate values zl,i,j , and wi,j , as defined in
Figure 3e. This leads to the set of random variables generated by the circuit

TMult = {a0, ..., an−1, b0, ..., bn−1, ai · bj , zl,i,j , wi,j and i, j ∈ [n], l ∈ [L+ 1]},

with L = log2(n+1). Considering Figure 3e, it turns out that wi,j and zl,i,j are not defined
for all j and l. For the sake of simplicity, we omit the precise treatment and assume that
all the variables ŵ

i,̂j
not defined by the algorithm are zero. We see them as not elements

in TMult. A possible dependency graph is depicted in Figure 5a with

Ti = {ai, bi, ci, ai · bi, ai · bj , aj · bi, wi,j , wj,i, zl,i,j and j ∈ [n], l ∈ [L+ 1]} .

It is very similar to the graph used for Add. The idea is to label the Ti-edge with the
ith share of the inputs and outputs ai, bi, ci. The difference to Add is that Mult also has
intermediate values that we still have to add to the graph. Therefore, we add to Ti all the
monomials aibj and ajbi, j ∈ [n]. Note the monomial aibj (and ajbi) belongs to both labels
Ti and Tj . Finally, we add all intermediate addends wi,js and the zl,i,j of the ith output
share to Ti. This is inspired by [ISW03, DFZ19]. In Section 4.2 (Proposition 5), we prove
that the variables S ⊂ TMult that do not describe a sub-graph with a loop are independent
of the decoding of (ai)i∈[n], (bi)i∈[n], and (ci)i∈[n]. Next, we give the composition results
to construct the dependency graph of any output of our compiler.

3.2 Composition of Dependency Graphs
In the previous section, we introduced the dependency graphs for our gadgets. Since
our compiler always outputs a composition of those gadgets, we are interested in how
to get the dependency graphs for the composition of those gadgets. Therefore, we give
composition results to obtain the dependency graphs of composed gadgets G1 and G2
with dependency graphs DG1 and DG2, respectively. In [CFOS21], they distinguish two
different compositions, the sequential composition written G = G1 ◦ G2 where G1 gets as
input the output of G2, or the parallel composition written G = G1||G2 where both gadgets

434 Provable Secure Parallel Gadgets

compute parallel and independently of each other. When we consider parallel compositions
of two gadgets where both gadgets run independently (with no shared inputs), it is easy
to see that the dependency graphs of both gadgets do not affect each other. Hence, the
dependency graph of DGG1||G2 can be seen as a union of sets DG1 ∪DG2 where both graphs
are considered as one graph but there is no edge connecting DG1 and DG2 because there is
no further dependency generated by the parallel composition. To compute the dependency
graph of the sequential composed gadgets G1 ◦ G2 out of DG1 and DG2 we use a modified
union of both dependency graphs. When we consider sequential compositions, an output
wire becomes an input wire of another gadget. Hence, two wires merge to only one wire,
and a modified union is required where the two edges of such connected wires become the
same. For this reason, we define a function f (so-called attaching function) that maps the
edges of the G2’s output wires to the according edges of the G1’s input wires. The result is
a union of both graphs where f defines which edges of DG1 and DG2 are the same, and we
can write

DGG1◦G2 = DGG1 ∪f DGG2

For example, let G1 = pRef and G2 = Add, then the output (ci)i∈[n] is the input of pRef.
This can be described with the attaching function f that maps the edge of ci in DGpRef to
the edge of Ti in DGAdd, and the resulting dependency graph DGpRef◦Add = DGpRef∪fDGAdd is
depicted in Figure 6a where Ti is labeled with the inputs and outputs of the addition gadget
{ai, bi, ci} as the dependency graph of Add (Fig. 5a). Further, due to the composition, the
function f merges the edges related to the output of the addition with the edges related
to the input of the refresh. For this reason, the edge labeled with Ti is also the edge that
represents the input edge of the dependency graph of pRef (Fig. 5b).

Additionally, we can also refresh the inputs of the addition. Let G be an addition or
multiplication gadget with (ci)i∈[n] ← G((ai)i∈[n], (bi)i∈[n]) where (ai)i∈[n] and (bi)i∈[n]
are refreshed outputs (ai)i∈[n] ← pRef((xi)i∈[n]), (bi)i∈[n] ← pRef((yi)i∈[n]), respectively,
and (ci)i∈[n] is refreshed afterwards (zi)i∈[n] ← pRef((ci)i∈[n]). This composition can be
written as pRef ◦G ◦ (pRef||pRef) because the refresh of (ai)i∈[n] and (bi)i∈[n] is a parallel
composition, and the remaining ones are sequential. This results in a dependency graph

DGpRef(G(pRef(·),pRef(·))) = DGpRef ∪f1 DGG ∪f2 (DGpRef ∪ DGpRef)

depicted in Figure 6b with f1 mapping the input edges DGpRef((ci)i∈[n]) to the output edges
of DGG, and f2 input edges DGG to the output edges DGpRef((xi)i∈[n]) and DGpRef((yi)i∈[n]).
Note that Ti is determined by the choice of G, and in case of Add it is {ai, bi, ci}. Formally,
the operation defined by DG1 ∪f DG2 is a topological definition called adjunction space
and can be formalized as follows.

Definition 4 (Attaching). Let DG1 and DG2 two disjoint dependency graphs, and f a
function as described above mapping some edges of DG1 to edges in DG2. The composed
graph is

DG1 ∪f DG2 = (DG1 ∪ DG2)/ ∼,
where ∼ is the smallest equivalence relation with x ∼ f(x).

The adjunction space of two dependency graphs preserves the properties of the un-
derlying dependency graphs and merges them in such a way that the resulting graph
describes the dependencies from both dependency graphs simultaneously. For the sake of
simplicity, we can consider the composition as described above, where we merge the edges
of two dependency graphs if the according wires become one due to the circuit composition.
More formally, we will prove in Propositions 5, 6, 8, and Theorem 10 that the variables
contained only in the labels of the edges of a sub-graph that does not contain a loop are
independent of the inputs or outputs.

The key observation is that the dependency graphs for all our gadgets are either the
loop depicted in Figure 5a or the skeleton of a cylinder, as shown in Figure 5. Further,

Francesco Berti, Sebastian Faust and Maximilian Orlt 435

Tn−1
Tn−2

Tn−3

Tn−4

T1T0

(a) Dependency graph of Enc, Dec, Copy,
Add, or Mult with labels Ti defined in Sec-
tion 3.1.

1

0xn−1

xn−2 x1

x0

yn−1
yn−2

yn−3

yn−4

y1

y0

r1

r0
rn−1

rn−2

rn−3
b1

b0bn−1

bn−2

(b) The dependency graph for
(yi)i∈[n] ← pRef((xi)i∈[n]).

Figure 5: Dependency graphs of the gadgets.

1

0
Tn−1

Tn−2 T1

T0

yn−1
yn−2

yn−3

yn−4

y1

y0

r1

r0
rn−1

rn−2

rn−3
b1

b0bn−1

bn−2

(a) Dependency graph of
pRef ◦ G, with (yi)i∈[n] ←
pRef((xi)i∈[n]) taking as in-
put the output of G. The
DGG is described in Figure 5a
while DGpRef is described in
Figure 5b. Note that the la-
bel Ti contains xi.

T0

Tn−1 T2

T1

y′0

y′n−1

y′n−2

y′n−3

y′2

y′1x′0

x′n−1

x′n−2

x′n−3

x′2

x′1

z′0
z′n−1

z′n−2

z′n−3

z′2
z′1

(b) The dependency graph of the composition of (xi)i∈[n] =
pRef((x′i)i∈[n]) with (yi)i∈[n] = pRef((y′i)i∈[n]), (zi)i∈[n] =
G((xi)i∈[n], (yi)i∈[n]) (thus, G is either the Add or the Mult gadget)
and (z′i)i∈[n] = pRef((zi)i∈[n]). (For simplicity, we have omitted
the edges of bis and ris.)

Figure 6: Dependency graphs of composed gadgets.

the compiler places a refresh gadget between every gadget that is not a refresh gadget.
This means that the resulting dependency graph can be seen as a composition of cylinders
(defined by the refresh gadgets), where the bottom and the top of the cylinder are labeled
with the Ti’s defined of the gadgets between the refresh gadgets.

4 Security Analyzes of the Gadgets

Before we analyze the privacy of our compiler’s output in Section 5, we first give the
privacy of our gadgets in this section. First, in Section 4.1, we formally show how to
describe the leakage with sub-graphs of the gadgets’ dependency graphs presented in the
previous chapter (Sec. 3.1). Then, in Section 4.2, we give all leakages that are not shiftable
using the sub-graphs of our dependency graph, and finally, we compute the probabilities
of such sub-graphs under the condition that each wire leaks its value with probability p.

436 Provable Secure Parallel Gadgets

4.1 Leakage Diagram
Using Corollary 3, it is enough to show shiftability for the privacy proof. To characterize
which outputs Leak(Ĉ,x, p) of the experiment in Definition 1 are shiftable, we start
representing the leakage as a subgraph of the dependency graph. As already discussed in
the random probing model, the adversary receives via leakage the values carried by some
of the wires, Lp(Ĉ) ⊆ W ′(Ĉ) (Def. 1). We can represent these variables as a subgraph of
the dependency graph.

Definition 5 (Leakage diagram). Let DG be the dependency graph of the circuit Ĉ and
Lp(Ĉ) be the set of wires that leak in the experiment Leak(Ĉ,x, p).The leakage diagram,
LD(Lp(Ĉ),C), corresponding to the leakage Lp(Ĉ) is the subgraph of DG composed by all
edges whose label contains at least one of the variables carried by the wires in Lp(Ĉ).

Since Lp(Ĉ) is randomized by the leakage probability p, it is a random variable over all
possible subsets of the wiresW ′(Ĉ) that may leak during the computation of Ĉ. Hence, also
LD(Lp(Ĉ), Ĉ) is a random variable over all possible sub-graphs of the dependency graph.
Next, we give some examples of leakage diagrams LDi with Pr[LD(Lp(Ĉ), Ĉ) = LDi] > 0.
They are also represented in the full version. For this reason, we consider the pRef gadget
refreshing an encoding (xi)i∈[n] ← Enc(x) of a secret x ∈ F

(yi)i∈[n] ← pRef((xi)i∈[n])

with random values ri, and intermediate values yi = bi − ri+1 and bi = xi + ri defined in
Figure 1b.

1) LD1 = (x0, ..., , xn−1) reveals the secret because Dec((xi)i∈[n]) = x

2) LD2 = (y0, ..., , yn−1) reveals the secret because Dec((yi)i∈[n]) = Dec((xi)i∈[n]) = x

3) Let LD3 = (x0, ..., xi−1, ri−1, yi, ri, xi+1, ..., xn−1). Since yi = xi + ri− ri+1, we have
that these values reveal x. In fact, ∑

j∈[n],j 6=i

xj

+ ri + yi + ri+1 =

 ∑
j∈[n],j 6=i

xj

+ xi = Dec((xi)i∈[n]) = x.

4) Let LD4 = (x0, ..., xi, ri, yi+1, ..., yn−1). We observe that if instead of rn−1, we have
r′n−1 = rn−1 + x′ − x, these values come from a refreshing of x′. In facti−1∑

j=0
xj

+ ri +

n−1∑
j=i

yj

 =

n−1∑
j=0

xj

− rn−1 = x− rn−1

since rj−1 + yj = xj + rj . Thus, LD4 does not reveal x because the leakage is
shiftable to x′.
Note that, LD′4 = LD4 ∪ {rn−1} would reveal x similarly to B3).

5) Now, consider LD5 = {x0, ..., xi−1, xi+1, ..., xn−1, y0, ..., yi−1, yi+1, ..., yn−1, r0, ..., rn−1}.
LD5 does not reveal x since LD5 ∪ {xi} comes from L(pRef((xi)i∈[n], r), p), while
LD5 ∪ {xi + x′ − x} comes from L(pRef((x′i)i∈[n], r), p), where (x′i)i∈[n] is defined
as x′j = xj if j 6= i and x′i = x+ i+ x′ − x, r = (r + 0, ..., rn−1). We prove this in
Section 4.2, Proposition 6.

6) Finally, consider LD6 = (x1, b1, r1), which clearly does not reveal the secret, as we
will prove in the next section.

Francesco Berti, Sebastian Faust and Maximilian Orlt 437

1

0xn−1

xn−2

x0

yn−3

yn−4

y1

r0

rn−3

(a) Leakage diagram of
(yi)i∈[n] ← pRef((xi)i∈[n]) with an or-
biting loop.

1

0xn−1

xn−2

x0

yn−1
yn−2

y0

r0

rn−3

(b) Leakage diagram of
(yi)i∈[n] ← pRef((xi)i∈[n]) with a not
orbiting loop.

Figure 7: Dependency graphs of the gadgets.

Considering the examples above, we observe that if the leakage diagram reveals
information about the secret, the leakage diagram also consists of at least one loop. This
is not surprising because this is exactly the property that we presented in Section 3,
and immediately follows from the dependency graph property described in Section 3.1.
However, the presence of a loop does not always prevent shiftability, e.g., LD4, LD5, ad
LD6 have a loop and are still shiftable. For tightness reasons, we want to distinguish
loops that reveal the secret from loops that do not reveal the secret. For this reason, we
remember that the dependency graphs of the gadgets (Fig. 5) are either a circle or the
skeleton of a cylinder. Hence, its compositions are composed hollow cylinders, as depicted
in Figure 6. We observe all loops revealing the secret orbit around this hollow cylinder
structure. Further, the loops that do not reveal the secret do not orbit the hollow structure.
Figure 7 illustrates the differences between such loops. The first loop is an example of a
loop that does orbit the skeleton, while the second one gives an example of a loop that does
not orbit the skeleton. In the following, we say that a leakage diagram orbits if it contains
such an orbiting loop. Similarly to the adjunction space used to compose the dependency
graphs, also the property of hollow and orbit are well-known in Topology and can be
described with the topological definitions simply connected and homotopically equivalent:
Hollow means that all the loops carrying the shares of a value are not simply connected,
and orbiting means that the loop is homotopically equivalent to a loop containing all
xi-edges of a sharing (xi)i∈[n]. Roughly speaking, two paths are homotopically equivalent
(Defined in the full version) if we can put an infinitely elastic rope over the first path,
and we can slide it to cover the second path. For this, we assume that the DG of pRef
contains the lateral surface of the cylinder, and the rope, as in LD3, can slide over it.
With this, it is easy to see that LD3 is homotopically equivalent to LD1 and LD2. Thus,
the Topology allows us to distinguish between “bad” leakage diagrams from good, and all
not orbiting leakage diagrams represent shiftable leakages. This intuition will be proved
in the following subsection (Sec. 4.2). In the following, we will also call “good” diagrams
shiftable diagrams.

4.2 Security Analysis for our Gadgets
To avoid that, we have to prove the security of any possible leakage diagram. So we start
with a useful observation.

Proposition 1. If a leakage diagram LD is shiftable, all sub graphs LD′ with LD′ ⊂ LD
are also shiftable.

Hence, when we prove shiftability for a given leakage diagram, it immediately follows
shiftability for any subgraph.

438 Provable Secure Parallel Gadgets

Proof. A leakage diagram LD is shiftable if all the outcomes L of the Leak(Ĉ,x, p) which
are represented by the leakage diagram LD are shiftable to x’ for any x’ 6= x. That is,
(Def. 2) L can be also an outcome of the Leak(Ĉ,x’, p)-experiment.

Now, consider the leakage diagram LD′ with LD′ ⊂ LD. Let L′ be an outcome of the
Leak(Ĉ,x, p), which can be represented by the leakage diagram LD′. Since LD′ ⊂ LD,
there exists an outcome L of the Leak experiment represented by LD s.t. L|var ∈LD′ = L′,
where with var ∈ LD′, we mean the variables carried only by the labels of the edges in LD′.
Since LD is shiftable, then L can be an outcome of the Leak(Ĉ,x’, p)-experiment. Thus,
L′ = L|var ∈LD′ can be an outcome of the Leak(Ĉ,x’, p)-experiment. Thus, all outcomes
of the Leak-experiment represented by LD′ are shiftable to x’. Thus, the leakage diagram
LD′ is shiftable.

For simplicity, we use this result and introduce the concept of maximal diagram
MAX (LD) for any leakage diagram LD of our gadgets. MAX (LD) is a subgraph of the
dependency graph, which contains LD

LD ⊆MAX (LD) ⊂ DG

and is maximal in the sense that if we add any further edge, it orbits as depicted in
Figure 7a. Due to Proposition 1 we only need to consider all possible maximal diagrams
for the security proofs of our gadgets when we want to show that leakage diagrams are
shiftable if they do not orbit. The existence of maximal diagrams is proved in the following
Proposition.

Proposition 2. Let LD be a leakage diagram that does not orbit. Then, there exists a
maximal diagram LD′ containing it.

Proof. Let LD be a subgraph of DG, which does not orbit. Suppose that ∀ edge e ∈ DG\LD,
LD ∪ {e} orbits. Then, LD is a maximal simply connected subgraph containing LD.

Otherwise, there is an e ∈ DG \LD s.t LD1 = LD ∪ {e} that does not orbit. Then, we
iterate with LD1 until there is no such an e left. Since there is only a finite number of
edges that can be added, this sequence of subgraphs must end after at most I step (with
I ≤ |{e ∈ DG \ LD}|). Hence, the final LDj is a maximal diagram.

In general, there are many different maximal diagrams, as we will see in the next
section.

Maximal diagrams. Since we use the maximal diagrams in most of the following proofs, we
characterize them for all of our gadgets. The dependency graphs of Enc, Dec, Copy, Add, Mult
(Fig. 5a) are a circle with n edges, all subgraphs containing all edges except one are maximal,
that is, we have n different maximal diagrams Mi defined as follows

Mi = {T0, ...Ti−1, Ti+1, ..., Tn−1} = DG \ {Ti}

where with Tj ∈Mi, we mean thatMi contains the edge labeled with Tj as depicted in
Figure 8b and 8b. We formally prove this in the following Proposition.

Proposition 3. Let DG be the dependency graph of one of the Enc, Dec, Copy, Add, and
Mult gadget. Then, there are n different maximals (Sec. 3.1)

Mi = {T0, ..., Tn−1} = DG \ {Ti}

for i = 0, ..., n− 1.

Francesco Berti, Sebastian Faust and Maximilian Orlt 439

Tn−3

T0

(a) A possible leakage dia-
gram LD only consisting of
two edges (solid).

Tn−1
Tn−2

Tn−3

Tn−4

T1T0

(b) Maximal leakage diagram
MAX (LD) = Mn−2 (solid,
black edges).

Tn−1
Tn−2

Tn−3

Tn−4

T1T0

(c) Maximal leakage diagram
MAX (LD) = M1 (solid,
black edges).

Figure 8: Two possible maximal leakage diagrams (Fig. 8b and 8b) of a possible leakage
diagram LD (Fig. 8a). The blue dashed edge is the missing one so that the diagram does
not orbit.

Proof. Mi is a line starting from nodei+1, the starting node of the Ti+1-edge, to nodei,
the arriving node of the Ti−1-edge (and the starting node of the Ti-edge). Thus, it is
simply connected. Moreover,Mi ∪ {Ti} = DG, where Ti is the only edge in DG and not in
Mi. Since DG orbits,Mi is maximal. In fact, any other subset LD that does not orbit
and is composed of less than n− 1 edges is a subset of one of theseMi. Hence, there is
no other maximal apart from theMi’s.

Further, note that MAX (LD) is not always unique. As an example, suppose that
LD = ∅, then, there are n different maximal simply connected subgraphMAX i containing
LD, with

MAX i = {e0, ..., ei−1, ei+1, ..., en−1},

that is,MAX i contains all edges except ei. All theMAX is contain LD, do not orbit,
and, adding the only remaining edge (ei), they orbit.

The dependency graph of pRef describes the skeleton of a cylinder (Fig. 5b). There are
two families of maximal diagrams (both depicted in Figure 9): The first family is called
Mright since there is a gap of missing edges turning right, which we call RGap (Fig. 9a).

Mright
i,j := {x0, ..., xi−1, xi+1, ..., xn−1, y0, ..., yj−1, yj+1, ..., yn−1, rj , ..., ri−1, bj , ..., bi},

RGapi,j = {xi, yj , ri, ..., rj−1, bi+1, ..., bj−1}

for i, j ∈ [n] withMright
i,j = DG \RGapi,j . Note that rj , ..., ri−1 is a short way to write: if

i < j r0, ...ri−1, rj , ..., rn−1; if i = j ∅; if i > j rj+1, ..., ri−1. The same holds for the bi′s.
The second family is calledMleft since there is a gap, LGap (Fig. 9b), which turns left (or
stays straight for LGapi,i)

Mleft
i,j := {x0, ..., xi−1, xi+1, ..., xn−1, y0, ..., yj−1, yj+1, ..., yn−1, ri, ..., rj−1, bi+1, ..., bj−1},

LGapi,j = {xi, yj , rj , ..., ri−1, bj , ..., bi}

for i, j ∈ [n] withMleft
i,j = DG \ LGapi,j . The proof that these are maximal diagrams and

that the classification is complete can be found in the following Proposition:

Proposition 4. The maximal diagrams of DGpRef are either of the typeMright
i,j orMleft

i,j

with i, j ∈ [n]

Proof. In other words, if LD is a maximal diagram of DGpRef, there are i, j ∈ [n] s.t. either
LD =Mright

i,j or LD =Mleft
i,j .

First, we start observing that if LD is a maximal diagram, then it must be connected.
Otherwise, since it does not orbit, thus all connected components are simply connected
(since the fundamental group of DGpRef is Z). Thus, we can deform them homotopically
to be points. Now adding a single edge to a set of points, it cannot make it not simply
connected (and, thus, orbiting).

440 Provable Secure Parallel Gadgets

Second, in any maximal diagram, there exists one and only one i ∈ [n] s.t. xi /∈ LD,
and one and only one j ∈ [n] s.t. yj /∈ LD. In fact, let us suppose that there exist two
edges xi and xi′ not in LD. Let nodei and the nodei′ be the source nodes of the edge xi,
and xi′ , respectively, nodei+1 and nodei′+1 be their respective destination nodes. Now,
look at LD. Suppose that i 6= i′ + 1, i′ − 1. Since LD is maximal, there is a path path
from nodei+1 to nodei s.t. path∪{xi orbits. Similarly, there is a path path′ from nodei′+1
to nodei′ s.t. path′ ∪ {xi′ orbits. For the structure of DGpRef path and path′ meet in two
points. Thus, taking a part of path and a part path′, we have a path that orbits. Therefore
LD is not maximal since it orbits. Now, we observe that if xi /∈ LD then {bi, ri} * LD,
otherwise, the path

x0, ..., xi−1, bi, ri, xi+1, ..., xn−1

is a loop in LD orbiting around the hollow graph, thus, LD would orbit. Thus, either
ri ∈ LD or bi ∈ LD. Similarly, if yj /∈ LD then {bj , rj} * LD, otherwise, the path

y0, ..., yj , rj , bj , yj , ..., yn−1

is a loop in LD orbiting around the hollow graph. Here, we consider the case i = j. It
depends if either bi or ri belongs to LD

• Case ri ∈ LD. (Mleft
i,i) Since we cannot have both bi and ri in a maximal simply

connected subgraph containing {xi, ..., xi−1, xi+1, ..., xn−1, y0, ..., yi−1, yi+1, ..., yn−1},
the natural maximal diagram is

LD′ = {x0, ..., xi−1, xi+1, ..., xn−1, y0, ..., yi−1, yi+1, ..., yn−1,

r0, ..., rn−1, b0, ..., bi−1, bi+1, ..., bn−1}.

We observe that it does not orbit since there is no loop turning around the hollow
graph since the square defined by xi, ri, yi and ri−1 is never crossed. Moreover, if we
add only the edge in DG \ LD, that is, bi, we have a not simply connected subgraph
since it is DG. Thus, LD′ is a maximal simply connected subgraph.

• Case bi ∈ LD. (CaseMright
i,i) We observe that

LD′ := {x0, ..., xi−1, xi+1, ..., xn−1, y0, ..., yi−1, yi+1, ..., yn−1, bi}

does not orbit since there is no non-trivial loop. In fact,

xi+1, ..., xn−1, x0, ..., xi−1, bi, yi+1, ..., yn−1, y0, ..., yi−1

is a line which is not a loop.
Moreover, if we add rl to LD′, we have that

y0, ..., yl, rl, xl+1, ..., xi−1, bi, yi+1, ..., yn−1 for l < i, or

x0, ..., xi−1, bi, yi+1, ..., yl, rl, xl+1, ..., xn+1, ..., xn−1 for l > i, or
is a loop in LD′ ∪ {rl} which orbits 5. Similarly, if we add bl to LD, we have that

y0, ..., yl, bl, xl, ..., xi−1, bi, yi+1, ..., yn−1 for l < i, or

x0, ..., xi−1, bi, yi+1, ..., yl, bl, xl, ..., xn+1, ..., xn−1 for l > i

is a loop in LD′ ∪ {bl} which orbits. Thus LD′ is a maximal simply connected
subgraph.

The other cases (which are done in a similar way) can be found in the full version.

Using the maximal diagrams, we can prove the security of our gadgets with the help of
Proposition 1.

5The inequalities regarding l, i as all the inequalities in the remaining in the proof are done considering
l, i ∈ Z (and not in Zn)].

Francesco Berti, Sebastian Faust and Maximilian Orlt 441

xk−1 xk xk+1 xl−1 xl xl+1

yk−1 yk yk+1 yl−1 yl yl+1

r
k
−

2

r
k
−

1

r
k

r
k

+
1

r
l−

1

r
l

r
l+

1

bk
−

1
bk bk

+
1

b l−
1

b l b l+
1

(a) Edges in RGapk,l (dashed, blue) of the dependency graph of (yi)i∈[n] ← pRef((xi)i∈[n])
experiment.

xk−1 xk xk+1 xl−1 xl xl+1

yk−1 yk yk+1 yl−1 yl yl+1

r
k
−

2

r
k
−

1

r
k

r
k

+
1

r
l−

1

r
l

r
l+

1

bk
−

1
bk bk

+
1

b l−
1

b l b l+
1

(b) Edges in LGapk,l (dashed, blue) of the dependency graph of (yi)i∈[n] ← pRef((xi)i∈[n])
experiment.

Figure 9: Example of maximal leakage diagrams of pRef. The blue dashed edges represent
RGapk,l and LGapk,l, respectively. The remaining solid edges are the maximal leakage
diagramsMright

k,l = DG \RGapk,l andMleft
k,l = DG \ LGapk,l.

Security for Enc, Dec, Copy, Add, Mult. Now, for all gadgets except pRef, we prove the
condition mentioned in Section 4.1. In other words, we prove any leakage diagram that
does not orbit implies that the leakage is shiftable to another input. Formally,

Proposition 5. Let G be the gadget Add, Mult, or Copy defined in Figure 3. An outcome
L of the Leak(G,x, p) experiment is shiftable to any x’, if the leakage diagram corresponding
to L, does not orbit the dependency graph.

We first give a high-level proof idea.

Proof sketch. The proof is substantially the same for all gadgets: we consider the maximal
Mi and the values of the variables it contains, and we show that we can modify the values
carried by the Ti label. Hence we can shift the ith share of each input and output encoding
such, and prove that this modification does not change the distribution of the values in
Mi. Hence, the distribution of the values in Mi is the same for Leak(G,x, p) experiment
and the shifted one Leak(G,x’, p).

Next, we give the formal proof.

Proof. We prove the claim for all maximal graphs. Thus, using Proposition 1, we have
that the claim holds for all not orbiting leakage diagrams. The high-level idea is that we
can shift change the inputs and outputs of the edge that are not part of the maximal
graph because they are uniformly distributed and not revealed due to the leakage. We
start with the simplest case, (i) the masking of Enc, Dec and dependency graphs of Copy,
then we prove the claim for (ii) Add, and (iii) Mult.

(i) The masking of Enc, Dec and dependency graphs of Copy since the edges of the
dependency graph are labeled with a single variable. Thus, the input is x, and the
variables leaked are those in the labels of the edges ofMi for an i ∈ [n]. Mi contains
all xj with j 6= i. If we modify the not leaked value xi to x′i = xi + x′ − x, we
have shifted the output Leak(G, x, p) to the output of the experiment Leak(G, x′, p),
since x0, ..., xi−1, x

′
i, xi+1, ..., xn−1 is an encoding of x′. Hence, Mi has the same

distribution for x and x′, and thereforeMi is shiftable for any i ∈ [n].

442 Provable Secure Parallel Gadgets

(ii) The dependency graph’s edges of Add are labeled with multiple variables. Let us
suppose that Add takes as input (ai)i∈[n] and (bi)i∈[n], and outputs (ci)i∈[n], then
each edge is labeled with Ti = {ai, bi, ci}. Thus, the leaked variable of the maximal
graph Mi are all aj , bj , and cj with j 6= i. If we modify the values ai, bi, and ci
which are not leaked in a′i = ai+a′−a, b′i = bi+b′−b, and c′i = ci+a′+b′−a−b, we
have shifted the output Leak(Add, (a, b), p) to the output Leak(Add, (a′, b′), p). This
hold because d0, ..., di−1, d

′
i, di+1, ..., dn−1 is an encoding of d for d = a, b, c, and

aj + bj = cj ∀j 6= i, and a′i + b′i = c′i. Note that the input sharings are uniformly
distributed, and therefore the modified shares are also uniformly distributed.

(iii) Mult: let us suppose that Mult takes as input (ai)i∈[n] and (bi)i∈[n], and outputs
(ci)i∈[n]. Thus, the variables leaked are those only in the labels of the edges of
Mi (Def. 5), that is, ai′ , bi′ , ci′ , ai′bi′ , ai′bj , ajbi′ , wi′,j , wj,i′ , zl,i′,j for i′ 6= i, and
j ∈ [n] and l ∈ [0, ..., L] with L = log2(n + 1). Let δ1 = a′ − a and δ2 = b′ − b.
We replace the values of the variable in Mi as follows: a′i = a′ + δ1, b′i = bi + δ2,
(aibi)′ := aibi + δ1bi + δ2ai + δ1δ2, (aibj)′ := aibj + δ1bj , (ajbi)′ := ajbi + ajδ2,
(wi,j)′ := wi,j + δ1bj , and (wj,i)′ := wj,i + δ2aj . For c′i and zl,i,j , since they are the
sum of many wi,js and aj′bi, the modification is done according to the previous
modifications. This can be seen as an output of the Leak(Mult, (a′, b′), p) as we now
prove, modifying the proof of [DFZ19]:
In [DFZ19] is the proof for all values except for the zl,i,js. The only difference from
our Mult from that in [DFZ19], is that the final addition is done sequentially thew
(Figure 3e, while we do it parallel). But, we can observe that ∀l = 1, ..., log(n) and
∀i, j

zl,i,j = aibi +
2l(j+1)−1∑
I=2lj

z0,i,I = aibi +
2l(j+1)−1∑

I=0
z0,i,I −

2lj−1∑
I=0

z0,i,I

Hence, all
2l(j+1)−1∑

I=0
z0,i,I ,

2l(j+1)−1∑
z0,i,j −

2l(j+1)−1∑
z0,i,j are partial sums of the serial

sum of the multiplication of Dziembowski et al. [DFZ19], and all these values are
mapped on the ith edge. Thus, since their modifications cannot be detected, ours
cannot be detected too.
In this way, we have shifted the output of the Leak(Mult, (a, b), p) to an output of
the experiment Leak(Mult, (a′, b′), p).

The results of (i),(ii), and (iii) conclude the proof.

The proposition gives us the following privacy result for our gadgets.

Theorem 1. Let Add, Mult and Copy be the gadgets defined in Figure 3. Then, Add and
Copy are (p, (3p)n)-private, for p ≤ 1/3, and Mult is (p, p̃)-private with

p̃ = 2(1− (1−
√

3p)8n).

Proof. Using Proposition 5 and the classification of maximal diagrams, the only problems
happen if all edges are leaked. Thus, these gadgets are secure if the leakage diagram does not
contain all edges. In other words, they are secure with probability 1−Pr[LD = {T0, ..., Tn}]
and thus, they are

(p,Pr[LD = {T0, ..., Tn}])-private.

We first bound Pr[LD = {T0, ..., Tn}] for (i) Add and Copy, and then for (ii) Mult.

Francesco Berti, Sebastian Faust and Maximilian Orlt 443

(i) For Add and Copy, all edges are added independently with probability 1−(1−p)3 ≤ 3p
since there are three variables mapped to each edge: For Add there are 3 variables on
the label Ti = {ai, bi, ci} (Section 3.1); For Copy there are 3 variables on the label
Ti = {ai, bi, ci} (Section 3.1) with ai = bi = ci. In both cases, each variable is carried
by a single edge. Thus, the probability that all edges belong to the leakage diagram
is 1− (1− 3p)n ≤ (3p)n which concludes the proof.

(ii) For Mult, as in [DFZ19], we can prove that if we add each edge independently with
probability p′ = 2(1 − (1 −

√
3p)8n), the leakage diagrams obtained in this way

contain the leakage diagrams obtained in the Leak(Mult, (x, y), p)-experiment.
We prove this fact by doing a proof very similar to the one in [DFZ19] (which is
inspired by the original proof in [ISW03]). The two differences are the fact that our
Mult is slightly different from theirs and, more substantially, a different analytical
treatment of the bound. We start observing that there are at most 8n wires which
carry at least one variable present in the label Ti of the Ti-edge. ai is used in n
multiplication. Thus, there are n wires carrying it. Similarly, bi is carried by n wires.
There are 2n different zl,i,j for l > 1. There n different aibj and ajbi (for j ∈ [n]).
Finally, there are at most n between z0,i,j and wi,j wires and at n different wj,i
wires.
Thus, we add the edge Ti with probability at most 1− (1− p)8n and the edges Ti
and Tj with probability at most 1− 3p.
It is easier to work with independent variables, but in the previous situation, the
edges Tis are not independently added to LD. Thus, we try to add all the Ti edges
to LD independently. To do this, we add Ti with the probability

1− (1− p)8n + 1− (1−
√

3p)n−1.

The proof is the same as in [DFZ19], where we have not used the approximation
1− (1− p)8n ≤ 8np. A detailed discussion is given in the full version.
Thus, the probability that all edges belong to LD is bounded by [2(1−(1−

√
3p)8n)]n.

This proves the claim of the theorem.

Note that we do not use the approximation 2(1− (1−
√

3p)8n) ≤ 16n
√

3p because it is
not tight and makes the security much worse.

Security for pRef. With the same technique, we can analyze pRef. The only difference
is the more complex dependency graph since it forms the skeleton of a cylinder and not a
simple loop. Formally:

Proposition 6. An outcome L of the Leak(pRef, x, p) experiment, is shiftable to x′, if the
corresponding leakage diagram, does not orbit.

Proof. Again due to Proposition 1, we only prove the claim for maximal diagrams. We
have two types of maximal diagramsMright

i,j andMleft
i,j . For the proof, we show how to

shift/modify the variables in (i) RGapi,j = DG \Mright
i,j and (ii) LGapi,j = DG \Mleft

i,j . It
consists of xi, yj , and some bls and rls.

(i) Mright
i,j : we shift an output of Leak(pRef, x, p) to an output of Leak(pRef, x′, p) as

follows: xi is modified in x′i = xi + x′ − x, yj is modified in y′j = xj + x′ − x,
rl is modified in r′l = rl − (x′ − x), for the rls in RGapi,j , and bl is modified
in b′l = bl − (x′ − x), for the bls in RGapi,j . Note that the modified shares and
intermediate values are all uniformly random, and the modification is done in such
a way that they are still uniformly random and the intermediate dependencies are
consistent.

444 Provable Secure Parallel Gadgets

x′k−1 = xk−1 x′k = xk + δ x′k+1 = xk+1 x′l−1 = xl−1 x′l = xl x′l+1 = xl+1

y′0 = y0 y′1 = y1 y′2 = y2 y′l−1 = yl−1 y′l = yl + δ y′l+1 = yl+1

r
′ k
−

2
=
r
k
−

2

r
′ k
−

1
=
r
k
−

1

r
′ k

=
r
k
−
δ

r
′ k

+
1

=
r
k

+
1
−
δ

r
′ l−

1
=
r
l−

1
−
δ

r
′ l

=
r
l

r
′ l+

1
=
r
l+

1

b
′
k
−

1
=
bk
−

1

b
′
k
=
bk

b
′
k
+

1
=
bk

+
1
−
δ

b
′
l−

1
=
b l−

1
−
δ

b
′
l
=
b l

b
′
l+

1
=
b l+

1

(a) Values of the variables in RGapk,l in the Leak(pRef, x′, p) experiment. δ = x′ − x.

x′k−1 = xk−1 x′k = xk x′k+1 = xk+1 x′l−1 = xl−1 x′l = xl + δ x′l+1 = xl+1

y′k−1 = yk−1 y′k = yk + δ y′k+1 = yk+1 y′l−1 = yl−1 y′l = yl y′l+1 = yl+1

r
′ k
−

2
=
r
k
−

2

r
k
−

1

r
′ k

=
r
k

+
δ

r
′ k

+
1

=
r
k

+
1

+
δ

r
′ l−

1
=
r
l−

1
+
δ

r
′ l

=
r
l

r
′ l+

1
=
r
l+

1

b
′
k
−

1
=
bk
−

1

b
′
k
=
bk

+
δ

b
′
k
+

1
=
bk

+
1
+
δ

b
′
l−

1
=
b l−

1
+
δ

b
′
l
=
b l

+
δ

b
′
l+

1
=
b l+

1

(b) Values of the variables in LGapk,l in the Leak(pRef, x′, p) experiment. δ = x′ − x.

Figure 10: Example of the shifting depicted in Proposition 5. The solid edges are in
LD. The maximal is of type Mright

k,l and RGapk,l = DG \Mright
k,l (10a), and Mleft

k,l and
LGapk,l = DG \Mleft

k,l (10b).

(ii) With the same technique, we can modifyMleft
i,j : we shift an output of Leak(pRef, x, p)

to an output of Leak(pRef, x′, p) as follows: xi is modified in x′i = xi + x′ − x, yj
is modified in y′j = xj + x′ − x, rl is modified in r′l = rl + (x′ − x), for the rls in
LGapi,j , and bl is modified in b′l = bl + (x′ − x), for the bls in LGapi,j .

We have to prove that every shift results in an outcome of the Leak(pRef, x′, p) experi-
ment. We prove one case and refer to the full version for the other cases.

Let δ = x′ − x. Let A be the values carried by the variables of pRef during the
Leak(pRef, x, r, p)-experiment, where r = r0, ..., rn−1 is the randomness used.

The maximal is of typeMright
i,i . The values carried in A′ are

{x0, ..., xi−1, xi + δ, xi+1, ..., xn−1, y0, ..., yj−1, yi + δ, yi+1, ..., yn−1,

r0 − δ, ..., rn−1 − δ, b0 − δ, ..., bi−1 − δ, bi, bi+1 − δ, ..., bn−1 − δ}.

First, we observe that

x0 + ...+ xi−1 + (xi + δ) + xi+1 + ...+ xn−1 = x0 + ...+ xn−1 + δ = x+ (x′ − x) = x′.

The same holds for the shares of y.
Now, let us consider pRef with input x0, ..., xi−1, xi + δ, xi+1, ..., xn−1 and randomness
r0 − δ, ..., rn−1 − δ. For i′ 6= i, bi′ − δ = xi′ + (ri′ − δ) and yi′ = (bi′ − δ)− (ri′−1 − δ). In
stead, for i, bi = (xi + δ) + (ri− δ), and yi + δ = (bi)− (ri−1− δ). Thus, the values carried
by A′ are those of an honest evaluation of pRef with input x0, ..., xi−1, xi+ δ, xi+1, ..., xn−1
and randomness r0 − δ, ..., rn−1 − δ.

As already discussed before (Section 3.1), the security of the Const and Rand gadgets
is given by the security of the gadgets where their output wires are used. This gives us the
following privacy result for pRef.

Theorem 2. Let pRef be the refreshing gadget defined in Figure 1b. Then, pRef is
(p, p̃))-private, with p̃ = 2 · [(1 + 2(3p))3p]n. If p ≤ 1/6 we can approximate p̃ ≤ 2 · (6p)n.

Francesco Berti, Sebastian Faust and Maximilian Orlt 445

Proof. As in the security proof of the other gadgets, with Corollary 3 and Proposition 6,
we only need to compute Pr[LD orbits] because it holds

pRef is (p,Pr[LD orbits])-private.

First, we observe that every edge of DG(pRef) (Figure 5b) has a label containing a single
variable. We refer to Figure 5b for the notations. All variables are carried by a single wire
except the ri’s, which are carried by three wires (Figure 1b). Thus, we can assume that
each edge is added to LD independently with probability at most 1− (1− p)3 ≤ 3p. With
the result of Proposition 6, we know that the circuit is private if there is no loop that orbit.
Moreover, any orbit must contain at least one of the source nodes of the edges x0 or y0.
Next, we approximate the probability that in LD there is an orbit containing the source
node of x0 called node0

0. (event E0). Since such an orbit is at least n edges-long, we can
upper-bound Pr[E0] with the probability that the leakage diagram contains a path starting
from node0 with n edges. Since each node is connected with at most 4 other nodes, we
have 3n different n long paths6 and the probability for each path is (3p)n. This results in

Pr[E0] ≤ (9p)n.

But, we can refine the bound of E0 as follows. We observe that we are trying to bound the
probability of an orbiting path starting from node0

0. Before, we observed that every path
between these two nodes is at least n edges long. However, it is easy to see that there is
only one n-edges long path that describes a path from node0

0 and arriving to it, 2(n− 1)
paths that are n + 1-edges long, and so on. We observe that given a node y, the paths
from y to node0

0 which have the minimal length7 keeping the direction of the orbit 8, takes
as the first edge from y at most two different edges.

To prove this, it is enough to observe that if the node y is on the x0
i -edges orbits, thus,

it is node node0
j for a j ∈ [n], the source node of the x0

j -edge. Thus, if the path to node0
0

keeping the direction of the orbit, has to turn left, the shortest path consists of the path
x0
j−1, ..., x

0
0; otherwise, if it turns right, the shortest path is taking the path x0

j , ..., x
0
n−1.

They are the shortest path because every time a path leaves the x0
i orbits, it needs an

additional edge to rejoin it. Moreover, it is not possible to have paths that skip the ith
edge (that is, do not contain any edge indexed with i) for i = 0, ..., j − 1 if it turns left, or
with i = j, ..., n− 1 if it turns right.

Instead, if y is on the x1
i -edges orbits, thus, it is node node1

j for a j ∈ [n], the source
node of the x1

j -edge. Thus, if the path to node0
0 keeping the direction of the orbit has to

turn right, it must take either the edge x1
j or rj−1. In fact, the first path needs 1 + n− j

edges (see above), while the shortest paths using the-x1
j can take as well at most 1 + n− j

edges. The proof that the shortest path needs 1 + n − j edges can be easily done by
induction. We iterate the previous argument until we arrive at node1

0 for which the shortest
path to node0

0 is clearly rn−1.
Finally, if the path to node0

0 keeping the direction of the orbit has to turn left, it must
take either the edge bj−1 or x1

j−1 (for j = 1, it must take b0). In fact, the first path
needs j − 1 edges (see above, the case for y as node node0

j), while the shortest paths using
the-x1

j−1 can take as well at most j − 1 edges. The proof that the shortest path needs
j − 1 edges can be easily done by induction. We iterate the previous argument until we
arrive at node1

1 for which the shortest path to node0
0 is clearly b0. For j = 0, since we have

to turn left (the case where you have to go down via rn−1 has already been treated in
turning right, we must take x1

n−1 or bn−1.
6We omit paths where an edge is crossed more than once. In fact, this possibility does not give anything

to the adversary.
7minimal means with the least number of edges.
8That is, making the loop node0

0, ..., y, node0
0 orbit.

446 Provable Secure Parallel Gadgets

1

0xn−1

xn−2 x1

x0

yn−1
yn−2

yn−3

yn−4

y1

y0

r1

r0
rn−1

rn−2

rn−3
b1

b0bn−1

bn−2

zn−1
zn−2

zn−3

zn−4

z1

z0

r′1

r′0
r′n−1

r′n−2

r′n−3
b′1

b′0b′n−1

b′n−2

(a) The dependency graph for
(zi)i∈[n] ← pRef(pRef((xi)i∈[n])).

1

0xn−1

xn−2

x0

r0

rn−3

zn−3

zn−4

z1

r′0

r′n−3

(b) The dependency graph for
(zi)i∈[n] ← pRef(pRef((xi)i∈[n])).

Figure 11: Dependency graphs of two composed refresh gadgets.

Finally, we have to explain why

Pr[E0] ≤ [(1 + 2(3p))3p]n.

This happens because if we consider a loop starting from node0
0, which orbits, and we do

not take the shortest path, which is x0
0, ..., x

0
n−1, and we take the e-th edge to deviate.

In this case, we need to take one of the other two edges connected to the node we have
arrived after we have taken the e-edge. But, this happens with probability at most 3p.
From there, we need at most n− i edges to end our loop, where is the number of edges
taken on the x0

0, ..., x
0
n−1 before deviating via the e-edge.

Thus, if a path from y to node0
0 does not pass through one of these two edges, it is

at least l + 1 edges long. Thus, the probability that it belongs to LD is at most (3p)l+1.
Thus, we can upper-bound

Pr[E0] ≤ [(1 + 2(3p))3p]n.

Further, if 6p < 1 it holds
[(1 + 2(3p))3p]n ≤ (6p)n.

Clearly, the same holds for E1, which is the event that there is an orbiting loop starting from
the source node of the edge y0. Thus, Pr[LD orbits] ≤ Pr[E0] + Pr[E1] = 2[(1 + 2(3p))3p]n
for p ≤ 1/3 and 2(6p)n for p ≤ 1/6.

With Theorem 1 and 2, we have proven the security of the gadgets used by our compiler.
However, it is well known that it is insufficient to prove their compositions’ security. Next,
we examine the security of compositions to argue about the security of the compiler used
in the paper.

5 Security Analyzes for Circuits
In Section 4, we have investigated the privacy of the gadgets used by our compiler. In this
section, we analyze the security of their compositions. Hence, we compute the privacy of
our compiler’s output. We start with the composition of pRef gadgets (Sec. 5.1), and then,
we give a more general composition result for all gadgets used by our compiler (Sec.5.2)

Francesco Berti, Sebastian Faust and Maximilian Orlt 447

5.1 Security Analysis for the Composition of pRef

In this section, we consider k sequential compositions of pRef gadgets (kpRef). Let
(x0
i)i∈[n] be the input of the first refresh gadget, then the jth pRef, denoted with pRefj

computes (xji)i∈[n] ← pRefj((xj−1
i)i∈[n]). Further, the internal variables used by pRefj are

defined as rji and bji . Thus, the final output is (xki)i∈[n] ← kpRef((x0
i)i∈[n]). In Figure 11a,

we depicted the dependency graph of two composed refresh gadgets. Compared to the more
general compositions with multiple input and output sharings, as depicted in Figure 6, the
dependency graph of the composed refresh gadgets is relatively simple. More precisely,
it is still the skeleton of a cylinder. This cylinder is given by putting the cylinder of the
dependency graph of pRefj (denoted with DGj) over the cylinder of pRefj−1 (denoted
with DGj−1). In other words, the only difference with the security proof of the single
refresh gadget is the length of the cylinder. The dependency graph of the composition of
k refresh gadgets is a cylinder constructed out of the k cylinders (DGj) of the dependency
graph of pRef. As mentioned in the previous section, it is not sufficient to analyze the
security of each gadget. This is easy to see when we remember that we have shown in
Section 4.2 that pRef is secure if the leakage diagram does not orbit the cylinder. Here, it
might be the case that the leakage diagram of its composition orbits the cylinder, but if
we consider each leakage diagram of the composed refresh gadgets separately, it does not
orbit each subcylinder. For example, Figure 11b illustrates such a case. Next, we use the
same technique as in Section 4.2 to prove the security of the composition.

First, we classify the maximal diagrams of kpRef. One way to describe the gap in the
cylinder is to use the multiple subgraphs RGap and LGap as defined in the proof of pRef
and compose them in such a way that they describe such a gap from the bottom to the
top of the cylinder. However, such a gap can also have some detours such that the gap
goes partly in the opposite direction. To cover all such cases, we have to consider four
more “gap sets” than RGap and LGap:

(i) BLGapi,i′ := {xj−1
i , xj−1

i′ , rji′ , ..., r
j
i−1, b

j
i′+1, ..., b

j
i} describes a gap that starts from

the bottom circle of DGj , then turns left, and, finally, ends in the bottom circle.

(ii) BRGapi,i′ := {xj−1
i , xj−1

i′ , rji , ..., r
j
i′−1, b

j
i+1, ..., b

j
i′} describes a gap that starts from

the bottom circle of DGj , then turns right, and, finally, it ends in the bottom circle.

(iii) ULGapi,i′ := {xji , x
j
i′ , r

j
i′ , ..., r

j
i−1, b

j
i′ , ..., b

j
i−1} describes a gap that starts from the

top circle of DGj , then turns left, and, finally, it ends in the top circle.

(iv) URGapi,i′ := {xji , x
j
i′ , r

j
i , ..., r

j
i′−1, b

j
i , ..., b

j
i′−1} describes a gap that starts from the

top circle of DGj , then turns right, and, finally, it ends in the top circle.

We can use these gaps to classify maximal diagrams for kpRef. The next claim describes
the structure of such maximal graphs if we consider each sub-graph of each pRef separately.

Proposition 7. Let (x0
i)i∈[n] be the input of kpRef and (xji)i∈[n] ← pRef((xj−1

i)i∈[n]) the
jth pRef of kpRef. Further, let DGj be the sub-graph of DGpRef containing the variables
used in pRefj andMAX a maximal diagram of kpRef. It holds

MAX ∩ DGj = DGj \
[(
∪

I∈I1
RGapiI ,i′I

)
∪
(
∪

I∈I2
LGapiI ,i′I

)
∪
(
∪

I∈I3
BLGapiI ,i′I

)
∪(

∪
I∈I4

BRGapiI ,i′I

)
∪
(
∪

I∈I5
ULGapiI ,i′I

)
∪
(
∪

I∈I6
URGapiI ,i′I

)]
For all LDj :=MAX ∩ DGj, we get |I1|+ |I2| is odd and all gaps are pairwise disjoint.
Moreover, for LD1 and LDk it holds |I1|+ |I2| = 1, for LD1 we get |I3| = |I4| = 0, while

448 Provable Secure Parallel Gadgets

for LDk we get |I5| = |I6| = 0. Each gap RGap and LGap of DGj is connected to one
and only one gap of DGj+1, and to one and only one gap of DGj−1. Each gap BLGap and
BRGap is connected to two distinct gaps of DGj−1, and each gap ULGap and URGap is
connected to two distinct gaps of DGj+1.

Proof sketch. Even when the claim looks relatively complex, it only formalizes how the
maximal graphMAX of kpRef looks when we cut it into the sub-graphs LDj describing
the individual (xji)i∈[n] ← pRef((xj−1

i)i∈[n]). The proof idea is that the composition of all
LDj together still describes a gap that avoids a path around the dependency graph of
kpRef. In other words, we can see it as construction where we can construct and compose
such LDj so that there is still a gap, and each further added edge would close the gap.
Next, we give the formalized proof for this claim.

Proof. First, we prove that all the gaps are connected as described, that is, each gap
RGap and LGap of DGj is connected to at least one gap of DGj+1, and at least one gap
of DGj−1; each gap BLGap and BRGap is connected to two distinct gaps of DGj−1; and
each gap ULGap and URGap is connected to two distinct gaps of DGj+1. If this is not
the case, we simply consider the perimeter of the gap, which is not connected. It is easy
to see that this perimeter is homotopically equivalent to the gap on the (xji)i∈[n]-orbit or
(xj−1
i)i∈[n]-orbit where it starts. Thus, we can add the edge missing on that orbit without

makingMAX orbiting. Thus,MAX is not maximal, which is absurd by hypothesis.
We proceed by induction over k. For k = 1, the proof has already been done in

Proposition 7.
Using the same argument as in the proof of Proposition 4, there is only one edge

missing in the orbit defined by the (x0
i)i∈[n]-edges. Let j be this missing edge. Thus, there

must be a gap either RGapj,j′ or LGapj,j′ in DG1. Otherwise, taking the perimeter of the
gap starting from x0

j , we have a path in LD which is homotopically equivalent to x0
j . Thus,

LD orbits since it contains the path x0
j+1, ..., x

0
j−1 and a path homotopically equivalent to

x0
j . All the remaining gaps are of type ULGap and URGap since they cannot go out. We

have only to prove that all these gaps are disconnected. If one of these gaps is connected
to the LGap gap or the RGap gap, then we have a problem. In fact, it means that from
x0
j , we can go out of the DG1 either from x1

i or x1
i′ . But going out from these two gaps, we

must arrive at the (xki)i∈[n]-orbit. (Otherwise, we can use the same argument to prove
that the gaps are connected, to prove thatMAX is not maximal). Thus, we can have
two possibilities: 1) these two gaps do not reconnect. Thus there are two missing edges
in (xki)i∈[n], which is absurd due to the argument that we have explained in the proof of
Proposition 4. 2)these two gaps reconnect. ThusMAX is disconnected, which is absurd
due to an argument presented in the proof of Proposition 4. Similarly, we can prove that
two gaps that start and ends on the top circle of DG1, that is, the (x1

i)i∈[n]-one cannot
intersect between each other.

Again we do the same analysis for DGk ∩MAX . Using the same argument as for DG1,
we can prove that there must be a gap of type RGap or LGap and some gaps of type
BLGap and BRGap.

Now we consider MAX ∩ DG2−>k−1, where with DG2−>k−1 we denote DG of the
composition of pRef2 until pRefk−1. There are I holes in (x1

i)i∈[n], that is, I missing edges,
I ′ missing edges in (xk−1

i)i∈[n].
Each of these holes must be connected via a gap in DG2−>k−1 to one and only one

other hole. Otherwise, we have the argument against splitting or terminating at a dead
end.

Now we can use the induction. Since each of these gaps is contained there, we can use
the induction hypothesis to prove that each of these gaps has the desired shape.

Finally, we have to prove that |I1|+ |I2|. We observe that we have proved that there
is a “snake” of gaps that starts from x0

j the missing edge in the (x0
i)i∈[n]-orbit), to xkj′ (the

Francesco Berti, Sebastian Faust and Maximilian Orlt 449

missing edge in the (xki)i∈[n]-orbit). Each time we cross from the top to the bottom, the
(xli)i∈[n]-orbit, we must cross from the bottom to the top in the same orbit. Moreover, one
additional time we must cross from the top to the bottom. This concludes the proof.

In other words, a maximal diagram can be described as a dependency graph with a
gap from the bottom to the top consisting of the six subgraphs defined above. We can use
this classification to prove the security for kpRef.
Proposition 8. An outcome L of the experiment Leak(kpRef, x, p) is shiftable if its leakage
diagram does not orbit the dependency graph.
Proof sketch. The high-level idea is similar to Proposition 6. We have shown that a
single refresh is shiftable if the leakage diagram does not orbit the cylinder structure of
its dependency graph. In detail, we have proven that a not orbiting graph of a single
refresh is a sub-graph of RGapi,j = DG \Mright

i,j or LGapi,j = DG \Mleft
i,j . Further, this

implies that the input share xi can be set to an arbitrary value, and we can compute
the according share yj without changing the distribution of the leaked values. Hence,
xi and yj are shiftable. It is easy to see that this also holds for composed gadgets with
(yi)i∈[n] ← pRef1((xi)i∈[n]), and (zi)i∈[n] ← pRef2((yi)i∈[n]). If xi and yj are shiftable
in pRef1, and yj and zk are shiftable in pRef2, it follows that xi and zk are shiftable in
pRef2(pRef1(·)). In detail, we can set xi to an arbitrary value and compute accordingly
yj . Since yj and zk are shiftable as well, we can also compute the according zk for any yj .
For the formal proof, we also show the shiftability for the four additional types of gaps we
have introduced above and extend the technique to an arbitrary number of compositions.

Proof. Similar to the security proofs of the gadgets, we use Proposition 1, and only
prove the claim for maximal diagrams. We use the same approach as for the maximal
diagram of a single refresh. Hence, using Proposition 1, we have to prove the claim for
all maximal diagrams. Therefore, we want to show how to modify the values in the gaps
LGapji,i′ ,RGap

j
i,i′ , BLGap

j
i,i′ , BRGap

j
i,i′ , ULGap

j
i,i′ , and URGap

j
i,i′ shifting an output of

Leak(pRef, x, p) in another one without being detected. For LGapji,i′ and RGapji,i′ the
proof was already done in Proposition 6. Hence it remains to prove it for the other four
constructions:
(i) BLGapji,i′ : xi is modified in x′i = xi+γ, xi′ is modified in x′i′ = xi′−γ, rl is modified

in r′l = rl + γ, for the rls in BLGapi,j , and bl is modified in b′l = bl + γ, for the bls
in BLGapi,j . for any γ. Note that x′i + x′i′ = xi + xi′ .

(ii) BRGapi,i′ : xi is modified in x′i = xi + γ, xi′ is modified in x′i′ = xi′ − γ, rl is
modified in r′l = rl − γ, for the rls in BRGapi,j , and bl is modified in b′l = bl − γ, for
the bls in BRGapi,j . Here, as well, x′i + x′i′ = xi + xi′ .

(iii) ULGapi,i′ : yi is modified in y′i = yi +γ, yi′ is modified in y′i′ = yi′ −γ, rl is modified
in r′l = rl − γ, for the rls in ULGapi,j , and bl is modified in b′l = bl − γ, for the bls
in ULGapi,j . Similarly to before y′i + y′i′ = yi + yi′ .

(iv) URGapi,i′ : yi is modified in y′i = yi+γ, yi′ is modified in y′i′ = yi′ −γ, rl is modified
in r′l = rl + γ, for the rls in URGapi,j , and bl is modified in b′l = bl + γ, for the bls
in URGapi,j . Here, as well, y′i + y′i′ = yi + yi′ .

Hence, we have modified an outcome Leak(pRef, x, p) to another Leak(pRef, x, p). Here,
we do the proof for one case and refer to the full version for the other cases.

The gap is of type BLGapi,i′ with i < i′ 9. The values carried in A′ are

{x0, ..., xi−1, xi + γ, xi+1, ..., xi′−1, xi′ − γ, xi′+1, ..., xn−1, y0, ..., yn−1, r0 + γ, ..., ri−1 + γ,

ri, ..., ri′−1, ri′ + γ, ..., rn−1 + γ, b0 + γ, ..., bi + γ, bi+1, ..., bi′ , bi′+1 + γ, ..., bn−1 + γ}.
9For simplicity, when we use i < i′, we assume that i, i′ ∈ [n] ⊂ Z and not in Zn.

450 Provable Secure Parallel Gadgets

First, we observe that

x0+...+xi−1+(xi+γ)+xi+1+...+xi′−1+(xi′−γ), xi′+1, ..., xn−1 = x0+...+xn−1+γ−γ = x.

Since we have not touched the shares of y, they carry an encoding of y which is equal to x.
Now, let us consider pRef with input x0, ..., xi−1, xi+γ, xi+1, ..., xi′−1, xi′−γ, xi′+1, ..., xn−1
and randomness r0 + γ, ..., ri−1 + γ, ri, ..., ri′−1, ri′ + γ, ..., rn−1 + γ. For 0 ≤ j < i,
bj + γ = xj + (rj + γ), and yj = (bj + γ) − (rj−1 + γ). For i, bi + γ = (xi + γ) + ri,
and yi = (bi + γ) − (ri−1 + γ). For i < j < i′ bj = xj + rj , and yj = bj − rj . For i′,
bi′ = (xi′ − γ) + (ri′ + γ), and yi′ = bi′ − ri′ . For i′ < j ≤ n− 1, bj + γ = xj + (rj + γ),
and yj = (bj + γ) − (rj−1 + γ). Thus, the values carried by A′ are those of an honest
evaluation of pRef with input x0, ..., xi−1, xi + γ, xi+1, ..., xi′−1, xi′ − γ, xi′+1, ..., xn−1 and
randomness r0 + γ, ..., ri−1 + γ, ri, ..., ri′−1, ri′ + γ, ..., rn−1 + γ. For all the other gaps, we
proceed in a similar way. For more details we refer to the full version. It remains to explain
how we can use the modifications just described to do the shift in the maximal diagram of
kpRef. Therefore, we start with DG1. Using the classification of the maximal of kpRef
there is a single gap starting from its bottom circle. We modify its values according to the
proof of Proposition 6. Then, there is another gap in DG2 that starts from the edge just
modified before. We can modify it coherently starting from this modified value. Iterating,
due to our classification, there is always a gap in another DGj

′
which starts from the final

edge of the gap just modified before. Finally, we arrive at the single gap of DGk which
ends in the top circle.

Formally, we have proved the results for all the additional gaps introduced in Proposi-
tion 7. Every gap is connected only to two other gaps (except for the first and the last.)
Now, we start observing that there are

k∑
j=0
|Ij3 |+

k∑
j=0
|Ij4 | =

k∑
j=0
|Ij5 |+

k∑
j=0
|Ij6 |,

where with Il6, we denote the set Ij6 in the classification ofMAX ∩ DGj (Proposition 7).
Since every time when we follow a RGapi,i′ or a LGapi,i′ gap, we keep the same

modifications for xi and yi′ , while when we follow BLGap, or BRGap, ULGap, or URGap,
we modify xi and yi′ with two opposite values, and we follow an even number of BLGap,
BRGap, ULGap, and URGap, we have that xkj is modified with +δ = x′ − x, where xkj
is the single edge missing in the (xki)i∈[n]-orbit. Thus, we have modified the values of
the variable carried by DG \MAX to modify an outcome of Leak(kpRef, x, p) in one of
Leak(kpRef, x′, p). We give the formal description in the full version.

An example of a maximal for kpRef is depicted in the full version. The proposition
gives the following privacy result for our compositions. It only remains to compute the
probability that a leakage diagram does not orbit the cylinder described by the dependency
graph of kpRef.

Theorem 3. Let kpRef be the composition of k refreshing gadget, defined in Figure 1b.
Let n be the number of shares used. Then, kpRef is (p, (k + 1) · [(2 + 3(3p))3p]n))-private,
for p ≤ 1/3 and (p, 2 · (9p)n)).

Proof. Let kpRef takes as input (x0
0, ..., x

0
n−1) and outputs (xk0 , ..., xkn−1), with the ith

pRef gadget, denoted with pRefi does (xi0, ..., xin−1)← pRef(xi−1
0 , ..., xi−1

n−1). The proof is
completely similar to the one of Theorem 2 with the following differences: 1) We consider
the events Ei, for i = 0, ..., k (instead of i = 0, 1), which consists in the event that there is
an orbit containing the source node of the edge xi0 (denoted with nodei0). 2) Each node is
connected with 6 other nodes (and not 4). Thus, there are at most 5n different paths. 3)
There exists a single n-edges long loop orbiting from nodei0, 4(n− 1) n+ 1-edges long, and

Francesco Berti, Sebastian Faust and Maximilian Orlt 451

so on. From 1) and 2), we obtain that we can bound Pr[Ei] ≤ (15p)n. Moreover, we can
use the same argument to obtain, for p ≤ 1/9 that

Pr[Ei] ≤ [(2 + 3(3p))3p]n ≤ (9p)n.

To prove this, we can reuse the same arguments as in the proof of Theorem 2. We must
add also the argument that no edge connects the (xji)i∈[n]-orbit and the (xj

′

i)i∈[n]-orbit
if j′ 6= j − 1, j, j + 1. Moreover, if node y belongs to the (xli)i∈[n]-orbit, the shortest
path to nodej0 can never cross and edge to go from the (xLi)i∈[n]-orbit to a node in the
(xL′i)i∈[n]-orbit if |L′ − j| > |L− j| (because we cannot skip orbits).

Finally, we explain why it holds

Pr[E0] ≤ [(2 + 3(3p))3p]n.

This is due to the fact that not all edges directly give the shortest path and require further
edges that are also added with probability p, and this happens with probability at most
3p.

5.2 Security Analysis for the Composition of Gadgets
Now, we analyze the security of an arbitrary output of our compiler Ĉ← CC(C), where C
can be any circuit described in the background. In Figure 6b, we depicted the dependency
graph of Add (or Mult) gadgets composed with pRef gadgets to refresh its inputs and
outputs. Since our compiler puts refresh gadgets after every output of Add, Mult, and
Copy gadget, the dependency graph of our compiler’s output is always a composition
of dependency graphs depicted in Figure 6a. As mentioned, this leads to slightly more
complex dependency graphs than the one described in the previous section (Sec. 5.1.)
However, the main idea is the same. We have multiple dependency graphs, as depicted
in Figure 6a, sharing the same upper or lower circle as already described in the previous
section (Figure 11a.) The only difference is that gadgets can also have two input (or output)
sharings. Therefore the cylinder does not only share the bottom (or top) of the cylinder
with one but two further cylinders, as depicted in Figure 6b. Hence, the dependency graph
of Ĉ is still a composition of multiple cylinders. Since the dependency graph describes
multiple cylinders connected by shared upper and lower circles, we can distinguish orbiting
loops from not orbiting loops again. For this reason, we can use the same technique as
in Proposition 8 to prove the security of the composition. Again, we start classifying the
maximals of Ĉ.

Proposition 9. LetMAX be a maximal diagram

(i) For each circuit-input encoding and circuit-output encoding, there is only one edge
of the encoding that does not belong toMAX .

(ii) The intersection of the DG of all pRef withMAX has an odd number of components
which have the characterization described in Proposition 8.

(iii) Each of these “gap sets” is connected to others to form gaps from each circuit input
encoding to any output encoding of the circuit.

Proof. i) We exploit the same argument as presented in the proof of Proposition 7 to
prove that this holds. Substantially, if there is more than one hole in the input/output
orbit edge, the graph is either not maximal or it orbits. If there are more than two
holes on the input (xi)i∈[n]-orbit, we must have a gap starting from each. These two
gaps either intersect or do not intersect. If they intersect, then we can show that the
maximal diagram orbit with an argument similar to the one introduced in the proof

452 Provable Secure Parallel Gadgets

of Proposition 7. In the second case,MAX is not connected. If they do not connect,
we cannot assume that they go to two different other input/output orbits. Because
otherwise, we can homotopically reduce these two input sharings to the copy where
the gaps split. Thus we have non-connection.

ii) The idea is the same as in the proof of Proposition 7. It comes from the fact that
the gap cannot split or have a dead end in the DGpRef with the same idea as in
Proposition 7.

iii) This happens because if these gaps are not connected to each other, we can homo-
topically take them away as done in the proof of Proposition 7.

As before, our classification allows us to prove the security of not orbiting leakage
diagrams.
Proposition 10. Let Ĉ be a masked circuit obtained from our compiler. An outcome L
of the Leak(Ĉ,x, p) experiment, is shiftable to x′ if its leakage diagram does not orbit the
dependency graph.

Proof sketch. The only difference to the proof in Section 5.1 is that we have gadgets with
multiple input and output sharing. Hence we do not have only one bottom and top. (E.g.
Figure 6b has two bottom circles). However, the high-level idea is the same.

Proof. When we have such dependency graphs, a leakage diagram does not orbit when
gaps exist (as defined in the proof of Proposition 8) from every bottom and top circle. We
have described the maximals above. Using this classification, we can modify the values
of the variables carried by the edges in DGĈ \MAX as in the proof of Proposition 8.
We start with an arbitrary input encoding, then we modify the values on the subgraphs
RGap, LGap, BRGap, BLGap, ULGap, and URGap as in the previous example (and as
described in the Proposition 5, 6, and 8). Iterating, we arrive at modifying all the values
of DG \MAX . With this technique, we can modify all inputs. Hence, L from Leak(Ĉ,x, p)
is shiftable if its leakage diagram is not orbiting. The details that this modification gives
the same output of Leak(Ĉ,x, p) is given now.10

We start with the input orbit sharings. From there, we can change the gaps until we
arrive to a gap that arrives in a gap where two different inputs are modified. There using
Proposition 5, we wait until we have arrived to modify the other input with gaps. We can
go on, and we can arrive that at least we can modify one of the gaps with multiple inputs.
[This happens due to the structure of the gasp inMAX .]

This operation is correct because even here, every time that we go up, we add the
shift, while every time we go down, we subtract the shift. This works as in the proof of
Proposition 8.

Using Corollary 3 and Proposition 10, we can bound the actual security of the circuits
obtained via our compiler.
Theorem 4. Let Ĉ be a circuit obtained via our compiler, Ĉ ← CCp(C), and |C| be the
number of gates of the circuit C, I the number of input gates and O the number of output
gates. Then, Ĉ is (p, (|C|+ I +O)p̂n)-private, with

p̂ = 8[1− (1−
√

3p)8n].

If C is affine, then, Ĉ is (p, (|C| + I + O)(12p)n). If circuit C is complete, then Ĉ is
(p, (|C|p̂n)-private, or Ĉ is (p, |C|(12p)n)-private.

10In the proof of Proposition 8 this step is easier because each gap set meets at its end a single another
gap set.

Francesco Berti, Sebastian Faust and Maximilian Orlt 453

Proof. The proof is similar to the proof of Theorem 3 with the following differences: 1)
We have at most |C|+ I +O different sharings (orbits) containing the shares of an input,
intermediate, or output encoding. If the circuit is complete, the number of such orbits
is at most |C|. Thus we have |C| + I + O events Ei to consider. 2) For each node of
DG, there are at most 8 edges. 3) Each edge is added to LD with probability at most
p′ = 2(1− (1−

√
3p)8n) for general circuits (or p′ = 3p) for affine circuits,see Proposition 5

and 6. Thus, we can prove that Pr[Ei] ≤ (7p′)n. Doing a more detailed analysis (full
version), similar to the one done in Theorem 2 and 3, we obtain that Pr[Ei] ≤ (4p′)n.
Putting everything together, we obtain the claim.

With Theorem 4, we can discuss the security results for our compiler.

5.3 Compiler Security
In the previous section, we have proven that any complete circuit Ĉ obtained via our
compiler, Ĉ← CCp(C) is (p, (|C|)p̂n)-private, with p̂ = 8[1− (1−

√
3p)8n]. Further, if C is

affine, then, Ĉ is (p, (|C|+ I +O)(12p)n)-private. This section discusses the results and
demonstrates the improvements compared to the state-of-the-art. As in [ISW03, DFZ19]
the condition p̂ < 1 requires an upper-bound for the leakage probability p. In detail,
Theorem 4 requires the following.

Proposition 11. Let p ∈ [0, 1
3] be the leakage probability and α ∈ (0, 1]. It holds p̂n =

8n(1− (1−
√

3p)8n)n ≤ α if

p ≤

√
1− 8n

√
1− α

1
n

8

3 < 1

Proof. If p is smaller than 1/3 we get 8n(1− (1−
√

3p)8n)n ≤ α for an alpha α ∈ (0, 1].
The claim is a simple transformation.

8n(1− (1−
√

3p)8n)n ≤ α⇔ p ≤

√
1− 8n

√
1− α

1
n

8

3
For more details, we refer to the full version.

Further, Proposition 11 gives us the required asymptotic behavior of p for our compiler.

Theorem 5. The compiler is secure for any leakage probability p with p = O(1√
n

),

Proof. Using Proposition 11, we can define the upper-bound p with

Fα(n) :=

√
1− 8n

√
1− α

1
n

8

3 .

To prove the claim, we will show that there exists a constant C s.t.

lim
n→∞

Fα(n)
1√
n

= C.

We can transform the term to

lim
n→∞

Fα(n)
1√
n

= lim
n→∞

√
n

√
1− 8n

√
1− α

1
n

8

3 = lim
n→∞

1
3

√√√√√n

1− 8n

√
1− α

1
n

8

.

454 Provable Secure Parallel Gadgets

It remains to study

8n

√
1− α

1
n

8 = e
1

8n log

(
1−α

1
n

8

)
.

The previous equivalence is true since 0 < α
1
n

8 ≤
7
8 . Now, if α 6= 0, then limn→∞

1
8n log

(
1− α

1
n

8

)
=

0, thus, using standard analysis techniques, we have that

e
1

8n log

(
1−α

1
n

8

)
∼ 1

8nlog
(

1− α
1
n

8

)
+ 1.

(two functions are asymptotically equivalent if they have the same limit). Thus,

lim
n→∞

1
3

√√√√√n

1− 8n

√
1− α

1
n

8

 = lim
n→∞

1
3

√√√√n

(
1− 1− 1

8nlog
(

1− α
1
n

8

))

= lim
n→∞

1
3

√√√√ n

8nlog
(

1− α
1
n

8

)
= lim
n→∞

1
3

√
1
8 log

(
1− 1

8

)
= C

where in the second to last equality, we have used the fact that if α > 0, then limn→∞ α
1
n =

1. Since C is a constant, this proves the claim of the theorem.

This estimation is a significant improvement with respect both to the compiler
of [DFZ19] and to the knowledge that ISW-like multiplication gadgets are only secure for
p = O(1

n) [DDF19].

6 Comparison with Dziemobwski et al. [DFZ19]
Our work is inspired by Dziembowski et al. [DFZ19]. Thus, we want to summarize the
differences between their work and ours. Our compiler provides gadgets that work parallelly.
In particular, our refresh gadget, pRef, works in 3 clock cycles, while their sRef works in
O(n) cycles. Moreover, our multiplication gadget, Mult works in O(log(n)) cycles, while
theirs, the ISW [ISW03] works with O(n) cycles. The other gadgets, which are the same
in both compilers, need a constant number of cycles. Thus, our compiler is significantly
faster than theirs for affine and general circuits.

Proof technique. Their proof technique is a particular case of our generalized one. In
fact, it is enough to consider the graph depicted in Figure 2b. Since the values of the
variables ci0 and cin are always 0, we can consider them as equal and glue the edge carrying
ci0 with cin ∀i. In this way, we obtain a cylinder (the formal proof is in the full version.) In
other words, the encodings of a value can also be considered like an orbit. Since cni = 0
is fixed and not secret, we must assume that the adversary knows cni . Thus, we consider
the edges carrying cni as always “leaked; hence, it always belongs to the leakage diagram.
This condition means that our property of not orbiting becomes the property in which the
leakage diagram’s left, and right sides are not connected. Finally, their way to modify (that
is, choosing the so-called modifications vectors) is a way to select a maximal containing
the leakage diagram as we did in our proofs. Further, we show in the full version why we
cannot use their technique for our gadgets. Informally, their technique does not work for
our LD because choosing the so-called modification vectors would have been challenging
(since there are no edges that must belong to the leakage diagrams).

Francesco Berti, Sebastian Faust and Maximilian Orlt 455

Bound differences. Since every edge of DGpRef (Figure 5b) contains a single variable,
while the cij-edges contain two variables (Figure 2b), we have that our affine compiled
circuits are (O([9p]n), p)-private, while theirs is (O([8

√
3p]n), p)-private. Thus, we have

gained an order of magnitude. Second, by doing a more detailed analysis, we have proved
that for the Mult gadgets and, thus, for the general compiled circuits, it is enough to need
p = O(1√

n
), instead of p = O(1

n).

7 Conclusion
In this paper, we have started from the graphs introduced by Dziemboswki et al. [DFZ19].
Then, we showed how to use a broader class of graphs. Our graphs are more general
than [DFZ19], and we used them to prove the security in the random probing model of our
parallel compiler. Using this, we have proved that our compiler has O(pn)-security for the
affine case and O(

√
np)n-security for the general case. For the first time, we have proved

that asymptotically a compiler using the ISW multiplication gadget can be O(
√
np)n-secure

and not O(np)n-secure. Besides being parallel, our compiler has the advantage that it
is one of the simplest possible. This graph technique is interesting and could be applied
to other compilers. Moreover, we believe the same technique can be applied to other
probing models, such as the t-threshold probing model or the average-random probing
model, or considering leakage models where glitches are considered, or also considering
security in the presence of faults. We also believe that our technique can be applied to
gadgets corresponding to bigger circuits, as those used to mask public-key encryption
scheme. Finding dependency graphs which can be useful is still an interesting challenge.
Finally, it might be interesting to improve the security bounds of our Mult and Add-gadget
using improved graphs.

Acknowledgment
This work was partly supported by the German Research Foundation (DFG) via the DFG
CRC 1119 CROSSING (project S7), by the German Federal Ministry of Education and
Research and the Hessen State Ministry for Higher Education, Research and the Arts
within their joint support of the National Research Center for Applied Cybersecurity
ATHENE, and by the European Commission(ERCEA), ERC Grant Agreement 101044770
CRYPTOLAYER. F. Berti was funded by Israel Science Foundation, ISF grant 2569/21.

We would like to thank Stefan Dziembowski and Karol Zebrowski for helpful discussions
on earlier versions of this work. Further, we thank our reviewers for the many helpful
comments to improve the paper.

References
[ADF16] Marcin Andrychowicz, Stefan Dziembowski, and Sebastian Faust. Circuit

compilers with o(1/\log (n)) leakage rate. In Marc Fischlin and Jean-Sébastien
Coron, editors, Advances in Cryptology - EUROCRYPT 2016 - 35th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II, volume
9666 of Lecture Notes in Computer Science, pages 586–615. Springer, 2016.

[AIS18] Prabhanjan Ananth, Yuval Ishai, and Amit Sahai. Private circuits: A modular
approach. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in
Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part III,

456 Provable Secure Parallel Gadgets

volume 10993 of Lecture Notes in Computer Science, pages 427–455. Springer,
2018.

[BCP+20] Sonia Belaïd, Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and
Abdul Rahman Taleb. Random probing security: Verification, composition,
expansion and new constructions. In Daniele Micciancio and Thomas Ris-
tenpart, editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual
International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA,
USA, August 17-21, 2020, Proceedings, Part I, volume 12170 of Lecture Notes
in Computer Science, pages 339–368. Springer, 2020.

[BDF+17] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire,
François-Xavier Standaert, and Pierre-Yves Strub. Parallel implementations
of masking schemes and the bounded moment leakage model. In Jean-
Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology -
EUROCRYPT 2017 - 36th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Paris, France, April 30 - May
4, 2017, Proceedings, Part I, volume 10210 of Lecture Notes in Computer
Science, pages 535–566, 2017.

[BIS19] Andrej Bogdanov, Yuval Ishai, and Akshayaram Srinivasan. Unconditionally
secure computation against low-complexity leakage. In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in Cryptology - CRYPTO 2019 -
39th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2019, Proceedings, Part II, volume 11693 of Lecture Notes in
Computer Science, pages 387–416. Springer, 2019.

[BM06] Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks against
AES. In Louis Goubin and Mitsuru Matsui, editors, Cryptographic Hardware
and Embedded Systems - CHES 2006, 8th International Workshop, Yokohama,
Japan, October 10-13, 2006, Proceedings, volume 4249 of Lecture Notes in
Computer Science, pages 201–215. Springer, 2006.

[BMRT22a] Sonia Belaïd, Darius Mercadier, Matthieu Rivain, and Abdul Rahman Taleb.
Ironmask: Versatile verification of masking security. In 43rd IEEE Symposium
on Security and Privacy, SP 2022, San Francisco, CA, USA, May 22-26,
2022, pages 142–160. IEEE, 2022.

[BMRT22b] Sonia Belaïd, Darius Mercadier, Matthieu Rivain, and Abdul Rahman Taleb.
Ironmask: Versatile verification of masking security. In 43rd IEEE Symposium
on Security and Privacy, SP 2022, San Francisco, CA, USA, May 22-26,
2022, pages 142–160. IEEE, 2022.

[BRT21a] Sonia Belaïd, Matthieu Rivain, and Abdul Rahman Taleb. On the power
of expansion: More efficient constructions in the random probing model.
12697:313–343, 2021.

[BRT21b] Sonia Belaïd, Matthieu Rivain, and Abdul Rahman Taleb. On the power of
expansion: More efficient constructions in the random probing model. In Anne
Canteaut and François-Xavier Standaert, editors, Advances in Cryptology -
EUROCRYPT 2021 - 40th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-
21, 2021, Proceedings, Part II, volume 12697 of Lecture Notes in Computer
Science, pages 313–343. Springer, 2021.

Francesco Berti, Sebastian Faust and Maximilian Orlt 457

[CFG+10] Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, and
Vincent Verneuil. Horizontal correlation analysis on exponentiation. In Miguel
Soriano, Sihan Qing, and Javier López, editors, Information and Commu-
nications Security - 12th International Conference, ICICS 2010, Barcelona,
Spain, December 15-17, 2010. Proceedings, volume 6476 of Lecture Notes in
Computer Science, pages 46–61. Springer, 2010.

[CFOS21] Gaëtan Cassiers, Sebastian Faust, Maximilian Orlt, and François-Xavier
Standaert. Towards tight random probing security. In Tal Malkin and Chris
Peikert, editors, Advances in Cryptology - CRYPTO 2021 - 41st Annual
International Cryptology Conference, CRYPTO 2021, Virtual Event, August
16-20, 2021, Proceedings, Part III, volume 12827 of Lecture Notes in Computer
Science, pages 185–214. Springer, 2021.

[CPRR13] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas
Roche. Higher-order side channel security and mask refreshing. In Shiho
Moriai, editor, Fast Software Encryption - 20th International Workshop, FSE
2013, Singapore, March 11-13, 2013. Revised Selected Papers, volume 8424 of
Lecture Notes in Computer Science, pages 410–424. Springer, 2013.

[DDF19] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage
models: From probing attacks to noisy leakage. J. Cryptol., 32(1):151–177,
2019.

[DFS15] Stefan Dziembowski, Sebastian Faust, and Maciej Skorski. Noisy leakage
revisited. In Elisabeth Oswald and Marc Fischlin, editors, Advances in
Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part II, volume 9057 of Lecture Notes in
Computer Science, pages 159–188. Springer, 2015.

[DFZ19] Stefan Dziembowski, Sebastian Faust, and Karol Zebrowski. Simple refreshing
in the noisy leakage model. In Steven D. Galbraith and Shiho Moriai, editors,
Advances in Cryptology - ASIACRYPT 2019 - 25th International Conference
on the Theory and Application of Cryptology and Information Security, Kobe,
Japan, December 8-12, 2019, Proceedings, Part III, volume 11923 of Lecture
Notes in Computer Science, pages 315–344. Springer, 2019.

[GJR18] Dahmun Goudarzi, Antoine Joux, and Matthieu Rivain. How to securely
compute with noisy leakage in quasilinear complexity. In Thomas Peyrin and
Steven D. Galbraith, editors, Advances in Cryptology - ASIACRYPT 2018 -
24th International Conference on the Theory and Application of Cryptology
and Information Security, Brisbane, QLD, Australia, December 2-6, 2018,
Proceedings, Part II, volume 11273 of Lecture Notes in Computer Science,
pages 547–574. Springer, 2018.

[GM10] Shuhong Gao and Todd D. Mateer. Additive fast fourier transforms over
finite fields. IEEE Trans. Inf. Theory, 56(12):6265–6272, 2010.

[GPRV21] Dahmun Goudarzi, Thomas Prest, Matthieu Rivain, and Damien Vergnaud.
Probing security through input-output separation and revisited quasilinear
masking. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(3):599–640, 2021.

[GST14] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-
bandwidth acoustic cryptanalysis. In Juan A. Garay and Rosario Gennaro,
editors, Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology

458 Provable Secure Parallel Gadgets

Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part
I, volume 8616 of Lecture Notes in Computer Science, pages 444–461. Springer,
2014.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, Advances in Cryp-
tology - CRYPTO 2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume
2729 of Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Neal Koblitz, editor, Advances in Cryptology
- CRYPTO ’96, 16th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of
Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

[MSJ12] Marcel Medwed, François-Xavier Standaert, and Antoine Joux. Towards
super-exponential side-channel security with efficient leakage-resilient prfs. In
Emmanuel Prouff and Patrick Schaumont, editors, Cryptographic Hardware
and Embedded Systems - CHES 2012 - 14th International Workshop, Leuven,
Belgium, September 9-12, 2012. Proceedings, volume 7428 of Lecture Notes in
Computer Science, pages 193–212. Springer, 2012.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold imple-
mentations against side-channel attacks and glitches. In Peng Ning, Sihan
Qing, and Ninghui Li, editors, Information and Communications Security,
8th International Conference, ICICS 2006, Raleigh, NC, USA, December 4-7,
2006, Proceedings, volume 4307 of Lecture Notes in Computer Science, pages
529–545. Springer, 2006.

[PGMP19] Thomas Prest, Dahmun Goudarzi, Ange Martinelli, and Alain Passelègue.
Unifying leakage models on a rényi day. In Alexandra Boldyreva and Daniele
Micciancio, editors, Advances in Cryptology - CRYPTO 2019 - 39th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2019, Proceedings, Part I, volume 11692 of Lecture Notes in Computer Science,
pages 683–712. Springer, 2019.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In Thomas Johansson and Phong Q. Nguyen, editors,
Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Athens, Greece, May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes
in Computer Science, pages 142–159. Springer, 2013.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In Rosario Gennaro and
Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part I, volume 9215 of Lecture Notes in Computer Science, pages
764–783. Springer, 2015.

Francesco Berti, Sebastian Faust and Maximilian Orlt 459

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking
of AES. In Stefan Mangard and François-Xavier Standaert, editors, Cryp-
tographic Hardware and Embedded Systems, CHES 2010, 12th International
Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings, volume
6225 of Lecture Notes in Computer Science, pages 413–427. Springer, 2010.

[Tri03] Elena Trichina. Combinational logic design for AES subbyte transformation
on masked data. IACR Cryptol. ePrint Arch., page 236, 2003.

[Wal01] Colin D. Walter. Sliding windows succumbs to big mac attack. In Çetin Kaya
Koç, David Naccache, and Christof Paar, editors, Cryptographic Hardware
and Embedded Systems - CHES 2001, Third International Workshop, Paris,
France, May 14-16, 2001, Proceedings, volume 2162 of Lecture Notes in
Computer Science, pages 286–299. Springer, 2001.

	Introduction
	Contribution
	Related Work

	Background
	Parallel Compiler
	Dependency Graph for our Gadgets
	Composition of Dependency Graphs

	Security Analyzes of the Gadgets
	Leakage Diagram
	Security Analysis for our Gadgets

	Security Analyzes for Circuits
	Security Analysis for the Composition of pRef
	Security Analysis for the Composition of Gadgets
	Compiler Security

	Comparison with Dziemobwski et al. DBLP:conf/asiacrypt/DziembowskiFZ19
	Conclusion

