
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 4, pp. 393–419. DOI:10.46586/tches.v2023.i4.393-419

Don’t Forget Pairing-Friendly Curves with Odd
Prime Embedding Degrees

Yu Dai1,2, Fangguo Zhang3,4 and Chang-an Zhao2,4,�

1 School of Mathematics and Statistics, Wuhan university, Wuhan, China.
2 School of Mathematics, Sun Yat-sen University, Guangzhou, China.

3 School of Computer Science and Engineering, Sun Yat-sen University,Guangzhou, China.
4 Guangdong Key Laboratory of Information Security, Guangzhou, China.

eccdaiy39@gmail.com,{isszhfg,zhaochan3}@mail.sysu.edu.cn

Abstract. Pairing-friendly curves with odd prime embedding degrees at the 128-
bit security level, such as BW13-310 and BW19-286, sparked interest in the field
of public-key cryptography as small sizes of the prime fields. However, compared
to mainstream pairing-friendly curves at the same security level, i.e., BN446 and
BLS12-446, the performance of pairing computations on BW13-310 and BW19-286 is
usually considered inefficient. In this paper we investigate high performance software
implementations of pairing computation on BW13-310 and corresponding building
blocks used in pairing-based protocols, including hashing, group exponentiations
and membership testings. Firstly, we propose efficient explicit formulas for pairing
computation on this curve. Moreover, we also exploit the state-of-art techniques to
implement hashing in G1 and G2, group exponentiations and membership testings.
In particular, for exponentiations in G2 and GT , we present new optimizations to
speed up computational efficiency. Our implementation results on a 64-bit processor
show that the gap in the performance of pairing computation between BW13-310 and
BN446 (resp. BLS12-446) is only up to 4.9% (resp. 26%). More importantly, compared
to BN446 and BLS12-446, BW13-310 is about 109.1% − 227.3%, 100% − 192.6%,
24.5%−108.5% and 68.2%−145.5% faster in terms of hashing to G1, exponentiations
in G1 and GT , and membership testing for GT , respectively. These results reveal
that BW13-310 would be an interesting candidate in pairing-based cryptographic
protocols.
Keywords: Pairing-friendly curves · BW13-310 · high-performance software imple-
mentations

1 Introduction
A pairing on an elliptic curve E defined over a prime field Fp is a non-degenerate bilinear
map of the form e : G1 × G2 → GT , where G1, G2 and GT are three groups with
the same order r. The two input groups G1 and G2 lie in E(Fpk) and the output
group GT is a subgroup of F∗pk , where k is the smallest positive integer such that r |
pk − 1. Taking advantage of the powerful bilinearity property of pairings, a range of
cryptographic protocols are designed, such as authenticated key agreements [CK03,Sco13],
direct anonymous attestation (DAA) [BCC04, YCZ+21] and Succinct Non-interactive
ARguments of Knowledge (SNARKs) [EHG22,EHG20,AEHG22]. Very recently, pairings
were also used to speed up group membership testing on several non-pairing-friendly
curves [Kos22].

The fundamental security of pairing-based protocols depends on the difficulty of solving
discrete logarithm problem (DLP) on the three pairing groups. The best-known discrete

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-04-15 Accepted: 2023-06-15 Published: 2023-08-31

https://doi.org/10.46586/tches.v2023.i4.393-419
mailto:eccdaiy39@gmail.com,zhaochan3@mail.sysu.edu.cn,isszhfg@mail.sysu.edu.cn
http://creativecommons.org/licenses/by/4.0/

394 Don’t Forget Pairing-Friendly Curves with Odd Prime Embedding Degrees

logarithm algorithm on elliptic curves is the Pollard’s rho algorithm [Pol75], which requires
around

√
r group operations. It means that the size of r is at least 256-bit to reach the

128-bit security level. On finite fields side, the best attack algorithm is derived from the
Number Field Sieve (NFS) family (eg. [Sch93]). Before 2015, a 3072-bit full extension field
Fpk was widely believed to be 128-bit secure under the attack of NFS. With a series of
new variants of NFS proposed [BGK15,KB16,KJ17], the asymptotic complexity of NFS
has decreased significantly. In particular, the special extension tower number field sieve
(SexTNFS) [KB16] is tailored to pairing-friendly fields, i.e., the characteristic p can be
represented as a tiny-coefficients polynomial of moderate degree. For example, according
to the estimate in [BD19,GMT20], the real security level of BN254 is around 100 ∼ 103-bit
under the attack of SexTNFS. As a result, parameters of many pairing-friendly curves
have to be re-evaluated for achieving the desired security level. In 2021, Guillevic [Gui20]
recommended a list of curves at the updated 128-bit security level. In the new estimation,
the author found that BN446 and BLS12-446 are best choices for achieving the 128-bit
security level in the BN and BLS families, respectively.

1.1 Pairing-friendly curves with fast exponentiation in G1

The development of NFS also affects the selection of pairing-friendly curves in many
pairing-based cryptographic protocols. A common scenario is that a protocol is designed
to minimize the workload of one party equipped with resource-constrained devices. For
example, in the pairing-based DAA scheme the Trusted Platform Module (TPM) is a
small discrete chip that is required to perform a few exponentiations in G1. One of
challenges in the design of the DAA scheme is to minimize the computational cost of
the TPM [YCZ+21]. In this situation, pairing-friendly curves with fast exponentiation
in G1 are very attractive. Or equivalently, curves equipped with small size of prime field
are well-suited for the DAA scheme. To this aim, Clarisse et al. [CDS20] recommended
two 128-bit secure curves: BW13-310 with embedding degree 13 over a 310-bit field, and
BW19-286 with embedding degree 19 over a 286-bit field. Besides these, there actually
exist other candidates: BLS24-315 and BLS48-286. For these curves, their characteristic p
can be represented by five computer words on a 64-bit processor. Among these curves,
BW13-310 is competitive because of the small size of the full extension field Fpk . It is
worth noting that even compared to BN446 and BLS12-446, BW13-310 also has advantage
in terms of the efficiency of full extension field arithmetic. Moreover, the odd prime
embedding degree k on BW13-310 also leads to a large value of ϕ(k), which induces a
small number of iterations for both Miller loop of the optimal pairings [Ver09] and the
group exponentiations in G2 and GT [GS08].

1.2 Contributions
In this paper, we give a detailed study of BW13-310. We show that this curve is a
powerful candidate in pairing-based protocols at the updated 128-bit security level. Our
contributions are summarized as follows:

• In Section 3, we propose a new formula for computing the optimal pairing on BW13-
310. We show that the computational cost of the Miller loop comes mostly from two
evaluations at the same Miller function of bit length around log r/(2ϕ(k)). On this
basis, we propose a shared Miller loop such that the two function evaluations can be
accomplished simultaneously. In addition, we also give a slight optimization for the
final exponentiation. By using these techniques, we also discuss how to compute the
products of pairings on this curve in Section 4.

• In Section 5, we focus on optimizing group exponentiations in G2 and GT on BW13-
310. In the case of G2, we show that GLV [GLV01] and GLS [GLS09] methods can

Yu Dai, Fangguo Zhang and Chang-an Zhao 395

be combined to build a 2ϕ(k)-dimensional decomposition, which means that the
number of point doublings is only around log r/(2ϕ(k)) (≈ 12). In the case of GT ,
we develop an all-positive decomposition such that group inversion operation can be
avoided.

• In Section 6, we provide high performance software implementations of pairing
computation, hashing (to G1 and G2), group exponentiations and membership
testings over BW13-310 on a 64-bit processor. By means of the RELIC cryptographic
toolkit [AG], detailed performance comparisons of all building blocks on BW13-310,
BN446 and BLS12-446 are presented.

- It is surprising to observe that the single pairing computation on BW13-310 is
only up to 4.9% and 26% slower than that on BN446 and BLS12-446, respectively.
In particular, the computation of the Miller loop on BW13-310 is even up to
48.2% faster than that on BN446. As a result, for the computation of the
pairings products, BW13-310 gains an advantage over BN446, while is still
slower than BLS12-446.

- More importantly, compared to BN446 and BLS12-446, BW13-310 is about
109.1%− 227.3%, 100%− 192.6%, 24.5%− 108.5% and 68.2%− 145.5% faster
in terms of hashing to G1, exponentiations in G1 and GT , and membership
testing for GT , respectively.

- On the negative side, BW13-310 also pays a penalty in terms of hashing to G2
and exponentiation in G2.

• In Section 7, we estimate the performance of the Boneh-Lynn-Shacham (BLS)
signature scheme [BLS04] and the unbalanced Chen-Kudla (UCK) key agreement
protocol [Sco13] built on different pairing-friendly curves, including BN446, BLS12-
446 and BW13-310. The results show that

- the UCK protocol built on BW13-310 is about 125.6% and 40.6% faster than
that on BN446 and BLS12-446 for the resource-constrained party (Client),
respectively;

- the BLS signature scheme built on BW13-310 is about both 150% faster than
that on BN446 and BLS12-446 for the signer, respectively.

2 Preliminaries
Let p be a large prime, and E an ordinary elliptic curve defined by an equation of the
form y2 = x3 + ax+ b where a, b ∈ Fp are selected such that 4a3 + 27b2 6= 0. The group
E(Fp) consists of points (x, y) satisfying the above equation with x, y ∈ Fp, together with
a point at infinity O. Denote by #E(Fp) the order of E(Fp). Then #E(Fp) is precisely
p+ 1− t, where t is the trace of the p-power Frobenius endomorphism π : (x, y)→ (xp, yp).
Let r be a large prime such that r | #E(Fp). The embedding degree k with respect to r is
the smallest positive integer such that r | pk − 1. We use GT to denote the subgroup of
order r in F∗pk . If k > 1, then the r-torsion group E[r] = {R ∈ E | [r]R = O} is contained
in E(Fpk). Define G1 and G2 are eigenspaces of π acting on E[r] with eigenvalues 1 and p,
respectively. Or equivalently, G1 = E(Fp)[r] and G2 = E(Fpk)[r] ∩Ker(π-[p]).

2.1 Optimal pairing
For any point R ∈ E and n ∈ Z+, we denote fn,R as a normalized rational function with
divisor

(fn,R) = n(R)− ([n]R)− (n− 1)(O). (1)

396 Don’t Forget Pairing-Friendly Curves with Odd Prime Embedding Degrees

For any i, j ∈ Z+, the functions fi,R, fj,R and fi+j,R satisfy the following relations:

fi+j,R = fi,R · fj,R ·
`[i]R,[j]R

ν[i+j]R
, (2)

where `[i]R,[j]R represents the straight line through [i]R and [j]R, and ν[i+j]R is the vertical
line through [i+j]R. Based on Eq.(2), Miller [Mil04] proposed a polynomial time algorithm
for computing fn,Q(P) for any n ∈ Z+, P ∈ G1 and Q ∈ G2, which is described in Alg. 1.
Throughout this paper, we call fn,R as Miller function and one execution of the main loop
in Alg. 1 as a basic Miller iteration.

Let m be a multiple of r with m - r2, and write m as
∑ω
j=0 cip

i. An optimal pair-
ing [Ver09] on E is defined by

e : G1 ×G2 → GT , (P,Q)→
(ω∏

i=0
fp

i

ci,Q
(P) ·

ω−1∏
i=0

`[si+1]Q,[cipi]Q(P)
ν[si]Q(P)

)(pk−1)/r
, (3)

where si =
∑ω
j=i cjp

j . Eq. (3) allows pairing evaluation to be accomplished by using
around log r/(ϕ(k)) basic Miller iterations and one exponentiation by (pk − 1)/r.

Algorithm 1 Miller’s Algorithm

Input: P ∈ G1, Q ∈ G2, n =
L∑
i=0

ni2i with ni ∈ {−1, 0, 1}

Output: fn,Q(P)
1: T ← Q, f ← 1
2: for i = L− 1 down to 0 do
3: f ← f2 · `T,T (P)

ν[2]T (P) , T ←− 2T
4: if ni = 1 then
5: f ← f · `T,Q(P)

νT +Q(P) , T ← T +Q

6: end if
7: if ni = −1 then
8: f ← f · `T,−Q(P)

νT −Q(P) , T ← T −Q
9: end if

10: end for
11: return f

For curves with even embedding degrees, pairing computation benefits from the de-
nominator elimination optimization so that the vertical line in Alg. 1 can be ignored.
Unfortunately, this technique does not apply to curves with odd prime embedding degrees.
The penalty is slightly made up for by a modified Miller function gm,Q with divisor

(gm,Q) = m(Q) + (−mQ)− (m+ 1)(O). (4)

Comparing Eqs. (1) and (4), it is easy to deduce the following relations:

gm,Q = fm,Q · ν[m]Q, (5)

gm+1,Q = gm,Q ·
`[m]Q,Q

ν[m]Q
, (6)

g2m+1,Q = g2
m,Q

`[2m]Q,Q

`[−m]Q,[−m]Q
, (7)

g4m,Q = g4
m,Q

`[2m]Q,[2m]Q

`2[−m]Q,[−m]Q
. (8)

Yu Dai, Fangguo Zhang and Chang-an Zhao 397

Exploiting Eqs. (5)-(8), Dai et al. [DZZZ22] found that the optimal strategy for performing
Miller loop is as follows: (1) combining two consecutive doubling steps into one quadrupling
step; (2) combining one doubling and one addition steps into one doubling-addition step.

2.2 A family of curves with embedding degrees k ≡ 1 mod 6
Freeman, Scott and Teske [FST10, Construction 6.6] constructed a family of cyclotomic
pairing-friendly curves with embedding degrees k ≡ 1 mod 6, k ≤ 1000 and 18 - k.
In particular, the characteristic p, the prime order r and the trace of Frobenius t are
parameterized by

r(z) = Φ6k(z),
p(z) = 1

3 (z + 1)2(z2k − zk + 1)− z2k+1,
t(z) = −zk+1 + z + 1,

where Φl(·) represents l-th cyclotomic polynomial. All members in this family have j-
invariant 0 and are defined by an equation of the form y2 = x3 + b for some b ∈ F∗p.
Following [CDS20], this family is named as the BW family. By the form of r(z), we have
r(z) | (z2k − zk + 1), which implies that

z2 − z · p(z) + p2(z) ≡ z2 + z · z2k+1 + z4k+2

≡ z2 · (1 + z2k + z4k)
≡ 0 mod r(z).

Thus, one of short vectors (c0, c1, · · · , cω) for the optimal pairing in this family is given by
(z2,−z, 1, 0, · · · , 0). Plugging this vector into Eq. (3), the corresponding formula of the
optimal pairing is

e(P,Q) = (fz2,Q(P) · fp−z,Q(P) · `π2(Q),π([−z]Q)(P))(pk−1)/r. (9)

It is known from [EMJ16, Lemma 3.5] that

fz2,Q = f−z−z,Q · f−z,[−z]Q.

Therefore, Eq. (9) can be rewritten as

e(P,Q) =
(
f−z+p−z,Q (P) · f−z,[−z]Q(P) · `π2(Q),π([−z]Q)(P)

)(pk−1)/r
. (10)

BW13-310 and BW19-286: In the BW family, BW13-310 and BW19-286 are the
two curves defined by setting k = 13 and 19, z = −2224 and −145, b = −17 and 31,
respectively. In particular, the selected prime p on BW13-310 satisfies that p ≡ 1 mod 13,
so that the full extension field Fp13 can be represented as Fp[v]/(v13 − α) for some α ∈ F∗p.
Using Magma [BCP97], it is easy to check that the polynomial v13 − 2 is irreducible over
Fp, which means that we can select the value of α as 2. According to the estimation
in [Gui20,CDS20], both curves are 128-bit secure even under the attack of the SexTNFS.

3 Single Pairing Computation on BW13-310
Notations. We denote by a, m, mu, s, su, i and r the computational costs of addition,
multiplication, multiplication without reduction, squaring, squaring without reduction,
inversion and modular reduction in Fp, respectively. It is obvious that m = mu + r and
s = su+r. Likewise, we use ã, m̃, m̃u s̃, s̃u, ĩ, f̃, ẽ and r̃ to represent the computational costs
of addition, multiplication, multiplication without reduction, squaring, squaring without
reduction, inversion, Frobenius, exponentiation by |z| and modular reduction in Fp13 ,

398 Don’t Forget Pairing-Friendly Curves with Odd Prime Embedding Degrees

respectively. The cyclotomic group GΦ13(p) is defined by GΦ13(p) = {β ∈ Fp13 | βΦ13(p) = 1}.
We denote by ĩc the cost of the inversion in GΦ13(p). The notation × is used to denote
field multiplication without reduction. For any point Q, we use (xQ, yQ) to represent the
point in affine coordinates, and (XQ, YQ, ZQ) in jacobian coordinates, which means that
xQ = XQ/Z

2
Q and yQ = YQ/Z

3
Q. Given a vector n = (n0, n1, · · · , nm), the notation ‖n‖∞

represents max{|n0|, |n1|, · · · , |nm|}.
In this section, we propose a new formula for pairing computation in the BW family,

and discuss how to apply it to BW13-310 in detail. Since p ≡ 1 mod 3, there exists an
endomorphism φ : (x, y)→ (ω · x, y) such that φ(Q) = [λ]Q for any Q ∈ G2, where ω is a
cube primitive root of unity in F∗p and λ is a root of the quadratic congruence equation
x2 + x+ 1 ≡ 0 mod r. Recall that

z2k − zk + 1 ≡ 0 mod r,

which implies that λ is −zk or zk − 1. Fix the parameter ω such that λ = −zk and define
ψ = π ◦ φ. Then, we have

ψ(Q) = [λ]π(Q) = [λ · (t− 1) mod r]Q = [−z]Q. (11)

Based on this observation, we prove the following theorem.

Theorem 1. Let notation as above. Then the formula of the optimal pairing in the BW
family can be expressed as

e(Q,P) =
(
f−z+p−z,Q (P) · fp−z,Q(φ̂(P)) · `π2(Q),π2◦φ(Q)(P)

)(pk−1)/r
, (12)

where φ̂ = φ2.

Proof. By [HSV06, Lemma 3] and Eq. (11), it is easy to see that

f−z,[−z]Q = f−z,π◦φ(Q) = fp−z,φ(Q). (13)

By Eq. (1), we obtain that

(f−z,φ(Q)) = −z(φ(Q))− (φ([−z]Q))− (−z − 1)(O).

Since φ is an automorphism on E, we have

φ∗(f−z,φ(Q)) = −z(Q)− ([−z]Q)− (−z − 1)(O) = (f−z,Q), (14)

where φ∗ is the pullback of φ [Gal18, Definition 8.3.1]. Furthermore, since

φ∗(f−z,φ(Q)) = (f−z,φ(Q) ◦ φ),

Eq. (14) implies that

f−z,φ(Q) = f−z,φ(Q) ◦ φ ◦ φ̂ = f−z,Q ◦ φ̂. (15)

By the fact that p ≡ 1 mod 3 and φ̂3 = 1 we get

φ̂p = φ̂. (16)

Combining Eqs.(13), (15) and (16), it yields

f−z,[−z]Q = fp−z,φ(Q) = fp−z,Q ◦ φ̂
p = fp−z,Q ◦ φ̂. (17)

Inserting Eq. (17) into Eq. (10) and replacing [−z]Q by ψ(Q), we complete the proof of
this theorem.

Yu Dai, Fangguo Zhang and Chang-an Zhao 399

In Theorem 1, we propose a new formula for computing the optimal pairing in the
BW family, which is suitable for BW13-310 and BW19-286. Using the new formula, the
number of basic Miller iterations is reduced to blog|z|c ≈ log r/(2ϕ(k)). In detail, when
performing Miller’s algorithm using Eq. (12), the computational cost largely comes from
two evaluations at the same Miller function of length log|z|, i.e., f−z,Q(P) and f−z,Q(φ̂(P)).
Recently, Fouotsa et al. [FGA23] proposed the x-superoptimal pairing on BW13-310 and
BW19-286, which is expressed as

axsup(Q,P)=
((
f−z,Q(P) · f−1

−z,Q(φ̂(P))
)−z · (f−1

−z,Q(φ̂(P)) · f−z,Q(φ(P)
)p)(p13−1)/r

. (18)

Clearly, Eqs. (12) and (18) require the same number of iterations when performing Miller’s
algorithm. But the latter requires three evaluations at the same Miller function of
length log|z|, i.e., f−z,Q(P), f−z,Q(φ(P)) and f−z,Q(φ̂(P)). Therefore, compared to the
x-superoptimal pairing, our proposed formula would be more efficient. In the following,
we investigate how to perform the pairing computation on BW13-310 in detail.

3.1 Shared Miller loop
Computing a single pairing by multiple Miller function evaluations were studied in [Sco05,
ZXZ+11,AFCK+13]. This inspires us to consider how to speed up pairing computation
on BW13-310 by using Eq. (12), i.e., computing f−z,Q(P) and f−z,Q(φ̂(P)). Since the
points P and φ̂(P) have the same y-coordinates, the two Miller function evaluations share
a large amount of intermediate values during Miller iteration. Hence, it would be efficient
to calculate f−z,Q(P) and f−z,Q(φ̂(P)) simultaneously. In other words, we can accomplish
two Miller function evaluations at a shared Miller loop. Recall from Section 2 that the
seed z = −2224 on BW13-310, and the Miller function f2224,Q can be obtained from f1,Q
via the following sequence:

f1,Q→g1,Q →g4,Q→g16,Q→g17,Q→g68,Q→g69,Q→g139,Q→g556,Q→g2224,Q→f2224,Q. (19)

For any i ∈ Z, we denote by Ni,Q and Di,Q the numerator and denominator of gi,Q,
respectively. According to Eq. (5), we have

g1,Q(x, y) = f1,Q(x, y) · ν1,Q(x, y) = x− xQ

for any point (x, y) ∈ E. Therefore, it is natural to set

N1,Q(P) = xP − xQ, D1,Q(P) = 1, N1,Q(φ̂(P)) = x̃P − xQ, D1,Q(φ̂(P)) = 1, (20)

where x̃P represents the x-coordinate of φ̂(P). In the following we will discuss how to
update the terms Nm,Q(P), Dm,Q(P), Nm,Q(φ̂(P)) and Dm,Q(φ̂(P)) in a shared Miller
loop for any m ∈ Z. Before that, we use T = (XT , YT , ZT) to denote [m]Q in Jacobian
coordinates.

3.1.1 Shared addition step(SADD)

In this subsection we show how to obtain Nm+1,Q(P), Dm+1,Q(P), Nm+1,Q(φ̂(P)) and
Dm+1,Q(φ̂(P)) from Nm,Q(P), Dm,Q(P), Nm,Q(φ̂(P)) and Dm,Q(φ̂(P)), respectively. To
this end, the point T +Q is first calculated. Since T and Q are represented in Jacobian and
affine coordinates respectively, we adopt the mixed addition formula presented in [AFG+17,
Section 4.3.2] to compute T +Q, which is given by

αT+Q = yQ · Z3
T − YT , βT+Q = xQ · Z2

T −XT , XT+Q = α2
T+Q − 2XT · β2

T+Q − β3
T+Q,

YT+Q = αT+Q · (XT · β2
T+Q −XT+Q)− YT · β3

T+Q, ZT+Q = ZT · βT+Q.

400 Don’t Forget Pairing-Friendly Curves with Odd Prime Embedding Degrees

It can be done by using the following sequence of operations:

A = Z2
T , B = A·ZT , C = B · yQ − YT , D = A · xQ −XT , E = D2, F = D · E,G = XT · E,

XT+Q = C2 − 2G− F,U0 = C × (G−XT+Q), U1 = YT × F, YT+Q = (U0 − U1) mod p,
ZT+Q = ZT ·D.

The above calculation comes at a cost of 6m̃+2m̃u+3s̃+ r̃+8ã, assuming that computing
U0 − U1 requires 2ã. For any point (x, y), it can be deduced from Eq. (6) that

Nm+ 1, Q(x, y) = Nm,Q(x, y) · LT,a,1(x, y),
Dm+1,Q(x, y)=Dm,Q(x, y) · LT,a,2(x, y),

(21)

where LT,a,1(x, y) and LT,a,2(x, y) are given by

LT,a,1(x, y) = βT+Q · (y ·Z3
T−YT)−αT+Q · (x · Z2

T−XT),
LT,a,2(x, y) = ZT+Q · (x · Z2

T −XT).

Since αT+Q, βT+Q, ZT+Q, Z2
T and Z3

T have been obtained at the point addition step, we
perform the following sequence of operations to compute LT,a,1(P), LT,a,2(P), LT,a,1(φ̂(P))
and LT,a,2(φ̂(P)) which requires 2m̃ + 3m̃u + 39m + 2r̃ + 7ã as

A = yP · Z3
T−YT , B = xP · Z2

T−XT , C = x̃P · Z2
T−XT , U0 = βT+Q ×A,U1 = αT+Q ×B,

U2 = αT+Q × C,La,1(P) = (U0−U1) mod p, LT,a,1(φ̂(P)) = (U0−U2) mod p,
LT,a,2(P) = ZT+Q ·B,LT,a,2(φ̂(P)) = ZT+Q · C.

On this basis, we can obtain Nm+1,Q(P), Dm+1,Q(P), Nm+1,Q(φ̂(P)) and Dm+1,Q(φ̂(P))
from Eq. (21) at a cost of 4m̃. In summary, the computational cost at the SADD step is

6m̃ + 2m̃u + 3s̃ + r̃ + 8ã︸ ︷︷ ︸
point addition

+ 2m̃ + 3m̃u + 39m + 2r̃ + 7ã︸ ︷︷ ︸
LT,a,1 and LT,a,2

+ 4m̃︸︷︷︸
the final step

= 12m̃ + 5m̃u + 3s̃ + 39m + 3r̃ + 15ã.

3.1.2 Shared doubling-addition step(SDBLADD)

By combining one doubling and one addition steps in the shared Miller loop, we can
efficiently obtain N2m+1,Q(P), D2m+1,Q(P), N2m+1,Q(φ̂(P)) and D2m+1,Q(φ̂(P)) from
Nm,Q(P), Dm,Q(P), Nm,Q(φ̂(P)) and Dm,Q(φ̂(P)), respectively. Firstly, using the formula
presented in [AFG+17, Section 4.3.1], the point 2T = (X2T , Y2T , Z2T) is given by

X2T = 9
4X

4
T − 2XT · Y 2

T , Y2T = 3
2X

2
T · (XT · Y 2

T −X2T)− Y 4
T , Z2T = YT · ZT .

Thus the computation of point doubling requires 2m̃ + m̃u + 3s̃ + s̃u + r̃ + 7ã using the
following sequence of operations:

A=X2
T , B = A/2, C = A+B,D = C2, E = Y 2

T , F = XT · E,X2T = D − 2F,G = F −X2T ,

U0 = C ×G,U1 = E × E, Y2T = (U0 − U1) mod p, Z2T = YT · ZT .

On this basis, one can obtain the point 2T +Q via one mixed point addition:

α2T+Q = yQ ·Z3
2T−Y2T , β2T+Q = xQ ·Z2

2T−X2T , X2T+Q = α2
2T+Q−2X2T ·β2

2T+Q−β3
2T+Q,

Y2T+Q = α2T+Q · (X2T · β2
2T+Q −X2T+Q)− Y2T · β3

2T+Q, Z2T+Q = Z2T · β2T+Q.

Yu Dai, Fangguo Zhang and Chang-an Zhao 401

From Eq. (7), we deduce that

N2m+1,Q(x, y) = N2
m,Q(x, y) · LT,d,1(x, y),

D2m+1,Q(x, y)=D2
m,Q(x, y) · LT,d,2(x, y).

(22)

where LT,d,1(x, y) and LT,d,2(x, y) are given by

LT,d,1(x, y) = β2T+Q · (y · Z3
2T − Y2T)− α2T+Q · (x · Z2

2T −X2T),

LT,d,2(x, y) = β2T+Q · (y · Z3
2T − Y2T) + 3

2X
2
T · β2T+Q · (x · Z2

2T −X2T).

Since the values of 3
2X

2
T , Z2

2T , Z3
2T , α2T+Q and β2T+Q have been obtained, the computation

of LT,d,1(P), LT,d,2(P), LT,d,1(φ̂(P)) and LT,d,2(φ̂(P)) can be done in m̃ + 5m̃u + 4r̃ +
39m + 11ã as follows:

A = yP · Z3
2T − Y2T , B = xP · Z2

2T −X2T , C = x̃P · Z2
2T −X2T , D = 3

2X
2
T · β2T+Q,

U0 = β2T+Q ×A,U1 = α2T+Q ×B,U2 = α2T+Q × C,U3 = D ×B,U4 = D × C,
LT,d,1(P) = (U0 − U1) mod p, LT,d,2(P) = (U0 + U3) mod p,
LT,d,1(φ̂(P)) = (U0 − U2) mod p, LT,d,2(φ̂(P)) = (U0 + U4) mod p.

Finally, it can be seen from Eq. (22) that the computation of N2m+1,Q(P), D2m+1,Q(P),
N2m+1,Q(φ̂(P)) and D2m+1,Q(φ̂(P)) requires 4m̃ + 4s̃. In total, the computational cost at
the SDBLADD step is

2m̃ + m̃u + 3s̃ + s̃u + r̃ + 7ã︸ ︷︷ ︸
point doubling

+ 6m̃ + 2m̃u + 3s̃ + r̃ + 8ã︸ ︷︷ ︸
point addition

+ m̃ + 5m̃u + 4r̃ + 39m + 11ã︸ ︷︷ ︸
LT,d,1 and LT,d,2

+ 4m̃ + 4s̃︸ ︷︷ ︸
the final step

= 13m̃ + 8m̃u + 10s̃ + s̃u + 6r̃ + 39m + 26ã.

3.1.3 Shared quadrupling step(SQPL)

By combining two doubling steps into one quadrupling step in the shared Miller loop, we
can efficiently perform the following four function updates:

N4m,Q(P)← Nm,Q(P), D4m,Q(P)← Dm,Q(P),
N4m,Q(φ̂(P))← Nm,Q(φ̂(P)), D4m,Q(φ̂(P))← Dm,Q(φ̂(P)).

We first perform two successive point doublings to calculate 4T = (X4T , Y4T , Z4T). It
can be seen from Section 3.1.2 that it costs 4m̃ + 2m̃u + 6s̃ + 2s̃u + 2r̃ + 14ã. Then,
straightforward computation using (8) reveals that

N4m,Q(x, y) = N4
m,Q · LT,q,1(x, y), D4m,Q(x, y) = D4

m,Q ·
(
LT,q,2(x, y)

)2
, (23)

where LT,q,1 and LT,q,2 are given by

LT,q,1(x, y) = Z4T · Z2
2T ·

(
y · Z4T · Z2

2T −
3
2X

2
2T · (x · Z2

2T −X2T)− Y 2
2T
)
,

LT,q,2(x, y) = y · Z4T · Z2
2T + 3

2X
2
T · Y2T · (x · Z2

2T −X2T)− Y 2
2T .

402 Don’t Forget Pairing-Friendly Curves with Odd Prime Embedding Degrees

During the procedure of point quadrupling, the values of 3
2X

2
T ,

3
2X

2
2T and Y 2

2T can be
obtained. Then, we compute LT,q,1(P), LT,q,2(P), LT,q,1(φ̂(P)) and LT,q,2(φ̂(P)) using
the following sequence of operations:

A=Z2
2T , B=Z4T ·A,C=xP ·A−X2T , D= x̃P ·A−X2T , E= 3

2X
2
T · Y2T , U0 =yP ×B,

U1 = 3
2X

2
T × C,U2 = 3

2X
2
T ×D,U3 = C × E,U4 = D × E,F = (U0 − U1) mod p,

G=(U0−U2) mod p,H=(U0+U3) mod p, I=(U0+U4) mod p, LT,q,1(P) = B · (F−Y 2
2T),

LT,q,2(P) = H − Y 2
2T , LT,q,1(φ̂(P)) = B · (G− Y 2

2T), LT,q,2(φ̂(P)) = I − Y 2
2T .

The above computation costs 4m̃ + 4m̃u + s̃ + 4r̃ + 26m + 13mu + 14ã. At last, we can
obtain N4m,Q(P), D4m,Q(P), N4m,Q(φ̂(P)) and D4m,Q(φ̂(P)) from Eq. (23) at a cost of
4m̃ + 8s̃. In total, the computational cost at the SQPL step is

4m̃ +2m̃u + 6s̃ + 2s̃u+ 2r̃ +14ã︸ ︷︷ ︸
point quadrupling

+ 4m̃ + 4m̃u + s̃ + 4r̃ + 26m + 13mu + 14ã︸ ︷︷ ︸
LT,q,1 and LT,q,2

+ 4m̃ + 8s̃︸ ︷︷ ︸
the final step

= 12m̃ + 6m̃u + 15s̃ + 2s̃u + 6r̃ + 26m + 13mu + 28ã.

In addition, it can be seen from Eq. (20) that when m = 1, both Dm,Q(P) and Dm,Q(φ̂(P))
are equal to 1, which indicates that two full extension field squarings can be saved.

3.1.4 Function transformation

According to the relation between f−z,Q and g−z,Q, we immediately have

f−z,Q(P) = g−z,Q(P)
νψ(Q)(P) = N−z,Q(P)

D−z,Q(P) · (xP − ω · xpQ) ,

f−z,Q(φ̂(P)) = g−z,Q(φ̂(P))
νψ(Q)(φ̂(P))

= N−z,Q(φ̂(P))
D−z,Q(φ̂(P)) · (x̃P − ω · xpQ)

.

(24)

Moreover, the points π2(Q) and π2(φ(Q)) have the same x-coordinates, that is,

`π2(Q),π2(φ(Q))(P) = yp − yp
2

Q . (25)

Putting Eqs.(24) and (25) together, Eq. (12) can be rewritten as e(P,Q) = (L1
L2

)(p13−1)/r,
where

L1 =
(N−z,Q(P)
D−z,Q(P) · (xP − ω · xpQ)

)−z+p
·
(
N−z,Q(φ̂(P))

)p · (yp − yp2

Q),

L2 =
(
D−z,Q(φ̂(P)) · (x̃P − ω · xpQ)

)p
.

Once the values of N−z,Q(P), D−z,Q(P), N−z,Q(φ̂(P)) and D−z,Q(φ̂(P)) are given, the
computation of L1 and L2 can be done at a cost of ẽ+ĩ+6m̃+13m+5̃f+3ã. We will delay
the inversion of L2 into the easy part of the final exponentiation such that one inversion
can be saved.

3.2 The final exponentiation
An optimized final exponentiation routine is critical for fast pairing computation on
BW13-310. The exponent (p13−1)/r can be split as

(p13−1)/r = (p− 1)︸ ︷︷ ︸
easy part

· (1 + p+ p2 + · · ·+ p12)/r︸ ︷︷ ︸
hard part

·

Yu Dai, Fangguo Zhang and Chang-an Zhao 403

Raising L1/L2 to the power of p− 1 is easy, which can be done at a cost of ĩ + 3m̃ + 2̃f as
follows:

f = (L1/L2)p−1 = Lp1 · L2

Lp2 · L1
.

The bottleneck of the final exponentiation is to raise f to the power of the hard part.
In [DZZZ22], the exponent of the hard part can be replaced by

h = λ0 + 3 · p+
(3∑
i=1

λi · pi−1) · (3∑
i=0

x3i · p10−3i),
where x = −z, and λ0, λ1, λ2 and λ3 are given by

λ0 = −x15 − 2x14 − 2x13 − x12 − x2 + 2x+ 2,
λ1 = −x18 − 2x17 − 2x16 − x15 − x5 + 2x4 + 2x3,
λ2 =x16 + x15+ x14 + x4 + 2x3 − x2 + x,
λ3 = x16 + x15 + x14 − 4x2 − x− 1.

However, unlike the case of even embedding degrees, the cost of the inversion of f is
still expensive. In order to avoid this operation as much as possible, we can break λi as
λi,0 − λi,1 for i = 0, 1, 2, 3, where

λ0,0 = 2x+ 2, λ0,1 = x15 + 2x14 + 2x13 + x12 + x2,

λ1,0 = 2x4 + 2x3, λ1,1 = x18 + 2x17 + 2x16 + x15 + x5,

λ2,0 = x16 + x15 + x14 + x4 + 2x3 + x, λ2,1 = x2,

λ3,0 = x16 + x15 + x14, λ3,1 = 4x2 + x+ 1.

The above exponents can be classified by degree into the following two categories:

low degrees : λ0,0, λ1,0, λ2,1 and λ3,1; high degrees : λ0,1, λ1,1, λ2,0 and λ3,0.

Firstly, the values of fλ0,0 , fλ1,0 , fλ2,1 and fλ3,1 can be computed using the following
operations:

f→f3→fx→fx ·f →f2(x+1)→fx
2
→f4x2

·fx+1→fx
3
→fx

4
→fx

3
· fx

4
→f2(x3+x4).

(26)

Since only one additional field multiplication is required for obtaining f3 at the process of
computing fx, the cost of computing (26) is 4ẽ + 4m̃ + 4s̃. Denote g by f (x12+x13+x14).
On the basis of (26), we then compute g with 10ẽ + m̃:

fx
5
→ fx

3+x4
· fx

5
→ fx

9(x3+x4+x5).

To compute fλ0,1 , fλ1,1 , fλ2,0 and fλ3,0 , the following operations are performed:

g→gx →g · gx · fx
2
→gx

2
→gx

2
·fx

3+x4
·fx

3
·fx→gx

3
→gx

4
→gx

3
·gx

4
·fx

5
. (27)

The cost of computing (27) is 4ẽ + 7m̃. Using the trick of Montgomery’s simultaneous
inversion [Mon87], we then can compute the terms f0 = fλ0 and f1 = fλ1+λ2·p+λ3·p2 as
follows:

f0 = fλ0,0

fλ0,1
= fλ0,0 · (fλ1,1 · fλ2,1·p · fλ3,1·p2)
fλ0,1 · (fλ1,1 · fλ2,1·p · fλ3,1·p2)

,

f1 = fλ1,0 · fλ2,0·p · fλ3,0·p2

fλ1,1 · fλ2,1·p · fλ3,1·p2 = fλ0,1 · (fλ1,0 · fλ2,0·p · fλ3,0·p2)
fλ0,1 · (fλ1,1 · fλ2,1·p · fλ3,1·p2)

,

404 Don’t Forget Pairing-Friendly Curves with Odd Prime Embedding Degrees

which requires ĩc + 9m̃ + 4f̃. Finally, raising f to the power of h can be expressed as

f0 · f3·p · fp
10+x3·p7+x6·p4+x9·p

1 = f0 · (f3 · fx
9

1)p · fp
10+x3·p7+x6·p4

1 . (28)

Since the value of f3 can be obtained from (26), the computation of (28) requires 9ẽ +
5m̃ + 4f̃.

3.3 Operation counts

Table 1: Operation counts for the full extension field arithmetic

Fp13 Arithmetic Operation Counts in Fp
ã 13a
m̃ 66mu + 502a + 13r
m̃u 66mu + 502a
s̃ 66su + 443a + 13r
s̃u 66su + 443a
r̃ 13r
ĩ 277mu+73m+i+2034a+53r
ĩc 264mu + 60m + 2008a + 52r
ẽ 198mu + 726su + 6379a + 182r
f̃ 12m

Applying the technique of lazy reduction [AKL+11] and Karatsuba algorithm, a detailed
description of the finite field arithmetic in Fp13 was given in [DZZZ22]. In Table 1, we
summarize the associated operation counts. We now provide detailed operation counts of
the pairing computation on BW13-310 by using our algorithms. From (19), the computation
of N−z,Q(P), D−z,Q(P),N−z,Q(φ̂(P)), D−z,Q(φ̂(P)) requires executing 5 SQPL, 2 SADD
and 1 SDBLADD. Thus, the total number of operations in the Miller loop is

ML = 2ã︸︷︷︸
Eq.(20)

+ 12m̃ + 6m̃u + 13s̃ + 2s̃u + 6r̃ + 26m + 13mu + 28ã︸ ︷︷ ︸
the first QPL

+

4(12m̃ + 6m̃u + 15s̃ + 2s̃u + 6r̃ + 26m + 13mu + 28ã)︸ ︷︷ ︸
the last 4 QPL

+

2(12m̃ + 5m̃u + 3s̃ + 39m + 3r̃ + 15ã)︸ ︷︷ ︸
2 SADD

+

13m̃ + 8m̃u + 10s̃ + s̃u + 6r̃ + 39m + 26ã︸ ︷︷ ︸
1 SDBLADD

+

ẽ + ĩ + 6m̃ + 13m + 5f̃ + 3ã︸ ︷︷ ︸
L1 and L2

= ẽ + ĩ + 103m̃ + 48m̃u + 89s̃ + 11s̃u + 42r̃ + 260m + 65mu + 5f̃ + 201ã
= i + 393m + 10506mu + 7326su + 3277r + 131128a.

Yu Dai, Fangguo Zhang and Chang-an Zhao 405

It can be seen from Section 3.2 that the total number of operations in the final exponenti-
ation is

FE =(̃i + 3m̃ + 2f̃) + (4ẽ + 4m̃ + 4s̃) + (10ẽ + m̃) + (4ẽ + 7m̃)
+ (̃ic + 9m̃ + 4f̃) + (9ẽ + 5m̃ + 4f̃)

=27ẽ + ĩ + ĩc + 29m̃ + 4s̃ + 10f̃
=i + 253m + 7801mu + 19866su + 5448r + 192605a.

In Table 2, we compare the operation counts of ML and FE on BW13-310 to the previous
works available in the literature. It should be noted that the estimation in [Gui20] assumes
that m̃ ≈ 59m, while in [FGA23] assumes that m̃ ≈ 66m. Clearly, our algorithms require
fewer computational cost as compared to the previous works.

Table 2: Comparison of operation counts for pairing computation on BW13-310 with the
previous works available in the literature

Work Phase Operation Counts

Guillevic [Gui20] ML ≈ 2̃i + 29919m
FE −

Dai et al. [DZZZ22] ML 2i+518m+15798mu+10758su+4747r+195187a
FE i + 325m + 7801mu + 19932su + 5461r + 193048a

Fouotsa et al. [FGA23] ML ≈ 2i + 22925m
FE −

This work ML i + 393m + 10506mu + 7326su + 3277r + 131128a
FE i + 253m + 7801mu + 19866su + 5448r + 192605a.

4 Pairings Products Computation on BW13-310
The evaluation of the products of pairings is often required in many pairing-based protocols.
Efficient algorithms for computing such products were proposed in [GS06,Sco11,ZL12]
by sharing an amount of full extension field squarings and the costly final exponentiation
step. In the case of BW13-310, the products of n-pairings can be expressed as

n∏
i=1

e(Pi, Qi) =
((n∏

i=1
f−z,Qi(Pi)

)−z+p · (n∏
i=1

f−z,Qi(φ̂(Pi))
)p · n∏

i=1

(
yPi − y

p2

Qi

))(p13−1)/r

= (Ln,1/Ln,2)(p13−1)/r.

By Eqs. (24) and (25), the values of Ln,1 and Ln,2 are given by

Ln,1 =
(∏n

i=1N−z,Qi (Pi)∏n

i=1 D−z,Qi(Pi)·
∏n

i=1(xPi−ω ·x
p
Qi

)

)p−z

·
(n∏

i=1

N−z,Qi (φ̂(Pi))
)p

·
n∏

i=1

(
yPi−y

p2

Qi

)
,

Ln,2 =
(n∏

i=1

D−z,Qi (φ̂(Pi)) ·
n∏

i=1

(x̃Pi − ω · x
p
Qi

)
)p

,

(29)

where x̃Pi represents the x-coordinate of φ̂(Pi). Clearly, the most costly operations for com-
puting Ln,1 and Ln,2 take place in the evaluations of

∏n
i=1N−z,Qi(Pi),

∏n
i=1D−z,Qi(Pi),

406 Don’t Forget Pairing-Friendly Curves with Odd Prime Embedding Degrees

∏n
i=1N−z,Qi

(φ̂(Pi)) and
∏n
i=1D−z,Qi

(φ̂(Pi)). To start, we need to obtain the following
four initial values:

n∏
i=1

N1,Qi(Pi) =
n∏
i=1

(xPi − xQi),
n∏
i=1

D1,Qi(Pi) = 1,

n∏
i=1

N1,Qi(φ̂(Pi)) =
n∏
i=1

(x̃Pi − xQi),
n∏
i=1

D1,Qi(φ̂(Pi)) = 1.
(30)

Given an integer m, we denote Ti by [m]Qi for each point Qi. Then, the following relations
are easily derived from Section 3.1:

nSADD



n∏
i=1

Nm+1,Qi
(x, y) =

n∏
i=1

Nm,Qi
(x, y)

n∏
i=1

LTi,a,1(x, y),

n∏
i=1

Dm+1,Qi(x, y) =
n∏
i=1

Dm,Qi(x, y)
n∏
i=1

LTi,a,2(x, y).

nSDBL



n∏
i=1

N2m+1,Qi(x, y) =
(n∏
i=1

Nm,Qi(x, y)
)2 n∏

i=1
LTi,d,1(x, y),

n∏
i=1

D2m+1,Qi(x, y) =
(n∏
i=1

Dm,Qi(x, y)
)2 n∏

i=1
LTi,d,2(x, y).

nSQPL



n∏
i=1

N4m,Qi(x, y) =
(n∏
i=1

Nm,Qi(x, y)
)4 n∏

i=1
LTi,q,1(x, y),

n∏
i=1

D4m,Qi(x, y) =
(n∏
i=1

Nm,Qi(x, y)
)4(n∏

i=1
LTi,q,2(x, y)

)2
.

Based on the analysis of Section 3.1, we can deduce that the costs of the nSADD,
nSDBLADD and nSQPL steps are

• nSADD: n(12m̃ + 5m̃u + 3s̃ + 39m + 3r̃ + 15ã).

• nSDBLADD:

n(2m̃ + m̃u + 3s̃ + s̃u + r̃ + 7ã)︸ ︷︷ ︸
point doublings

+n(6m̃ + 2m̃u + 3s̃ + r̃ + 8ã)︸ ︷︷ ︸
point additions

+ n(m̃ + 5m̃u + 4r̃ + 39m + 11ã)︸ ︷︷ ︸
LTi,d,1 and LTi,d,2

+ 4nm̃ + 4s̃︸ ︷︷ ︸
the final step

= 4s̃ + n(13m̃ + 8m̃u + 6s̃ + s̃u + 6r̃ + 39m + 26ã.

• nSQPL:

n(4m̃ +2m̃u + 6s̃ + 2s̃u+ 2r̃ +14ã)︸ ︷︷ ︸
point quadruplings

+

n(4m̃ + 4m̃u + s̃ + 4r̃ + 26m + 13mu + 14ã)︸ ︷︷ ︸
LTi,q,1 and LTi,q,2

+ 4nm̃ + 8s̃︸ ︷︷ ︸
the final step

= 8s̃ + n(12m̃ + 6m̃u + 7s̃ + 2s̃u + 6r̃ + 26m + 13mu + 28ã).

Analogous to the single pairing computation, two full extension field squarings can be saved
at the first nSQPL step, and we can obtain the terms

∏n
i=1N−z,Qi(Pi),

∏n
i=1D−z,Qi(Pi),

Yu Dai, Fangguo Zhang and Chang-an Zhao 407

∏n
i=1N−z,Qi

(φ̂(Pi)) and
∏n
i=1D−z,Qi

(φ̂(Pi)) by executing 5 nSQPL, 2 nSADD and 1
nSDBLADD. On this basis, we continue to calculate Ln,1 and Ln,2. Since the point Pi for
each i is defined over Fp, we have

n∏
i=1

(xPi
− ω · xpQi

) =
(n∏
i=1

(xPi
− ω · xQi

)
)p
,

n∏
i=1

(x̃Pi
− ω · xpQi

) = (
n∏
i=1

(x̃Pi
− ω · xQi

))p,

n∏
i=1

(
yPi
− yp

2

Qi

)
=
(n∏
i=1

(
yPi
− yQi

))p2

.

The above computation requires 3(n− 1)m̃ + 13nm + 3̃f + 3nã. By the form of Eq. (29),
it is straightforward to see that the cost of computing Ln,1 and Ln,2 is

(3(n− 1)m̃ + 13nm + 3f̃ + 3nã) + (ẽ + ĩ + 6m̃ + 2f̃)
=ẽ + ĩ + 3(n+ 1)m̃ + 13nm + 5f̃ + 3nã.

Based on the above analysis, the cost of the Miller loop for computing n-pairings products
on BW13-310 is

nML = 2(n− 1)m̃ + 2nã︸ ︷︷ ︸
Eq. (30)

+ 6s̃ + n(12m̃ + 6m̃u + 7s̃ + 2s̃u + 6r̃ + 26m + 13mu + 28ã)︸ ︷︷ ︸
the first nQPL

+

32s̃ + 4n(12m̃ + 6m̃u + 7s̃ + 2s̃u + 6r̃ + 26m + 13mu + 28ã)︸ ︷︷ ︸
the last 4 nQPL

+

2n(12m̃ + 5m̃u + 3s̃ + 39m + 3r̃ + 15ã)︸ ︷︷ ︸
2 nSADD

+

4s̃ + n(13m̃ + 8m̃u + 6s̃ + s̃u + 6r̃ + 39m + 26ã)︸ ︷︷ ︸
1 nSDBLADD

+

ẽ + ĩ + 3(n+ 1)m̃ + 13nm + 5f̃ + 3nã︸ ︷︷ ︸
Ln,1 and Ln,2

=ẽ + ĩ + (102n+ 1)m̃ + 48nm̃u + (47n+ 42)s̃ + 11ns̃u + 42nr̃ + 260nm
+ 65nmu + 5f̃ + 201nã.

=i + (260n+ 133)m + (9965n+ 541)mu + (3828n+ 3498)su + (2483n+ 794)r
+ (103607n+ 27521)a.

In summary, the total number of operations required for computing n-pairings products
on BW13-310 is

nML+ FE =2i + (260n+ 386)m + (9965n+ 8342)mu + (3828n+ 23364)su
+ (2483n+ 6242)r + (103607n+ 220126)a.

5 Exponentiation in Pairing Groups
Exponentiation in three pairing groups G1, G2 and GT also plays a vital role in the
implementation of pairing-based protocols. In this section, we discuss how to efficiently
perform the operation on BW13-310. The best-known method for computing [n]P with

408 Don’t Forget Pairing-Friendly Curves with Odd Prime Embedding Degrees

P ∈ G1 and n ∈ Zr was introduced by Gallant, Lambert, Vanstone [GLV01], which is
called the GLV method.The basic idea of this method is as follows. If the target curve
has an efficiently computable endomorphism φ such that φ(P) = [λ]P for some integer
λ, then the scalar n can be decomposed as n0, n1 such that n ≡ n0 + n1 · λ mod r, where
|n0|, |n0| ≈

√
r. Thus, the computation of [n]P can be replaced by the multi-exponentiation

[n0]P + [n1]φ(P). In summary, this method can halve the number of point doublings. In
addition, recoding n0 and n1 with the w-width non-adjacent form (w-NAF) can reduce
the number of point additions. In the RELIC cryptographic toolkit [AG], this method can
be implemented automatically once the associated curve parameters are given. Therefore,
we only investigate how to perform exponentiations in G2 and GT on this curve.

5.1 Exponentiation in G2

For exponentiation in G2 on curves admitting a twist, such as BN and BLS12 families,
GLS method [GLS09] breaks a random exponent n ∈ Zr into ϕ(k) mini-exponents n0, n1,
· · · , nϕ(k)−1 such that the bit size of the maximum of |ni| is about 1

ϕ(k) log r. In general,
GLS method largely reduces the number of iterations required for computing [n]Q with
Q ∈ G2.

It is possible to build a higher-dimensional decomposition by combining GLV and
GLS methods on some certain curves. This idea was initially proposed by Longa and
Sica [LS12] to obtain a four dimensional decomposition on certain curves, and subsequently
applied into different scenarios [CL15,FHLS14]. On BW13-310, the orders of φ and π
are respectively 3 and k in EndF

pk
(E) with gcd(3, k) = 1, where EndF

pk
(E) denotes the

endomorphism ring of E over Fpk . It indicates that ψ = φ ◦ π satisfies Φ2ϕ(k)(ψ) = 0, so a
random exponent n can be decomposed into 2ϕ(k) mini-exponents, where the bit size of
the maximum of |ni| is about 1

2ϕ(k) log r. It should be noted that the 2ϕ(k)-dimensional
decomposition takes advantage of the fact that ψ(Q) = [−z]Q. More specifically, since
log r ≈ 24 log|z|, the exponent n can be written in the basis of |z| as

n = n0 + n1 · |z|+ · · ·+ n23 · |z|23,

where log|ni| < log|z| ≈ 1
24 log r. Thus, the computation of [n]Q with Q ∈ G2 can be

accomplished as
[n]Q = [n0]Q+ n1ψ(Q) + · · ·+ [n23]ψ23(Q).

By the form of the endomorphism ψ, we have

ψi(Q) = (ωi · xp
i

Q , y
pi

Q)

for i = 0, 1, · · · , 23, and thus the cost of computing ψi(Q) is negligible. The procedure of
performing exponentiation in G2 on BW13-310 is summarized in Alg. 2.
Remark 1. We conclude that if the orders of φ and π are coprime in EndF

pk
(E), then

there exists a 2ϕ(k)-dimensional decomposition in G2. However, the orders of φ and
π are respectively d and k in EndF

pk
(E) with d | k (d = 3 or 4) on many mainstream

pairing-friendly curves, such as BN, BLS12, KSS16 and KSS18 families. It means that
ψ = φ ◦ π satisfies Φϕ(k)(ψ) = 0. Thus, the new technique is not suitable for the above
mentioned curves.

5.2 Exponentiation in GT

Since there is not an efficient computable endomorphism in Fpk corresponding to the
GLV endomorphism in E(Fpk), the exponentiation in GT is slightly different to that in
G2. In other words, in the case of exponentiation in GT , a given exponent n can be

Yu Dai, Fangguo Zhang and Chang-an Zhao 409

Algorithm 2 Exponentiation in G2 on BW13-310
Input: a random positive integer n ∈ Zr, a random point Q ∈ G2
Output: [n]Q

1: Q0 ← Q
2: for i = 1 to 23 do
3: Qi ← ψ(Qi−1)
4: end for
5: Compute [j]Qi for j ∈ {1, 3, 5, · · · , 2w − 1}

6: Decompose n into (n0, n1, · · · , n23) with n =
23∑
i=0

ni · |z|i

7: Recode ni =
t−1∑
j=0

ni,j2j in w-NAF

8: R← O
9: for j = t− 1 down to 0 do

10: R← [2]R
11: for i = 0 to 23 do
12: if ni,j > 0
13: R← R+ [ni,j]Qi
14: else
15: R← R− [ni,j]Qi
16: end if
17: end for
18: end for
19: return R

only decomposed into ϕ(k) multi-exponents by using the Frobenius endomorphism, rather
than 2ϕ(k). We now follow the same recipe described by Galbraith and Scott [GS08] to
decompose n the as n0, n1, · · · , nϕ(k)−1 such that

n ≡ (n0 + n1 · p+ · · ·+ nϕ(k)−1p
ϕ(k)−1) mod r

and max{|n0|, |n1| · · · , |nϕ(k)−1|} ≈ r1/ϕ(k). To this aim, we first define a modular lattice
L as

L = {(z0, z1, · · · , z11)|z0 + z1 · p+ · · ·+ z11 · p11 ≡ 0 mod r}.

Clearly, a basis B∗ = (b∗0,b∗1, · · · ,b∗11) of L is naturally selected as

b∗0 = (r, 0, 0, · · · , 0),
b∗1 = (p,−1, 0 · · · , 0),

...
b∗11 = (p, 0, 0 · · · ,−1).

Inputting the basis B∗ into the LLL algorithm [LLL82], we obtain a LLL-reduced basis
B = (b0,b1, · · · ,b11) as

b0 = (z2,−z, 1, 0, 0, · · · , 0),
b1 = (0, z2,−z, 1, 0, · · · , 0),

...
b9 = (0, 0, · · · , 0, z2,−z, 1),
b10 = (1, · · · , 1,−z2 + 1, z + 1),
b11 = (−z − 1,−z, · · · ,−z,−z2 + z).

410 Don’t Forget Pairing-Friendly Curves with Odd Prime Embedding Degrees

Since (r, 0, 0, · · · , 0) ∈ L, there exists a unique solution (y0, y1, · · · , y11) ∈ Z12 such that

(r, 0, 0, · · · , 0) = y0b0 + y1b1 + · · ·+ y11b11 (31)

Multiplying n/r on the both side of (31), it produces that

(n, 0, 0, · · · , 0) = α0b0 + α1b1 + · · ·+ α11b11, (32)

where αi = yi · n/r. We define

n = (n0, n1, · · · , n11) = (n, 0, 0, · · · , 0)− bα0eb0 − bα1eb1 − · · · − bα11eb11. (33)

Since bαie ∈ Z for each i, it is clear that n ∈ n+ L. Moreover, combining Eqs.(32) and
(33), we have

(n0, n1, · · · , n11) = (α0 − bα0e)b0 + (α1 − bα1e)b1 + · · ·+ (α11 − bα11e)b11.

Since the selected seed z is negative and |α0 − bα0e| ≤ 1/2, we immediately get that

‖n‖∞ ≤ (z2 − 2z + 2)/2 ≈ r1/ϕ(k). (34)

For the mainstream pairing-friendly curves, such as BN, BLS12, KSS16 and KSS18
families, the embedding degrees k are always even. This allows inversion in GT to be
computed for almost free by using a simple conjugation over Fpk/2 . In other words, non-
positive exponent decomposition will not bring extra overhead for exponentiation in GT
on these curves. However, the picture is different on BW13-310 as it has an odd prime
embedding degree. It pays a penalty for expensive cost inversion in GT . In order to avoid
this operation when performing exponentiation in GT , we expect multi-exponents are
all-positive.

Proposition 1. Let the lattice L and the LLL-reduced basis B = (b0,b1, · · · ,b11) of L be
constructed as above. For any integer n ∈ Z, there exists a vector n′ = (n′0, n′1, · · · , n′11) ∈
n+ L such that the tuples of n′ are all-positive and ‖n′‖∞ ≤ 3(z2 − 2z + 2)/2.

Proof. We first decompose the scalar n into the vector n as in (33). Then, we define
c = b0 + b1 + · · · + b9 − b10 − b11 and n′ = c + n. It is obviously that n′ ∈ n + L.
Moreover, by the definition of bi for each i, it is straightforward to see that

min{c0, c1, · · · , cϕ(k)−1} ≥ z2 − 1,max{c0, c1, · · · , cϕ(k)−1} ≤ z2 − 2z + 2, (35)

where ci is denoted as the i-th tuple of c. Combining Eq.s (34) and (35) together, the
proof is immediate.

The all-positive decomposition described in Proposition 1 also leads to around 1 bit
increase for the bound of the size of the mini-exponents. Considering the expensive cost of
inversion in GT , this trade is absolutely worthwhile. In addition, one should be noted that
when performing the small exponentiations by n′i for i = 0, 1, · · · , 11, the NAF expression
is not applicable. The procedure of exponentiation in GT on BW13-310 is presented in
Alg. 3.

6 Implementation Results
In this section, we present our implementation results of the pairing computation and
common building blocks on BW13-310 within the RELIC cryptographic toolkit. For the
pairing computation and the group exponentiations in G2 and GT we use the algorithms
proposed in this paper. For hashing to G1 and G2, the group membership testings and
the group exponentiation in G1, we exploit state-of-the-art techniques. In detail,

Yu Dai, Fangguo Zhang and Chang-an Zhao 411

Algorithm 3 Exponentiation in GT on BW13-310
Input: a random positive integer n ∈ Zr, a random element f ∈ GT
Output: fn

1: f0 ← f
2: for i = 1 to 11 do
3: fi ← fpi−1
4: end for
5: Compute f ji for j ∈ {1, 3, 5, · · · , 2w − 1}
6: Decompose n into all-positive mini-exponents (n0, · · · , n11) by using Proposition 1

7: Recode ni =
t−1∑
j=0

ni,j2j such that ni,j ∈ {1, 3, 5, · · · , 2w − 1}

8: g ← 1
9: for j = t− 1 down to 0 do

10: g ← g2

11: for i = 0 to 11 do
12: if ni,j > 0
13: g ← g · fni,j

i

14: end if
15: end for
16: end for
17: return g

• The function H1 : {0, 1}∗ → G1 is implemented by using the Shallue-van de Woesti-
jne (SVW) map [SvdW06], followed by a cofactor multiplication. The SVW map
aims to efficiently hash a binary string to a random point R1 ∈ E(Fp) in constant
time, and the cofactor multiplication forces R1 into the target group G1. RELIC
provides dedicated implementation of this map in the ep_map_from_field() function
in the file /src/ep/relic_ep_map.c. The procedure of clearing cofactor can be done
at a cost of one multiplication by z2 − z + 1 [EHGP22].

• The function H2 : {0, 1}∗ → G2 is implemented by using the method proposed
in [DZZ22]. Likewise, it is split into two phases: hashing a binary string to a random
point R2 ∈ E(Fp13), followed by mapping R2 to G2. The computational cost of
hashing to G2 largely comes from the second phase, which requires approximately
26 scalar multiplications by z, 13 point doublings and 41 point additions in E(Fp13).

• The best-known algorithms for the G1, G2 and GT membership testings on BW13-310
are proposed in [DLZZ23], which require approximately 12 scalar multiplications by
z in E(Fp), 1 scalar multiplications by z in E(Fp13) and 2 exponentiations by z in
Fp13 , respectively.

In order to evaluate strengths and weaknesses of BW13-310 in real-world pairing based
cryptographic protocols, we present a performance comparison between BW13-310 and
other 128-bit secure pairing-friendly curves, including BN446, BLS12-446 and BLS24-315.
Specially, BN446 and BLS12-446 are well known for fast pairing computations, while
BLS24-315 is another interesting curve with fast exponentiation in G1. All of these curves
are defined by an equation of the form y2 = x3 + b for some b ∈ F∗p, and the related
parameters are summarized in Table 3.

412 Don’t Forget Pairing-Friendly Curves with Odd Prime Embedding Degrees

Table 3: Important parameters of BN446, BLS12-446, BW13-310 and BLS24-315.

p r z, b

BN446 36z4+36z3+24z2+6z+1 36z4+36z3+18z2+6z+1 2110 + 236 + 1, 257

BLS12-446 (z − 1)2(z4 − z2 + 1)/3 + z z4 − z2 + 1 −274+273−263−257 − 250−217− 1, 1

BW13-310 1
3 (z+1)2(z26−z13 + 1)−z27 Φ78(z) −(211 + 27 + 25 + 24), −17

BLS24-315 (z − 1)2(z8 − z4 + 1)/3 + z z8 − z4 + 1 −232 + 230 + 221 + 220 + 1, 1

RELIC provides high speed implementations of pairing computations and the required
auxiliary building blocks on BN446, BLS12-446 and BLS24-315. We have integrated our
codes in this library to allow a direct performance comparison across different curves. The
source code is available at https://github.com/eccdaiy39/BW13-P310. Our benchmark
results are presented in Figs. 1-4. Timings are measured on an Intel Core i9-12900K
processor running at @3.2GHz with TurboBoost and hyper-threading features disabled,
averaged over 104 executions. For group exponentiations G1, G2 and GT on each curve,
window widths w are set as 4, 1 and 1, respectively.

• Compared to BN446 and BLS12-446, BW13-310 is about 109.1%− 227.3%, 100%−
192.6%, 24.5% − 108.5% and 68.2% − 145.5% faster in terms of hashing to G1,
exponentiations in G1 and GT , and membership testing for GT , respectively. In
essence, as to operations related to G1, BW13-310 benefits from fast prime field
arithmetic. As to operations related to GT , even though BW13-310 fails to provide
fast cyclotomic squaring [GS10,Kar12] and decode exponents in the NAF form, it
is much more favoured for a small size of full extension field and a large value of
ϕ(k), which result in fast full extension field multiplication and high dimensional
GLS decomposition.

• More surprisingly, the gap in the performance of single pairing computation between
BW13-310 and BN446 (resp. BLS12-446) is only up to 4.9% (resp. 26%). In
particular, the computation of the Miller loop on BW13-310 is even up to 48.2%
faster than that on BN446. In fact, our results reveal that a few percent efficiency
disadvantage of pairing computation on BW13-310 mainly arises from the final
exponentiation part. For the computation of the n-pairings products, BW13-310
outperforms BN446, while still slower than BLS12-446. For example, for the 8-
pairings products, BW13-310 is about 14.2% faster than that on BN446, while 25.5%
slower than that on BLS12-446.

• However, BW13-310 also introduces a significant penalty for hashing to G2 and
exponentiation in G2. Indeed, the pairing group G2 on BW13-310 is defined over
the full extension field as the lack of twists, while that on BLS12-446 and BN446 lies
in a subfield Fp2 .

• For BW13-310 and BLS24-315, they provide nearly equal performance in terms
of exponentiation in G1, membership testing for G1. Moreover, the former has a
significant advantage in terms of hashing to G1, exponentiation in GT , membership
testing for GT and pairing computation, while the latter outperforms for hashing to
G2 and exponentiation in G2.

In summary, our implementation results show that BW13-310 is competitive in scenarios
that hashing to G2 and exponentiation in G2 are not necessary, or performed by a powerful
computational entity.

https://github.com/eccdaiy39/BW13-P310

Yu Dai, Fangguo Zhang and Chang-an Zhao 413

BLS12-446 BN446 BW13-310 BLS24-315
0

300

600

900

1,200

1,500

1,800

71 46 22
78

168 137

1,658

602

cl
oc
k
cy
cl
es
(×

10
4)

G2
G1

Figure 1: Hashing to G1 and G2.

BLS12-446 BN446 BW13-310 BLS24-315
0

150

300

450

600

750

900

54
79

27 26

92
140

713

246

132

221

106

386

cl
oc
k
cy
cl
es
(×

10
4)

GT
G2
G1

Figure 2: Group exponentiations

BLS12-446 BN446 BW13-310 BLS24-315
0

25

50

75

100

125

150

39

0.8

27
22

33

51

118

109

37

54

22

96

cl
oc
k
cy
cl
es
(×

10
4)

GT
G2
G1

Figure 3: Group membership testings

BLS12-446 BN446 BW13-310 BLS24-315
0

200

400

600

800

1,000

1,200

731

284

256

170

154

252

183

155

cl
oc
k
cy
cl
es
(×

10
4)

Final Exp
Miller Loop

Figure 4: Single pairing computation

BLS12-446 BN446 BW13-310 BLS24-315
0

500

1,000

1,500

2,000

2,500

443

570 561

1,210

763

1,056
985

1,791

1,077

1,544

1,352

2,372

cl
oc
k
cy
cl
es
(×

10
4)

n = 8
n = 5
n = 2

Figure 5: n-pairings products computation

7 Applications
In this section, we estimate the performance of two pairing-based cryptosystems built
on the above mentioned pairing-friendly curves, aiming to explain that BW13-310 is an
interesting candidate.

7.1 Unbalanced Chen-Kudla protocol
In [CK03], Chen and Kudla designed a two-party identity based authenticated key agree-
ment protocol from pairings. In this protocol, each entity is required to perform one
exponentiation in G1 and one pairing computation. In real-world protocols, it is often the

414 Don’t Forget Pairing-Friendly Curves with Odd Prime Embedding Degrees

case that one entity (Client) is equipped with a resource-constrained device, while the other
(Server) is more powerful. To reduce the workload of the client, it is reasonable to shift the
time-consuming pairing computation to the server. To this aim, Scott [Sco13] proposed an
unbalanced Chen-Kudla protocol (UCK). In this scenario, a system wide public parameter
Q ∈ G2 is introduced. A trusted authority (TA) posseses a master secret key s ∈ Zr. The
client and server have secret keys SA and SB issued by TA as SA = [s]H1(IDA) ∈ G1 and
SB = [s]Q ∈ G2 respectively, where IDA is the client’s identity. Then the protocol runs as
follows:

1. The client chooses r1, r2 ← Zr at random, calculates R1 = [r1]SA and R2 =
[r2]H1(IDA) and sends the two points R1 and R2 to the server;

2. The server chooses r3 ← Zr at random, calculates R3 = [r3]R1 and g = e(R3, Q),
and send the pairing value g to the client;

3. The client obtains the session key KA by computing

KA =
(
e(SA, Q)r1·r2 · g

)1/r1
.

The server obtains the session key KB by computing

KB = e(R2 + [r3]H1(IDA), SB).

4. If the both entities follow this protocol, they would share the same session key

K = KA = KB = e(SA, Q)(r2+r3).

Since the client can precompute the point H1(IDA) and the pairing value e(SA, Q), the
entity only costs two exponentiations in G1 and two exponentiations in GT . Meanwhile, the
server costs one hashing to G1, two exponentiations in G1 and two pairing computations.

Considering the protocol is designed to minimize the workload of the client, we can see
that BW13-310 is well-suited as it provides fast implementation for group exponentiations
in both G1 and GT . Based on implementation results presented in Figs.1-4, Table 4 shows
our cost estimates for each party of the UCK protocol built on different curves. One can
see that the UCK protocol built on BW13-310 is about 125.6% and 40.6% faster than that
on BN446 and BLS12-446 for the client, respectively.

Table 4: Timings of the UCK protocol reported in 104 clock cycles (extrapolation from
Figs.1-4.)

Protocol\Curve BLS12-446 BN446 BW13-310 BLS24-315
preco 409 452 448 1093
client 374 600 266 824
server 855 1016 928 2160

7.2 BLS signature scheme
The Boneh-Lynn-Shacham (BLS) signature is a famous short signature scheme from
pairings [BLS04]. In the scheme, the point g2 ∈ G2 is a public parameter and the signer
posseses a pair of key (s, pk = [s]g2), where s is private and pk is public. Then, the scheme
works as follows:

Yu Dai, Fangguo Zhang and Chang-an Zhao 415

1. To sign a message msg, the signer computes M = H1(msg), sig = [s]M , and sends
the pair (msg, sig) to the verifier.

2. To verify the signed message, the verifier computes M = H1(msg) and assert that
the signature is valid if and only if sig ∈ G1 and e(sig, pk) = e(M, g2).

It should be noted that an attacker can use the point sig′ = sig + R to forge a valid
signature as e(sig′, pk) = e(sig, pk), where R is an random point in the subgroup r ·E(Fp).
Thus, it can not be ignored for the verifier to check sig ∈ G1. In this setting, the signer
costs one hashing to G1 and one exponentiation in G1, while the verifier costs one hashing
to G1, one subgroup membership testing for G1 and one product of 2-pairings. From Figs.
1-4, we estimate that the BLS signature scheme built on BW13-310 is about both 1.5×
faster than that on BN446 and BLS12-446 for the signer, respectively. Considering that
the performance penalty for the verifier is not expensive, this tradoff becomes favorable in
the case that the scheme is designed to reduce the workload of the signer.

Table 5: Timings of the BLS signature scheme reported in 104 clock cycles (extrapolation
from Figs.1-4.)

Protocol\Curve BLS12-446 BN446 BW13-310 BLS24-315
sign 125 125 49 104
verify 553 616.8 610 1115

8 Conclusion and Future Work
In this work, we presented a detailed study of a 128-bit secure pairing-friendly curve:
BW13-310. We first proposed a new formula for computing the optimal pairing on this
curve. Specially, we showed that it requires two evaluations at the same Miller function
of bit length approximately log r/(2ϕ(k)). On this basis, we proposed a shared Miller
loop such that the two function evaluations can share intermediate values as much as
possible. In addition, we also described several optimizations for group exponentiations in
G2 and GT on this curve. In the case of G2, we showed that GLV and GLS method can be
combined to build a 2ϕ(k) dimensional decomposition. In the case of GT , our optimization
eliminates expensive field inversion.

Finally, we presented high speed implementations of pairing computation, hashing (to
G1 and G2), group exponentiations and membership testings on a 64-bit processor over
BW13-310. The technique of lazy reduction was fully utilized to minimize the number
of modular reductions. Our results showed that compared to BN446 and BLS12-446,
BW13-310 wins out in the performance of hashing to G1, group exponentiations in G1
and GT , and membership testing for GT . Furthermore, it was very surprising to find
that the gap in the performance of single pairing computations between BW13-310 and
BN446 (resp. BLS12-446) is only up to 4.9% (resp. 26%). In particular, compared to
BN446, BW13-310 even has certain advantages for the computation of pairings products.
Our results also reported that the target curve would pay a penalty for hashing to G2 and
the group exponentiation in G2.

Very recently, Longa [Lon23] further optimized the technique of lazy reduction such
that the penalty of “double-precision” operations can be avoided. We note that the new
algorithm gets a greater performance boost on prime fields with smaller sizes, potentially
helping BW13-310 become more attractive. In addition, a faster SVW map (SwiftEC)
was proposed in [CSRHT23](ASIACRYPT 2022). The performance comparison across
different pairing-friendly curves using these optimized algorithms are left as future work.

416 Don’t Forget Pairing-Friendly Curves with Odd Prime Embedding Degrees

Acknowledgment
We would like to thank the anonymous referees for their valuable comments and sugges-
tion. This work is supported by Guangdong Major Project of Basic and Applied Basic
Research(No. 2019B030302008) and the National Natural Science Foundation of China(No.
61972428 and 61972429).

References
[AEHG22] Diego F. Aranha, Youssef El Housni, and Aurore Guillevic. A survey of

elliptic curves for proof systems. Designs, Codes and Cryptography, Dec 2022.

[AFCK+13] Diego F. Aranha, Laura Fuentes-Castañeda, Edward Knapp, Alfred Menezes,
and Francisco Rodríguez-Henríquez. Implementing pairings at the 192-bit se-
curity level. In Michel Abdalla and Tanja Lange, editors, Pairing-Based Cryp-
tography – Pairing 2012, pages 177–195, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[AFG+17] Reza Azarderakhsh, Dieter Fishbein, Gurleen Grewal, Shi Hu, David Jao,
Patrick Longa, and Rajeev Verma. Fast software implementations of bilinear
pairings. IEEE Transactions on Dependable and Secure Computing, 14(6):605–
619, 2017.

[AG] D. F. Aranha and C. P. L. Gouvêa. Relic is an efficient library for cryptography.
https://github.com/relic-toolkit/relic.

[AKL+11] Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebotys,
and Julio López. Faster explicit formulas for computing pairings over or-
dinary curves. In Kenneth G. Paterson, editor, Advances in Cryptology –
EUROCRYPT 2011, pages 48–68, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

[BCC04] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation.
In Proceedings of the 11th ACM Conference on Computer and Communica-
tions Security, pages 132–145, New York, NY, USA, 2004. Association for
Computing Machinery.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra
system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997.
Computational algebra and number theory (London, 1993).

[BD19] Razvan Barbulescu and Sylvain Duquesne. Updating key size estimations for
pairings. Journal of Cryptology, 32(4):1298–1336, 2019.

[BGK15] Razvan Barbulescu, Pierrick Gaudry, and Thorsten Kleinjung. The tower
number field sieve. In Tetsu Iwata and Jung Hee Cheon, editors, Advances
in Cryptology – ASIACRYPT 2015, pages 31–55, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil
pairing. Journal of cryptology, 17(4):297–319, 2004.

[CDS20] Rémi Clarisse, Sylvain Duquesne, and Olivier Sanders. Curves with fast
computations in the first pairing group. In Stephan Krenn, Haya Shulman,
and Serge Vaudenay, editors, Cryptology and Network Security, pages 280–298,
Cham, 2020. Springer International Publishing.

Yu Dai, Fangguo Zhang and Chang-an Zhao 417

[CK03] Liqun Chen and Caroline Kudla. Identity based authenticated key agree-
ment protocols from pairings. In 16th IEEE Computer Security Foundations
Workshop, 2003. Proceedings., pages 219–233. IEEE, 2003.

[CL15] Craig Costello and Patrick Longa. FourQ: Four-dimensional decompositions
on a Q-curve over the mersenne prime. In Tetsu Iwata and Jung Hee Cheon,
editors, Advances in Cryptology – ASIACRYPT 2015, pages 214–235, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

[CSRHT23] Jorge Chavez-Saab, Francisco Rodríguez-Henríquez, and Mehdi Tibouchi.
Swiftec: Shallue-van de woestijne indifferentiable function to elliptic curves:
Faster indifferentiable hashing to elliptic curves. In Advances in Cryptology –
ASIACRYPT 2022, page 63–92, Berlin, Heidelberg, 2023. Springer-Verlag.

[DLZZ23] Yu Dai, Kaizhan Lin, Chang-An Zhao, and Zijian Zhou. Fast subgroup
membership testings for G1, G2 and GT on pairing-friendly curves. Designs,
Codes and Cryptography, may 2023.

[DZZ22] Yu Dai, Fangguo Zhang, and Chang-An Zhao. Fast hashing to G2 in direct
anonymous attestation. Cryptology ePrint Archive, Paper 2022/996, 2022.
https://eprint.iacr.org/2022/996.

[DZZZ22] Yu Dai, Zijian Zhou, Fangguo Zhang, and Chang-An Zhao. Software implemen-
tation of optimal pairings on elliptic curves with odd prime embedding degrees.
IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, 105(5):858–870, 2022.

[EHG20] Youssef El Housni and Aurore Guillevic. Optimized and secure pairing-friendly
elliptic curves suitable for one layer proof composition. In Stephan Krenn,
Haya Shulman, and Serge Vaudenay, editors, Cryptology and Network Security,
2020.

[EHG22] Youssef El Housni and Aurore Guillevic. Families of SNARK-friendly 2-
chains of elliptic curves. In Orr Dunkelman and Stefan Dziembowski, editors,
Advances in Cryptology – EUROCRYPT 2022, pages 367–396, Cham, 2022.
Springer International Publishing.

[EHGP22] Youssef El Housni, Aurore Guillevic, and Thomas Piellard. Co-factor clearing
and subgroup membership testing on pairing-friendly curves. In Lejla Batina
and Joan Daemen, editors, Progress in Cryptology – AFRICACRYPT 2022,
pages 518–536, Cham, 2022. Springer Nature Switzerland.

[EMJ16] Nadia El Mrabet and Marc Joye. Guide to pairing-based cryptography. Chap-
man and Hall/CRC, 2016.

[FGA23] Emmanuel Fouotsa, Laurian Azebaze Guimagang, and Raoul Ayissi. x-
superoptimal pairings on elliptic curves with odd prime embedding degrees:
BW13-P310 and BW19-P286. Applicable Algebra in Engineering, Communi-
cation and Computing, 2023.

[FHLS14] Armando Faz-Hernández, Patrick Longa, and Ana H. Sánchez. Efficient and
secure algorithms for GLV-based scalar multiplication and their implemen-
tation on GLV-GLS curves. In Josh Benaloh, editor, Topics in Cryptology –
CT-RSA 2014, pages 1–27, Cham, 2014. Springer International Publishing.

[FST10] David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-
friendly elliptic curves. Journal of Cryptology, 23(2):224–280, 2010.

https://eprint.iacr.org/2022/996

418 Don’t Forget Pairing-Friendly Curves with Odd Prime Embedding Degrees

[Gal18] Steven Galbraith. Mathematics of Public Key Cryptography. Cambridge
University Press, 2018. version 2.

[GLS09] Steven D. Galbraith, Xibin Lin, and Michael Scott. Endomorphisms for
faster elliptic curve cryptography on a large class of curves. In Antoine Joux,
editor, Advances in Cryptology - EUROCRYPT 2009, pages 518–535, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[GLV01] Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. Faster point
multiplication on elliptic curves with efficient endomorphisms. In Joe Kilian,
editor, Advances in Cryptology — CRYPTO 2001, pages 190–200, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[GMT20] Aurore Guillevic, Simon Masson, and Emmanuel Thomé. Cocks-pinch curves
of embedding degrees five to eight and optimal ate pairing computation.
Designs, Codes and Cryptography, 88(6):1047–1081, 2020.

[GS06] R Granger and N. P. Smart. On computing products of pairings. Cryptology
ePrint Archive, Paper 2006/172, 2006. https://eprint.iacr.org/2006/
172.

[GS08] Steven D. Galbraith and Michael Scott. Exponentiation in pairing-friendly
groups using homomorphisms. In Steven D. Galbraith and Kenneth G.
Paterson, editors, Pairing-Based Cryptography – Pairing 2008, pages 211–224,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[GS10] Robert Granger and Michael Scott. Faster squaring in the cyclotomic subgroup
of sixth degree extensions. In Phong Q. Nguyen and David Pointcheval, editors,
Public Key Cryptography – PKC 2010, pages 209–223, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

[Gui20] Aurore Guillevic. A short-list of pairing-friendly curves resistant to special
TNFS at the 128-bit security level. In Aggelos Kiayias, Markulf Kohlweiss,
Petros Wallden, and Vassilis Zikas, editors, Public-Key Cryptography – PKC
2020, pages 535–564, Cham, 2020. Springer International Publishing.

[HSV06] F. Hess, N. P. Smart, and F. Vercauteren. The eta pairing revisited. IEEE
Transactions on Information Theory, 52(10):4595–4602, 2006.

[Kar12] K. Karabina. Squaring in cyclotomic subgroups. Mathematics of Computation,
82(281):555–579, 2012.

[KB16] Taechan Kim and Razvan Barbulescu. Extended tower number field sieve:
A new complexity for the medium prime case. In Matthew Robshaw and
Jonathan Katz, editors, Advances in Cryptology – CRYPTO 2016, pages
543–571, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[KJ17] Taechan Kim and Jinhyuck Jeong. Extended tower number field sieve with
application to finite fields of arbitrary composite extension degree. In Serge
Fehr, editor, Public-Key Cryptography – PKC 2017, pages 388–408, Berlin,
Heidelberg, 2017. Springer Berlin Heidelberg.

[Kos22] Dmitrii Koshelev. Subgroup membership testing on elliptic curves via the
tate pairing. Journal of Cryptographic Engineering, Sep 2022.

[LLL82] A. K. Lenstra, H. W. Lenstra, and L Lovász. Factoring polynomials with
rational coefficients. Mathematische Annalen, 261(4), 1982.

https://eprint.iacr.org/2006/172
https://eprint.iacr.org/2006/172

Yu Dai, Fangguo Zhang and Chang-an Zhao 419

[Lon23] Patrick Longa. Efficient algorithms for large prime characteristic fields and
their application to bilinear pairings. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2023(3):445–472, 2023.

[LS12] Patrick Longa and Francesco Sica. Four-dimensional Gallant-Lambert-
Vanstone scalar multiplication. In Xiaoyun Wang and Kazue Sako, edi-
tors, Advances in Cryptology – ASIACRYPT 2012, pages 718–739, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[Mil04] Victor S. Miller. The Weil pairing, and its efficient calculation. Journal of
Cryptology, 17(4):235–261, 2004.

[Mon87] Peter L. Montgomery. Speeding the pollard and elliptic curve methods of
factorization. Mathematics of computation, 48(177):243–264, 1987.

[Pol75] J. M. Pollard. A monte carlo method for factorization. Bit Numerical
Mathematics, 15(3):331–334, 1975.

[Sch93] Oliver Schirokauer. Discrete logarithms and local units. Philosophical Trans-
actions: Physical Sciences and Engineering, 345(1676):409–423, 1993.

[Sco05] Michael Scott. Faster pairings using an elliptic curve with an efficient endo-
morphism. In Subhamoy Maitra, C. E. Veni Madhavan, and Ramarathnam
Venkatesan, editors, Progress in Cryptology - INDOCRYPT 2005, pages
258–269, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[Sco11] Michael Scott. On the efficient implementation of pairing-based protocols.
In Liqun Chen, editor, Cryptography and Coding, pages 296–308, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[Sco13] Michael Scott. Unbalancing pairing-based key exchange protocols. IACR
Cryptol. ePrint Arch., page 688, 2013.

[SvdW06] Andrew Shallue and Christiaan E. van de Woestijne. Construction of rational
points on elliptic curves over finite fields. In Florian Hess, Sebastian Pauli,
and Michael Pohst, editors, Algorithmic Number Theory Symposium– ANTS
2006, pages 510–524, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[Ver09] Frederik Vercauteren. Optimal pairings. IEEE Transactions on Information
Theory, 56(1):455–461, 2009.

[YCZ+21] Kang Yang, Liqun Chen, Zhenfeng Zhang, Christopher JP Newton, Bo Yang,
and Li Xi. Direct anonymous attestation with optimal TPM signing efficiency.
IEEE Transactions on Information Forensics and Security, 16:2260–2275,
2021.

[ZL12] Xusheng Zhang and Dongdai Lin. Analysis of optimum pairing products at
high security levels. In Steven Galbraith and Mridul Nandi, editors, Progress
in Cryptology - INDOCRYPT 2012, pages 412–430, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[ZXZ+11] Chang-An Zhao, Dongqing Xie, Fangguo Zhang, Jingwei Zhang, and Bing-
Long Chen. Computing bilinear pairings on elliptic curves with automorphisms.
Designs, Codes and Cryptography, 58(1):35–44, Jan 2011.

	Introduction
	Pairing-friendly curves with fast exponentiation in G1
	Contributions

	Preliminaries
	Optimal pairing
	A family of curves with embedding degrees k1-5mumod5mu-6

	Single Pairing Computation on BW13-310
	Shared Miller loop
	The final exponentiation
	Operation counts

	Pairings Products Computation on BW13-310
	Exponentiation in Pairing Groups
	Exponentiation in G2
	Exponentiation in GT

	Implementation Results
	Applications
	Unbalanced Chen-Kudla protocol
	BLS signature scheme

	Conclusion and Future Work

